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Abstract

Since Diamond and Dybvig (1983), banks have been viewed as inherently fragile. We
challenge this view in a general mechanism design framework, where we allow for ŕex-
ibility in the design of banking mechanisms while maintaining limited commitment of
the intermediary to future mechanisms. We őnd that the unique equilibrium outcome is
efficient. Consequently, runs cannot occur in equilibrium. Our analysis points to the ul-
timate source of fragility: banks are fragile if they cannot collect and optimally respond
to useful information during a run and not because they engage in maturity transfor-
mation. We link our banking mechanisms to recent technological advances surrounding
‘smart contracts,’ which enrich the practical possibilities for banking arrangements.
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1 Introduction

Since the seminal contribution of Diamond and Dybvig (1983), maturity transformation

has been viewed as an inherently fragile activity.1 Speciőcally, a őnancial intermediary

provides the efficient level of liquidity insurance by issuing deposits while investing in long-

maturity, high-return assets. However, the intermediary becomes illiquid in the process: not

all obligations can be honored at face value if all depositors request to be paid immediately.

This illiquidity gives rise to self-fulőlling runs. This highlights an important trade-off between

efficiency and stability: one can achieve stability by mandating banking arrangements with

inefficiently low levels of maturity transformation, or must live with the possibility of bank

runs.

Indeed, bank runs have been recurrent events.2 Moreover, they often result in costly

and distortionary government bailout interventions. It is then unsurprising that regulators

have designed many policies to prevent bank runs, mainly in the form of deposit insurance

and liquidity regulation. However, to design such policies optimally, one needs a thorough

understanding of the conditions that give rise to the trade-off between efficiency and stability.

This paper sets out to understand the ultimate source of fragility in the Diamond-Dybvig

model of bank runs. The model has two essential components. First, the depositors have

private information about their liquidity needs, with some having an urgent need to consume,

whereas others can wait and consume later. Second, those with an urgent need to consume

must be paid on demand since forcing them to wait is inefficient, leading to a sequential

service constraint.

Early work by Wallace (1988) identiőed sequential service as a necessary constraint in

the design of intermediaries for fragility to emerge. Without sequential service, the bank

can collect all withdrawal requests and then assign payments accordingly. In that case,

depositors without an urgent need to consume would prefer to leave their funds in the bank

to generate a positive return. As a consequence, runs cannot occur. Thus, a sequential

service constraint is necessary for the Diamond-Dybvig model to be a theory of banking,

1Diamond and Dybvig (and to a lesser extent Bryant (1980)) were the őrst to formalize it, but the idea
of inherent fragility goes further back. For example, J.P. Morgan said during the crisis of 1907: łIf the people
will keep their money in the banks, everything will be all right.ž See Bruner and Carr (2009), pp. 100ś01.

2Many banks in various countries experienced runs during the Great Depression in the 1930s and the
Great Financial Crisis of 2007-2009. The U.S. alone experienced systematic banking panics in 1857, 1873,
1893, 1907, 1931, and 1933. Other banking and őnancial crisis examples include the Nordic countries 1991-3,
Mexico 1994-5, East Asia 1997-8, and Argentina 2001-2. More recently, Silicon Valley Bank in the United
States and Credit Suisse in Switzerland experienced run-like events leading to their failure.
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illiquidity, and fragility.

At the same time, sequential service is not sufficient for bank runs: whether or not banks

are fragile depends on the details of the environment and, in particular, on how fast the

bank infers that a run is underway by observing depositors’ withdrawal behavior (Green

and Lin, 2003; Peck and Shell, 2003; Ennis and Keister, 2009b). However, the run equilibria

in this literature have an odd property: depositors know that a run is underway, but the

bank does not. In such cases, it seems natural to allow for richer mechanisms that elicit

additional information from the depositors. Several recent papers (Cavalcanti and Monteiro,

2016; Andolfatto et al., 2017) show how mechanisms designed so that a patient depositor who

runs on the bank is willing to reveal her true typeÐthus alerting the bank to the runÐcan

uniquely implement the efficient allocation. No bank runs can occur in equilibrium. The key

idea is to impose a strict deposit freeze immediately after detecting a run.3

However, deposit freezes are highly inefficient during a run as some depositors with urgent

needs to consume cannot access their funds within the bank. Deposit freezes thus require

a high degree of commitment power. This is unreasonable in practice since, during crises,

regulators routinely take control of banks to preserve depositor welfare.4 Ennis and Keister

(2009a, 2010) shows how the inability to commit to deposit freezes causes runs. Nevertheless,

they study this problem in a restricted contracting environment, and consequently, it is hard

to delineate the extent to which limited commitment drives fragility.

To fully understand the ultimate source of fragility, one needs to allow for ŕexibility in

the design of mechanisms while relaxing the commitment power of the intermediary. To this

end, we develop a ‘mechanism selection game’ among a őnancial intermediary (‘Banker’)

and many agents (‘depositors’), building on the canonical Diamond-Dybvig model. Each

depositor is allocated either some immediate consumption out of current resources or a

promise of future consumption out of future resources. Depositors interact with the Banker

one-by-one, and we identify a stage in this game to be an interaction with a particular

depositor.

The interaction between the Banker and each depositor is through a mechanism that

3These papers extend an idea from Diamond and Dybvig (1983) where the bank was assumed to freeze
deposits once withdrawal demand reveals that a run is underway. This solution only works if there is little
uncertainty about total fundamental withdrawal demand. In Cavalcanti and Monteiro (2016) and Andolfatto
et al. (2017), the bank detects the run more quickly using an indirect mechanism, which can work even when
there is signiőcant aggregate uncertainty.

4This can vividly be seen in the 2001 Argentinian banking crisis, where banks reneged on their promised
payment plans. See Ennis and Keister (2009a) for details. Wallace (1990) offers historical examples of
partial suspensions, for example, in the 1907 őnancial crisis. Friedman and Schwartz (1963) describe how
suspensions during the Great Depression came long after it was clear that banks were in trouble.
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governs their communication and determines the allocation for that stage. Importantly, at

the beginning of each stage, the Banker can unilaterally scrap the existing mechanism and

replace it with a new one. That new mechanism then governs the current and all future

interactions until it is replacedÐif ever. Notice that implicit in the description of our game

is some level of commitment power by the Banker: within a stage, the selected mechanism

must govern at least the current interaction, and it can only be replaced after the current

stage is completed. In that sense, the Banker has intra-stage but not inter-stage commitment.

We emphasize that our mechanism selection game captures the three key ingredients we

seek to model: (i) sequential service, which is embedded in the structure of our extensive-

form game; (ii) contractual ŕexibility, reŕected in the lack of restrictions on the available

mechanisms; and (iii) limited commitment, captured by the ability of the Banker to replace

any mechanism ex-post, as the game unfolds.

We őnd that the unique equilibrium outcome of the mechanism selection game is efficient.

Consequently, there cannot be runs in any equilibrium of this game. This means that with

enough ŕexibility in the design of mechanisms, limited commitment poses no problems, and

the trade-off between efficiency and fragility disappears. This result relies on two assump-

tions. First, the efficient outcome (subject to sequential service) is an equilibrium of the

mechanism selection game. Second, the depositors follow the mechanisms’ instructions when

indifferent between messagesÐbut are otherwise free to discard these instructions.

What underpins this result is the following. By ‘separating’ the mechanism from the

Banker, we can construct mechanisms that collect useful information even in the event of

a run. In particular, the mechanism not only services withdrawal requests but also learns

whether withdrawing depositors have urgent needs to consume. This information is then

used to set up ex-post efficient allocations. When such a mechanism is in place, only depos-

itors with an urgent need to consume withdraw, and the Banker is deterred from replacing

the mechanism. Consequently, bank runs are avoided, and efficiency is achieved in every

equilibrium.

The mechanism we propose does not rely on government guarantees or banking regulation

and can be implemented by private őnancial arrangements if there is sufficient contractual

ŕexibility. Thus, the ultimate source of fragility is not maturity transformation, private

information about liquidity needs, sequential service, or limited commitment. Instead, banks

become fragile when they fail to collect and optimally respond to useful information.

A rich contracting space is not only a key theoretical aspect of this paper but also of

increasing practical relevance. Speciőcally, recent technological advancements signiőcantly
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enrich the contracts that can be conceivably implemented. Indeed, in the spirit of Brzus-

towski et al. (2023), our banking mechanisms can be interpreted as resting on two minimal

properties of ‘smart contracts’: automatic execution and cryptographic encryption.5

Finally, we do not wish to proclaim the end of bank runs. Rather, our analysis implies

that self-fulőlling bank runs do not emerge due to the inherent fragility of maturity transfor-

mation. Instead, distortions generated by government guarantees could be a cause of bank

runs. Indeed, historical experience suggests that governments őnd it difficult to commit

not to bail out őnancial institutions in times of crisis.6 Even within a Diamond-Dybvig

setting, a bank that anticipates being bailed out but does not fully internalize the cost of

the public funds might optimally choose to operate with a fragile liability structure (Keister,

2016; Keister and Mitkov, 2023). Alternatively, bank runs may be (i) behavioral phenomena

(e.g., manias, panics, and crashes as per Kindleberger et al. (2005)) (ii) caused by insolvency

rather than illiquidity (Allen and Gale, 1998), or (iii) resulting from institutional restrictions

on őnancial contracts.

Literature Review. The paper primarily speaks to the theoretical literature on őnancial

fragility following the seminal contribution of Diamond and Dybvig (1983).

