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Abstract

A mechanism proposal by a privately informed principal is a sig-
nal. The agents’ belief updating endogenizes their incentives in the
mechanism, implying that such design problems cannot be solved via
optimizing subject to incentive constraints. We propose a solution,
neo-optimum, that can be interpreted as principal-preferred perfect-
Bayesian equilibrium. Its neologism-based definition allows an intu-
itive computation, as we demonstrate in several applications. Any
Myerson neutral optimum is a neo-optimum, implying that a neo-
optimum exists generally. Neo-optimum unifies the other known solu-
tion approaches in the informed-principal literature.

1 Introduction

Mechanism design—the theory of designing rules of interaction that provide
incentives to reveal private information towards maximizing the principal’s
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results to a different paper. Here, we only report the main result.
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goal—is a cornerstone of economics, with many applications ranging from
procurement and the regulation of firms (Laffont and Tirole, 1993) to the
design of public institutions (Laffont, 2000), from macroeconomics (Kocher-
lakota, 2006) to testing and social distancing in pandemics (Tröger, 2025).

The standard approach to solving a mechanism-design problem relies on
the revelation principle, which implies that any mechanism induces a di-
rect revelation mechanism, thus transforming the design problem into an
optimization subject to incentive constraints. As first recognized by Myer-
son (1983) and Maskin and Tirole (1990, 1992), this approach fails if the
principal is privately informed about her own goals or about anything that
concerns the incentives of the agents who participate in the mechanism. The
proposal of a mechanism then is a signal in a signaling game that leads to
an endogenous updated belief about the principal’s private-information type.
The incentives of the agents in the mechanism depend on the updated be-
lief. Thus, the answer to the question which direct revelation mechanism is
induced by a given mechanism proposal becomes endogenous.

An example of a mechanism designer is a seller who designs a profit-
maximizing sales contract while being privately informed about the quality
of her good. If, say, the contract includes a warranty then a buyer may be
willing to pay a higher price not only because she gets the warranty, but also
because she is triggered into believing in a higher quality of the good.

Modeling the principal as just a sender in a signaling game would, how-
ever, neglect the mechanism-design doctrine according to which the principal
can select an equilibrium for the interaction. It is, for example, implausi-
ble that the principal offers a mechanism that, at the prior belief, yields a
smaller payoff to all her private-information types than another mechanism.
Yet, offering the low-payoff mechanism can be consistent with the logic of
perfect-Bayesian equilibrium in signaling games because offering any alter-
native mechanism may trigger a “pessimistic” off-path belief that makes it
unattractive.

The purpose of the paper is to provide a refinement of perfect-Bayesian
equilibrium, neo-optimum, that is particularly suitable for informed-principal
settings because it can be seen as “sender-preferred equilibrium”.

We show that neo-optimum exists broadly and connects the known so-
lution approaches to informed-principal problems. Our existence result is
not based on any specific assumptions concerning the payoff structure (such
as, for instance, a single-crossing property), but follows from very general
topological and convexity properties of feasibility sets. This is important.
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In many informed-principal settings, due to the large signal space no single-
crossing condition is satisfied.

The following diagram indicates how neo-optimum is connected via impli-
cation and equivalence relations to other solution concepts in the informed-
principal literature.

neutral optimum
(Myerson, 1983)

neo-optimumstrong unconstr. Pareto optimum
(Maskin and Tirole, 1990)

private values

strongly neologism-proof alloc.
(Mylovanov and Tröger, 2012, 2014)
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strong Pareto optimum
(Koessler and Skreta, 2019) interim optimum

(Koessler and Skreta, 2023)
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Kakutani perfect-Bayesian equil.
(≈ Maskin and Tirole, 1990, 1992)

expectational equilibrium
(Myerson, 1983)

core allocation
(Myerson, 1983)

Beyond finding neo-optima, our methods can be used to reconstruct all
(including non-refined) perfect-Bayesian equilibria in virtually all existing
papers in the informed-principal literature.

Neo-optima are always on the weak Pareto frontier of the set of perfect-
Bayesian equilibria. Thus the predictions of neo-optimum are generally dif-
ferent from refinements such as the intuitive criterion (Cho and Kreps, 1987)
that are consistent with Kohlberg-Mertens stability. But neo-optimum is
also generally different from the principal’s ex-ante-optimal perfect-Bayesian
equilibrium. The ex-ante criterion has the obvious limitation that rescaling
the payoff function of some type of the principal—although being strategi-
cally irrelevant—can change the prediction. Neo-optimum is invariant with
respect to payoff rescalings. Nevertheless, it turns out that in many settings
the neo-optima are also ex-ante optimal for the principal.

To capture the broadest range of settings, we introduce a reduced-form
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description of informed-principal problems that focusses on the principal’s
payoff. A payoff vector refers to a payoff for each private-information type of
the principal. For any (prior or updated) belief about the principal’s type, a
set of feasible payoff vectors is given. That’s all.

In any particular application, the set of feasible payoff vectors at any
belief will be determined by the details of the interaction. In a typical ap-
plication, mechanisms are finite game forms with outcomes from a given set,
and feasibility is defined via incentive constraints, as in Myerson (1983). For
example, a seller may be able to choose from a set of sales contracts, and
each continuation equilibrium in the interaction following the proposal of a
sales contract induces a particular feasible payoff vector. The reduced form
specifies the feasibility sets for all beliefs because, a priori, the principal’s
proposal may trigger any updated belief.

While a reduced-form description is possible for any signaling game,1 the
feasibility structure of informed-principal problems has a very useful addi-
tional property, composition-closedness, that allows us build our entire anal-
ysis around the feasible belief-payoff-vector pairs. Composition-closedness
can be seen as a reduced-form version of the inscrutability principle in My-
erson (1983). To define, consider a finite family of belief-payoff-vector pairs.
Imagine that each type of principal makes a payoff-maximizing choice from
this family. Suppose there exists a prior belief such that the belief com-
ponent of each element of the family is consistent with Bayesian updating
given the different types’ choices. Then this prior belief together with the
maximum-payoff vector resulting from the different principal types’ choices
is called a composition. Composition-closedness requires that any compo-
sition of feasible belief-payoff-vector pairs is feasible.2 The justification for
composition-closedness is that for any finite family of mechanisms there ex-
ists a “grand” mechanism in which the principal gives herself the option to
select a mechanism from the family.

Both established approaches to defining perfect-Bayesian equilibria for

1E.g., Mailath (1987).
2As for a concrete example, suppose the principal can have two types, called horizontal

and vertical so that payoffs vectors are represented in a two-dimensional coordinate system.
Suppose the payoff vector (1, 0) is feasible at the belief bh that puts probability 1 on the
horizontal type and the payoff vector (0, 2) is feasible at the belief bv that puts probability
1 on the vertical type. Then, for any belief b, the belief-pay-vector pair (b, (1, 2)) is a
composition of (bh, (1, 0)) and (bv, (0, 2)). Thus, composition-closedness requires that the
payoff vector (1, 2) is feasible at all beliefs.
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informed-principal signaling games, by Myerson (1983) and by Maskin and
Tirole (1990, 1992), fit into our model. While the two approaches differ
subtly with respect to the set of allowed mechanisms, in either approach,
composition-closedness implies that focussing on fully pooling equilibria is
without loss of generality, that is, all types of the principal propose the same
mechanism on the equilibrium path.

Let us explain neo-optimum in more detail. A crucial ingredient is the
concept of a neologism that is well-established in signaling games (Farrell,
1993). A neologism is a Bayes-consistent and feasible deviation relative to a
given (not necessarily feasible) belief-payoff-vector pair. That is, the deviat-
ing payoff vector comes together with a deviating belief that puts probability
0 on types who would be harmed by the deviation, retains the relative like-
lihood across types that strictly gain, and can shift belief probability mass
from indifferent types to strictly gaining types.

If no neologism exists for some payoff vector together with the prior belief,
the payoff vector is neologism-proof. A payoff vector is a neo-optimum if (i)
it is feasible at the prior belief and (ii) there exists a payoff vector below it
that is a limit of neologism-proof payoff vectors.

Many established signaling-game refinements, including the intuitive cri-
terion, rely on ideas related to neologisms. Farrell (1993) recognized that
asking for a prior-belief feasible and neologism-proof payoff vector is gen-
erally too much; non-existence occurs in very simple signaling games. The
subsequent literature on signaling games responded by arguing in favor of
belief-payoff-vector deviations different from Farrell’s neologisms (e.g., Rabin
(1990), Mailath, Okuno-Fujiwara, and Postlewaite (1993), Reny (2025), Zeng
(2025)). Neo-optimum is fundamentally different: it insists on neologism-
proofness as the relevant criterion, but disentangles it from feasibility. Rather,
neo-optimum is content with being a limit of neologism-proof payoff vectors,
or with being at least as good as such a limit for all types of the principal.

As a concrete example we consider a Spence (1973) job-market setting.
It belongs to the class of informed-principal problems analyzed in Maskin
and Tirole (1992). The principal is a worker who is privately informed about
her productivity type, which can be high or low. To determine her task level
and wage, she proposes a mechanism to an employer. One payoff vector
that is feasible at all beliefs is the least-cost-separating one. It arises from
both types getting a wage equal to their respective productivity types, the
low-productivity type getting the lowest possible task level, and the high-
productivity type getting the task level at which the low type is indifferent

5



between the two types’ outcomes. Another prominent payoff vector, feasible
at the prior belief, arises from both types getting the lowest task level and
the wage equal to average productivity; we call this the best-pooling payoff
vector. It is then easy to see that the unique neo-optimum is the least-
cost-separating payoff vector or the best-pooling payoff vector, whichever is
preferred by the high-productivity type.3

As for the perfect-Bayesian equilibria in the Spence example, we recall
that the least-cost-separating payoff vector is a neo-optimum if the prior be-
lief puts a sufficiently high weight on the low-productivity type. From this
it is immediate that the least-cost-separating payoff vector, being feasible
at all beliefs, is a perfect-Bayesian equilibrium at any interior prior belief.
Generalizing this logic to other settings recovers the perfect-Bayesian equi-
libria constructed in Maskin and Tirole (1992) and a number of subsequent
papers (e.g., Koessler and Skreta (2016); Nishimura (2022); Balzer (2017);
Dosis (2022); Zhao (2023))

We show that any Myerson (1983) neutral optimum is a neo-optimum.
From Myerson’s existence result, this implies that a neo-optimum exists in
any Bayesian incentive problem as defined by Myerson. Neo-optimum is
stronger than Myerson’s other solution concepts, core and expectational equi-
librium. Whenever it yields a unique prediction it identifies the unique neu-
tral optimum. But neo-optimum is much more intuitive and easier to handle
than neutral optimum. In particular, neo-optimum avoids any reference to
Myerson’s extension axiom that connects solutions across different settings.

