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Abstract

Decarbonizing industries to mitigate climate change requires technological change.

Innovation by suppliers can play a crucial role in the technological transition, particu-

larly when suppliers have expertise in zero-emission technologies. In this paper, I study

the effect of environmental regulation in a downstream industry on the innovation out-

comes of suppliers in the context of the European CO2 emission standard for passenger

cars. I construct a novel data set that links administrative data on car manufacturer

compliance to supplier patent data using information on automotive supply chains. To

identify the causal effect of changes in the stringency of the emission standard, I leverage

the heterogeneous exposure of automotive suppliers to changes in the composition of the

European car market in the aftermath of the 2015 Volkswagen diesel scandal. Exposure

to more stringent environmental regulation increases innovation for zero-emission vehicle

technologies among existing suppliers. In addition, the likelihood that car manufactur-

ers form new supply chain links to firms with expertise in technologies to reduce vehicle

emissions increases in response to more stringent environmental regulation. These re-

sults suggest that environmental regulation induces economically significant technology

spillovers to the regulated firms.

Keywords: environmental regulation, global value chains, innovation, fuel economy stan-

dards, directed technological change
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1 Introduction

Global climate change mitigation necessitates transitioning toward technologies that cause

zero or low greenhouse gas emissions. In many industries, this transition requires non-

incremental innovation for technologies on which firms currently lack expertise. Under these

circumstances, technology spillovers from suppliers can be a crucial driver of technological

change (Dugoua and Dumas, 2023). However, it is not clear to what extend innovation

incentives imposed by environmental regulations in the downstream market spill over to

suppliers (Greaker, 2006, Heyes and Kapur, 2011, Dugoua and Dumas, 2021), particularly

when suppliers do not interact with all downstream firms due to persistent supply chain links.

Environmental policies are typically implemented by national or regional policy makers. The

innovation incentives of firms in a globalized market are, however, set by global demand.

Can unilateral increases in the stringency of environmental regulation affect the direction of

innovation among suppliers of a globalized industry?

I study this question in the context of the European carbon dioxide (CO2) emission per-

formance standard for passenger cars (Regulation EC 443/2009). CO2 emission standards, or

equivalently fuel economy standards, are present in all major car markets, including China,

the United States, Europe, and Japan. However, the European Union’s standards for 2020

required more ambitious CO2 emission reductions than any comparable regulation in other

jurisdictions (Yang and Bandivadekar, 2017). The car industry is well-suited to explore the

effect of environmental regulation on non-incremental innovation along global supply chains.

First, the industry is rapidly transitioning towards a low-emission technology in the form of

electric vehicles (EVs),1 which reached a global market share of 18% in 2023, up from just

2% in 2018 (International Energy Agency, 2024). Second, the car industry is characterized

by a vertically disintegrated production process, in which suppliers are central drivers of

innovation (Dugoua and Dumas, 2023). Third, the industry is highly globalized. Under-

standing the transition for the car industry is important since road passenger transportation

accounted for 9.5% of global CO2 emissions in 2016 (Our World in Data, 2020).

This paper provides firm-level evidence on the effect of environmental regulation in a

downstream market on the global innovation outcomes of suppliers and the formation of sup-

ply chain links. I create a novel panel data set on automotive suppliers for the period 2016

- 2020. The data set links administrative data on manufacturer compliance with the CO2

emission standard to supplier patent data using information on automotive supply chains.

I quantify the effect of supplier exposure to an increase in the stringency of environmental

regulation at the level of car manufacturers. In so doing, I use a “shift-share” instrumental

variables approach (Bartik, 1991). I construct a new shift-share instrument that leverages

the heterogeneous exposure of automotive suppliers to changes in the composition of the

European car market in the aftermath of the 2015 Volkswagen diesel scandal. I document

that changes in the stringency of environmental regulation create technology spillovers from

suppliers to regulated firms. Automotive suppliers exposed to a one-percentage-point in-

crease in stringency of the emission standard increase the number of patent applications for

1In the notation adopted in this paper, electric vehicles include both battery-electric vehicles and hybrid
electric vehicles.
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technologies relevant for zero- or low-emission vehicles by 11% in the following year. In addi-

tion, a one-percentage-point increase in regulatory stringency causes a 0.5 percentage point

increase in the corresponding manufacturers likelihood to form supply chain links to firms

with knowledge stocks on technologies relevant for low emission vehicles and technologies

reducing the emission intensity of internal combustion engine vehicles (ICEVs).

The data used in this study combines i) monitoring data on vehicle registrations and

CO2 emissions of car models publicly available from the European Environment Agency,

ii) information on supply chain links between car manufacturers and their direct suppliers

(Tier 1 automotive suppliers) obtained from MarkLines, a company operating an information

portal on the automotive industry, iii) firm- and technology-specific patent counts obtained

from the World Patent Statistical Database (PATSTAT) and iv) balance sheet data and

information on firm ownership structures obtained from Bureau van Dijks ORBIS database.

I create a panel of supplier firms for the period 2016 - 2019, which comprises their innovation

outcomes and exposure to regulatory stringency in the downstream car market. A unique

feature of this data set is that it combines manufacturer-level measures of regulatory pressure

imposed by an environmental regulation with supplier-level innovation outcomes.

In the empirical analysis, I study the impact of an increase in the stringency of the CO2

emission standard for passenger cars in Europe (subsequently referred to as the standard).

The standard limits the amount of CO2 the average new passenger car sold by a manufacturer

is allowed to emit per kilometer (subsequently referred to as the manufacturer’s fleet-average

emissions). Standard levels are binding for five years and are announced at least five years

in advance. The emission target of the standard was 130 g CO2 per km for 2015 and 95

g CO2 per km in 2020. I measure the stringency of the standard using the ratio between

a manufacturer’s fleet-average emissions in the years 2015 - 2019 and the 2020 target of

the standard.2 Automotive suppliers are exposed to regulatory stringency based on the

manufacturers to which they have pre-existing and persistent supply chain relationships.

The first outcome of interest is global innovation by automotive suppliers, which I mea-

sure using firm-level counts of technology-specific patent applications. Following the lit-

erature on directed technical change and the environment (Acemoglu et al., 2012, Aghion

et al., 2016), I study three technological fields: “clean” technologies relevant for zero- or

low-emission vehicles, such as electric vehicles, “dirty” technologies for Internal Combustion

Engine Vehicles (ICEVs) and “grey” technologies reducing the emission intensity of ICEVs.

I introduce an additional “benchmark” category to measure supplier innovation outcomes

for technologies that are relevant to the car industry.3 Patents are sorted into these cate-

gories based on patent classes of the Cooperative Patent Classification, which are assigned by

patent examiners.4 The second outcome of interest is the formation of supply chain links. I

construct a cross-section of potential pairs (dyads) between car manufacturers and automo-

tive suppliers in my sample. I then assess whether manufacturer-level regulatory stringency

2Reynaert (2021) shows that the European CO2 emission standard induces manufacturer-level compliance
before the announced emission targets become binding.

3The benchmark category is much broader in scope than the other technological fields. It comprises the
most important CPC classes from all three fields.

4For details how technology categories are assigned, see Section 2.2 and Appendix Tables A1 - A2.
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impacts a manufacturer’s propensity to form supply chain links to suppliers with expertise

in different technologies using additional supply chain data for the years 2021 and 2022.

Identifying the effect of exposure to higher manufacturer-level stringency of the emis-

sion standard requires an instrumental variable due to omitted variable bias and reverse

causality. Reverse causality arises, e.g., if manufacturers adding an electric vehicle to their

product portfolio reduce their fleet-average emissions and, at the same time, establish sup-

ply chain links to firms with expertise in electric vehicle technologies. Omitted variable bias

arises since the European CO2 emission standard interacts with other policies, particularly

similar standards in other major car markets. I construct a new shift-share instrument,

which combines a supplier’s pre-2015 exposure to differences in manufacturer fleet-average

emissions across different fuel types (diesel vs. other fuels, mostly gasoline) with changes in

the manufacturers’ share of diesel cars registered in a given year in the period 2015 - 2019.

The identifying assumption is that the pre-2015 exposure of suppliers to car manufacturers

relying on diesel cars for compliance with the emission standard is as good as random.5

The instrument leverages substantial variation in manufacturer-level reliance on diesel

cars for compliance with the standard during the sample period. Since the CO2 emissions

per km of the average diesel car sold by a manufacturer used to be lower than the emissions

of the average non-diesel car (see Figure 1), a high share of diesel cars facilitated compliance

with the emission standard. Most car manufacturers in Europe made use of this compliance

channel (see e.g. Schipper and Fulton, 2013). In the aftermath of the 2015 Volkswagen

diesel scandal, the market share of diesel cars in Europe fell from more than 50% in 2014 to

34% (for the set of car manufacturers studied in this paper) in 2019. The scandal unfolded

after the US Environmental Protection Agency accused the car manufacturer Volkswagen of

cheating on federal air pollution emissions tests for many of their diesel cars on September

18, 2015. In the following years, it became apparent that this malpractice affected type-

approval tests in the US and Europe, and was common among many car manufacturers.

The scandal caused reputation damage for for diesel cars (Gross and Sonnberger, 2020),

leading to heterogeneous reductions in the market share of diesel cars at the manufacturer

level. This shock was limited mostly to the European car market, since diesel cars capture

less than 5% of vehicle sales in other markets, compared to more than 50% in Europe before

the scandal. After the scandal, the future of diesel cars in Europe became highly uncertain.6

The nature of my outcome variables imposes additional challenges. Standard fixed-effects

count data models work under a strict exogeneity assumption. To include both firm fixed-

effects and endogenous regressors in a panel regression with count data, I use a GMM quasi-

differencing estimator developed by Wooldridge (1991) and Windmeijer (2000) to measure

the effect on the innovation outcome. I estimate the effect of more stringent environmental

regulation on the propensity that a manufacturer-supplier pair forms a supply chain rela-

tionship using a Probit control function approach (based on Papke and Wooldridge, 2008).7

5This approach follows arguments for identification based on exogeneity in the “share” component of
shift-share instruments developed by Goldsmith-Pinkham et al. (2020).

6Additional information on the diesel scandal and how it affected the sales of diesel vehicles in Europe is
provided in Section 2.1.

7Note that using a similar Poisson control function approach for the innovation outcomes is not possible.
Correlation between the past innovation outcomes of automotive suppliers and the past supply chain links
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I find that exposure to a one-percentage-point increase in regulatory stringency at the

manufacturer level increases a supplier’s number of patent applications for clean technologies

by 11.2% in the following year. This increase corresponds to 1.34 additional patents per

year for the average supplier. At the same time, I do not find evidence that exposure to

more stringent regulation changed patenting for dirty or grey technologies. If anything,

the sign of both coefficients suggests a negative response. The effect on dirty innovation

might be masked by a substantial reduction in patenting for dirty technologies after 2017,

which is observed independently of exposure to changes in the stringency of environmental

regulation. I find some evidence suggesting that exposure to more stringent regulation in

the downstream market increased the overall innovation outcomes of suppliers, as measured

by patent applications in the benchmark category. However, this result is not backed by a

statistically significant effect in the main regression, which is why I refrain from interpreting

it as a causal effect. The increase in clean patent applications is consistent with theoretical

predictions on directed technological change (Acemoglu et al., 2012, Aghion et al., 2016).

The results show that unilateral changes in downstream environmental regulation create

innovation incentives for suppliers.

The positive effect of environmental regulation on the number of patent applications for

clean technologies is driven by suppliers with preexisting knowledge stocks. To assess whether

path dependencies could explain the effect found in the main analysis, I re-estimate the main

regression in using a long quasi-difference between the period 2011 - 2015 and the period 2016

- 2020. The results for clean innovation are robust to this alternative specification, with clean

patent applications rising by 15.1% during the five-year period in response to exposure to a

one-percentage-point increase in the stringency of the emission standard. Although no longer

statistically significant at conventional levels, the size of the coefficient on clean patenting is

robust to controlling for the supplier’s past share of clean patents relative to the patent count

in the benchmark category, suggesting that path dependencies are not sufficient to explain

the observed results. The result underscores the importance of specialized innovators (Noailly

and Smeets, 2015, Dugoua and Dumas, 2023, Dugoua and Gerarden, 2023).

I rule out several alternative explanations for the positive effect on clean innovation,

including direct effects of the 2015 Volkswagen diesel scandal on the financial results of

automotive suppliers, changes in average fuel prices across European countries, effects of

EV market size not related to the stringency of environmental regulation, and differential

pretrends in innovation outcomes among suppliers. In addition, the effect on clean innovation

is robust to the exclusion of suppliers with exceptionally high annual numbers of clean patent

applications and to studying innovation outcomes at the level of patent applicants observed

in PATSTAT, instead of aggregating to the firm level.

Next, I turn to the effects of regulatory stringency in the downstream market on the for-

mation of supply chain links in 2021 and 2022. In 2021, the more stringent emission target of

the standard for the period 2020 - 2024 became fully binding. I find that a percentage-point

increase in regulatory stringency at the manufacturer level increases the likelihood that the

used to construct the instrument still causes a violation of the strict exogeneity assumption, which would be
needed for a Poisson control function approach incorporating firm fixed-effects. The GMM approach I use
works under a sequential exogeneity assumption.
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manufacturer sources components from a supplier who has previously applied for any patents

by 0.27 percentage points. However, regulatory stringency does not affect the likelihood that

the manufacturer forms supply chain links to non-innovating suppliers. Among innovating

suppliers, the effect is driven by suppliers with expertise in both grey and clean technolo-

gies. In this group, a percentage-point increase in manufacturer-level regulatory stringency

increases the propensity that the manufacturer sources a component from the supplier by

0.49 percentage points. This effect is 0.39 percentage points (significant at the 10%-level)

larger than the effect among suppliers that are innovating but do not have knowledge stocks

for either clean or grey technologies. Fully disentangling the effect between suppliers with

clean and suppliers with grey knowledge stocks is inhibited by a large group of mixed sup-

pliers. However, comparing pairs involving suppliers with and without knowledge stocks in

the corresponding category shows that the difference is more pronounced for suppliers with

expertise in grey technologies. This suggests that reducing the emission-intensity of ICEVs

remained an important objective of car manufacturers for the period after 2020.

This paper makes three main contributions to the literature. First, it contributes to

a large literature studying the effect of environmental regulation on innovation. This lit-

erature departs from seminal papers by Hicks (1932), Acemoglu (2002), Acemoglu et al.

(2012) and Porter (1996), and provides robust empirical evidence that within the regulated

industries, environmental regulation induces innovation (see Ambec et al., 2013, Popp, 2019,

Dechezleprêtre and Hémous, 2022, for recent reviews). Both theoretical and empirical papers

provide mixed results for the effects of environmental regulation on innovation by suppli-

ers of the regulated industry. On one hand, theoretical work by Greaker (2006) and Heyes

and Kapur (2011) points out that environmental regulation in a downstream sector should

provide strong incentives for innovation by upstream technology suppliers. On the other

hand, imperfect appropriation of the gains from technological progress might reduce innova-

tion incentives among upstream firms relative to the directly regulated industry (Fischer et

al., 2003, Dugoua and Dumas, 2021). Empirically, studies relying on sector-level measures

of exposure to downstream environmental regulation provide contradictory results on the

effects on innovation in upstream industries (Franco and Marin, 2017, Dechezleprêtre and

Kruse, 2022). Several studies have analyzed the firm-level innovation response to specific

regulatory changes in downstream industries, including standards for air pollution emissions

of cars (Lee et al., 2011), deregulation in electricity markets (Sanyal and Ghosh, 2013) or

a ban on certain dyes in the Indian leather and textile industries (Chakraborty and Chat-

terjee, 2017). My paper contributes to this literature by providing causal evidence for the

role of heterogeneous supply chain relationships in the innovation response of suppliers to

downstream regulatory changes.

Second, my paper contributes to the literature studying the effect of environmental reg-

ulation on innovation in the car industry. Fuel economy standards (Knittel, 2011, Klier and

Linn, 2016, Reynaert, 2021) and vehicle air pollution standards (Jacobsen et al., 2023) have

been shown to induce technology adoption in the car industry. Earlier papers studying the

effect of environmental regulation on firm-level innovation in the car industry focused on

changes in one major car market (Crabb and Johnson, 2010, Lee et al., 2011). Taking into
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account the globalized nature of the modern car industry, more recent papers have tran-

sitioned to approaches leveraging the heterogeneous exposure of firms to different markets

(Aghion et al., 2016, Kiso, 2019, Rozendaal and Vollebergh, 2024, Barwick et al., 2024). In

this study, I introduce a novel identification approach that utilizes differences in the expo-

sure of automotive suppliers to a manufacturer-level shock that affects the stringency of a

regional environmental policy. In contrast to previous work, my study explicitly focuses on

the innovation response among upstream supplier firms. The paper most closely related to

my study in that regard is Srinivasan (2017), who also studies the effect of environmental

regulation on innovation by automotive suppliers. Three main features distinguish my work

from her study. Instead of relying on the regulation in the manufacturer’s country of origin,

I can quantify the stringency of the environmental regulation in the jurisdiction where vehi-

cles are sold. My paper provides causal evidence on the effect of changes in the stringency of

environmental regulation using an instrumental variables approach. Finally, my study looks

at technology spillovers more broadly by also studying the effect of environmental regulation

on the formation of supply chain links.

Third, this study is related to papers that use cheating by car manufacturers on vehicle

emission tests to obtain identifying variation. Existing studies have leveraged these scandals

to study the effect of local air pollution on health (Alexander and Schwandt, 2022), collusion

against environmental regulation (Alé-Chilet et al., 2023), the welfare effects of gaming

environmental regulation (Reynaert and Sallee, 2021), reputation externalities in among firms

with common characteristics (Bachmann et al., 2022) and consumer myopia regarding future

energy expenditures (Gillingham et al., 2021). This paper contributes to this literature by

developing an instrumental variable approach that uses variation in the exposure of upstream

firms to car manufacturers relying on diesel technology. This instrument could be used to

study the effects of the European CO2 emission standard for cars on other supplier-level

outcomes, such as firm competitiveness, investments, or labor market outcomes such as

layoffs or wages.

The remainder of the paper is structured as follows: Section 2.1 introduces the context

of the study. Section 2.2 introduces the data used. Section 3 presents the empirical strategy.

Section 4 discusses the results. In Section 5, several empirical tests are conducted to rule

out violations of the exclusion restriction. Section 6 concludes.

