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Abstract

Blockchain capacity constraints induce congestion when many users want to transact at the

same time, challenging the usability of cryptocurrencies as money. This paper argues that

blockchain capacity constraints, coupled with the need to incentivize miners (validators) to

maintain blockchain security, lead to low inŕation outcomes when cryptocurrencies compete

for user demand. If two coins are both used as medium of exchange, a low-inŕation coin

must experience higher congestion than a high-inŕation coin; otherwise demand for the latter

is zero. Coin issuers then strategically undercut each other’s money growth rates to boost

transaction demand, limiting the overall inŕation rate of the economy. However, the equilibrium

is necessarily inefficient given unrealized gains from trade due to congestion and the cost of

maintaining blockchain security.
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1 Introduction

Economists have debated the feasibility as well as the costs and beneőts of private currency compe-

tition for a long time, dating back to at least Hayek’s Denationalization of Money (1976). The idea

is that private money initiatives compete for demand by promising more price-stable currencies than

their competitors. The arrival of many blockchain-operated currencies since the inception of Bitcoin

in 2008 has thrust this issue into the forefront of discussion. However, the usability of blockchain

currencies as money is called into question for two reasons.

First, the decentralized nature of the network induces capacity constraints. As an example, the

Ethereum network adds transactions to its ledger roughly every 10 seconds; given the block size of

around 12 MB, this corresponds to 10-15 transactions per second. The system is thus unable to

process as many transactions as users may submit.

Second, preserving the security of such decentralized networks exacts substantial costs. In the

case of Bitcoin and other blockchains employing Proof-of-Work protocols, the network participant

who updates that state of the blockchain is determined based on computing power. Honest miners

require ample amounts of computing power in order to make it prohibitively costly to attack the

blockchain. In the case of Ethereum and other blockchains employing Proof-of-Stake protocols,

validators must lock up their wealthÐthat is, stake their coinsÐin order to update the blockchain.

Honest validators require the majority stake in order to ensure network security. Providing large

amounts of computing power and locking up large amounts of wealth is economically costly.

In light of new blockchain technology and its apparent drawbacks, this paper sets out to revisit

the fundamental question: does currency competition work? In particular, does the private provision

of blockchain-operated coins lead to low inŕation outcomes?

I address these questions in a modiőed version of the workhorse monetary model of Lagos and

Wright (2005). At the heart of the model is the idea that some economic interactions require a

medium of exchange. This role is fulőlled by many competing, intrinsically worthless coins which

are operated on blockchains. Given their lack of intrinsic value, I assume that all coins are perfect

substitutes.

I add two constraints on these blockchain-operated coins. First, each individual blockchain

faces a capacity constraint: the probability that a given user’s submitted transaction is veriőed
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successfully depends on the total number of users who submit transactions for veriőcation on the

blockchain. More precisely, when more transactions are submitted to the blockchain than its capac-

ity, some transactions cannot occur and gains from trade are not realized. Probabilistic transaction

veriőcation captures any nuisance to users caused by congestion in a reduced form, including delayed

transaction veriőcation and increases in transaction fees.1 Total capacity across all blockchains is,

in principle, sufficient to cover all potential transactions.

Blockchain capacity constraints induce a trade-off. Coin holders prefer media of exchange which

offer price stability, i.e. low inŕation rates, and allow for transaction veriőcation when needed.

Therefore, if one coin experiences congestion while another coin does not, it must be that high-

congestion coin is also experiencing lower inŕation. Otherwise, the demand for the congested

blockchain’s coin would fall to zero. Importantly, blockchain congestion requires that many users

employ the blockchain-native coin in their transactions. Congestion is thus associated with high

demand.

The second constraint captures the need to maintain the security of the blockchain. Miners

(validators) receive block rewards from coin issuance, i.e. the blockchain’s seigniorage income. This

implies that a coin’s price cannot fall below a certain threshold level for a given nominal coin

issuance. Otherwise miners supply too little computing power (validators stake too few coins) to

maintain blockchain security. The system becomes susceptible to attacks and fails to provide a

medium of exchange.

Given the second constraint, I identify weak sufficient conditions such that coins with lower coin

growth rates also experience lower inŕation rates. If coins with low growth rates experience higher

inŕation rates than high-growth coins, then the market value of the low-growth coins must tend to

zero. This is inconsistent with an equilibrium in which both coins fulőll the role of the medium of

exchange. As time passes, the low-growth blockchain becomes unsecured and susceptible to attacks.

All users sell the coin in anticipation, and its price immediately falls to zero. Thus, if two coins

jointly circulate in the economy, low-growth coins experience low inŕation rates.

An undercutting logic emerges in equilibrium. If two coins are used as media of exchange, setting

the coin growth rate below another coin’s growth rate boosts blockchain capacity utilization. As

the relative inŕation rate falls, the demand for transaction veriőcation jumps upwards. Operators

1I model transaction fees that rise with capacity utilization explicitly in one of the extensions.
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of blockchains with under-utilization then face strict incentives to undercut other blockchain’s mon-

etary policy in order to achieve capacity over-utilization, i.e. induce congestion. It is in this sense

that blockchain congestion facilitates currency competition.

In equilibrium, coin growth rates and thus miner (validator) income are so low that the total

capacity of all coins in circulation is insufficient to verify all desired transactions. That is, congestion

occurs in equilibrium. The equilibrium thus features opposing welfare effects. First, lower coin

growth rates and subsequent lower inŕation rates invite larger coin balances. This raises the welfare

of coin users whose transactions are veriőed. However, some gains from trade cannot be realized.

This reduces the welfare of unsuccessful coin users. Furthermore, all coin users are subject to strictly

positive inŕation since miners (validators) must receive a strictly positive transfer from coin users

in order to supply computing power (wealth). The need to maintain blockchain security thus has

real welfare costs.

Note one important caveat to the reasoning above. Whether a coin is used as medium of

exchange is an outcome of coordination. Consequentially, a model with a single őat currency

typically has many equilibria with two steady states, including one in which the currency is not

valued (Obstfeld and Rogoff, 1983).2 The problem runs even deeper in multi-currency economies,

as one can construct many equilibria in which different subsets of currencies are valued (Fernández-

Villaverde and Sanches, 2019). It is therefore impossible to determine the equilibrium set of coins

in circulation, given private monetary policies, without making additional assumptions.

The natural, arguably most conservative assumption is to extend the relationship between coin

growth rates and inŕation rates from the indeterminate set of circulating coins to the full set

of coins that could possibly circulate. I therefore assume that low coin growth coins are valued in

equilibrium and experience low inŕation rates. High coin growth rates are also valued in equilibrium

and experience high inŕation ratesÐunless these inŕation rates are so high that users prefer to

switch to low-inŕation high-congestion blockchains. The price of high growth coins then falls to

zero. Without such a reőnement, it is straightforward to construct equilibria in which currency

competition leads to high inŕation outcomes. As an example, suppose coordination is such that a

coin is only valued if its supply doubles every period. Clearly setting a money growth rate of 100%

is then optimal, and currency competition does not work.

2The contribution of Obstfeld and Rogoff (1983) is to point out that one needs to make the rather extreme
assumption of inőnite negative utility in the non-monetary steady state in order to rule it out.
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It is useful to contrast my results to a benchmark without blockchain capacity constraints and

security costs as in Fernández-Villaverde and Sanches (2019). Importantly, without blockchain

capacity constraints, all coins circulating as medium of exchange must feature the same inŕation

rate (Fernández-Villaverde and Sanches, 2019; Schilling and Uhlig, 2019; Benigno et al., 2022). If

coins are perfect substitutes, then demand for a coin experiencing a relatively higher inŕation rate

than another coin must be zero. With inŕation rates equalized, coin holders are indifferent between

all coins in circulation. As a consequence, the equilibrium portfolio breakdown between coins as well

as their relative prices are indeterminate, a result őrst obtained by Kareken and Wallace (1981).

Then, taking coin prices as given, blockchain operators őnd it proőtable to issue large amounts

of coins whenever the price is strictly positive, inevitably inducing highly inŕationary outcomes

(Fernández-Villaverde and Sanches, 2019).

The model lends itself to many extensions. First, I add transaction fees which are weakly

increasing in the degree of blockchain congestion and show that the results are robust. Second, I

allow for blockchain applications other than providing a medium of exchange. In particular, I assume

that a subset of blockchains acts as a registry of the ownership of digital assets. Then whenever

assets are registered on the blockchain, the blockchain-native coin must be valued in equilibrium.

Otherwise purchasing the asset would incur zero costs, which constitutes a clear arbitrage. In a

similar vein, blockchain applications guarantee that high-growth coins experience high-inŕation, as

any path that takes the coin price of low-growth coins with assets registered on the corresponding

blockchain to zero cannot be an equilibrium outcome. Blockchain applications therefore ensure

currency competition.

Literature review. This paper is primarily related to the two literatures on currency competition

and blockchain economics. I start by discussing the former.

The most closely related work is by Fernández-Villaverde and Sanches (2019) who conclude that

competition among perfectly substitutable, intrinsically worthless currencies leads to inŕationary

outcomes. My paper not only provides a much more realistic description of blockchain currencies

but also obtains very different results. Other papers discuss different types of competitors. Schilling

and Uhlig (2019) focus on competition between a private money and government money. They also

rediscover the result of Kareken and Wallace (1981), albeit in its stochastic form as in Manuelli and

Peck (1990). Benigno et al. (2022) show that a global currency, which is perfectly substitutable with
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government money, induces two outcomes. First, all monetary policies across countries in which

private money circulates are synchronized. Second, if the global currency pays interest, then all

monetary authorities are forced to compete by removing the opportunity cost of their own money,

i.e. setting the interest rate on government bonds to zero. In Cong and Mayer (2022), governments

compete with a cryptocurrency by introducing central bank digital currency. Guennewig (2024)

analyzes currency competition among őrms and the government, and characterizes conditions such

that őrms are incentivized to implement low inŕation rates in order to boost product sales. Biais

et al. (2023) investigate whether changes to Bitcoin usability and hacking risks explain Bitcoin

returns relative to government őat money. The authors őnd that these factors have little explanatory

power, and conclude that speculation is the key source for return differentials.

Turning to blockchain economics, Huberman et al. (2021) őnd that the delay in transaction ver-

iőcation due to blockchain capacity constraints may bring unexpected beneőts to users. Congested

blockchains can credibly price discriminateÐcharging higher transaction fees to users with urgent

needs to consumeÐwhen a centralized payment system without capacity constraints such as Visa

does not face incentives to do so. Even if the decentralized system is the monopoly payment provider

and transaction fees temporarily rise due to congestion, miner entry pushes down transaction fees

down for all users. Pagnotta (2022) shows that the equilibrium relationship between blockchain

mining and coin usage gives rise to multiplicities. High usage pushes up the coin price which in-

duces miner entry, raising the security level of the network and thus justifying higher usage in the

őrst place. The reverse logic however also applies, and a second low usage-low security equilibrium

exists. My contribution vis-à-vis the above papers is to focus on inŕation outcomes. I highlight that

the apparent drawbacks of cryptocurrencies, namely blockchain capacity constraints and security

costs, enable currency competition.