Initiated by Maskin and Tirole (1990), a part of the informed-principal
literature has considered settings with “private values” (e.g., Myerson (1985);
Maskin and Tirole (1990); Tan (1996); Yilankaya (1999); Skreta (2009);
Mylovanov and Tröger (2014); Wagner, Mylovanov, and Tröger (2015)).
Here, the principal is privately informed about her goals, that is, she “has
private information that is not directly payoff relevant to the agents, but may
influence her design” (Mylovanov and Tröger, 2012). An example would be a
seller with private information about her opportunity cost of selling who de-
signs a profit-maximizing sales procedure. The solution concepts proposed in
this context, strong unconstrained Pareto optimum (SUPO) by Maskin and
Tirole (1990) and its generalization, strongly neologism-proof allocations by

3Undefeated equilibrium (Mailath, Okuno-Fujiwara, and Postlewaite, 1993) and most
persuasive equilibrium (Zeng, 2025) yield an analogous prediction in the classical job-
market signaling game with two types where signals are not mechanisms but just education
levels.

6



Mylovanov and Tröger (2012, 2014) have so far remained disconnected from
Myerson’s (1983) approach.

In a companion paper, we show that, in the generalized-private-values
settings for which Mylovanov and Tröger (2012) show the existence of a
strongly neologism-proof allocation, this solution concept is in fact equivalent
to neo-optimum. In particular, in these settings any neutral optimum is
strongly neologism-proof. This result resolves a question that has remained
open essentially since the literature started. Another implication is that in
quasilinear private-values environments (Mylovanov and Tröger, 2014), any
neo-optimum, and thus any neutral optimum, is ex-ante optimal.

Koessler and Skreta (2019) consider an informed principal who can, par-
tially or fully, “certify” her type. The model fits into our framework. Koessler
and Skreta (2019) propose a solution concept, strong Pareto optimum (SPO),
and show that any prior-feasible SPO is a perfect-Bayesian equilibrium and
is ex-ante optimal. But a prior-feasible SPO exists only in settings with a
sufficiently rich certifiability structure. Using neo-optimum instead of SPO
as a solution concept in their setting, existence is generally guaranteed and
the qualitative results of Koessler and Skreta (2019) remain largely intact.

Settings in which the principal is an information designer also fit into our
framework. To analyze informed-principal information design, Koessler and
Skreta (2023) introduce a new refinement of perfect-Bayesian equilibrium,
interim optimality, and provide existence and characterization results. We
show that any interim optimum is a neo-optimum. In the different variants of
the introductory prosecutor-judge example in Koessler and Skreta (2023) the
reverse is also true, that is, any neo-optimum is interim-optimal. Thus, the
arguments given by Koessler and Skreta (2023) in favor of interim-optimum
as a solution concept—predictive power and robustness—apply similarly to
neo-optimum.

Balkenborg and Makris (2015) consider a common-value setup similar
to Maskin and Tirole (1992), but in contrast to the latter focus on an
equilibrium refinement called assured allocation that in two-type settings is
the unique Myerson (1983) core allocation and hence is equivalent to neo-
optimum and neutral optimum. However, in some settings the assured allo-
cation is dominated by a stochastic allocation and is not a core allocation,
implying that it is not a neo-optimum.

Section 2 introduces the model, including the concept of Kakutani perfect-
Bayesian equilibrium. Section 3 introduces the main concept, neo-optimum.
At the end of this section, we also show how other perfect-Bayesian equi-
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librium constructions in the informed-principal literature can be recovered
using the concept of neo-optimum. In Section 4 we compare neo-optimum
to the solution concepts in Myerson (1983). In Section 5, we discuss various
applications and compare neo-optimum to other solution concepts. Some
proofs are relegated to the appendix.

2 Model

2.1 Informed-Principal settings

The principal is a privately informed entity. Let T denote the set of the
principal’s feasible private-information types. For technical simplicity, we
assume that T is finite.4 The set of probability distributions with support
in T is denoted B. A belief about the principal’s type is a b ∈ B, where b(t)
denotes the likelihood assigned to type t.

The principal’s payoff is represented by a vector U ∈ IRT , where U(t) for
all t ∈ T denotes the principal’s payoff when she has the type t.

An informed-principal setting is characterized by the set of feasible belief-
payoff-vector pairs

K ⊆ B × IRT .

For any belief b ∈ B, we say that a payoff vector U is feasible at b or b-feasible
if (b, U) ∈ K.5 We assume that K is topologically closed and, for each b ∈ B,
the set of b-feasible payoff vectors is non-empty.

When convenient, we will use the following language. We say that a
payoff vector V is above a payoff vector U (or U is below V ), written V ≥ U ,
if V (t) ≥ U(t) for all t ∈ T . In other words, V is above U if and only if all
principal types weakly prefer V to U . (We say that V dominates U if V is
above U and V ̸= U .)

Applications

As a first example, following Maskin and Tirole (1992) and inspired by Spence
(1973), let the principal be a worker who proposes a mechanism for deter-

4We see no obstacle against extending our central concept, neo-optimum, to continuous-
type settings.

5Given any set M ⊆ B × IRT and any b ∈ B, we will also use the notation M(b) =
{U | (b, U) ∈ M}. For example, K(b) is the set of b-feasible payoff vectors.
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mining her wage w and task (or effort) level e to a potential employer. The
principal has one of two productivity (or output) types, T = {θL, θH}. Any
belief b can be identified with the probability of the high type θH , that is,
b ∈ B = [0, 1]. Let w − e/θ denote the principal’s payoff if she has the type
θ, works at level e, and gets the wage w. This specification reflects that,
when working at any task level e, if the worker’s productivity is high then
her cost of working is smaller than if her productivity is low. The employer
then obtains the output θ and pays the wage w, so she obtains the payoff
θ−w (in particular, the output is independent of the task level e). A mech-
anism is a game form in which the principal and the employer play, and each
end node is a task-level-wage pair (e, w) ∈ [0,∞) × [0, θH ]. The mechanism
is played if the employer accepts it; if she rejects, both the worker and the
employer get the payoff 0. By the revelation principle, given any belief b ∈ B,
the mechanism implements a task-level-wage pair6 (eL, wL) for type θL and
a task-level-wage pair (eH , wH) for type θH such that incentive compatibility
is satisfied,

wL − eL/θL ≥ wH − eH/θL and wH − eH/θH ≥ wL − eL/θH , (1)

and the employer’s participation constraint is satisfied,

b(θH − wH) + (1− b)(θL − wL) ≥ 0. (2)

Thus,

K = {(b, (wL −
eL
θL

, wH −
eH
θH

)) | (1), (2)}.

After standard manipulations, we obtain the following characterization,

K =
⋃

e≥0

⋃

b∈B

{b} × conv

{

(θL, θH −
θL(θH − θL)

θH
),

⋃

e≥0

⋃

b∈B

{b} × conv {(bθH + (1− b)θL, bθH + (1− b)θL),

⋃

e≥0

⋃

b∈B

{b} × conv

{

(0, 0), (−
e

θL
,−

e

θH
), (−

e

θL
, θH − θL −

e

θH
)

}

,

6Given the linearity of the payoff functions, probability distributions over task-level-
wage pairs need not be considered. Also, without loss of generality the mechanism is never
rejected.
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Figure 1: The sets of feasible payoff vectors at different beliefs b in the Spence-job-
market example for generic values of θL and θH . The vertices refer to the points
that span the convex hull for a particular value of e in the definition of K. The
higher b, the larger the feasibility set so that K(0) ⊂ K(1/4) ⊂ K(3/4) ⊂ K(1).

where conv{. . . } is the convex hull of five “vertex” payoff vectors: the first
is called least-cost separating, the second arises from both types pooling at
task level 0 and getting a wage equal to the expected productivity, the third
arises from both types pooling at task level 0 and getting the wage 0, the
fourth is the payoff vector where both types choose a task level e and get
the wage 0, and the fifth the payoff vector where the low type chooses a task
level e and gets the wage 0 while the high type chooses the task level such
that the low type is made indifferent to choosing the high type’s task level
and getting the wage θH . The union of the convex hulls across all e ≥ 0
captures what is feasible at the belief b.

The projections of K onto the space of payoff vectors for several beliefs b
are represented graphically in Figure 1.

Secondly, going beyond a particular example, we would like to emphasize
Myerson’s (1983) “Bayesian incentive problems” as a broad framework that
is covered by our model. The framework captures mechanism design prob-
lems with adverse selection and moral hazard, finitely many agents, arbitrary
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finite outcome spaces and arbitrary payoff functions.7 A feasibility set K is
naturally associated to any Bayesian incentive problem Γ, as follows. For
any belief b ∈ B, the set K(b) is determined via the incentive constraints
in Γ when b is interpreted as a normalized likelihood vector in the sense of
Myerson (1983, Section 5), and in the incentive constraints (1983, (3.1)) of
all players except the principal (i.e., player 1) there is an additional factor
b(t1), where t1 is the first component of the summation variable t−i. (An “in-
centive compatible mechanism” in the terminology of Myerson (1983) leads
to a payoff vector that is b-feasible with b the uniform distribution on T .)

As a third application, our model covers the information-design frame-
work of Bergemann and Morris (2019). Suppose the information designer is
one of the players, say player 1 (i.e., v = u1 in the terminology of Bergemann
and Morris). As in the previous example, any belief b is interpreted as a
normalized likelihood vector in the sense of Myerson (1983, Section 5). For
any belief b ∈ B, the set K(b) is determined via the obedience constraints
(Definition 1 in Bergemann and Morris (2019)), augmented with an addi-
tional factor b(t1) for all i ̸= 1.8 A special case of this framework is Koessler
and Skreta (2023), who assume that the principal is fully informed about the
state of the world and the other players have no prior information.9

Compositions and inscrutiblity

Next we introduce our central structural property for feasibility sets, As-
sumption 1. This is motivated by a reduced-form generalization of Myer-
son’s (1983) inscrutability principle. The fundamental concept, composition,
is best understood via a thought experiment. Suppose that the principal had
to choose a belief-payoff-vector pair from a given family. Depending on her
type, she cares about the corresponding dimension in each payoff vector. A
composition is a belief-payoff-vector pair that arises from a payoff-maximizing
choice of each type, and the choice decisions of the various principal types
are Bayes-consistent.

