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Abstract

We study unidirectional incentive compatibility which incentivizes an agent to report truth-

fully when she can misrepresent private information in one direction only. In the canonical

setting with continuous, one-dimensional private information, and quasi-linear utility, unidi-

rectional incentive compatibility imposes no restrictions on the allocation rule and holds if and

only if the change of the agent’s information rent function respects a lower bound that is based

on the allocation rule’s monotone envelope. In monopolistic screening models with strong in-

terdependent values or with countervailing incentives, optimal contracts differ from optimal

bidirectionally incentive compatible contracts, possibly displaying non-monotone allocations.

Keywords: Screening, Verifiability, Implementability, Optimal Contracting

JEL: D82

1 Introduction

Incentive compatibility is the key concept in studies of private information as it captures the

economic constraints that result from private information. The standard notion of incentive com-

patibility is built on the premise that a privately informed agent can misrepresent information ar-

bitrarily because any claim about private information is, by assumption, non-verifiable. In many

applications, this assumption seems too stark, however. For instance, employers can use profi-

ciency tests to expose applicants making excessive claims about their productivity. Similarly, a
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taxpayer who makes excessive claims about her wealth can be exposed by demanding access to

financial accounts as proof of these claims. Likewise, a firm that wins a contract by understating

its costs, runs the risk of going bankrupt, thus revealing the understatement of costs. Finally, a

buyer who overstates her ability to pay will be busted if she does not have sufficient funds for the

purchase.

Motivated by these examples, this paper studies a notion of incentive compatibility where an

agent can misrepresent her private information in one direction only. We refer to this notion as

unidirectional incentive compatibility.

We study unidirectional incentive compatibility in the canonical setting with continuous, one-

dimensional private information (“types”) and quasi-linear utility. This setting not only constitutes

the work horse model for studying private information in applications such as optimal non-linear

pricing, auctions, procurement, regulation, and many others. It is also the framework that offers a

clean characterization of the standard notion of (bidirectional ) incentive compatibility, allowing

us to precisely identify the differences between uni- and bidirectional incentive compatibility.

The first contribution of the paper is to provide a characterization of unidirectional incentive

compatibility. Recall that in the one-dimensional, quasi-linear framework, the standard (bidirec-

tional) notion of incentive compatibility is characterized by monotonicity of the allocation rule

and a payoff-equivalence formula that uniquely pins down the change of the agent’s information

rents in her type as a function of the allocation rule. Our characterization of unidirectional in-

centive compatibility departs in two ways: First, any allocation rule is implementable. Second,

payoff-equivalence fails, and the change of information rents has to respect only a lower bound,

but can be freely chosen otherwise. Moreover, unlike information rents in the bidirectional case,

the lower bound is pinned down not by the allocation rule itself, but by its smallest monotone

envelope.1 In particular, different allocation rules may lead to the same lower bound.

That any allocation rule can be implemented can be seen as follows. To incentivize truth-

telling by some type θ , it is sufficient to pay this type a transfer that is substantially larger than

the transfers to those types θ̂ which she can mimic. With bidirectional incentive compatibility

this large transfer may then induce some type θ̂ to mimic type θ . With unidirectional incentive

compatibility, this issue does not occur simply because, by definition, the types θ̂ that can be

mimicked by type θ cannot themselves mimic type θ . This argument also indicates why uni-

directional incentive compatibility only implies a lower, but not an upper bound on the change

of transfers/information rents. The more difficult part of our characterization is to establish the

1The smallest monotone envelope of a function is the smallest monotone function that lies above the original

function.
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lower bound, and we leave a careful explanation to the main text.

The second contribution of the paper is to use our characterization to study implications of

unidirectional incentive compatibility for optimal contracting in the otherwise classical monopo-

listic screening model. We focus our analysis on the case where we omit exactly those constraints

which, under typical regularity assumptions, are not binding under an optimal contract with bidi-

rectional incentive constraints.2 To identify differences between optimal uni- and bidirectionally

incentive compatible contracts, we consider non-regular environments such as with interdepen-

dent values or non-monotone hazard rates, as well as environments with countervailing incentives

where the agent has a type-dependent outside option.

In the first environment, the key issue with bidirectional incentive compatibility is that mono-

tonicity constraints might be binding, leading to “bunching”. Because monotonicity is not a con-

straint with unidirectional incentive compatibility, the question arises whether optimal contracts

exploit this slack and display non-monotone allocations as a result. We show that this is the case

only when the degree of interdependency in the principal’s and agent’s preferences is sufficiently

strong and the first-best allocation rule is not monotone, and we derive a sufficient condition

for it. In contrast, when the preference interdependency is rather weak, which includes private

values environments, optimal unidirectionally incentive compatible contracts remain monotone,

and in fact, coincide with their bidirectionally incentive compatible counterparts. Thus, in these

cases, the optimal allocation is monotone not for feasibility but for optimality reasons.

The driving force behind these results is that our lower bound on information rents implies that

the minimum information rents needed to implement any allocation and its smallest monotone

hull are identical. Therefore, because the principal extracts the difference between surplus and

information rents, for a non-monotone allocation to be optimal, it needs to generate a larger sur-

plus than its smallest monotone hull. A necessary condition for this is that the first-best allocation

rule is not monotone.

To study countervailing incentives, we adopt the framework of Lewis and Sappington (1989),

who consider a strictly concave outside option. First, we show that optimal uni- and bidirection-

ally incentive compatible contracts always differ, and that an optimal contract always exploits the

failure of payoff-equivalence under unidirectional incentive compatibility, and there are no up-

ward distortions, unlike in the case with bidirectional incentive compatibility. Second , we derive

conditions under which the optimal contract displays a non-monotone allocation rule and show

that these conditions are satisfied in a large class of cases.

2In regular environments, imposing only the incentive constraints in the other direction allows to implement the

first best.
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To see how the failure of payoff-equivalence drives the first result, recall that with bidirec-

tional incentive constraints, payoff-equivalence implies that the agent’s information rent function

is convex in type. With a concave outside option, this implies that under the optimal bidirection-

ally incentive compatible contract, individual rationality binds at only a single critical type, where

the convex information rent function and the concave outside option are tangent. Moreover, the

standard rent-efficiency trade-off implies upward distortions for types larger than the critical type.

By contrast, because unidirectional incentive constraints only imply a lower bound on informa-

tion rents, the optimal bidirectionally incentive compatible allocation can be implemented with

any information rent function that is steeper than its bidirectionally incentive compatible convex

counterpart. Therefore, individual rationality can be made binding for all types larger than the

critical type, and this constitutes a strict improvement over the optimal bidirectionally incentive

compatible contract. Moreover, since for these larger types the change of information rents does

not take on the lower bound, the rent-efficiency trade-off that drives upward distortions in the

bidirectional case simply disappears with unidirectional incentive constraints. Finally, the op-

timal contract with unidirectional incentive constraints may display a non-monotone allocation

because, as we show, this allows to extend the range of types for which individual rationality is

binding.

1.1 Related Literature

The papers most closely related to our work are Celik (2006) and Sher and Vohra (2015).

In a monopolistic screening model with interdependent values, Celik (2006) also contrasts

unidirectional with bidirectional incentive constraints. Celik (2006) focuses on optimal contract-

ing, showing for settings with discrete types, that if the first best is monotone, then the optimal

contract with uni- and bidirectional incentive constraints coincide. We confirm that this result

also holds in our setting with continuous types. We go beyond Celik (2006) by characterizing

the set of implementable outcomes with unidirectional incentive constraints and derive optimal

contracts when the first best is not monotone and with countervailing incentives. Moreover, the

arguments from the setting with discrete types do not straightforwardly carry over to our setting

with continuous types.

Sher and Vohra (2015) provide a graph-theoretical analysis of a monopolistic screening model

with discrete types when private information is partially verifiable. Their analysis is complemen-

tary to ours in that they study more general verification structures in a specific monopolistic

screening model with private values and linear preferences. By contrast, we study a specific veri-
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fication structure in more general screening models with non-linear preferences, interdependent

values and type-dependent outside options. To see the connections, note that in their discrete

setup, our unidirectional incentive constraints correspond to an acyclical incentive graph in which

evidence is “hierarchical” and representable by a tree with only a single branch. Their observa-

tion that for an acyclical incentive graph all allocations are incentive compatible is the discrete

counterpart of our result that any allocation rule is implementable. For the case of a tree with a

single branch, the lower bound on information rents they derive collapses to a discrete version of

ours.

In a monopolistic screening setup with a risk averse buyer, Moore (1984) shows how one

may solve for the optimal contract by explicitly exploiting the fact that, in a one-dimensional

screening problem with private values, the bidirectional nature of incentive constraints is often

inconsequential. In particular, Moore (1984) first solves for the optimal contract with only unidi-

rectional incentive constraints and then invokes an assumption on risk preferences that ensures

the solution also remains feasible with bidirectional incentive constraints.

Unidirectional incentive constraints have been studied in many applications of multi-

dimensional screening where there is one dimension of private information that the agent can

only either under- or overstate but not both. In addition to arising often naturally, the presence

of unidirectional incentive constraints renders such problems more tractable. (See, for example,

Che and Gale (2000), Iyengar and Kumar (2008), Beaudry et al. (2009), Pai and Vohra (2013).)