2 Context and Data

The following two sections provide details on the context of this study and the data used.

Section 2.1 provides information on the European CO2 emission standard for passenger

cars, the 2015 Volkswagen diesel scandal, and manufacturer-supplier relationships in the car

industry. Section 2.2 introduces the four data sources I merge and provides information on

the final data set.
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2.1 Context

Regulation:

Most major car markets regulate the CO2 emissions of passenger cars (or equivalently, their

fuel economy) by setting a standard on the average fuel consumption of all new vehicles sold

by a car manufacturer in a given year (Yang and Bandivadekar, 2017). Examples of this

type of regulation include the Corporate Average Fuel Economy Standards in the United

States, Corporate Average Fuel Consumption Standards in China, the Top Runner Program

in Japan, and the CO2 emission performance standard for passenger cars in the European

Union. In Europe, car manufacturer’s must comply with a particularly stringent standard,

limiting a manufacturers fleet-average CO2 emissions for passenger cars8 below 130 g/km

in the period 2015 - 2019 and below 95 g/km in the period 2020 - 2024. The latter target

exceeded the level of ambition in any other jurisdiction globally (Yang and Bandivadekar,

2017).

The emission target of the European CO2 emission standard for passenger cars is updated

every five years, with targets announced years ahead of their implementation. This timing

explicitly takes into account the product development cycles in the car industry (European

Commission, 2021). The most recent amendment (Regulation (EU) 2023/851) introduced a

zero-emission target for 2035, effectively phasing out ICEVs.

The average emissions of the vehicle fleet must be below the current target value. The

manufacturer’s weight-adjusted fleet-average emissions are computed using the following for-

mula:
∑

j∈Jo

σojt (eojt − at(Mojt −M0t)) ≤ Targett (1)

where σojt =
qojt∑

j∈Jo
qojt

is the share of registrations qjot for car model j produced by manu-

facturer o in year t among the total number of registrations by manufacturer o in year t, eojt

are the model’s CO2 emissions in grams per km according to the European type approval

testing procedure,9 at is a vehicle weight adjustment factor, Mojt is the weight of the model,

M0t is the weight of the average new vehicle registered in Europe in a base year, and Targett

is the emission threshold. During the five-year regulatory periods, at, M0t, and Targett are

constant.

Noncompliance with the standard leads to heavy fines proportional to the number of

vehicles sold and the degree to which the standard is exceeded. As a consequence, almost

all manufacturers comply with the standard during the period 2015 - 2019.10 In contrast

to the United States Corporate Average Fuel Economy (CAFE) standards, over-compliance

cannot be traded between manufacturers, which implies that the regulation requires different

8In Europe, separate standards apply for passenger cars and light-duty commercial vehicles. This paper
focuses on passenger cars.

9During the sample period, the type-approval tests in Europe were conducted using the New European
Driving Cycle (NEDC). In 2017 - 2020, vehicles were already tested using the Worldwide Harmonized Light
Vehicle Test Procedure (WLTP). However, to ensure consistency in the evaluation of the CO2 emission
standard, test results were converted to NEDC using statistical software.

10In this study, only car manufacturers registering at least 10,00 passenger cars in Europe in 2015 are
considered. Smaller manufacturers are eligible for derogations from the standard, implying less stringent
emission targets. Among manufacturers selling more than 10,000 cars, the following were in noncompliance:
Mazda in 2017 and SsangYong in 2019.
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abatement efforts from different manufacturers. Manufacturers can, however, decide to pool

their vehicle fleets to achieve compliance as a so-called manufacturer pool. Manufacturers

with a common owner (holding more than 50% of company shares) are required to pool their

vehicle fleets and must comply with the standard as a “group of connected manufacturers”.

Monitoring data, including all relevant components to evaluate the formula in (1), is publicly

available (European Environment Agency, 2023) and will be introduced in Section 2.2.

In this paper, I evaluate regulatory stringency at the level of car manufacturer pools using

a modified version of the above formula, where TargetT is the target level of the standard

in 2020. This measure is similar to that found in Rozendaal and Vollebergh (2024).

Sot =

∑

j∈Jo
σojt (eojt − at(Mojt −M0t))− TargetT

TargetT
(2)

To estimate the gap between manufacturer fleet-average emissions in 2010 to 2019 and the

2020 emissions target of the standard, I ignore all time-varying components of the regulation

besides changes in the composition of manufacturer pools, average vehicle weight, and the

weight adjustment factor and the 2020 emissions target. Ignored time-varying components

include, for example, phase-in periods where only a fraction of a manufacturer’s fleet has to

comply with the regulation or temporary “supercredits”, implying that a higher weight is

assigned to vehicles with particularly low emissions. Since the withdrawal of these measures

is anticipated in the legislation, they do not affect the manufacturer-level abatement efforts

needed to comply with the future target of the standard. To obtain a measure of regulatory

stringency at the manufacturer level based on these abatement efforts, I hold the average

weight of the European vehicle fleet and the vehicle weight adjustment factor constant at

their 2016 levels.

The 2015 diesel scandal:

Before 2015, many car manufacturers in Europe were using high market shares of diesel cars

as a tool to comply with the CO2 emission standards for cars. On average, the weight-

adjusted CO2 emissions of diesel cars were lower than the corresponding average in the

remaining vehicle fleet, predominantly gasoline cars. One can see in panel (a) of Figure

1 that his pattern holds for almost all car manufacturers in my sample throughout the

period 2010 - 2019. In the remainder of this paper, this pattern will be referred to as car

manufacturers using diesel cars as a compliance tool.

Governments in Europe historically promoted diesel cars as a means of reducing CO2

emissions. They supported high market shares of diesel cars, for example, by charging lower

excise taxes on diesel than on gasoline (Schipper et al., 2002). Thus, a high market share

for diesel became a distinguishing feature of the European car market. In 2015, the market

share of diesel cars in Europe was higher than 50%, dwarfing market shares in most other

major car markets (as of 2015 for the largest car markets by volume, in order: < 1% China

(Zhang et al., 2023), 3% USA (Chambers and Schmitt, 2015), 52% European Union (Mock,

2016), < 5% Japan (Diaz et al., 2017)). In combination with the emissions advantage of

diesel cars, this implies that a substantial reduction in the market share of diesel cars, all

8



Figure 1: Market share and emissions of diesel powered cars vs. other fuel types

(a) Manufacturer compliance diesel vs. non-diesel fleet

(b) Market share of different fuel types

Notes: Panel (a): Points indicate weight-adjusted CO2 emissions per km for the average passenger car of
a manufacturer in a given year with the corresponding fuel type. T15 indicates the 2015 CO2 emission
standard, T20 indicates the 2020 CO2 emission standard. Phase-in indicates the phase-in period for the 2015
emission standard, during which several measures facilitated the compliance with the standard. Both the
2015 standards and the 2020 standards were announced when the policy was adopted in 2009. Panel (b):
Market share of different fuel types pooling vehicle registrations in the European Community. Excluding car
manufacturers with less than 10,000 vehicles sold in 2015 in both panels. Years after the beginning of the
diesel scandal highlighted in red.
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other things equal, will increase the stringency of the European fleet-average CO2 emissions

standard but will not affect fleet-average CO2 emissions in other jurisdictions much.

A substantial reduction in the market share of diesel cars occurred in the aftermath of

the 2015 Volkswagen diesel scandal. The scandal became public in September 2015, with the

US Environmental Protection Agency notifying the Volkswagen Group that some of their

diesel models violated air pollution emission standards under the Clean Air Act, emitting

up to 40 times more nitrogen oxides (NOx), an air pollutant detrimental to human health,

than permitted by the standard.11 The diesel scandal had major consequences for the car

industry. Some manufacturers faced heavy fines for noncompliance with air pollution emis-

sions standards, and many had to call back and retrofit a large number of diesel cars sold

both in Europe and the United States (Breitinger, 2018). In Europe, the scandal ignited

a prolonged debate about the impact of diesel cars on local air pollution concentrations,

particularly in city centers (Amelang and Wehrmann, 2020). Municipal governments were

discussing driving bans for diesel cars in cities throughout the continent (Tietge and Diaz,

2017), but particularly in Germany. In addition, major car markets in Europe debated

changes to vehicle and fuel taxation to discourage the purchase of diesel cars. This included

higher road taxes for diesel cars adopted in Great Britain in 2018 (Griffiths, 2018), and an

equalization of taxes on diesel and gasoline in France (The Connexion, 2017) that was with-

drawn only after fierce public protests. Panel (b) of Figure 1 shows that these uncertainties

for the future value of diesel cars manifested in a reduction in market share among new

vehicle registrations in Europe from more than 50% in 2015 to 34% in 2019.12 Since I focus

on the long-term abatement efforts needed to comply with the 2020 standard as a measure of

regulatory stringency, the coincidental temporal overlap between the CO2 emission standard

becoming binding and the beginning of the Volkswagen diesel scandal in 2015 should not

affect my identification strategy.

Manufacturer-supplier relations in the European car industry:

Supply chain links between car manufacturers and their Tier 1 suppliers tend to be persistent

and involve substantial relationship-specific investments. This section summarizes several

important insights from a case study on buyer-supplier relationships in the German car

industry (Calzolari et al., 2019, Mueller et al., 2016).

Mueller et al. (2016) finds that supply chain relationships in the automobile industry

are persistent and often last more than 8 years. On the one hand, this is due to long

development cycles. Suppliers play a substantial role in the development process of new car

models, particularly since manufacturers largely outsourced the production of parts in the

1990’s. They often get involved early on, conducting both independent R&D for new car

parts and R&D ordered by car manufacturers in development contracts. Car manufacturers

often approach suppliers to develop the innovative parts they need. According to Mueller et

11This highlights an important feature of the diesel technology: while the weight-adjusted CO2 emissions
of diesel cars are lower than those of a comparable gasoline car, emissions of other air pollutants such as NOx

are higher.
12Among manufacturers selling more than 10,000 cars in Europe in 2019. Smaller car manufacturers are

not included in the analysis in this study due to the derogations from the CO2 emission standard that these
manufacturers are eligible for.
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al. (2016), manufacturer-specific R&D accounts for the bulk of supplier R&D efforts. On the

other hand, repeated interactions between car manufacturers and suppliers across different

car models are common.

Given the persistence of supply chain links and the high share of relationship-specific

innovation, the analysis in this paper is based on the assumption that suppliers are exposed to

the car manufacturers with whom they have interacted in the past. This allows measuring the

exposure of different suppliers to changes in the abatement efforts needed at the manufacturer

level to comply with the future emission target of the manufacturer set by the European CO2

emission performance standard.

2.2 Data

This section first provides information on the four data sources used in this study before

summarizing the dataset used in the main analysis. For details on the data merging proce-

dure, see Appendix B.

Patent data:

In this paper, I use patent data for 2005 - 2020 from the spring 2024 version of the World

Patent Statistical Database (PATSTAT). The database contains data on more than 100

million patent documents from more than 40 patent authorities and is maintained by the

European Patent Office (EPO).

Patent offices classify innovations as related to specific technologies. Since 2013, the EPO

and the United States Patent and Trademark Office (USPTO) use a common classification

scheme called Cooperative Patent Classification (CPC). Older patents are retroactively clas-

sified using the CPC scheme, and additional patent offices use the CPC classification scheme

in addition to their national classification (CPC, 2019), including China and Korea. Using

a selection of CPC codes based on previous work by Haščič and Migotto (2015), Aghion et

al. (2016), EPO and OECD/IEA (2021) and Dugoua and Dumas (2023), I extract patents

for innovations pertaining to three technological fields: clean innovation summarizes patents

for zero emission or low emission technologies. In the car industry, these technologies are

electric, hybrid electric or fuel-cell electric vehicles.13 Dirty innovation pertains to technolo-

gies based on fossil fuels, which in the car industry corresponds to the internal combustion

engine. Grey innovation helps to reduce the CO2 emission intensity of fossil-fuel-based tech-

nologies. Note that grey innovation is a subset of dirty innovation. The selection of CPC

codes for each technological field can be found in Tables A1 and A2.14 To asses, whether

changes in the patenting behavior of firms are technology-specific or driven by larger trends

in patenting, I additionally measure the overall innovation output of firms in my sample for

13Emissions caused by electricity consumption or during the production process of the vehicle are not regu-
lated under the European CO2 emission standard for cars. Thus, electric, hybrid electric, and fuel-cell vehicles
can be considered clean technologies in the sense that they facilitate compliance with the environmental reg-
ulation.

14In contrast to earlier papers, which rely on both CPC and the International Patent Classification to
identify relevant patents, I use only the CPC classification in my search strategy. Since the clean patent
category relies heavily on the Y02 classes only assigned in the CPC scheme, this should reduce biases between
patent counts across the three classes.
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related technologies based on patents that are assigned one of the following CPC classes:

vehicles in general (B60), electrical equipment (H01) or combustion engines (F02).

I measure the quantity of technology-specific innovation at the firm level using patent

counts for the technological fields described above. Based on patent applicants (the firm or

the individual who would own the patent once it is granted), I match patents to firms in

the car industry, namely car manufacturers and their Tier 1 suppliers. I follow two common

approaches recommended by the OECD Patent Statistics Manual (OECD, 2009) to avoid

double counting innovations. First, since patents can be held by multiple applicants, I use

fractional counts, dividing by the number of applicants on a patent before counting patents

at the firm-by-year level.15 Second, I count patent families instead of patent applications.

This is necessary since the same innovation is often patented in multiple countries. The first

patent application for an innovation is called a priority. Patents connected by a common

priority are referred to as a patent family. To measure innovation output at the firm level, I

use fractional counts of DOCDB patent families.16 I determine the timing of the innovation

using the priority application year, i.e., the year in which the first patent in the family was

filed for application. The priority application date is the closest date to the time of the

actual invention available in patent data (OECD, 2009).

Using patent data to measure innovation output is a standard approach in economics (see

e.g. Lanjouw and Mody, 1996, Popp, 2002, Noailly and Smeets, 2015, Aghion et al., 2016,

Calel and Dechezleprêtre, 2016, Calel, 2020, Rozendaal and Vollebergh, 2024). Its popularity

stems from the ability to measure innovation specific to highly disaggregated technological

fields and the availability of patent data for innovation outcomes of firms that are not required

to report expenditures for Research and Development (R&D) in their annual accounts (e.g.,

small- and medium-sized firms in Europe and privately owned firms in the United States).

While patents are not the only means to protect innovations, there is evidence that in the

car industry, patents are considered an effective means to protect innovation (Cohen, 2000).

However, the economic value of patents is very heterogeneous. To set a lower bound on the

economic value of patents included in my study, I include only non-domestic patent families,

i.e., patent families extending across at least two jurisdictions or being filed at the EPO or

internationally under the Patent Cooperation Treaty (PCT). I deviate from previous liter-

ature using so-called “triadic” patent families (Aghion et al., 2016)17 to accommodate the

increasing role played by developing economies, in particular China, for innovation on EV

technologies. An alternative measure often used to correct for the heterogeneous economic

value is a citation-weighted patent count, i.e. weighting each patent by the number of later

patents citing it. Given the recent sample period and time lags in the publication of patents,

constructing sensible citation weights for my sample is not feasible. A thorough discussion

15I conduct this adjustment after dropping patent applicants not observed in the other data sets and after
aggregating all patent applicants belonging to the same global ultimate owner, since the sampling procedure
would otherwise affect my patent counts.

16DOCDB simple patent families are assigned to a patent by EPO patent examiners based on common pri-
orities and the examiner’s evaluation of whether these priorities patent the same innovation. For details on the
construction of DOCDB patent families, see Martinez (2010). DOCDB is the EPO’s master DOCumentation
DataBase (DOCDB) which has worldwide coverage.

17Triadic patent families are patent families comprising a patent application at the United States Patent
and Trademark Office, the Japan Patent Office and at the EPO.
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of the benefits and limitations of using patent data to measure innovation outcomes can be

found in Griliches (1990).

Car registrations in Europe:

Since 2010, the European Environment Agency publishes data on all new passenger car

registrations in the 27 member states of the European Union, and Iceland, Norway and

the United Kingdom under a transparency requirement of Regulation (EC) 443/2009. The

data contain information on the manufacturer, the vehicle model (model name and type-

variant-version codes), as well as all the information required to determine the compliance

of the manufacturer with the fleet-average emission standard, such as the car models CO2

emissions per km according to type-approval tests, its weight, fuel type and the number of

vehicle registrations. In addition, the data set tracks manufacturer pools formed to comply

with the regulation over time. The data allows me to calculate year-to-year changes in the

fleet-average emissions of a manufacturer and the manufacturer pool to which it belongs, as

well as the number of new cars registered by these entities in a given year between 2010 and

2019.

Manufacturers and manufacturer pools with vehicle sales below certain thresholds can

apply to receive a less stringent manufacturer-specific standard.18 The emissions targets

under these derogations take into account the structure of a manufacturer’s vehicle fleet and

typically require lower abatement efforts. In this study, all car manufacturers belonging to a

pool selling more than 10,000 passenger cars in Europe in the year 2015 will be considered.

This includes car manufacturers that are subject to more lenient emissions reduction targets

under a niche manufacturer derogation. For manufacturers with such derogations in a given

year, I manually match the 2020 target implied by the targets communicated in so-called

monitoring reports published by the European Commission (see e.g. European Commission,

2022). In cases where the manufacturer belongs to a different pool in 2020, I reduce the 2015

emissions target by 20% to obtain a 2020 target for the manufacturer.

Supplier-manufacturer relationships:

To measure the exposure of suppliers to car manufacturers, I use the MarkLines “Who Sup-

plies Whom” database, which provides information on parts provided by supplier companies

for different car models. MarkLines is a private market research company, operating an

information platform on the global automotive industry. In their “Who Supplies Whom”

database, I observe 142,783 components for 2,352 model names provided by 2,478 suppliers

for 92 car makers globally over the period 2010 - 2015.19 Combining this information with

18Manufacturers with less than 1,000 passenger cars registered in the European Community per year are fully
exempt from the regulation. Manufacturers with less than 10,000 cars registered can apply for a manufacturer-
specific standard (small-volume derogation), manufacturers with less than 300,000 passenger cars registered
in the European Community per year can apply for a standard requiring a 45% reduction of their fleet-average
emissions by 2020 compared to the manufacturer’s average emissions in 2007 (niche derogation) (European
Parliament and Council, 2009, 2019).