Many more papers focus on different aspects of blockchain economics. Biais et al. (2019) and

Saleh (2021) discuss miner and validator incentives for Proof-of-Work and Proof-of-Stake consensus

protocols, respectively. John et al. (2022) show that increases in blockchain capacity have different

equilibrium effects for blockchains with PoW consensus protocols than for blockchains with PoS

consensus protocols. Budish (2023) highlights that network participants trade off the stock beneőt

of attacking a blockchain against the ŕow beneőt of maintaining its integrity. This leads to security

issues if Bitcoin became sufficiently economically important. Garratt and van Oordt (2023) stress
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that the őxed costs of specialized Bitcoin mining equipment, which loses their value after a successful

attack, work against such security risks. Lehar and Parlour (2020) document that Bitcoin miners

do not utilize the full block capacity in order to increase transaction fees, which is inconsistent

with competitive mining. Prat and Walter (2021) show that the Bitcoin-USD price predicts the

network’s total mining capacity, and őnd that block rewards have been primarily used to invest

into mining equipment. Hinzen et al. (2022) describe how the decentralized nature of the Bitcoin

network necessarily leads to low levels of adoption. See John et al. (2021) for a recent survey of the

literature.

Outline of the paper. Section 2 introduces the framework. Section 3 characterizes money demand

and supply. Section 4 develops the equilibrium concept. The properties of the equilibrium are

characterized in Section 5. Section 6 provides a benchmark model without blockchain constraints.

Section 7 extends the framework to analyze blockchain transaction fees and the effect of blockchain

applications on currency competition. Section 8 concludes.

2 Model

2.1 Framework

The economy consists of a large number of three types of agents: a unit mass of buyers, a unit

mass of sellers, and a set N of entrepreneurs, where |N | = N ∈ N. All agents are inőnitely lived.

Time is discrete. There is no aggregate uncertainty. Each period consists of two subperiods. In

the őrst subperiod, all agents meet and consume in a centralized market (CM). Entrepreneurs have

the expertise to issue speciőc coins which cannot be counterfeited. Buyers and sellers also meet in

decentralized markets (DM). Sellers produce a perishable good but do not want to consume. Buyers

want to consume but have no ability to produce. Entrepreneurs neither consume nor produce in

the DM.

In the decentralized market, buyers and sellers interact in pairwise meetings. Each buyer is

matched with one seller in every period with probability one. Sellers produce the consumption good

at unit marginal cost. Assume that buyers have full market power in the DM. Further assume that

buyers and sellers are anonymous which rules out credit. Trade thus requires a medium of exchange.
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The entrepreneurs’ coins, which are transferred in exchange for goods, fulőll this exact role. Let

ϕnt ∈ R
+
0 denote the price of coin n at time t, and let 1 + πnt+1 = ϕnt /ϕ

n
t+1 denote the corresponding

inŕation rate.3 For simplicity, I assume that buyers must choose one coin for each transaction.4

Let xj,t ∈ R denote the buyer j’s net consumption of the CM good. Let qj,t ∈ R
+
0 denote their

DM good consumption. The buyers’ preferences are represented by the utility function

ub(xj,t, qj,t) = xj,t + u(qj,t)

where u : R
+
0 → R

+
0 is thrice continuously differentiable, strictly increasing and strictly concave,

with lim
q→0

u′(q) = ∞, lim
q→∞

u′(q) = 0 and u(0) = 0.

Let xi,t ∈ R and qi,t ∈ R
+
0 denote seller i’s net consumption of the CM good and their DM

production, respectively. Their preferences are represented by the utility function

us(xi,t, qi,t) = xi,t − qi,t

Finally, let xn,t ∈ R denote the entrepreneur n’s net consumption of the CM good. Preferences are

represented by the utility function

un(xn,t) = xn,t

I assume that all coins are operated on a blockchain, which are decentralized systems operated

by miners on blockchains employing Proof-of-Work (PoW) consensus protocols, or validators on

blockchains employing Proof-of-Stake (PoS) consensus protocols. In this model, the entrepreneur is

a stand-in for the group of miners or validators active on a given blockchain.

Let Mn,S
t ∈ R

+
0 and µnt ∈ [−1,∞) denote the nominal supply and the corresponding growth rate

of coin n at time t. Given the nature of blockchain protocols, I assume that entrepreneurs need

to decide on the lifetime private money issuance at time-0.5 In other words, the path of the coin

3Deőne R
+ = {y | y ∈ R, y > 0} and R

+

0 = {y | y ∈ R, y ≥ 0}.
4This assumption is readily microfounded. Suppose a transaction is only fully veriőed if it has been veriőed for

all coins used in the transaction; if there is no veriőcation on at least one blockchain involved, the whole transaction
is not veriőed. With independent veriőcation probabilities across blockchains, low congestion blockchains do not
provide an insurance against failure of veriőcation on high congestion blockchains.

5This assumption is justiőed given the great difficulty of changing blockchain protocols once a blockchain is
operational. Attempts at changing the protocol incur the risk of hard forks, as seen in the Bitcoin Cash fork of 2017
(see Biais et al. (2023) for details). The Ethereum London hard fork is a rare example of a successful protocol change.
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growth rate {µnt }t≥0 is set at time-0. For simplicity, assume that each coin issuer sets a constant

coin growth rate µnt = µn for all t ≥ 0. The vector of private coin growth rates µ is perfectly

observed by all agents. Going into period 0, all coins n ∈ N have an initial supply of M−1 ∈ R
+

outstanding.6

2.2 Social planner

The social planner maximises the equal-weighted sum of all agents’ payoffs. Market clearing in

centralized markets requires that

∫ 1

0
xj,tdj +

∫ 1

0
xi,tdi+

∑

n∈N

xn,t = 0

and the period welfare Wt is therefore given by

Wt =

∫ 1

0
ub(xj,t, qj,t)dj +

∫ 1

0
us(xi,t, qi,t)di+

∑

n∈N

un(xn,t) =

∫ 1

0
(u(qj,t)− qj,t) dj

Efficiency then requires qj,t = q∗ for all j ∈ [0, 1] and t ≥ 0, where q∗ is characterized by u′(q∗) = 1.

2.3 Blockchain congestion

One frequent criticism of cryptocurrencies is their lack of scalability. In particular, their decen-

tralized nature also limits their capacity to verify transactions (see, e.g. Hinzen et al., 2022). I

capture blockchain capacity constraints by assuming that only a mass η ∈ (0, 1) of transactions can

be veriőed in any DM on each blockchain. Since each transaction in the DM involves one buyer,

this corresponds to a limit on the mass of buyers which can successfully use a given coin.

Let hnt ∈ [0, 1] denote the mass of buyers using coin n for transactions in the DM at time t. A

blockchain is said to experience congestion whenever hnt > η. Let αn
t denote the probability that a

buyer j’s transaction is veriőed. I assume that this probability is proportional to the total mass of

However, its primary purpose was to switch from a PoW protocol to a PoS protocol, not to change monetary policy.
6The real value of coins is determined in the time-0 CM given the buyers’ demand. Thus, the initial nominal

level of coins outstanding is irrelevant as long as it is strictly positive.
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buyers using coin n whenever the blockchain is congested, and is given by:

αn
t =







η
hn
t

if hnt ≥ η

1 otherwise
(1)

Importantly, the probabilistic transaction veriőcation captures any nuisance caused by congestion

in a reduced form, including delayed transaction veriőcation and increases in transaction fees.7

I assume that N is arbitrarily large. In particular, aggregate blockchain capacity is more than

sufficient: (N − 1) · η > 1. This is warranted by the large number of cryptocurrencies in circulation.

2.4 Blockchain security

Blockchains are decentralized networks, and the network security relies on the actions of its honest

participants. A blockchain is only safe from attacks if miners supply a sufficiently large quantity

of computing power (PoW), or if validators lock up a sufficiently large part of their wealth (PoS).

Importantly, the network participants only do so if they receive sufficiently large block rewards, i.e.

income from newly issued coins.8

This relationship between block rewards and blockchain security is captured in a reduced form.

I assume that the blockchain belonging to entrepreneur n is secure if and only if xnt ≥ A for all

t ≥ 0, where A ∈ R
+ is a parameter capturing a potential attacker’s computing power or wealth. I

assume that, whenever the level of block rewards falls below A, then ϕnt = 0.9

At each time t ≥ 0, the entrepreneur’s ŕow budget constraint reads xnt = ϕnt
(

Mn,S
t −Mn,S

t−1

)

.

Using the money market clearing condition Mn,S
t = Mn

t , and deőning aggregate real coin n bal-

ances as mn
t = ϕntM

n
t =

∫ 1
0 ϕ

n
tM

n
j,tdj, the budget constraint becomes xnt = µn

1+µnmn
t . The security

constraint is therefore given by:

µn

1 + µn
mn

t ≥ A (2)

Equation (2) implies a strictly positive lower bound on the coin growth rate if real coin balances

are bounded.

7See Section 7.1 for an extension with transaction fees that rise with capacity utilization.
8I also consider income from transaction fees in Section 7.1.
9A zero price is consistent with equilibrium; see the discussion around Equation (3) below.
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I assume that the parameters for the blockchain capacity and security constraints are such that

a monetary equilibrium may exist. Intuitively, if η → 0, the transaction beneőt from holding a coin

is vanishingly small. Similarly if A → ∞, then block rewards need to be inőnitely high in order

to maintain blockchain security. In both cases, buyers would optimally hold vanishingly small coin

balances and, consequentially, Equation (2) could never be satisőed in equilibrium. I provide precise

conditions in Section 3.2, making use of equilibrium conditions derived Section 3.1, that help ensure

equilibrium existence.

This completes the set-up.

3 Money demand and supply

3.1 Money demand

Consider the problem of buyer j during the time-t CM. Let Mn
j,t ∈ R

+
0 denote buyer j’s (non-

negative) balances in coin n. Let Wj,t denote j’s CM value function. Wn
j,t and V n

j,t denote the CM

and DM value functions conditional on purchasing coin n ∈ N in the CM, respectively. Suppose j

enters the CM with some nominal money balance of M ∈ R
+
0 in some coin n′ ∈ N .

Buyers choose to hold the coin associated with the highest payoff: Wj,t = max
{

Wn
j,t

}

n∈N
.

Conditional on choosing coin n, the Bellman equation is written as

Wn
j,t(M) = max

(xj,t,M
n
j,t

)∈R×R
+

0

xj,t + V n
j,t

(

Mn
j,t

)

subject to the budget constraint

xj,t + ϕntM
n
j,t = ϕn

′

t M

Plugging in, the Bellman equation becomes

Wn
j,t(M) = max

Mn
j,t

∈R
+

0

ϕn
′

t M − ϕntM
n
j,t + V n

j,t

(

Mn
j,t

)

and is thus linear in coin balances M . Let Dj,t ∈ R denote the nominal transfer to the seller. The
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DM value function is written as

V n
j,t

(

Mn
j,t

)

= max
(qj,t, Dj,t)∈R

+

0
×R

αn
t ·
[

u(qj,t) + βWj,t+1

(

Mn
j,t −Dj,t

)]

+ (1− αn
t ) · βWj,t+1

(

Mn
j,t

)

s.t. Dj,t ≤ Mn
j,t

s.t. qj,t ≤ βϕnt+1Dj,t

The őrst constraint states that the transfer cannot exceed the buyer’s money balance. After trans-

acting, the seller holds onto the transfer until the following period’s CM. The second constraint

therefore implies that the seller must receive a discounted transfer that, given next period’s coin

price, weakly exceeds their cost of production in this period. Together these constraints capture the

need for a medium of exchange in the DM.

Optimally, buyers do not transfer more to the seller than necessary, and hence qj,t = βϕnt+1Dj,t.