7The Spence example with the particular cost structure described above becomes a
Bayesian incentive problem if we cut the outcome space at some highest feasible task level.
Then any outcome can be represented as a probability distribution over four outcomes,
combined of the highest/lowest task/wage levels.

8Correcting a typo in Bergemann and Morris (2019), the summation variables in their
formula (2) should be a−i and t−i, where the latter has t1 as its first coordinate.

9Koessler and Skreta (2023) sketch a more general model in Section 8 of their paper.
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A belief-payoff-vector pair (b, U) ∈ B × IRT is the

composition of (bk, Uk)k=1,...,k (k ≥ 1, (bk, Uk) ∈ B × IRT )

if, for all t ∈ T ,

U(t) = max
k=1,...,k

Uk(t) (3)

and if there exist (choice-probability) functions ck : T → [0, 1] (k = 1, . . . , k)

with
∑k

k=1 ck(t) = 1 (t ∈ T ) such that

if ck(t) > 0, then Uk(t) ≥ Ul(t) for all l ̸= k, (4)

and such that, for all k, Bayes’ rule is satisfied,

ck(t
′′)b(t′′)bk(t

′) = ck(t
′)b(t′)bk(t

′′) for all t′, t′′ ∈ T. (5)

To digest the notation, suppose that each type t chooses among the payoff
vectors U1, . . . , Uk, where type t’s probability of choosing any Uk is denoted
ck(t). Then (3) expresses that U is the payoff vector that results from optimal
choice, (4) expresses that each type chooses optimally, and (5) expresses that
the belief bk that is formed upon observing the choice k is consistent with
the grand belief b and the choice probability distributions ck. The fact that
(5) captures Bayes rule is easiest to see if all numbers involved are strictly
positive, implying

bk(t
′)

bk(t′′)
=

ck(t
′)b(t′)

ck(t′′)b(t′′)
. (6)

The right-hand side in this equation expresses the relative probability of
entering the interaction and choosing k, across types t′ and t′′, taking the
initial belief b into account; the equality with the left-hand side expresses
that the belief that is formed upon observing k is consistent with the actual
relative choice probabilities.

A special case covered by (5) is that some k ends up being never chosen.
Formally, this case occurs if ck(t)b(t) = 0 for all t. For such k, the conditions
(5) are void because both sides are equal to 0. In all other k, we can find
a type t′′ such that ck(t

′′)b(t′′) ̸= 0. Then the conditions (5) imply that
bk(t

′) = 0 for any t′ with b(t′)ck(t
′) = 0 and bk(t

′) > 0 for any t′ with
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b(t′)ck(t
′) > 0. Thus, in (6) either the numerators on both sides are strictly

positive or the numerators on both sides are equal to zero, and the same is
true for the denominators.

For any finite family of belief-payoff-vector pairs in K, let K denote the
set of compositions of elements ofK. Throughout the paper, we will maintain
the following assumption.

Assumption 1. The feasibility set K is composition-closed, that is, K = K.

In all applications that we have described, the feasibility setK is composi-
tion-closed. In the setting of Myerson (1983), the argument leading to
composition-closedness is called the inscrutability principle. Intuitively, the
argument is as follows. For each k, by definition of the feasibility set, there
exists a direct mechanism Mk that induces the payoff vector Uk at the belief
bk. Now consider the indirect mechanism M̂ that gives the principal the
option to select any of the direct mechanisms M1, . . . ,Mk for play. The indi-
rect mechanism then has an equilibrium in which any type t selects any Mk

with probability ck(t), and in Mk the truth-telling and obedient equilibrium
is played because the belief bk prevails at the start of Mk.

2.2 Perfect-Bayesian equilibrium

In the previous section, we posited that the principal chooses among belief-
payoff-vector pairs. That was a preparatory step towards conceptualizing the
idea that the principal is a sender in a signaling game where the signals are
mechanisms.

Which mechanisms should be allowed as signals for the principal in the
mechanism-selection game? The standard literature on mechanism design
where the principal has no private information evokes the revelation principle
and so justifies the focus on direct revelation mechanisms. But now, for any
belief b, any continuation equilibrium in any mechanism corresponds to a
different direct mechanism, and the belief b is endogenous. The role of a
mechanism as a signal generally depends on all its continuation equilibria for
all possible beliefs. Here it can matter which equilibrium concept is used for
continuation equilibria; this is particularly relevant if sequential mechanisms
are allowed. Also, should one allow mechanisms such that a continuation
equilibrium exists for some beliefs about the principal and not for others? It
is not obvious how the set of possible mechanisms and continuation equilibria
can be specified such that it does not appear restrictive and still a perfect
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Bayesian equilibrium exists in the signaling game where the principal is the
sender and signals are mechanisms.

In the literature, there are two different approaches to specifying the
principal’s set of mechanisms. First, Myerson (1983), given any Bayesian
incentive problem, defines “generalized mechanisms” that allow for arbitrary
finite message spaces for all players. The mechanism may reveal informa-
tion about these messages privately to each player, to influence her private
action, and some public outcome is implemented. The equilibrium concept
for continuation equilibria in generalized mechanisms is Nash equilibrium (in
particular, generalized mechanisms are treated as simultaneous-move game
forms).

The second approach, which can be traced back to Maskin and Tirole
(1990, 1992), is to avoid the explicit specification of the set of feasible mech-
anisms, and instead restrict the continuation-equilibrium payoff properties
of mechanisms. Given any (in whatever way specified) mechanism µ, we
define a set of belief-payoff-vector pairs Mµ, as follows: (b, U) ∈ Mµ if and
only if the payoff vector U can be induced by (in whatever way specified)
continuation-equilibrium play of µ at the belief b. A set of belief-payoff-
vectors M ⊆ B × IRT is called a Kakutani set10 if, for all b ∈ B, the set
of payoff vectors M(b) = {U | (b, U) ∈ M} is non-empty and convex, and
the set M is compact (hence, the correspondence b 7→ M(b) is upper hemi-
continuous). Rather than explicitly describing which µ’s are feasible, Maskin
and Tirole (1990, 1992) assume that only such µ are feasible where Mµ is a
Kakutani set.

Myerson’s (1983) approach allows some mechanisms that are not allowed
by Maskin and Tirole (1990) because, for some generalized mechanisms M
and beliefs b, the set M(b) is a non-singleton set of isolated points, hence
non-convex. Maskin and Tirole’s (1990, 1992) approach, on the other hand,
is not restricted to Myerson’s Bayesian incentive problems, and mechanisms
outside the set of Myerson’s “generalized mechanisms” can be allowed.

According to both approaches, in a perfect-Bayesian equilibrium (or,
“expectational equilibrium”, in Myerson’s framework) of the mechanism-
selection game, we can assume without loss of generality from the point of
view of the principal’s equilibrium payoff vector that all types of the principal
pool at the same mechanism.

The possibility of pooling follows from composition-closedness. To see

10The terminology is adapted from Pȩski (2022).
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this, let b∗ denote the (interior) prior belief about the principal.11 Let
µ1, . . . , µk denote the list of mechanisms that are chosen with positive prob-
ability by at least one type of principal. In a perfect-Bayesian equilibrium,
each type of principal chooses an optimal mechanism from the list, and the
beliefs bk are consistent with these choices in the sense of Bayes’ rule. For
any k, let Uk denote the payoff vector that is induced by the continuation-
equilibrium play of µk. Let ck(t) denote the probability that any type t
chooses the mechanism µk. By composition-closedness (with b = b∗), the
payoff vector U = maxk Uk is b∗-feasible. Thus, without loss of generality all
types pool at a mechanism that induces U at the belief b∗.

According to Myerson (1983), given any Bayesian incentive problem, in
an expectational equilibrium all types of the principal pool at an incentive-
compatible direct revelation mechanism such that for any generalized mech-
anism µ′ there exists a belief b′ and a continuation equilibrium in µ′ at belief
b′ such that no type of principal gains from deviating to µ′.

The following alternative concept follows the spirit of Maskin and Tirole
(1990, 1992). Given any informed-principal setting K and any interior prior
belief b∗, a payoff vector U is a Kakutani perfect-Bayesian equilibrium if U is
b∗-feasible, and for any Kakutani set M ′ ⊆ K there exists (b′, U ′) ∈ M ′ such
that U ′ is below U .

Note that the definition of Kakutani perfect-Bayesian equilibrium con-
siders each Kakutani set to be a feasible signal. We cannot exclude the
possibility that the definition is unreasonably restrictive in some specific set-
tings, but we are not aware of any such setting. Also, this possibility has no
bearing on our main concept, neo-optimum, which is not based on Kakutani
sets.

The following observation is often useful for bounding the set of Kakutani
perfect-Bayesian equilibria from below; the lemma’s conclusion is immediate
from the assumption because M ′ = B × {U} is a Kakutani set.

Lemma 1. If there exists a payoff vector U that is feasible at all beliefs, then
U is below all Kakutani Perfect-Bayesian equilibria.

To illustrate the concept of Kakutani perfect-Bayesian equilibrium, con-
sider again our Spence-job-market example. The least-cost separating payoff

11Myerson does not need to specify a prior belief as it is implicitly built into the definition
of a Bayesian incentive problem. Translated to our terminology, Myerson’s prior is the
uniform distribution on T .
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vector, U lcs = (θL, θH−θL(θH−θL)/θH), illustrated as the 1st vertex in Figure
1, is b∗-feasible for any b∗. Any Kakutani set M leaves a trace ∪b∈BM(b) in
the space of payoff vectors. By definition, the trace includes a 0-feasible pay-
off vector U ′, and from our earlier characterization of the 0-feasibility set in
the Spence example it follows that U ′(t) ≤ U lcs(t) for all t ∈ T . Thus, using
the “pessimistic” belief b′ = 0 we see that U lcs is a Kakutani perfect-Bayesian
equilibrium. On the other hand, because U lcs is feasible at all beliefs, Lemma
1 implies that any Kakutani perfect-Bayesian equilibrium U is above U lcs. It
follows that the set of Kakutani perfect-Bayesian equilibria is

{U | U is b∗-feasible, ∀t ∈ T : U(t) ≥ U lcs(t)}.

For later use, we note the following.

Lemma 2. In any informed-principal setting with any interior prior, the set
of Kakutani Perfect-Bayesian equilibria is closed.