19MarkLines Who Supplies Whom database contains information on the supplier companies from which
OEMs source 300 important car model components for different car models they produce. These components
fall into one of the following categories: e-Powertrain, Internal Combusion Engine Powertrain, Driveline,
Electrical and Electronic, Interior, Exterior, Chassis, Body and General / Small Parts.
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data on the number of registrations of car models in Europe, I obtain exposure weights that

should proxy for the share of components delivered from a supplier to a manufacturer (for

details on the exposure weights, see Section 3). In addition to the pre-2015 supply chain

links, I gather information on 8,126 manufacturer-supplier pairs with supply chain links ob-

served in the period 2021-2022 from MarkLines Who Supplies Whom. Note that while the

MarkLines data cannot be considered a complete census of supply chain links between car

manufacturers and their Tier-1 suppliers, supply chain links to large, innovative suppliers

are more likely to be covered. This is, e.g., due to the greater attention paid to electric

vehicles in so-called teardown reports by MarkLines, where a vehicle is disassembled to see

which components it uses.

To check whether the supply chain links are as persistent as assumed, Appendix Figure

E.2 tracks manufacturer-supplier pairs forming additional supply chain links over time. One

can see that in 2021, 42% of all manufacturer-supplier pairs for which a supply chain link is

observed in 2010 still form at least one additional supply chain link per year. These links are

observed in the form of an additional component supplied for a specific car model. Given

the long production phase of these car models, this should result in a share of persistent

manufacturer-supplier relationships over a ten-year time horizon substantially higher than

50%. Additionally, this figure provides evidence that repeated interactions between car man-

ufacturers and their Tier 1 suppliers are, in fact, widespread.

Corporate data:

Linking the firm-level patent data obtained from PATSTAT to the manufacturer supplier

links in MarkLines Who Supplies Whom is complicated by the fact that the subsidiary pro-

viding parts and components to a car manufacturer and the subsidiary in charge of research

and development may not always work under the same name. To alleviate that concern, I

match both the patent data and the companies in the manufacturer-supplier data to Bureau

van Dijks Orbis database. Orbis contains data on ownership links for 462 million companies

worldwide, as well as balance sheet data for many of these companies. The data set is stan-

dardized for cross-border comparisons. I use Orbis to merge all companies in PATSTAT,

European car registrations, and in MarkLines Who Supplies Whom to their global ultimate

owner in 2015 (a firm owning more than 25% of the subsidiary is assigned to be its global

ultimate owner).20 Since I will rely on predetermined exposure weights for the instrumental

variables approach in this paper, fixing ownership links in 2015 for the sample of automotive

suppliers does not affect my results. For the car manufacturers, the registration data allows

me to track manufacturer pools over time, such that I can measure the regulatory stringency

implied by the current ownership structures of car manufacturers. In addition to the owner-

ship structure of firms, I obtain balance sheet data for 140 firms in my final sample for the

period 2010 - 2020.

Merged data and descriptive statistics:

20There are ten entities in the MarkLines data where the global ultimate owner of a firm is not unique
based on the 25% ownership threshold. In these cases, I randomly assign one firm as the global ultimate
owner.
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In this section, I briefly summarize the data merging procedure and descriptive statistics on

the final data set obtained. A more detailed description of the data merge is relegated to

Appendix B.

In the first step, I merge the car registration data, the patent data, and the manufacturer-

supplier links to ORBIS using the company names. In the second step, I use the historical

firm ownership information for the year 2015 from ORBIS to assign a global ultimate owner

holding more than 25% of the company to each firm. For these GUOs, I create firm-level

patent stocks by counting all patent families held by patent applicants belonging to the

GUO. I aggregate information on the regulatory stringency on the level of pools of car

manufacturers that are specified in the registration data. I measure regulatory stringency by

calculating the distance between the sales-weighted average emissions of the manufacturer

pools new vehicle registrations and the 2020 target for manufacturer fleet-average emissions

levels specified by the standard.

Linking the manufacturers in the MarkLines Who Supplies Whom data to the car manu-

facturers in the EU car registrations based on company names and car model names, I create

sales-weighted exposure shares to the 34 regulated car manufacturers (held by 22 GUOs in

2015) for all supplier companies. These first merging and harmonization steps reduce the

size of the sample from 2,172 supplier companies (after only a basic name harmonization)

to observing 1,324 firms held by 542 global ultimate owners of supplier companies providing

components for 494 car models, where I use model type series as the definition of a car model.

To provide an example, I would treat all BMW 2-Series as the same car model, not distin-

guishing between, e.g., the BMW 2-Series Coupe, Coupe M and Gran Coupe, Gran Coupe M

and Active Tourer, the last being a plug-in hybrid. This model specification not only ignores

model trims but also different model face-lifts produced over time.21 I include supplier links

for 30 out of 34 car manufacturers, and I observe at least one component supplier for 79.5%

of all new car registrations in Europe between 2010 and 2015 by those manufacturers.22

In the third step, I merge the data measuring innovative activity and the data measuring

exposure to regulatory stringency using the GUOs ID in the ORBIS data. This leaves me

with 410 GUOs observed in all three data sets. In the main sample, I keep only GUOs that

applied for at least one non-domestic patent family for any of the four technological fields,

clean, grey, dirty, or benchmark in the period 2015 - 2020, and that applied for at least one

patent in the benchmark category before 2015. In doing so, I restrict my sample to firms

that are actively patenting in technological fields relevant to the car industry before and at

least once during the sample period. These restrictions reduce the size of the final sample

to 339 GUOs of automotive suppliers and additionally 22 GUOs of car manufacturers. The

supplier’s GOUs correspond to 1,737 patent applicants (before name-disambiguation). In

total, I merge 81,155 of 384,964 patent families for clean technologies with an application

21Note that the model specification is only used to construct supplier exposure weights and thus does not
affect the calculation of manufacturer fleet-average emissions.

22The brands excluded are Avtovaz, Bugatti, Rolls Royce, and Tata Motors. Avtovaz is a Russian car
manufacturer belonging to Renault. Bugatti is owned by Volkswagen. Rolls Royce is owned by BMW. All
three brands are regulated but do not sell any diesel cars in 2015, which is why the instrumental variable
used in this paper is not well-defined for these firms. Tata Motors owns Jaguar Landrover, but the brand
Tata itself stopped selling cars in Europe in 2018 and is thus excluded from the sample.
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date between 2015 and 2020 (21%).2324 In the final sample, 55% of all clean patents are

held by supplier companies, with the remaining 45% held by the GUOs of car manufactur-

ers. While this highlights the importance of supplier companies for innovation in the car

industry in Europe, it also underscores the disproportional role played by the 22 GUOs of

the car manufacturers in my sample. I use these data to study the innovation outcomes of

firms in the period 2016 - 2020.

Table 1: Descriptive Statistics

Variable Unit Mean Sd Min Pctile[25] Pctile[50] Pctile[75] Max

Panel A: Supplier patenting between 2015 and 2020

Benchmark Patents Count 50 158 0 1 5.5 29 1674

thereof Clean Patents Count 12 59 0 0 0 3 942

thereof Grey Patents Count 2.1 15 0 0 0 0 284

thereof Dirty Patents Count 4 20 0 0 0 1 344

Panel B: Manufacturer car market outcomes in 2015

Emissions15 - Target20 gCO2/km 23 11 0 16 24 32 41

Diesel Emissions Disadvantage gCO2/km -14 20 -67 -20 -17 -11 47

without weight-adjustment gCO2/km -2.8 22 -63 -10 -4 5 60

Diesel Market Share % 50 20 14 38 48 60 92

Panel C: Supplier exposure to car market outcomes in 2015

Emissions15 - Target20 gCO2/km 23 5.1 0 21 24 25 41

Diesel Emissions Disadvantage gCO2/km -12 13 -67 -17 -14 -11 47

without weight-adjustment gCO2/km 0.8 14 -63 -4.6 -1.6 2.7 60

Diesel Market Share % 47 13 14 40 51 56 92

Panel D: Change insupplier exposure to car market outcomes from 2015 to 2019

∆ Emissions - Target gCO2/km 0.34 4.7 -19 -1.9 0.82 2.3 36

∆ Diesel Market Share %-points -21 4.8 -48 -23 -20 -18 -14

Notes: Descriptive statistics on the final sample of 339 global ultimate owners of tier-1 automotive suppliers,
annual observations. Panel A displays fractional patent counts for the corresponding technological fields.
Panel B displays regulatory outcomes for 22 global ultimate owners of regulated car manufacturers. Emissions
- Target is the firm-specific exposure to manufacturer-level differences between fleet-average CO2 emissions
and the 2020 target set by the European CO2 emission performance standards for passenger cars. Diesel
Market Share is the supplier’s exposure to manufacturer-level shares of diesel-powered vehicles by firm i

in year t (σD
it ), Diesel Emissions Advantage is the supplier’s exposure to manufacturer-level differences in

weight-adjusted emissions between the average diesel and the average non-diesel car sold by the manufacturer

(eDit − e
ND
it − at(M

D

it − M
ND

it ), where e
D
it (eND

it ) is the exposure to the diesel-fleet (non-diesel-fleet) average

emissions of a manufacturer, M
D

it (M
ND

it ) is the exposure to the diesel-fleet (non-diesel-fleet) average vehicle
weight of a manufacturer and at is the regulatory weight adjustment factor in year t. ∆ denotes the indicated
year-to-year differences in the corresponding variables.

Table 1 provides descriptive statistics on the final sample of automotive supplier compa-

nies. Panel A shows that the distribution of patent applications per year is positively skewed,

with the median firm applying for 5.5 patents in a given year, compared to 50 patents by the

average firm and a maximum of more than 1,600 patents per year. A similar pattern is also

23This comparison uses raw patent applications since fractional, non-domestic counts are only created after
the data merge. Fractional counts consider only merged suppliers.

24Appendix Figure E.1 compares trends in the average number of patent applications per year in the
categories clean, grey, and dirty between all patent applicants observed in PATSTAT and my sample.
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observed for technology-specific patent counts. The average firm in my sample applies for 12

patents for clean technologies per year. Clean innovation thus makes up a sizable proportion

of overall innovation outcomes for automotive suppliers. In particular, the number of patents

for clean technologies is higher than the number of patents for dirty technologies. In a given

year, only 25% of the firms in my sample apply for either a clean or a dirty patent in a given

year.

Panel B provides details on the fleet-average emissions of car manufacturers in my sample.

For the average car manufacturer in the sample, the 2020 emission performance standard

will be binding since its current fleet average emissions are 23 g CO2 per kilometer higher

than the level of 95 g CO2/km prescribed by the standard after 2020. There are, however,

car manufacturers (SsangYong), for whom the 2020 target is not binding already in 2015.25

The second important observation is that for almost all manufacturers, the average diesel

car sold has lower weight-adjusted CO2 emissions per km than the average non-diesel car

sold. For the average manufacturer, the weight-adjusted emissions of the fleet of diesel cars

sold is 12 g below the emissions of the non-diesel fleet. This emissions advantage is much

less pronounced without the adjustment of emissions for vehicle weight: for at least 25% of

car manufacturer by year observations, the diesel fleet actually has slightly higher emissions

than the fleet of non-diesel cars before adjusting for vehicle weight. Third, diesel cars make

up a substantial share of new vehicle sales for all manufacturers over the sample period,

ranging between 12 and 92% (48% on average).

Panel C provides details on the supplier’s exposure to the car market outcomes of car

manufacturers. A comparison between panel B and panel C provides three important in-

sights: First, the average supplier seems to be exposed to car market outcomes that are close

to the average outcomes across all car manufacturers, suggesting that the exposure weights

obtained from the MarkLines data do not introduce bias in terms of the observed suppliers

being exposed to a non-representative fraction of the car market.26 Second, we see that there

are meaningful differences in terms of the exposure to car market outcomes across suppliers:

while some suppliers are exposed to car manufacturers with a large market share of diesel

cars, others are exposed to firms not relying on diesel cars as much. Third, the variability

in the outcomes of car manufacturers is much higher than the variability observed in the

exposure of suppliers to these outcomes. While the previous insight suggests that automotive

suppliers are not exposed to the car market as a whole, the lower variabiliy indicates that

many suppliers are in fact exposed to more than one car manufacturer. A graph illustrating

the network between car manufacturers and their suppliers is provided in Appendix Figure

B.4.

Finally, panel D displays changes in exposure to car market outcomes for automotive

suppliers from 2015 to 2019. On the one hand, exposure to compliance gaps between the

2020 level of the emissions standard and the manufacturer’s fleet-average CO2 emissions

increased slightly by 0.34 g CO2 per km for the average supplier. On the other hand,

25Note that none of the famous EV manufacturers like Tesla or BYD were subject to the regulation in 2015
due to their low vehicle sales in Europe at that time. Thus, they are not included in this study.

26A graph showing the average weight assigned to different car manufacturers can be found in Appendix
Figure B.3.
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for more than 25% of the sample, exposure to compliance gaps dropped by at least 1.9 g

CO2/km. This implies that for some suppliers, the exposure to regulatory stringency in

terms of emissions abatement efforts required in the downstream market increased, while it

decreased for others. The market share of diesel cars sold by the manufacturers a supplier

is exposed to, however, dropped for all Tier-1 suppliers. Reductions range between 14 and

48 percentage points.

3 Empirical Strategy

To quantify the effect of exposure to stringency of the European CO2 emission performance

standard for cars on innovation by automotive suppliers, the following equation will be

estimated:

PATit = exp(βSit−1 + γXit−1 + ηi + µt)uit (3)

where PATit is supplier i’s number of technology-specific patent applications in year t, Sit−1

is the supplier’s exposure to the stringency of the EU CO2 emissions standard for cars in

the previous year (to be introduced in Equation (4)), Xit−1 are additional control variables,

including either lags of a firms share of patents pertaining to the technological field under

consideration, exposure to country-level fuel prices, or firm financial outcomes such as the

firms revenues.27 Furthermore, ηi is a firm fixed-effect, µt is a year fixed-effect and uit is the

error term.

Suppliers are not directly subject to regulation in the downstream car market. Given the

persistence of manufacturer-supplier relationships in the car industry, I assume that suppliers

are exposed to environmental regulations in the car market via the car manufacturers with

whom they have pre-existing relationships. I calculate the exposure to regulatory stringency

on the supplier level as

Sit−1 =
∑

o∈O

wioSot−1 (4)

where O is the set of regulated car manufacturers, ωio is a weight reflecting supplier i’s

exposure to manufacturer o (to be introduced in Equation (5)), and Sot−1 is the stringency

of the European CO2-emission standard for cars for manufacturer o in year t− 1 defined in

Equation (2).

After counting new vehicle registrations for all car models over the period 2010 - 2015, I

define supplier i’s exposure to manufacturer o using a registration-weighted share of supply

chain links to manufacturer o relative to all supply chain links of supplier i:

wio =

∑

j∈(Jo∩Ji)
qj,2010−2015

∑

j∈Ji
qj,2010−2015

(5)

where qj,2010−2015 is the number of newly registered vehicles of car model j in the regulated

market in the years 2010 to 2015, Jo is the set of car models produced by car manufacturer

o, and Ji is the set of car models for which supplier i provides at least one component in the

period 2010 - 2015. I resort to manufacturer-supplier relationships before 2015, such that the

27In the preferred specification, I do not include any additional control variables.
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exposure weights are pre-determined over the sample period. Note that the list of supplied

components in MarkLines Who Supplies Whom does not cover all manufacturer-supplier

relationships in the European car market. I thus regard these exposure shares as a proxy for

the relationships suppliers have with different manufacturers.

In some specifications, additional control variables Xi,t−1 include firm knowledge stocks.

In contrast to other papers working with patent data, the estimator used in this study

allows me to directly include firm fixed effects, such that controlling for level differences

in the patenting outcomes of firms is unnecessary. Clean patenting, however, is growing

substantially during the sample period. Controlling for the share of a firm’s technology-

specific patent applications in the past year should take into account changes in the firm’s

innovation strategy.

Ait−1 =
PAT k

it−1

PAT b
it−1 + 1

(6)

where PAT k
it−1 is the number of patent applications for technology k corresponding to patent-

ing for either clean, grey, or dirty technologies. In the denominator, I divide by the number

of patent applications in the benchmark category.

In some specifications, I also estimate a version of the above model using a Poisson

Quasi-Maximum Likelihood Estimator (PQMLE). To account for time-invariant differences

in the patenting outcomes of firms in these regressions, I include a firms technology-specific

knowledge stocks as controls.28 The knowledge stock Kk
it for technology k is calculated

using the perpetual inventory method, (following Cockburn and Griliches, 1988, Peri, 2005)

including patent applications dating back to 2005 and assuming a knowledge depreciation

rate of δ = 0.2, following Aghion et al. (2016):29

Kk
it =

t∑

l=2005

(1− δ)lPAT k
it (7)

A key challenge in estimating the effect of exposure to regulatory stringency in the down-

stream car market on the innovation outcomes of upstream automotive suppliers is the en-

dogeneity of supplier exposure to regulatory stringency Sit−1. This endogeneity arises since

both the additional abatement efforts demanded from manufacturer o (Sot−1) and a sup-

plier’s future innovation efforts are driven by the manufacturer’s current product portfolio.

The main concern is reverse causality: adding a low-emission vehicle, e.g. an EV, to a manu-

facturers product portfolio will most likely reduce the manufacturers fleet-average emissions.

Simultaneously, components for the low-emission car model will come from suppliers with an

expertise in clean vehicle technologies. This creates a spurious, negative correlation between

exposure to regulatory stringency in the downstream market and supplier innovation for

clean technologies.

28For details on the alternative estimation approach, see Appendix B.
29Note that the knowledge stock in the benchmark category will be non-zero in every year after 2015, since

firms without any patents before 2015 were removed from the sample as outlined in Section 2.2.
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The high degree of globalization in the car industry poses an additional challenge. Large

car manufacturers sell cars in almost all major markets. Previous research (e.g. Kiso, 2019)

shows that the fleet-average emissions of car manufacturers are correlated across jurisdictions.

Given that all major car markets are subject to some sort of fuel economy or fleet-average

CO2 emission standard (e.g., the Corporate Average Fuel Economy Standards in the US or

Corporate Average Fuel Consumption standards in China), the exposure to binding environ-

mental regulation is correlated across jurisdictions. This might introduce omitted variable

bias in a regression focusing on the effect of the European CO2 emission performance stan-

dard for passenger cars on global innovation outcomes.