While these papers differ from ours because of their focus on multi-dimensional screening, they

illustrate the ubiquitous nature of unidirectional incentive constraints.

2 Setup

To fix ideas, we consider a principal and an agent contract over the production of a good by the

agent. The agent’s costs to produce the quantity x ≥ 0 of the good is c(x ,θ ) where the cost

parameter θ ∈ Θ ≡ [θ , θ̄] is the agent’s private information. The function c is twice continuously

differentiable and satisfies c(0,θ ) = 0 for all θ , cθ ≥ 0, cx ≥ 0, cx x ≥ 0, cxθ ≥ 0. It is common

knowledge that θ is distributed with the cdf F and a strictly positive pdf f = F ′ on the support Θ.

The terms of trade are a quantity x and a transfer t from the principal to the agent. The

agent’s utility from the terms of trade (x , t) is t − c(x ,θ ).

The principal commits to a contract that conditions the terms of trade on communication

by the agent. A contract (x , t) specifies a (measurable) allocation function x : Θ → R+ and a
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(measurable) transfer function t : Θ→ R.

Before we state the principal’s problem, we first characterize in the next section the set of con-

tracts that are incentive compatible in our setting. As motivated in the introduction, we focus on

environments in which the agent’s costs are partially verifiable in that the agent can prove that her

costs are not smaller than her actual costs but can (falsely) exaggerate her costs.3 Consequently,

a contract is incentive compatible if the agent has no incentive to report a cost that is larger than

her true cost. Formally, let Ũ(θ̃ ;θ ) = t(θ̃ )− c(x(θ̃ ),θ ) be agent type θ ’s utility from reporting

θ̃ , and let U(θ ) = Ũ(θ ;θ ). U(θ ) represents the information rent of a type θ . With abuse of

notation, we also refer to (U , x) as a contract. Thus, a contract (U , x) is incentive compatible if

U(θ )≥ Ũ(θ̂ ;θ ) for all θ̂ ≥ θ , which is equivalent to

U(θ )− U(θ̂ )≥ c(x(θ̂ ), θ̂ )− c(x(θ̂ ),θ ) ∀θ̂ ≥ θ . (1)

Notice that the constraints in (1) require the agent only not to report higher than her true costs,

and we therefore refer to them as unidirectional incentive constraints.

By comparison, standard bidirectional incentive constraints take the form:

U(θ )− U(θ̂ )≥ c(x(θ̂ ), θ̂ )− c(x(θ̂ ),θ ) ∀θ̂ ,θ . (2)

3 Implementability

Our first result is a characterization of the unidirectional incentive constraints (1). To express this

characterization, define for all τ≤ θ̂

x̄(τ | θ̂ ) = sup
ρ∈[τ,θ̂]

x(ρ) (3)

as the smallest decreasing (upper) envelope of x on the interval [θ , θ̂]. Our characterization states

that, with unidirectional incentive constraints, any allocation x is implementable and establishes

a lower bound on the change of the information rent that has to be conceded to implement x .

Proposition 1 (x , U) satisfies the unidirectional incentive constraints (1) if and only if

U(θ )− U(θ̂ )≥

∫ θ̂

θ

cθ ( x̄(τ | θ̂ ),τ) dτ ∀θ ≤ θ̂ . (4)

3We comment below on the symmetric case that the agent can only understate her costs.
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θ θ θ̂θ1 θ̄

x(θ̂ )

τ

x̄(τ|θ̂ )
x(τ)

Figure 1: x(·) and x̄(·|θ̂ )

We relegate the proof to the appendix, where we show that the difficult part of the proposition

is the only-if part. To gain intuition, suppose that the allocation x is continuous. This implies that

at a point where x̄(· | θ̂ ) is strictly decreasing, it coincides with x , and at a point where x̄(· | θ̂ ) is

flat, it coincides with a local maximum of x over the range [θ , θ̂]. Figure 1 illustrates one such

case where the interval [θ , θ̂] can be partitioned into an interval [θ ,θ1] where x̄(· | θ̂ ) coincides

with x , and an interval (θ1, θ̂] where x̄(· | θ̂ ) is flat and equal to x(θ̂ ). On the basis of Figure 1,

we next argue that incentive compatibility implies (4).

Now, incentive compatibility implies that no type τ in [θ ,θ1) has an incentive to mimic a

marginally higher type τ+ dτ, that is,

U(τ)− U(τ+ dτ)

dτ
≥

c(x(τ+ dτ),τ+ dτ)− c(x(τ+ dτ),τ)

dτ
(5)

−→

dτ→0
cθ (x(τ),τ) (6)

= cθ ( x̄(τ | θ̂ ),τ), (7)

where the last equality is due to fact that x(τ) = x̄(τ | θ̂ ) for τ ∈ [θ ,θ1). Hence,

U(θ )− U(θ1)≥

∫ θ1

θ

cθ ( x̄(τ | θ̂ ),τ) dτ. (8)

Moreover, type θ1 has no incentive to mimic type θ̂ , that is,

U(θ1)− U(θ̂ ) ≥ c(x(θ̂ ), θ̂ )− c(x(θ̂ ),θ1). (9)

Because for all τ ∈ [θ1, θ̂], we have that x̄(τ | θ̂ ) is constant equal to x(θ̂ ), we can replace x(θ̂ )
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in the right hand side and use integration to obtain

U(θ1)− U(θ̂ ) ≥

∫ θ̂

θ1

cθ ( x̄(τ | θ̂ ),τ) dτ. (10)

Putting the inequalities (8) and (10) together now delivers expression (4).

The actual proof of Proposition 1 is significantly more involved than this simple heuristic

argument suggests. The reason is that Proposition 1 is true for any allocation x . For an arbitrary

allocation, it need neither be the case that at a point where x̄(·|θ̂ ) is strictly decreasing, it coincides

with x , nor that at a point where x̄(·|θ̂ ) is flat, it coincides with a local maximum of x over the

range [θ , θ̂]. In fact, it is possible to construct functions x such that at all points τ, x̄(τ|θ̂ ) is

strictly larger than x(τ). To prove Proposition 1, we show that, for any allocation x , we can

approximate its associated x̄(·|θ̂ ) by a sequence of step functions each of which coincides with

x at its jump points. For such step functions, (4) can be easily established, and the proof shows

that (4) carries over in the limit.

It is instructive to compare the characterization of unidirectional incentive compatibility (1)

to the characterization of the standard bidirectional incentive constraints (2). It is a classic result

that bidirectional incentive compatibility is equivalent to monotonicity of the allocation function

x and payoff equivalence with respect to the agent’s information rents:

Proposition 2 (x , U) satisfies the bidirectional incentive constraints (2) if and only if x is monotone

(decreasing) and

U(θ )− U(θ̄ ) =

∫ θ̄

θ

cθ (x(τ),τ) dτ ∀θ ≤ θ̄ . (11)

Comparing Proposition 2 to Proposition 1 clarifies that, relative to the standard case, unidirec-

tional incentive constraints relax implementability with regard to both the allocations as well as

to the information rents that can be implemented. First, while bidirectional incentive constraints

imply that only monotone allocations are implementable, unidirectional incentive constraints do

not imply any restrictions on the allocation x . Second, whenever x is monotone decreasing, x(τ)

coincides with x̄(τ|θ̂ ) for any θ̂ ≥ τ. In this case, we may equivalently express (11) as

U(θ )− U(θ̂ ) =

∫ θ̂

θ

cθ ( x̄(τ | θ̂ ),τ) dτ ∀θ ≤ θ̂ . (12)
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This shows that while bidirectional incentive constraints imply that the slope of the information

rents is fully pinned down by the allocation x , that is, U ′(θ ) = −cθ (x(θ ),θ ), unidirectional incen-

tive constraints imply only upper bounds on this slope: U ′(θ ) ≤ −cθ ( x̄(θ , θ̂ ),θ ) for any θ̂ > θ .4

In other words, payoff equivalence obtains under bidirectional incentive constraints, but not un-

der unidirectional constraints.

To understand why monotonicity of the allocation is a necessary condition for bidirectional, yet

not for unidirectional incentive compatibility, suppose some low type obtained a smaller quantity

than some high type. Then for this low type to not mimic, and thus utilize her cost advantage

relative to, the high type, he would need to obtain such a high rent (or transfer) that (because of

single crossing preferences) it would then actually become profitable for the high type to mimic

the low type. This implies that the allocation needs to be monotone if the high type can mimic

the low type, but not if he cannot.

The reason why, with bidirectional information constraints, the marginal change in the infor-

mation rent of a type τ is fully pinned down by cθ (x(τ),τ) can be seen from (5). With bidi-

rectional incentive constraints, type τ has to be deterred not only from mimicking a marginally

higher type τ+ dτ, but also from mimicking a marginally lower type τ− dτ, and this provides

not only an upper but also a lower bound on how the information rent paid to type τ can change.

More intuitively, if the change of information rent was strictly smaller than the right hand side of

(11), then a high type would find it profitable to mimic a low type. The latter concern is absent

when there are only unidirectional incentive constraints which is why it implies only an upper

bound on the change in information rent.