Proof. Denote the feasibility set by K and the prior by b∗. Consider a se-
quence of equilibria (Un) → U∗. Then Un is b∗-feasible for all n. Because
the set of b∗-feasible payoff vectors, K(b∗), is closed, it follows that U∗ is
b∗-feasible.

Consider any Kakutani setM ′ ⊆ K. Using the equilibrium property along
the sequence, there exists a sequence (b′n, U

′
n) ∈ M ′ such that U ′

n(t) ≤ Un(t)
for all n and t. Because M ′ is compact, there exists (b′, U ′) ∈ M ′ such that
(b′n, U

′
n) → (b′, U ′) along some subsequence. Thus, U ′(t) ≤ U∗(t) for all t,

proving that U∗ is a Kakutani Perfect-Bayesian equilibrium.

3 Neo-optimum

In many informed-principal settings (such as the Spence-job-market exam-
ple above with b∗ being sufficiently close to 1), multiple Kakutani perfect-
Bayesian equilibria exist. Similarly, Myerson (1983) observes that multiple
expectational equilibria exist in many Bayesian incentive problems.

The main goal of our paper is to show how to select perfect-Bayesian
equilibria that are “sender preferred” in an intuitive sense. Importantly, our
refinement will be invariant to scaling the utility of each sender type. Thus,
the refinement is a-priori unrelated to ex-ante optimality for the sender. Our
refinement provides a unified perspective of the informed-principal literature,
and opens the door to solving new problems.
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We start from a concept inspired by Farrell (1993). Consider a feasibility
set K, an interior belief b, and a payoff-vector U ∈ IR|T |. A belief-payoff-
vector pair (b̂, Û) ∈ K is a neologism for (b, U)12 if Û(ť) > U(ť) for some
ť ∈ T , and the following conditions hold for all t ∈ T :

if Û(t) > U(t) then b̂(t)b(t′) ≥ b̂(t′)b(t) for all t′ ∈ T, (7)

if Û(t) < U(t) then b̂(t) = 0. (8)

Intuitively, a neologism that can be seen as a Bayes-consistent and feasible
deviation relative to a given (not necessarily feasible) belief-payoff-vector
pair. The deviating payoff vector Û comes together with a belief that puts
probability 0 on types who would be harmed by the deviation (see (8)),
retains the relative likelihood across types that strictly gain (see (7) with
switched roles of t and t′, yielding b1(t)b(t

′) = b1(t
′)b(t)), and can shift belief

probability mass from indifferent types to strictly gaining types (see (7) with
t′ such that Û(t′) = U(t′)).

A payoff vector U is b-neologism-proof if no neologism exists for (b, U).
As implicitly suggested by the principal’s “speeches” proposed in Myerson
(1983), an ideal solution for the principal would be a payoff vector that is
feasible at the prior belief b∗, and is b∗-neologism-proof. In many settings,
however, such a payoff vector does not exist. Below we will review this well-
known fact in our Spence example; see Farrell (1993) for a different example
in an elementary signaling game.

In the spirit of the literature following Farrell (1993), one may respond
to the non-existence problem by restricting the set of neologisms that are
considered legitimate. We follow an alternative approach: we select the
b∗-feasible payoff vectors that are above limits of b∗-neologism-proof payoff
vectors. Note that the selected payoff vector itself may not be b∗-neologism-
proof. Here is the definition.

Given any interior prior belief b∗, a payoff vector U is a b∗-neo-optimum
if U is b∗-feasible and there exists a payoff vector V ≤ U such that V is a
limit of b∗-neologism-proof payoff vectors.

The justification of neo-optimum is indirect. If we pose this in terms of a
speech of the principal, she would say: if some types of myself did renounce
part of their payoff (so that the payoff vector V remains), then no prior-
belief-neologism would break arbitrarily close approximations of this payoff

12Sometimes we say instead that (b̂, Û) is a neologism for U at b.
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vector; thus, my actual payoff vector U should also be considered a justified
selection.

Our first remark is that all neo-optima lie on the principal’s weak Pareto
frontier. This is immediate from the definition of neo-optimum.

Remark 1. Let b∗ denote an interior belief. Consider a payoff vector U
such that U(t) < Û(t) for all t ∈ T for some b∗-feasible Û . Then U is not a
b∗-neo-optimum.

Another important remark is that the notion of neo-optimum is inde-
pendent of each principal type’s utility scale: if a positive affine transfor-
mation is applied to some type’s utility, then the set of neo-optima remains
unchanged. This reveals a fundamental difference to the notion of the prin-
cipal’s ex-ante optimum, which by definition is any payoff vector that maxi-
mizes

∑

t b
∗(t)U(t) among all b∗-feasible payoff vectors U .

In the rest of the paper, we will show that neo-optima are refinements of
perfect-Bayesian equilibria, exist broadly, often lead to a unique prediction,
and provide a unification of the various solution concepts that have been
proposed in the informed-principal literature.

In a given application, and given any prior belief b∗, one can find the neo-
optima via the following intuitive steps. First, characterize the set P (b∗) ⊆
IRT of b∗-neologism-proof payoff vectors (independently of their feasibility) by
checking any possible neologism at b∗. Second, form the topological closure
of P (b∗) and include all vectors above elements of the closed set. Third,
intersect the resulting set with the set of b∗-feasible payoff vectors to obtain
the set of neo-optima.

Examples

Consider the Spence setting with a prior belief b∗ > (θH − θL)/θH . This
inequality guarantees that the high type strictly prefers the best pooling
equilibrium (which is represented as the 2nd vertex in Figure 1 at b = b∗),

Upool∗ = (b∗θH + (1− b∗)θL, b
∗θH + (1− b∗)θL),

over the least-cost separating payoff vector, U lcs. Note that in this case there
is a multiplicity of Kakutani perfect-Bayesian equilibria. From Remark 1 it
is immediate that Upool∗ is the unique neo-optimum candidate. In order to
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prove that Upool∗ is a neo-optimum, we compute the set P (b∗) of b∗-neologism-
proof payoff vectors. First, we show that only payoff vectors weakly above
the least-cost separating one can be neologism-proof:

P (b∗) ⊆ {U | U ≥ U lcs}.

To see this, note that (b̂, U lcs) ∈ K for all b̂ ∈ B. Thus, for any U such that
U(θL) < U lcs(θL) and U(θH) ≥ U lcs(θH), the belief-payoff vector pair (0, U lcs)
is a neologism for (b∗, U). Vice versa, for any U such that U(θL) ≥ U lcs(θL)
and U(θH) < U lcs(θH), the belief-payoff vector pair (1, U lcs) is a neologism for
(b∗, U). Lastly, for any U such that U(θL) < U lcs(θL) and U(θH) < U lcs(θH),
the belief-payoff vector pair (b∗, U lcs) is a neologism for (b∗, U).

Second, no payoff vector that is dominated by the best pooling one can
be neologism-proof.

P (b∗) ∩ {U | U ≤ Upool∗, U ̸= Upool∗} = ∅.

This follows from using (b∗, Upool∗) as a neologism.
Third, consider the segment between the least-cost separating payoff vec-

tor and (θH , θH), the best pooling payoff vector at the belief 1. We define
the “lower right” of this segment as the set of payoff vectors U such that
U(θL) ≥ Û(θL) and U(θH) < Û(θH) for some Û in the segment. Given any
such U , the pair (1, Û) is a neologism for (b∗, U). Thus,

P (b∗) ∩
(

lower right of segment between U lcs and (θH , θH)
)

= ∅.

The three restrictions that we have described characterize P (b∗); the set is
sketched in Figure 2.

It is apparent that no b∗-feasible and b∗-neologism payoff vector exists. It
is also apparent that Upool∗ is the unique payoff vector that is above a point
in the topological closure of P (b∗). Thus, Upool∗ is the unique neo-optimum.

In the case b∗ = (θH − θL)/θH , the set of neo-optima equals the segment
spanned by U lcs and Upool∗.

In cases with a prior belief b∗ < (θH − θL)/θH , the payoff vector U lcs

is the unique Kakutani perfect-Bayesian equilibrium and thus is the unique
neo-optimum; this is implied by Proposition 1 below.

Note that neo-optimum in general differs from ex-ante optimum. If the
prior belief b∗ is slightly below (θH − θL)/θH , then the payoff vector U lcs is
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U(θL)

U(θH)
45◦

prior belief is b∗ = 3
4

K(b∗)

Upool∗

U lcs

P (b∗)

Figure 2: In the Spence-job-market example, at the prior belief b∗ = 3/4, the set
of feasible payoff vectors K(b∗) has an empty intersection with P (b∗), the set of
payoff vectors U such that (b∗, U) is neologism-proof (the set extends infinitely to
the upper right). The unique neo-optimum is Upool∗.
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the unique neo-optimum and the payoff vector Upool∗ is the unique ex-ante
optimum.13

A class of settings in which neo-optimum is trivially unique and identical
to ex-ante optimum is characterized by the property that U(t) = U(t′) for
all (b, U) ∈ K and all t, t′ ∈ T . Such settings are considered in Koessler
and Skreta (2016):14 different types of the principal have identical goals and
represent different information about the agents’ payoffs.

In Section 5 we present several other cases of mechanism-design by a
privately informed seller. These examples reveal some aspects that are
not present in our Spence example. In particular, one example features
b-feasibility sets that are not nested across different beliefs b, and the other
example has multiple Kakutani perfect-Bayesian equilibria such that differ-
ent types of the principal prefer different equilibria, yet there is a unique
neo-optimum.

Our next result shows that neo-optimum is a refinement of perfect-Bayesian
equilibrium.

Proposition 1. Let b∗ denote an interior belief. Any b∗-neo-optimum is a
Kakutani Perfect-Bayesian equilibrium.

Towards proving this, the main technical hurdle is Lemma 3 below. (This
is also the essential step towards establishing many of the equilibria in the
informed-principal literature.) It says that from any given finite list of Kaku-
tani sets belief-payoff-vector pairs can be selected to form a composition that
entails any given belief.

Lemma 3. Let P be a finite set of Kakutani sets. Let b ∈ B.
Then there exists a composition (b, U∗) ∈ B × IRT of some (b∗P , U

∗
P )P∈P ,

where (b∗P , U
∗
P ) ∈ P for all P ∈ P.