Finally, anticipation of changes in the stringency of environmental regulation inhibits

the identification of short-term effects on innovation outcomes. Changes in the target levels

of emissions standards are often adopted or announced years before they become binding.

This is particularly true in Europe, where the target level of the 2020 standard has been

anticipated since 2009.

3.1 Construction of the instrument

To overcome the endogeneity problems described in the previous section, I construct a shift-

share instrumental variable (Bartik, 1991) that combines cross-sectional variation in the

pre-2015 exposure of Tier 1 automotive suppliers to car manufacturers relying on diesel cars

as a compliance technology (the “share”) with temporal variation in the share of diesel cars

sold at the manufacturer level (the “shift”). Identification is based on a sequential exogene-

ity assumption on the shares , following Goldsmith-Pinkham et al. (2020). The identifying

assumption will be discussed after introducing the instrument formula.

Instrument Formula:

I obtain a formula instrument for exposure to the stringency of the fleet-average CO2 emission

standard by re-writing its definition:

Sit−1 =
∑

o∈O

ωio

∑

j∈Jo
σojt−1 (eojt−1 − at(Mojt−1 −M0t−1))− TargetT

TargetT
︸ ︷︷ ︸

Sot−1

(8)

All components are defined exactly as in equation (4), except for the registration share of

model j in the fleet of manufacturer o σojt = qojt/
∑

k∈Jo
qokt, where qokt is the number of

cars of model k (produced by manufacturer o) registered in year t. Decomposing the sales-

weighted average emissions Sot−1 by fuel type, I obtain a formula for exposure to regulatory

stringency at the supplier level.

Sit−1 =
∑

o∈O

ωio

(
σD
ot−1S

D
ot−1 + (1− σD

ot−1)S
ND
ot−1

)
(9)

=
∑

o∈O

ωio

(

SND
ot−1

(

1 + σD
ot−1

SD
ot−1 − SND

ot−1

SND
ot−1

))

(10)
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where σD
ot =

∑

j∈Jo|D
σojt is the share of diesel cars among manufacturer o’s new vehicle

registrations in year t, Jo|D is the set of diesel models sold by manufacturer o,

SD
ot−1 =

∑

j∈Jo|D

σojt−1 (eojt−1 − at(Mojt−1 −M0t−1))− TargetT (11)

is the gap between the fleet-average emissions of manufacturer o’s fleet of diesel passenger

cars sold and the future target emissions level of the standard, and SND
ot−1is the corresponding

gap for a manufacturer’s fleet of non-diesel passenger cars.

Equation (10) shows that a supplier’s exposure to regulatory stringency directly depends

on the supplier’s exposure to car manufacturers that rely on diesel cars for compliance with

the standard. Holding the average emission level of a manufacturer’s diesel and non-diesel

fleet constant at 2014 levels, the second term of Equation (10) should provide a relevant, time-

varying instrument for the stringency of the European CO2 emission standard for passenger

cars.30 To gain precision, I focus on changes in the manufacturer-share of diesel cars relative

to 2014 ∆σD
ot−1 = σD

ot−1 − σD
o,2014.

IVit−1 =
∑

o∈O

ωio

SD
o,2014 − SND

o,2014

SND
o,2014

∆σD
ot−1 (12)

This instrumental variable has a shift-share structure, combining supplier-level pre-2015 ex-

posure weights ωio
SD
o,2014−SND

o,2014

SND
o,2014

with manufacturer-level shocks to the market share of diesel

cars ∆σD
o,t−1.

Exclusion restriction:

The instrumental variable addresses three previously raised concerns for identification. It

resolves concerns about a reverse causality between manufacturer-level regulatory stringency

and supplier-level innovation. Controlling for supplier fixed-effects and relying on the pre-

2015 exposure of suppliers to different car manufacturers, the variation isolated by the in-

strument is driven by the heterogeneous exposure to manufacturer-level demand shocks.

The exposure is correlated to future changes in the exposure to regulatory stringency, but

plausibly exogenous to confounding future shocks to supplier innovation. The approach

also resolves concerns about omitted variable bias that could arise due to the omission of

controls for foreign fuel economy or CO2 emission standards. Since the large market share

of diesel cars is a distinctive feature of the European car market, the supplier exposure to

manufacturer-level shocks in the sales of diesel cars should affect the exposure to regulatory

pressure from European regulation, but should be orthogonal to changes in the stringency

of similar standards in other major car markets, such as the United States or China. Fi-

nally, since the diesel scandal was not anticipated by market participants, the instrumental

variables approach isolates unanticipated changes in the stringency of the standard.

Formally, the instrumental variables approach developed above relies on the following

30The first term is constant over time after fixing the stringency outcomes at 2014 levels and will thus be
eliminated by the firm fixed-effect.
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exclusion restriction:

E

(
∑

o∈O

ωio

SD
o,2014 − SND

o,2014

SND
o,2014

∆σo,t−2(ui,t − ui,t−1)

)

= 0 (13)

I assume that the suppliers exposure to manufacturers relying on diesel cars is as good

as random, while manufacturer-level shocks to the number of diesel cars sold can be non-

random, following the approach to identification with shift-share instruments developed by

Goldsmith-Pinkham et al. (2020).31 In particular, this assumption implies that the pre-2015

exposure of suppliers to car manufacturers relying on diesel cars for compliance with the

CO2 emission standard cannot be correlated to future shocks to the supplier’s innovation

outcomes (conditional on supplier and year fixed effects).

A number of observations on the car market corroborate this assumption. First, the

exposure to diesel cars does not seem to be correlated to future shocks to the market share

of clean technologies such as EVs. Up to 2019, the market share of electric vehicles in

Europe increased only by 1.2 percentage points (see Figure 1), in contrast to a reduction

of 19.6 percentage points in the market share of diesel cars. Since both diesel and gasoline

cars, the latter being the predominant substitute for forgone diesel sales, rely on internal

combustion engines, the scandal itself should not have changed the relative incentives to

innovate for dirty or clean technologies.

Second, suppliers should not be able to select into relationships with car manufacturers

based on anticipated shocks to the size of the market for clean, grey, or dirty technologies.

For most car manufacturers, the market share of EVs was almost zero in 2014. Thus, the

average supplier’s exposure to different car manufacturers does not seem to be driven by EV

components, alleviating concerns about selection into exposure to car manufacturers with

above-average EV market shares. Furthermore, Appendix Table A2 shows that supplier

exposure to manufacturers relying on diesel cars as a compliance technology is not correlated

with changes in EV market shares before 2015.

Third, it implies that supplier exposure to changes in the stringency of other relevant

domestic regulations are not correlated to a supplier’s exposure to car manufacturers relying

on diesel cars. Domestic regulations that could affect incentives for clean versus dirty inno-

vation include subsidies for EVs or standards for other air pollutants emitted by passenger

cars. In the aftermath of the 2015 Volkswagen diesel scandal, emission standards for air

pollutants such as nitrogen oxides or fine particulate matter were tightened. In contrast to

the CO2 emission standards for passenger cars, air pollution standards apply to any single

vehicle sold. For a single vehicle, cheaper compliance technologies than shifting production

to EVs entirely are available, such as selective catalytic reduction to reduce NOx emissions

or software updates and smaller changes to the vehicle’s mechanical makeup to reduce air

pollutant emissions from fuel combustion. Thus, it is unlikely that the regulation on air

pollutants other than CO2 would have increased incentives for innovation on low to zero

31Borusyak et al. (2022) show that exogeneity in the “shift” component of shift-share instruments can also
provide a valid exclusion restriction. Prerequisites for this approach are a large number of independent shocks
and exposure weights to the individual shocks converging to zero as the number of shocks grows. In the context
of an oligopolistic car market, neither assumption is given for changes at the level of car manufacturers.
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CO2 emission technologies. EV subsidies, on the other hand, incentivize innovation for EV

technologies. The extent to which these incentives are passed through to suppliers depends

on the manufacturer-level share of EVs sold. As I have argued before, supplier exposure

to manufacturers relying on diesel cars as a compliance technology is not correlated with

changes in EV market shares before 2015.

Estimator:

With the instrument at hand, I proceed to estimate the specification in equation (3) using

a GMM quasi-differencing estimator proposed for fixed-effects count data models with en-

dogenous regressors by Wooldridge (1991), Windmeijer (2000) and Jochmans (2022). This

estimator relies on sequential moment restrictions

E(uit|ηi, µt, ωio, S
D
o,2014, S

ND
o,2014, PATi,1, . . . PATi,t−1) = 1 (14)

, which include the exclusion restriction for the exposure to manufacturers relying on diesel

cars as a compliance technology ωio
SD
o,2014−SND

o,2014

SND
o,2014

and a sequential exogeneity assumption

for PATit, implying that past patent stocks Kit may be correlated with future error terms

uir, r > t.32 In the main specification, I set Xit = (Si,t−1) and Zit = (IVit−1). Given these

variables, the GMM quasi-differencing estimator uses moment conditions of the following

form:

E

(

Zit

(
yit

exp(Xitβ)
−

exp(µt)

exp(µt−1)

yi,t−1

exp(Xi,t−1β)

))

= 0 (15)

which is equivalent to E (Zit(ui,t − ui,t−1)) = 0. Since Wald-tests based on two-step GMM

estimators tend to over-reject the null hypothesis in finite samples I bootstrap the standard

errors using a re-weighting method for bootstrapping GMM estimators developed by Brown

and Newey (2002).33

4 Results

Before discussing the results of the GMM estimation in Section 4.2, Section 4.1 shows trends

in patent outcomes for suppliers with high and suppliers with low exposure to manufacturers

relying on diesel cars for compliance with the standard in 2014.

4.1 Trends

Figure 2 shows trends in patent counts for different technologies for firms with a high and

firms with a low exposure to manufacturers that rely on diesel cars as compliance tech-

32Note that the estimator does not converge for independent variables that are either non-negative or non-
positive. As suggested by Windmeijer (2000), I subtract the overall mean from all variables in Xit and the
instrument.

33I implement the GMM estimation in R, using matrix algebra and the gmm package in R for the opti-
mization procedure (Chausse, 2010).
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nology in 2014.34 I classify a firm as having a high exposure using the exposure weights
∑

o∈O ωio
SD
o,2014−SND

o,2014

SND
o,2014

. I classify a supplier as “high exposure” when the exposure weight is

smaller than the median in the sample of all suppliers. That is, the supplier is exposed to

manufacturers with a below-median emissions disadvantage (i.e., an above-median emissions

advantage) of diesel cars.

One can see that for automotive suppliers, patenting in the period before 2015 evolves

mostly in parallel for firms with a high vs. a low exposure. Across both groups, two trend

breaks are visible in the period 2015 - 2017. First, the average firm increases patenting for

clean technologies around 2015. Second, roughly two years later, the trend in patenting for

dirty technologies changes dramatically, with patent counts decreasing every year after 2017.

This seems to reflect a broader trend in patenting by the firms observed in my sample, which

can be seen in panels (e) and (f).

Comparing companies with high versus low exposure to manufacturers using diesel cars

as a compliance technology, Figure 2 shows that both trends seem to change more dramat-

ically in the subsample of firms that were more exposed to manufacturers using diesel cars

as compliance technology: After 2015, suppliers with a higher exposure appear to increase

their patenting for EV technologies faster than suppliers with low exposure. This is partic-

ularly visible in the average number of patent applications for clean technologies in panel

(a) and much less pronounced when looking at the logarithm of patent counts in panel (b),

suggesting that the increase might be driven by a few larger firms substantially increasing

their number of patents for clean technology. At the same time, suppliers with high expo-

sure appear to reduce the number of patent applications per year for dirty technologies more

than the group of suppliers with low exposure, which can be seen in panels (c) - (f). For this

outcome variable, taking the logarithm of patent counts does not change the visible trends

as much. For the number of patents in the benchmark category, which serves as a proxy for

the total innovation activity of a firm relevant to the car industry, firms with high exposure

to diesel technology seem to experience a weaker reduction in the number of patents in both

panels (c) and (d).

4.2 Regression analysis and main results

First stage results:

The GMM approach depends on a non-zero correlation between the shift-share instrument

developed in Section 3 and supplier exposure to regulatory stringency at the manufacturer-

level. I test for the joint significance of the first-stage relationship between the instruments

used in the GMM estimation and the endogenous supplier exposure to regulatory stringency

to assess the relevance of my instrument.

Table 2 shows the result of two first-stage regressions. In congruence with the main anal-

ysis, I analyze the first-stage relationship in a panel regression including annual observations

from 2015 - 2019 and in a long quasi-difference, comparing the period 2015 - 2019 with 2010

34The trends in patent counts for clean, grey, and dirty technologies over the full sample is displayed in
Appendix Figure E.1.
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Figure 2: Exposure to loosing Diesel cars as a compliance technology and trends in patenting

(a) Patent count Clean technology (b) Log patent count Clean technology

(c) Patent count Dirty technology (d) Log patent count Dirty technology

(e) Overall patent count (f) Log Overall patent count

Notes: High vs. low exposure is defined based on a median split of supplier exposure to manufacturers using
diesel cars as a compliance technology in 2014. Exposure variable defined in Equation (12). High exposure is
defined as being below the median of that (negative) variable. Panels (a), (c), (e) display the average number
of patents per year for the sample of suppliers (winsorized at the 97.5th percentile before taking averages).
Panels (b), (d), and (f) display the average in the logarithm of the patent count + 1 (not winsorized) for the
sample of suppliers. Patents are classified as protecting Benchmark, Clean, or Dirty technologies based on
the classification in Table A1.
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- 2014. In both regressions, I can reject the hypothesis that the instruments are irrelevant

based on a large F-statistic. Given the formula for exposure to regulatory stringency in

Equation (10), one would expect a positive correlation between the instrument and supplier

exposure to regulatory stringency. This initial conjecture is confirmed in the first stage for

the long quasi-difference regression in column (2) of Table 2: suppliers more exposed to

manufacturers relying on diesel cars as a compliance technology are exposed to a larger com-

pliance gap in the downstream car market. Note that in both first stage regressions, I loose

one time period compared to the main regression due to the quasi-differencing approach and

the assumed lag structure. This implies that in the first-stage for the long quasi-difference,

I am left with only one period and can no longer control for firm and year fixed-effects.

Controlling for supplier fixed-effects in column (1), I use only variation in the instrument

and exposure to regulatory stringency within the same supplier. The coefficient measuring

the correlation between the excluded instrument and exposure to regulatory stringency in

this regression is negative and statistically significant.

Table 2: First-stage relationship between regulatory stringency and the instrumental variable

Stringency

Panel Long Difference

IVt −0.322∗∗∗

(0.048)

IV t 0.998∗∗∗

(0.122)

F 68.041 94.259

Firm FE X
Year FE X
Firms 339 339
Periods 5 1

Note: First-stage regressions for the period 2015 - 2019. IVt is the annual instrumental variable developed
in Equation (12). IV t is the average of this annual instrumental variable. Firms is the number of firms
observed. Periods is the number of years in column (1) and the one of five-year period 2016 - 2020 in column
(2). First-Stage F after within-transformation in column (1). Standard errors in column (1) clustered at the
firm level. Heteroskedasticity-robust standard errors are used in column (2). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

The following considerations rationalize the negative sign of the coefficient on the ex-

cluded instrument in column (1) of Table 2. Given the assumption about persistent supply

chain relationships and the use of pre-determined shares in the shift-share instrument, sup-

pliers are exposed to a constant set of manufacturers over time. Among these manufacturers,

those facing a lower reduction in regulatory stringency than the average manufacturer will

be reluctant to lower their share of diesel cars sold, since a higher share of diesel cars sold re-

duces their fleet-average emissions. This behavior implies that there is a positive correlation

between the exposure to a (potentially endogenous) change in diesel sales and exposure to

regulatory stringency, which can be seen in panel (c) of Figure 3. The correlation between
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the exogenous share component of the shift-share instrument (following Goldsmith-Pinkham

et al., 2020) and exposure to regulatory stringency is displayed in panel (b). As expected, the

supplier exposure to manufacturers relying on diesel cars for compliance in 2014 positively

correlates with the exposure to regulatory stringency. Taken together, this implies a negative

correlation between the instrument and stringency exposure, as seen in Panel (a) of Figure 3.

Table 3: Effect of exposure to more stringent environmental regulation on clean innovation

Panel Long Difference

GMM (IV) Poisson GMM (IV) GMM (IV) Poisson Poisson
(1) (2) (3) (4) (5) (6)

Stringencyt−1 11.233∗∗ 2.834 15.104∗∗ 13.397 4.853 5.604∗

(4.588) (2.022) (7.578) (8.511) (4.257) (2.950)
Clean Sharet−1 0.646 2.836∗∗∗

(0.893) (0.464)

First Stage
Instrument -0.322∗∗∗ 0.998∗∗∗ 0.997∗∗∗

(0.048) (0.122) (0.122)

F 68.041 94.539 47.305

Periods 6 6 2 2 2 2
Firms 339 339 339 339 339 339
Firm FE X X X
Controls X X X
Period FE X X X X X X

Notes: Models titled GMM (IV) estimate the specification in Equation 3 using the moment conditions
in Equation 15 for the panel of five years and C.3 for the long quasi-difference. Details on the long
difference approach are provided in Appendix C. Models titled Poisson estimate the specification
in Equation C.1. Firms is the number of firms (companies or global owners) observed. Controls
indicates that the logarithm (log(x+1)) of the presample patent stock in the benchmark category
(corresponding technology) were included as controls. First-Stage F in column (1) after within-
transformation. Block-bootstrapped standard errors for GMM models (100 draws, clustered at the
level of firms, using re-weighted bootstrapping procedure by Brown and Newey (2002)). Standard
errors for non-instrumented regressions clustered at the firm level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Effect on innovation for clean technologies:

Table 3 shows the effect of exposure to a more stringent CO2 emission standard on the

number of patent applications for clean technologies by automotive suppliers. The preferred

specification in column (1) shows that the number of applications for clean patents increases

by 11% in response to a percentage point increase in emissions, relative to the future level of

the standard. The 11% increase corresponds to 1.34 additional clean patents for the average

supplier per year. This response is both statistically (at the 5% level) and economically

significant. A percentage-point increase in emissions relative to the target corresponds to an
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Figure 3: Stringency of the fleet-average CO2 emission standard and exposure to diesel cars

(a) IV based on changes in diesel shares (b) Exposure to diesel advantage

(c) Exposure to diesel market shares

Notes: Stringency is defined in equation (4). Panel (a): IV is the instrumental variable obtained in equation
(12). Panel (b): The relative emissions gap is the supplier’s exposure to manufacturer-level differences (as of
2014) between the emissions of the diesel and non-diesel fleet, divided by the emissions of the non-diesel fleet.
Panel (c): Supplier exposure to diesel market shares at the manufacturer level. Manufacturer-level variables
aggregated to the supplier level using time-constant supplier exposure weights introduced in Equation (5).
The black lines show the slope of a regression of the regulatory stringency on the corresponding variable,
controlling for time and individual fixed effects in panels (a) and (c) and for time fixed-effects in panel (b).
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increase in fleet-average emissions by 0.95 g CO2 per km. The average supplier was exposed

to a 0.34-gram increase in CO2 emissions over the period 2015 - 2019, although this figure

masks substantial heterogeneity between suppliers (see Table 1). The average increase in

exposure to regulatory stringency over the sample period would correspond to a 4% increase

in the number of clean patents. The 2020 target level of the standard (95 g CO2/km) is 36.8%

lower than the 2015 target level (130 g CO2/km). Linearly extrapolating the estimated effect

size would lead to an increase in clean patenting by 412%. This number seems to exaggerate

the effect of environmental regulation when compared to the observed increase in the average

number of clean patents by firms in our sample since 2015 in Appendix Figure E.1, panel

(b). However, we would not expect to see the full effect of the increase in stringency after

2015, since this policy change was anticipated since the adoption of the standard in 2009.