Remark. Proposition 1 characterizes unidirectional incentive compatibility for the case that the

agent can only overstate her costs. The case that the agent can only understate her costs can be

treated analogously. In particular, consider the unidirectional “downward” incentive constraints

U(θ )− U(θ̂ )≥ c(x(θ̂ ), θ̂ )− c(x(θ̂ ),θ ) ∀θ̂ ≤ θ . (13)

Define for all τ≥ θ̂

x(τ | θ̂ ) = inf
ρ∈[θ̂ ,τ]

x(ρ) (14)

as the largest decreasing (lower) envelope of x on the interval [θ , θ̂]. Analogously to Proposition

1, we obtain:

4Note that since U is decreasing in both cases, the derivative exists almost everywhere.
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Proposition 3 (x , U) satisfies (13) if and only if

U(θ )− U(θ̂ )≥ −

∫ θ

θ̂

cθ (x(τ | θ̂ ),τ) dτ ∀θ̂ ≤ θ . (15)

4 Optimal Contracting

We now turn to the question how optimal contracts are affected when the principal faces only

uni- instead of bidirectional incentive constraints. We consider a general principal agent problem

allowing for interdependent values and a type-dependent outside option for the agent. We shall

argue that in private values environments and with type-independent outside option, optimal

contracts are unaffected. In contrast, in interdependent values environments, the principal may

do better with unidirectional incentive constraints because of the extra flexibility to implement a

non-monotone allocation. And when the optimal contract with bidirectional incentive constraints

exhibits countervailing incentives, the principal always does strictly better with unidirectional

incentive constraints because of the extra flexibility to structure information rents. In this case,

the optimal contract may display a non-monotone allocation.

Formally, the principal’s utility from quantity x and transfer t is denoted v(x ,θ ) − t. The

function v is twice continuously differentiable and satisfies v(0,θ ) = 0 for all θ , vx ≥ 0 and

vx x ≤ 0. The model exhibits “private values” if v(x ,θ ) = v(x) and “interdependent values”

otherwise.

The first best allocation maximizes the total surplus is thus given by

x∗
0
(θ ) = arg max

x
v(x ,θ )− c(x ,θ ) (16)

Note that x∗
0

is decreasing if the cross partial vxθ is positive (which is the case with private values).

But in general, x∗
0

may not be decreasing.

Moreover, the agent has a possibly type-dependent outside option, yielding type θ the reser-

vation utility uR(θ ) when no agreement with the principal is reached. Accordingly, a contract

(U , x) is “individually rational” if it yields any type at least her reservation utility, that is, if

U(θ )≥ uR(θ ) ∀θ . (17)

Because the principal’s payoff equals aggregate surplus minus the agent’s information rent,
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the principal’s optimal contract (x∗
1
, U∗

1
) with unidirectional incentive constraints is a solution to

P1 : max
x ,U

∫ θ̄

θ

v(x(θ ),θ )− c(x(θ ),θ )− U(θ ) dF(θ ) s.t. (1) and (17). (18)

By contrast, the principal’s optimal contract (x∗
2
, U∗

2
) with bidirectional incentive constraints is a

solution to

P2 : max
x ,U

∫ θ̄

θ

v(x(θ ),θ )− c(x(θ ),θ )− U(θ ) dF(θ ) s.t. (2) and (17). (19)

We call a combination (x , U) feasible with respect to P1 if it satisfies the constraints (1) and (17),

and feasible with respect to problem P2 if it satisfies the constraints (2) and (17). Because (2)

includes all the constraints in (1) a combination that is feasible with respect to P2 is also feasible

with respect to P1 but not vice versa.

4.1 Interdependent values

As shown in the previous section, when there are only unidirectional incentive constraints, the

principal can implement a non-monotone allocation. This suggests that if the monotonicity con-

straint in the solution to problem P2 with bidirectional constraints is binding, then the solutions

to P1 and P2 may differ. In this section, we show that this intuition is only partially true. In

fact, even if the monotonicity constraint in P2 is binding, the solution to P1 is different only if

the environment exhibits strong interdependent values in the sense that the first best allocation

is non-monotone.

To isolate the effect of interdependent values on optimal contracting, we assume in this section

that the agent has a type-independent outside option, i.e. uR(θ ) = 0. It is well known that in this

case the maximizer of P2 is a pair (x∗
2
, U∗

2
) such that x∗

2
maximizes the expected virtual surplus

subject to a monotonicity constraint:

x∗
2
= arg max

x

∫ θ̄

θ

v(x(θ ),θ )− c(x(θ ),θ )−
F(θ )

f (θ )
cθ (x(θ ),θ ) dF(θ ) s.t. (20)

x(θ ) is decreasing in θ , (21)

and that U∗
2

satisfies (11) with U∗
2
(θ̄ ) = 0.

11



x∗
0

x−

x∗
2

x

θ

xB

τ1 τ2τ1′ τ2′

{θ |x∗
2
(θ )> x∗

0
(θ )}

Figure 2: Screening with interdependent values, where the optimal contract with bidirectional

incentive compatibility, x∗
2
, displays bunching for θ ∈ [τ1,τ2] but, by Proposition 5, is not optimal

under unidirectional incentive compatibility as the non-monotone first best x∗
0

cuts x∗
2

and we have

{θ | x∗
2
(θ )> x∗

0
(θ )}= (τ1′ ,τ2′) 6= ;.

To identify conditions under which the value of P1 differs from P2, it is helpful to define

x−(θ ) = arg max
x

v(x ,θ )− c(x ,θ )−
F(θ )

f (θ )
cθ (x ,θ ) (22)

as the point-wise maximizer of the virtual surplus in (20). In so-called regular settings, where x−

is decreasing in θ , x− represents a solution to P2. If the setting is not regular, then the solution

x∗
2

to P2 involves “ironing” the non-monotonic allocation x−, leading to a “bunching” of types θ

which are all assigned the same allocation xB. Figure 2 illustrates such bunching for the interval

[τ1,τ2].

To solve P1, note first that since (1) implies that U(θ ) is decreasing in θ , and since in this

section the agent’s outside option is assumed to be type-independent, individual rationality is

equivalent to individual rationality only for the highest type θ̄ :

U(θ̄ )≥ 0. (23)

Moreover, Proposition 1 provides a lower bound for the information rent that the principal has to

pay to the agent in order to implement an allocation x . In fact, in order to dissuade a type θ to

report the highest type θ̂ = θ̄ , (4) implies that the rent paid to type θ has to satisfy:

U(θ )≥ U(θ̄ ) +

∫ θ̄

θ

cθ ( x̄(τ | θ̄ ),τ) dτ ∀θ . (24)

We now relax the principal’s problem P1 by only considering the constraints (23) and (24). Be-
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cause U enters the principal’s objective negatively, (23) is binding, and (24) is binding for all θ

at an optimum of this relaxed problem, yielding information rent:

U(θ ) =

∫ θ̄

θ

cθ ( x̄(τ | θ̄ ),τ) dτ ∀θ . (25)

This expression says that (at an optimum) information rents are pinned down by the smallest

decreasing envelope x̄(· | θ̄ ) of x . More specifically, due the single-crossing property of c, infor-

mation rents are larger, the larger is x̄(· | θ̄ ). Thus, the principal faces a modified, less stringent,

rent-efficiency trade-off compared to the case with bidirectional incentive constraints. In the lat-

ter case, payoff equivalence pins down information rents by the allocation x . Thus, increasing

the allocation necessarily comes at the cost of higher information rents. In contrast, with unidi-

rectional incentive constraints, increasing the allocation comes at the cost of higher information

rents only if this also increases x̄(· | θ̄ ).

To capture the modified rent-efficiency trade-off more formally, we shall now relax the problem

further by treating x̄(· | θ̄ ) as an independent choice variable y which inherits from x̄(· | θ̄ ) the

constraints that y be decreasing and x(θ )≤ y(θ ) for all θ . Thus, we arrive at the problem:

R1 : max
x ,y,U

∫ θ̄

θ

v(x(θ ),θ )− c(x(θ ),θ )− U(θ ) dF(θ ) s.t. (26)

U(θ ) =

∫ θ̄

θ

cθ (y(τ),τ) dτ ∀θ , (27)

y(θ ) is decreasing in θ , (28)

x(θ )≤ y(θ ) ∀θ . (29)

Lemma 1 Let (x , y, U) be solution to R1. Then (x , U) is a solution to P1.

We are now in a position to identify conditions under which the principal does, and does not,

benefit from the fact that incentive constraints are uni- rather than bidirectional.

Proposition 4 Let the first best x∗
0

or the virtual surplus maximizer x− be decreasing. Then the

second best (x∗
2
, U∗

2
) is a solution to both P1 and P2.

To understand the result, consider first the case that the first-best x∗
0

is decreasing. Note first

that at an optimum of R1, the allocation x is smaller than the first-best allocation x∗
0
. Otherwise,

it would be feasible and profitable to lower x to the first-best level and maintain y , since lowering

13



x would improve surplus and maintaining y would keep information rents the same. Second, at

an optimum of R1, y is equal to the smallest decreasing envelope of x , because this minimizes

the information rents to implement the allocation x .