The proof works as follows. For each n = 1, 2, . . . , we define a function
Ψn that continuously maps each list of payoff vectors that can occur in the

13Recall that we have defined ex-ante optimum via maximizing the principal’s ex-ante
expected payoff across all b∗-feasible payoff vectors. A generally different point is obtained
if the maximization is restricted to the Kakutani perfect-Bayesian equilibria. This “ex-
ante-optimal equilibrium” is identical to neo-optimum in the Spence example for all b∗ ̸=
(θH − θL)/θH . For an example where ex-ante-optimal equilibrium and neo-optimum are
different for an open set of prior beliefs, consider the discussion at the end of the bilateral-
trade example in Section 5.

14See also Izmalkov and Balestrieri (2012).
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signals in P to a vector of smoothed optimal choice probabilities, that is,
every type chooses every P ∈ P with a positive probability, and as n tends
to infinity, almost all weight is put on utility-maximizing P s. Requiring
strictly positive choice probabilities is a form of trembling which guarantees
that by Bayesian updating from b a unique belief about the sender’s type is
assigned to each signal.

We have another correspondence given by the signals themselves. Suppose
a belief is given for each signal in P . We consider the correspondence that
assigns to any such list of beliefs a set of lists of payoff vectors by applying
the signals to the beliefs. Combining this correspondence with Ψn, we obtain
a correspondence that has a fixed point by Kakutani’s Theorem.15

A fixed point consists of, for each signal, a belief and a payoff vector that
belongs to the signal at this belief such that the beliefs are consistent with
the sender’s smoothed optimal choice.

By taking n to infinity we consider a sequence of fixed points with trem-
bling probabilities tending to 0. By choosing an appropriate subsequence, we
can guarantee that the sequence converges. In the limit, there is no trembling
restriction so that the beliefs are fully consistent with the sender’s optimal
choice among the signals. Because the signals are compact, each limit payoff
vector belongs to the respective signal at the limit belief. By construction,
the maximum of the limit payoff vectors together with belief b is the compo-
sition of the list of limit payoff vectors together with the limit beliefs. The
details of the proof are in the Appendix.

Proof of Proposition 1. Consider a b∗-feasible and b∗-neologism-proof payoff
vector U . It is sufficient to show that U is a Kakutani perfect-Bayesian
equilibrium. By Lemma 2, the conclusion then extends to limit points. By
definition of equilibrium, it then extends to points above.

Consider any Kakutani set M in K. By Lemma 3, there exists a compo-
sition (b∗, ·) of some (b1, V ) ∈ M and some element of B × {U}.

In particular, (b1, V ) ∈ K. Let c1(t) denote the choice probabilities of M
in the composition.

Suppose that V ≰ U . For any t ∈ T with V (t) > U(t), we have c1(t) = 1
by definition of a composition. Applying (5) with t′′ = t, (7) follows.

15The detour through introducing trembles is needed to guarantee that Ψn is single-
valued, and thus the combined correspondence is convex-valued, a prerequisite for Kaku-
tani’s Theorem.
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By assumption, V (t̂) > U(t̂) for some t̂ ∈ T = supp(b∗), implying c1(t̂) =
1.

Now consider any t ∈ T with V (t) < U(t). Then c1(t) = 0. Because b is
interior, b(t̂) > 0. Applying (5) with t′ = t and t′′ = t̂ now yields (8).

Thus, (b1, V ) is a neologism for (b∗, U). But this contradicts the assump-
tion on U . Hence, V ≤ U , as was to be shown.

As an immediate corollary to Proposition 1, we have a way of establish-
ing other (and, in many settings, all) Kakutani perfect-Bayesian equilibria.
Virtually all known equilibria in the informed-principal literature can be re-
constructed in this way.

Corollary 1. Consider any interior prior belief b∗ and another interior belief
b′. Any payoff vector that is b∗-feasible and is a b′-neo-optimum is a Kakutani
perfect-Bayesian equilibrium at the prior belief b∗.

Note that the result applies to the equilibria in Maskin and Tirole (1992)
(see also the correcting formulation in Dosis (2022)) and the literature build-
ing on it: if the “Rothschild-Stiglitz-Wilson allocation” (which is feasible at
all beliefs) is undominated for some interior belief b′, then its induced pay-
off vector is b′-neologism-proof and hence is a b′-neo-optimum, implying by
Corollary 1 that it is a Kakutani perfect-Bayesian equilibrium at any interior
prior belief b∗.

4 Neo-optimum versus Myerson’s solution con-

cepts in Bayesian incentive problems

In this section, we use the simpler term neo-optimum instead of b∗-neo-
optimum because we follow Myerson’s formulation of Bayesian incentive
problems in which the prior belief b∗ is the uniform distribution on T . We
show that a neo-optimum exists in any Bayesian incentive problem and ex-
plain its connection to Myerson’s solution concepts neutral optimum, expec-
tational equilibrium, and core.

Given any Bayesian incentive problem, Myerson (1983) identifies a set of
payoff vectors that he calls neutral optima. He argues that neutral optima
represent a “fair” compromise across all types of the principal. By verifying
Myerson’s axioms in the proof below, we obtain the following reult.
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Proposition 2. Consider any Bayesian incentive problem. Any neutral op-
timum is a neo-optimum.

An immediate conclusion is that in the Spence example above with a
highest feasible task level, the neutral optimum is generically unique and
identical to neo-optimum for all prior beliefs b∗ ̸= (θH − θL)/θH .

Myerson shows that a neutral optimum always exists. Thus, we have the
following.

Corollary 2. In any Bayesian incentive problem, a neo-optimum exists.

This is a very broad existence result because Myerson allows for arbitrary
outcome spaces, any number of agents, arbitrary payoff functions, and moral
hazard; the essential restriction is that type and outcome spaces are assumed
to be finite.

We emphasize that neo-optimum is not only much easier to handle than
neutral optimum in applications, but neo-optimum is also conceptually sim-
pler than neutral optimum because it avoids any reference to Myerson’s
(1983) Extension axiom, which relates properties of solutions across different
Bayesian incentive problems.

While we will not dwell on Myerson’s axioms, we still find it worthwhile to
mention that the axioms are very useful for understanding why a prior-belief-
feasible and neologism-proof payoff vector often fails to exist. The problem
with neologism-proofness as a solution concept is that it violates two axioms,
Openness and Domination. Indeed, as the Spence example above shows, a
limit of a sequence of neologism-proof payoff vectors may fail to be neologism-
proof, and a payoff vector above a neologism-proof payoff vector may not
share the same property. The concept of a neo-optimum relaxes the ideal of
a prior-belief-feasible and neologism-proof payoff vector just enough so that
all of Myerson’s axioms are satisfied, thus restoring existence.

Proof of Proposition 2. Let b∗ denote the uniform distribution on T . We say
that a payoff vector U ∈ IRT is neo-blocked if for some ϵ > 0, a neologism
exists for all (b∗, V ) such that V ≤ U + ϵ. To complete the proof, it is
sufficient to show that the concept of neo-blocking satisfies Myerson’s four
axioms.

The axioms Extension, Domination, and Openness are clear by construc-
tion. Consider the axiom Strong Solution. Let U be a strong solution. We
have to show that U is not neo-blocked. For this it is sufficient that no
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neologism exists for (b∗, U). Suppose that (b̂, Û) is a neologism. The main
step is to show that (*) there exists a belief b′ such that (b∗,max{Û , U}) is
a composition of (b̂, Û) and (b′, U).

By definition of a strong solution, (b′, U) is feasible. Given (*), composition-
closedness then implies that (b∗,max{Û , U}) is feasible. Because, by defini-
tion of a strong solution, U is undominated, max{Û , U} = U , implying that
Û ≤ U , contradicting the fact that (b̂, Û) is a neologism.

To show (*), take any ť such that Û(ť) > U(ť) and define d̂ = b∗(ť)/b̂(ť).
For all t ∈ T , define

c1(t) =
d̂ b̂(t)

b∗(t)
, c2(t) = 1− c1(t), b′(t) =

b∗(t)c2(t)

1− d̂
.

This together with the definition of a neologism implies c1(t) = 1 for all t
with Û(t) > U(t), 0 ≤ c1(t) ≤ 1 for all t with Û(t) = U(t), and c1(t) = 0 for
all t with Û(t) < U(t). Next,

∑

t

b∗(t)c2(t) = 1−
∑

t

b∗(t)c1(t) = 1−
∑

t

d̂ b̂(t) = 1− d̂,

implying that b′ is a probability distribution. Moreover, using the definitions
above it is straightforward to verify that

c1(t
′′)b∗(t′′)b̂(t′) = c1(t

′)b∗(t′)b̂(t′′)

and
c2(t

′′)b∗(t′′)b′(t′) = c2(t
′)b∗(t′)b′(t′′)

for all t′, t′′ ∈ T . This completes the proof of (*).

The following result establishes that neo-optimum is an equilibrium re-
finement.

Proposition 3. In any Bayesian incentive problem, any neo-optimum is an
expectational equilibrium.

Proof. Consider a payoff vector U such that no neologism exists for (b∗, U),
where b∗ is the uniform distribution. Consider any generalized mechanism
µ′ as defined in Myerson (1983). It is sufficient to show that there exists a
belief b′ and a continuation equilibrium in µ′ at belief b′ such that no type of
principal gains from deviating to µ′.
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Consider a fictitious game in which the principal (with type distributed
according to b∗) first chooses between getting the payoff vector U and the
game ends, or deciding that µ′ will be played. Because the fictitious game is
finite, there exists a sequential equilibrium. Let b′ denote a belief at the start
of the continuation game µ′ that is consistent with the sequential equilibrium.
For all t, denote by c1(t) the probability that type t decides to play µ′, and
denote by V (t) her expected payoff in the continuation game µ′.

By definition of a sequential equilibrium, V is b′-feasible.
Suppose that V ≰ U . By the sequential-equilibrium conditions, (b′, V ) is

a neologism for (b∗, U). But this contradicts the assumption on U . Hence,
V ≤ U , so that at belief b′ no type of principal gains from choosing µ′.

To relate neo-optimum to Myerson’s (1983) other solution concept, core,
we need additional notation. We formulate the relation generally for all
informed-principal settings, not restricted to Bayesian incentive problems.
Given any interior belief b∗ and a non-empty set S ⊆ T , let bS denote the
belief derived from the information that the type belongs to S, that is,

bS(t) = 0 for all t ̸∈ S,

and bS(t′)b∗(t′′) = bS(t′′)b∗(t′) for all t′, t′′ ∈ S.