To assess whether this change in supplier innovation strategies is a response to the more

stringent environmental regulation, I estimate a long quasi-difference, comparing the period

2016 - 2020 to the period 2011 - 2015, i.e., the five years after the scandal to the five years

before.35 In column (3) of Table 3, one can see that the magnitude of the overall reaction is

similar to the coefficient estimated in column (1), implying that a percentage-point increase

in regulatory stringency in the downstream market in the five-year period preceding the

scandal translates into 15% more patents for clean technologies (significant at the level 5%)

over the next five years. Controlling for the share of clean patents in period t − 1 does not

change the size of the coefficient substantially, although it renders the coefficient insignificant.

This suggests that initial differences in knowledge stocks between automotive suppliers are

not sufficient to explain the observed innovation response.

Comparing the effects estimated in the GMM specifications to the non-instrumented

Poisson Fixed-Effects Quasi-Maximum Likelihood estimates in columns (2), (5), and (6),

two things become apparent. First, the coefficients in the non-instrumented regressions are

much smaller, which is in line with supplier anticipation of changes in regulatory stringency.

As patenting is driven by expectations about future incentives, anticipated changes in regu-

latory stringency, such as the introduction of cleaner car models by some car manufacturers,

should not alter the future innovation outcomes of suppliers. The IV approach purges the

measure of exposure to regulatory stringency from this variation by holding constant a manu-

facturer’s product portfolio and a supplier’s exposure to different car manufacturers. Second,

the coefficient of regulatory stringency in period t − 1 is significant at the 5% level when

controlling for the share of clean patents filed in period t− 1.

Effects on innovation for other technologies:

To assess whether being exposed to a more stringent environmental regulation has an effect

on innovation outcomes in other technological fields, I repeat the analysis in columns (1) and

(3) of Table 3 for the number of patents in the grey and dirty category, as well as for the

overall number of patent applications of the firm in technologies related to passenger cars

using the benchmark patent category. The results can be found in Table 4.

35For details on the alternative regression specifications employed in this section, the interested reader is
referred to Appendix B.
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Table 4: Exposure to regulatory stringency and innovation for other technologies

Dirty Patents Grey Patents Benchmark Patents

GMM (IV) Poisson GMM (IV) Poisson GMM (IV) Poisson

(1) (2) (3) (4) (5) (6)

Stringencyt−1 −3.924 -1.042 −7.314 -0.695 0.996 2.423∗∗

(3.691) (0.935) (6.770) (1.214) (4.401) (1.166)

First Stage Regression

Instrument -0.322∗∗∗ -0.322∗∗∗ -0.322∗∗∗

(0.048) (0.048) (0.048)

F (within) 68.041 68.041 68.041

Years 6 6 6 6 6 6
Firms 339 339 339 339 339 339
Firm FE X X X
Controls X X X
Time FE X X X X X X

Notes: Models titled GMM (IV) estimate the specification in Equation 3 using the moment conditions in
Equation 15. Models titled Poisson estimate the specification in Equation C.1. Firms is the number of firms
observed. Controls indicates that the logarithm (log(x+1)) of the pre-sample patent stock in the benchmark
category (corresponding technology) were included as controls. First-Stage F after within-transformation.
Block-bootstrapped standard errors for GMM models (100 draws, clustered at the level of firms, using re-
weighted bootstrapping procedure by Brown and Newey (2002)). Standard errors for non-instrumented
regressions clustered at the firm level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

The theory of directed technological change predicts that environmental regulation directs

technological change towards clean and away from dirty technologies (Acemoglu et al., 2012).

As one can see in column (1) of Table 4, I do not find evidence for the latter effect in the

data.

The sign of the effect of environmental regulation on grey technologies is not determined

by theory. My paper also provides no empirical evidence on the sign of this effect since the

coefficient for the effect of exposure to regulatory stringency on innovation for grey technol-

ogy in column (4) is not statistically significant at conventional levels. If anything, exposure

to more stringent environmental regulation in a downstream market seems to decrease inno-

vation for grey technologies.

Finally, to assess whether the observed increase in patenting for clean technologies could

be explained by an innovation response of automotive suppliers that is not technology-

specific, I estimate the effect of exposure to regulatory stringency on patenting in the bench-

mark technology in column (5) of Table 4. I do not find evidence that exposure to more

stringent environmental regulation changes the overall patenting activity of supplier firms.
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4.3 Effects on the formation of new supply chain links

In addition to creating incentives for existing suppliers to produce innovations for clean

technologies, more stringent environmental regulation for a car manufacturer might also

affect the formation of new supply chain links. To produce cleaner vehicles, manufacturers

could try to source components from suppliers with expertise in clean or grey technologies.

To study this response, I use data on manufacturer-supplier links between 908 suppliers and

23 car manufacturers in the years 2021 and 2022. After constructing a cross-section of all

potential manufacturer-supplier pairs, I estimate the following probit model:36

E

(

1 [Ji ∩ Jo ̸= ∅] |So, Ji,0, Jo,0, D
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i,0

)

= ϕ

(
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)
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)

+β31 [Ji,0 ∩ Jo,0 ̸= ∅] + β4
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|O|

∑

o∈O

1 [Ji,0 ∩ Jo,0 ̸= ∅] + ϵio

) (16)

Here, Ji is the set of car models for which supplier i provides at least one component

in the period 2021 - 2022, Jo is the set of car models produced by manufacturer o in that

period. Subscript 0 indicates that the corresponding variable is evaluated before 2015. In

addition, 1 is an indicator assuming the value one when the condition inside the brackets

holds and zero otherwise, Dk
i,0 is an indicator whether supplier i belongs to knowledge stock

category k, So is the manufacturer-level regulatory stringency in 2020 as defined in equation

(2), O is the set of all regulated car manufacturers relying on diesel cars for compliance with

the CO2 emission standard in 2015.37 To quantify the effect in terms of additional supply

chain links, I include a dummy to identify pre-existing supply chain links from the period

2010 - 2015 (1(Ji,0 ∩ Jo,0)). Finally, ϵio is the error term.

As before, the regulatory stringency So entering the model in (16) is endogenous since

it reflects manufacturer o’s product portfolio in 2020, which also drives the supplier net-

work. I use the manufacturer-level reliance on diesel cars as a compliance tool as an in-

strument IV M
o =

SD
o,2014−SND

o,2014

SND
o,2014

.38 The model in Equation (16) is estimated using a Probit

Correlated Random Effects Control Function Approach (Papke and Wooldridge, 2008, Lin

and Wooldridge, 2019). The residuals of first-stage regressions for the interaction between

manufacturer-level regulatory stringency and the knowledge stock category Ei,o = So ×Dk
i,0

are included as regressors in Equation (16) to control for endogenous variation in So and the

interaction term. The following first-stage regressions are estimated to obtain these residuals:

Ei,o =γ1IV
M
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∑

k∈K

(

γk1
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1 [Ji,0 ∩ Jo,0 ̸= ∅] + ξio

(17)

36A robustness test estimating a slightly modified version of the model in Equation (16) using a linear
probability fixed effects estimator can be found in Appendix D.

37For these car manufacturers, the emissions of the average diesel car exceed the emissions of the average
vehicle in their remaining new vehicle sales. This implies that the 2015 Volkswagen diesel scandal should
increase the stringency of the emission standard for these manufacturers.

38
S

D
o,2014 is defined in equation (11). S

ND
o,2014 is defined analogously.
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Figure 4: Effect of regulatory stringency on supply chain relationships to specific suppliers

(a) Any patents (b) Expertise (c) Specific technologies

Notes: Average partial effects (APE) of manufacturer-level regulatory stringency on the propensity of supply
chain links materializing in 2020 - 2021. Based on the Probit Control Function Approach introduced in
Equations (16) and (17). Panel (a) displays the APE for supply chain links to suppliers with and without
knowledge stocks in any of the categories clean, grey, dirty, or benchmark in 2015 (908 suppliers, 23 car
manufacturers). Panels (b) and (c) restrict the sample to pairs involving a supplier with patent stocks in
those categories (224 suppliers, 23 car manufacturers). Panel (b) displays the APE for supply chain links
to suppliers in mutually exclusive categories. Category Grey in Panel (b) includes only pairs with suppliers
holding grey knowledge stocks and not holding clean knowledge stocks. Clean and Grey + Clean are defined
analogously. Benchmark contains suppliers with neither clean nor grey knowledge stocks. Panel (c) combines
the previous categories into Grey (Grey or Grey + Clean) / Benchmark (Benchmark or Clean) and Clean
(Clean or Grey + Clean) / Benchmark (Benchmark or Grey). 95% confidence intervals based on bootstrapped
standard errors (500 draws, clustered at the level of suppliers). Regression results are displayed in Appendix
Table A5.

Using the results of this estimation, I calculate the Average Partial Effect (APE) of

manufacturer-level regulatory stringency evaluated for suppliers with different pre-2015 knowl-

edge stocks. The APEs are displayed in Figure 4. In panel (a), I compare the effect of

regulatory stringency on the likelihood of forming of supply chain links to a supplier with

versus without knowledge stocks in any of the technology categories clean, grey, dirty, or

benchmark. A one-percentage-point increase in the manufacturers fleet-average emissions

relative to the 2020 target of the standard (i.e., a one-percentage-point increase in the strin-

gency measure) increases the likelihood that a supply chain link is formed by 0.27 percentage

points for pairs involving a supplier with knowledge stocks. In contrast, I do not find evi-

dence for an effect among suppliers without knowledge stocks in 2015. The estimated APEs

imply that the increase in the stringency of the standard by 36.8 percentage points between

2015 and 2020 should have led to a 9.9 percentage point increase in the propensity that car

manufacturers form additional supply chain links to innovative suppliers. In panels (b) and

(c), I drop 684 suppliers without knowledge stocks to study how technology-specific expertise

moderates the effect of regulatory stringency at the manufacturer level. I categorize sup-

pliers as follows: suppliers with a knowledge stock of at least one for grey technologies but
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no knowledge stock for clean technologies are categorized as grey. Analogously, suppliers

with clean but no grey knowledge stocks are categorized as clean. Suppliers with both grey

and clean knowledge stocks are categorized analogously. Finally, innovating suppliers with-

out knowledge stocks for both grey and clean technologies are categorized as benchmark.

Panel (b) shows that the positive effect of regulatory stringency on the formation of supply

chain links to innovative suppliers is driven by suppliers with both clean and grey knowledge

stocks. In this category, a one-percentage-point increase in regulatory stringency increases

the propensity of supply chain relationships materializing by 0.49 percentage points. This

effect is 0.39 percentage points (significant at the 10%-level) higher than the effect among

suppliers in the benchmark category. Extrapolating this effect to assess the impact of the

increase in the stringency of the standard between 2015 and 2020, the estimated APEs imply

an increase in the propensity to form links to suppliers innovating in clean or grey technolo-

gies by 18.2 percentage points. This is a substantial effect, given that the likelihood of the

average supply chain link involving a supplier with clean and grey knowledge stocks in 2010 -

2015 was 22.4%. In contrast, the effect of regulatory stringency is not significant for suppliers

with purely clean or grey knowledge stocks. However, the magnitude of the coefficient for

suppliers with grey knowledge stocks is similar in magnitude to the effect among mixed sup-

pliers. A direct test whether the effect among innovating suppliers is driven by clean or grey

technology suppliers is inhibited by a large group of mixed suppliers. One can, however, as-

sess differences between clean vs. non-clean and grey vs. non-grey suppliers to see for which

technology category there is a larger difference in the response to regulatory stringency. The

result of this exercise can be found in panel (c). Manufacturer-level regulatory stringency

increases the likelihood of sourcing components from firms with expertise in either technol-

ogy (+ 0.47 percentage points per percentage point increase in stringency for grey suppliers,

+ 0.35 percentage points for clean suppliers, both significant at the 5% - level). However,

the difference between firms with and without knowledge stocks is more pronounced for grey

technology (+0.33 percentage points, significant at the 10% -level, see Appendix Table A2).

The response among suppliers with clean knowledge stocks is not significantly larger than

the response among those without clean knowledge stocks (see Appendix Table A2).

4.4 Discussion

So far, the analysis in this paper yielded two main results: first, automotive suppliers exposed

to car manufacturers with larger compliance gaps increase their innovation output for clean

but not for grey and dirty technologies. Second, car manufacturers with larger compliance

gaps are more likely to form additional supply chain links with suppliers that have expertise

in both grey and clean technologies.

The first result is in line with the predictions of the theory of directed technological

change for the effect of environmental regulation on innovation (Acemoglu et al., 2012). En-

vironmental regulation increases the size of the market for clean technologies, thus increasing

incentives for clean innovation. In the upstream market, exposure to a larger manufacturer-

level compliance gap today implies exposure to a larger market share for clean technologies

in future markets under the more stringent regulatory target. This is due to the fleet-average
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emission standard in Europe, which, at its post-2020 levels, acts like a quota for a certain

share of EVs in a manufacturer’s fleet.

At the same time, environmental regulation should reduce the size of the market and,

therefore, incentives for innovation for dirty technologies. This paper does not find evidence

for this effect. For grey technologies, the aforementioned market size effect is counteracted by

a price effect. More stringent environmental regulation increases the returns of innovations

that reduce CO2 emissions of ICEVs, thus creating incentives to innovate in this technolog-

ical field. This leaves the sign of the effect of environmental regulation on grey innovation

undetermined. Unfortunately, the empirical analysis in this paper did not produce evidence

for an effect on grey technologies either.

Observing strong effects on innovation in the upstream market one year after emission

levels in the downstream market changed indicates a fast innovation response. The speed of

this reaction is not surprising since existing research shows that there is a contemporaneous

relationship between R&D expenditures and patent applications (Hall et al., 1984), indicating

that patent applications are filed at the beginning of the innovation process. In addition,

an immediate response after one year is possible if suppliers advance patent applications for

existing innovation projects in response to more stringent regulation. This explanation is in

line with the strong attenuation of the effects when controlling for the share of clean patent

applications in the previous period.

Manufacturers for which compliance with environmental regulation during the period

2015 - 2019 is more difficult are more likely to form new supply chain links with automotive

suppliers with knowledge stocks in both grey and clean technologies. While it is not possible

to perfectly disentangle the effect on suppliers with clean and on suppliers with grey knowl-

edge stocks, a comparison of the effect sizes in both groups suggests a stronger response

among suppliers with grey knowledge stocks. Improving the CO2 emissions of ICEV tech-

nologies still seems to be an important objective for manufacturers with large compliance

gaps.

4.5 Robustness tests

I address the robustness of my results to several choices made regarding data assembly and

sample restrictions.

In the main analysis, I summarize all entities held by a common global ultimate owner

into one firm with common exposure to different car manufacturers. Columns (3) and (4) in

Table 5 show that the magnitude of my result is robust to the omission of ownership links.

Considering only entities observed in both the MarkLines and the patent data, I find that

patent applications for clean technologies increase by 9.9% in response to exposure to higher

regulatory stringency in the downstream market. However, the effect is only significant at

the 10% level. The lower precision in the sample that does not consider indirect supply chain

links could be driven by the omission of important innovators for which only indirect links are

observed via their global ultimate owner. Especially for the larger firms in my sample, three

groups of indirectly linked subsidiaries might be relevant for the innovation outcomes of the

firm. First, several companies have separate entities in charge of the firm’s R&D efforts. As
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an example, I observe supply chain links for UFI Filters S.P.A, a supplier of filter modules for

automotive applications, but not for the UFI Innovation Center. Second, patents are often

held by the holding of a firm, which often is not the entity observed in the MarkLines data

(e.g., Kongsberg Automotive ASA and Kongsberg Automotive Holding). Third, by summa-

rizing all commonly owned firms into one entity, I capture additional important suppliers

for which I do not observe a direct supply chain link in the MarkLines data. For example,

consider the German automotive supplier Robert Bosch. Although I observe a number of

supply chain links for this supplier, I do not observe a supply chain link for the Robert Bosch

Battery Systems GmbH, which is certainly relevant in the given setting. Aggregating firms

to their global ultimate owner does, however, also lead to an overaggregation of firms in

some instances. As an example, consider the German automotive supplier Continental AG,

which also owns the automotive suppliers Schaeffler AG and Vitesco Automotive.