Using the linearity of the Bellman equation, the DM value function simpliőes to

V n
j,t

(

Mn
j,t

)

= max
qj,t∈R

+

0

αn
t · [u(qj,t)− qj,t] + β

[

ϕnt+1M
n
j,t +Wj,t+1(0)

]

s.t. qj,t ≤ βϕnt+1M
n
j,t

Consumption conditional on successful transaction veriőcation is then given

qj,t =







q∗ if q∗ ≤ βϕnt+1M
n
j,t

βϕnt+1M
n
j,t otherwise

and the DM value function becomes

V n
j,t(M) =











αn
t [u (q

∗)− q∗] + β
[

ϕnt+1M
n
j,t +Wj,t+1(0)

]

if q∗ ≤ βϕnt+1M
n
j,t

αn
t

[

u
(

βϕnt+1M
n
j,t

)

− βϕnt+1M
n
j,t

]

+ β
[

ϕnt+1M
n
j,t +Wj,t+1(0)

]

otherwise

I should stress that I focus on equilibria in which money demand is bounded. Then, plugging
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the expression for V n
j,t(M) into the Bellman equation, the equilibrium coin price satisőes

ϕnt =











βϕnt+1 if q∗ ≤ βϕnt+1M
n
j,t

αn
t · u′(βϕnt+1M

n
j,t) · βϕ

n
t+1 + (1− αn

t ) · βϕ
n
t+1 otherwise

(3)

If the cash constraint is not binding, real money demand is only bounded if ϕnt = βϕnt+1. The

cash constraint is binding whenever ϕnt > βϕnt+1. Optimal coin demand conditional on using coin

n for a binding cash constraint is then characterized by the őrst order condition. The price ϕnt is

the cost of purchasing one real unit of coin n. This cost is traded off against the marginal beneőt,

which consists of the marginal consumption beneőt from an additional unit of DM-consumption

with probability αn
t at time t, and of the marginal consumption beneőt from an additional unit of

CM-consumption with probability 1− αn
t .

Note two important implications of Equation (3). First, if ϕnt = 0 for one t ≥ 0, then ϕnt = 0 for

all t ≥ 0. This is feasible in equilibrium since lim
q→0

u′(q) · q is zero.10 Going forward, let M denote

the set of valued coins: M = {n ∈ N | ϕnt > 0 for all t ≥ 0}.

Second, if the set M is non-empty, then all buyers hold positive coin balances and
∑

n∈M hnt = 1.

If the cash constraint is not binding, then Mn
j,t > 0 by deőnition. Suppose the cash constraint is

binding. Each buyer has inőnitesimal weight and takes prices ϕnt and veriőcation probabilities αn
t

for all coins n ∈ M as given. Since αn
t > 0 for all hnt ≤ 1, it cannot be optimal for any j ∈ [0, 1] to

set Mn
j,t = 0 for all n ∈ M.

Deőne m̃n
j,t = βϕnt+1M

n
j,t. Using the optimality conditions, rewrite the Bellman equation to read

Wn
j,t(M) = ϕn

′

t M + αn
t · ψ

(

m̃n
j,t

)

+ βWj,t+1(0)

10Suppose u(0) = 0. Consider some q0 > 0. Since u is strictly concave and continuously differentiable, we have

u(q) ≤ u (q0) + u
′ (q0) · (q − q0)

for all q ≥ 0. Noting that u′ (q0) ≥ 0 for all q0 ≥ 0, consider q = 0 and rearrange:

0 ≤ u
′ (q0) · q0 ≤ u (q0)

The right-hand side tends to zero as q0 ↘ 0, implying lim
q0↘0

u′ (q0) · q0 = 0.
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where ψ : R
+
0 → R

+
0 with

ψ(m̃) =











u(m̃)− m̃ · u′(m̃) if 0 ≤ m̃ < q∗

u(q∗)− q∗ if m̃ ≥ q∗

By the properties of the utility function, note that ψ(0) = 0. Also note that ψ′(m̃) = −m̃·u′′(m̃) > 0

if m̃ ∈ (0, q∗), and ψ′(m̃) = 0 if m̃ ≥ q∗. It follows that ψ(m̃n
j,t) is strictly increasing in m̃n

j,t > 0

whenever the cash constraint is binding.

Buyers choose to hold the coin associated with the highest expected utility. Hence Wn
j,t(m) =

Wn′

j,t(m) is a necessary condition for two coins n and n′ to be both valued; otherwise buyers only

hold the coin n with Wn
j,t(m) > Wn′

j,t(m). This necessary condition is equivalent to

αn
t · ψ(m̃n

j,t) = αn′

t · ψ(m̃n′

j,t) (4)

I am now ready to state the őrst result of the paper.

Proposition 1. Consider n, n′ ∈ M. Then πnt+1 > πn
′

t+1 if and only if αn
t > αn′

t .

Proof. To show that πnt+1 > πn
′

t+1 if αn
t > αn′

t , suppose αn
t > αn′

t . Equation (4) necessitates that

ψ(m̃n
j,t) < ψ(m̃n′

j,t). The properties of ψ imply that 0 < m̃n
j,t < m̃n′

j,t, with m̃n
j,t < q∗. This in turn

implies that u′(m̃n
j,t) > u′(m̃n′

j,t) if the cash constraint is binding for both coins. Combining őrst

order conditions then reveals that πnt+1 > πn
′

t+1. If the cash constraint is not binding for coin n′,

then u′(m̃n
j,t) > u′(q∗) = 1, and hence also πnt+1 > πn

′

t+1.

To show that πnt+1 > πn
′

t+1 only if αn
t > αn′

t , suppose αn
t ≤ αn′

t and follow the same steps to őnd

that πnt+1 ≤ πn
′

t+1.

Proposition 1 highlights a trade-off. Buyers őnd both low inŕation rates as well as high veriőca-

tion probabilities desirable. If one coin in circulation experiences a lower inŕation rate than another

coin in circulation, it must be that veriőcation on the low-inŕation coin’s blockchain is less likely to

occur. Otherwise, no buyer would want to hold the high-inŕation coin.11

11The trade-off is reminiscent of models of directed search. See Wright et al. (2021) for a survey of the literature.
In such frameworks, sellers can charge different prices in equilibrium if they face capacity constraints and thus cannot
serve all possible buyers. Sellers with lower prices than their competitors than experience demand exceeding their
capacity; buyers consume with probability less than 1. Sellers with higher prices also face strictly positive demand as
they offer higher probabilities of consumption to buyers in equilibrium. One can interpret the relative inŕation rates
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Inŕation rate πn

t+1

Veriőcation probability αn

t

1η

(

πn
t+1, α

n
t

)

(

πn′

t+1, α
n′

t

)

(

πn′

t+1, α
n′

t

)

Candidate pairs

for coin n′

Figure 1: Illustration of Proposition 1.

Figure 1 illustrates this trade-off. Consider two coins n, n′ ∈ M. Then, for a given pair of

inŕation rate and transaction veriőcation probability for coin n, the corresponding pair for coin n′

must lie on the indifference curve. If coin n′ is experiencing higher inŕation, then the veriőcation

probability must be higher, and vice-versa.

Corollary 1. If η ≥ 1, then πnt+1 = πn
′

t+1 for all n, n′ ∈ M.

The corollary follows immediately from Proposition 1 if αn
t = αn′

t = 1 for all n, n′ ∈ N . Without

blockchain capacity constraint, all transactions are veriőed on all blockchains with probability 1,

regardless of the mass of buyers employing any coin. As a consequence, a necessary condition for two

coins to both be valued in equilibrium is that they feature the same inŕation rate. The indifference

curve of Figure 1 only exists if blockchains are subject to capacity constraints.

Having established the relationship between inŕation rates and veriőcation probabilities for two

coins n, n′ ∈ M, I now proceed to establish the corresponding relationship between inŕation and

coin growth rates. To this end, consider the following property of the utility function u.

Condition 1. −u′′(q)·q
u′(q) < 1 for all q ∈ [0, q∗].

Condition 1 implies that u′(q) · q is strictly increasing in q ∈ [0, q∗]. It is a sufficient and

sometimes necessary condition such that, ceteris paribus, real money demand is decreasing in the

of competing coins in this framework as the relative prices of consumption goods.
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inŕation rate (see e.g. Williamson, 2012). To illustrate, consider an economy with only one currency

n ∈ M. Set αn
t = α ∈ (0, 1] and multiply Equation (3) with Mn

j,t to obtain

mn
j,t ≡ ϕntM

n
j,t =











m̃n
j,t if q∗ ≤ βϕnt+1M

n
j,t

α · u′(m̃n
j,t) · m̃

n
j,t + (1− α) · m̃n

j,t otherwise

Since m̃n
j,t is strictly decreasing in πnt+1, Condition 1 is a sufficient condition such that mn

j,t is strictly

decreasing in πnt+1 if α ∈ (0, 1), and a necessary condition if α = 1.

Indeed, Condition 1 is satisőed for many utility functions with the properties of u. For example,

consider the class of utility functions exhibiting constant relative risk aversion: u(q) = q1−γ

1−γ
. The

properties of u require γ ∈ (0, 1). Condition 1 then follows.

I am now ready to state the second result of the paper.

Proposition 2. Consider two coins n, n′ ∈ M. Suppose Condition 1 is satisőed. If µn > µn
′
, then

mn
t < mn′

t for all t ≥ 0.

See Appendix A for the proof. To form an intuition, consider the equilibrium relationship

between real money balances and inŕation rates as an intermediate step. Three forces are at play.

First, lower transaction veriőcation probabilities lead buyers to reduce their real balances of the low-

inŕation coin. Second, more buyers hold the low-inŕation coin, giving rise to the lower veriőcation

probabilities in the őrst place. It turns out that the latter effect dominates the former effect. Third,

Condition 1 ensures that, ceteris paribus, real money balances are decreasing in the inŕation rate.

In sum, real money balances are larger for low-inŕation coins, both due to the lower inŕation rate

and the larger mass of buyers.

To illustrate, suppose αn′

t < αn
t which implies hn

′

t+1 > hnt+1. Proposition 1 states that m̃n′

j,t > m̃n
j,t

and πn
′

t+1 < πnt+1. Multiply both sides of Equation (3) by hntM
n
j,t and make use of deőnitions to

obtain the time-t money demand:

mn
t =











hnt m̃
n
j,t if q∗ ≤ m̃n

j,t

min{hnt , η} · u
′(m̃n

j,t) · m̃
n
j,t + (1− αn

t ) · h
n
t m̃

n
j,t otherwise

(5)

Directly comparing mn
t and mn′

t reveals that Condition 1 is a sufficient condition for mn
t < mn′

t

whenever πnt+1 > πn
′

t+1.
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To form an intuition about the relationship between real money balances and coin growth rates

for valued coins, consider two coins n, n′ ∈ M. Suppose µn
′
< µn. Figure 2 őxes a path of the

real coin balances of coin n with πnt+1 = µn for all t ≥ 0. The őgure also illustrates two candidate

paths of the real coin balances for coin n′. The őrst path for mn′

t supposes µn
′
= πn

′

t+1 for all t ≥ 0,

implying that mn
t > mn′

t for all t ≥ 0. Since mn
t+1 = 1+µn

1+πn
t+1

mn
t , real coin balances are constant for

both coins n, n′ ∈ M.

