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Tymofiy Mylovanov❸and Thomas Tröger❹
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Abstract

We show that in informed-principal settings with generalized pri-
vate values any neutral optimum (Myerson, 1983) is strongly neologism-
proof (Mylovanov and Tröger, 2012) and hence is a strong uncon-
strained Pareto optimum in the setting of Maskin and Tirole (1990).
Thus, in any setting with a unique strongly neologism-proof solution
this concept is equivalent to neutral optimum. We rely on the unify-
ing concept of neo-optimum that we develop in the companion paper
Mylovanov and Tröger (2026). The main step is to prove that any
neo-optimum is strongly neologism-proof.

1 Introduction

Myerson (1983) introduced neutral optimum as a solution to the problem of
mechanism-design by an informed principal. Myerson proves the existence
of a neutral optimum in arbitrary informed-principal settings, subject to
technical assumptions. Neutral optimum is a refinement of perfect-Bayesian
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equilibrium in the signaling game where the principal is a sender who pro-
poses a mechanism in which the principal as well as agents submit messages.
The refinement is motivated by the standard mechanism-design doctrine that
the principal can set a focal point for the agents’ behavior. Two properties
are central. First, relative to a neutral optimum, there exists no other direct
revelation mechanism that would be strictly preferred by the principal inde-
pendently of her private information. This stands in contrast to all signaling
refinements that are consistent with strategic stability, such as the intuitive
criterion. Secondly, neutral optimum balances the conflicts of interest be-
tween different private-information types of the principal.

Unfortunately, neutral optima are notoriously different to compute. Thus,
with few exceptions (e.g., Severinov (2008)), the subsequent literature has
ignored Myerson’s elegant solution und has instead turned attention to clas-
sical signaling refinements or to other solution concepts, each of which was
invented for a specific class of informed-principal settings.

Initiated by Maskin and Tirole (1990), a part of the informed-principal
literature has considered settings with “private values” (e.g., Myerson (1985);
Maskin and Tirole (1990); Tan (1996); Yilankaya (1999); Skreta (2009);
Mylovanov and Tröger (2014); Wagner, Mylovanov, and Tröger (2015)).
Here, the principal is privately informed about her goals, that is, she “has
private information that is not directly payoff relevant to the agents, but may
influence her design” (Mylovanov and Tröger, 2012). An example would be
a seller with private information about her opportunity cost of selling who
designs a profit-maximizing sales procedure. Private information is assumed
to be stochastically independent across players. The solution concepts pro-
posed in this context, strong unconstrained Pareto optimum (SUPO) by
Maskin and Tirole (1990) and its generalization, strongly neologism-proof
allocations by Mylovanov and Tröger (2012, 2014) are more intuitive than
neutral optimum. They allow an economic interpretation where different
private-information types of the principal resolve their conflicts of interest
like traders in a competitive market. However, SUPO and strong neologism-
proofness have so far remained disconnected fromMyerson’s (1983) approach.

We show that, in the generalized-private-values settings for which Mylo-
vanov and Tröger (2012) show the existence of a strongly neologism-proof
allocation, any neutral optimum is strongly neologism-proof. This result re-
solves a question that has remained open essentially since the publication of
Maskin and Tirole (1990). An immediate implication is that in any setting
with a unique strongly neologism-proof solution, this concept is equivalent
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to neutral optimum. Another important implication is that in quasilinear
private-values environments (Mylovanov and Tröger, 2014), any neutral op-
timum is ex-ante optimal.

Towards establishing the connection between neutral optimum and strong
neologism-proofness, there are three steps. First, a neutral optimum is a
neo-optimum in any (private or non-private values) setting. This result is
taken from our companion paper Mylovanov and Tröger (2026), where we
introduce the concept of a neo-optimum. Neo-optimum inherits many of the
properties of neutral optimum, but is easier to handle. Second, in private-
values settings neo-optimum is equivalent to the novel concept of interim
optimum by Koessler and Skreta (2023) if we translate their concept into
the private-values context. Third, in private-values settings that satisfy the
separability condition fromMylovanov and Tröger (2012), interim optimum is
equivalent to strong neologism-proofness. In summary, we have the following
picture in private-values settings:

Neutral optimum
Lemma1
=⇒ Neo-optimum

Lemma2
⇐⇒

Lemma3
Interim-optimum

Lemma4
⇐⇒

Lemma5
Strongly neologism-proof allocation.

Section 2 reviews private-values settings and introduces the core concepts. In
Section 3 we prove our results. Section 4 summarizes the main conclusions.

2 Settings with private-values and solution

concepts

As in Mylovanov and Tröger (2012), we consider the interaction of a principal
(player 0) and n ≥ 1 agents i = 1, . . . , n. The players must collectively choose
an outcome from a compact metric space of basic outcomes Z. Every player
i has a type ti that belongs to a finite type space Ti. The principal’s type t0
will often be denoted t for short. The principal’s type space T0 will often be
denoted T for short. A type profile is any t ∈ T = T × · · · × Tn. Sometimes
we use the notation T = Ti × T−i, t = (ti, t−i), or t = (t0, ti, t−0,i). Player
i’s payoff function,

ui : Z ×T → IR,

is assumed to be continuous (note that the continuity assumption is void if
Z is finite).
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An outcome is a probability measure over basic outcomes; let Z denote
the set of outcomes. We identify any z ∈ Z with the point distribution that
puts probability 1 on the point z; hence, Z ⊆ Z. We extend the definition
of ui to Z ×T via the statistical expectation.

Some outcome z0 ∈ Z is designated as the disagreement outcome. Every
player’s payoff from the disagreement outcome is normalized to 0 (for every
profile of other players’ types).

The interaction is described by a mechanism-selection game. First, for
each player i nature chooses a type. Let pi(ti) > 0 denote the probability
of type ti ∈ Ti. We assume that types are stochastically independent. Each
player privately observes her type ti. Second, the principal offers amechanism
M , which is a finite perfect-recall game form with players N ∪ {0} and with
outcomes in Z. Third, the players1 decide simultaneously whether or not to
accept M . If M is accepted unanimously, then each player chooses a plan of
actions in M , and the outcome specified by M is implemented. If at least
one player rejects M , then the disagreement outcome z0 is implemented. In
Mylovanov and Tröger (2012), we define perfect-Bayesian equilibrium for this
game.

Consider now the continuation game that begins after the principal has
proposed some arbitrary mechanism M . Based on observing M , the agents
may change their belief about the principal’s type, so that the belief at the
beginning of the continuation game may be different from p0.

An allocation is a function

ρ : T → Z

that assigns an outcome ρ(t) to every type profile t ∈ T. Thus, an allocation
may describe the outcome of any continuation game as a function of the
type profile. Here we can also view the entire mechanism-selection game as
a continuation game. Hence, an allocation can also describe the outcome of
the entire mechanism-selection game.

Let ρ denote the allocation induced by equilibrium play in a continuation
game that begins with any belief b ∈ B about the principal’s type, where B
denotes the set of probability distributions on T .

1We are assuming the principal can reject her own mechanism. This will not play any
significant role, but it corrects an imprecision in the game description in Mylovanov and
Tröger (2012).
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The expected payoff of type ti of player i if she imitates type t̂i in the
continuation game is

Uρ,b
i (t̂i, ti) =

∑

t−i∈T−i

ui(ρ(t̂i, t−i), (ti, t−i)) q−i(t−i),

where q−i(t−i) = b(t0) · p1(t1) · · · pi−1(ti−1) · pi+1(ti+1) · · · pn(tn) if i ̸= 0, and
q−0(t−0) = p1(t1) · · · · · pn(tn).

The expected payoff of type ti of player i from allocation ρ is

Uρ,b
i (ti) = Uρ,b

i (ti, ti).

Definition 1. Given any belief b ∈ B, an allocation ρ is called b-feasible if
no type of any player has an incentive to reject ρ or to imitate a different
type: for all i,

Uρ,b
i (ti) ≥ Uρ,b

i (t̂i, ti) for all ti, t̂i, (1)

Uρ,b
i (ti) ≥ 0 for all ti. (2)

(We will use the shortcut Uρ
0 (t0) = Uρ,b

0 (t0), which is justified by the fact
that the principal’s expected payoff is independent of b.)