Table 5: Sensitivity analysis for the effect on clean innovation

Baseline No Ownership Links No Outliers [99 perc]

Poisson GMM (IV) Poisson GMM (IV) Poisson GMM (IV)

(1) (2) (3) (4) (5) (6)

Stringencyt−1 2.834 11.233∗∗ 3.151∗ 9.938∗ -1.024 9.88∗∗∗

(2.022) (4.588) (1.891) (6.025) (1.614) (3.806)

First Stage

Instrument -0.322∗∗∗ -0.275∗∗∗ -0.322∗∗∗

(0.048) (0.040) (0.048)

F (within) 68.041 53.215 67.238

Years 6 6 6 6 6 6
Firms 339 339 287 287 336 336
Firm FE X X X
Controls X X X
Year FE X X X X X X

Notes: Models titled GMM (IV) estimate the specification in Equation 3 using the moment conditions in
Equation 15. Models titled Poisson estimate the specification in Equation C.1. Baseline estimated on global
owners holding at least 25% of a firm. No ownership links indicates regressions estimated on a sample that
ignores these ownership links. No Outliers is estimated on global owners, but removing the 99th percentile of
owners according to their annual patent counts for clean technology. Firms is the number of firms (compa-
nies or global owners) observed. Controls indicates that the logarithm (log(x+1)) of the pre-sample patent
stock in the benchmark category (“clean” category) were included as controls. First-Stage F after within-
transformation. Block-bootstrapped standard errors for GMM models (100 draws, clustered at the level of
firms, using re-weighted bootstrapping procedure by Brown and Newey (2002)). Standard errors for non-
instrumented regressions clustered at the firm level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

To study the influence of firms with an exceptionally high number of annual patent

applications, I reestimate the main analysis after removing suppliers with annual clean patent

applications exceeding the 99th percentile in any year between 2016 and 2020 in columns
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(5) and (6) of Table 5. Due to the high persistence in patent outcomes, only three firms

fall into that category. Before the exclusion of “outliers”, the largest annual patent count

observed in the full sample was 942 patents, it is now limited to 416 patent applications.

Although finding a positive and significant effect is robust to the exclusion of these firms,

the visible change in the coefficient of exposure to regulatory stringency in the downstream

market indicates that important innovators are, in fact, driving the results in this paper.

5 Threats to identification

In the following section, I address four main threats to the exclusion restriction. First, the

2015 Volkswagen diesel scandal was a disruptive event for the European car industry. Besides

reshaping the car market in terms of vehicle technologies sold, it could also have affected the

financial situation of many firms in the industry, including automotive suppliers. I provide

evidence suggesting that changes in firm financial outcomes do not seem to explain the effects

on innovation previously observed. Second, the change in the composition of the European

car fleet affected both the compliance with the CO2 emission standard for passenger cars

and the average fuel price consumers in Europe face. Using additional variation in fuel prices

between countries and over time, I show that this fuel price effect cannot explain my results.

Third, I show that the results found for the increased innovation in clean technologies are

not driven by preexisting trends. Fourth, I shed light on the role of preexisting differences

in supplier exposure to EV technologies. My findings suggest that EV market size effects

are not driving the results of my study. Instead, the effects observed are driven by suppliers

with preexisting knowledge stocks for clean technologies.

Exposure to changes in regulatory stringency and firm financial outcomes:

Besides increasing the stringency of the CO2 emission standard for a manufacturer, the

demand shock implied by the diesel scandal might also directly affect patenting via reduced

profits or credit constraints for some automotive suppliers.

A change in revenues, for example, a drop for a supplier providing components for diesel

cars, could translate into changes in R&D budgets. A direct effect of the demand shock on

R&D expenditures would violate the exclusion restriction. I obtain balance sheet data from

Orbis for 125 out of the 339 supplier firms in my sample to address this concern. Using those

data, I first check whether the instrument is correlated to firm financial outcomes in the

pre-2015 period. Second, I test whether my instrument or changes in regulatory stringency

directly affect firm financial outcomes, such as revenues, profits and R&D expenditures.

Finally, I assess the robustness of my main regression to including firm revenues in period t

as a control variable.

Panel B of Appendix Table A2 provides descriptive evidence on the correlations in the

period 2012 - 2014 between a firm’s financial outcomes and the instrument, controlling for

firm and year fixed-effects. Reassuringly, the instrument is not correlated to firm R&D

expenditures, revenues, profits, or assets held in cash or cash equivalents.

In Table 6, I test whether changes in the stringency of the European CO2 emission perfor-
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Table 6: Effects on firm financial outcomes

R&D Expenditures Revenues Profits

RF OLS 2SLS RF OLS 2SLS RF OLS 2SLS
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Stringency 1.733 2.591 -0.834 -1.909 -0.202 0.917
(2.673) (6.643) (0.550) (2.485) (0.754) (3.181)

Instrument -0.519 0.382 -0.184
(1.266) (0.498) (0.622)

First Stage
F 6.81 6.81 6.81

Firms 125 125 125 125 125 125 125 125 125
Periods 5 5 5 5 5 5 5 5 5
Firm FE X X X X X X X X X
Year FE X X X X X X X X X

Notes: Models titled 2SLS estimate the specification in Equation C.6 using a two-stage least squares es-
timator. Exposure to regulatory stringency is the endogeneous variable. Models titled OLS estimate the
specification in Equation C.6 using an ordinary least squares estimator. Dependent variables are the loga-
rithm of contemporaneous firm financial outcomes indicated in the top row. Instrument is the instrumental
variable developed in 12. Firms is the number of firms observed (global ultimate owners holding more than
25 % of the subsidiary). Kleinbergen Paap F-statistic reported. Periods is the number of years. Standard
errors clustered at the firm level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

mance standard for cars directly affected the financial results of automotive suppliers. First,

a reduced-form regression is estimated for the correlation between the instrumental variable

and several financial outcomes. Reassuringly, the instrument is not correlated to changes

in the financial outcomes of firms. Second, I estimate the effect of regulatory stringency on

financial outcomes using a two-stage least squares (2SLS) approach. None of the effects is

significant in neither the 2SLS nor the ordinary least squares (OLS) regressions.39 Note,

however, that the Kleinbergen-Paap F statistic indicates a weak instrument in the reduced

sample of firms for which financial results are available.

Despite the small F statistic (KP = 6.81), the analysis is repeated in column (2) of Table

3 for the reduced sample of firms with financial outcomes available in Appendix Table A1.

For the reduced sample, the effect in the main specification in column (1) is slightly larger

than in the full sample (a 12% increase in the number of clean patent applications for a

unit increase in the stringency of the standard) and becomes significant at the 1% level. A

larger effect was anticipated since financial results are available primarily for larger firms

with higher patenting activity. Furthermore, controlling for a firm’s contemporaneous rev-

enues reduces the size of the coefficient for regulatory stringency, but an economically and

statistically significant increase by 7.1% remains.

Changes in fuel prices:

Besides affecting the stringency of the fleet-average emissions standard for cars, the change

in the composition of the European car fleet away from diesel cars and towards a higher share

39Details on the empirical approach for the 2SLS and OLS regressions are provided in Appendix B.
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of gasoline cars also changes the average fuel price perceived by European car buyers. This

is due to higher excise taxes levied on gasoline than on diesel in most European countries.

Previous research shows that fuel prices are, in fact, a strong driver of clean innovation

(Aghion et al., 2016, Crabb and Johnson, 2010). Relying solely on changes in the composition

of the car fleet, the effects of fuel prices and the CO2 emission standard would not be

separately identified. Additional inter-temporal and cross-country variation in fuel prices

does, however, enable the identification of both effects. I obtain supplier-level exposure to

fuel prices by aggregating national tax-inclusive fuel prices for diesel and gasoline first to

the level of car manufacturers. To do so, I rely on data on energy prices and energy taxes

in OECD countries (in US dollars) provided by the Interational Energy Agencies Energy

Prices data service. I then use manufacturer-level registrations of diesel and gasoline-powered

cars in a given EU member state to aggregate country-level fuel prices for both fuels to

the manufacturer level. Next, I use the supplier exposure weights ωio to aggregate these

manufacturer-specific fuel prices to the supplier level. The construction of supplier exposure

to average fuel prices over time combines time-constant exposure weights of suppliers to car

manufacturers with time-varying manufacturer-level fuel prices. Since the supplier exposure

weights are also used to construct the exposure to the CO2 emission standard, I take the

first difference of fuel prices to isolate variation in prices over time.40

Comparing columns (1) and (2) in Table 7, one can see that controlling for both supplier

exposure to changes in fuel prices and supplier exposure to larger compliance gaps with the

CO2 emission standard does not change the magnitude of the effect of the standard. The

results imply that persistent changes in the stringency of the performance standard have a

much larger effect on clean innovation than short-term changes in average fuel prices.

Differential trends in patenting:

Goldsmith-Pinkham et al. (2020) and Borusyak et al. (2024) point out that the assumptions

made for formula instruments using the exposure of firms to shocks on a higher level impose

a parallel trends assumption on the outcome variable. Following Goldsmith-Pinkham et al.

(2020), I regress past and future outcomes on the instrument in the first post-shock period to

assess this assumption. Note that the GMM estimator used in my study relies on a weaker

sequential exogeneity assumption. Not rejecting the strict exogeneity assumption made by

Goldsmith-Pinkham et al. (2020) implies not rejecting the sequential exogeneity assumption,

but rejecting the strict exogeneity assumption does not imply rejecting sequential exogeneity.

Appendix Figures E.3 and E.4 show the results of event study regressions of patenting

outcomes on a suppliers’ exposure to manufacturers with lower emissions in their diesel

fleet in 2014 times their reduction in diesel market share from 2015 to 2016, i.e., the first

period after the diesel scandal. For the overall innovation outcomes of suppliers measured

by patenting in the benchmark category and for the clean patenting of suppliers, pre-trends

between firms differentially exposed to manufacturers relying on diesel technology are parallel

(see Figure E.3), which corroborates the approach taken in this paper. Suppliers exposed to

40This implies that I cannot separately control for tax-exclusive fuel prices and fuel taxes since taxes
observed in the data combine almost time-invariant excise taxes with time-varying value added taxes which
are collinear to the variation in fuel prices.
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Table 7: Effect of the CO2 emission standard vs. effect of fuel prices

GMM (IV) Poisson

(1) (2) (3) (4) (5) (6)

Stringency 11.233∗∗ 11.779∗∗∗ 2.834 2.965
(4.588) (3.818) (2.022) (2.053)

∆ Fuel Price 0.244 6.844∗∗∗ 4.955 3.889
(1.966) (2.030) (5.849) (5.711)

First Stage

Instrument -0.322∗∗∗ -0.318∗∗∗

(0.048) (0.049)
∆ Fuel Price -0.045

(0.103)

F (within) 68.041 34.236

Periods 6 6 6 6 6 6
Firms 339 339 339 339 339 339
Firm FE X X X
Controls X X X
Year FE X X X X X X

Notes: Models titled GMM (IV) estimate the specification in Equation 3 using the moment conditions in
Equation 15. Models titled Poisson estimate the specification in Equation C.1. Controls indicates that the
logarithm (log(x+1)) of the pre-sample patent stock in the benchmark category (“clean” category) were
included as controls. ∆ Fuel Price is the year-to-year change in the fuel price suppliers are exposed to.
Note that the GMM estimator in column 3 does not use an excluded instrument and thus has no first stage
regression. First-Stage F after within-transformation. Block-bootstrapped standard errors for GMM models
(100 draws, clustered at the level of firms, using re-weighted bootstrapping procedure by Brown and Newey
(2002)). Standard errors for non-instrumented regressions clustered at the firm level. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.
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car manufacturers relying more on diesel technology increases their overall patenting activity

in the benchmark category in the years after 2015. I find no effect on patenting for clean

technologies. For patenting in the grey and dirty patent categories, Appendix Figure E.4

does not indicate a clear pre-trend. However, some of the pre-treatment coefficients are

significantly different from zero. Appendix Table A4 indicates that this does not translate

into significant differences in pre-treatment outcomes, at least not at the 5%-level. Since the

2014 emissions gap between diesel and gasoline technologies used to calculate the treatment

variable in these regressions is an outcome of the pre-2014 innovations in these categories, this

pre-trend is not surprising. Expecting such effects is, in fact, the main reason for resorting

to an estimator requiring only sequential exogeneity.

After the diesel scandal in 2015, suppliers more exposed to car manufacturers that use

diesel cars as a compliance technology seem to first increase patenting in both the grey and

dirty technological fields after 2015 before reducing it more quickly towards the end of the

sample. This is in line with the affected downstream firms demanding technologies to reduce

the emissions of cars with an internal combustion engine in the years immediately after 2015.

Electric vehicle market size effects:

To assess whether the innovation response to higher regulatory stringency is driven by an

increase in the market size of EVs independently from the stringency of the CO2 emission

standard for passenger cars, I split the sample into firms that are exposed to above vs. below-

median growth in the market shares of EVs between 2010 and 2014. The rationale for this

split is that suppliers exposed to car manufacturers with ex-ante growing EV market shares

might expect to sell EV technologies in the downstream market in the short- to medium-

term. The median EV market share a supplier was exposed to in 2014 is 0.5% and virtually

zero in 2010. Appendix Table A3 shows that the effect observed in the main analysis is not

sustained in either sub-sample after the split.

Splitting the sample into suppliers with and without pre-existing knowledge stocks for

clean technologies in Table 8 suggests an alternative explanation. I find that the effect is

driven by firms with at least one patent for clean technologies in 2014. While exposure to

more stringent regulation in the downstream market has virtually no effect on the innovation

outcomes of suppliers without pre-existing knowledge stocks for clean technologies in column

(2) of Table 8, the response among suppliers with at least one patent application for clean

technologies is significant and slightly larger than the effect found in the main analysis. This

is in line with results by Noailly and Smeets (2015) and Dugoua and Dumas (2023), showing

that many firms specialize in one technological field and that innovation in the corresponding

field is mostly driven by those specialized firms.

6 Conclusion

In this paper, I study how environmental regulation in the car industry affects the innovation

outcomes of automotive suppliers and the formation of supply chain links. I create a novel

data set linking administrative data on manufacturer compliance with the CO2 emission stan-
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Table 8: Effect on clean innovation for suppliers with different pre-existing knowledge stocks

No Clean Knowledge Stock Clean Knowledge Stock

Poisson GMM (IV) Poisson GMM (IV)
(1) (2) (3) (4)

Stringency 0.961 -0.032 2.862 12.698∗∗

(2.775) (6.449) (2.06) (5.401)

First Stage

Instrument -0.368∗∗∗ -0.293∗∗∗

(0.091) (0.056)

F (within) 25.056 44.489

Firms 129 129 210 210
Periods 6 6 6 6
Firm FE X X
Controls X X
Time FE X X X X

Notes: Models titled GMM (IV) estimate the specification in Equation 3 using the moment conditions in
Equation 15. Models titled Poisson estimate the specification in Equation C.1. Controls indicates that
the logarithm (log(x+1)) of the pre-sample patent stock in the benchmark category (“clean” category) were
included as controls. Suppliers in the no “clean” knowledge sample have filed no patents in the “clean” category
before 2014. The “clean” knowledge sample is the complement. First-Stage F after within-transformation.
Block-bootstrapped standard errors for GMM models (100 draws, clustered at the level of firms, using re-
weighted bootstrapping procedure by Brown and Newey (2002)). Standard errors for non-instrumented
regressions clustered at the firm level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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dard for passenger cars in Europe to supplier patent data using information on automotive

supply chains. Using an instrumental variable approach, I study the effect of changes in the

stringency of environmental regulation imposed on downstream car manufacturers. I provide

causal evidence for two knowledge spillovers to car manufacturers. First, suppliers exposed

to manufacturers for which the environmental regulation becomes more stringent direct their

innovation efforts towards clean vehicle technologies. Exposure to a one-percentage-point

increase in the stringency of environmental regulation increases the number of patent appli-

cations for clean technologies among automotive suppliers by 11.23%. Second, an increase

in the stringency of the environmental regulation increases the manufacturer’s propensity to

source from additional suppliers holding patents in technological fields relevant to the car

industry. A one-percentage-point increase in the manufacturer-level stringency of the regu-

lation increases the propensity of sourcing from an innovating supplier by 0.27 percentage

points. The propensity of sourcing components from non-innovating suppliers, however, is

not affected. The increased propensity to source from innovating suppliers is driven by sup-

pliers with knowledge stocks in both clean and grey technologies, i.e. low-emission vehicle

technologies and technologies improving the emission intensity of fossil-fuel propelled cars.

While studying the heterogeneous exposure to changes in the stringency of environmen-

tal regulation adds insights on the role of supply chains for the pass-through of innovation

incentives to upstream firms, a limitation of this approach is that it ignores changes in the

stringency of the regulation driven by anticipated regulatory updates. Linearly extrapolating

the effects found in my study thus potentially exaggerates the innovation response to these

aggregate changes. In this study, I consider only suppliers with preexisting supply chain rela-

tionships to at least one car manufacturer in 2010 - 2015, including only manufacturers that

sell at least 10.000 cars in Europe in 2015. This implies that some prominent manufacturers

specializing in electric vehicles, such as Tesla or BYD, are not included in my study.

Both the innovation response to more stringent downstream environmental regulation

among exposed suppliers and the formation of supply chain links to additional manufacturers

are driven by suppliers with pre-existing expertise in emission-reducing technologies. This

suggests that regulated manufacturers can tap into the innovative potential of specialized

upstream firms to comply with more stringent environmental regulation. The car industry

provides an early example of an established industry with long-standing supply networks

that transitions from fossil fuel-based technology to zero-emission technology. Governments

designing policies to guide similar transitions in other industries should take into account

potential spillovers of ambitious environmental regulations along supply chains.
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A Patent Search Strategy

Table A1: CPC patent codes for clean and dirty technology

CPC Codes Description

Panel A: Patents for electric vehicle technologies

Y02T 10/60 Other road transportation technologies with climate change mitigation effect
Y02T 10/62 - Hybrid vehicles
Y02T 10/64 - Electric machine technologies in electromobility
Y02T 10/70 - Energy storage systems for electromobility, e.g. batteries
Y02T 10/7072 - Electromobility specific charging systems or methods for batteries,

ultracapacitors, supercapacitors or double-layer capacitors
Y02T 10/72 - Electric energy management in electromobility
Y02T 90/00 Enabling technologies or technologies with a potential or indirect

contribution to GHG emissions mitigation
Y02T 90/10 - Technologies relating to charging of electric vehicles
Y02T 90/12 - Electric charging stations
Y02T 90/14 - Plug-in electric vehicles
Y02T 90/16 - Information or communication technologies improving the operation of electric vehicles
Y02T 90/40 - Application of hydrogen technology to transportation, e.g. using fuel cells
Y02E 60/10 - Energy storage using batteries
Y02E 60/30 - Hydrogen Technology
Y02E 60/50 - Fuel Cells
B60K 01 - Arrangement or mounting of electrical propulsion units
B60K 06 - Arrangement or mounting of plural diverse primemovers for mutual or common propulsion,

e.g. hybrid propulsion systems comprising electric motors and internal combustion engines
B60K 16 - Arrangements in connection with power supply of propulsion units in vehicles

from forces of nature, e.g. sun or wind
B60L Propulsion of electrically-propelled vehicles; Supplying electric power for auxiliary

equipment for electrically-propelled vehicles; Electrodynamic brake systems for
vehicles in general; Magnetic suspension or levitation for vehicles; Monitoring
operating variables of electrically propelled vehicles;
Electric safety devices for electrically-propelled vehicles.