The second path supposes πn
′

t+1 > πnt+1 and thus mn′

t < mn
t . Since mn

t+1 = 1+µn

1+πn
t+1

mn
t , coin n′

features strictly lower aggregate real balances at time t+ 1 than coin n. But then coin n′ must be

experiencing a weakly higher inŕation rate. As its coin supply continues to grow at a strictly lower

rate than the supply of coin n, the relative aggregate real balances fall even further at time t + 2.

This process continues in every period going forward. Since real coin demand for n is bounded, it

must be that real balances of coin n′ that continue to fallÐuntil they reach the threshold level at

which the network becomes insecure and the coin’s value immediately falls to zero.

Real coin balances mn

t

Time t
0

1+µn
′

µn
′ ·A

Blockchain security
constraint

mn
t

mn′

t if πn′

t+1 < πn
t+1

mn′

t if πn′

t+1 > πn
t+1

Figure 2: Candidate paths of real coin balances.

This cannot occur in equilibrium. Equation (3) highlights that coin prices must be zero on

the entire equilibrium path if they fall to zero at some t ≥ 0. Thus, coin n′ could not have been

valued in equilibrium in the őrst place, a contradiction. It follows that coins with lower coin growth

rates must experience lower inŕation rates in any equilibrium in which multiple coins are valued.

Figure 3 illustrates the consequences of Proposition 2: if µn
′
< µn, then all coin n′ candidate pairs
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(

πn
′

t+1, α
n′

t

)

with πn
′

t+1 > πnt+1 are ruled out in equilibrium.

Inŕation rate πn

t+1

Veriőcation probability αn

t

1η

(

πn
t+1, α

n
t

)

(

πn′

t+1, α
n′

t

)

(

πn′

t+1, α
n′

t

)(

πn
t+1, α

n′

t

)

Candidate pair

for coin n′

Figure 3: Illustration of Proposition 2.

Condition 1 is thus a weak sufficient condition such that higher coin growth rates translate

into higher inŕation rates if two coins circulate as media if exchange. Importantly, the relationship

between relative coin growth and inŕation rates must hold on the entire equilibrium path. Going

forward, I will assume that Condition 1 is satisőed.

This concludes the discussion on money demand.

3.2 Money supply

Entrepreneurs choose their coin supply growth rate in order to maximise life-time payoffs Un at

time-0, given by

Un =
∞
∑

t=0

βtxnt =
∞
∑

t=1

βt
µn

1 + µn
mn

t

In equilibrium, money demand is a function of monetary policy: mn
t = mn

t (µ). I make one joint

restriction on the model parameters and the utility function that ensures the existence of a level of

monetary policy such that both the blockchain security constraint and the equilibrium coin price

condition can be satisőed.
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Assumption 1. There exists at least one µ ∈ R
+ for all h ∈ [η, 1] that satisőes

1 + µ = β ·
η

h
· u′
(

β ·A

µ · h

)

+ β ·
(

1−
η

h

)

(6)

Deőnition 1. Let µ : [η, 1] → R
+ denote the function that assigns to each h ∈ [η, 1] a value µ(h)

given by the lowest level of µ ∈ R
+ satisfying Equation (6). Let µ denote the function’s minimum

value over its domain.

Equation (6) is a combination of the binding blockchain security constraint (Equation 2) and

optimality conditions for coin holdings for a binding cash constraint (Equation 3), all in the steady

state. Assumption 1 states that there exists a level of the coin growth rate for any degree of

blockchain congestion such that money can be valued in equilibrium. Such a level may not exist if

the blockchain constraints are prohibitively tight (that is, for high levels of A and low levels of η).

Assumption 1 is warranted given the many cryptocurrencies circulating at a strictly positive price.

Going forward, I shall use µn ≥ µ as constraint on the entrepreneurs’ proőt maximization problem.

Let µn,∗ denote the coin supply growth rate that solves entrepreneur n’s maximization problem,

given the other entrepreneurs’ choice µ
−n:

µn,∗ = arg max
µn

Un
(

µn,
{

mn
t (µ

n,µ−n)
}∞

t=0

)

(7)

s.t. µn ≥ µ

However, the problem is not well-deőned yet as the precise equilibrium relationship between

private monetary policies and money demand,
{

mt(µ)
}∞

t=0
, remains to be determined. Recall that

relative coin inŕation rates and transaction veriőcation probabilities determine the buyers’ money

demand. However, entrepreneurs cannot directly choose their coin’s inŕation rate but can only

attempt to affect it via the coin supply. Proposition 2 provides a ranking among real coin balances

for all valued coins given their monetary policy, but it does not pin down the levels.

Furthermore, the results of the previous subsection do not determine which coins are valued in

the őrst place. Additional assumptions are needed to determine the set M. The following Lemma

illustrates this need:

Lemma 1. Suppose that µ1 ≤ µ2 ≤ ... ≤ µN−1 < µN . Then it must be that M ⊂ N .
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Proof. Suppose M = N , which implies that h1t ≥ ... ≥ hN−1
t > hNt > 0, with αN−1

t < αN
t and thus

hN−1
t > η. Since (N − 1)η > 1, it must be that hNt = 0 and hence ϕNt = 0. It follows that M ⊂ N ,

a contradiction.

Lemma 1 shows that not all coins can be valued in equilibrium for all monetary policies. In the

example above, which coins should not be valued in equilibrium? And if it’s coin N , then does coin

N become valued if the issuing entrepreneur undercuts some other entrepreneur n < N?

The problem runs even deeper, as illustrated by the following example. Suppose that buyers

coordinate on valuing a given coin if and only if its coin growth rate is given by some arbitrary level,

e.g. 100%. Clearly it is optimal to implement exactly this growth rate, as all other growth rates

yield a zero payoff. Similarly it is always feasible to construct equilibria in which only a subset of

coins can be valued, regardless of monetary policies.

For these reasons, I add further structure to the analysis in Section 4 below.

4 Equilibrium: Reőnements & deőnition

Given the difficulty in determining which coins are valued and in pinning down the level of real

coin balances, I apply two reőnements to the set of possible equilibria. The őrst reőnement helps

determine the set M:

Assumption 2 (R1). If µn > µn
′
implies that mn

t < mn′

t for all n, n′ ∈ M and all t ≥ 0, then

µn > µn
′
implies the following for all n, n′ ∈ N and all t ≥ 0:

a) mn
t ≤ mn′

t , and

b) mn
t < mn′

t if n′ ∈ M is consistent with equilibrium conditions, and

c) 0 < mn
t < mn′

t if n, n′ ∈ M is consistent with equilibrium conditions.

Proposition 2 established a relationship between the relative coin growth rates and the real level

of coin balances when coins are valued. The reőnement R1 extends this relationship from the set

of valued coins to the set of all coinsÐas long as this is consistent with equilibrium conditions.

The reőnement rules out arbitrary equilibria in which buyers only value coins that grow at a

particular rate (e.g. 100%) or never value any coins that belong to some subset of N . Instead,
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as many coins as permitted by equilibrium conditions circulate as medium of exchange. Low coin

growth coins are valued in equilibrium and experience low inŕation rates. High coin growth rates

are also valued in equilibrium and experience high inŕation ratesÐunless these inŕation rates are so

high that users prefer to switch to low-inŕation high-congestion blockchains, and the price of high

growth coins falls to zero. With regards to the example of Lemma 1, the reőnement ensures that

coin N is not valued.

The second reőnement provides clariőcation on the change in the level of real coin balances for

marginal deviations in monetary policy:

Assumption 3 (R2). Consider some monetary policy µn = µ for all n ∈ N such that M = N

and hnt ≤ η for all n ∈ N and t ≥ 0. Consider a deviation in monetary policy µn = µ − ε < µ for

some n ∈ M. I assume that

lim
ε↘0

mn
j,t(µ

n,µ−1) = mn
j,t(µ) and lim

ε↘0
m̃n

j,t(µ
n,µ−1) = m̃n

j,t(µ)

where mn
j,t(µ) and m̃n

j,t(µ) denote the real money balances of buyer j as a function of monetary

policy µ.

Lemma 2. Assumption 3 is consistent with the equilibrium conditions.

The proof is in Appendix B. By reőnement R2, large swings in inŕation rates (and thus individual

coin balances) upon a marginal reduction in the growth rate of one coin do not occur. The reőnement

therefore rules out possible equilibria in which entrepreneurs fail to change their monetary policy in

fear of inducing large upwards jumps in the inŕation rate, rendering such changes unproőtable as

buyers reduce their real money balances. Note that by Propositions 1 and 2, any swings in inŕation

rates would have to occur for all coins n ∈ N after marginal changes to one blockchain’s monetary

policy. Against this backdrop, Assumption 3 appears reasonable.

I am now ready to deőne the equilibrium. In the absence of any extrinsic and intrinsic aggregate

uncertainty, I focus on perfect-foresight monetary equilibria. I also restrict attention to symmetric

strategies for the entrepreneurs.12

Equilibrium deőnition. A perfect-foresight monetary equilibrium consists of a non-empty set

M ⊆ N , and an array {αn
t , h

n
t , m̃

n
j,t,m

n
t , ϕ

n
t }t≥0, j∈[0,1] satisfying Equations (1)-(5) with mn

t < ∞

12See the end of Section 5 for a discussion of asymmetric strategies.
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for each n ∈ M, each j ∈ [0, 1], and all t ≥ 0. Each entrepreneur n ∈ N sets µn = µn,∗ as deőned

by Equation (7), given the reőnements R1 and R2. Symmetry requires that µn,∗ = µ∗ for all n ∈ N .

Going forward, I refer to any such equilibrium as ‘monetary equilibrium.’

5 Equilibrium

Having deőned the equilibrium concept, I am now ready to describe the key properties of every

monetary equilibrium. For Propositions 3 - 5, suppose that a monetary equilibrium exists.

Proposition 3. µn ≤ µ(1) for all n ∈ N .

See Appendix C for the proof. Recall the deőnition of µ(h) as the lowest level of µ ∈ R
+

satisfying the equilibrium coin pricing (Equation 3) for a binding blockchain security constraint

(Equation 2) for some level h ∈ [η, 1], all in steady state. Proposition 3 states that coin growth

rates are bound from above by the lowest level that is consistent with a monetary equilibrium with

only one operational blockchain.

The intuition is straightforward. If all coins are valued, then, given aggregate overcapacity, there

exists at least one coin with a blockchain running below full capacity. This entrepreneur faces strict

incentives to undercut other entrepreneurs to achieve full capacity utilization. If one coin is not

valued, then the corresponding entrepreneur faces strict incentives to deviate to a coin growth rate

which undercuts all other entrepreneurs and is consistent with a monetary equilibrium. Thus, if

µn > µ(1) for all n ∈ N , there always exists a proőtable deviation to µ(1).

Blockchain capacity constraints are key to obtain this result. The desire to undercut other

entrepreneurs’ coin growth rate arises as lower growth rates are associated with lower inŕation rates,

and lower inŕation rates are associated with blockchain congestion. Since blockchain congestion

requires transaction demand in excess of the blockchain capacity, it must be that lowering the coin

growth rate boosts coin demand, the coin price, and thus the real value of newly issued coins.

Without blockchain capacity constraints, all coins must have equalized inŕation rates in equilib-

rium. Section 6 below shows that the undercutting logic cannot arise without capacity constraints.

Blockchain congestion therefore facilitates currency competition.