The Diamond-Dybvig model has two key features: private information about liquidity

needs and a sequential service constraint. Sequential service, as envisioned by Diamond-

Dybvig and formalized by Wallace (1988, 1990), implies that depositors urgently need to

consume and must be paid on demand. At the same time, sequential service is a necessary

but not sufficient condition for bank runs. Diamond and Dybvig (1983) show that when the

proportion of impatient depositors is known, a simple deposit freeze eliminates runs at no

cost in terms of efficiency.7

Diamond and Dybvig (1983) also recognized that the above contract is not optimal if the

number of impatient depositors is uncertain. In an inŕuential paper, Green and Lin (2003)

5A third desirable property of these contracts property is immutability, which amounts to the impos-
sibility of ever altering or stopping the protocol and, in our case, corresponds to inter-stage commitment.
Our mechanism does not require immutability, which is fortunate since, as already mentioned, this is not an
appealing assumption in a banking context.

6Large theoretical literature shows how bailouts can distort banks’ incentives. See, for example, Farhi
and Tirole (2012), Chari and Kehoe (2016), Bianchi (2016), Nosal and Ordonez (2016), Dávila and Walther
(2020), and Philippon and Wang (2023).

7Papers in the literature generate runs even in that case, by assuming that the bank must give a pre-
speciőed payment until it runs out of funds (Postlewaite and Vives, 1987; Cooper and Ross, 1998; Allen and
Gale, 2004a; Goldstein and Pauzner, 2005). This ’simple contracts’ approach is convenient but at odds with
the observation that the liabilities of őnancial intermediaries are often altered in times of őnancial distress
(Ennis and Keister, 2009a, 2010).
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characterize the constraint efficient subject to sequential service and aggregate uncertainty.

They show that the payment to the current depositor will depend on the number of past

withdrawals - if this quantity is high, the current depositor is paid less, leading to a sort of

partial suspension. Green and Lin (2003) demonstrate a striking result: a direct mechanism

can uniquely implement the constraint efficient allocation. As a result, the bank in their

setup is not inherently fragile.

However, the uniqueness result in Green and Lin (2003) is very sensitive to the details

of the environment. Ennis and Keister (2009b) study a version of the Green and Lin where

depositors’ liquidity shocks are correlated, showing that run equilibria exist under the optimal

direct mechanism. The reason is that correlation in liquidity shocks can generate belief

divergence between the depositors and the intermediary since the Banker might be too slow

in inferring that a run is underway (see Section 5). Peck and Shell (2003) and Ennis and

Keister (2009b) study modiőcations of Green and Lin where the depositors do not know

their line position and show that run equilibrium exists under the optimal direct mechanism.

The reason is that the unique equilibrium in Green and Lin relies on backward induction

logic, which does not apply if the depositors do not have some information about their line

position.8

The difference in run outcomes in the above paper can be traced to different informational

frictions. However, the information of the different players can be viewed as an outcome of

a mechanism design problem ś a point recognized by Nosal and Wallace (2009a). They,

in particular, advocate an approach where the depositors receive information about their

preferences, and the intermediary can choose what information to reveal to the depositors.

In the same spirit, we allow mechanisms to control the allocation and the ŕow of information

to the depositors and the Banker. In this sense, we aim to capture the different approaches

in the literature and provide a unifying framework to study fragility.

Cavalcanti and Monteiro (2016) and Andolfatto et al. (2017) study a general mechanism

design problem with full commitment. Both papers show that an indirect mechanism that

learns that a run is underway (by eliciting depositors’ types) and then implements a strict

deposit freeze can prevent runs. Full commitment is key to those mechanisms since, as

already mentioned, deposit freezes are time-inconsistent: suspending withdrawals for all

depositors, including those with an urgent need to consume, is inefficient ex-post. If the

bank reneges on the deposit freeze, which is anticipated in equilibrium, then depositors

8Huang (2023) analyzes the environment of Ennis and Keister (2009b) but assumes that depositors
observe all past withdrawals (as in Andolfatto et al. (2007a)). He uses forward induction logic to show that
runs cannot happen under the optimal direct mechanism (see also Kinateder and Kiss (2014)).
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without an urgent need to consume run on the bank in the őrst place Ennis and Keister

(2009a, 2010). In contrast, the mechanism design problem in our case treats the Banker

as a player and thus takes into account her incentives to replace the current mechanism.

Nevertheless, we show that runs cannot occur under the optimal mechanism.

We also contribute to the literature on dynamic contracting without inter-temporal com-

mitment, which goes back to Laffont and Tirole (1988, 1990).9 The Principal (the Banker)

posts a mechanism determining the ‘rules of the game’ for the remaining agents (the depos-

itors). After the current interaction is over, the Principal can unilaterally scrap the existing

mechanism and deploy a different mechanism that, from this moment on, would determine

the ‘rules of the game.’ Importantly, the Principal has intra-temporal commitment since she

cannot replace the mechanism before the current interaction ends.

Finally, we show how intra-temporal commitment can be attained in our setup through

a ‘smart contract’ that has automatic execution. The promise of smart contracts from a

mechanism design perspective is that they can be viewed as technologies that facilitate the

separation of the mechanism from the mechanism designer.10 This notion is not new to the

Diamond-Dybvig tradition. Wallace (1988) describes the intermediary as a ‘cash machine’

that will dispense consumption on demand. Our mechanism selection game expands on this

idea.

Outline. Section 2 sets up the model environment. Section 3 introduces the mechanism selec-

tion game. We present our main result in section 4. Section 5 contrasts our mechanism with

a direct mechanism that admits a run equilibrium. We discuss our modeling assumptions in

sections 6 and 7. Section 8 concludes.

2 The model

2.1 The environment

There are two time periods t ∈ {0, 1}, a őnite number of depositors N , indexed by i ∈

{1, 2, ..., N}, and a Banker. In addition, there is a single good that can be consumed in each

9Papers in that tradition include Tirole (2016); Beccuti and Möller (2018); Doval and Skreta (2022);
Brzustowski et al. (2023).

10Several recent papers have explored how smart contracts can expand the contracting space by, for
example, facilitating enforcement and preventing opportunistic renegotiations. See e.g. Tinn (2018); Cong
and He (2019); Bakos and Halaburda (2020); Holden and Malani (2021).
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period. The purpose of a banking arrangement is to allocate consumption goods among the

depositors over the two periods. In particular, let ci denote depositor i’s ‘early’ consumption

in period-0, and Ci his ‘late’ consumption in period-1. Denote by ci = (ci, Ci) depositor i’s

consumption bundle.

Depositor preferences. A depositor’s utility over his consumption bundle depends on

his payoff type and is given by

U(ci, ωi) =

{

u(ci) if ωi = 0

v(ci + Ci) if ωi = 1

where u : R+ → R, v : R+ → R, and ωi ∈ {0, 1} is the depositor’s type. If ωi = 0, the

depositor is impatient and only values early consumption. If ωi = 1, the depositor is patient

and values early and late consumption equally.

Payoff-types. Let P denote a probability measure on the set of all subsets of ΩN where

P is constructed as follows. Nature őrst draws the total number of patient depositors ϕ ∈

{0, 1, ..., N} according to the probability mass function p : {0, 1, ..., N} → [0, 1]. Then for

each i ∈ {1, ..., N} we have ωi = 1 with probability ϕ

N
and ωi = 0 with probability N−ϕ

N
.

Thus, each depositor has the same ex-ante probability of being impatient. This speciőcation

allows depositors’ payoff types to be independent, as in Green and Lin (2003), or correlated,

as in Ennis and Keister (2009b).

Technology. The bank has Y > 0 units of the good in period 0.11 Each unit not consumed

in period 0 is transformed (i.e., matures) into R > 1 units in period 1. A realized allocation

is an assignment of a consumption bundle for each depositor c = (ci, Ci)
N
i=1, which is feasible

if

N
∑

i=1

(

ci +
Ci

R

)

≤ Y (1)

Sequential service. A central element of our environment is the sequential service con-

straint as envisioned in Diamond and Dybvig (1983) and formalized in Wallace (1988).

11We abstract from the pre-deposit game in which depositors decide whether to pool their endowments
in the bank (Peck and Shell, 2003; Peck and Setayesh, 2023). This is without loss of generality since all
depositors are ex-ante identical, and our mechanism uniquely implements the efficient allocation.
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Sequential service has two main features. First, the depositors must be serviced in the order

in which they contact the bank in period 0 without the possibility of determining their con-

sumption after interacting with all remaining depositors. That is, impatient depositors have

an ‘urgent need to consume’ and cannot wait to be serviced. The second feature is isolation,

which has two aspects: a physical and an informational. First, depositors cannot engage in

any trade.12 Second, depositors cannot communicate with each other or the Banker once

depositor-speciőc information has been realized.

We assume the depositors arrive at the banker in the order given by their index i. One

can think of i as the depositor’s line position. As in Green and Lin (2000), we assume

each depositor knows his line position. The probability of being patient or impatient is

independent of the depositor’s line position.13

Banker preferences. The Banker’s preferences are given by

W (c, ω) =
∑

i≤N

U(ci, ωi)1[i∈D(c)]

where ω = (ω1, ..., ωN) ∈ ΩN denotes the full proőle of consumption types; and 1[i∈D(c)] = 1 if

depositor i belongs to the coalition of depositors D(c), and 1[i∈D(c)] = 0 otherwise. Depositor

i is part of the coalition if he has not contacted the bank or if he has contacted and was

promised late consumption.

The Banker’s utility is thus the equally weighted sum of utilities of all depositors in the

banking coalition. In other words, the Banker is no longer concerned with the welfare of

depositors who have ‘closed their account.’ The Banker’s benevolence towards the coalition

of depositors is an analogy for the joint behavior of the Banker and a regulator in times

of crisis. The regulator essentially prevents any actions that do not maximize the ex-post

welfare of the bank’s depositors. This speciőcation of Banker preferences serves as a useful

benchmark, allowing us to study the inherent fragility of banks without the confounding

effect of other frictions.14

12It is well-known that the possibility of trade undermines maturity transformation (see Jacklin (1987),
Allen and Gale (2004b), and Farhi et al. (2009)). As was noted by Wallace (1988), the isolation assump-
tion, which captures that depositors have limited access to őnancial and asset markets when consumption
opportunities arise, also rules out trade among the depositors.