Our crucial assumption for the rest of the paper is that the agents’ payoff
functions are independent of the principal’s type.

Definition 2. An environment features generalized private values if, for all
agents i = 1, . . . , n,

ui(z, (t, t−0)) = ui(z, (t
′, t−0))

def

= ui(z, t−0) for all z, t, t′, t−0.

This assumption implies a very particular structure for the sets of feasible
allocations. To describe it we need additional notation.

A sub-allocation is a function

α : T−0 → Z.

The set of sub-allocations is a convex subset Q of the linear space of maps
from T−0 into the space of signed Borel measures on Z.

Any allocation ρ corresponds to a family (ρt)t∈T of sub-allocations ρt, via
the equation ρ(t, t−0) = ρt(t−0). In such a situation, we call ρt the allocation
of type t.
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We can use any family (ρt)t∈T together with any belief b ∈ B to define
an averaged sub-allocation via the convex combination

ρb =
∑

t∈T

b(t)ρt.

To make this more explicit, note that, for any t−0, the outcome ρb(t−0) ∈ Z
assigns to any Borel set S ⊆ Z the probability

ρb(t−0)(S) =
∑

t∈T

b(t)ρt(t−0)(S).

A crucial implication of the generalized-private-values assumption is that
agents care only about the averaged sub-allocation, and are otherwise indif-
ferent concerning which type of the principal implements what. Thus, the
agents’ incentive and participation constraints can be written in terms of the
averaged sub-allocation. Formally, given any sub-allocation α, agent i, and
types ti and t̂i, define

Uα
i (t̂i, ti) =

∑

t−i∈T−i

ui(α(t̂i, t−i−0), (ti, t−i−0)) q−i−0(t−i−0).

Let A denote the set of sub-allocations that satisfy the agents’ incentive and
participation constraints, that is, α ∈ A if and only if, for all i ≥ 1,

Uα
i (ti) ≥ Uα

i (t̂i, ti) for all ti, t̂i ̸= ti,

Uα
i (ti) ≥ 0 for all ti.

Using this definition, the condition that the constraints (1) and (2) are sat-
isfied for all agents i = 1, . . . , n can be expressed as the statement

ρb ∈ A.

We call this condition “Agents’ Feasibility” (AF).
We will also reformulate the incentive and participation constraints for

the principal. Given any sub-allocation α, the expected payoff of any type
t ∈ T of the principal is denoted

Π(α)(t) =
∑

t−i∈T−i

u0(α(t−0), (t, t−0)) q−0(t−0).
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Note that Π is a linear mapping from Q into IRT . For any allocation ρ and
types t̂ and t,

Uρ
0 (t̂, t) = Π(ρt̂)(t).

Thus, the constraints (1) for i = 0 can alternatively be expressed as Π(ρt)(t) ≥
Π(ρt′)(t) for all t, t′ ∈ T . We call these conditions “Principal’s Incentive
Compatibility” (PIC).

Thus, the constraints (2) for i = 0 can alternatively be expressed as
Π(ρt)(t) ≥ 0 for all t ∈ T . We call these conditions “Principal’s Individual
Rationality” (PIR).

In summary, given any belief b ∈ B, an allocation ρ (or a family (ρt)t∈T
in Q) is b-feasible if and only if AF holds for (ρt)t∈T together with the belief
b, and PIC and PIR hold. We then also say that the payoff vector U ∈ IRT ,
U(t) = Π(ρt)(t), is b-feasible.

Strong neologism-proofness

Given any allocations ρ and ρ′, the set of principal-types that are strictly
better off in ρ is denoted

S(ρ, ρ′) = {t ∈ T | Uρ
0 (t) > Uρ′

0 (t)}.

The set of types who in ρ obtain the highest feasible payoff is denoted

H(ρ) =







t ∈ T | Uρ
0 (t) =

∑

t−0∈T−0

max
z∈Z

u0(z, t, t−0)q(t−0)







.

Given any allocations ρ and ρ′, Mylovanov and Tröger (2012) say that a
belief b ∈ B is credible for ρ′ relative to ρ if b puts zero probability mass
on principal-types who are strictly better off in ρ or who already enjoy the
highest feasible payoff in ρ that is,

(S(ρ, ρ′) ∪H(ρ)) ∩ supp(b) = ∅,

where supp(b) denotes the support of b.

Definition 3. An allocation ρ is called strongly neologism-proof if ρ is p0-
feasible and S(ρ′, ρ)∩ supp(b′) = ∅ for any belief b′ together with a b′-feasible
allocation ρ′ such that b′ is credible for ρ′ relative to ρ.
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Mylovanov and Tröger (2012) prove existence and show that the concept
generalizes strong unconstrained Pareto optimum (SUPO) of Maskin and
Tirole (1990). While being technically convenient, a problem with strong
neologism-proofness is that the underlying concept of credibility of beliefs is
somewhat arbitrary and may be seen as too permissive. The concept of a
neologism that was put forward by Farrell (1993) captures a more natural
idea of credibility.

Neo-optimum

Consider a vector V ∈ IRT . We will interpret V as a (fictitious, possibly non-
feasible) payoff vector for the types of the principal. A belief b together with

a b-feasible allocation ρ′ is a neologism for V (at the belief p0) if U
ρ′

0 (ť) > V (ť)
for some ť ∈ T , and the following conditions hold for all t ∈ T :

if Uρ′

0 (t) > V (t) then b(t)p0(t
′) ≥ b(t′)p0(t) for all t

′ ∈ T, (3)

if Uρ′

0 (t) < V (t) then b(t) = 0. (4)

A neologism that can be seen as a plausible deviation relative to a given
(not necessarily feasible) principal-payoff-vector V . The deviation must be
feasible at a belief b that is Bayes-consistent with the prior belief p0, given
that all principal types choose optimally whether or not to deviate, and the
deviation must be profitable for at least one principal type ť. Note that b
retains the relative likelihood across types that strictly gain (use (3) with
switched roles of t and t′, yielding b(t)p0(t

′) = b(t′)p0(t)), and can shift belief
probability mass from indifferent types to strictly gaining types. The concept
is inspired by Farrell (1993). Note, however, that our definition, in contrast
to Farrell’s, refers to an arbitrary vector V that may not be feasible.

Definition 4. A vector V ∈ IRT is neologism-proof if no neologism exists
for V at p0.

Consistent with the naming, the definition is less restrictive than the
concept of strong neologism-proofness, as long as no principal type obtains
the highest feasible payoff. In our companion paper, we propose a concept
which in general non-private-value settings is even weaker than neologism-
proofness: we extend consideration to all allocations that yield payoff vectors
that are above limits of neologism-proof payoff vectors.
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Definition 5. A p0-feasible allocation ρ is a neo-optimum if there exists a
sequence (V n)n=1,2,... of neologism-proof payoff vectors such that

Uρ
0 (t) ≥ lim

n
V n(t) for all t ∈ T.

As we demonstrate in our companion paper Mylovanov and Tröger (2026),
this concept is of central importance to informed-principal problems because
it unifies a variety of other concepts that have been proposed in the literature,
and it exists quite generally, including in settings with non-private-values. In
particular, in our companion paper we show the following.

Lemma 1. Consider any Bayesian incentive problem. Any neutral optimum
is a neo-optimum with p0 being the uniform distribution.

The uniform-distribution assumption concerning p0 is not essential. We
make it in order to adapt the framework to Myerson (1983), where the setup
is such that the prior is always uniform.

An immediate conclusion from Lemma 1 and Myerson’s existence result
for neutral optima is that a neo-optimum exists in any Bayesian incentive
problem.

Interim-optimum

As an intermediate step towards proving our main result, the equivalence of
strong neologism-poofness and neo-optimum, we employ yet another solution
concept that “fits in between” the other two concepts (cf. the diagram in
the introduction). The concept was invented by Koessler and Skreta (2023)
in a non-private-values context of information design.