Now, because x∗
0

is above the optimal allocation x , x∗
0

is thus a decreasing envelope of x , and

since y is the smallest decreasing envelope of x , we also have that y is smaller than the first best

level. But since x and y are smaller than the first best level, x and y must be the same, because

otherwise, and this is the key observation, if x were strictly smaller than y for some values of θ ,

increasing the allocation x would increase the surplus without affecting rents. But, when x and y

are the same, information rents are pinned down by the allocation x , and x must be decreasing.

Thus, problem R1 becomes equal to the second best problem P2 to maximize the virtual surplus

subject to monotonicity.

Note that this argument is true even if the monotonicity constraint is binding in P2 so that the

second best x∗
2

displays bunching. The reason is that whenever both x and y are below the first

best, then the modified rent efficiency trade-off in R1 plays out in exactly the same way as the

standard rent efficiency trade-off with bidirectional incentive constraints.

Consider next the case that the virtual surplus maximizer x− is decreasing, and thus is equal

to x∗
2
. Consider the relaxed version of R1 where y is not required to be decreasing. Then, clearly,

for any allocation x , choosing y = x minimizes information rents. With x = y and absent the

monotonicity constraint, the problem reduces to the relaxed version of the second best problem

(20) where the monotonicity is ignored. By definition, the solution to this problem is x−. Hence,

x = y = x− is a solution to the relaxed version of R1. Consequently, if x− is decreasing, y = x−

is decreasing and automatically satisfies the monotonicity constraints in the original problem R1.

By Proposition 4, unidirectional incentive compatibility can make a difference only in cases

where x∗
0

and x− are not decreasing. As explained, whenever x− is not decreasing, x∗
2

involves

bunching of some types θ . If there is a strong degree of interdependent values so that the first

best x∗
0

is sufficiently non-monotone, then x∗
0

intersects with x∗
2
, as illustrated in Figure 2. As the

next proposition shows this is a sufficient condition for the solutions to problem P1 and P2 to be

14



different.5,6

Proposition 5 Suppose the set {θ | x∗
2
(θ ) > x∗

0
(θ )} has strictly positive measure. Then the princi-

pal’s value from problem P1 is strictly larger than his value from problem P2. Moreover, any solution

(x∗
1
, U∗

1
) to P1 exhibits a non-monotone allocation x∗

1
.

Figure 2 provides an intuition behind this result. Whenever x− is non-monotone, the optimal

allocation with bidirectional incentive constraints, x∗
2
, involves bunching, as illustrated for the

range [τ1,τ2] at level xB. Clearly, x∗
2

together with U∗
2

is also feasible with unidirectional con-

straints. The principal can however improve on the pair (x∗
2
, U∗

2
) by choosing the combination

(x ′, U∗
2
) where x ′ coincides with x∗

0
in the region [τ1′ ,τ2′]—where x∗

0
lies below x∗

2
—and x ′ is

equal to x∗
2

otherwise. In line with our characterization, the combination (x ′, U∗
2
) remains incen-

tive compatible, as x∗
2
(θ ) = x̄ ′(θ |θ̂ ) ≡ supτ∈[θ ,θ̂] x ′(τ), and thus the minimal information rent

to implement x ′ is U∗
2

according to (25). The combination (x ′, U∗
2
) yields the principal a strictly

higher payoff, because x ′ is closer to the first best and therefore yields a higher surplus, while the

agent’s information rents do not change.

Remark. If the agent can only understate her costs, then Proposition 3 implies that the principal

can implement the first-best allocation x∗
0

without leaving the agent any information rents, that

is, U(θ ) = 0 for all θ . To see this, note that U(θ ) = 0 for all θ satisfies (15) because the right

hand side is negative.

4.2 Countervailing incentives

In this section, we show how the extra flexibility in structuring the agent’s information rents

when there are only unidirectional incentive constraints alleviates optimal contracting when the

agent has a type-dependent outside option. Indeed, when incentive constraints are bidirectional,

the presence of a type-dependent outside option may lead to “countervailing incentives” (Lewis

and Sappington, 1989). Such countervailing incentives obtain when, at the optimum, there are

5The quantifier in Proposition 5 that x∗
2
(θ ) > x∗

0
(θ ) for some θ , implies that x∗

0
and x− are both non-monotone

so that Proposition 4 and 5 describe mutually exclusive cases. To see this, note first that if x− is decreasing, then

x− = x∗
2

and x∗
0
≥ x∗

2
then follows from the fact that x∗

0
≥ x− = x∗

2
. Hence, if x∗

2
(θ ) > x∗

0
(θ ) for some θ , then x− is

non-decreasing. To see that also x∗
0

is non-decreasing, observe that since x− is non-decreasing, x∗
2

exhibits bunching

for some interval, and it can only be in such a bunching interval that x∗
2
(θ ) > x∗

0
(θ ). The fact that x∗

0
≥ x− then

implies that there is some θ1 such that x∗
2
(θ1) > x∗

0
(θ1) ≥ x−(θ1), but optimal bunching implies that there is some

θ2 > θ1 so that x−(θ2) > x∗
2
(θ2) = x∗

2
(θ1). But if x∗

0
were decreasing, this would lead to the contradiction that

x−(θ2)> x∗
2
(θ2) = x∗

2
(θ1)> x∗

0
(θ1)≥ x∗

2
(θ2). Hence, x∗

0
must also be non-monotone.

6The remaining case not covered by either proposition is the one where x∗
0

and x− are non-monotone, but x∗
0
(θ )>

x∗
2
(θ ) almost anywhere. We provide examples in Appendix 2 that for this remaining case, the solutions to P1 and P2

may or may not coincide. A full characterization of this remaining case is non-obvious.
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types whose incentive constraints are binding in one direction, as well as some other types whose

incentive constraints are binding in the other direction. Because with unidirectional incentive

constraints, incentive constraints can be binding only in one direction, this suggests that the solu-

tions to the problems with and uni- and bidirectional incentive constraints, P1 and P2, differ when

there are countervailing incentives.

To isolate the effect of the type-dependency of the outside option, we consider a model with

private values, v(θ , x) = v(x), and adopt the specification in Lewis and Sappington (1989) with

linear costs c(θ , x) = θ x , and a decreasing and concave outside option uR(θ ) for the agent:

u′
R
(θ ) < 0, u′′

R
(θ ) < 0. We also follow Lewis and Sappington (1989) in their assumptions that

u′
R
(θ ) ∈ (−x∗

0
(θ ),−x∗

0
(θ̄ )) for all θ .7

Moreover, we assume that the (inverse) hazard rate F(θ )/ f (θ ) is increasing, while the (in-

verse) hazard rate 1−F(θ )/ f (θ ) is decreasing so that, in line with Lewis and Sappington (1989),

the point-wise maximizer, x−(θ ), of the (downward) virtual surplus,

φ−(x ,θ )≡ v(x)− θ x −
F(θ )

f (θ )
x (30)

and the point-wise maximizer, x+(θ ), of the (upward) virtual surplus

φ+(x ,θ )≡ v(x)− θ x +
1− F(θ )

f (θ )
x (31)

are both decreasing.

We first recall the characterization of the optimal contract with bidirectional incentive con-

straints.

Lemma 2 (Lewis and Sappington, 1989) There are a bunching level xB
2

and thresholds θ−
2
<

θ R
2
< θ+

2
such that a solution (x∗

2
, U∗

2
) to P2 exhibits xB

2
= x−

2
(θ−

2
) = x+(θ+

2
) = −u′

R
(θ R

2
) and

x∗
2
(θ ) =











x−(θ ) if θ ≤ θ−
2

xB
2

if θ−
2
< θ < θ+

2

x+(θ ) if θ ≥ θ+
2

, U∗
2
(θ ) =

∫ θR
2

θ

x∗
2
(τ) dτ+ uR(θ

R
2
). (32)

Thus, there is a unique interior type θ R
2

for whom the individual rationality constraint is bind-

ing (U∗
2
(θ R

2
) = uR(θ

R
2
)), whereas for all other types θ the individual rationality constraint is slack,

7Lewis and Sappington (1989) interpret uR(θ ) as type θ ’s fixed costs of production. Because we motivate uni-

directional incentive constraints as resulting from the principal ’s ability to verify lower bounds on costs, it is more

natural in our context to interpret uR(θ ) as type θ ’s opportunity cost of an alternative project or self-employment.
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(U∗
2
(θ ) > uR(θ )). The optimal contract (x∗

2
, U∗

2
) exhibits countervailing incentives in the sense

that for types smaller than θ R
2

, incentive constraints are locally binding upwards, whereas for

types larger than θ R
2

, incentive constraints are locally binding downwards.

Intuitively, with a type-dependent outside option, the agent has two sources of rent. As with a

type-independent outside option the agent can cash in on the cost advantage relative to a higher

cost type by overstating her cost. Moreover, by understating her cost, and thus overstating her

outside option, the agent can cash in on her higher willingness (or lower opportunity cost) to

accept the contract relative to a lower cost type. The binding incentive constraints under the op-

timal contract are determined by the interplay between these two forces. With a concave outside

option, the second force dominates for large cost types θ > θ R
2

. The reason is that in this range,

the outside option declines fastest.

Since large cost types θ > θ R
2

can secure information rents (relative to their outside option) by

understating their type, the principal pays lower information rents the more steeply the function

U declines in the range θ > θ R
2

and is thus more closely aligned with the outside option uR.