13Assuming that depositors know their line positions streamlines the analysis but is not important for
our results. See Section 6.3 for discussion on an alternative speciőcation in which depositors receive a signal
about their line position, which can be fully precise (Green and Lin, 2000; Ennis and Keister, 2009b), partially
precise (Green and Lin, 2003), or entirely uninformative (Peck and Shell, 2003).

14Our analysis will be the same if proőt-maximizing banks were competing for deposits in period 0, but
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2.2 Continuation efficient allocation

To derive the efficient allocation in our environment, we formulate the problem of a social

planner who starts from a given partial history and observes the payoff type of each depositor

as they arrive to withdraw.15

Speciőcally, a partial history hi is constructed as follows. Let Y i = Y −
∑i−1

n=1 cn denote

the bank’s remaining goods after the initial i − 1 depositors have contacted the bank. Let

ωi = (ωn)n≤i−1 ∈ Ωi−1 denote the payoff types of the őrst i − 1 depositors to arrive at the

bank. We write πn = 1 (πn = 0) if depositor n was (was not) promised late consumption,

and use πi = (πn)n≤i−1 ∈ {0, 1}i−1 indicate those depositors among the őrst i− 1 that were

promised late payment. A partial history is then given by hi = (Y i, ωi, πi). Since we want to

allow for arbitrary partial histories, do not impose the restriction ωi = πi. That is, we allow

for partial histories where some patient depositors were not promised late consumption.

Conditional on hi, the planner selects a state-contingent allocation. Suppressing the

dependence on hi, we denote it by c : ΩN → ×NR
2
+. Let ci(ω) = (ci(ω), Ci(ω)) denote the

state-contingent bundle for depositor i. The planner chooses c to solve the program

W ∗
i = max

c

E
[

W (c, ω) |hi
]

(2)

subject to the feasibility constraint for each ω ∈ ΩN

i−1
∑

n=1

πn
Ci(ω)

R
+

N
∑

i=n

(

ci(ω) +
Ci(ω)

R

)

≤ Y i (3)

and subject to the sequential service constraint

ci(ω) = ci(ω̃) for all ω, ω̃ such that ωi = ω̃i (4)

The above implies that conditional on history hi, depositor i must receive the same early

consumption in two different states ω and ω̃, which the planner cannot distinguish given the

information generated in the őrst i− 1 interactions.

Let c∗ denote the solution of the program in (2) - (4). It is straightforward to show that

a (benevolent) regulator has the authority to reschedule payments once a run is detected. We stress that
bank runs in the standard Diamond-Dybvig setting emerge even when the coalition of depositors is always
operated in the best interest of its members.

15We adopt the convention of writing the ’efficient’ allocation rather than the ’constrained efficient’ since
we treat the sequential service constraint as part of the environment.
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c
∗ will satisfy the following: for any ω ∈ ΩN , we have c∗i (ω) = 0 if ωi = 1 and C∗

i (ω) = 0 if

ωi = 0. An impatient depositor consumes only in period 0, and a patient depositor consumes

only in period 1. Finally, we impose the following assumption.

Assumption 1. The continuation efficient allocation c
∗ is incentive compatible. That is,

for each i

E
[

v
(

C∗
i (ω))− v

(

c∗i (ω)
)

|ωi = 1
]

> 0

According to the above, any given patient depositor i strictly prefers late consumption

whenever all patient depositors that contact the bank after him only receive a promise of

late consumption. Assumption 1 implies that the efficient allocation c
∗ is (weakly) imple-

mentable. It follows that W ∗
i is the best continuation equilibrium payoff for a Banker who

has full commitment but does not observe depositors’ payoff types. Whether or not this

assumption holds depends on the primitives of the environment, such as the depositors’

preferences and the probability distribution over payoff types. In Section 7, we show that

this continuation incentive constraint holds for the canonical speciőcations in the literature.

3 The Mechanism Selection Game

This section introduces the mechanism selection game, which aims to unify existing ap-

proaches to the Diamond-Dybvig model. Speciőcally, this game is characterized by (i) se-

quential service, which is embedded in the structure of the extensive-form game, (ii) limited

commitment, captured by the ability of the Banker to replace any mechanism ex-post as

the game unfolds, and (iii) contractual ŕexibility reŕected in the lack of restrictions on the

available mechanisms.

Sequential service is reŕected in two ways in our setup. First, the Banker’s information

sets at each stage i contain information only about previous interactions. Therefore, any

allocation determined in stage i can only depend on information generated by the mechanisms

deployed in previous stages. The depositors cannot trade and communicate with each other

once private information has been revealed to the depositors. Our formulation of sequential

service therefore follows Wallace (1988) and other papers building on this formulation.16

Limited commitment is reŕected in the fact that during any stage i, the Banker cannot

commit to any mechanism she will select in the following stages. However, the Banker

16See, among others, Green and Lin (2003), Peck and Shell (2003), Andolfatto et al. (2007b), Ennis and
Keister (2009a), Ennis and Keister (2009b), Nosal and Wallace (2009b), Ennis and Keister (2010), Andolfatto
et al. (2017) and Huang (2023).
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can commit to the mechanism within a stage: after a mechanism has been selected, that

mechanism must govern at least the current interaction and can only be replaced after the

current stage ends. In that sense, the Banker has intra-stage but not inter-stage commitment.

We explain how this commitment power can be practically achieved in Section 6.1.

Furthermore, in stageN , we force the consumption of each patient depositor who has been

promised late consumption to be a pro-rata share of available resources. This speciőcation

embeds the idea that the (benevolent) Banker cannot promise late consumption levels, which

leads to ex-post inefficiencies among those depositors that have been promised period 1

consumption.

3.1 Timing

Nature draws each depositor’s payoff type ω, and period 0 begins. We split period 0 into N

stages. At the beginning of stage 1, the Banker selects some initial mechanism M from a

class M, which we describe in detail in Section 3 below. The mechanism then manages the

communication between the Banker and the őrst depositor and determines the allocation.

Importantly, after one stage őnishes and before the next starts, the Banker can unilaterally

scrap the existing mechanism M and replace it with a new one, M ′ ∈ M. The new mecha-

nism would then govern the current and all future interactionsÐuntil it is replaced, if ever.

Period 0 ends after stage N , i.e., when all N depositors have interacted with the selected

mechanisms by the Banker.17 Period 1 contains only one stage N + 1 during which the

remaining resources are converted into R · YN units of goods allocated among all depositors

who were promised late consumption.

3.2 Banking mechanisms

In this section, we specify the set of banking mechanisms, M, the Banker chooses from in

the mechanism selection game, starting with the formal deőnition of a typical mechanism. A

banking mechanism M consists of a sequence of protocols governing the interaction between

each depositor and the Banker in each stage. Each protocol determines the communication

between the active depositor and the Banker via an extensive-form game whose terminal

17In our game, all depositors interact with the mechanism in period-0 as in Green and Lin (2003) and
others. This assumption differs from Peck and Shell (2003), where depositors only contact the mechanism
when they seek early consumption. See Section 6.2 for a discussion.
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nodes determine the allocation implemented in that stage. A protocol’s terminal nodes end

the current stage.

Protocols. The interaction within a protocol is depicted in Figure 1 and unfolds as follows:

(i) The Banker privately submits a message to the protocol. (ii) The protocol sends a private

signal to the active depositor. (iii) The active depositor then submits a private message to

the protocol. (iv) The protocol determines the allocation to the active depositor: either

some immediate consumption or a promise of future consumption and a private signal to the

Banker.18 Formally, each banking mechanism M ∈ M takes the form M = {Pk}
N

k=1 with

Pk = (Bk, Ak,Bk, Tk, τ k,Γk, ck,πk,βk) (5)

where

• Bk, Ak: message space for the Banker and current depositor

• Bk, Tk: signal space for the Banker and the current depositor

• τ k : Bk × (Bn, An,Bn, Tn)
k−1
n=1 → ∆(Tk): private signal distribution for the current

depositor

• Γk ⊆ R
+ is some set of possible early consumption levels, with 0 ∈ Γk.

• (ck,πk) : (Bk, Ak, Tk) × (Bn, An,Bn, Tn)
k−1
n=1 → ∆(Γk × {0, 1}): distribution functions

for early consumption ck ∈ ∆(Γk) and late consumption promise πk ∈ ∆({0, 1}) for

the current depositor.

• βk : (Bk, Ak, Tk) × Γk × (Bn, An,Bn, Tn)
k−1
n=1 → ∆(Bk): private signal distribution for

the Banker

We use bold symbols τ k (similarly ck, πk, and βk) to denote a probability distribution

and τ (similarly c, π, and β) to denote a particular realization from that distribution. We

also write Pk(M) (similarly Bk(M), Ak(M), etc) when we wish to emphasize the mechanism,

M ∈ M, to which a given protocol Pk belongs. We assume, without loss of generality, that

the Banker observes the allocation implemented at every stage. We also assume that all levels

of early consumption of any mechanism are feasible along any path of play supp {ck(.|.)} ⊆

[0, Yk].

18One can think of a protocol as a trusted mediator between the Banker and the depositor who commu-
nicates with the parties and selects the allocation for that stage of the game.
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Figure 1: Illustration of the protocol

When initially deployed, each mechanism is provided with the exact value of the bank’s

remaining resources. However, the mechanism does not have any conception of how many

depositors have already been serviced. That is, M does not know what is the true stage.