Definition 6. An allocation ρ is interim-optimal if (i) ρ is p0-feasible and
(ii) there does not exist a belief b′ together with a b′-feasible allocation ρ′ such
that supp(b′) ⊆ S(ρ′, ρ).

3 Results

Interim-optimality is easily seen to be at least as strong as neo-optimum (and
the result has nothing to do with private values). For clarity we repeat this
result from our companion paper Mylovanov and Tröger (2026).
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Lemma 2. Any interim optimal allocation is a neo-optimum.

Proof. Consider any interim optimal allocation ρ. Then, for all ϵ > 0, no
neologism exists for Uρ

0 + ϵ at the belief p0. Thus, U
ρ
0 is a limit of neologism-

proof payoff vectors, showing that ρ is a neo-optimum.

The following result, the reverse of Lemma 2, is by far the harded piece
of work.

Lemma 3. Any neo-optimum is interim optimal.

To show this (for details see the Appendix), we start with a p0-feasible al-
location ρ that is not interim optimal and show that it is not a neo-optimum.
Let U = Uρ

0 denote the corresponding payoff vector.
By assumption, there exists a belief b′′ ∈ B and a b′′-feasible allocation ρ′′

such that in the “deviation payoff vector” U ′′ = Uρ′′

0 all types in the support
of b′′ are strictly better off than in U . In general, ρ′′ is not a neologism for U
because the relative probabilities of different types in the support of b′′ are
unrestricted, and types outside the support may also be better off in U ′′ than
in U . The idea behind our proof is to apply a sequence a “surgeries” in which
we apply further changes to b′′ and ρ′′ such that eventually a neologism for
U is obtained.

Because in U ′′ all types in the support of b′′ are also strictly better off
than in the payoff vectors in a neighborhood of U and below, the surgery
constructions extend to the existence of neologisms for all such payoff vectors,
implying that U is not a neo-optimum.

Starting with b′′ and the allocation ρ′′, the basic idea behind our surgeries
is that we build a new belief b′ together with a new allocationρ′ such that

∑

t∈T

b′(t)ρ′t =
∑

t∈T

b′′(t)ρ′′t ,

where each sub-allocation ρ′t will be a convex combination of various types’
allocations in ρ′′. By construction, the new sub-allocations belong to Q, and
AF remains true for ρ′ together with b′.

If some type t’s new allocation ρ′t arises from a convex combination in-
volving some type ť’s old allocation ρ′′

ť
, then we say that type t obtains a

chunk of type ť’s allocation. Note that in this process a corresponding piece
of probability mass from b′′(ť) must be moved into b′(t) so that AF remains
true.
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The possibility of surgeries yields considerable freedom to construct new
allocations ρ′, but care is needed to guarantee that PIC remains true so that ρ′

is b′-feasible. Several observations are helpful towards verifying PIC: first, if a
type does not gain from choosing some other types’ allocations, then she also
cannot gain from any convex combination of these sub-allocations; second, if
a type does not gain from choosing another type’s allocation, then any convex
combination of her own and that type’s allocation is still at least as good
for her as that type’s allocation; third, if a type strictly loses from choosing
another type’s allocation, then this remains true for any perturbation of her
original sub-allocation.

As a first surgery, the belief is kept fixed and each type outside the support
of b′′ gets restricted to choose either the disagreement outcome (to keep PIR
in place) or her most preferred sub-allocation among the allocations of types
in the support of b′′. This will keep PIC in place and can only lead to a
reduction of utility for the types outside the support.

If after this operation there exists a type t outside the support who still
obtains more than her U utility, then, as a second surgery, we move some
probability mass to her from her most preferred type in the initial support.
AF and PIC (and PIR) are still in place, but now we have included t into the
support. In this way, we obtain a deviation (b′, U ′) such that in U ′ all types
in the support of b′ are strictly better off than in U , and all types outside
the support are weakly better off in U than in U ′.

If the support of b′ contains a single type, we have obtained a neologism
and are done. If it contains two types, say t and ť, the remaining surgeries
are still comparatively easy. It is useful to introduce auxiliary variables that
capture probabilities relative to the prior; we call the numbers b′(t)/p0(t) and
b′(ť)/p0(ť) the r-values of the types t and, resp., ť at the belief b′. If both
types have the same r-value, then (b′, U ′) is a neologism for (p0, U) and we
are done.

Otherwise one type, say t, has a smaller r value than the other type, ť.
Now imagine that we change the deviation continuously, by moving an ever
larger chunk of the allocation of type ť, and a corresponding piece of belief
probability mass, to type t. Along the way, any other type (i.e., the types
outside the support of b′) always chooses her most preferred sub-allocation
among the current allocations of the types t and ť (or chooses the disagree-
ment outcome if that is better). In this process, the r-value of type t increases
while the r-value of type ť decreases, and the utility of type t can drop. AF,
PIC, and PIR remain intact.

11



This process is continued until one of two things happens. Either both
types’ r values are equalized, or the utility of type t drops to her U utility.
In both cases we have arrived at a neologism and are done.

The general argument, where the type space (and thus the support of
b′) can have any cardinality, is very much more complicated. The main
reasons for the complications are that the number of incentive constraints
in PIC increases fast (quadratically) with the cardinality of the type space,
and that we have to find a deviation that equalizes the r-values across a
potentially large number of types. These complications may have contributed
to the fact that the underlying puzzle—the relation between neutral optimum
and private-values solution concepts—has remained open essentially since the
start of the informed-principal literature in the 1980s. In the following we
provide a roadmap through the general argument.

The key to the general argument is the introduction of a special class of
deviations. A feasible pair (b′, U ′) is a *deviation if at least one type has
utility > U , all types not in supp(b′) have utility ≤ U and each of them
obtains the same sub-allocation as one of the types in supp(b′), all types in
supp(b′) have utility ≥ U , and the U -utility types t ∈ supp(b′) have r-values
≤ r∗, where r∗ is defined as the “target value” of r that would be reached if
all r-values of types with > U utility were equal, that is

∑

U ′(t)>U(t)

(r∗ − rb′(t)) p0(t) = 0, (5)

where rb′(t) = b′(t)/p0(t) denotes the r-value of any type t at the belief b′.
(Note that r∗ is defined separately for each *deviation.)

Not all *deviations are allowed deviations in the definition of interim-
optimality because some types in the support of b′ can have utility equal to
U . However, a *deviation, with no U -utility type in the support of b′, exists
by the first and second surgery arguments above.

If a *deviation is such that the r-values of all > U -utility types are equal-
ized then, by construction, the *deviation is a neologism for (p0, U) and we
are done.

Rather than explicitly describing the sequence of surgeries to be applied to
the initial *deviation, we cut through to the end by considering a *deviation
with the “right” properties.

Consider the *deviations that have a minimal cardinality of the support
of b′ among all *deviations. Among these, consider the *deviations that
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have a maximum number of U -utility types in the support. Among these,
we consider a *deviation that has a maximum number of types with r-value
equal to r∗.

We claim that any such *deviation (b′, U ′) has the desired neologism prop-
erties. Suppose otherwise.

Let r∗0 denote the value of r
∗ for (b′, U ′). Then there exists a type t1 in the

support of b′ with > U utility and an r-value below r∗0. Let T≤ denote the
set of > U -utility types with r-values ≤ r∗0. Let T> denote the > U -utility
types with r-values > r∗0.

Starting with (b′, U ′), we now consider the problem of maximizing the
r-value of type t1 via surgery subject to constraints. We consider surgery
that concerns the types in T≤ ∪ T>, while the other types in the support of
b′ keep their sub-allocations, and each type outside the support of b′ chooses
her best available sub-allocation among those of the types in the support of
b′.