Proposition 3 highlights a welfare improving effect of blockchain congestion: low coin growth

rates and subsequent low inŕation rates improve the quality of the medium of exchange and thus
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the levels of consumption and welfare. However, the private money arrangement on blockchain tech-

nology is inefficient. First, the blockchain capacity constraint induces welfare losses as congestion

occurs in equilibrium:

Proposition 4. If µ(1) < µ(η), then hnt > η for at least one n ∈ M for all t ≥ 0.

See Appendix D for the proof. If µ(1) < µ(η), the same undercutting logic that limits the coin

growth rates also leads to congestion in equilibrium. Entrepreneurs set monetary policy to such a

low level that blockchain security can only be maintained if their blockchain experiences capacity

over-utilization. The equilibrium thus cannot be efficient: with congestion, some gains from trade

cannot be realized. The condition that µ(1) < µ(η) is satisőed in the vast majority of model

speciőcations; see the discussion around Condition 2 below.

Second, the need to generate strictly positive block rewards to maintain blockchain security

implies that the inŕation rate is inefficiently high:

Proposition 5. There exists no monetary equilibrium with qj,t = q∗ for all j ∈ [0, 1] and all t ≥ 0.

Proof. If qj,t = q∗ for all t ≥ 0 and j ∈ [0, 1], it must be that q∗ ≤ m̃n
j,t and hence πnt+1 = β−1 < 0 for

all n ∈ M and all t ≥ 0. Real coin balances are bounded and evolve according to mn
t+1 =

1+µn

1+πt+1
mn

t .

Since µn > 0 for all n ∈ M in any monetary equilibrium by Equation (2), it cannot be that πnt+1 < 0

for all t ≥ 0 for any n ∈ M.

The need to generate income to the blockchain network participants implies that coins must be

issued on the equilibrium path, leading to some level of inŕation. Efficiency however requires that

money has a strictly positive real return. That is, efficiency requires deŕation. It follows that a

monetary system operated on blockchains with endogenous security can never attain efficiency.

Given these properties of the equilibrium, does currency competition among blockchain-operated

currencies work? Yes, and no. Blockchain capacity constraints give rise to low-inŕation equilibria.

Blockchain-operated currencies thus compete for demand by promising more price-stable currencies

than their competitors. However, capacity constraints cause congestion in equilibrium. The limited

transaction throughput leads to unrealized gains from trade, which can be interpreted more widely

as any nuisance due to congestion, e.g. in the form of costly veriőcation delays or transaction

fees. Furthermore, the cost of maintaining blockchain security implies that the level of inŕation is

inefficiently high, a second reason efficiency cannot be achieved.
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Propositions 3 - 5 assumed that an equilibrium exists and then described its properties. Condi-

tion 2 not only ensures that an equilibrium exists but also that its outcome is unique.

Condition 2. µ(1) < µ(h) for all h ∈ [η, 1).

Condition 2 states that the lowest possible coin growth rate that is consistent with a monetary

equilibrium is the one when all buyers use the same blockchain: µ = µ(1). The following proposition

characterizes the equilibrium outcome if the condition is satisőed:

Proposition 6. Suppose Condition 2 is satisőed. In equilibrium it must be that µn = µ(1) for all

n ∈ N , with |M| = 1 and πnt+1 ≤ µ(1) for the single n ∈ M and all t ≥ 0.

Proof. With µ = µ(1), Proposition 3 implies that µn = µ(1) for all n ∈ N and hence |M| = 1.

Consider the single n ∈ M and suppose πnt+1 > µ(1) for one t ≥ 0. Recall that
∑

n∈M hnt = 1,

implying hnt = 1. The őrst order condition for a binding cash constraint reads

1 + πnt+1 = β · η · u′(m̃n
j,t) + β · (1− η)

Then m̃n
j,t < m̃n

j , where m̃n
j is characterized by

1 + µ(1) = β · η · u′(m̃n
j ) + β · (1− η)

Recall that the deőnition of µ(1) features a binding blockchain security constraint:

µ(1)

1 + µ(1)
mn = A

where mn is the steady state level of money balances. Equation (5) implies that mn
t < mn if

m̃n
j,t < m̃n

j . Then

µ(1)

1 + µ(1)
mn

t < A

which is a contradiction to n ∈ M. The claim follows.

Intuitively, if µ(1) is the lowest coin growth rate that is consistent with a monetary equilibrium,

then all entrepreneurs set their monetary policy to this level. By the of deőnition µ(1), only

one coin can be valued in equilibrium. Furthermore, the blockchain security constraint is binding if
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πnt+1 = µ(1). Since all buyers hold this coin in equilibrium, the corresponding blockchain experiences

strong degrees of congestion. Inŕation is bound from above by the coin growth rate. Otherwise, the

blockchain security is violated as the buyers’ real money balances fall to an insufficiently high level.

Indeed, Condition 2 is satisőed for many speciőcations of the model:

Lemma 3. Deőne µ̃ = limη→1 µ(η). If 1 > u′
(

βA
µ̃

)

+ u′′
(

βA
µ̃

)

· βA
µ̃

, then there exists some

η ∈ (0, 1) such that Condition 2 is satisőed whenever η ≥ η.

See Appendix E for the proof. Lemma 3 highlights that Condition 2 is satisőed if the blockchain

capacity is sufficiently big as long as 1 > u′
(

βA
µ̃

)

+ u′′
(

βA
µ̃

)

· βA
µ̃

. If u(q) = q1−γ

1−γ
, with γ ∈ (0, 1),

the inequality simpliőes to β > (1 − γ)(1 + µ̃). Given the short-length of a period in this model,

the discount factor β is close to one. The inequality is then satisőed if the coefficient of relative

risk aversion is not too small relative to the lowest possible money growth rate consistent with a

monetary equilibrium at a blockchain capacity of one.

Figure 4 shows the numerical computations of µ(h) and its derivative with respect to h for the

utility function u(q) = q1−γ

1−γ
. The left panel of Figure 4 depicts µ(h) for different levels of blockchain

capacity η ∈ [0.08, 0.99], with γ = 0.1.13 The right panel depicts
dµ(h)

dh
for the same levels of η.

The surface is red whenever the derivative is positive and Condition 2 is not satisőed. Note that

µ(h) is strictly decreasing in h, reaching its minimum at µ(1), if η is sufficiently large. Figure 5

shows the corresponding computations for different levels of the coefficient of relative risk aversion

γ ∈ [0.1, 0.99], with η = 0.08. It turns out that Condition 2 is satisőed for most speciőcations of

this utility function even for a low level of blockchain capacity.

Importantly, scaling solutions are being developed in order to increase blockchain capacity

(Bertucci, 2020; Guasoni et al., 2023a,b; Cong et al., 2023). One example is the Lightning Net-

work, which is a second-layer protocol built on top of Bitcoin’s blockchain. It operates by creating

payment channels between users on-chain that can execute transactions off-chain. If no direct chan-

nel between two users exists, then payments can be facilitated via existing third-party channels in

the network. Divakaruni and Zimmerman (2023) show that the possibility to settle transactions

off-chain reduces blockchain congestion, effectively increasing blockchain capacity.

The result highlights the importance of blockchain scaling solutions for equilibrium outcomes: if

blockchain capacity increases up to a threshold, then Proposition 6 describes the unique equilibrium

13The őxed parameters are set to A = 0.001 and β = 0.99. Recall that µ(h) is not deőned for h < η.
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Figure 4: Numerical computations of µ(h) and
dµ(h)

dh
for different levels of η, with γ = 0.1.

Figure 5: Numerical computations of µ(h) and
dµ(h)

dh
for different levels of γ, with η = 0.08.

outcome. However, by Corollary 1, the results of Propositions 3 - 6 hinge on limited capacity. If

blockchain scaling solutions fully remove the capacity constraints, then the favourable results on

currency competition no longer stand, as illustrated in Section 6 below.

Finally, Lemma 3 highlights that focusing on symmetric entrepreneur strategies is merely a

simpliőcation if the blockchain capacity is sufficiently large. Even in asymmetric strategies, en-

trepreneurs continue to face strict incentives to undercut other coins’ money growth rates in order

to boost demand. The equilibrium outcome of Proposition 6 thus stands.14

This concludes the main analysis.

14Note that the analysis of asymmetric strategies would require adjustments to the proofs of Lemma 2 and
Propositions 3, 4 and 6.
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6 Benchmark

It is useful to contrast these results to a benchmark without blockchain capacity and security

constraints. This section demonstrates that the model rediscovers the result of Fernández-Villaverde

and Sanches (2019) if individual blockchains have sufficient capacity to verify all transactions in the

DM and are not subject to security risks. In other words, if η ≥ 1 and A = 0, then currency

competition leads to inŕationary outcomes.

By Corollary 1, inŕation rates are equalized for all coins n ∈ M with η ≥ 1. With A = 0, the

blockchain security constraint (Equation 2) is satisőed for any mn
t ≥ 0 if µn ≥ 0.15 As all coins

experience the same inŕation rate, buyers are indifferent between them. Hence, any hnt ∈ [0, 1] is

an equilibrium outcome for all n ∈ M. Consequentially, coin prices ϕnt are indeterminate for any

n ∈ M and entrepreneurs must take them as given. This is the indeterminacy result őrst obtained

by Kareken and Wallace (1981) and central to the analysis in Fernández-Villaverde and Sanches

(2019).

The following proposition highlights that currency competition in this benchmark leads to highly

inŕationary outcomes:

Proposition 7. There exists no monetary equilibrium with ϕn0 > 0 and µn <∞ for any n ∈ N .

See Appendix F for the proof. The intuition is simple. Taking prices as given, entrepreneurs őnd

it optimal to issue large amount of coins whenever the price is strictly positive. With the money

supply growing at a very high rate, the inŕation rate of the valued coins must also be very high.

This result highlights the importance of the blockchain capacity constraints. Without blockchain

congestion, all coins circulating as medium of exchange must feature the same inŕation rate. En-

trepreneurs then do not face incentives to lower their coin growth rate in order to boost demand

for their coin.

The benchmark result mirrors the main result of Fernández-Villaverde and Sanches (2019) who

also őnd that entrepreneurs issue large amount of coin but model the mining process with a strictly

increasing cost of coin issuance. Since it is costless to issue coins in this framework, coin issuance

here is unbounded.16

15Setting µn < 0 rate yields negative payoffs to entrepreneurs and is strictly dominated by µn = 0.
16Issuing new blockchain-operated coins is not necessarily costly. To illustrate, the block reward in the Bitcoin
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One can consider two further benchmark models, each with only one of the constraints. Suppose

őrst that only the blockchain capacity constraint applies: η ∈ (0, 1) but A = 0. Then the result

of Proposition 2 does not hold: it becomes a valid equilibrium path for mn
t to tend to zero as

time progresses. Both paths illustrated in Figure 2 are consistent with equilibrium conditions.

As a consequence, the reőnement of Assumption 2 has no bite. It is then easy to construct an

equilibrium with high coin growth rates, for example with a negative correlation between coin

growth and inŕation rates, which cannot be ruled out in equilibrium.

Suppose next that only the blockchain security constraint applies: A ∈ R
+ but η ≥ 1. By

Corollary 1, all coins n ∈ M must feature the same inŕation rate. Suppose µn < µn
′
. Real

coin balances are bounded and evolve according to mn
t+1 = 1+µn

1+πt+1
mn

t , and hence relative real coin

balances satisfy

mn
t+1

mn′

t+1

=
1 + µn

1 + µn′ ·
mn

t

mn′

t

If both mn
t > 0 and mn′

t > 0, then it must be that lims→∞
mn

t+s

mn′

t+s

= 0. Since mn′

t+1 < ∞, it must be

that mn
t+1 tends to zero. This cannot occur in equilibrium, as per Proposition 2 and illustrated by

Figure 2. Therefore, it cannot be that two coins with different coin growth rates are both valued in

equilibrium. Hence, the reőnement of Assumption 2 has no bite and one can again construct many

possible equilibria.