Instead, it uses protocol 1 to interact with the őrst depositor it encounters, protocol 2

to interact with the second depositor, and so on. Any mechanism M ∈ M induces an

internal history hk(M) ∈ Hk(M) where Hk(M) denotes the set of all possible histories when

mechanism M uses its kth protocol. Each Pk(M) can condition the information it generates

and the implemented allocation on the history within that protocol and the entire history

in preceding protocols of M , so long as it hasn’t been replaced.19

Intra-stage interaction. We now describe the interaction between the current depositor

and a protocol. Fix any stage i ∈ {1, ..., N} and mechanism M ∈ M such that M has

been continuously in place since stage T ∈ {1, ..., i − 1}. Then M uses protocol Pk for the

current depositor i, where k = i − T + 1. The protocol induces the following extensive-

19As in Brzustowski et al. (2023), that captures the idea that if a mechanism is replaced, it loses any
stored information. We revisit this property in Section 6.1.
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form game. First, the banker privately inputs a message bk ∈ Bk into the mechanism.20

Second, the mechanism sends a private signal to the current depositor drawn from the

probability distribution τ k(bk|hk) ∈ ∆(Tk). Third, the depositor inputs a private message

ak ∈ Ak into the mechanism. Fourth, the mechanism generates an allocation for the current

depositor, consisting of early consumption and a promise of late consumption drawn from

the probability distributions ck(bk, ak, τk|hk) ∈ ∆([0, Yk]) and πk(bk, ak, τk|hk) ∈ ∆({0, 1})

respectively. Finally, the mechanism sends a signal to the banker drawn from the probability

distribution βk(bk, ak, τk, ck, πk|hk). The stage then ends. An illustration of a protocol is

given in Figure 1.

Consider the following examples to see the breadth of mechanisms allowed in this environ-

ment. First, M can be designed to be transparent to the Banker, revealing full information

about the interaction. Formally, βk(b, τ, a, c | hk) outputs (τ, a, c) with probability 1, where

(τ, a, c) is the triple of signal received by the depositor, message sent by the depositor, and

realized allocation. Second, it can be designed to be relatively opaque for the depositors,

that is, to reveal no information about the history, τ k(bk | hk) outputs τ̄ with probability

1, for some őxed signal τ̄ ∈ Tk, for all bk ∈ Bk. Third, it can be designed to be opaque to

the Banker, that is, to reveal nothing about the interaction except the realized allocation:

βk(b, a, τ, c | hk) outputs c with probability 1, for all inputs, (b, a) ∈ Bk ×Ak, of the Banker

and the depositor; all signals τ ∈ Tk received by the depositor; and all realized allocations

c ∈ [0, Yk].

Mechanism instructions. We allow the private signal sent by a mechanism to a depositor

τk ∈ Tk to include instructions. For example, the mechanism can instruct the current

depositor to select a message ak ∈ Ak if impatient and another message a′k ∈ Ak if patient.

The depositors can freely ignore these instructions whose use will become apparent when we

deőne our equilibrium.

Finite mechanisms. Finally, we must impose a technical assumption to circumvent stub-

born difficulties in belief consistency and sequential equilibrium required for our solution

concept (see, for example, Myerson and Reny (2020)). Speciőcally, we assume that banking

mechanisms are őnite. They have őnite messages, őnite signals, and őnite possible alloca-

tions. We call the set of all őnite mechanisms M and assume M is a őnite subset of M.

20In the spirit of contractual richness, we allow the Banker to input messages to the protocol at the
beginning of each stage since she may wish to condition the mechanism’s allocations on her information.
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The restriction to őnite mechanisms will not hinder the ability to achieve efficiency. Since

there are őnitely many possible histories, a őnite mechanism can implement the efficient

allocation.

3.3 Strategies and payoffs

Depositors. Before interacting with the mechanism deployed by the Banker, depositor i

knows his payoff-type ωi ∈ {0, 1} and line position i ∈ {1, ..., N}. In addition, he observes

the current mechanism M , protocol Pk(M), and the signal sent by the protocol τk(M). The

information set of this depositor is then Idi = (ωi,M, Pk(M), τk(M)). Denote by Idi (M) the

set of all possible information sets such that depositor i interacts with mechanism M . A pure

strategy for depositor i, denoted σdi , assigns to each information set, Idi ∈ ∪M∈MIdi (M) ≡ Idi ,

a message, ak ∈ Ak(M), to the corresponding protocol. That is,

σdi =
{

σdi (M)
}

M∈M
s.t. σdi (M) : Idi (M) → Ak(M).

Let Σd
i denote the set of all pure strategies for depositor i and σd = (σd1 , ..., σ

d
N) ∈ Σd

1×...×Σd
N

denote a proőle of pure strategies for all depositors. Finally, let Σd = Σd
1 × ... × Σd

N denote

the set of all pure strategy proőles for the depositors.

Banker. The Banker’s information before interacting with depositor i denoted Ibi contains

the collection of signals she received from all mechanisms deployed in the past and the

realized allocation at each stage. Denote by Ibi the set of all possible information sets for the

Banker before interacting with depositor i. The Banker’s pure strategy for stage i assigns to

each information set Ibi ∈ Ibi a choice of mechanism M ∈ M, and a message, bk ∈ Bk(M),

to be inputted into the current protocol Pk(M) of the chosen mechanism. That is, for each

Ibi ∈ Ibi

σbi (I
b
i ) = (M, bk) s.t. M ∈ M and bk ∈ Bk(M)

Denote by Σb
i the set of all pure strategies for the Banker in stage i. A pure strategy in the

normal form of the game is a pure strategy for each stage: σb =
(

σb1, ..., σ
b
N

)

∈ Σb
1 × ...×Σb

N .

We denote by Σb = Σb
1 × ...× Σb

N , the set of all pure strategies for the Banker.

Payoffs. The banking mechanisms can be designed to randomize over signals and alloca-

tions, and consequently, the payoffs of the depositors and the Banker depend on the random-
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ness of each mechanism. To characterize payoffs concisely, we associate to each mechanism

M ∈ M a probability space with a random variable describing all of the uncertainty in M .

We then combine all those probability spaces together with the payoff types ω to build the

state of the world θ ∈ Θ. The state θ resolves all uncertainty in the mechanism selection

game. Given a proőle of strategies σ ∈ Σb × Σd, and a realization of the state θ ∈ Θ, the

consumption bundle for each depositor is then uniquely determined. We denote the con-

sumption bundle as a function of σ and θ by ci(σ, θ). Depositor i’s expected payoff given his

information set Idi ∈ ∪M∈MIdi (M) is given by

Ud
i (σ|I

d
i ) = Eθ

[

U (ci(σ, θ), ωi(θ)) | I
d
i

]

where ωi(θ) corresponds to the payoff-type of depositor i in state θ. The expectation is with

respect to the distribution over the state of the world θ given the depositor’s information

(note that {ωi(θ)} ∈ Idi ). The Banker’s expected payoff given her information set Ibi ∈ Ii is

given by

U b
i (σ|I

b
i ) = Eθ

[

W (c(σ, θ), ω(θ)) | Ibi
]

3.4 Equilibrium concept

To capture self-fulőlling bank runs, we will study a type of correlated equilibria of the

mechanism selection game. We further insist on sequential rationality and impose belief

consistency as in Kreps and Wilson (1982) to rule out ‘unreasonable beliefs’ off equilibrium.

Equilibrium deőnition. An assessment (γ∗, µ∗) where γ∗ ∈ ∆(Σb×Σd) and µ∗ is a system

of beliefs, is an equilibrium if it satisőes the following:

• Sequential Rationality: σd = (σdi )i≤N is such that

σdi (Ii) ∈ argmax
σ̃di ∈Σ

d
i

E
µ∗

(σd
−i,σ

b)

[

Ud
i

(

σ̃di , σ
d
−i, σ

b | Idi
) ∣

∣ σdi

]

for all i ≤ N and Idi ∈ Idi (6)

and σb = (σbi )i≤N is such that:

σbi (I
b
i ) ∈ argmax

σ̃bi∈Σ
b
i

E
µ∗

σd

[

U b
i

(

σd, σ̃bi
∣

∣ Ibi
) ∣

∣ σb
]

for all k ≤ N and Ibi ∈ Ibi (7)
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where both expectations are taken with respect to µ∗ and each player uses γ∗ to predict

others strategies.

• Consistency: µ∗ = limn µn where (µn)n is a sequence of belief-systems derived by

Bayes’ rule given a sequence (γn)n with limn γn = γ∗.

• Tie-Breaking: If a depositor is indifferent between messages at some information set,

he follows the mechanism instructions.

As is typical, one can interpret this as follows. Nature draws a pure strategy proőle

(σb, σd) ∈ Σb × Σd according to γ∗, and then ‘informs’ each player about their individual

draw: σdi for depositor i, and σb for the Banker. We can view these draws as strategy

recommendations. Sequential rationality necessitates that players wish to follow the rec-

ommendation given their beliefs. Consistency ensures that equilibrium outcomes are not

supported by ‘unreasonable’ beliefs off-path. Given our restriction to őnite mechanisms, an

equilibrium exists.

Our solution concept is general enough to encompass previously used solution concepts.

For instance, sequential equilibria can be recovered by insisting that γ∗ ∈ ∆(Σb × Σd) is

independent over Σb × Σd
1 × · · · × Σd

N . Our solution concept is also rich enough to capture

all sorts of sunspot equilibria. In particular, it is equivalent to the following. An underlying

sunspot state is realized and not observed by anyone. Instead, each depositor and the Banker

receive a signal of the sunspot state, where the joint distribution of the signals conditional

on the sunspot state can be arbitrary. As applied to the banking literature, the sunspot

approach assumes that all depositors perfectly observe the sunspot (see, for example, Peck

and Shell (2003)).