Using the numeration from the proof for reference, the constraints are
that (10) all types in T> keep their sub-allocations, (11) each type in T≤

obtains a convex combination of the allocations of the types in T≤∪T>, (12)
the r-value of type t1 remains ≤ r∗0, (13) the r-values of the types in T≤\{t1}
remain the same as at the belief b′, (14) the r-values of the types T> remain
≥ r∗0, (15) each type in T≤ weakly prefers her new sub-allocation to the (old
and new) allocation of each of the types in supp(b′) \ (T≤ ∪ T>), (16) each
type in T≤ weakly prefers her new sub-allocation to the new allocations of
the types in T≤, and to the allocations of the types in T>, and (17) the utility
each type in T≤ does not fall below her U -utility.

We will show that at a solution to the maximization problem, denoted
(b̂, û), the constraints (12), (14), (15), and (17) are not binding. This will
allow us to increase the solution value via a perturbation that satisfies all
constraints, and thus obtain a contradiction.

By construction, the solution (b̂, û) is a *deviation, where b̂ has the same
(minimum cardinality) support as b′. By the assumed maximality of the
number of U -utility types in the support, at the optimum (b̂, û), the utility
of no type in T≤ has dropped to her U -utility, that is, the constraints (17)
are not binding. Note also that the r∗-value for (b̂, û) is still equal to r∗0.

At b̂, the r-value of type t1 must still be strictly below r∗0, and the r-values
of the types in T> must still be strictly above r∗0 because the number of types
with r-values equal to r∗ was assumed to be already maximal at (b′, U ′), and
by constraint (13) any type who before the optimization had an r value equal
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to r∗ keeps it. Thus, the constraints (12) and (14) are not binding.
Suppose a constraint (15) is binding, that is, some type ti ∈ T≤ is indiffer-

ent to a type t̊ that belongs to the support of b̂ and who obtains her U utility.
Then we can do a surgery where all the probability mass and allocation of
t̊ is moved to type ti, yielding a new *deviation where the type t̊ does not
belong to the belief support anymore, but this contradicts the minimality of
the support of b̂ among all *deviations.

Now we describe the perturbation of (b̂, Û). Only the allocations of the
types in a subset of T≤ are changed. In the subset we include all types with
sub-allocations that type t1 likes as well as her own allocation, and then
include all types that any type included in the first round is indifferent to,
and so on, until all indifferences in T≤ are exhausted. We denote this subset
(which can be the singleton {t1}) by T≤

= .
As a perturbing surgery, the allocation of each type in T≤

= is now changed
such that a small fraction of her new allocation comes from her respective
most preferred type in T>. The fraction will be the same for all types in T≤

= ,
implying that incentive compatibility relative to each other and to the types
in T> remains intact. By construction, there are no indifferences from types
in T≤

= to types in T≤ \ T≤
= if the perturbation is small.

Due to the new allocation chunks and corresponding probability masses,
the types in T≤

= will now have increased r-values. For all types except t1, the
r values must be brought back to their previous levels to satisfy constraint
(13).

To this end, we consider a directed graph with nodes T≤
= where each edge

corresponds to an indifference. We select a tree with root t1 in T≤
= . All the

direct predecessor types of the tree’s end nodes get chunks of the end node’s
allocations and corresponding probability masses such that the end nodes
are back to their correct r values. These corrections are iterated backwards
through the tree. Due to the indifferences along the way, the involved types
keep their utility levels. Eventually only type t1 gains probability mass,
yielding the desired contradiction.

The following result is immediate from the definitions (and has nothing
to do with private values.

Lemma 4. Any strongly neologism-proof allocation is interim optimal.

The reverse implication is the last piece needed. Here we need a property
from Mylovanov and Tröger (2012).
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Definition 7. A setting with generalized private values is called separable if
there exists a sub-allocation α for which the defining inequalities of the set A
are all satisfied strictly.

Lemma 5. In any separable generalized-private-values setting, any interim
optimal allocation is strongly neologism-proof.

To prove this (for details see the appendix), we consider an interim opti-
mal allocation ρ and suppose it is not strongly neologism-proof.

Let Uρ
0 denote the payoff vector implemented by ρ. By assumption, there

exists a belief b′ and a b′-feasible allocation ρ′ such that, for all t ∈ supp(b′),

we have that (i) Uρ′

0 (t) ≥ Uρ
0 (t) with strict inequality for at least one type t′,

and (ii) Uρ′

0 (t) is below the maximum feasible payoff.
We now do surgery in order to find a deviation as required in the defi-

nition of interim-optimality. By the separability assumption, there exists an
allocation such that all agents’ constraints are satisfied strictly; we perturb
the allocation ρ′ by having type t′ offer this “separating” allocation with a
small probability and simultaneously slightly increasing the probability mass
for type t′. She will still be strictly better off than in ρ. Given the new
allocation, the agents’ constraints are satisfied strictly. Thus, we can again
perturb it without violating the agents’ constraints; we do this by giving all
types in supp(b′) their “maximum feasible payoff” with a small probability.
Now all types in the belief support are strictly better off than in ρ, but PIC
may not hold anymore. It can be restored by further surgery, using a trick
from Mylovanov and Tröger (2014). If one type in the belief support is at-
tracted to the allocation of another type in the belief support, then we let the
first type offer the average allocation of what both types used to offer, and
move all the probability mass from the second type to the first type. This
procedure continues until incentive compatibility is satisfied for the types
in the (remaining) support. Let the types outside the support choose their
optimum among the allocations of the types in the support. Then we have
a deviation as considered in the definition of interim-optimality.

4 Summary

He we sum up the main implications of the above lemmata.
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Corollary 1. Consider a separable generalized-private-values environment in
the sense of Mylovanov and Tröger (2012). Then strong neologism-proofness,
interim optimality and neo-optimum are equivalent.

Corollary 2. In any separable generalized-private-values environment that is
also a Bayesian incentive problem, any neutral optimum is strongly neologism-
proof.

Since strong neologism-proofness often yields sharp properties related to
competitive equilibria (Maskin and Tirole, 1990)—such as ex-ante optimality
in quasi-linear settings (Mylovanov and Tröger, 2014)—the same properties
apply to any neutral optimum.

From the existence result in Mylovanov and Tröger (2012), we can also
conclude that a neo-optimum exists broadly in private-value settings, includ-
ing settings that do not satisfy the finiteness properties of Bayesian incentive
problems as defined by Myerson (1983).

Appendix A: omitted proofs

Proof of Lemma 3. Consider a neo-optimum ν that implements a payoff vec-
tor U = U ν

0 .
Throughout the proof, we will call a pair (b, V ) feasible if b ∈ B and

V = Uρ
0 for some b-feasible allocation ρ.

Also, let ζ0 denote the sub-allocation that always implements the outside
option, that is ζ0(t−0) = z0 for all t−0 ∈ T−0.

Suppose that ν is not interim-optimal, that is, some (b′, U ′) is feasible such
that U ′(t) > U(t) for all t ∈ supp(b′). The pair (b′, U ′) has the same property
relative to all payoff vectors in a neighborhood of U and to everything below.
Thus, to obtain a contradiction it is sufficient to show that a neologism exists
for U .

Define rb′(t) = b′(t)/p0(t) for all t ∈ T .
Call a feasible pair (b′, U ′) a *deviation if there exists an allocation ρ′

such that U ′(t) = Π(ρ′t)(t) for all t, U
′(t) ≤ U(t) for all t ∈ T \ supp(b′),

{ρ′t | t ∈ T} ⊆ {ρ′t | t ∈ supp(b′)} ∪ {ζ0},

U ′(t) ≥ U(t) for all t ∈ supp(b′) with a strict inequality for at least one type,
and any type t ∈ supp(b′) with U ′(t) = U(t) satisfies rb′(t) ≤ r∗, where we
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define r∗ via the equation

r∗ ·
∑

U ′(t)>U(t)

p0(t) +
∑

U ′(t)=U(t)

b′(t) = 1. (6)

Note that we can also write this equation in the form (5).
As a first step, we show that a *deviation exists. Because ν is not interim-

optimal, a feasible pair (b′′, U ′′) exists such that U ′′(t) > U(t) for all t ∈
supp(b′′). Let ρ′′ denote a corresponding allocation. That is,

U ′′(t) = Π(ρ′′t )(t) ≥ Π(ρ′′ť )(t) (7)

for all t, ť ∈ T , and
∑

t′∈T

b′′(t′)ρ′′t′ ∈ A. (8)

For all t ∈ T \ supp(b′′), select a

v(t) ∈ arg max
ť∈supp(b′′)

Π(ρ′′ť )(t), (9)

and let v(t) = t for all t ∈ supp(b′′). For all t ∈ T , define ρ′t = ρ′′v(t) if

Π(ρ′′v(t))(t) ≥ 0 and otherwise define ρ′t = ζ0. Let U ′(t) = Π(ρ′t)(t) for all
t ∈ T .