7 Extensions

In this section, I present two extensions to the main analysis. First, I model blockchain transaction

fees which are endogenous to blockchain congestion. I show that the results are unchanged. Second,

I describe the effect of blockchain applications, which ensure a strictly positive value to blockchain-

native coins even if they are not used as medium of exchange, on currency competition.

network as of December 2023 is given by 6.25 Bitcoins. The difficulty of the puzzles that miners solve using brute
computational force is rescaled every 2,016 such that the rate at which new blocks are added to the blockchain
stays (roughly) constant at ten minutes per block. Hence, if very few miners participate in the competition for
block rewards, then issuing 6.25 Bitcoins approximately every ten minutes requires little computing power and thus
incurs very low real costs. In principle, it is even feasible to operate a blockchain on a single computer. However,
operating blockchains securely is costly because the participants of the network, who must incur real economic costs
in order to fence off potential attackers, need to be compensated accordingly. It is the security maintenance process
of blockchains that is costly, not the issuance of new coins itself.
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7.1 Transaction fees

The main analysis abstracted away from transaction fees. In reality, block rewards consist both of

newly issued coins as well as transaction fees, which are a function of blockchain capacity utilization

(Lehar and Parlour, 2020).

The model is robust to introducing transaction fees which are endogenous and modelled as

follows. First, the level of transaction fees is given by fnt = f(hnt ), where f : [0, 1] → R
+
0 . I assume

that transaction fees are weakly increasing in the degree of congestion: f ′(h) ≥ 0 for all h ∈ [0, 1].

Second, transactions fees are proportional to the transfer. The fees paid by buyer j using coin n

are therefore given by fnt Dj,t. Third, transaction fees are paid immediately in the same coin that

is transferred to the seller. The cash constraint thus reads Dj,t(1 + fnt ) ≤Mn
j,t.

The transaction veriőcation probability continues to capture all other nuisances arising due

to blockchain congestion. The value function at the time-t DM in the augmented model with

transaction fees is then given by

V n
j,t

(

Mn
j,t

)

= max
(qj,t,Dj,t)∈R

+

0
×R

αn
t

[

u(qj,t) + βWj,t+1

(

Mn
j,t −Dj,t(1 + fnt )

)]

+ (1− αn
t ) · βWj,t+1

(

Mn
j,t

)

s.t. Dj,t(1 + fnt ) ≤ Mn
j,t

s.t. qj,t ≤ βϕnt+1Dj,t

Otherwise, the set-up is unchanged. In Appendix G.1, I solve for optimal consumption in the DM

as a function of transaction fees and real coin balances, as well as for optimal coin demand in the

CM, all in perfect analogy to the main analysis. The previous results remain intact:

Proposition 8. Consider n, n′ ∈ M. Then πnt+1 > πn
′

t+1 if and only if αn
t > αn′

t (Proposition 1).

Furthermore, the following are equivalent: mn
t < mn′

t , πnt+1 > πn
′

t+1, and µn > µn
′
(Proposition 2).

The proof is provided in Appendices G.2 and G.3. In the main analysis, holders of coins with

relatively lower transaction veriőcation probabilities due to blockchain congestion had to be com-

pensated with lower inŕation rates. Otherwise no buyer would hold such high-congestion coins.

This continues to be true with transaction fees, which further increase the relative cost of using

coins with high congestion blockchains. The negative relationship between congestion and inŕation
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rates thus continues to hold.

From here the analysis follows in perfect analogy, with adjustments needed to incorporate trans-

action fees into the deőnition of µ. Entrepreneurs again face strict incentives to undercut other

entrepreneurs in order to boost money demand. This increase in demand not only increases the real

value of any newly issued coins but also the level of both nominal and real transaction fees.

7.2 Blockchain applications ensure currency competition

Blockchains not only provide coins which can in principle be used as medium of exchange but also

offer other use cases which generate real economic value. For example, blockchains are used as

decentralized registers of ownership over digital assets, commonly referred to as non-fungible tokens

(NFTs). Since purchasing assets registered on a blockchain requires a transfer in the blockchain-

native coin, this coin is then backed by the assets’ real income stream.

Indeed, consider some őnite time τ at which an owner sells their asset registered on the blockchain

and the market value of all blockchain-native coins lies below the real asset value. Such a scenario

presents a clear arbitrage opportunity and cannot occur in equilibrium. Instead, potential purchasers

of the asset bid up the price of the blockchain-native coin until the market value corresponds to a

level bound from below by the real asset value. From here it follows that ϕnτ > 0. It then cannot

be that ϕnt = 0 for any τ ≥ t ≥ 0 as purchasing all blockchain-native coins at a zero price generates

an inőnite return. Then as long as assets are registered on the blockchain, we have ϕnt > 0 for all t.

Blockchain applications have two immediate implications. First, let Ñ ⊂ N denote the non-

empty set of blockchains with applications such that ϕnt > 0 for all n ∈ Ñ . Then Ñ ⊆ M, and

hence the set M must be non-empty. As a consequence, blockchain applications relax the need to

reőne the equilibrium with regards to which coins are valued.

Second, the result of Proposition 2 holds (in slightly altered form) even in the absence of

blockchain security constraints. Set A = 0. Let mn ∈ R
+ denote the lower bound for real coin

balances of blockchain n ∈ Ñ , assumed to be constant for simplicity.

Proposition 9. Consider two coins n ∈ M, n /∈ Ñ , and n′ ∈ Ñ . Then mn
t < mn′

t if µn > µn
′
.

See Appendix G.4 for the proof. The blockchain security constraint ensured that the path for

real coin balances cannot lead to zero, and hence low growth coins experienced low inŕation rates.
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A similar logic applies with blockchain applications. Not only must coins native to blockchains

with additional applications be valued in equilibrium, they also must have greater market value

than their competitor coins if the competitor coin grows at a higher rate. It is in this sense that

blockchain applications ensure currency competition, which is facilitated by blockchain congestion

in the őrst place.

8 Conclusion

This paper argues that the apparent drawbacks of blockchain-operated currencies, namely capac-

ity constraints and security costs, emerge as distinctive features when viewed within the context of

currency competition. Issuers of cryptocurrencies face strict incentives to undercut other cryptocur-

rencies’ money growth rates in order to boost demand. This leads to low-inŕation outcomes but

comes at the cost of unrealized gains from tradeÐeven in the absence of any network effectsÐas

well as inefficiently high levels of inŕation in equilibrium. The paper thus highlights a continuing

role for public, centralized money.
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Appendices

A Proof of Proposition 2

I prove the proposition with the help of two lemmata. Suppose Condition 1 is satisőed, implying

that u′(q) · q is weakly increasing for all q ∈ [0, q∗].
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Lemma 4. Consider n, n′ ∈ M. If πnt+1 > πn
′

t+1, then mn
t < mn′

t .

Proof. Suppose πnt+1 > πn
′

t+1. Note that this implies that the cash constraint is binding for coin n.

Proposition 1 implies that αn
t > αn′

t and m̃n
j,t < m̃n′

j,t. Equation (1) then necessitates hnt < hn
′

t , with

hn
′

t > η. Equation (1) further implies that hnt α
n
t = min{hnt , η} and hn

′

t α
n′

t = η. Using Equation (3),

mn
t is given by

mn
t = hntm

n
j,t = min{hnt , η} · u

′(m̃n
j,t) · m̃

n
j,t + (1− αn

t ) · h
n
t m̃

n
j,t

If the cash constraint is also binding for coin n′, then mn′

t is given by

mn′

t = hn
′

t m
n′

j,t = η · u′(m̃n′

j,t) · m̃
n′

j,t + (1− αn′

t ) · hn
′

t m̃
n′

j,t > mn
t

If the cash constraint is not binding for coin n′, then ϕn
′

t = βϕn
′

t+1 and hence mn′

j,t = m̃n′

j,t ≥ q∗. Then

mn′

j,t = αn′

t ·mn′

j,t + (1− αn′

t ) ·mn′

j,t

≥ αn′

t · q∗ + (1− αn′

t ) ·mn′

j,t

= αn′

t · u′ (q∗) · q∗ + (1− αn′

t ) · m̃n′

j,t

≥ αn′

t · u′
(

m̃n
j,t

)

· m̃n
j,t + (1− αn′

t ) · m̃n′

j,t

Multiplying both sides by hn
′

t reveals

mn′

t ≥ min{hn
′

t , η} · u
′
(

m̃n
j,t

)

· m̃n
j,t + (1− αn′

t ) · hn
′

t · m̃n′

j,t

> min{hnt , η} · u
′
(

m̃n
j,t

)

· m̃n
j,t + (1− αn

t ) · h
n
t ·mn

j,t

= mn
t

The claim follows.

Lemma 5. Consider n, n′ ∈ M. If µn > µn
′
, then πnt+1 ≥ πn

′

t+1 for all t ≥ 0.

Proof. The proof is by contradiction. Let µn > µn
′
. Suppose πnt+1 < πn

′

t+1 for at least one t ≥ 0. By
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deőnition, aggregate real coin balances in coin n evolve according to

mn
t+1 =

1 + µn

1 + πnt+1

·mn
t

and hence
mn

t+1

mn′

t+1

=
1 + µn

1 + µn′ ·
1 + πn

′

t+1

1 + πnt+1

·
mn

t

mn′

t

By Lemma 4, if πnt+1 < πn
′

t+1, then mn
t > mn′

t . Since µn > µn
′

and πnt+1 < πn
′

t+1, it must be that
mn

t+1

mn′

t+1

>
mn

t

mn′
t

, and thus mn
t+1 > mn′

t+1. By Lemma 4, this necessitates πnt+2 ≤ πn
′

t+2 as otherwise

mn
t+1 < mn′

t+1. Following the same steps shows that
mn

t+2

mn′

t+2

>
mn

t+1

mn′

t+1

and thus mn
t+2 > mn′

t+2, implying

that πnt+3 ≤ πn
′

t+3. From here it is clear that mn
t+s > mn′

t+s and πnt+s+1 ≤ πn
′

t+s+1 for all s ≥ 1. It

follows that

lim
s→∞

mn
t+s

mn′

t+s

= lim
s→∞

(

1 + µn

1 + µn′

)s

·
s
∏

k=1

1 + πn
′

t+k

1 + πnt+k

·
mn

t

mn′

t

→ ∞

Since mn
t <∞ for all t ≥ 0, it must be that mn′

t+s ↘ 0 as s→ ∞. But then µn′

1+µn′mn′

τ < A at some

őnite τ for all µn
′
< ∞, at which point ϕn

′

τ = 0. This in turn implies that ϕn
′

τ−1 = 0 by Equation

(3), and hence ϕn
′

t = 0 for all t ≥ 0. This is a contradiction to n′ ∈ M, and the claim follows.

To complete the proof, consider n, n′ ∈ M and let µn > µn
′
. Suppose πnt+1 > πn

′

t+1 for all t ≥ 0.