The tie-breaking rule ensures that any multiplicity does not arise purely because patient

depositors are indifferent between messages. In existing work, runs occur because patient

depositors strictly prefer to seek early consumption over late consumption, not because they

are indifferent between running and not running. Consequently, adding this reőnement

does not change the equilibrium outcome in these previous studies. We, therefore, view

indifference as an uninteresting source of multiplicity in the context of bank runs. For this

reason, we insist that each depositor follows the mechanisms’ instructions when indifferent

between messages.

The tie-breaking rule can be rationalized by a model where the Banker can commit an ε

amount of funds to break indifferences, with ε > 0 arbitrarily small. For example, message

a leads to some level of early consumption c, whereas message a′ leads to early consumption
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c − ε plus Rε of late consumption. Then, any impatient depositor strictly prefers message

a to a′, whereas a patient depositor strictly prefers message a′ to a. Importantly, such a

subsidy will not eliminate runs in setups where the Banker can only use mechanisms asking

the depositors to request early or late consumption.

4 Main result

We now show that any equilibrium of the mechanism selection game is efficient. Recall that

efficiency requires that all patient depositors consume late and only impatient depositors

consume early. RunsÐdeőned as outcomes in which at least one patient depositor consumes

earlyÐdo not occur in any equilibrium.

We prove our result using a simple mechanism M∗ explained below. We say the contract

space is sufficiently rich if the Banker can select this mechanism.

Theorem. Suppose M∗ ∈ M. Then, the unique equilibrium outcome of the mechanism

selection game is efficient.

We proceed as follows. First, we deőne a mechanism M∗ that will be shown always

to collect useful information from the depositors. The mechanism uses that information

to implement the continuation efficient allocation after any history of play (on or off the

equilibrium path). We show how our mechanism deters patient depositors from seeking

early consumption and the banker from replacing it.

4.1 The mechanism M ∗

Consider a mechanism M∗ with the following protocol Pk(M
∗) in stage i:

• The Banker can only input a single message into M∗.21

• Depositor i only receives instructions from M∗ on how to play (see below) and must

input message ak ∈ {0, 1, α}.

• If ak ∈ {0, α}, he is allocated immediate consumption ck, which equals the continuation

efficient level according to the mechanism’s internal history. If ak = 1, the depositor is

given a promise of late consumption.

21Hence, the Banker cannot shape the behavior of mechanism M∗ using her message.
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• The instruction for each depositor is the following. If you are impatient, choose message

ak = 0. If you are patient but want to consume early, choose ak = α.

• The mechanism does not reveal the depositors’ messages to the Banker.

Suppose M∗ has been in place since stage T ≤ i, and the current stage is i. Hence, it will

use protocol Pi−T+1(M
∗) at the current stage. The mechanism has collected past messages,

allocated immediate consumption, and promised future consumption to those depositors who

have interacted with it. To construct the history of past types ωi−1 = (ωn)
i−1
n=T , M∗ records

depositor n as impatient if an = 0, and as patient if an ∈ {α, 1}. The mechanism uses the

history of past types to compute the continuation efficient early payment for the current

stage.

Also, observe that the depositors are only asked to provide information that they actually

know, such as whether they are impatient or patient and whether they want early or late

payment.

4.2 Properties of M ∗

We now prove a key property of our mechanism M∗.

Lemma 1. Pick an equilibrium (γ∗, µ∗), and a path along which M∗ has been continu-

ously deployed. Then, at each stage i, there is a common certainty between the Banker and

depositor-i that the history of past types constructed by M∗ is correct.

Proof. See Appendix A.

By observing the protocol number, each depositor interacting with any mechanism M ∈

M can verify whether this mechanism has been deployed in all previous stages. Using

this information, depositors make inferences about the mechanism’s internal history and

form beliefs about the actions of future depositors and the Banker. Lemma 1 states that

in any equilibrium where M∗ has been deployed in all past stages, all players agree that

the mechanism’s internal history corresponds to the game’s history. As a result, all players

agree that the level of early consumption offered at the current stage is continuation efficient.

Speciőcally, by our tie-breaking rule, each depositor interacting with M∗ reveals his type.

That is, impatient depositors only select message ak = 0, and patient depositors select

messages ak ∈ {α, 1}. As a result, if M∗ has been continuously deployed up to the current

stage, it correctly sorts all past depositors into patient and impatient (regardless of the history
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of play) and uses that information to compute and then offer the continuation efficient early

payment to those depositors inputting message 0 or α.

4.3 Proof of Theorem

We prove our theorem by induction. First, we show from őrst principles that M∗ always

attains the continuation efficient outcome at the őnal stage N when it has been deployed in

all previous stages i < N . Based on this, we formulate our induction hypothesis: if M∗ has

been in place in all stages n ≤ i, then continuation efficiency is achieved at stage i+ 1. We

then show that by selecting M∗, continuation efficiency is already achieved at stage n.

First, suppose M∗ has been continuously deployed up to and including stage n = N − 1.

By Lemma 1, it is common certainty that M∗ has constructed its internal history correctly.

Suppose M∗ is also used at stage N . The early consumption set by M∗ solves the program

W ∗
N = max

cN∈[0,YN ]
u (cN) +

∑

i<N

πi · v (C)

where

C =
R(Y N − cN)
∑

i<N πi

The őrst-order condition is u′ (cN) = Rv′ (C). By Assumption 1, we have that cN < C for

each history. Hence, depositor N withdraws early if and only if he is impatient: σ∗(IdN) = 0

if ωN = 0 and σ∗(IdN) = 1 if ωN = 1. The Banker thus achieves the efficient continuation

welfare W ∗
N , which is an upper bound on the Banker’s payoff after any history. The Banker

can thus guarantee this upper bound by deploying M∗.

Based on this result, we formulate the following induction hypothesis: Suppose M∗ has

been deployed in all stages n ≤ i. Then, continuation efficiency is achieved at stage i+ 1.

We now prove that selecting M∗ at stage i ensures that continuation efficiency is already

achieved at stage i. Since M∗ has been deployed in all stages 1 to i − 1, it is common

certainty that M∗’s internal history is correct (Lemma 1). Hence, it is common certainty that

M∗ sets immediate consumption to the continuation efficient level. Note that continuation

efficiency from stage i+1 onwards requires that patient depositors consume late and impatient

depositors consume early. Further note that by Assumption 1, the continuation efficient

allocation is incentive compatible.
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Consider the strategy of depositor i when interacting with M∗. If impatient, he is indif-

ferent between messages {0, α}. Following M∗’s tie-breaking rule, depositor i selects 0. On

the other hand, a patient depositor prefers to select message 1 over messages {0, α} given

incentive compatibility. It follows that the Banker can guarantee the efficient continuation

welfare W ∗
i by selecting M∗, which is the upper bound. Hence, equilibrium welfare at stage

i equals W ∗
i .

Pushing the induction argument to stage 1 implies that welfare equals W ∗
1 . Hence, the

unique equilibrium outcome is efficient, which completes the proof.

5 Ultimate source of fragility

Our mechanism M∗ correctly identiőes depositors as patient or impatientÐeven in the event

of a runÐand uses this information to re-optimize. Doing so deters patient depositors from

withdrawing early and the Banker from replacing the mechanism. This result allows us to

identify the ultimate source of fragility in Diamond-Dybvig models: banks are fragile if they

cannot collect and respond to useful information during a run.

To illustrate this point, suppose the Banker is not using a mechanism that elicits deposi-

tors’ types. Instead, we follow the standard exercise in the literature of deriving the Banker’s

best equilibrium payoff for a direct mechanism and then checking if there are multiple equi-

libria.

In particular, we will construct a run equilibrium in the spirit of Ennis and Keister

(2009b). Suppose there are N = 4 depositors. There is no aggregate uncertainty for sim-

plicity: 2 depositors are impatient, and the other 2 are patient. As before, depositor 1 is the

őrst to contact the bank, depositor 2 is the second, and so on. The depositors know their

line position, which is independent of their payoff type. There is a sunspot that is bad with

a probability close to zero and good with the complement probability. All depositors observe

the realized sunspot before contacting the bank.

We want to specify a run strategy proőle for the depositors and show that it is consistent

with equilibrium. Direct computation establishes that the last two depositors do not run in

any equilibrium (Green and Lin, 2003; Ennis and Keister, 2009b). Thus, if there is a run,

it will necessarily be partial and involve a critical ‘last depositor to run’ who anticipates

that all patient depositors after him will not run but nevertheless prefer to run. For that

to happen, the early consumption offered to that depositors cannot be continuation efficient

but instead must be too high (otherwise, Assumption 1 implies this depositor will not run).
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That is, the Banker must be unduly optimistic about the remaining number of impatient

depositors. The example we present in this section has exactly this property.

Speciőcally, consider the following strategy proőles. If the sunspot is good, all depositors

report their type truthfully. If the sunspot is bad, depositors 1 and 2 always report impatient.

In contrast, depositors 3 and 4 continue to report truthfully. The Banker does not observe

the sunspot state but makes inferences based on withdrawals. Since the probability of the

bad sunspot is close to zero and at least two depositors will always request early payment,

the early payment offered to depositors 1 and 2 will be almost the same.