B60R 16/033 - Characterised by the use of electrical cells or batteries
B60R 16/04 - Arrangement of batteries
B60S 05/06 - Supplying batteries to, or removing batteries from, vehicles
B60W 10 - Conjoint control of vehicle sub-units of different type or different function (for propulsion

of purely electrically-propelled vehicles with power supplied within the vehicle
B60W 20 - Control systems specially adapted for hybrid vehicles
H01M Processes or means, e.g. batteries, for the direct conversion of chemical energy

to electrical energy

Panel B: Patents for dirty technologies

B60K 13 - Arrangement in connection with combustion air intake or gas exhaust of propulsion units
B60K 15 - Arrangement in connection with fuel supply of combustion engines
B60K 28 - Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles,

e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
F02B Internal combustion piston engines, combustion engines in general
F02D Controlling combustion engines
F02F Cylinders, pistons or casings, for combustion engines;

arrangements of sealings in combustion engines
F02M Supplying combustion engines in general with combustible mixtures

or constituents thereof
F02N Starting of combustion engines; Starting aids for such engines,

not otherwise provided for
F02P Ignition, other than compressing ignition, for internal combustion engines;

Testing of ignition timing in compression-ignition engines
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Table A2: CPC patent codes for grey and benchmark technologies

CPC Codes Description

Panel C: Patents for grey technologies

F02B 1/12 - Engines characterised by fuel-air mixture compression ignition
F02B 11 - Engines characterised by both fuel-air mixture compression and air compression,

or characterised by both positive ignition and compression ignition,
e.g. in different cylinders

F02B 13/02 - Engines characterised by the introduction of liquid fuel into cylinders by use of
auxiliary fluid; Compression ignition engines using air or gas for blowing fuel into
compressed air in cylinder

F02B 3/06 - Engines characterised by air compression and subsequent fuel addition;
with compression ignition

F02B 7 - Engines characterised by the fuel-air charge being ignited by compression ignition
of an additional fuel

F02B 47/06 - Methods operating engines involving adding nonfuel substances or antiknock
agents to combustion air, fuel, or fuel-air mixtures of engines, the substances
including nonairborne oxygen

F02B 49 Methods of operating air-compressing compression-ignition engines
involving introduction of small quantities of fuel in the form of a fine mist
into the air in the engine’s intake

F02D 41 Electrical control of supply of combustible mixture or its constituents
F02M 23 Apparatus for adding secondary air to fuel-air mixture
F02M 25 Engine-pertinent apparatus for adding nonfuel substances or small quantities

of secondary fuel to cumbustion-air, main fuel or fuel-air mixture
F02M 3 Idling devices for carburetors preventing flow of idling fuel
F02M 39-71 - Fuel-injection apparatus
Y02T 10/10 - Conventional vehicles (based on internal combustion engine)

Panel D: Patents in benchmark category

B60 Vehicles in general
H01 Electric elements
F02 Combustion engines, hot-gas or combustion engine plants
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B Data Merging Procedure

This appendix provides details on the data merging and harmonization procedures. It is

organized in three steps: i) merging the patent data, manufacturer-supplier links and the

European car registrations to Orbis, ii) merging the car registrations and manufacturer-

supplier links and iii) merging the outcome of step ii) to the patent data. A graphical

illustration of the merging procedure can be found in Figure B.1.

Figure B.1: Outline of the data merging procedure

Car Manufacturer

Regulation

Car Manufacturers+ 

Suppliers

EU Car Registrations

Exposure Regulatory 

Stringency

Car Manufacturer

Orbis MarkLines

Firms and Global 

Owners

PATSTAT

Innovation

Applicant Name

Innovation and Exposure  to Regulatory 

Stringency

Firm Owner ID

Car Model

Firm Name

Notes: Rectangles contain data sets, ellipses contain the variables the data sets are matched on. First row
contains raw data, last row contains final data. Firm Owner ID abbreviates the identifier assigned in Orbis
for the Global Ultimate Owner (GUO) of the company (owning more than 25% of the company).

Step 1:

In a first step, I merge the EU car registrations, the patent data and the manufacturer-

supplier links for the period 2010 - 2015 to ORBIS using the company names. I limit the

data to the period 2010-2015 since the typical production period for a car model is six to eight

years (Mueller et al., 2016), such that most model links observed are still relevant in 2019

(the last year for which I need the regulatory data). The car registration data contains 92 car

manufacturers, which I match manually to ORBIS. For the merge of Orbis with PATSTAT

and MarkLines Who Supplies Whom, I use a semi-automated matching procedure based

on similarity scores for the company names. Before matching the company names, I clean

the company names in the three datasets following the procedure outlined by Magerman

et al. (2006). I remove punctuation and non-alphanumeric characters, set all characters to

uppercase, harmonize special characters such as umlaute ä, ö, ü, and remove the legal forms

of companies, as well as country names, the names of some bigger Chinese cities, as well as

a list of common words for company names in the industry. I extract the 10 best matches

based on string similarity scores. To do so, I use the token set ratios from the fuzzywuzzy

package in python. Token set ratios assign a perfect similarity score as soon as two tokens

(words) in both firm names are the same. This accounts for the fact that company names

are different across the three datasets. If the cleaned company names are the same in both
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datasets (the strings being exactly equal, not in terms of the similarity score) I keep the pair

as a match. For imperfect matches, I manually assign matches out of the 10 company names

in Orbis with the highest string similarity score. In case of a tie, all companies with the same

score are kept. I manually checked all matched pairs. In cases where the matched names

before cleaning are not perfectly congruent, I check whether the two firms belong to the

same global ultimate owner in ORBIS. In some cases, the ownership information in ORBIS

does not seem accurate based on prior knowledge of the industries or based on information

on company websites. In these cases, I trust the information available on the companies

website.

To harmonize the set of subsidiaries selling automotive components to the subsidiaries

in charge of R&D with the ones actually providing model components to manufacturers, I

aggregate firms to the level of the global ultimate owner. As an example for an intended

match, consider JOHNSON CONTROLS NEW ENERGY BATTERY RESEARCH AND

DEVELOPMENT in PATSTAT and the Johnson Controls (China) Investment Co. Ltd.

in MarkLines. However, this strategy will summarize firms more broadly. To determine

the global ultimate owner of a company, I use historical firm ownership information for

the year 2015 from ORBIS on the global ultimate owner (GUO) holding more than 25%

of the company to each firm. There are ten entities in the MarkLines data for which the

global ultimate owner is not unique based on the 25% ownership threshold. In these cases,

I randomly assign one of the two firms as the global ultimate owner. Since I calculate

supplier exposure shares based on pre-2015 manufacturer-supplier links, I ignore changes in

the ownership of companies after 2015. For the GUOs, I create firm-level patent stocks by

summing over all patent applications held by companies belonging to the GUO.

Step 2:

I link the manufacturers in the MarkLines Who Supplies Whom data to the car manufac-

turers in the EU car registrations data based on the manufacturer name (make) and the car

model name in both datasets. I consider only 34 car manufacturers selling more than 10,000

vehicles in Europe in 2015. While all these firms are regulated by the standard, manufacturer

pools selling less than 300,000 cars are eligible for a niche derogation, which implies that they

have to comply with a manufacturer-specific standard that takes into account the structure

of their product portfolio in the past. While the EU car registrations contain information

on the vehicles type-variant-version code and the type-approval number of the vehicle type

(broader than the commercial names of car models), which would in theory allow for a better

merge, such information is not contained in MarkLines. Model names in the MarkLines data

are relatively coarse, such that one model might span several type-variant-version combi-

nations in the EU car registration data. As an example, the MarkLines data would list a

Mercedes Benz C-Class as one model, while the registration data would list a Mercedes Benz

C 180. To merge the MarkLines data with the European car registrations, I conduct a num-

ber of cleaning steps. First, I harmonize the model names in both datasets. To do so, I use

information on the building series (Baureihe) in contained in a model catalogue by the Gen-
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Figure B.2: Top 15 innovators for clean technologies, PATSTAT versus sample

(a) PATSTAT (b) Sample

Notes: PATSTAT: simple patent counts for patent applicants as listed in PATSTAT. Sample: fractional
patent counts for applicants in the set of merged global ultimate owners (GUO) of the patent applicants
observed in PATSTAT. Patent counts may be higher due to the aggregation to the GUO or lower due to the
fractional count.

eral German Automobile Club41 to assign model names with a granularity that is available

in both data sets. Second, I merge the car registrations and the manufacturer-supplier links

to obtain manufacturer-model-supplier observations over the period 2010 - 2015. I obtain a

suppliers exposure share by aggregating the total model registrations for each manufacturer

supplier pair over the full pre-period and dividing it by the total model registrations for the

supplier. This way, I obtain sales-weighted exposure shares to the 34 regulated car manu-

facturers for all supplier companies. These first cleaning and harmonization steps reduce the

size of the sample from 2172 supplier companies (number of company names after basic name

harmonization, including subsidiaries later summarized into one global ultimate owner) to

observing 1324 suppliers held by 542 global ultimate owners providing components for 494

car models sold by 34 car manufacturers. I include supplier links for all 30 car manufacturers,

since 4 manufacturers did not sell any diesel cars in 2015. Thus, the instrumental variables

approach does not work for these manufacturers.42 I observe at least one component supplier

for 80% of all new car registrations in Europe by these 30 manufacturers in Europe between

2010 and 2015.

Nevertheless, I observe an incomplete set of automotive components. To see this, divide

the total number of components procured by the 34 car manufacturers in 2015 (60024) by the

number of car models (494). The implied number of components per model (121) is much

lower than the industry average of 1500 (Mueller et al., 2016). To translate the regulatory

outcomes (regulatory stringency, gap between the CO2 emissions of the average diesel vs.

non-diesel vehicle of a manufacturer, the manufacturers share of diesel vehicles among its

41ADAC Autokatalog, https://www.adac.de/rund-ums-fahrzeug/autokatalog/
42The brands excluded are Avtovaz, Bugatti, Rolls Royce and Tata Motors.
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new car registrations) to the supplier level, I merge the supplier exposure data with the

manufacturers regulatory data over the full period 2010 - 2020.

Figure B.3: Role of regulated car manufacturers in terms of car registrations, clean patenting
and supplier exposure

(a) Total new car registrations in 2015 (b) Total patenting before 2015

(c) Average exposure weight in sample

Notes: Registrations for the EU 28 + Norway and Iceland in 2015. Patents for the period 2010 - 2015 for the
final sample, i.e. firms matched across the MarkLines, PATSTAT and ORBIS data. Exposure weights are
suppliers exposure weights to manufacturers, measured as the share of the manufacturers model sales 2010 -
2015 for models for which supplier i provides a component.

Step 3:

I merge the PATSTAT data measuring innovative activity per year and the data measuring

exposure to regulatory stringency on both the manufacturer and the supplier level using the

GUOs ID in the ORBIS data. In the main sample, I keep only GUOs that applied for at

least one patent for EV technologies in the period 2010 - 2020. This reduces the size of the
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final sample from 410 GUOs matched to the PATSTAT data to 339. This way, I obtain

patent data for 1,737 patent applicants. In total, I merge 81,155 of 384,964 patent families

for EV technologies with an earliest application date between 2015 and 2020 (21%). In my

sample, 55% of these patents are held by supplier companies. This highlights the importance

of supplier companies for innovation in the car industry in Europe. To assess the quality

of the merge in terms of the outcome variable, Figure B.2 compares the top 15 innovators

holding most patents for EV technology across the final sample and the initial PATSTAT

data over the sample period 2015 - 2019. To further assess the quality of my data merging

procedure, I draw a random sample of 50 firm names (not global ultimate owners) from the

sample of firms in MarkLines that are linked to a manufacturer that is regulated in 2015

(sells more than 300,000 new cars in Europe). Manually matching these firms to patent

applicants in PATSTAT, both directly and via their global ultimate owners, I find that the

semi-algorthmic match I employ did not miss any company name in MarkLines for which

there would have been a patent application (false negative rate = 0), and only assigned

a patent applicant to one firm in PATSTAT that should not be found in the PATSTAT

data, neither directly nor via its global ultimate owner (false positive rate = 2%). These

statistics are silent on the number of patent applicants per firm, i.e. whether I match all

potential patent applicants linked to a firm contained in MarkLines either directly or via

common ownership. In addition, Figure B.3 compares the average exposure share for each

car manufacturer in our sample to the manufacturers total new vehicle registrations in 2015

and its patent count over the period 2010 - 2015 to assess whether the exposure weights reflect

the manufacturers importance in terms of market share and the role played in patenting for

EV technologies in the pre-2015 period.

Figure B.4: Manufacturer-Supplier Network

Notes: Manufacturer-supplier network visualization. Black nodes are global ultimate owners of suppliers.

Colored nodes are car manufacturer pools, as observed in 2015. Edges indicate supply chain relationships.

Based on supply chain links between 2010 and 2015 for the final sample of 239 suppliers. ND summarizes a

number of small manufacturer pools selling between 10,000 and 300,000 cars in Europe in 2015.
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C Additional Regression Specifications

Besides the GMM estimator based on the moment conditions developed by Wooldridge (1991,

1997), Windmeijer (2000) used in the main analysis, the following models are estimated:

Poisson Quasi-Maximum Likelihood Estimator:

In the regressions not instrumenting for the exposure to more stringent environmental reg-

ulation, the following specification is estimated using a Poisson Quasi-Maximum Likelihood

Estimator as implemented in the fixest package in R (Bergé, 2018)

PATit = exp(γSi,t−1 + βXit + µt) + ηit (C.1)

Here, PATit includes counts of patent applications for clean, dirty, grey and benchmark

technologies (defined using CPC codes listed in Tables A1 and A2) and Xit includes the

logarithm of knowledge stock of EV patents (log(x+1)) and patents in the benchmark cat-

egory (log(x)) in 2014. This model is based on the control function approach developed by

Blundell et al. (1999) to proxy out the firm fixed effect by controlling for pre-2015 knowledge

stocks. Their estimator has been used in previous studies on the effect of environmental reg-

ulation on innovation outcomes, including Rozendaal and Vollebergh (2024) and a secondary

specification in Aghion et al. (2016). Knowledge stocks are defined as in Equation (7):

Kk
it =

t∑

l=2005

(1− δ)lPAT k
it (C.2)

The knowledge stockKk
it for technology k is calculated using the perpetual inventory method,

(following Cockburn and Griliches, 1988, Peri, 2005) including patent applications dating

back to 2005 and assuming a knowledge depreciation rate of δ = 0.2, following Aghion et al.

(2016).

Long Quasi-Differencing Estimator:

To quantify the effect of exposure to more stringent environmental regulation over the period

2016 - 2020 following the Volkswagen diesel scandal in 2015, I again rely on the moment

conditions developed by Wooldridge (1991) and Windmeijer (2000). I quasi-difference the

period 2016 - 2020 using patent counts aggregated over the period 2011 - 2015.

E

(

Zi,Post

(
yi,Post

exp(Xi,Postβ)
−

exp(µPost)

exp(µPre)

yi,P re

exp(Xi,P reβ)

))

= 0 (C.3)

Here, yi,t is the count of patent applications for the technology of interest, accumulated

over either the full period 2019 - 2020 (Post) or 2011 - 2015 (Pre). Xi,t includes the exposure

to regulatory stringency Sit defined in Equation (4) averaged over the periods 2010 - 2014

(Pre) and 2015 - 2019 (Post) and µt is a period fixed-effect. Notice that I again assume a

one-year time-lag between changes in regulatory stringency and innovation responses in this

specification.

In specifications controlling for lagged patenting outcomes, Xi,t includes the share of clean
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knowledge stocks in the beginning of the corresponing period, i.e. in 2011 for the pre, and

in 2014 for the post-period, defined by modifying Equation (6) to working with knowledge

stocks Kk
it−1 instead of within-period patent counts:

Ait−1 =
Kk

it−1

Kb
it−1

(C.4)

and Zit comprises the included instrument Ait and the excluded instrument specified similar

to Equation (12):

IVi,Post =
∑

o∈O

ωio

SD
o,2014 − SND

o,2014

SND
o,2014

∆σ
D

o,Post (C.5)

where ∆σ
D

o,Post is the average across the change in the market share of diesel cars since 2014

for the years 2015 - 2019.

Two-Stage Least Squares Estimator:

For the financial outcomes of automotive suppliers, the following equations are estimated:

log(yit) = β1Si,t + ηi + νt + ϵit (C.6)

where yit includes the suppliers R&D expenditures, revenues and profits. These measures

are obtained for the global ultimate owners observed in Bureau van Dijks ORBIS database,

which retrieves the information from the annual reports of these firms. Si,t is the suppliers

exposure to compliance gaps between manufacturer-level fleet average emissions in a given

year and the 2020 emission target of the European CO2 emission standard for passenger

cars, as defined in Equation (4). The remaining terms are fixed effects and individual and

time-specific error terms: ηi is a firm fixed-effect, νt is a year fixed-effect and ϵit the error

term. This is the specification estimated in the Ordinary Least Squares (OLS) regressions.

Since the exposure to regulatory stringency is potentially endogenous to a suppliers financial

outcomes, e.g. due to demand shocks for certain components relevant only for diesel cars that

might cut into a suppliers bottom line, I instrument for Sit using the instrumental variable

specified in Equation (12) in the Two-Stage Least Squares Regressions (2SLS). Finally, to

rule out a direct correlation between the instrument and the financial outcomes of firms, I

estimate Equation (C.6) again, only replacing Sit by IVit.
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D Robustness: Formation of new supply chain links

To assess the robustness of the Probit model in Equation (D.1) to the inclusion of supplier

and manufacturer fixed-effects43 I estimate the following regression specification using a

linear probability model model. I again study the effect of regulatory stringency at the level

of car manufacturers on the propensity that additional supply chain links to suppliers with

expertise in benchmark, clean, grey, and dirty technology are formed:

1 [Ji ∩ Jo ̸= ∅] =
∑

k∈K

β1k
(

Dk
i × So

)

+ β21 [Ji,0 ∩ Jo,0 ̸= ∅] + ηi + νo + ϵio (D.1)

As before, Ji is the set of car models for which supplier i provides at least one component

in the period 2021 - 2022, Jo is the set of car models produced by manufacturer o in that

period. The subscript 0 indicates that the corresponding variable is evaluated in 2015. In

addition, 1 is an indicator function assuming the value one when the condition inside the

brackets holds and zero otherwise, So is manufacturer o’s regulatory stringency in 2020, Dk
i,0

is an indicator for supplier i belonging to knowledge stock category k, ϕ is the cumulative

distribution function of a standard normal random variable, ηi and νo are supplier and

manufacturer fixed effects, respectively. Finally ϵio is the error term. To quantify the effect

in terms of additional supply chain links, I include a dummy to identify pre-existing supply

chain links from the period 2010 - 2015 (1(Ji,0 ∩ Jo,0)).