The claim then trivially follows from Lemma 4. Suppose πnt+1 = πn
′

t+1 for at least one t ≥ 0. If

mn
t < mn′

t for all these t ≥ 0, the claim again trivially follows. Hence suppose πnt+1 = πn
′

t+1 and

mn
t ≥ mn′

t for at least one t ≥ 0. Since

mn
t+1

mn′

t+1

=
1 + µn

1 + µn′ ·
1 + πn

′

t+1

1 + πnt+1

·
mn

t

mn′

t

it must be that mn
t+1 > mn′

t+1. This requires πnt+2 ≤ πn
′

t+2, and hence
mn

t+2

mn′

t+2

>
mn

t+1

mn′

t+1

as well as

mn
t+2 > mn′

t+2. This again requires πnt+3 ≤ πn
′

t+3. Continuing this logic, it follows that

lim
s→∞

mn
t+s

mn′

t+s

= lim
s→∞

(

1 + µn

1 + µn′

)s

·
s
∏

k=1

1 + πn
′

t+k

1 + πnt+k

·
mn

t

mn′

t

→ ∞

yielding the same contradiction to n′ ∈ M as in the proof of Lemma 4. The claim follows.
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B Proof of Lemma 2

Proof. Consider monetary policy µ such that M = N and hnt ≤ η for all n ∈ N . Consider further

mn
j,t = mj , m̃

n
j,t = m̃j , and hnt = 1/N satisfying

µ

1 + µ
·
mj

N
≥ A

for all n ∈ N and t ≥ 0. Consider a deviation in monetary policy µn = µ− ε < µ for some n ∈ M,

and suppose

lim
ε↘0

mn
j,t(µ

n,µ−1) = mn
j,t(µ) = mj and lim

ε↘0
m̃n

j,t(µ
n,µ−1) = m̃n

j,t(µ) = m̃j

Since

mn
j,t = αn

t · u′
(

m̃n
j,t

)

· m̃n
j,t + (1− αn

t ) · m̃
n
j,t

it must be that αn
t tends to one, and thus hnt tends to η. Suppose that consumer j real coin balances

remain unchanged for all the coins n′ ̸= n that continue to be valued. The respective security

blockchain constraints continue to be satisőed if there exists a number of coins N̂ ∈ {1, ..., N − 1}

satisfying

η ≥
1− η

N̂
≥

1

N

The őrst inequality ensures that the N̂ coins which remain valued can cover the 1 − η mass of

buyers not using coin n without becoming congested. Rearranging yields η ≥ 1
N̂+1

. The second

inequality ensures that the mass of buyers 1− η is sufficiently high such that at least N̂ coins have

a weakly larger buyer base after the deviation, ensuring that the blockchain security constraint

remains satisőed. Rearranging yields η ≤ N−N̂
N

. Combine to read

1

N̂ + 1
≤ η ≤

N − N̂

N

These inequalities can jointly be satisőed for a sufficiently large N . Since N is arbitrarily large, the

deviation is consistent with equilibrium conditions, and the claim follows.
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C Proof of Proposition 3

Proof. Consider the symmetric strategies µ with µn = µ > µ(1) for all n ∈ N . Suppose M ⊂ N .

Any n /∈ M achieves a zero payoff. Consider a deviation µn = µ(1) for some n /∈ M. By Assumption

1, such a monetary policy is consistent with a monetary equilibrium. By Assumption 2 and since

µn
′
> µn = µ(1) for all n′ ∈ N , n′ ̸= n, it must be that mn

t > 0 for all t ≥ 0. Entrepreneur n

achieves a strictly positive payoff and thus faces a proőtable deviation to set µn = µ(1).

Next, suppose M = N . Since (N − 1) · η > 1, we have hnt < η for at least two n. Consider one

of these n, and consider a marginal deviation µn = µ − ε, with ε ↘ 0. By Assumption 3, we have

lim
ε↘0

mn
j,t(µ

n,µ−n) = mn
j,t(µ) as well as lim

ε↘0
m̃n

j,t(µ
n,µ−n) = m̃n

j,t(µ). Since

mn
j,t(µ) = αn

t · u′
(

m̃n
j,t(µ)

)

· m̃n
j,t(µ) + (1− αn

t ) · m̃
n
j,t(µ)

it must be that αn
t tends to one which requires that hnt tends to η.

lim
ε↘0

xnt =
µ

1 + µ
· η ·mn

j,t(µ) >
µ

1 + µ
· hnt ·mn

j,t(µ)

By Lemma 2, the above is consistent with the equilibrium conditions. Entrepreneur n thus faces a

proőtable deviation, and the claim follows.

D Proof of Proposition 4

The proof is by contradiction. Suppose otherwise, and hnt ≤ η for all n ∈ M for at least one t ≥ 0.

Then αn
t = αn′

t+1 for all n, n′ ∈ M for all n, n′ ∈ M, and hence πnt+1 = πn
′

t+1 for all n, n′ ∈ M by

Proposition 1. Furthermore, since
∑

n∈M hnt = 1 for all t ≥ 0, it must be that η · |M| ≥ 1.

Consider the őrst time period t ≥ 0 in which hnt ≤ η for all n ∈ M. Suppose mn
t = mn′

t

for all n, n′ ∈ M. Since πnt+1 = πn
′

t+1 and µn = µn
′

for all n, n′ ∈ M, we have mn
t+1 = mn′

t+1

which by Lemma 4 requires πnt+2 = πn
′

t+2. It then follows that mn
t+2 = mn′

t+2 and πnt+3 = πn
′

t+3,

and hence mn
t+s = mn′

t+s and πnt+s+1 = πn
′

t+s+1 for all s ≥ 0. Since hnt = hn
′

t ≤ η, it must be that

hnt+s = hn
′

t+s ≤ η for all s ≥ 0.

Next, suppose mn
t ̸= mn′

t for all n, n′ ∈ M. Consider coin n with mn
t ≤ mn′

t for all n′ ∈ M,
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with the inequality strict for at least one n′. If mn
t = mn′

t for some n′ ∈ M, then by the previous

logic it must be that mn
t+s = mn′

t+s and πnt+s+1 = πn
′

t+s+1 as well as hnt+s = hn
′

t+s for all s ≥ 0. If

mn
t < mn′

t for some n′ ∈ M, then hnt < hn
′

t . With πnt+1 = πn
′

t+1 and µn = µn
′
, it must be that

mn
t+1 < mn′

t+1 as well as πnt+2 ≥ πn
′

t+2. This implies hnt+1 < hn
′

t+1. Repeating the same exercise, it

must be that mn
t+2 < mn′

t+2, π
n
t+3 ≥ πn

′

t+3 and hnt+2 < hn
′

t+2. From here it follows that mn
t+s < mn′

t+s,

πnt+s+1 ≥ πn
′

t+s+1 and hnt+s < hn
′

t+s for all s ≥ 0. Since
∑

n∈M hns = 1 for all t ≥ 0 and η · |M| ≥ 1, it

must be that hnt+s < η for all s ≥ 0.

Note that money balances are unbounded if πnt+1 < µn for all t ≥ 0, and hence πnt+1 ≥ µn for all

n ∈ M for at least one t ≥ 0.

I will now show that the blockchain security constraint (Equation 2) is violated for coin n with

µn ≤ µ(1) < µ(η) if hnt+s ≤ η and πnt+s+1 ≥ µn for some s ≥ 0. Consider Equations (2) and (3) for

uncongested blockchains:

µn

1 + µn
· hnt+s · (1 + πnt+s+1) ·

m̃n
j,t+s

β
≥ A

and 1 + πnt+s+1 = βu′(m̃n
j,t+s). Substitute the latter into the former to őnd

µn

1 + µn
· hnt+s · u

′
(

m̃n
j,t+s

)

· m̃n
j,t+s ≥ A (ID.1)

Clearly, the LHS of (ID.1) is strictly increasing in hnt+s ≤ η. Note that m̃n
j,t+s is strictly decreasing

in πnt+s+1. With Condition 1, the LHS of (ID.1) is then strictly decreasing in πnt+s+1. Recall the

deőnition of µ(η) as the lowest µ ∈ R
+ that satisőes (ID.1) with equality for πnt+s+1 = µn and

hnt+s = η.17 By deőnition, (ID.1) cannot be satisőed if µn < µ(η), πnt+s+1 = µn and hnt+s = η.

Hence it cannot be satisőed if µn < µ(η), πnt+s+1 ≥ µn and hnt+s ≤ η.

Since hnt ≤ η for all n ∈ M for at least one t ≥ 0 implies that hnt ≤ η for at least one n ∈ M for

all t ≥ 0, and since µn ≤ µ(1) < µ(η) by Proposition 3, we have a contradiction, as coin n cannot

be contained in the set M. The claim follows.

17The value µ(η) is of course equivalent, regardless whether it is deőned based on Equation (6) or based on
Equation (ID.1) in its binding form with hn

t+s = η and πn
t+s+1 = µn.
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E Proof of Lemma 3

Let G : (R+)3 → R be a continuously differentiable function given by

G(x1, x2, y) = −(1 + y) + β
x1
x2

· u′
(

βA

yx2

)

+ β

(

1−
x1
x2

)

with

Gy(x1, x2, y) = − 1 −
1

y
· β
x1
x2

· u′′
(

βA

yx2

)

·
βA

yx2

and

Gx2
(x1, x2, y) = β

x1
(x2)2

[

1− u′
(

βA

yx2

)

− u′′
(

βA

yx2

)

·
βA

yx2

]

Fix a point (η0, h0, µ0) such that G(η0, h0, µ0) = 0 as well as Gy(η0, h0, µ0) > 0. Then, by the

implicit function theorem, there exists an open set S ⊂ (R+)2 containing (η0, h0) such that there

exists a continuously differentiable function g : S → R
+
0 such that

i. g(η0, h0) = µ0 and G (x1, x2, g(x1, x2)) = 0 for all (x1, x2) ∈ S.

ii. the partial derivative of g in S for xi, i ∈ {1, 2}, reads

gxi
(x1, x2) = −

Gxi
(x1, x2, g(x1, x2))

Gy(x1, x2, g(x1, x2))

Consider (x1, x2) = (1, 1) and suppose 1 > u′
(

βA
µ̃

)

+ u′′
(

βA
µ̃

)

· βA
µ̃

. It immediately follows that

Gx2
(1, 1, µ̃) > 0. Since G(1, 1, µ̃) = 0 by deőnition, note that Gy(1, 1, µ̃) > 0 as

−µ̃− β · u′′
(

βA

µ̃

)

·
βA

µ̃
= 1− β · u′

(

βA

µ̃

)

− β · u′′
(

βA

µ̃

)

·
βA

µ̃
> 0

The implicit function theorem therefore applies at (x1, x2) = (1, 1).

Recall the deőnition of µ as function assigning to each h ∈ [η, 1] the lowest level of µ that

satisőes Equation (6) for a given level of η. By Assumption 1, there exists at least one µ ∈ R
+ for

a given level of η ∈ (0, 1] for all h ∈ [η, 1] such that Equation (6) is satisőed; by the assumptions on

u, there can be at most two. If there are two, it must be that Gy(η, h, µ) > 0 at the lowest level of

µ ∈ R
+ that satisőes Equation (6). It then follows that the function µ assigns the same value to h
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for a given level of η as g assigns to (x1, x2) = (η, h) whenever g exists with Gy(η, h, g(η, h)) > 0.

Hence g(1, 1) = µ̃.