By payoff equivalence, however, the slope of U is pinned down by the quantity (U ′ = −x), and

thus the principal can implement a more steeply declining U only by increasing the quantity x

appropriately. As a result, in the range θ > θ R
2

, the rent efficiency trade-off is optimally resolved

by distorting the quantity upward beyond the first best.

In contrast, when there are only unidirectional incentive constraints, payoff equivalence for

cost types in the range θ > θ R
2

is not a constraint. The principal can therefore implement an

information rent function U that declines faster than −x . We now first illustrate that adapting

only U in this way while maintaining the allocation x∗
2

allows the principal to attain a strict

improvement over (x∗
2
, U∗

2
).

Lemma 3 The following adapted contract (x1, U1) is feasible in problem P1 and yields strictly more

than V ∗
2

:

x1(θ ) = x∗
2
(θ ), U1(θ ) =

(

U∗
2
(θ ) if θ < θ R

2

uR(θ ) if θ ≥ θ R
2

. (33)

The previous modification only adapts the information rents and is the most “obvious” way to

exploit the absence of payoff equivalence to obtain a payoff improvement for the principal when

there are only unidirectional incentive constraints. We now ask whether a further improvement

can be obtained by also adapting the allocation. Recall from the previous section that when

the outside option is type-independent, then the optimal allocation is monotone if the first-best
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is monotone. This may suggest that in the current setting, where the first-best is monotone, a

monotone allocation is also optimal. Interestingly, however, this may not be the case.

To show this, we now first derive the optimal monotone contract with unidirectional incentive

constraints. We then consider a local modification of this contract where we introduce a (fea-

sible) non-monotonicity in the allocation and then state sufficient conditions under which this

modification is profitable.

The optimal monotone contract (xm
1

, Um
1
) with unidirectional incentive constraints solves the

version of P1 with the additional constraint that x be monotone decreasing:

Pm
1

: max
x ,U

∫ θ̄

θ

v(x(θ ))− θ x(θ )− U(θ ) dF(θ ) s.t. (1), (17), x is decreasing .

Lemma 4 The solution (xm
1

, Um
1
) to Pm

1
is characterized by a bunching level xB

m
and thresholds µ− <

µR < µ0 given as the solution to the four equations

xB
m
= x−(µ−) = x∗

0
(µ0) = −u′

R
(µR),

∫ µR

µ−

v′(xB
m
)− θ −

F(θ )

f (θ )
dF +

∫ µ0

µR

v′(xB
m
)− θ dF = 0. (34)

Moreover,

xm
1
(θ ) =











x−(θ ) if θ ≤ µ−

xB
m

if µ− < θ < µ0

x∗
0
(θ ) if µ0 ≤ θ

, Um
1
(θ ) =

(

uR(θ ) if θ ≥ µR

uR(µ
R) +
∫ µR

θ
xm

1
(τ) dτ if θ < µR.

(35)

Figure 3 illustrates the optimal monotone contract (xm
1

, Um
1
). The incentive constraints are

(locally) binding up to type µR, and the individual rationality constraint is binding for all types

larger thanµR. Intuitively, by overstating her cost, a type θ can secure the utility of the higher type,

U(θ̂ ), plus the cost advantage in producing the higher type’s quantity, (θ̂ − θ )x(θ̂ ). Now, under

a monotone contract, the decreasing quantity schedule intersects with the increasing (negative)

slope of the reservation utility, −u′
R
, at some unique type µR, as illustrated in the left panel of

Figure 3. This implies that for types θ > µR, the individual rationality constraint is binding at

an optimum. The reason is that if all types θ > µR get their reservation utility, U(θ ) = uR(θ ),

overstating one’s type is not worthwhile as the utility falls faster than the cost advantage (u′
R
+ x <

0). Therefore, incentive constraints are slack in the range θ > µR. Analogously, for types θ < µR
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x

θθ θ̄

x∗
0

x−

−u′
R

xm
1

µ− µR µ0

xB
m

µR−ǫ µR+δ

y(θ ,ǫ)

•

•

•

U

θ

uR •

Um
1

•

•

Uǫ

µ− µR−ǫ µR µR+δ

Figure 3: The optimal monotone schedule xm
1

(left panel) and associated rent Um
1

(right panel)

and their modifications y(θ ,ǫ) and Uǫ. The shaded area in the left panel represents the loss, ∆S,

in surplus of the modification, while the shaded area in the right panel represents its gain in the

reduction of rents, ∆U .

incentive constraints are binding and individual rationality is slack, because in this range, the

reservation utility falls more slowly than the cost advantage from mimicking a higher type.

We now derive conditions under which the principal improves over the monotone contract

by a contract with a non-monotone quantity schedule. We do this by considering a marginal

modification of the optimal monotone contract where we adapt the quantity schedule over an

interval [µR − ǫ,µR + δ] so that this remains incentive compatible. Figure 3 illustrates these

modifications in red.

Intuitively, introducing a non-monotone allocation relaxes the previously binding local incen-

tive constraints in the range θ ∈ [µR− ǫ,µR] and instead of compensating a type in this range for

not overstating her cost, the principal has to compensate such a type only for her outside option,

implying lower information rents overall. Of course, since the allocation has been made smaller,

there is a surplus loss. Hence, whether the modification is profitable depends on the trade–off be-

tween the reduction in surplus and the reduction in information rents. We analyze this trade-off

next and, subsequently, derive a sufficient condition so that the rent effect dominates.

Specifically, suppose that all types θ ∈ [µR−ǫ, θ̄] receive their reservation utility uR(θ ). Define

δ = δ(ǫ) so that if type µR+δ produces quantity xB
m

, then type µR−ǫ is indifferent between truth-
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telling and mimicking type µR +δ:8

uR(µ
R − ǫ)− uR(µ

R +δ) = (δ+ ǫ)xB
m

. (36)

Consistent with (36), define for types θ ∈ [µR − ǫ, θ̄] the quantity y(θ ,ǫ) as the largest quantity

that type θ can produce so that type µR − ǫ is indifferent between truth-telling and mimicking

type θ :

uR(µ
R − ǫ)− uR(θ ) = (θ −µ

R + ǫ)y(θ ,ǫ). (37)

We now define the modification in such a way that all types in θ ∈ [µR − ǫ,µR + δ] are

assigned the quantity y(θ ,ǫ), and all other types are assigned the same quantity as under the

optimal monotone contract:

yǫ(θ )≡

(

y(θ ,ǫ) if θ ∈ [µR − ǫ,µR +δ]

xm
1
(θ ) otherwise.

(38)

The left panel in Figure 3 illustrates the modification for small ǫ. Starting from θ , the schedule

yǫ first follows the optimal monotone schedule xm
1

up to type µR − ǫ, at which point there is a

downward jump to −u′
R
(µR − ǫ).9 It then increases up to the level xB

m
at type µR + δ from which

on it follows the optimal monotone schedule again.10

Moreover, and as illustrated in the right panel of Figure 3, we define the information rent Uǫ

associated with yǫ so that for all types lower than µR− ǫ, the IC constraint is locally binding, and

all types larger than µR − ǫ receive their reservation utility:

Uǫ(θ )≡

(

uR(µ
R − ǫ) +
∫ µR−ǫ

θ
yǫ(τ) dτ if θ < µR − ǫ

uR(θ ) if θ ≥ µR − ǫ
. (40)

We next show that the non-monotone contract (yǫ, Uǫ) is feasible for small ǫ.

Lemma 5 For any ǫ > 0 so that µ− < µR − ǫ and µR +δ(ǫ)< µ0, the contract (xǫ
1
, Uǫ

1
) is feasible.

8Note that because uR is strictly concave, δ is well-defined and we have that δ(ǫ)→ 0 as ǫ→ 0.
9To see this note that

y(µR − ǫ,ǫ) = lim
θ↓µR−ǫ

uR(µ
R − ǫ)− uR(θ )

θ −µR + ǫ
= −u′

R
(µR − ǫ)< xB

m
(39)

10Note that y(µR +δ,ǫ) = xB
m

by definition of δ. That y is increasing in θ follows from the concavity of uR.

20



Having established the feasibility of the modified contract (yǫ, Uǫ), we next address whether

it is more profitable than the optimal monotone contract. As illustrated by the shaded area in the

left panel of Figure 3, the modification has a negative surplus effect because its modified schedule

yǫ is more distorted than the original schedule xm
1

. On the other hand, the modified rent schedule

Uǫ leaves less rents to the agent than the schedule Um
1

, as illustrated by the shaded area in the

right panel of the figure. Hence, the principal gains from the modification if the reduction in rents

dominates the negative surplus effect. The next lemma states a necessary and sufficient condition

for the marginal modification to be profitable.

Lemma 6 There is ǫ > 0 so that the principal’s payoff from the modification (yǫ, Uǫ) is strictly larger

than that from the optimal monotone contract (xm
1

, Um
1
) if and only if

v′(xB
m
)−µR −

F(µR)

f (µR)
+ v′(xB

m
)−µR < 0. (41)

The proof of Lemma 6 is tedious because the first order effects of the modification on both

surplus and rents are zero and, hence, we need to consider the second order effects. As it turns

out, the left hand side of (41) signs the second order effect.