For the endogenous regulatory stringency S0, I again use the manufacturer-level reliance

on diesel cars as a compliance tool as an instrument IV M
o =

SD
o,2014−SND

o,2014

SND
o,2014

.44 Since I inter-

act the measure of regulatory stringency with dummies for supplier-level knowledge stock

categories, I need an instrument for each interaction term Ei,o = So×Dk
i,0. I use the interac-

tion between IV M
o with the corresponding knowledge stock category as an instrument. The

model in Equation (16) is estimated using a two-stage least squares estimator (2SLS), using

the following first-stage regressions:

Ei,o = γ1

(

Dk
i,0 × IV M

o

)

+ γ21 [Ji,0 ∩ Jo,0 ̸= ∅] + ηi + νo + ξio (D.2)

As before, the exclusion restriction assumed for the exposure to diesel technology is that

changes in the product portfolio of car manufacturers in the period 2015 - 2019 are exogenous

to the manufacturers reliance on diesel cars in 2014.

The results of estimating the above specification can be found in Tables A1 and A2. Com-

paring the results of the Probit-model in columns (1), (2), (5) and(6) to the corresponding

results of the linear probability model in columns (3), (4), (7) and (8), one can see that my

findings are robust to the choice of estimator and the inclusion of manufacturer fixed-effects

and supplier fixed-effects.

43Including a large set of fixed effects in Probit models leads to an incidental parameter problem. As the
sample size grows, the number of fixed-effects grows too. In small samples, estimating a large number of
fixed-effects leads to imprecision in Probit estimators.

44
S

D
o,2014 is defined in equation (11). S

ND
o,2014 is defined analogously.
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Table A1: Differences in effects on the formation of new supply chain links

Any Patent Expertise

CF Probit 2SLS OLS CF Probit 2SLS OLS

(1) (2) (3) (4) (5) (6) (7) (8)

Stringency 0.013 -0.011 0.096 -0.056
(0.036) (0.023) (0.110) (0.063)

Stringency × 0.261** -0.004 0.244** -0.023
Patenting (0.097) (0.057) (0.084) (0.050)

Stringency × 0.305 0.051 0.328 0.049
Grey, Not Clean (0.418) (0.237) (0.356) (0.187)

Stringency × 0.115 0.125 0.091 0.100
Clean, Not Grey (0.211) (0.132) (0.167) (0.107)

Stringency × 0.393* -0.030 0.421** -0.053
Grey and Clean (0.221) (0.124) (0.191) (0.116)

Existing Link10−15 0.258** 0.256** 0.231** 0.231** 0.279** 0.273** 0.218** 0.218**
(0.011) (0.010) (0.009) (0.011) (0.022) (0.022) (0.019) (0.021)

First Stage

F (Interaction 1) 79.154 9365323.481 52.996 8231050.199
F (Interaction 2) 84.814 52.349 3189671.892
F (Interaction 3) 56.018 4696137.022
F (Interaction 4) 52.206

Potential Links 20884 20884 20884 20884 5152 5152 5152 5152
Suppliers 908 908 908 908 224 224 224 224
Manufacturers 23 23 23 23 23 23 23 23
Supplier and Manufacturer FE X X X X
Controls X X X X

Notes: The following effects are evaluated: Stringency is the Average Partial Effect (percent) of more stringent
environmental regulation in the left-out category. Stringency × Some Sample shows the difference in the
Average Partial Effect (percentage points) of more stringent environmental regulation between the subsample
indicated and the left-out category. Patenting is the sample of supply chain links involving a supplier with
knowledge stocks in any of the following categories in 2015: clean, grey, dirty, benchmark. Grey, Not Clean
are suppliers in group Patenting which have knowledge stocks in the grey category but no knowledge stocks
in the clean category. Categories Clean, Not Grey / Grey and Clean are defined analogously. Columns (1) -
(4) include all possible supply chain links between 908 suppliers observed with at least one supply chain link
in both the period 2010-2015 and 2021-2022 and 23 regulated car manufacturers relying on diesel cars as a
compliance technology in 2014. For columns (5) - (8), the set of suppliers is reduced to 224 suppliers with
at least one patent in the period 2005 - 2015 in any of the categories clean, grey, dirty, benchmark. Existing
Links10−15 shows the average effect (percentage points) of supply chain links for firms with vs. firms without
a pre-existing supply chain links. Stringency is the manufacturer-level stringency as defined in Equation 2 in
2020. Columns labeled Probit display the results of a probit model defined in Equation 16. CF displays results
of the corresponding Probit Correlated Random Effects Control Function Approach defined in Equations 16
and 17. OLS displays results of a linear probability model, defined in Equation D.1. 2SLS displays results of
the corresponding two-stage least squares approach, defined by Equations D.1 and D.2. Block-bootstrapped
standard errors are indicated (500 draws, clustered at the level of suppliers). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A2: Differences in effects on the formation of new supply chain links: grey and clean
technology

Grey Clean

CF Probit 2SLS OLS CF Probit 2SLS OLS

(1) (2) (3) (4) (5) (6) (7) (8)

Stringency 0.145 -0.001 0.131 -0.051
(0.102) (0.062) (0.108) (0.062)

Stringency × 0.326* -0.073 0.368** -0.075 0.214 0.046 0.211 0.022
Knowledge Stock (0.197) (0.112) (0.168) (0.103) (0.173) (0.104) (0.140) (0.086)
Existing Link10−15 0.274** 0.268** 0.218** 0.218** 0.278** 0.272** 0.218** 0.218**

(0.022) (0.022) (0.019) (0.021) (0.022) (0.022) (0.019) (0.021)

First Stage

F (Interaction 1) 81.988 3136891.467 83.795 73297473.623
F (Interaction 2) 77.798 52.349

Potential Links 5152 5152 5152 5152 5152 5152 5152 5152
Suppliers 224 224 224 224 224 224 224 224
Manufacturers 23 23 23 23 23 23 23 23
Supplier and Manufacturer FE X X X X
Controls X X X X

Notes: The following effects are evaluated: Stringency is the Average Partial Effect (percent) of more stringent
environmental regulation in the left-out category. Stringency × Knowledge Stock shows the difference in the
Average Partial Effect (percentage points) of more stringent environmental regulation between suppliers with
and without a knowledge stock of at least one patent in the corresponding category (grey or clean) in 2015.
The unit of observation are potential supply chain links between 23 car manufacturers 224 suppliers with at
least one patent in the period 2005 - 2015 in any of the categories clean, grey, dirty, benchmark. Existing
Links10−15 shows the average effect (percentage points) of supply chain links for firms with vs. firms without
a pre-existing supply chain links. Stringency is the manufacturer-level stringency as defined in Equation 2 in
2020. Columns labeled Probit display the results of a probit model defined in Equation 16. CF displays results
of the corresponding Probit Correlated Random Effects Control Function Approach defined in Equations 16
and 17. OLS displays results of a linear probability model, defined in Equation D.1. 2SLS displays results of
the corresponding two-stage least squares approach, defined by Equations D.1 and D.2. Block-bootstrapped
standard errors are indicated (500 draws, clustered at the level of suppliers). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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E Additional Graphs and Tables

Figure E.1: Trends in fractional patent counts

(a) PATSTAT (b) Sample

Notes: PATSTAT includes all patents identified by the patent search outlined in Section 2.2. Only patents
by applicants (psn_id in PATSTAT) with at least one patent in the benchmark category between 2005 and
2015 are included, which is consistent with the sample construction in the paper. Count of non-domestic
DOCDB patent families per year. Sample includes only patents by applicants in the final sample. See Section
2.2 for details on the construction of the sample. Count of non-domestic DOCDB patent families per year
(summation of fractional counts, equivalent to raw counts over the full sample). Red labels highlight years
after the beginning of the 2015 Volkswagen Diesel Scandal.

Figure E.2: Persistence of links between car manufacturers and their Tier 1 suppliers

Notes: The share of reaffirmed links indicates the share of manufacturer-supplier pairs observed in 2010 for
which an additional supply chain link (in the form of at least one additional component sourced from the
supplier in the corresponding year) is observed.
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Table A1: Effect of regulatory stringency on EV patenting, robustness to financial controls

“Clean” Patents

Poisson GMM (IV) Poisson GMM (IV)
(1) (2) (3) (4)

Stringencyt−1 -3.724 12.165∗∗∗ -6.980∗∗∗ 7.188∗∗∗

(2.584) (2.219) (2.064) (1.446)
Revenuet 0.461∗∗∗ −0.014

(0.070) (0.102)

First Stage

Instrumentt−1 -0.200∗∗∗ -0.200∗∗∗

(0.077) (0.076)
Revenuet -0.002∗∗∗

(0.001)

F (within) 12.031 6.523

Firms 125 125 125 125
Periods 6 6 6 6
Firm FE X X X X
Year FE X X X X

Notes: Models titled GMM (IV) estimate the specification in Equation 3 using the moment conditions in
Equation 15. Models titled Poisson estimate the specification in Equation C.1. Revenue is the logarithm
of a firms revenue as reported in Orbis, measured at the level of global owners. F statistic calculated after
within-transformation. Block-bootstrapped standard errors for GMM models (100 draws, clustered at the
level of firms, using re-weighted bootstrapping procedure by Brown and Newey (2002)). Standard errors for
non-instrumented regressions clustered at the firm level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A2: Correlation between the instrument and potential confounders before 2014

Variable Instrument Diesel Share Stringency

Panel A: Patents and Market Shares

EV Market Share 0 -0.013 0
(0.023) (0.008) (0.013)

Clean Patents 1.74 0.379 -0.613
(2.765) (1.023) (1.793)

Benchmark Patents 0.75 -0.22 -0.84
(1.884) (0.857) (1.172)

Grey Patents 6.431* -0.722 2.822
(3.698) (2.21) (3.284)

Dirty Patents 0.307 -2.29 0.788
(2.695) (1.471) (3.493)

Firms 339 339 339
Periods 3 3 3

Panel B: Firm Financials

R&D Expenditures 5.521 -3.475 6.604
(4.49) (3.926) (4.368)

Revenues 1.051 0.156 1.358***
(1.909) (0.765) (0.478)

Asset: Cash -0.926 0.635 1.711
(4.199) (1.572) (1.278)

Profit 0.889 0.315 0.779
(2.172) (0.879) (0.724)

Firms 140 140 140
Periods 3 3 3

Notes: This table reports estimates of the relationship between the instrument and time-varying firm charac-
teristics in the period 2012- 2014, i.e. before the diesel scandal. Each row reports the coefficient of a regression
of the instrument on the controls indicated in each row, controlling for firm and year fixed effects. Instrument
is the IV from equation 12, Diesel Share is the first lag of the diesel share, Stringency is the first lag of the
regulatory stringency measure in equation 2. Patent counts and logarithms of firm financial outcomes. Only
suppliers included in all regressions. Standard errors are clustered by firm. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A3: Effect on electric vehicle patenting for firms exposed to an above vs. below median
market share of electric vehicles

Low EV Growth High EV Growth

Poisson GMM (IV) Poisson GMM (IV)

Stringency 2.595∗∗ 4.658 -0.118 3.673
(1.238) (3.921) (2.775) (4.498)

First Stage

Instrument -0.365∗∗∗ -0.208∗∗∗

(0.068) (0.062)
F (within) 42.084 16.235

(df = 1 ; 663) (df = 1; 683)

Obs 835 835 860 860
Firms 167 167 172 172
Firm FE X X
Controls X X
Time FE X X X X

Notes: Models titled GMM (IV) estimate the specification in Equation 3 using the moment conditions in
Equation 15. Models titled Poisson estimate the specification in Equation C.1. Controls indicates that the
logarithm (log(x+1)) of the pre-sample patent stock in the benchmark category (“clean” category) were
included as controls. Suppliers in the low EV growth sample are exposed to car manufacturers with below-
median growth in EV market shares between 2010 and 2015. The high EV growth sample is the complement.
First-Stage F after within-transformation. Block-bootstrapped standard errors for GMM models (100 draws,
clustered at the level of firms, using re-weighted bootstrapping procedure by Brown and Newey (2002)).
Standard errors for non-instrumented regressions clustered at the firm level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table A4: Test for the joint significance of pre-trends

Statistic Clean Grey Dirty Benchmark

Wald 0.573 2.406∗ 2.434∗ 1.986
p = 0.633 p = 0.065 p = 0.063 p = 0.114

Degrees of Freedom (3, 3330) (3, 3330) (3, 3330) (3, 3330)

Notes: Wald-test for the joint significance of the pre-2014 coefficients
of an event study regression (fixed-effects Poisson QMLE) of patent
outcomes on supplier exposure to manufacturer-level reliance on diesel
cars for compliance with the fleet-average emission standard in 2014 ×
manufacturer change in the market share of diesel cars between 2015
and 2016. Regressions interact the shift-share instrument in Equation
12 with a time dummy. Regressions include supplier and year fixed
effects, but no other controls. Standard errors clustered at the firm
level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Event study plots are provided in
Tables E.3 and E.4 .
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Figure E.3: Exposure to diesel as a compliance technology and trends in clean and benchmark
patenting

(a) Pretrends in electric vehicle patenting

(b) Pretrends in patenting in the benchmark category

Notes: Event study regression (fixed-effects Poisson QMLE) of patent outcomes on supplier exposure to
manufacturer-level reliance on diesel cars for compliance with the fleet-average emission standard in 2014
× manufacturer change in the market share of diesel cars between 2015 and 2016. Regressions interact the
shift-share instrument in Equation (12) with a time dummy. Regressions include supplier and year fixed
effects, but no other controls. Ribbons indicate 95% confidence intervals. Standard errors clustered at the
firm level. Wald-tests for the joint significance of pre-treatment coefficients are provided in Table A4.
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Figure E.4: Exposure to diesel as a compliance technology and trends in dirty and grey
patenting

(a) Pretrends in patenting in the grey category

(b) Pretrends in patenting in the dirty category

Notes: Event study regression (fixed-effects Poisson QMLE) of patent outcomes on supplier exposure to
manufacturer-level reliance on diesel cars for compliance with the fleet-average emission standard in 2014
× manufacturer change in the market share of diesel cars between 2015 and 2016. Regressions interact the
shift-share instrument in Equation (12) with a time dummy. Regressions include supplier and year fixed
effects, but no other controls. Ribbons indicate 95% confidence intervals. Standard errors clustered at the
firm level. Wald-tests for the joint significance of pre-treatment coefficients are provided in Table A4.
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Table A5: Effects on the formation of new supply chain links

Any Patent Expertise Grey Clean

CF Probit CF Probit CF Probit CF Probit

(1) (2) (3) (4) (5) (6) (7) (8)

Stringency × 0.013 -0.011
Not Patenting (0.036) (0.023)

Stringency × 0.274** -0.014
Patenting (0.090) (0.054)

Stringency × 0.096 -0.056
Not Clean or Grey (0.110) (0.063)

Stringency × 0.401 -0.006
Grey, Not Clean (0.402) (0.230)

Stringency × 0.211 0.068
Clean, Not Grey (0.182) (0.117)

Stringency × 0.489** -0.086
Grey and Clean (0.195) (0.106)

Stringency × 0.145 -0.001 0.131 -0.051
No Knowledge Stock (0.102) (0.062) (0.108) (0.062)

Stringency × 0.471** -0.074 0.345** -0.005
Knowledge Stock (0.172) (0.097) (0.135) (0.083)

Existing Link10−15 0.258** 0.256** 0.279** 0.273** 0.274** 0.268** 0.278** 0.272**
(0.011) (0.010) (0.022) (0.022) (0.022) (0.022) (0.022) (0.022)

First Stage

F (Interaction 1) 79.154 52.996 81.988 83.795
F (Interaction 2) 84.814 52.349 77.798 79.633
F (Interaction 3) 56.018
F (Interaction 4) 52.206

Potential Links 20884 20884 5152 5152 5152 5152 5152 5152
Suppliers 908 908 224 224 224 224 224 224
Manufacturers 23 23 23 23 23 23 23 23
Supplier FE X X X X X X X X
Manufacturer FE X X X X X X X X

Notes: The following effects are evaluated: Stringency × Some Sample shows the Average Partial Effect
(percent increase) of of more stringent environmental regulation in the subsample. Not Patenting is the
sample of supply chain links involving a supplier without knowledge stocks in any of the following categories
in 2015: clean, grey, dirty, benchmark. Patenting is the complement. Not Clean or Grey are suppliers in group
Patenting which have no knowledge stocks in both the clean and grey category. Categories Clean, Not Grey
/ Grey, Not Clean / Grey and Clean are defined analogously. Categories No Knowledge Stock and Knowledge
Stock combine the previous set of categories to distinguish firms with and without knowledge stocks in grey
(columns 5-6) or clean technologies (columns 7 -8). Columns (1) and (2) include all possible supply chain
links between 908 suppliers observed with at least one supply chain link in both the period 2010-2015 and
2021-2022 and 23 regulated car manufacturers relying on diesel cars as a compliance technology in 2014. For
columns (3) - (8), the set of suppliers is reduced to 224 suppliers with at least one patent in the period 2005
- 2015 in any of the categories clean, grey, dirty, benchmark. Existing Links10−15 shows the average effect
(percentage points) of supply chain links for firms with vs. firms without a pre-existing supply chain links.
Stringency is the manufacturer-level stringency as defined in Equation 2 in 2020. Columns labeled Probit
display the results of a probit model defined in Equation 16. Columns labeled CF display the results of the
corresponding Probit Correlated Random Effects Control Function Approach defined in Equations 16 and 17.
Block-bootstrapped standard errors are indicated (500 draws, clustered at the level of suppliers). ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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