The Banker infers a run is underway and adjusts consumption levels as soon as more

than two depositors report impatient in period 0. However, this is not enough to avert

a run. Suppose the sunspot state is bad and depositor 2 is patient. Hence, depositor 2

knows that depositor 1 withdrew even when patient. In contrast, the Banker assigns a high

probability that depositor 1 withdrew only when impatient, given the low ex-ante probability

of a bad sunspot. The depositors’ and the Banker’s beliefs diverge: depositor 2 assigns a

higher probability than the Banker that depositors 3 and 4 are impatient. Consequently, the

level of early consumption offered is too high, and the level of late consumption is reduced

even further, given the number of impatient depositors waiting to be served. Depositor 2

thus runs. The same logic applies to depositor 1. Thus, depositors follow the suggested run

strategy proőle, leading to a run equilibrium.

Figure 2 compares the level of early consumption made by a direct mechanism and

the mechanism M∗ assuming that the őrst two depositors are patient and the sunspot is

bad.22 In particular, the őrst two depositors are patient but report ‘impatient’ under a direct

mechanism, whereas they report ‘patient but want early payment’ under the mechanism M∗.

The direct mechanism sets the level of early consumption to about 1.07 for each of the

őrst two depositors. Then, when depositor 3 reports impatient, the Banker infers that a

run is underway and cuts the early consumption to the remaining two depositors to about

0.97. However, this is not enough to deter a run. Limited commitment is important here: a

strict deposit freeze after two early withdrawals would make it a strictly dominant strategy

for each patient depositor to withdraw late. However, freezing deposits is time-inconsistent

during a run since there will be impatient depositors left, and giving them zero consumption

is not ex-post efficient.

In contrast, the mechanism M∗ learns that a run is underway after depositor 1. The

mechanism has the correct beliefs about future payoff types and sets early consumption to

22Depositor’s preferences are U(ci, ωi) = (ci+ωiCi)
1−ζ

1−ζ
. We set R = 1.2, Y = 4, and ζ = 4.
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Figure 2: Illustration: Early consumption for two different mechanisms.

the continuation efficient level. Depositor 2 then prefers not to run. In turn, depositor 1 also

prefers not to run. Thus, depositors do not follow the suggested run strategy proőle for M∗.

Tie-breaking rule. This example also highlights the role of our tie-breaking assumption.

If depositors do not follow the mechanisms’ instructions and patient but running depositors

select message 0 rather than α, then M∗ would fail to elicit types. Beliefs between depositors

and the mechanism diverge. Runs can then also occur under M∗, and the equilibrium

outcome of the mechanism selection game is not necessarily efficient. However, any run

equilibrium is unstable: whenever the Banker can commit to an inőnitesimal subsidy paid

in period 1 to each depositor who selected message α in period 0, then running but patient

depositors strictly prefer to select message α over message 0. Notice that an inőnitesimal

subsidy would not eliminate runs under direct mechanisms since depositors 1 and 2 strictly

prefer to run.

Revisiting Green and Lin (2003). Connecting our results to those in Green and Lin

will be useful to highlight the importance of Lemma 1. Recall that the payoff type of

each depositor in Green and Lin (2003) is independently and identically distributed: each

depositor is impatient with probability λ ∈ [0, 1] (see Section 7 for more details). They

show that the optimal direct mechanism with commitment strongly implements the efficient

allocation. That is, there are no bank-run equilibria under full commitment.

But what if, as in our case, the Banker cannot commit not to replace the current mecha-
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nism in the future? As it turns out, the Green and Lin set-up is the one case where Lemma 1

applies under direct mechanisms, which only ask each depositor to report ‘impatient’ or ‘pa-

tient.’ The reason is that the probability distribution over future types is independent of the

past reports. The mechanism must only know the current stage to compute the continuation

efficient allocation after any history (including those with a run). Stated differently, the di-

rect mechanism of Green and Lin (2003) is time-consistent. However, as soon as depositors’

payoff types are dependent (as in the example we presented), mechanisms only asking them

to report their type would fail to correctly sort past depositors into patient and impatient in

the event of a run and, as a result, would fail to assign the continuation efficient allocation.

6 Discussion

6.1 Relation to smart contracts

The mechanism selection game is characterized by limited commitment: the Banker has

intra-stage but not inter-stage commitment. We now argue that such limited commitment

power is attained by recent technological advancements, particularly smart contracts.

Smart Contracts are protocols that specify the contracting parties’ actions and determine

allocations given these actions. Several properties commonly identify them. The őrst is

automatic execution. With automatic execution, allocations can be implemented without

needing őnal approval by the transacting parties. In our case, this means that once the

allocation within a stage has been determined, the Banker cannot renege. The second

property is cryptographic security: information communicated to the protocol is encrypted.

This prevents parties from accessing it even if they can access the contract’s code. Further,

if the mechanism is discarded, any information stored within it is lost.

In our context, the combination of automatic execution and cryptographic security means

that the mechanisms can implement allocations contingent on depositors’ messages while not

revealing these messages to the Banker. Recall that the mechanism M∗ does not reveal de-

positors’ messages to the Banker. This property was irrelevant when the Banker was assumed

to have intra-stage commitment. Let us now weaken the Banker’s intra-stage commitment

power by allowing her to ‘restart’ the current interaction before the allocation for that stage

has been determined.

In particular, we modify the interaction within a protocol in Figure 1 by allowing the

Banker to intervene before the current interaction has concluded. (i) The Banker privately
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submits a message to the protocol. (ii) The protocol sends a private signal to the current

depositor. (iii) The current depositor then submits a private message to the protocol. (iv)

The Banker can ‘restart’ the current interaction by discarding the current mechanism and

deploying a new mechanism. (v) If the current interaction is not aborted, the protocol

determines the allocation to the current depositor: either some immediate consumption or

a promise of future consumption and a private signal to the Banker.

Observe that the Banker’s beliefs are the same before and after the depositor inputs

a message (but before the allocation has been determined, at which point it is too late

to interfere in the current stage). This is the case since the Banker does not observe the

actual message and does not learn anything she did not already know. Thus, if the Banker

wanted to change the current mechanism at point (iv), she might as well have done that

before the interaction started.23 However, we already showed that the Banker is deterred

from replacing M∗ after one interaction concludes and before the next begins. The analysis is

then unchanged from before, and the unique equilibrium outcome of the mechanism selection

game continues to be efficient.

In contrast, suppose the depositors’ messages are not encrypted, as will necessarily be the

case if the depositor has to interact directly with the Banker (as when there is no automatic

execution). Then, after observing message α (patient but wants early payment), the Banker

wants to renege and promise future payment. Patient depositors recognize that and select

message 0 when they want early payment, which precludes the mechanism from always

collecting useful information (i.e., Lemma 1 fails) and making runs possible.

In that sense, we interpret the option of using automatic execution and cryptographic

security as expanding the contracting space by allowing the Banker to pre-commit to follow

the ’rules of the game’ at least for the current interaction. The above logic potentially applies

to any dynamic contracting where the principal posts a contract with automatic execution

before the start of each stage. What is special in our case is that automatic execution is

sufficient for the design of run-proof őnancial arrangements that still provide the efficient level

of maturity transformation (as long as Assumption 1 on the primitives of the environment

holds).

23Note that she would strictly prefer to change the mechanism before the interaction begins if there is a
(small) cost to changing the mechanism once the interaction has started.
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6.2 Forcing to contact the mechanism

The baseline setup required each depositor to contact the mechanism deployed by the Banker

in period 0 as in Green and Lin (2003). This differs from Peck and Shell (2003), where only

those who seek early consumption contact the bank. What if forcing to contact the mecha-

nism in period 0 is a design choice rather than a feature of the environment? Notice that the

Banker reduces the informational frictions about aggregate liquidity needs when forcing all

depositors to contact in period 0 since a depositor reporting patient carries information about

the types of the remaining depositors (when types are correlated). The Banker thus wants

to generate information during a run and in normal times. Our analysis follows through as

before.

One could instead envisage a scenario in which it is inefficient or infeasible to force patient

depositors to contact the bank, possibly due to the cost of interacting with the bank as in

Ennis and Keister (2016).24 First, Lemma 1 applies in that case as well: each depositor

interacting with M∗ reveals his type. Moreover, running necessarily requires contacting the

bank in period 0. What changes is the efficient allocation in Section 2 since now the Banker

only observes the payoff types of those depositors choosing to withdraw. In particular,

the k-th depositor who arrives to withdraw is not necessarily the k-th depositor with an

opportunity to withdraw since some patient depositors with an earlier opportunity may

have decided to wait (whereas, in the baseline case, the k-th depositor to arrive is always

the k-th depositor with an opportunity to withdraw).

Nevertheless, as long as the resulting continuation efficient allocation after any history

is incentive-compatible also in this informational environment (i.e., satisőes Assumption 1),

our results apply as in the baseline case.

6.3 Information about the line

We assumed that depositors learn their line position before withdrawals begin (as in Green

and Lin (2000) and others). Since our mechanism relies on backward induction logic, it

might seem that it will not work if we relax this assumption. However, we now show that

our mechanism still holds even if depositors have no information (as in Green and Lin

(2003)) or only partial information (as in Peck and Shell (2003)) about their position in the

withdrawal order. The idea is that, through a proper design, depositors can infer their line

24Depositors who do not contact the bank in period 0 remain in the coalition of depositors.
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position by observing the protocol number of the mechanism they interact with.

Speciőcally, consider a depositor interacting with protocol k in some mechanism M . This

depositor only knows that the current stage is greater than or equal to k and thus cannot

infer that M has been in place for all past interactions or that he is the k-th depositor in

the withdrawal order. Hence, we cannot apply Lemma 1 and use the backward induction

argument from the previous section. So, consider the following modiőcation of the envi-

ronment: when the coalition of depositors is initially formed (before any depositor-speciőc

information has been realized), the Banker deploys a mechanism that each depositor gets to

observe. Call this the default mechanism. Moreover, when a depositor subsequently arrives

to withdraw, he can verify (i) whether the current is the default mechanism and (ii) whether

the default mechanism has been deployed for all past depositors.25

Now, suppose the Banker selects M∗ as the default mechanism. Lemma 1 applies, and

our analysis follows through verbatim.