A payoff vector U is called a b∗-core payoff vector if U is b∗-feasible and for any
payoff vector V that dominates U there exists S ⊇ {t ∈ T | V (t) > U(t)}
such that V is not bS-feasible. Myerson motivates the concept with ideas
involving neologisms. While a core payoff vector always exists if b∗ is the
uniform distribution, it is not always an equilibrium. Next we show that
neo-optimum is stronger than the core.

Proposition 4. Let b∗ denote an interior belief. Then any b∗-neo-optimum
is a b∗-core payoff vector.

Proof. Denote D = {t ∈ T | V (t) > U(t)}.
Suppose that U is b∗-feasible, but is not a core payoff vector, that is,

there exists a a payoff vector V that dominates U and V is bS-feasible for all
S ⊇ D.

Fix ϵ > 0 such that V (t) > U(t) + ϵ for all t ∈ D.
Consider any W ≤ U + ϵ.
Note that D ⊆ DW := {t ∈ T |V (t) > W (t)}. Thus, V is bD

W

-feasible,
implying that (bD

W

, V ) is a neologism for (b∗,W ).
We conclude that U is not a b∗-neo-optimum.
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5 Neo-optimum in specific settings

5.1 Private-value settings

Mylovanov and Tröger (2012) establish a solution for a principal who “has
private information that is not directly payoff relevant to the agents, but
may influence her design”—the private-values case. The concept, strongly
neologism-proof allocations, is a generalization of strong unconstrained Pareto
optimum (SUPO) defined by Maskin and Tirole (1990). In our companion
paper Mylovanov and Tröger (2025) we show it is equivalent to neo-optimum.

Proposition 5. (Mylovanov and Tröger, 2025) Consider a separable generalized-
private-values environment in the sense of Mylovanov and Tröger (2012).
Consider any interior prior b∗. Then a payoff vector U is strongly neologism-
proof if and only if U is a b∗-neo-optimum.

Together with Proposition 2 this resolves a long-standing open question
concerning the relation between the private-values solution concepts and
neutral optimum: in any separable generalized-private-values environment
that is also a Bayesian incentive problem, any neutral optimum is strongly
neologism-proof. Since strong neologism-proofness often yields sharp prop-
erties related to competitive equilibria (Maskin and Tirole, 1990)—such as
ex-ante optimality in quasi-linear settings (Mylovanov and Tröger, 2014)—
the same properties apply to any neutral optimum.

From the existence result in Mylovanov and Tröger (2012) together with
the only-if part of Proposition 5, we can also conclude that a neo-optimum
broadly exists in private-value settings, including settings that do not sat-
isfy the finiteness properties of Bayesian incentive problems as defined by
Myerson (1983).

As an intermediate step towards proving Proposition 5, we employ yet
another solution concept. In a sense, this is the missing piece that allows
to connect private-values settings to neutral optimum. The concept was
invented by Koessler and Skreta (2023) in a non-private-values context of
information design. Given any belief b∗, a payoff vector U is b∗-interim-
optimal if (i) U is b∗-feasible and (ii) there does not exist a belief b together
with a b-feasible payoff vector V such that supp(b) ⊆ {t ∈ T |V (t) > U(t)}.
Interim-optimality is easily seen to be at least as strong as neo-optimum (and
the result has nothing to do with private values):
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Remark 2. Consider any informed-principal setting. Given any interior
belief b∗, any b∗-interim-optimal payoff vector is a b∗-neo-optimum.

Proof. Consider any b∗-interim optimal payoff vector U . Then, for all ϵ > 0,
no neologism exists for (b∗, U + ϵ). Thus, U is a limit of b∗-neologism-proof
payoff vectors, showing that it is a neo-optimum.

Interim-optimality—in contrast to neo-optimum—is not a generally ap-
plicable solution concept because existence may fail, as can be seen in our
Spence example with b∗ > (θH − θL)/θH .

To prove Proposition 5 in our companion paper, we first show that in
private-values settings, interim-optimality and neo-optimality are in fact
equivalent. Then we use the separability assumption in Mylovanov and
Tröger (2012) to show that interim-optimality and strong neologism-proofness
are equivalent.

5.2 Neo-optimum in settings with certification

Koessler and Skreta (2019) consider a seller-principal who proposes a mecha-
nism to guide her interaction with a single buyer. Values are interdependent:
each trader has private information concerning both traders’ valuations. The
seller can provide partial or complete evidence about (i.e., “certify”) her type.
The model fits into our framework, with Lemma 1 in Koessler and Skreta
(2019) describing the sets of feasible payoff vectors for all beliefs.

Koessler and Skreta (2019) propose a solution concept, strong Pareto op-
timum (SPO). They show that any prior-feasible SPO is an expectational
equilibrium and is ex-ante optimal, but it exists only in settings with suf-
ficient (e.g., full) certifiability. Using neo-optimum instead of SPO as a so-
lution concept in their setting, existence is generally guaranteed and their
qualitative results remain largely intact. In the following we sketch how.

Remark 3. Let b∗ denote an interior prior belief. Any b∗-feasible SPO as
defined in Koessler and Skreta (2019) is a b∗-neo-optimum.

Proof. Consider a b∗-feasible SPO (payoff/profit vector) V ∗. We show that
for any ϵ > 0, the payoff vector V ∗+ϵ is neologism-proof. Suppose there exists
a neologism (b, U) for (b∗, V ∗ + ϵ). Define a payoff vector V via V (t) = U(t)
for all t ∈ supp(b), and V (t) = V ∗(t) for all other t. Then (using the
terminology of Koessler and Skreta (2019)) V is “buyer-feasible” at the belief
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π = b. Moreover, V (t) ≥ V ∗(t) for all t ∈ T , with strict inequality for
all t ∈ supp(b), contradicting the definition of an SPO payoff vector. We
conclude that V ∗ is a limit of b∗-neologism-proof payoff vectors, and hence is
a b∗-neo-optimum.

Thus, all the properties that we have established for neo-optima also hold
for any prior-feasible SPO. Moreover, in all cases where there is a unique neo-
optimum, it is identical to prior-feasible SPO if the latter exists.

Note that Koessler and Skreta (2019) includes two extreme cases, full
certifiability and no certifiability (“soft information”). Importantly, SPO is
a generally useful solution concept only under sufficient certifiability, while
neo-optimum can always be used.

Remark 4. Let b∗ denote an interior prior belief. A b∗-feasible SPO as
defined in Koessler and Skreta (2019) may not exist with soft information,
but a b∗-neo-optimum always exists.

Koessler and Skreta (2019) themselves remark on the non-existence prob-
lem. Interestingly, non-existence can also be seen from our Spence-job-
market example, restricted via a (sufficiently high) highest feasible task level
e. Equivalently, we may assume that only two task levels, 0 and e, are feasi-
ble. This setting is included as a soft-information case in Koessler and Skreta
(2019). The worker-principal is the seller. Selling her labor with a certain
probability p means working at the task level e = pe. Thus, our Spence ex-
ample with the prior b∗ slightly below (θH−θL)/θH yields instances where no
b∗-feasible SPO exists because it would be ex-ante optimal by the results in
Koessler and Skreta (2019) and would be a b∗-neo-optimum by our Remark
3.

Neo-optimum, however, always exists: any setting considered in Koessler
and Skreta (2019) is a Bayesian incentive problem, except that feasibility
is defined without truthtelling constraints for the principal; as observed in
Koessler and Skreta (2023), Myerson’s 1983 proof that a neutral optimum
exists extends and, by the same logic as in our Proposition 2, any neutral
optimum is a neo-optimum.

In the other extreme case, full certifiability, the main qualitative insight of
Koessler and Skreta (2019) is that a prior-feasible SPO exists and is ex-ante
optimal. But this is also true for neo-optimum.

Remark 5. With full certifiability, any neo-optimum is ex-ante optimal.
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Indeed, in the proof of Proposition 3 in Koessler and Skreta (2019), the
pair (π0, Ṽ ) is a neologism for (π0, V̂ ) because with full certifiability there
are no incentive constraints for the seller.

5.3 Neo-optimum in information-design settings

Koessler and Skreta (2023) analyze information design by a privately in-
formed designer. Their setting fits into our framework.16 Koessler and Skreta
(2023) introduce a new solution concept, interim optimality, which we have
generalized to arbitrary informed-principal settings in Section 5.1. The main
results in Koessler and Skreta (2023) concern existence of interim-optimum
in their setting, the proof that interim-optima are perfect-Bayesian equilibria,
and characterization results in special settings.

From Remark 2 we know that any interim optimum is a neo-optimum.
In the different variants of the introductory prosecutor-judge example in
Koessler and Skreta (2023) the reverse is also true, that is, any neo-optimum
is interim-optimal. The question to what extent this reverse implication
holds in general information-design settings is left for future research.

Consider the three-actions variation of the prosecutor-judge setting in
Koessler and Skreta (2023) with a belief that the defendant is guilty with a
probability b < 1/3. A payoff vector (U(tG), U(tI)) is b-feasible if and only if

U(t) = 2µ(a2|t) + 3µ(a3|t) for t ∈ {tG, tI},

where µ is a mechanism that satisfies the relevant obedience constraints, that
is, µ is b-incentive compatible as defined in Koessler and Skreta (2023).

To prepare, we extend the arguments in Koessler and Skreta (2023) to
show the following.

Lemma 4. Consider a belief 0 < b < 1/3 in the three-actions variation of
the prosecutor-judge setting in Koessler and Skreta (2023). The set of b-
feasible payoff vectors is the convex hull of the points (0, 0), (3, 0), (3, 3

2
b

1−b
),

and (2, 4 b
1−b

).

See Figure 5 for an illustration of the b-feasibility set and the b′-feasibility
set for some 0 < b < b′ < 1/3.

16Note a special feature of information-design settings: different types of the principal
cannot imitate each other in a given direct mechanism. Thus, even in settings with state-
independent preferences the feasibility of a payoff vector does not exclude the possibility
that different types obtain different payoffs.
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type tG’s payoff

type tI ’s payoff

b-feasible

b′-feasible

Figure 3: The sets of feasible payoff vectors at different beliefs 0 < b < b′ < 1/3
in the three-action prosecutor-judge example in Koessler and Skreta (2023). The
thick vertices refer to the ex-ante optimal point (2, 4 b

1−b
) (or, resp., (2, 4 b′

1−b′
)) and

the point (3, 32
b

1−b
) (or, resp., (3, 32

b′

1−b′
)) where the information designer splits the

believed probability of the guilty type tG into 0 and 2/3.