In other words, every type outside supp(b′′) gets restricted to their re-
spective best allocation of a type in supp(b′′), while the types in supp(b′′)
keep their allocations. The only exception from this rule are types outside
supp(b′′) who are better off with the outside option.

The construction has a second part in which we move from the belief b′′

to a new belief b′. If a type t outside supp(b′′) has utility U ′(t) > U(t), then
we move a bit of probability to her from the type v(t). This includes t into
the support supp(b′), without affecting AF because the types t and v(t) get
the same allocation.

We will now describe the second part of the construction more formally.
For any t′ ∈ supp(b′′), let w(t′) denote the number of types outside supp(b′′)
which choose the allocation of type t′ and still get more than their U utility.
That is,

w(t′) = |{t ∈ T \ supp(b′′) | v(t) = t′, U ′(t) > U(t)}|.
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Given any ϵ > 0, define for all t ∈ T ,

b′(t) =







0 if t ̸∈ supp(b′′) and U ′(t) ≤ U(t),
ϵ if t ̸∈ supp(b′′) and U ′(t) > U(t),
b′′(t)− ϵw(t) if t ∈ supp(b′′),

where ϵ is chosen so small that b′(t) > 0 for all t ∈ supp(b′′).
By construction, PIR holds for ρ′, that is, Π(ρ′t)(t) ≥ 0 for all t ∈ T .
To see that PIC holds as well, consider any t, t′ ∈ T . If Π(ρ′′v(t′))(t

′) < 0

then ρ′t′ = ζ0 so that obviously Π(ρ′t)(t) ≥ Π(ρ′t′)(t). If Π(ρ
′′
v(t′))(t

′) ≥ 0, then

Π(ρ′t)(t) ≥ Π(ρ′′v(t))(t) ≥ Π(ρ′′v(t′))(t) = Π(ρ′t′)(t),

where in the cases with t ∈ supp(b′) the second of the above inequalities
follows from (7) with t = v(t) and ť = v(t′), and in the other cases this
inequality follows from (9).

To show that AF holds for the allocation ρ′ together with the belief b′,
recall (8) and note that

∑

t′∈T

b′(t′)ρ′t′ =
∑

t′∈T

b′′(t′)ρ′′t′ .

We conclude that (b′, U ′) is a feasible pair. Moreover, by construction,

supp(b′) = {t ∈ T | U ′(t) > U(t)}.

Thus, (b′, U ′) is a *deviation.
LetD2 denote the set of *deviations (b

′, U ′) such that |supp(b′)| is minimal
among all *deviations. Let D1 denote the set of *deviations (b′, U ′) in D2

such that |{t ∈ supp(b′) | U ′(t) = U(t)}| is maximal among all *deviations
in D2. Let D0 denote the set of *deviations (b′, U ′) in D1 such that |{t ∈
supp(b′) | U ′(t) > U(t), rb′(t) = r∗}| is maximal among all *deviations in D1.

In the following, we consider a *deviation (b′, U ′) ∈ D0. Let ρ
′ denote an

allocation for this *deviation. Let r∗0 denote the r∗-value for this *deviation.
It remains to show that (b′, U ′) is a neologism for (p0, U). To prove this,

we have to show that all types t with U ′(t) > U(t) satisfy rb′(t) = r∗0.
Suppose otherwise. Then there exists a type t1 with U ′(t1) > U(t1) and

rb′(t
1) < r∗0 as well as a type t with U ′(t) > U(t) and rb′(t) > r∗0. Let t

1, . . . , tn

denote the types with U ′(ti) > U(ti) and rb′(t
i) ≤ r∗0. Let tn+1, . . . , tn+m

denote the types with U ′(ti) > U(ti) and rb′(t
i) > r∗0.
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Now consider the following problem, where y stands for the probability
mass assigned to type t1, and xk,i stands for the fraction of the allocation of
type tk that is reassigned to type ti.

max
y, (xk,i)k=1,...,n+m,

i=1,...,n+m

y,

s.t. xk,i = 1k=i for all k and all i ≥ n+ 1, (10)

xk,i ≥ 0 for all k and all i ≤ n,
n+m
∑

k=1

xk,i = 1 for all i ≤ n, (11)

y ≤ p0(t
1)r∗0, (12)

b′(tk) = xk,1y +
n
∑

i=2

xk,ib
′(ti) for all k ≤ n, (13)

b′(tk)− xk,1y −
n
∑

i=2

xk,ib
′(ti) ≥ p0(t

k)r∗0 for all k > n, (14)

n+m
∑

k=1

xk,iΠ(ρ
′
k)(t

i) ≥ Π(ρ′ť)(t
i) for all ť ∈ supp(b′) \ {t1, . . . , tn+m},

(15)
n+m
∑

k=1

(xk,i − xk,j)Π(ρ
′
k)(t

i) ≥ 0 for all i ≤ n and all j, (16)

n+m
∑

k=1

xk,iΠ(ρ
′
k)(t

i) ≥ U(ti) for all i ≤ n. (17)

Note that all constraints are satisfied at the point y = b′(t1) and xk,i = 1k=i

for all k and i. Thus, the feasibility set is non-empty and the solution value—
which exists by the extreme-value theorem of Weierstrass—is ≥ b′(t1).

Given any solution ŷ, (x̂k,i), define an allocation ρ̂ as follows:

ρ̂ti =
n+m
∑

k=1

x̂k,iρ
′
tk for all i = 1, . . . , n+m;

ρ̂t = ρ′t for all t ∈ supp(b′) \ {t1, . . . , tn+m}; ρ̂t = ζ0 for all t ∈ T \ supp(b′)
with maxť∈supp(b′) Π(ρ̂ť)(t) < 0, and ρ̂t = ρ̂v̂(t) for all t ∈ T \ supp(b′) with
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maxť∈supp(b′) Π(ρ̂ť)(t) ≥ 0, where we choose any

v̂(t) ∈ arg max
ť∈supp(b′)

Π(ρ̂ť)(t).

This construction already implies that ρ̂ satisfies the PIR conditions for all
t ∈ T \ supp(b′).

Define a utility vector Û via Û(t) = Π(ρ̂t)(t) for all t. Define a belief b̂ as
follows: b̂(t1) = ŷ; b̂(tk) = b′(tk) for k = 2, . . . , n;

b̂(tk) = b′(tk)− x̂k,1ŷ −
n
∑

i=2

x̂k,ib
′(ti) for all k = n+ 1, . . . , n+m;

b̂(t) = b′(t) for all t ∈ T \ {t1, . . . , tn+m}. Note that b̂ ∈ B because

∑

t∈T

b̂(t) =
∑

t∈supp(b′)\{t1,...,tn+m}

b′(t) + ŷ +
n
∑

k=2

b′(tk)

+
n+m
∑

k=n+1

(

b′(tk)− x̂k,1ŷ −
n
∑

i=2

x̂k,ib
′(ti)

)

=
∑

t∈supp(b′)\{t1}

b′(t) +

(

1−
n+m
∑

k=n+1

x̂k,1

)

ŷ −
n
∑

i=2

n+m
∑

k=n+1

x̂k,ib
′(ti)

and, recalling b′ ∈ B and using constraint (11), the above chain continues as

= 1− b′(t1) +
n
∑

k=1

x̂k,1ŷ −
n
∑

i=2

(

1−
n
∑

k=1

x̂k,i

)

b′(ti)