It is instructive to see the role that the strict concavity of the outside option plays for the

profitability of the modification. Recall that under the optimal monotone contract, incentive con-

straints are binding for types θ < µR, and individual rationality is binding for types θ̂ > µR.

Because the outside option is strictly concave, this implies that a type θ < µR is worse off when

mimicking a high type θ̂ > µR. This slackness in the incentive constraints is exploited by the

non-monotone modification. In fact, the modification ensures that the utility for types θ̂ > µR

remains the same, but type µR − ǫ is made indifferent between truth-telling and mimicking type

µR + δ. Thus, type µR − ǫ (and all smaller types) receive a strictly lower information rent after

the modification.

This would be different if the outside option was linear and, say, followed the dashed blue line

in the right panel of Figure 3. In this case, the optimal monotone contract would be unchanged,

but any type θ < µR would now be indifferent between truth-telling and mimicking a high type

θ̂ > µR. This is because if the outside option is linear with slope −x1
m

, then type θ ’s cost ad-

vantage in producing type θ̂ ’s quantity and the lower utility of type θ̂ exactly offset each other.

Consequently, if a non-monotone modification of the form (yǫ, Uǫ) is performed in this case, this

has only a (negative) surplus effect but no rent effect. Graphically, the dashed blue and red line

then coincide and the shaded area is degenerate, implying that the modification does not save
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any information rents.11

While the previous lemma states a condition that is both necessary and sufficient for the

marginal modification to be profitable, the condition is not directly defined in terms of the primi-

tives of the model. The next proposition shows that an increasing density f is sufficient for condi-

tion (41) to hold. In particular, for a uniform distribution, the optimal contract is non-monotone.

Proposition 6 Suppose the density f is increasing and that the agent’s reservation utility is decreas-

ing and strictly concave. Then a solution to P1 displays a non-monotone schedule x∗
1
.

The proof of Proposition 6 shows that under an increasing density, equality (34) which defines

the endogenous values xB
m

and µR, implies condition (41). To see an intuition and the role of

the density, note that equality (34) states that the weighted (negative) area, weighted by f ,

under the marginal virtual surplus curve, v′(xB
m
) − θ − F(θ )/ f (θ ), from µ− to µR equals the

weighted (positive) area under the marginal surplus curve, v′(xB
m
) − θ , from µR to µ0. Now

if condition (41) is false, then, in absolute terms, the marginal virtual surplus is smaller than

the marginal surplus at θ = µR. Together with the defining values of µ− and µ0, this implies

that the unweighted area under the marginal virtual surplus curve from µ− to µR is smaller than

the unweighted (positive) area under the marginal surplus curve from µR to µ0. Hence, for the

uniform distribution, where the weighted and unweighted areas trivially coincide, (34) therefore

implies condition (41). Because an increasing density puts more weights on larger values of θ ,

the result under a uniform distribution extends to any increasing distribution.

Remark. When there are countervailing incentives, and the agent can only understate her costs,

then we obtain the mirror image of the case just discussed. In particular, the individual rationality

constraints are binding and the first best is implemented for types below a critical type. The

intuitive reason is that in this range the outside option is relatively flat and therefore lies above

the (negative) bound on the right hand side in (15). As types get larger, the outside option

becomes steeper and hits the bound in (15). From then on, incentive constraints are binding, and

the principal has to introduce an upward distortion to satisfy (15).

11A similar argument explains the difference between the case with and without type-dependent outside option.

Recall that with private values and type-independent outside option, the optimal allocation is monotone, and a non-

monotone modification of the type of (yǫ, Uǫ) is never profitable. The reason is that with type-independent outside

option, the individual rationality constraint is binding only for the highest type θ̄ , and the utility for all other types

is determined by the binding incentive constraints. Intuitively, the non-monotone modification is then not profitable

because it does not affect the set of incentive constraints that determine the agent’s information rents.
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5 Conclusion

In many natural settings, agents can misreport their private information in one direction only.

In this paper, we characterize the corresponding notion of unidirectional incentive compatibil-

ity. Our main result shows that unidirectional incentive compatibility imposes no restriction on

the allocation rule that can be implemented but only a lower bound on the change of the agent’s

information rent function. We show that in settings with strong interdependent values or counter-

vailing incentives, optimal contracts differ from the traditional optimal bidirectionally incentive

compatible contracts. In these settings, the principal therefore has a demand for a verification

technology that allows him to verify claims by the agent that deviate from the truth in one direc-

tion. Reversely, we also identify settings in which optimal contracts with uni- and bidirectional

incentive constraints do not differ, and thus a principal would not be willing to pay for such a

verification technology.
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Appendix A

In this appendix, we provide a formal proof of the characterization of unidirectional incentive

compatibility as expressed in Proposition 1.

Proof of Proposition 1

“if”: We have to show that (4) implies (1) Note that x̄(τ | θ̂ ) = supρ∈[τ,θ̂] ≥ x(θ̂ ). Therefore, (4)

and the single-crossing condition for c and imply

U(θ )− U(θ̂ ) ≥

∫ θ̂

θ

cθ ( x̄(τ | θ̂ ),τ) dτ (42)

≥

∫ θ̂

θ

cθ (x(θ̂ ),τ) dτ (43)

= c(x(θ̂ ), θ̂ )− c(x(θ̂ ),θ ), (44)

which is (1), as we wanted to show.

“only if”: Fix θ and θ̂ . To simplify notation, we write x̄ for the function x̄(· | θ̂ ). We first prove

the statement for the case that x̄ is left-continuous, and in a second step extend it to general x̄ .

STEP 1: Let x̄ be left-continuous.

We will use the following auxiliary lemma.

Lemma 7 Let {τR, . . . ,τJ} ⊂ [θ , θ̄] be a set of increasing points τR < τ1 < . . .< τJ . Then, we have

U(τR)− U(τJ)≥

J−1
∑

j=0

c( max
k∈{ j+1,...,J}

x(τk),τ j+1)− c( max
k∈{ j+1,...,J}

x(τk),τ j). (45)

Proof of Lemma 7 We prove the claim by induction over J :

Initial case: For J = 1, the claim is immediate from (1).

Induction step: Suppose the claim is true for J . We show that it is true for J+1. Let {τR, . . . ,τJ+1} ⊂

[θ , θ̄] be given. Let k∗ = arg max{x(τ1), . . . , x(τJ+1)}. Note that this also implies:

x(τk∗) = max
k∈{ j+1,...,J+1}

x(τk) ∀ j = 0, . . . , k∗ − 1. (46)

Then, we have

U(τR)− U(τJ+1) = U(τR)− U(τk∗) + U(τ∗
k
)− U(τJ+1) (47)
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Now, observe first that by (1):

U(τR)− U(τk∗) ≥ c(x(τk∗),τk∗)− c(x(τk∗),τ0) (48)

=

k∗−1
∑

j=0

c(x(τk∗),τ j+1)− c(x(τk∗),τ j) (49)

=

k∗−1
∑

j=0

c( max
k∈{ j+1,...,J+1}

x(τk),τ j+1)− c( max
k∈{ j+1,...,J+1}

x(τk),τ j), (50)

where the two equalities follow from re-arranging terms and (46). Observe second that by induc-

tion hypothesis:

U(τk∗)− U(τJ+1)≥

J
∑

j=k∗

c( max
k∈{ j+1,...,J+1}

x(τk),τ j+1)− c( max
k∈{ j+1,...,J+1}

x(τk),τ j). (51)

Putting the two observations together delivers (45) for J + 1, and this completes the proof of

Lemma 7. QED.

To continue with the proof of STEP 1, let T = {τR, . . . ,τJ} be a partition with θ = τR < τ1 <

. . .< τJ = θ̂ be a partition of [θ , θ̂]. Define for τ ∈ [θ , θ̂] the function

ξ(τ | T ) = max
τi≥τ,τi∈T

x(τi). (52)

Notice that ξ(· | T ) is a decreasing step function. The next lemma states that if x̄ is left-continuous,

then it can be approximated through a sequence of such step functions.

Lemma 8 Let x̄ be left-continuous. There is a sequence T (n) = {τ
(n)

R , . . . ,τ
(n)

J (n)
}, n= 1, 2, . . . of parti-

tions of [θ , θ̂] so that

ξ(τ | T (n))→ x̄(τ) as n→∞ for all τ ∈ [θ , θ̂]. (53)

Before we prove Lemma 8, we show it implies (4) for left-continuous x̄ . Let T (n), n = 1, 2, . . .
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be a sequence of partitions as in Lemma 8. By Lemma 7 and the definition of ξ:

U(θ )− U(θ̂ ) = U(τ
(n)

R )− U(τ
(n)

J (n)
) (54)

≥

J (n)−1
∑

j=0

c(ξ(τ
(n)

j+1
| T (n)),τ

(n)

j+1
)− c(ξ(τ

(n)

j+1
| T (n)),τ

(n)

j
) (55)

=

J (n)−1
∑

j=0

∫ τ
(n)

j+1

τ
(n)

j

cθ (ξ(τ
(n)

j+1
| T (n)),τ) dτ (56)

=

J (n)−1
∑

j=0

∫ τ
(n)

j+1

τ
(n)

j

cθ (ξ(τ | T
(n)),τ) dτ (57)

=

∫ θ̂

θ

cθ (ξ(τ | T
(n)),τ) dτ, (58)

where the equality (57) in the second to last line follows, because ξ(· | T (n)) is a step function

that is constant equal to ξ(τ
(n)

j+1
| T (n)) for all θ ∈ (τ

(n)

j
,τ
(n)

j+1
].