Koessler and Skreta (2023) show that, in the three-action and four-action
prosecutor-judge examples with a prior belief b∗ < 1/3, a payoff vector U∗ is
interim-optimal if and only if

(*) U∗ is b∗-feasible and U∗(tG) = 3.

We claim that condition (*) is also necessary for U∗ to be a b∗-neo-optimum.
Consider the three-action version and consider a b∗-neo-optimum U∗. By

feasibility, U∗(tG) ≤ 3. Suppose that U∗(tG) < 3.
Defining V = (3, 3

2
b∗

1−b∗
), note first that (b∗, V ) is a neologism for all

U ≤ V , U ̸= V .
By Lemma 4, for any b∗-feasible U with U(tG) < 3, there exists a b′-

feasible V with b′ > b∗, V (tG) > U(tG), and V (tI) = U(tI). Thus, (b′, V ) is
a neologism for U .

These arguments contradict the fact that U∗ is a b∗-neo-optimum. This
completes the proof that U∗ satisfies (*) in the three-action version.

The arguments extend easily to the four-action version. Because the de-
signer’s payoff from action a0 is smaller than from action a3, the b-feasibility
sets in the four-action version are more restricted than in the three-action
version, for all b. But the points (0, 0), (3, 3

2
b

1−b
), and (2, 4 b

1−b
) are still fea-
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sible for all b < 1/3. Thus the above arguments showing the necessity of (*)
extend to the four-action version.

In the two-action version of the prosecutor-judge example in Koessler and
Skreta (2023), the equivalence between neo-optimum and interim-optimum
follows with the help of Remark 1.

5.4 Bilateral trade with interdependent values

For another illustration of Kakutani PBE and neo-optimum, let the principal
be a seller who, as in Dosis (2022), proposes a mechanism for determining
the probability q ∈ [0, 1] that she produces a unit of an indivisible good
for a buyer, and let p ∈ R denote the buyer’s payment. The principal has
one of two (non-negative) cost types, T = {c1, c2}. Any belief b can be
identified with the probability of the type c2, that is, b ∈ B = [0, 1]. Let
p − ciq (i = 1, 2) denote the principal’s payoff if she has the type ci, sells
with probability q, and receives the payment p; the buyer then obtains the
payoff −p + viq, where v1 > c1, v2 > c2, and v2 > v1. If the payments
were bounded, the analysis would remain the same and the setting would
be a Bayesian incentive problem, implying that a neo-optimum exists (cf.
Corollary 2).

A mechanism is a game form in which the seller and the buyer play,
and each end node is a probability-payment pair (q, p) ∈ [0, 1] × R. The
mechanism is played if the buyer accepts it. By the revelation principle, given
any belief b ∈ B, the mechanism (or, more precisely, the action of proposing
the mechanism) implements a probability-payment pair17 (qi(b), pi(b)) for
each type ci such that incentive compatibility is satisfied,

p1 − c1q1 ≥ p2 − c1q2 and p2 − c2q2 ≥ p1 − c2q1, (9)

and the buyer’s participation constraint is satisfied,

(1− b)(v1q1 − p1) + b(v2q2 − p2) ≥ 0. (10)

Thus,
K = {(b, (p1 − c1q1, p2 − c2q2)) | (9), (10)}.

We now distinguish two cases. In the first, c1 < c2; this is consistent with the
interpretation that the seller has a low-quality good if her type is c1 and has

17Given the linearity of the payoff functions, probability distributions over probability-
payment pairs need not be considered.
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a high-quality good if her type is c2. In the second case, c1 > c2; recalling
v1 < v2, this case can be interpreted in terms of fit: if the seller’s type is c1
then the good is a relatively better fit for the seller, and otherwise fits the
buyer relatively better.

For any set of payoff vectors S, denote the payoff vectors that are below
some payoff vector in S along a 45 degree ray by

diagray(S) = {U | ∃x ≥ 0 : U + (x, x) ∈ S}.

As is clear from the constraints (9) and (10), if all payoff vectors in a set S are
b-feasible for some b ∈ B, then all payoff vectors in diagray(S) are b-feasible
as well because the payments to all types of the seller may be changed by
the same amount x.

Consider now the quality-uncertainty case c1 < c2. After standard ma-
nipulations of the constraints (9) and (10), we obtain the following charac-
terization,

K =
⋃

b∈B

{b} × diagray (conv {((1− b)v1 + bv2 − c1, (1− b)v1 + bv2 − c2)),

⋃

b∈B

{b} × diagray(conv ((1− b)(v1 − c1), (1− b)(v1 − c1))}) .

where conv{. . . } denotes the line section between two “vertex” payoff vectors.
The first of these arises from both types selling with probability 1, and the
payment is equal to the buyer’s expected valuation. The second vertex payoff
vector arises from type c1 selling with probability 1 and type c2 selling with
probability 0, where the payments are determined such that the incentive
constraint of type c1 (that is, the left constraint in (9)) and the agent’s
participation constraint (10) are binding (in particular, whenever b < 1 so
that the buyer is not certain to face type c2, a seller of this type obtains a
payment although she is not selling anything).

As illustrated in Figure 4, the bounding line sections tilt around a com-
mon point U that is feasible at all beliefs. This point is characterized as
follows. The payoff of a type-c1 seller is maximized across all points in the
0-feasible set K(0), that is, under the constraint that the buyer is sure to face
type c1 and accepts the mechanism. This is achieved via the type-c1 seller
selling the good for sure (i.e., q1 = 1) and have the buyer pay p1 = v1. The
vertical component of the tilting point can be computed by the type-c2 seller
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maximizing her payoff across all points in the 1-feasible set that satisfy the
incentive constraint of type c1 given her outcome (q1, p1). This is achieved
at the outcome (q2, p2) such that −c1 + v1 = −q2c1 + p2 and q2v2 − p2 = 0,
that is,

q2 =
v1 − c1
v2 − c1

, p2 =
v1 − c1
v2 − c1

v2.

(In particular, q2 < 1 so that the high-quality seller keeps the good with
positive probability.)

By Lemma 1, any Kakutani PBE is above U . Thus, whenever the 1st
vertex does not dominate U (that is, at all interior prior beliefs b∗ sufficiently
close to 0), the point U is the unique Kakutani PBE which, by Proposition
1 then also is the unique neo-optimum. Using Corollary 1, we conclude that,
for all interior priors, the set of Kakutani PBEs is equal to the points above
U that are feasible given the prior. Using Remark 1, the 1st vertex is the
unique neo-optimum if it dominates U strictly. In the non-generic case where
a seller of type c2 is indifferent between U and the 1st vertex, the line section
connecting these two points is the set of neo-optima.

Consider now the fit-uncertainty case c1 > c2. After standard manipula-
tions of the constraints (9) and (10), we obtain the following characterization,

K =
⋃

b∈B

{b} × diagray (conv {((1− b)v1 + bv2 − c1, (1− b)v1 + bv2 − c2),

⋃

b∈B

{b} × diagray(conv (b(v2 − c2), b(v2 − c2))}) .

The first “vertex” payoff vector argument in conv{. . . } is the same as in
the quality-uncertainty case (i.e., both seller types sell with probability 1 at
a price equal to the buyer’s expected valuation). The second vertex payoff
vector arises from type c1 selling with probability 0 and type c2 selling with
probability 1, where the payments are determined such that the incentive
constraint of type c2 (that is, the right constraint in (9)) and the agent’s
participation constraint (10) are binding (in particular, whenever b > 0 so
that the buyer is not certain to face type c1, a seller of this type obtains a
payment although she is not selling anything).

As illustrated in Figure 5, the b-feasibility sets are nested, with a larger
probability b of the type c2 leading to more feasible points. The largest point
that is common to all b-feasibility sets, U , arises from the 1st vertex at b = 0,
that is, both seller types sell with probability 1 at the price v1.
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type c1’s payoff

type c2’s payoff
K(0)

K(1
4
)

2nd vertex at b = 1
4

1st vertex at b = 1
4

K(3
4
)

K(1)

U

45◦

Figure 4: The sets of b-feasible payoff vectors at different beliefs b in the informed-
seller example with quality-uncertainty (we omit the parts of the feasible sets that
are to the left of the vertical axis). In contrast to the Spence example, the feasibility
sets are not nested across different beliefs. Each b-feasibility set is bounded by the
line section between the corresponding 1st and 2nd vertices, and includes all points
below this line section along 45 degree rays. As b changes, the line sections tilt
around a common point U that is feasible at all beliefs. (The diagram corresponds
to the case c1 = 1, c2 = 3, v1 = 2, v2 = 4.)
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type c1’s payoff

type c2’s payoff

K(0)

K(1
4
) \K(0)

1st vertex at b = 1
4

2nd vertex at b = 1
4

K(3
4
) \K(1

4
)

K(1) \K(3
4
)

U

45◦

Figure 5: The sets of b-feasible payoff vectors at different beliefs b in the informed-
seller example with fit-uncertainty (we omit the parts of the feasible sets that are to
the left of the vertical axis). The feasibility sets are nested across different beliefs.
Each b-feasibility set is bounded by the line section between the corresponding 1st
and 2nd vertices, and includes all points below this line section along 45 degree
rays. The largest payoff vector that is feasible at all beliefs is U . (The diagram
corresponds to the case c1 = 1, c2 = 0, v1 = 2, v2 = 4.)
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Given any interior prior belief b∗, the set of Kakutani PBE is easily char-
acterized. By Lemma 1, any Kakutani PBE is above U . On the other hand,
any b∗-feasible point above U is a Kakutani PBE because the “pessimistic”
off-path belief b = 0 can always be used.

Using Remark 1, the 1st vertex is the unique neo-optimum if it dominates
all other b∗-feasible points strictly (which happens for all b∗ sufficiently close
to 0 and is the case if b∗ = 1/4 in Figure 5).

For all b∗ sufficiently close to 1 (such as in the case b∗ = 3/4 in Figure 5),
there exist multiple b∗-feasible points above U that are on the b∗-weak-Pareto
frontier. Thus, neither Proposition 1 nor Remark 1 are useful to determine
which of these points is a neo-optimum. Similar arguments as in our Spence
example show that the 1st vertex is the unique neo-optimum.

We conclude that the 1st vertex, where the good is sold with probability
1 by both types, is the unique neo-optimum at all interior prior beliefs.