7 Incentive constraints

When is Assumption 1 on the continuation incentive constraints satisőed? To answer this

question, we adopt the canonical Diamond and Dybvig (1983) preferences, summarize exist-

ing results in the literature and also establish a new result in Proposition 1.26 Speciőcally,

the utility of depositor i is given by

U(ci, ωi) =

{

u(ci) if ωi = 0

ρu(ci + Ci) if ωi = 1

where u : R+ → R, ρ ∈ (0, 1], and Rρ > 1. The function u is strictly increasing,

twice continuously differentiable, strictly concave, and satisőes the Inada conditions where

limx→0 u
′(x) = ∞ and limx→∞ u′(x) = 0. Further, u features a degree of relative risk

aversion weakly greater than 1 for any x ∈ R+. That is, −xu′′(x)
u′(x)

≥ 1. Also, recall that

p : {0, 1, ..., N} → [0, 1] is an exogenous probability mass function such that p(ϕ) is the

probability that the number of patient depositors is ϕ ∈ {0, 1, ..., N}. Then, Assumption 1

is satisőed if one of the following is true.

25That is, the Banker cannot cheat by discarding the default mechanism - in favor of another mechanism
- for some of the previous stages and then bringing it back for the current stage. The depositors would detect
such a deviation (such veriőcation can be achieved through modern cryptography).

26The importance of continuation incentive constraints was őrst recognized by Green and Lin (2003) and
further analyzed by Andolfatto et al. (2007a), Ennis and Keister (2009b) and Huang (2023).
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(i) Aggregate certainty: p is degenerate at a point ϕ ∈ {0, 1, ..., N}. Equivalently, the

Banker observes the realized value of ϕ before withdrawals begin.

(ii) Independent types: p is given by the binomial distribution, where λ ∈ [0, 1] is the

probability that each depositor is impatient:

p(ϕ) =

(

N

ϕ

)

λϕ(1− λ)1−ϕ,

(iii) Positively correlated types: p satisőes the monotonicity condition

P(ω |ϕ(ω) = κ)

P(ω |ϕ(ω) = κ+ 1)
≥

P(ω |ϕ(ω) = κ+ 1)

P(ω |ϕ(ω) = κ+ 2)

where ϕ(ω) denotes the number of patient depositors for a given realization of the

payoff types.

Case (i) follows from direct computation. Consider a history for which the bank has

Y > 0 goods left. The number of depositors remaining in the coalition of depositors is N ,

of which η depositors are impatient. The efficient allocation (c∗, C∗) solves the program

max
(c,C)

η · u(c) + (N − η) · ρu(C)

s.t. η · c + (N − η) ·
C

R
≤ Y

The őrst-order condition is given by u′(c∗) = ρRu′(C∗). Since ρR > 1, it implies c∗ < C∗ for

all histories.

Cases (ii) and (iii), in addition, assume u has absolute risk aversion, which is non-

increasing everywhere: d
dc

u′′(c)
u′(c)

≥ 0 for any c ∈ R+. Case (ii) was shown by Green and Lin

(2003) whereas case (iii) was established by Huang (2023). Next, we establish the following

result, allowing for an arbitrary correlation in types.

Proposition 1. Suppose U(ci, ωi) =
1

1−ζ

(

ci + ωiCi
)1−ζ

with ζ > 1. Then, Assumption 1 is

satisőed.

Proof. See Appendix B.

This proposition is of independent interest since it answers an open question in the litera-

ture by providing conditions for the incentive constraints to hold under arbitrary correlation
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in payoff types.

Finally, we should remark it is possible to construct environments in which the continu-

ation incentive constraints are not satisőed. This is most easily illustrated for case (i), with

R > 1 and ρ < 1 such that ρR < 1. The efficient allocation then features c∗ > C∗, which is

not incentive-compatible. To the best of our knowledge, the only examples in the literature

in which the incentive constraints are not satisőed feature ρR < 1 and are given by Peck

and Shell (2003) and Sultanum (2022).

8 Conclusion

We revisit the Diamond-Dybvig model of bank runs in a general mechanism design framework

with limited commitment. We present a simple mechanism resting on minimal properties of

smart contracts, which achieves efficiency in all equilibriaÐas long as some weak assumptions

on the primitives of the environment are satisőed.

Our results highlight the inability to collect and respond to useful information during

a run as the ultimate source of őnancial fragility. Banks are not inherently fragile because

they engage in maturity transformation or because they cannot commit to a plan of action

during crises.

If banks are not inherently fragile, then what causes runs? Sources of fragility outside

of the model may include depositors that are not fully rational or government guarantees

that are distortionary and push intermediaries towards liability structures that are not run-

proof. Runs may also be a phenomenon of insolvency rather than illiquidity or an outcome of

institutional or political factors preventing őnancial intermediaries from adopting a run-proof

liability structure.
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Appendices

A Proof of Lemma 1

Proof. Pick an arbitrary equilibrium (γ∗, µ∗) and a path along which only M∗ has been in

place. Let Ak = [ωk = 0, ak ∈ {1, α}] ∪ [ωk = 1, ak = 0] be the event that M∗ has the wrong

information about Depositor-k’s payoff-type.

Now consider the information set Ibn of the Banker at stage n along such a path. Since

she does not observe anything about the history (apart from the fact that M∗ has been in

place), this information set’s nodes correspond exactly to the possible sequences of types
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and messages within M∗.27 Now let A = ∪k<nAk be the set of nodes where the mechanism

has some wrong information. We will show that µ∗(A) = 0.

To this end, by belief consistency there exists some sequence (γm)m∈N of completely

mixed strategies such that limm γ
m = γ∗, and µ∗ = limm µ

m, where µm(d) = P
γm (d)

Pγ
m
(I(d))

, for

each decision node d, and each information set I(d).

Recall that by our tie-breaking assumption, γ∗(A) = 0.28 Since (γm)m∈N converges to γ∗,

we must have that for any ε > 0, there exists Nε ∈ N such that γm(A) < ε for all m ≥ Nε.

Thus, by Bayes’ rule
µm(A)

µm(Ac)
=

γm(A)

γm(Ac)
<

ε

1− ε

Consequently, limm
µm(A)
µm(Ac)

= 0 which implies µ∗(A) = limm µ
m(A) = 0. That is, the Banker

is certain that M∗ has the correct information.

Note that Depositor-n learns nothing more than the Banker about the history at his

succeeding information set In, even after M∗ is kept in place. Moreover, whether or not the

mechanism has the correct information is independent of Depositor-n’s private information.

Hence, µ∗(A) = 0 is sufficient to conclude that Depositor-n is also certain that the mechanism

has the correct information. Finally, the assertion about common certainty follows from the

fact that the assessment itself (γ∗, µ∗) is common certainty.

B Proof of Proposition 1

Suppose that U(ci, ωi) = (ci+ωiCi)
1−ζ

1−ζ
for all i, with ζ > 1. Consider some history hi =

(Y i, ωi, πi). Let Φi =
∑

n<i ωn and Πi =
∑

n<i πn. Lemma 2 below characterizes the con-

tinuation efficient allocation and is a restatement of Proposition 1 in Ennis and Keister

(2009b):

Lemma 2. The continuation efficient allocation sets

c∗i =
Y i

ψi(Φi,Πi)
1

ζ + 1
(IB.1)

27Allocations can be derived with certainty from those.
28γ∗(·) is the probability measure induced by the equilibrium strategy over the set of decision nodes.
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where

ψi(x1, x2) = P [ωi+1 = 0|x1] ·
(

ψi+1(x1, x2)
1

ζ + 1
)ζ

+ P [ωi+1 = 1|x1] · ψi+1(x1 + 1, x2 + 1)

(IB.2)

for i = {1, ..., N − 1} and ψN(x1, x2) =
(

x2 ·R
1−ζ
ζ

)ζ

for i = N .

For simplicity, we drop the explicit dependence of c
∗ on the payoff state ω. We now

prove Proposition 1 using four Lemmas. First, we prove a useful property of ψi (Lemma

3). We use this property to show that the expected late consumption, conditional on any

history, is below R times the early consumption offered to the current depositor after that

history (Lemma 4). This is intuitive as it expresses the desire of the planner to perform some

maturity transformation. Third, we show that early consumption increases after a patient

report (Lemma 5). This is also intuitive as the Banker will be keen to do more maturity

transformation when there are more patient depositors.

Using Lemma 4, we show that a virtual continuation incentive constraint holds (Lemma

6). That is the continuation ‘incentive constraint’ from the perspective of an impatient

depositor is satisőed.

Finally, we complete the proof of Proposition 1 using an induction argument. To this

end, we show that the continuation incentive constraint holds for the last depositor N .

Then, we assume it holds for arbitrary depositor-(n+ 1) and prove it holds for depositor-n.

In this step, we break up the evaluation of the expected utility of late consumption of a

patient depositor-n into a convex combination of expected utility of consumption of a future

impatient depositor-(n+1), and a future patient depositor-(n+1). Then, Lemma 6 and the

induction hypothesis imply that the continuation IC for patient depositor-n holds if early

consumption increases after a patient report, which is given in Lemma 5.