= 1−
n
∑

i=1

b′(ti) +
n
∑

k=1

x̂k,1ŷ +
n
∑

i=2

n
∑

k=1

x̂k,ib
′(ti) = 1,

where the last equation follows from the formula that is obtained by summing
the constraints (13) across all k ≤ n. Next we show that (b̂, Û) is feasible.
To verify condition AF for (b̂, Û), note that

∑

t∈T\{t1,...,tn+m}

b̂(t)ρ̂t =
∑

t∈T\{t1,...,tn+m}

b′(t)ρ′t
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and

n+m
∑

i=1

b̂(ti)ρ̂ti = ŷρ̂t1 +
n
∑

i=2

b′(ti)ρ̂ti +
n+m
∑

k=n+1

b̂(tk)ρ′tk

= ŷ
n+m
∑

k=1

x̂k,1ρ
′
tk +

n
∑

i=2

b′(ti)
n+m
∑

k=1

x̂k,iρ
′
tk

+
n+m
∑

k=n+1

(

b′(tk)− x̂k,1ŷ −
n
∑

i=2

x̂k,ib
′(ti)

)

ρ′tk

=
n
∑

k=1

(

ŷx̂k,1 +
n
∑

i=2

b′(ti)x̂k,i

)

ρ′tk +
n+m
∑

k=n+1

b′(tk)ρ′tk

(13)
=
∑n+m

k=1 b′(tk)ρ′tk .

We also have to verify PIC. For any t ∈ T \ supp(b′) and t′ ∈ supp(b′),

Π(ρ̂t)(t) ≥ Π(ρ̂v̂(t))(t) ≥ Π(ρ̂t′)(t),

by definition of v̂(t). Similarly, for any t, t′ ∈ T \ supp(b′) with ρ̂t′ ̸= ζ0,

Π(ρ̂t)(t) ≥ Π(ρ̂v̂(t))(t) ≥ Π(ρ̂v(t′))(t) = Π(ρ̂t′)(t).

Moreover, for any t, t′ ∈ T \ supp(b′) with ρ̂t′ = ζ0,

Π(ρ̂t)(t) ≥ 0 = Π(ρ̂t′)(t).

For all t ∈ supp(b′) \ {t1, . . . , tn} and all t′ ∈ T ,

Π(ρ̂t)(t) = Π(ρ′t)(t) = max
ť∈T

Π(ρ′ť)(t) ≥ Π(ρ̂t′)(t).

For all t ∈ {t1, . . . , tn} and all t′ ∈ {t1, . . . , tn+m}, constraint (16) directly
implies Π(ρ̂t)(t) ≥ Π(ρ̂t′)(t).

This then also implies that for all t ∈ {t1, . . . , tn} and all t′ ∈ T \supp(b′),
Π(ρ̂t)(t) ≥ Π(ρ̂v̂(t′))(t) = Π(ρ̂t′)(t).

For all t ∈ {t1, . . . , tn} and all t′ ∈ supp(b′) \ {t1, . . . , tn+m}, constraint
(15) directly implies Π(ρ̂t)(t) ≥ Π(ρ̂t′)(t). This completes the proof of PIC.

Next we show that (b̂, Û) is a *-deviation.
For all i = 1, . . . , n, we have Û(ti) ≥ U(ti) by constraint (17). (In partic-

ular, ρ̂ satisfies the PIR conditions for all these types t = ti).
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For all t ∈ supp(b′) \ {t1, . . . , tn+m}, we have Û(t) = U ′(t) = U(t) by con-
struction. (In particular, ρ̂ satisfies the PIR conditions for all these types t).
For all i = n+1, . . . , n+m, we have Û(ti) = U ′(ti) > U(ti) by construction.
(In particular, ρ̂ satisfies the PIR conditions for all these types t = ti). For
all t ∈ T \ supp(b′),

Û(t) = Π(ρ̂v̂(t)) ≤ max
ť∈supp(b′)

Π(ρ′ť)(t) ≤ Π(ρ′t)(t) = U ′(t) ≤ U(t).

In particular, for any type t ∈ T , if Û(t) > U(t) then U ′(t) > U(t), and all
types t ∈ T with Û(t) = U(t) satisfy rb̂(t) ≤ r∗0. Thus, to complete the proof

that (b̂, Û) is a *-deviation, it remains to show that the r∗ value for (b̂, Û)
satisfies r∗ ≥ r∗0.

Using the definition (6),

1 = r∗0 ·
∑

U ′(t)>U(t)

p0(t) +
∑

U ′(t)=U(t)

b′(t)

≥ r∗0 ·
∑

Û(t)>U(t)

p0(t) +
∑

U ′(t)>U(t),

Û(t)=U(t)

b̂(t) +
∑

U ′(t)=U(t)

b′(t)

= r∗0 ·
∑

Û(t)>U(t)

p0(t) +
∑

Û(t)=U(t)

b̂(t),

implying that r∗ ≥ r∗0.
Next we show that the constraints (12), (14), (15), and (17) are not

binding at the solution ŷ, (x̂k,i).

Note that (b̂, Û) ∈ D2 because supp(b̂) = supp(b′). Moreover, because
any type t ∈ supp(b̂) with U ′(t) = U(t) also satisfies Û(t) = U(t), we even
have (b̂, Û) ∈ D1. Thus, Û(ti) > U(ti) for all i = 1, . . . , n, implying that the
constraints (17) are not binding.

As a consequence, r∗ = r∗0.
By construction, any type t ∈ T with rb′(t

1) = r∗0 also satisfies rb̂(t
1) = r∗0.

Thus, we even have (b̂, Û) ∈ D0, implying that the constraints (12) and (14)
are not binding.

To show that the constraints (15) are not binding, we suppose that

Û(ti) = Π(ρ̂̊t)(t
i)
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for some i ≤ n and some t̊ ∈ supp(b′) \ {t1, . . . , tn+m} and derive a contra-
diction. Define an allocation ρ̊ as follows. Let

ρ̊ti =
b̂(ti)

b̂(ti) + b̂(̊t)
ρ̂ti +

b̂(̊t)

b̂(ti) + b̂(̊t)
ρ̂̊t; (18)

let ρ̊t = ρ̂t for all t ∈ supp(b′) \ {ti, t̊}; for all t ∈ {̊t} ∪ T \ supp(b′) with
maxť∈supp(b′)\{̊t} Π(ρ̊ť)(t) ≥ 0, let ρ̊t = ρ̂v̊(t), where we choose any

v̊(t) ∈ arg max
ť∈supp(b′)\{̊t}

Π(ρ̊ť)(t);

for all t ∈ {̊t} ∪ T \ supp(b′) with maxť∈supp(b′)\{̊t} Π(ρ̊ť)(t) < 0, let ρ̊t = ζ0.

Define a belief b̊ as follows. Let

b̊(ti) = b̂(ti) + b̂(̊t); (19)

let b̊(̊t) = 0; let b̊(t) = b̂(t) for all ∈ T \ {ti, t̊}.
Define a payoff vector Ů via Ů(t) = Π(ρ̊t)(t) for all t ∈ T .
By the supposed indifference, Ů(ti) = Û(ti). Moverover, the set of al-

ternative sub-allocations to choose from (beyond the disagreement outcome)
has shrunk:

{ρ̊t′ |t
′ ∈ T \ {ti}} ⊆ {ρ̂t′ |t

′ ∈ T \ {ti}} ∪ {ζ0}

Thus, because (ρ̂t)t∈T satisfies PIC, the allocation ρ̊ also satisfies the PIC
conditions for t = ti and all t′ ∈ T . The same holds for t ∈ supp(b′) \ {ti, t̊}
and all t′ ̸= ti because ρ̊t = ρ̂i.

By construction, the allocation ρ̊ satisfies PIR. It also satisfies the PIC
conditions for all t ∈ supp(b′) \ {ti, t̊} and for t′ = ti because

Π(ρ̊ti)(t)
(18)

≤ max{Π(ρ̂ti)(t),Π(ρ̂̊t)(t)} ≤ Π(ρ̂t)(t) = Π(ρ̊t)(t).