It is straightforward to show that the 1st vertex also is the ex-ante opti-
mum. However, given any sufficiently large b∗, a trivial change of the setting
will let the ex-ante optimum switch to the 2nd vertex while the neo-optimum
remains at the 1st vertex: just assume that the payoff function of the type
c1-seller is instead given by α(p− c1q), where α is large; this will stretch Fig-
ure 5 horizontally by the factor α. The example is noteworthy because then
the 2nd vertex is both a Kakutani PBE and yields a higher ex-ante expected
payoff than the 1st vertex, yet the 1st vertex is the unique neo-optimum.

Appendix: omitted proofs

Proof of Lemma 3. Fix any ϵ > 0. Denote by U the (compact) convex hull
of ∪P∈P,b′∈BP (b′). Define, for any n ∈ IN, any list of payoff vectors (UP )P∈P

with UP ∈ U , and any t ∈ T , the choice probability

Ψn((UP )P∈P)P (t) =
nUP (t)

∑

P ′∈P nUP ′ (t)
.

Note that, for any n, the map

Ψn : U
|P|

−→ IR|P|·|T |, (UP )P∈P 7→ Ψn((UP )P∈P) is continuous.

Denote by Cn the (compact) convex hull of Ψn(U
|P|
). Note that

∑

P∈P cP (t) =
1 for all t ∈ T and all (cP )P∈P ∈ Cn.
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For any (cP )P∈P ∈ Cn, define b̂(cP ) ∈ B by

b̂(cP )(t) =
b(t)cP (t)

∑

t′∈T b(t′)cP (t′)
for all t ∈ T.

Define a correspondence

Cn : U
|P|

× Cn −→ U
|P|

× Cn

by

Cn((UP )P∈P , (cP )P∈P) = (P (b̂(cP )))P∈P ×Ψn((UP )P∈P).

Because b̂ is continuous, the correspondence Cn is upper-hemicontinuous and

convex-valued. Moreover, U
|P|

×Cn is convex and compact. Hence, by Kaku-
tani’s Theorem, Cn has a fixed point

((UP,n)P∈P , (cP,n)P∈P) .

Now choose a subsequence nl → ∞ such that, for all P ,

bP,nl

def

= b̂(cP,nl
) → b∗P for some b∗P ∈ B,

and
UP,nl

→ U∗
P for some U∗

P ∈ U , (11)

and, for all t ∈ T ,

cP,nl
(t) → c∗P (t) for some c∗P (t) ≥ 0.

Hence,

sP,nl

def

=
∑

t′∈T

bP,nl
(t′)cP,nl

(t′) → s∗P
def

=
∑

t′∈T

b∗P (t
′)c∗P (t

′).

Observe that, by the definition of the fixed point,

UP,nl
∈ P (bP,nl

) for all l.

Taking the limit l → ∞ and using the upper-hemicontinuity of P , we obtain
the conclusion

U∗
P ∈ P (b∗P ). (12)
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By definition of b̂, for all P and t,

b(t)cP,nl
(t) = bP,nl

(t)sP,nl
.

Taking the limit l → ∞, we obtain

b(t)c∗P (t) = b∗P (t)s
∗
P for all P and t. (13)

Observe that, for all P ∈ P and t ∈ T ,

if c∗P (t) > 0, then U∗
P (t) ≥ U∗

P ′(t) for all P ′ ∈ P . (14)

Indeed, if we had U∗
P (t) < U∗

P ′(t) for some P ′, then

UP ′,nl
(t)− UP,nl

(t) > ϵ
def

=
U∗
P ′(t)− U∗

P (t)

2
> 0

for all large l, implying—by definition of Ψnl
—that

cP ′,nl
(t)

cP,nl
(t)

= (nl)
UP ′,nl

(t)−UP,nl
(t) > (nl)

ϵ → ∞,

contradicting the fact that 0 < c∗P (t) = liml cP,nl
(t).

Next,
∑

P∈P c∗P (t) = 1 for all t by definition of b̂. Using (13) with t = t′

and t = t′′,

b∗P (t
′)c∗P (t

′′)b(t′′) = c∗P (t
′)b(t′)b∗P (t

′′) for all t′, t′′ ∈ T.

The proof is completed by defining U∗(t) = maxP∈P U∗
P (t) for all t.

Proof of Lemma 4. Note first that the feasibility set belongs to the set of
realizable payoff vectors [0, 3]2. Koessler and Skreta (2023) show that all four
points mentioned in the lemma are b-feasible; let µ1 denote a mechanism
that yields the payoff vector (0, 0), let µ2 denote a mechanism that yields
the payoff vector (3, 0), let µ3,b denote a mechanism that yields the payoff
vector (3, 3

2
b

1−b
), and let µ4,b denote a mechanism that yields the payoff vector

(2, 4 b
1−b

). In the following, we fix µ4,b as follows:

µ4,b(a0|G) = µ4,b(a3|G) = µ4,b(a3|I) = 0, µ4,b(a2|G) = 1,

µ4,b(a0|I) =
1− 3b

1− b
, µ4,b(a2|I) =

2b

1− b
.
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To further discuss the feasibility restrictions, we need to consider the obe-
dience constraints. To this end, we must fix a payoff function for the agent
that induces the agent’s belief-dependent action as described in Koessler and
Skreta (2023). Let

u1(a0|G) = u1(a0|I) = 0, u1(a2|G) = 2, u1(a2|I) = −1, u1(a3|G) = 3, u1(a3|I) = −3.

Define

g = −2
b

1− b
and g =

5

2

b

1− b
.

We will show that, for all g ∈ [g, g], the mechanism µ4,b maximizes the
weighted average of the principal-types’ payoffs, where g denotes the weight
on type tG, while the payoff of type tI has the weight 1. Formally, we show
that (*) µ4,b is a maximizer of the function

ϕg(µ) = g(2µ(a2|tG) + 3µ(a3|tG)) + 2µ(a2|tI) + 3µ(a3|tI)

subject to the b-feasibility constraints for the mechanism µ. This proves the
lemma because

ϕg(µ
4,b) = ϕg(µ

3,b) and ϕg(µ
4,b) = ϕg(µ

1).

To show (*), we verify that the Karush-Kuhn-Tucker first-order conditions
are satisfied at the point µ = µ4,b for all g ∈ [g, g]. Let λ3,0 denote the
Lagrangian multiplier for the obedience constraint that the agent when the
recommended action is a3 cannot gain from taking action a0 instead. Let
λ3,2, λ2,0, λ2,3, λ0,2, and λ0,3, denote the Lagrangian multipliers of the other
obedience constraints, where in all variables the first lower index indicates
the recommended action and the second indicates a non-recommended action.
The KKT conditions require that

λ2,3 = λ0,2 = λ0,3 = 0

because the corresponding obedience conditions are not binding at µ4,b. The
other three obedience constraints are binding at µ4,b, implying that the KKT
conditions require the inequalities

λ3,0 ≥ 0, λ3,2 ≥ 0, λ2,0 ≥ 0. (15)
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Let λG and λI denote the Lagrangian multipliers for the probability con-
straints

µ(a0|tG) + µ(a2|tG) + µ(a3|tG) = 1,

µ(a0|tI) + µ(a2|tI) + µ(a3|tI) = 1.

We will not introduce Lagrangian multipliers for the probability-boundary
constraints 0 ≤ µ(a|t) ≤ 1, but will write the KKT conditions as appropriate
inequalities.

Differentiating the Lagrangian with respect to µ(a0|tI) yields the first-
order condition

λI = 0.

(Note that the condition is an equality because 0 < µ4,b(a0|tI) < 1, implying
that the probability-boundary constraints are not binding.)

Differentiating the Lagrangian with respect to µ(a0|tG) yields the first-
order condition

λG ≤ 0.

Differentiating the Lagrangian with respect to µ(a2|tI) yields the first-order
condition

2 + λ2,0(1− b)(−1) = 0,

where we have already used that λI = 0. Differentiating the Lagrangian with
respect to µ(a2|tG) yields the first-order condition

r · 2 + λG + λ2,0b · 2 ≥ 0. (16)

Differentiating the Lagrangian with respect to µ(a3|tI) yields the first-order
condition

3 + λ3,0(1− b)(−3) + λ3,2(1− b)(−2) ≤ 0.

Differentiating the Lagrangian with respect to µ(a3|tG) yields the first-order
condition

r · 3 + λG + λ3,0b(−3) + λ3,2b · 1 ≤ 0. (17)

Here we can interpret (16) as an upper bound for −λG and (17) as a lower
bound (essentially we are applying the Fourier-Motzkin algorithm in the
following). Thus we can remove λG from the first-order system of equations
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and inequalities and conclude that a solution to the Karush-Kuhn-Tucker
condition exists if and only if the following system has a solution:

2 + λ2,0(1− b)(−1) = 0,

r · 2 + λ2,0b · 2 ≥ 0,

3 + λ3,0(1− b)(−3) + λ3,2(1− b)(−2) ≤ 0,

r · 2 + λ2,0b · 2 ≥ r · 3 + λ3,0b(−3) + λ3,2b,

and (15). The first equation implies λ2,0 = 2/(1− b) > 0. Plugging this into
the remaining conditions yields the simplified system

r · 2 + 4
b

1− b
≥ 0,

b

1− b
4− r ≥ 3bλ3,0 + bλ3,2,

3 ≤ 3(1− b)λ3,0 + 2(1− b)λ3,2,

λ3,0 ≥ 0,

λ3,2 ≥ 0.

This can be rearranged as follows.

r ≥ g,

λ3,2 ≤
1

1− b
4−

1

b
r − 3λ3,0,

3

2

1

1− b
−

3

2
λ3,0 ≤ λ3,2,

λ3,0 ≥ 0,

λ3,2 ≥ 0.

Now we can remove λ3,2 and simplify to

r ≥ g,

0 ≤
1

1− b
4−

1

b
r − 3λ3,0,

3

2

1

1− b
−

3

2
λ3,0 ≤

1

1− b
4−

1

b
r − 3λ3,0,

λ3,0 ≥ 0.
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After rearranging terms,

r ≥ g,

λ3,0 ≤
1

1− b

4

3
−

1

b
r
1

3
,

λ3,0 ≤
1

1− b

5

3
−

1

b
r
2

3
,

λ3,0 ≥ 0.

Thus, a solution exists if and only if

r ≥ g,

0 ≤
1

1− b

4

3
−

1

b
r
1

3
,

0 ≤
1

1− b

5

3
−

1

b
r
2

3
,

which is equivalent to g ≤ r ≤ g.
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