Lemma 3. For all i, we őnd that:

ψi(Φ + 1,Π+ 1)
1

ζ − ψi(Φ,Π)
1

ζ ≤ 1

Proof. The claim is true for i = N by direct computation. Now, suppose that it is true for

i = m+ 1. We will prove it for i = m. The induction hypothesis implies:

(

ψm+1(Φ,Π)
1

ζ + 1
)ζ

≥ ψm+1(Φ + 1,Π+ 1) (IB.3)
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and hence from the deőnition of ψm(Φ,Π):

ψm+1(Φ + 1,Π+ 1) ≤ ψm(Φ,Π) ≤
(

ψm+1(Φ,Π)
1

ζ + 1
)ζ

(IB.4)

Therefore:

ψm(Φ + 1,Π+ 1)
1

ζ − ψm(Φ,Π)
1

ζ ≤
(

ψm+1(Φ + 1,Π+ 1)
1

ζ + 1
)

− ψm+1(Φ + 1,Π+ 1)
1

ζ ≤ 1

which proves the claim.

Lemma 4. For all i, and for all histories hi,

E
[

C∗|hi
]

≤ Rc∗i (IB.5)

Proof. For each i, for each Πi = Π and Φi = Φ, consider the difference equation:

ψi(Φ,Π)
1

ζ − ζ i+1(Φ,Π)
1

ζ = 1, i = n, . . . , N − 1, and ψN(Φ,Π) =
(

Π ·R
1−ζ
ζ

)ζ

(IB.6)

For a solution ψ to Equation (IB.6), we have:

ψi(Φ,Π) ≤ ψi(Φ,Π)

Indeed, from (IB.4) we have for each i ≤ N − 1,

ψi(Φ,Π)
1

ζ − ψi(Φ,Π)
1

ζ ≤ ψi+1(Φ,Π)
1

ζ − ψi+1(Φ,Π)
1

ζ

and hence:

ψi(Φ,Π)
1

ζ − ψi(Φ,Π)
1

ζ ≤ ψN(Φ,Π)
1

ζ − ψN(Φ,Π)
1

ζ = 0

To solve Equation (IB.6) we deőne the variable f(n) = ψn(Φ,Π)
1

ζ . Then the equation writes:

f(n+ 1)− f(n) = −1, f(N) =
(

Π ·R
1−ψ
ψ

)
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Summing from i to N − 1 we have:

f(N)− f(i) =
N−1
∑

n=i

(

f(n+ 1)− f(n)
)

= −(N − i)

So,

ψi(Φ,Π)
1

ζ = N − i+
(

Π ·R
1−ζ
ζ

)

From this we get:

c∗i ≥
Y i

N − i+ 1 +
(

Πi ·R
1−ζ
ζ

) >
Y i

N − i+ 1 + Πi
=: ĉi (IB.7)

where ĉi is also a stochastic process adapted to hi. The last inequality follows from R
1−ζ
ζ < 1.

Next, we compute conditional expectations of late consumption. We have,

E
[

C∗ | hi
]

= E

[

R ·
Y i −

∑N

n=i(1− ωn) · c
∗
n

Πi +
∑N

n=i ωn

∣

∣

∣
hi

]

From the bound c∗n > ĉn we have:

E

[

R ·
Y i −

∑N

n=k(1− ωn) · c
∗
n

Πi +
∑N

n=k ωn

∣

∣

∣
hi

]

< E

[

R ·
Y i −

∑N

n=k(1− ωn) · ĉn

Πi +
∑N

n=k ωn

∣

∣

∣
hi

]

We now prove that P

(

ĉn = ĉi
∣

∣ hi
)

= 1 for all n ≥ i. Each time ωn = 0, we have:

ĉn+1 =
Y n − ĉn

N − (n+ 1) + 1 + Πn
=

Y n − Y n

N−n+1+Πn

N − n+Πn
=

Y n · N−n+Πn

N−n+1+Πn

N − n+Πn
= ĉn

Similarly, each time ωn = 1, we have:

ĉn+1 =
Y n

N − (n+ 1) + 1 + (Πn + 1)
=

Y n

N − n+ 1 + Πn
= ĉn
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That is, ĉn is constant with probability 1 along any path. Hence:

E

[

R ·
Y i −

∑N

n=i(1− ωn) · ĉn

Πi +
∑N

n=i ωn

∣

∣

∣
hi

]

= E

[

R ·
Y i − ĉi ·

∑N

n=i(1− ωn)

Πi +
∑N

n=i ωn

∣

∣

∣
hi

]

= E

[

R ·
Y i

N − i+ 1 + Πi

∣

∣

∣
hi
]

= R · ĉi

≤ R · c∗i

This completes the proof for this lemma.

Lemma 5. Consider two histories hi = (Y i, ωi, πi) and hi+1 = (Y i+1, ωi+1, πi+1), where

Y i+1 = Y i = Y , Φi+1 = Φi + 1 and Πi+1 = Πi + 1. Then

c∗i+1 ≥ c∗i

Proof. First, note that the claim is true if and only if:

ψi(Φ,Π) ≥ ψi+1(Φ + 1,Π+ 1), for all i and Π

We write:

ψi(Φ,Π)−ψi+1(Φ+1,Π+1) = P
[

ωi+1 = 0|hi
]

·

[

(

ψk+1(Φ,Π)
1

ζ + 1
)ζ

− ψk+1(Φ + 1,Π+ 1)

]

From Lemma 3 we have for any i and Π,

(

ψi+1(Φ,Π)
1

ζ + 1
)ψ

− ψi+1(Φ + 1,Π+ 1) ≥ 0

which proves the claim.

Lemma 6 (Virtual IC). For each i, and each history hi,

u(c∗i ) < E
[

u(C∗) | hi, ωi = 0
]
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Proof. Let φ(c) = u(c)
u′(c)

, and note that CRRA with ζ > 1 implies that φ(c) = 1
1−ζ

· c. That

is, φ(c) is strictly decreasing and (weakly) convex, with φ(0) = 0. Recall that the FOC

determining c∗i can be written as29

u′(c∗i ) = R · E
[

u′(C∗)
∣

∣ hi, ωi = 0
]

=: R · E0
i [u

′(C∗)]

where for notational simplicity in what follows, we suppress the conditioning arguments. We

have:

E
0
i [u(C

∗)] = E
0
i

[

u′(C∗)φ(C∗)
]

= E
0
i

[

u′(C∗)
]

· E0
i

[

φ(C∗)
]

+ Cov0
i

[

u′(C∗), φ(C∗)
]

> E
0
i

[

u′(C∗)
]

· E0
i

[

φ(C∗)
]

=
1

R
u′(c∗i ) · E

0
i

[

φ(C∗)
]

where the őrst inequality follows from the fact that u′ and φ are both strictly decreasing

functions making their covariance positive; and the last equality follows from the FOC.

Now observe that by convexity of φ,

E
0
i

[

φ(C∗)
]

≥ φ
(

E
0
i

[

C∗
])

From Lemma 4, we have E
0
i

[

C∗
]

≤ R · c∗i , and thus because φ is decreasing,

φ
(

E
0
i

[

C∗
]

)

≥ φ(R · c∗i )

Using again the fact that φ is convex with φ(0) = 0,

φ(R · c∗i ) ≥ R · φ(c∗i )

29This follows from the Bellman equation. First, the FOC sets the marginal utility of early consumption
equal to the expectation of the derivative of the value function with respect to resources, conditional on
the current trader being impatient. One then establishes by the Envelope Theorem that the derivative of
the value function is a martingale and hence equal to the expectation of its terminal value, conditional on
the current trader being impatient. The terminal value is simply the derivative of the utility of terminal
consumption with respect to resourcesÐhence the formula.
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since R > 1. Finally, putting all these together we conclude that:

E
0
i [u(C

∗)] >
1

R
u′(c∗i ) · E

0
i

[

φ(C∗)
]

≥ u′(c∗i ) · φ(c
∗
i ) = u(c∗i )

which proves the claim.

We are now ready to complete the proof. To economize on notation, we write:

E
1
i [u(C

∗)] := E
[

u(C∗)
∣

∣ hi, ωi = 1
]

We prove the claim by induction. It is easy to show that for depositor-N :

E
1
N

[

u(C∗)− u(c∗N)
]

> 0

We now assume that the continuation IC holds for arbitrary n+ 1:

E
1
n+1

[

u(C∗)− u(c∗n+1)
]

> 0 for all hn+1

We have:

E
1
n

[

u(C∗)− u(c∗n)
]

= E
1
n

[

u(C∗)− u(c∗n+1) +
{

u(c∗n+1)− u(c∗n)
}]

where, as above, c∗n and c∗n+1 are adapted to histories hn and hn+1, respectively, where

Y n+1 = Y n = Y , Φn+1 = Φn + 1 and Πn+1 = Πn + 1. By Lemma 5, we have that:

E
1
n

[

u(C∗)− u(c∗n)
]

≥ E
1
n

[

u(C∗)− u(c∗n+1)
]

Hence, it is sufficient to prove that E
1
n

[

u(C∗)− u(c∗n+1)
]

≥ 0. We decompose this using

iterated expectations as follows:

E
1
n

[

u(C∗)− u(c∗n+1)
]

= P
[

ωn+1 = 0
∣

∣ hn, ωn = 1
]

· E1
n

[

u(C∗)− u(c∗n+1)
∣

∣ ωn+1 = 0
]

+ P
[

ωn+1 = 1
∣

∣ hn, ωn = 1
]

· E1
n

[

u(C)− u(c∗n+1)
∣

∣ ωn+1 = 1
]

Notice that conditioning on the current trader-n being patient determines the history hn+1
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as above, and we have:

E
1
n

[

u(C∗)− u(c∗n+1)
]

= P
[

ωn+1 = 0
∣

∣ hn+1
]

· E0
n+1

[

u(C∗)− u(c∗n+1)
]

+ P
[

ωn+1 = 1
∣

∣ hn+1
]

· E1
n+1

[

u(C∗)− u(c∗n+1)
]

The őrst term on the RHS is strictly positive by Lemma 6. The second term in the sum of

the RHS is strictly positive by the induction hypothesis. This completes the proof.
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