Because the sequence ξ(· | T (n)) converges to x̄ almost surely (by Lemma 8)and since cθ is

continuous and thus bounded, the dominated convergence theorem implies that the right hand

side converges to the (Lebesgue) integral over cθ ( x̄(τ),τ) as n goes to infinity. This implies (4)

as we wanted to show. (Note that since cθ is continuous and x̄ is continuous almost everywhere,

the Lebesgue integral exist and, in fact, coincides with the Riemann integral.)

We complete the proof of STEP 1 by providing the

Proof of Lemma 8 Note first that the lemma holds trivially if x̄ is constant over [θ , θ̂], because

we then have x̄(τ) = x(τJ) = ξ(τ|T
(n)) for any τ and any partition T (n). Hence, suppose that x̄ is

not constant, implying that x̄(θ )− x̄(θ̂ )> 0, because x̄ is decreasing. For n≥ 0 and j = 0, . . . , 2n,

let

ǫn =
x̄(θ )− x̄(θ̂ )

2n
, y

(n)

j
= x̄(θ )− j · ǫn, θ

(n)

j
= sup{θ | x̄(θ )≥ y

(n)

j
}. (59)

By the definition of the supremum, for all δ > 0, there is τ
(n)

j
≥ θ

(n)

j
so that

| x̄(θ
(n)

j
)− x(τ

(n)

j
)|< δ. (60)

We prove the claim for the two cases that 1) x̄ is continuous and 2) x̄ is left-continuous, where

2) builds on 1).

Case 1): Let x̄ be continuous. We show (53) for T (n) = {τ
(n)

0 , . . . ,τ
(n)

2n }.
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For this T (n), convergence of ξ(τ|T (n)) to x̄(τ) holds trivially for τ = θ̂ , as for any n we have

x̄(θ̂ ) = x(θ̂ ) = ξ(θ̂ | T (n)) = ξ(τ
(n)

2n | T
(n)). So consider τ 6= θ̂ . Indeed, let η > 0 and τ ∈ [θ , θ̂ )

be given. We show that there is N so that for all n ≥ N , we have | x̄(τ)− ξ(τ | T (n))| < η. Since,

by definition, x̄(τ)− ξ(τ | T (n))≥ 0, it is enough to show:

x̄(τ)− ξ(τ | T (n))< η. (61)

To see this, choose N and δ > 0 such that ǫN + δ < η. Now consider n ≥ N . Let j = j(n) be the

index so that τ ∈ [θ
(n)

j−1
,θ
(n)

j
). Because x̄ is continuous by assumption, we have

x̄(θ
(n)

i
) = y

(n)

i
∀i. (62)

By definition of θ
(n)

j
, and since x̄ is decreasing, this implies

x̄(τ) ∈ [y
(n)

j
, y

(n)

j−1
]. (63)

We now distinguish two cases:

• Case 1a): τ ∈ [θ
(n)

j−1
,τ
(n)

j−1
) (Notice that we may have that θ

(n)

j
< τ

(n)

j−1
in which case this is the

only case.)

Then by definition of ξ, and since τ < τ
(n)

j−1
, we have

ξ(τ | T (n)) = max
τ
(n)

i
≥τ,τ

(n)

i
∈T (n)

x(τn
i
)≥ x(τ

(n)

j−1
)≥ x̄(θ

(n)

j−1
)−δ = y

(n)

j−1
−δ, (64)

where the final inequality follows from (60) and the final equality from (62). Together with (63),

the definition of ǫn and our choice of N and δ, this implies

x̄(τ)− ξ(τ | T (n))≤ y
(n)

j−1
− ξ(τ | T (n))≤ y

(n)

j−1
− (y

(n)

j−1
−δ) = δ < ǫN +δ < η, (65)

which is what we wanted to show.

• Case 1b): τ ∈ [τ
(n)

j−1
,θ
(n)

j
).

Then by definition of ξ, and since τ < θ
(n)

j
≤ τ

(n)

j
, we have

ξ(τ | T (n)) = max
τ
(n)

i
≥τ,τ

(n)

i
∈T (n)

x(τn
i
)≥ x(τ

(n)

j
)≥ x̄(θ

(n)

j
)−δ = y

(n)

j
−δ, (66)

where the final inequality follows from (60) and the final equality from (62). Thus, together with
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(63), the definitions of y
(n)

j
and ǫn, and our choice of N , δ and n, we obtain:

x̄(τ)− ξ(τ | T (n))≤ y
(n)

j−1
− ξ(τ | T (n))≤ y

(n)

j−1
− (y

(n)

j
−δ) = ǫn +δ ≤ ǫN +δ < η, (67)

which is what we wanted to show.

Case 2): Let x̄ be left-continuous.

Because x̄ is decreasing, it can only have jump discontinuities with at most countably many

jump points. If x̄ has a jump point at τ, then, for n large enough, there will be finitely many

points θ
(n)

j
,θ
(n)

j+1
, . . . ,θ

(n)

j+K
as defined in (59) which are all equal the jump point τ. Moreover, left-

continuity of x̄ , the definition of the supremum, and the definition of y
(n)

j
in (59) imply for any

of such jump points θ
(n)

j+k
that

x(θ
(n)

j+k
) = x̄(θ

(n)

j+k
)≥ y

(n)

j
. (68)

In addition, for all j such that θ
(n)

j−1
6= θ

(n)

j
, left-continuity of x̄ still implies

τ ∈ (θ
(n)

j−1
,θ
(n)

j
] ⇒ x̄(τ) ∈ (y

(n)

j
, y
(n)

j−1
]. (69)

The partition T (n) is now constructed as follows:

⋄ If x̄ has a jump at θ
(n)

j
, we define τ

(n)

j
= θ

(n)

j
so that by (68) we have

x(τ
(n)

j
) = x̄(τ

(n)

j
)≥ y

(n)

j
. (70)

⋄ Otherwise, x̄ is continuous at θ
(n)

j
, and we then define τ

(n)

j
as in (60) above.

To show (61) for given η > 0 and τ ∈ [θ , θ̂ ), choose again N and δ > 0 such that ǫn + δ < η

for all n≥ N , and let j = j(n) so that τ ∈ [θ
(n)

j−1
,θ
(n)

j
)where θ

(n)

j−1
6= θ

(n)

j
. We distinguish four cases:

• Case 2a): x̄ is continuous at θ
(n)

j−1
and θ

(n)

j
. The argument is then as in the continuity case.

• Case 2b): x̄ is continuous at θ
(n)

j−1
and has a jump at θ

(n)

j
.

The argument is then the same as in the continuity case with the only difference that, because

(70) implies x(τ
(n)

j
) = x̄(θ

(n)

j
) ≥ y

(n)

j
in case 1b), (66) simplifies to ξ(τ | T (n)) ≥ y

(n)

j
. This does

not affect the conclusion.

• Case 2c): x̄ has a jump at θ
(n)

j−1
and is continuous at θ

(n)

j
.

Then, by construction τ
(n)

j−1
= θ

(n)

j−1
, and the claim is thus trivially true for τ= θ

(n)

j−1
(recall (70)).

For τ > θ
(n)

j−1
, the argument is the same as for the continuity case with the simplification that we

only have case 1b).
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• Case 2d): x̄ has a jump at θ
(n)

j−1
and at θ

(n)

j
.

Then, by construction τ
(n)

j−1
= θ

(n)

j−1
, and the claim is thus trivially true for τ= θ

(n)

j−1
(recall (70)).

For τ > θ
(n)

j−1
, we have by construction that

ξ(τ | T (n)) = x(θ
(n)

j
) = x(τ

(n)

j
). (71)

Hence,

x̄(τ)− ξ(τ | T (n))≤ y
(n)

j−1
− ξ(τ | T (n)) = y

(n)

j−1
− x(τ

(n)

j
)≤ y

(n)

j−1
− y

(n)

j
≤ ǫn < η, (72)

where the first inequality follows from (69) and the penultimate inequality from (70). This com-

pletes the proof of Lemma 8. QED

STEP 2 We now extend the claim to general x̄ that is not left-continuous. In what follows we

shall write g(τ−) = limρ↑τ g(ρ) for the left limit of a function g at τ. Recall also that a decreasing

function has a left limit at any point. Since x̄ is decreasing, it has at most countably many jump

points. Define the function z(τ) by

z(τ) =

(

x̄(τ−) if τ is jump point of x̄

x(τ) else
. (73)

Note that because x̄ is decreasing, it follows that z(τ)≥ x(τ) and thus also z̄(τ)≥ x̄(τ) for all τ.

We have:

Lemma 9 (i) (x , U) is incentive compatible if and only if (z, U) is incentive compatible.

(ii) z̄ is left-continuous.

(iii) x̄ = z̄ almost everywhere.