Finally, the allocation ρ̊ satisfies the PIC conditions for all t ∈ {̊t} ∪ T \
supp(b′) and all t′ due to the definition of v̊(t). This completes the verification
of PIC.

To verify AF for (ρ̊t)t∈T together with b̊, note that

∑

t∈T\{ti ,̊t}

b̊(t)ρ̊t =
∑

t∈T\{ti ,̊t}

b̂(t)ρ̂t,
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and

b̊(ti)ρ̊ti + b̊(̊t)ρ̊̊t = b̂(ti)ρ̂ti + b̂(̊t)ρ̂̊t

by (18) and (19). Thus, (̊b, Ů) is feasible.
Also note that supp(̊b) = supp(b′) \ {̊t}.
To obtain a contradiction it remains to verify that (̊b, Ů) is a *deviation

because then (b′, U ′) ̸∈ D2.
By construction, Ů(t) = Û(t) for all t ∈ supp(̊b) and Ů(t) ≤ Û(t) for all

t ∈ T \ supp(̊b). Thus, using the definition (6),

1 = r∗0 ·
∑

Û(t)>U(t)

p0(t) +
∑

Û(t)=U(t)

b̂(t)

= r∗0 ·
∑

Ů(t)>U(t)

p0(t) +
∑

Ů(t)=U(t)

b̊(t) + b̂(̊t),

implying that the r∗ value for (̊b, Ů) satisfies r∗ > r∗0. Thus, (̊b, Ů) is a
*deviation.

To obtain the final contradiction, we will now define a perturbation of
the presumed max-solution that satisfies all constraints and increases the
solution value.

Denote T≤ = {t1, . . . , tn}. Given the allocation ρ̂, we say that (v1, . . . , vl)
(where l ≥ 1) is a chain-indifference path in T≤ if v1, . . . , vl ∈ T≤ and
Π(ρ̂vi+1

)(vi) = Π(ρ̂vi)(vi) for all i < l.
Let T≤

= denote the types t ∈ T≤ such that a chain-indifference path
(v1, . . . , vl) exists with v1 = t1 and vl = t.

An indifference graph (T≤
= , g) is defined as a directed graph such that

(i) the set of nodes equals T≤
= and (ii) Π(ρ̂t′)(t) = Π(ρ̂t)(t) for each edge

(t, t′) ∈ g.
By definition of T≤

= , there exists an indifference graph such that, for all
t′ ∈ T≤

= , there exists a (chain-indifference) path from t1 to t′. Requiring this
property, let (T≤

= , g) denote an indifference graph with a minimal number of
edges.

Then (T≤
= , g) is a tree with root t1; that is, no edge points to t1, and there

exists a unique path from t1 to each node in T≤
= . (To see the uniqueness

statement, suppose that paths p1 and p2 lead to the same node, and (t1
′

, t′′) ∈
p1, (t

2′ , t′′) ∈ p2 with t1
′

̸= t2
′

are edges where the two paths join. Then
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(T≤
= , g \ {(t1

′

, t′′)}) is an indifference graph will a smaller number of edges in
which still there exists a path from t1 to any other node—contradiction.)

For each t ∈ T≤
= , let the index of a “most preferred type” among those

with r > r∗ (recall that the constraints (14) are not binding) be denoted

ι(t) ∈ arg max
j∈{n+1,...,n+m}

Π(ρ̂tj)(t).

For all i with ti ∈ T≤
= , define

σ(i) = {j ∈ {1, . . . , n} | tj is a direct successor of ti in (T≤
= , g)}.

Note that σ(i) = ∅ means that ti is an end node in (T≤
= , g). For each j ̸= 1

with tj ∈ T≤
= , let σ−1(j) denote the index of the direct predecessor of tj in

(T≤
= , g).
Fix any 0 < ϵ < 1. The following definition works recursively from the

end nodes backwards through the tree. Define

ωj =
b′(tj)

b′(tσ−1(j))

ϵ+ (1− ϵ)
∑

k∈σ(j) ωk

(1− ϵ)
for all j ̸∈ σ(1) with tj ∈ T≤

=

and

zj = b′(tj)
ϵ+ (1− ϵ)

∑

k∈σ(j) ωk

(1− ϵ)
for all j ∈ σ(1).

Define

ẙ =
1

1− ϵ
ŷ +

∑

j∈σ(1)

zj (20)

and

ωj =
zj
ẙ

for all j ∈ σ(1).

Thus, replacing zj = ωj ẙ in (20) and solving for ẙ, we find that

ẙ =
ŷ

(1−
∑

j∈σ(1) ωj)(1− ϵ)
. (21)
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For all i with ti ∈ T≤
= and all k = 1, . . . , n+m, define

x̊k,i =



x̂k,i



1−
∑

j∈σ(i)

ωj



+
∑

j∈σ(i)

x̂k,jωj



 (1− ϵ) + 1k=ι(ti)ϵ. (22)

For all i ≤ n with ti ̸∈ T≤
= , and all i = n+1, . . . , n+m and all k = 1, . . . , n+m,

define x̊k,i = 1k=i.
First note that

0 < ωj →ϵ→0 0 for all j ̸= 1 with tj ∈ T≤
= .

(This is seen recursively, arguing backwards from the end nodes in (T≤
= , g).)

Thus, through choosing ϵ sufficiently close to 0, we can guarantee that
∑

j∈σ(i) ωj is close to 0 for all i = 1, . . . , n, implying

x̊k,i ≥ 0

and, using (21),
ẙ > ŷ.

In particular, once we show that ẙ, (̊xk,i) satisfies all remaining constraints
of our max-problem, then we have a contradiction to the assumption that
ŷ, (x̂k,i) is a solution.

First of all, recall that the constraints (12), (14), (15), and (17) are not
binding at the solution ŷ, (x̂k,i).

Thus, because x̊k,i → x̂k,i and ẙ → ŷ as ϵ → 0, the constraints (12), (14),
(15), and (17) are also strictly satisfied at ẙ, (̊xk,i), assuming ϵ is sufficiently
close to 0.

Define the auxiliary variables b̂(t1) = ŷ and b̂(ti) = b′(ti) for all i =
2, . . . , n. Defining the column vectors b′n = (b′(t1), . . . , b′(tn))T and b̂n =
(b̂(t1), . . . , b̂(tn))T and the square matrix X̂ = (x̂k,i)k≤n, i≤n, constraint (13)
reads

b′n = X̂b̂n. (23)

Defining the square matrices X̊ = (̊xk,i)k≤n, i≤n and H = (hj,i)j≤n, i≤n via
hj,i = 1j=i if t

i ̸∈ T≤
= , and

hi,i =



1−
∑

j∈σ(i)

ωj



 (1−ϵ), hj,i = ωj(1−ϵ) for all j ∈ σ(i), hj,i = 0 otherwise,
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if ti ∈ T≤
= , definition (22) implies the matrix-product equation

X̊ = X̂H. (24)

Now define the auxiliary variables b̊(t1) = ẙ and b̊(ti) = b′(ti) for all i =
2, . . . , n. Defining the column vector b̊n = (̊b(t1), . . . , b̊(tn))T , the definition
of the ωj variables implies that

b̊(tσ
−1(j))ωj(1−ϵ)+̊b(tj)(1−

∑

k∈σ(j)

ωk)(1−ϵ) = b̂(tj) for all j ̸= 1 with tj ∈ T≤
= ,

and (21) implies

b̊(t1)(1−
∑

k∈σ(1)

ωk)(1− ϵ) = b̂(t1).

In matrix notation,
Hb̊n = b̂n.

Together with (23) and (24) this implies

b′n = X̊b̊n.

That is, constraint (13) holds for ẙ, (̊xk,i).
That constraint (11) holds for (̊xk,i) is seen by summing (22) across all

k = 1, . . . , n+m and noting that (11) holds for (x̂k,i).
It remains to verify (16) for (̊xk,i), that is, for all i ≤ n and all j,

n+m
∑

k=1

(̊xk,i − x̊k,j)Π(ρ
′
k)(t

i) ≥ 0. (25)

Consider any i with ti ̸∈ T≤
= and any j > n, or j ≤ n with tj ̸∈ T≤

= . Then
(25) is immediate because x̊k,i = x̂k,i and x̊k,j = x̂k,j and (16) holds for (x̂k,i).