Condition 2 is satisőed if µ is a decreasing function in h. Consequentially, it is satisőed if g exists

and gx2
(x1, x2) < 0 for x1 = η ∈ (0, 1] and for all x2 ∈ [η, 1]. Since g is continuously differentiable

in S, so is Gx2
(x1, x2, g(x1, x2)). It then follows that there exists a neighborhood around (x1, x2) =

(1, 1) containing the set of points {η, h}h∈[η,1], with η < 1, such that Gx2
(η, h, g(η, h)) > 0 for all

h ∈ [η, 1]. Hence, there exists an η ∈ (0, 1) such that µ(1) < µ(h) for all h ∈ [η, 1] if η ≥ η.

F Proof of Proposition 7

Proof. Entrepreneur n’s problem (Equation 7) reads

max
µn∈R

+

0

∑

t≥0

µn

1 + µn
·mn

t

which can be re-stated as

max
µn∈R

+

0

µn

1 + µn
· ϕn0 ·Mn

0 +
∑

t≥1

µn

1 + µn
·mn

t

Since Mn
0 = (1 + µn)M−1, we have

max
µn∈R

+

0

µn · ϕn0 ·M−1 +
∑

t≥1

µn

1 + µn
·mn

t

Then, for any ϕn0 > 0, it cannot be optimal to set µn < ∞; the problem does not have a solution.

The claim follows.
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G Appendix: Extensions

G.1 Appendix: Transaction fees

The value function at the time-t CM when holding a particular coin n is unchanged:

Wn
j,t(M) = max

Mn
j,t

∈R
+

0

ϕn
′

t M − ϕntM
n
j,t + V n

j,t

(

Mn
j,t

)

whereas the value function of the time-t DM now reads

V n
j,t

(

Mn
j,t

)

= max
(qj,t,Dj,t)∈R

+

0
×R

αn
t

[

u(qj,t) + βWj,t+1

(

Mn
j,t −Dj,t(1 + fnt )

)]

+ (1− αn
t ) · βWj,t+1

(

Mn
j,t

)

s.t. Dj,t(1 + fnt ) ≤ Mn
j,t

s.t. qj,t ≤ βϕnt+1Dj,t

As before, the optimal transfer is given by the quantity produced: qj,t = βϕnt+1Dj,t. Making use of

quasi-linearity, the value function simpliőes to

V n
j,t

(

Mn
j,t

)

= max
qj,t∈R

+

0

αn
t [u(qj,t)− (1 + fnt )qj,t] + β

[

ϕnt+1M
n
j,t +Wj,t+1(0)

]

s.t. (1 + fnt )qj,t ≤ βϕnt+1M
n
j,t

Let q(fnt ) denote the level of q that satisőes u′
(

q(fnt )
)

= 1 + fnt . Consumption conditional on

successful transaction veriőcation is then given

qj,t =











q(fnt ) if (1 + fnt ) · q(f
n
t ) ≤ βϕnt+1M

n
j,t

βϕn
t+1

Mn
j,t

1+fn
t

otherwise

As before, if the cash constraint is not binding, then

ϕnt = βϕnt+1
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Otherwise, optimal coin demand is characterized by the new őrst order condition:

ϕnt = αn
t · u′

(

βϕnt+1M
n
j,t

1 + fnt

)

·
βϕnt+1

1 + fnt
+ (1− αn

t ) · βϕ
n
t+1

The transaction fee essentially scales down the coin balances available to purchase consumption

goods. Using this condition, rewrite the value function as before:

Wn
j,t(M) = ϕn

′

t M + αn
t · ψ

(

m̃n
j,t

1 + fnt

)

+ βWj,t+1(0)

where ψ : R
+
0 → R

+
0 with ψ(y) = u(y) − y · u′(y) if 0 ≤ y < q(fnt ), and ψ(y) = u

(

q(fnt )
)

− q(fnt ) ·

(1 + fnt ) if y ≥ q(fnt ). By the properties of the utility function, note that ψ(0) = 0. Also note that

ψ′(y) = −yu′′(y) > 0 if y ∈
(

0, q(fnt )
)

, and ψ′(y) = 0 if y ≥ q(fnt ). Indifference between coins again

requires

αn
t · ψ

(

m̃n
j,t

1 + fnt

)

= αn′

t · ψ

(

m̃n′

j,t

1 + fn
′

t

)

I now proceed to prove the claim of Proposition 8.

G.2 Proof of Proposition 8 (equivalent of Proposition 1)

Proof. To show that πnt+1 > πn
′

t+1 if αn
t > αn′

t , suppose αn
t > αn′

t . This requires hnt < hn
′

t and thus

fnt ≤ fn
′

t . Equation (4) necessitates that

m̃n
j,t

1 + fnt
<

m̃n′

j,t

1 + fn
′

t

which implies that 0 < m̃n
j,t < m̃n′

j,t, with m̃n
j,t < q(fnt ). This in turn implies that

u′
(

m̃n
j,t

1 + fnt

)

> u′

(

m̃n′

j,t

1 + fn
′

t

)
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if the cash constraint is binding for both coins. Combining őrst order conditions then reveals that

πnt+1 > πn
′

t+1. If the cash constraint is not binding for coin n′, then

u′
(

m̃n
j,t

1 + fnt

)

> u′
(

q(fnt )
)

It also follows that πnt+1 > πn
′

t+1.

To show that πnt+1 > πn
′

t+1 only if αn
t > αn′

t , suppose αn
t ≤ αn′

t and follow the same steps to őnd

that πnt+1 ≤ πn
′

t+1.

G.3 Proof of Proposition 8 (continued, equivalent of Proposition 2)

Proof. Recall that Proposition 2 was shown using Lemmas 4 and 5. Note that the proof of Lemma

5 applies for any level of fnt ≥ 0. I therefore only need to show that mn
t < mn′

t if and only if

πnt+1 > πn
′

t+1 (the equivalent of Lemma 4).

First, I show that mn
t < mn′

t if πnt+1 > πn
′

t+1. Suppose πnt+1 > πn
′

t+1. Note that this implies

that the cash constraint is binding for coin n. From Appendix G.2 above, we have αn
t > αn′

t ,
m̃n

j,t

1+fn
t
<

m̃n′

j,t

1+fn′
t

and m̃n
j,t < m̃n′

j,t. Equation (1) then necessitates hnt < hn
′

t , with hn
′

t > η. Equation

(1) further implies that hnt α
n
t = min{hnt , η} and hn

′

t α
n′

t = η.

Using the őrst order condition, mn
t is given by

mn
t = hntm

n
j,t = min{hnt , η} · u

′

(

m̃n
j,t

1 + fnt

)

·
m̃n

j,t

1 + fnt
+ (1− αn

t ) · h
n
t m̃

n
j,t

If the cash constraint is also binding for coin n′, then mn′

t is given by

mn′

t = hn
′

t m
n′

j,t = η · u′

(

m̃n′

j,t

1 + fn
′

t

)

·
m̃n′

j,t

1 + fn
′

t

+ (1− αn′

t ) · hn
′

t m̃
n′

j,t

Since u′(q) · q is a weakly increasing function in q, it follows that mn
t < mn′

t .

If the cash constraint is not binding for coin n′, then
mn′

j,t

1+fn′
t

=
m̃n′

j,t

1+fn′
t

≥ q(fn
′

t ) since ϕn
′

t = βϕn
′

t+1.
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Note that

mn′

j,t = αn′

t ·mn′

j,t + (1− αn′

t ) ·mn′

j,t

≥ αn′

t · (1 + fn
′

t ) · q(fn
′

t ) + (1− αn′

t ) ·mn′

j,t

= αn′

t · u′
(

q(fn
′

t )
)

· q(fn
′

t ) + (1− αn′

t ) ·mn′

j,t

≥ αn′

t · u′
(

m̃n
j,t

1 + fnt

)

·
m̃n

j,t

1 + fnt
+ (1− αn′

t ) ·mn′

j,t

Multiplying both sides by hn
′

t reveals

mn′

t ≥ min{hn
′

t , η} · u
′

(

m̃n
j,t

1 + fnt

)

·
m̃n

j,t

1 + fnt
+ (1− αn′

t ) · hn
′

t ·mn′

j,t

> min{hnt , η} · u
′

(

m̃n
j,t

1 + fnt

)

·
m̃n

j,t

1 + fnt
+ (1− αn

t ) · h
n
t ·mn

j,t

= mn
t

which completes the őrst part of the proof.

To show that mn
t < mn′

t only if πnt+1 > πn
′

t+1, suppose πnt+1 ≤ πn
′

t+1 and follow the same steps as

above. This completes the proof.

G.4 Proof of Proposition 9

Proof. Consider n ∈ M, n /∈ Ñ , and n′ ∈ Ñ . Let µn > µn
′
. Real coin n′ balances are now given by

mn′

t = min
{

m̂n′

t , m
n′
}

where

m̂n′

t = min{hn
′

t , η} · u
′(m̃n

j,t) · m̃
n′

j,t +
(

1− αn′

t

)

· hn
′

t m̃
n′

j,t

Coin n real balances are given by mn
t = m̂n

t .

First suppose that mn′

t = m̂n′

t for at least one t ≥ 0. Consider the relative aggregate real coin
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balances that evolve according to

mn
t+1

mn′

t+1

=
1 + µn

1 + µn′ ·
1 + πn

′

t+1

1 + πnt+1

·
mn

t

mn′

t

If πnt+1 ≤ πn
′

t+1, then mn
t ≥ mn′

t . Since µn > µn
′
, it again follows that mn

t+1 > mn′

t+1, which in

turn implies that πnt+2 < πn
′

t+2. But then
mn

t+2

mn′

t+2

>
mn

t+1

mn′

t+1

which implies mn
t+2 > mn′

t+2, which requires

πnt+3 < πn
′

t+3. This process continues as time progresses. It follows that the ratio
mn

t+s

mn′

t+s

must continue

to increase:

lim
s→∞

mn
t+s

mn′

t+s

= lim
s→∞

(

1 + µn

1 + µn′

)s

·
s
∏

k=1

1 + πn
′

t+k

1 + πnt+k

·
mn

t

mn′

t

→ ∞

This is a contradiction: mn
t is bounded, and mn′

t ≥ mn′
> 0 for all t ≥ 0. Thus, if mn′

t = m̂n′

t and

µn > µn
′
, then πnt+1 > πn

′

t+1 and hence mn′

t > mn
t . It follows that mn′

t = mn′
for all t ≥ 0 is a

necessary condition for mn
t ≥ mn′

t for some t ≥ 0.

Second, given the őnding above, suppose that mn′

t = mn′
for all t ≥ 0. If mn′

> mn
t for all

t ≥ 0, the result trivially holds. Hence suppose further that mn′
≤ mn

t for at least one t ≥ 0. By

Lemma 4 it must be that πnt+1 ≤ πn
′

t+1; otherwise mn
t < m̂n′

t ≤ mn′
. Since mn′

t = mn′
for all t ≥ 0,

we have that µn
′
= πn

′

t+1 for all t ≥ 0. By the law of motion of relative balances we have

mn
t+1

mn′

t+1

=
mn

t+1

mn′ >
mn

t

mn′ ≥ 1

Since mn′

t+1 > m̂n′

t+1, it must be that πnt+2 < πn
′

t+2. This again implies that
mn

t+2

mn′ >
mn

t+1

mn′ , and hence

lim
s→∞

mn
t+s

mn′ = lim
s→∞

s
∏

k=1

1 + µn

1 + πnt+k

·
mn

t

mn′ → ∞

which cannot occur as mn
t+1 <∞ for all s ≥ 0. This is a contradiction, and the claim follows.
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