Consider any i with ti ̸∈ T≤
= and any j with tj ∈ T≤

= . Then (25) follows
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from (22) because

n+m
∑

k=1

(̊xk,i − x̊k,j)Π(ρ
′
k)(t

i)

=
n+m
∑

k=1

(x̂k,i − x̊k,j)Π(ρ
′
k)(t

i)

=(1−
∑

l∈σ(j)

ωl)(1− ϵ)
n+m
∑

k=1

(x̂k,i − x̂k,j)Π(ρ
′
k)(t

i)

+
∑

l∈σ(j)

ωl(1− ϵ)
n+m
∑

k=1

(x̂k,i − x̂k,l)Π(ρ
′
k)(t

i) + ϵ

n+m
∑

k=1

(x̂k,i − x̂k,ι(tj))Π(ρ
′
k)(t

i)

≥0,

where the inequality follows because (16) holds for (x̂k,i).
Consider any i with ti ∈ T≤

= and j ≤ n with tj ̸∈ T≤
= . By definition of the

indifference tree, (16) holds as a strict inequality for (x̂k,i). Thus, assuming
that ϵ is sufficiently close to 0, (25) holds.

Consider any i with ti ∈ T≤
= . By definition of the indifference tree,

n+m
∑

k=1

x̊k,iΠ(ρ
′
k)(t

i) = (1− ϵ)
n+m
∑

k=1

x̂k,iΠ(ρ
′
k)(t

i) + ϵ Π(ρ′ι(ti))(t
i). (26)

Because (16) holds for (x̂k,i) with j = ι(ti), we conclude that

n+m
∑

k=1

x̊k,iΠ(ρ
′
k)(t

i) ≥ Π(ρ′ι(ti))(t
i).

Thus, for any j > n, using the definition of ι(ti),

n+m
∑

k=1

x̊k,iΠ(ρ
′
k)(t

i) ≥ Π(ρ′tj)(t
i),

implying (25).
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Finally, consider any i with ti ∈ T≤
= and any j with tj ∈ T≤

= . Applying
(26), and applying it again with i replaced by j, we find

n+m
∑

k=1

(̊xk,i − x̊k,j) Π(ρ
′
k)(t

i)

=(1− ϵ)
n+m
∑

k=1

(x̂k,i − x̂k,j) Π(ρ
′
k)(t

i) + ϵ
(

Π(ρ′ι(ti))(t
i)− Π(ρ′ι(tj))(t

i)
)

≥0,

where the inequality follows because both terms are ≥ 0—the left term be-
cause (16) holds for (x̂k,i) and the right term by definition of ι(ti).

In summary, we have shown that ẙ, (̊xk,i) satisfies all constraints of the
max problem and ẙ > ŷ, contradicting the fact that ŷ, (x̂k,i) is a solution.

Proof of Lemma 5. Let ρ denote an interim optimal allocation and suppose
that ρ is not strongly neologism-proof. Then there exists a belief b′ and a
b′-feasible allocation ρ′ such that b′ puts zero probability on all types that are
strictly better off in ρ than in ρ′ or that already obtain in ρ the maximum
feasible payoff. Moreover, there exists a type t′ ∈ supp(b′) such that Uρ′

0 (t′) >
Uρ
0 (t

′).
Let ρ′b′ ∈ A denote the b′-averaged sub-allocation.

Fix a belief b̂ such that, for all t ̸= t′, b̂(t) = δb′(t) and

b̂(t′) = 1− δ + δb′(t′)),

where δ < 1 is chosen sufficiently close to 1 such that supp(b̂) = supp(b′).
By separability, there exists a sub-allocation e such that all agents’ incen-

tive and participation constraints in the definition of A are satisfied strictly.
Let ρ̂ denote the allocation such that ρ̂t = ρ′t for all t ̸= t′, and

ρ̂t′ =
δb′(t′)

b̂(t′)
ρ′t′ +

1− δ

b̂(t′)
e.

At the b̂-average of the allocation ρ̂, the agents expect to obtain the allocation
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ρ′b′ with probability δ, and the allocation e with probability 1− δ. Formally,
∑

t∈T

b̂(t)ρ̂t = b̂(t′)ρ̂t′ +
∑

t ̸=t′

b̂(t)ρ̂t

= δb′(t′)ρ′t′ + (1− δ)e+
∑

t ̸=t′

δb′(t)ρ̂t

= δ
∑

t∈T

b′(t)ρ′t + (1− δ)e

= δρ′b′ + (1− δ)e.

Thus, at ρ̂ the defining inequalities of the set A are satisfied strictly.
Moreover, U ρ̂

0 (t) = Uρ′

0 (t) ≥ Uρ
0 (t) for all t ∈ supp(b̂) \ {t′}, and U ρ̂

0 (t
′) >

Uρ
0 (t

′) assuming δ is sufficiently close to 1.
Let e denote any allocation where each principal type obtains their max-

imum feasible payoff. Also recall that at ρ̂, none of the types in supp(b′)
obtains their maximum feasible payoff.

Thus, for all 0 < ϵ < 1, the allocation ρ′′ = ϵe + (1 − ϵ)ρ̂ is such that

Uρ′′

0 (t) > Uρ
0 (t) for all t ∈ supp(b′).

Moreover, if ϵ is sufficiently close to 0 then at the b̂-average ρ′′
b̂
, the defining

inequalities of the set A are still satisfied strictly.
We can further change ρ′′ to an allocation ρ′′′ by giving to each princi-

pal type outside the supp(b′) their respective best sub-allocation among the
types in supp(b′), or assign the sub-allocation ζ0 that always implements the
disagreement outcome. That is, ρ′′′t = ρ′′t for all t ∈ supp(b′), and

ρ′′′t ∈ arg max
α∈{ρ′′

t̂
|t̂∈supp(b′)}∪{ζ0}

Π(α)(t) for all t ∈ T \ supp(b′).

In summary, we have shown that the pair (b̂, ρ′′′) belongs to the set

R = {(̊b, ρ̊) | b̊ ∈ B

ρ̊̊b ∈ A

U ρ̊
0 (t) > Uρ

0 (t) for all t ∈ supp(̊b),

ρ̊t ∈ arg max
α∈{ρ̊t̂|t̂∈supp(̊b)}∪{ζ0}

Π(α)(t) for all t ∈ T \ supp(̊b).}

In particular, the set R is non-empty.
Consider (̊b, ρ̊) ∈ R with minimal support size |supp(̊b)|. We claim that

ρ̊ satisfies PIC.
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Suppose otherwise. Then there exist types t′, t′′ ∈ supp(̊b) such that
Π(ρ̊t′′)(t

′) < Π(ρ̊t′)(t
′).

Define a new belief b̌ ∈ B as follows: b̌(t′) = b̊(t′) + b̊(t′′), b̌(t′′) = 0, and
b̌(t) = b̊(t) for all t ∈ T \ {t′, t′′}.

Define a new allocation ρ̌ as follows:

ρ̌t′ =
b̊(t′)

b̌(t′)
ρ̊t′ +

b̊(t′′)

b̌(t′)
ρ̊t′′ ,

ρ̌t = ρ̊t for all t ∈ supp(b̌) \ {t′}, and

ρ̌t ∈ arg max
α∈{ρ̌t̂|t̂∈supp(b̌)}∪{ζ0}

Π(α)(t) for all t ∈ T \ supp(b̌).

By construction (b̌, ρ̌) ∈ R and |supp(b̌)| = |supp(̊b)| − 1, contradicting the
assumed minimality.

Thus ρ̊ satisfies PIC. Note that PIR holds by construction.
We conclude that ρ̊ is b̊-feasible and supp(̊b) ⊆ S(ρ̊, ρ), contradicting the

assumption that ρ is terim optimal.
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