Before proving Lemma 9, we show that it implies (4) for general x . If (x , U) is incentive

compatible, so is (z, U) and since z̄ is left-continuous, we have

U(θ )− U(θ̂ ) ≥

∫ θ̂

θ

cθ (z̄(τ),τ) dτ=

∫ θ̂

θ

cθ ( x̄(τ),τ) dτ, (74)

where the equality follows from the fact that x̄ = z̄ almost everywhere. This shows (4) as desired.

Proof of Lemma 9 As to (i). To see the if-part, let (z, U) be incentive compatible. Since z ≥ x ,

it follows from single-crossing, cxθ ≥ 0, that cθ (z(θ̂ ),τ) ≥ cθ (x(θ̂ ),τ). That (x , U) is incentive
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compatible then follows from

U(θ )− U(θ̂ ) ≥ c(z(θ̂ ), θ̂ )− c(z(θ̂ ),θ ) (75)

=

∫ θ̂

θ

cθ (z(θ̂ ),τ)dτ (76)

≥

∫ θ̂

θ

cθ (x(θ̂ ),τ)dτ= c(x(θ̂ ), θ̂ )− c(x(θ̂ ),θ ). (77)

To see the only-if-part, let (x , U) be incentive compatible, and consider θ , θ̂ with θ < θ̂ . By

inspection, condition (1) differs for (z, U) and (x , U) only if z(θ̂ ) differs from x(θ̂ ). Hence, by

definition of z, (z, U) trivially satisfies (1) if θ̂ is not a jump point of x̄ .

Hence, consider the case that θ̂ is a jump point of x̄ so that z(θ̂ ) = x̄(θ̂−). Moreover, by

Lemma 10 below, there is a sequence τn→ θ̂ , with τn ≤ θ̂ , so that limn→∞ x(τn) = x̄(θ̂−). Taken

together

lim
n→∞

x(τn) = z(θ̂ ). (78)

Recall that incentive compatibility of (x , U) implies that U is decreasing. Since τn ≤ θ̂ , this

together with (1) yields:

U(θ ) ≥ U(τn) + c(x(τn),τn)− c(x(τn),θ )≥ U(θ̂ ) + c(x(τn),τn)− c(x(τn),θ ). (79)

Since this holds for all n, and since c is continuous, the inequality carries over to the limit. Thus,

by (78),

U(θ ) ≥ U(θ̂ ) + c(z(θ̂ ), θ̂ )− c(z(θ̂ ),θ ). (80)

Accordingly, (z, U) satisfies (1) and is thus incentive compatible.

To see (ii), suppose to the contrary that z̄ is not left-continuous. Then there is τ so that

z̄(τ−) > z̄(τ). Since τ is thus a jump point of z̄, Lemma 10 implies that there is a sequence

τn, n= 1, 2, . . ., with τn ≤ τ and converging to τ so that

lim
n→∞

z(τn) = z̄(τ−)> z̄(τ). (81)

Consider first the case that infinitely many τn’s are not jump points of x̄ . Re-label the subsequence
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of these points as τnk
, k = 1, 2, . . .. By the definition of z, we have z(τnk

) = x(τnk
). Since x̄ ≥ x

and z̄ ≥ x̄ , (81) implies that

x̄(τ−) = lim
k→∞

x̄(τnk
)≥ lim

k→∞
x(τnk

) = lim
k→∞

z(τnk
) = z̄(τ−)> z̄(τ)≥ x̄(τ). (82)

Hence, (82) implies that τ is also a jump point of x̄ . Thus, by definition of z, we have z(τ) =

x̄(τ−), and thus from (82):

z(τ) = x̄(τ−)≥ z̄(τ−), (83)

which contradicts the hypothesis that z̄(τ)< z̄(τ−).

Consider next the other case that only finitely many τn’s are not jump points of x̄ . Then

for large enough n0, all points τn, n = n0, n0 + 1, . . . are jump points of x̄ . By the definition

of z, we have z(τn) = x̄(τ−
n
). By Lemma 10, we can for all n ≥ n0 find a τ̂n ≤ τn so that

|x(τ̂n)− x̄(τ−
n
)|< 1/n. Since z(τn) = x̄(τ−

n
) and since limn→∞ z(τn) = z̄(τ−) by the first equality

in (81), this implies that

lim
n→∞

x(τ̂n) = lim
n→∞

x̄(τ−
n
) = lim

n→∞
z(τn) = z̄(τ−). (84)

Since x̄ ≥ x , this, together with τn→ τ with τn ≤ τ, (81), and z̄ ≥ x̄ , implies that

x̄(τ−) = lim
n→∞

x̄(τn)≥ lim
n→∞

x(τ̂n) = z̄(τ−)> z̄(τ)≥ x̄(τ). (85)

We can now use the identical arguments from the first case that follow after (82) to show that z̄

is left-continuous, and this concludes the proof of (ii).

To see (iii), recall z̄(τ)≥ x̄(τ) for all τ. Therefore, and because the set of jump points of x̄ is

a null set, it is enough to show that

z̄(τ)≤ x̄(τ) for all τ which are not jump points of x̄ . (86)

Suppose to the contrary that τ is not a jump point of x̄ and x̄(τ)< z̄(τ). By definition of x̄ , there

is thus B > 0 so that

x(ρ)< z̄(τ)− B for all ρ ≥ τ. (87)
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Let ρ∗ ≥ τ be an element of arg supρ≥τ z(ρ). By definition of the supremum, there is a τ̂≥ ρ∗ so

that

|z̄(τ)− z(τ̂)|< B/4. (88)

Moreover, by (87), since τ̂≥ ρ∗ ≥ τ, we also have

x(τ̂)< z̄(τ)− B. (89)

This implies that τ̂ is a jump point of x̄ because otherwise x(τ̂) = z(τ̂) (by definition of z) which

would contradict (88) and (89) jointly, since z̄(τ) ≥ z(τ̂). Since τ̂ is a jump point of x̄ , we have

that z(τ̂) = x̄(τ̂−) by definition of z and that τ̂ > τ, since τ is not a jump point by assumption.

By Lemma 10, there is therefore τ̃ ∈ (τ, τ̂] so that |x(τ̃)− x̄(τ̂−)|< B/4. Together with (88),

this yields

|z̄(τ)− x(τ̃)| ≤ |z̄(τ)− z(τ̂)|+ |z(τ̂)− x(τ̃)| (90)

= |z̄(τ)− z(τ̂)|+ | x̄(τ̂−)− x(τ̃)| (91)

< B/4+ B/4= B/2. (92)

But this is a contradiction to (87) for ρ = τ̂≥ τ.

Lemma 10 Let τ be a jump point of x̄ . Then there is a sequence τn, n = 1, 2, . . . with τn ≤ τ

converging to τ so that x(τn) converges to the left limit of x̄ at τ:

x(τn)→ x̄(τ−). (93)

Proof of Lemma 10 Note first that since τ is a jump point and x̄ is decreasing, there is B > 0 so

that x̄(τ−)− x̄(ρ)> B for all ρ > τ. Since x̄(ρ)≥ x(ρ), we also have

x̄(τ−)− x(ρ)> B for all ρ > τ. (94)

Now take a sequence τ′
n
, n = 1, 2, . . ., converging to τ from the left. By the definition of x̄ , we

can find for all α > 0 a τn ≥ τ
′
n

so that

|x(τn)− x̄(τ′
n
)|< α. (95)
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Moreover, because x̄ is decreasing and τ′
n
≤ τ, (94) implies

x̄(τ′
n
)− x(ρ)> B for all ρ > τ. (96)

This, together with the previous inequality implies that τn ≤ τ whenever α≤ B.

We are now in the position to show that the sequence τn has the desired properties. Indeed,

let α ≤ B, then τn ∈ [τ
′
n
,τ], and hence τn → τ, since τ′

n
→ τ. To see that x(τn) converges to

x̄(τ−), let ǫ > 0 and α=min{ǫ/2, B}. Moreover, by the definition of the left limit, we can choose

N such that | x̄(τ′
n
)− x̄(τ−)|< ǫ/2 for all n≥ N . Together with (95), we obtain:

|x(τn)− x̄(τ−)| ≤ |x(τn)− x̄(τ′
n
)|+ | x̄(τ′

n
)− x̄(τ−)| ≤ α+ ǫ/2≤ ǫ. (97)

This shows that x(τn)→ x̄(τ−), as desired. QED
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Appendix B

In this appendix, we collect the proofs of the two applications in Section 4.

Proof of Lemma 1 Observe first that at a solution (x , y, U) to R1, we have that y = x̄(· | θ ). The

reason is that y is a decreasing function larger than x . Hence, choosing y equal to the smallest

decreasing function larger than x minimizes information rents U(θ ) the principal has to pay.

It remains to show that for y = x̄(· | θ ), (27) implies (4). Indeed, suppose that (x , y, U) with

y = x̄(· | θ ) satisfies (27). Note that for all τ≤ θ̂ ≤ θ̄ , we have

x̄(τ | θ̂ ) = sup
ρ∈[τ,θ̂]

x(ρ)≤ sup
ρ∈[τ,θ̄]

x(ρ) = x̄(τ | θ̄ ). (98)

Thus, by (27) and the single-crossing condition for c:

U(θ )− U(θ̂ ) =

∫ θ̄

θ

cθ ( x̄(τ | θ̄ ),τ) dτ≥

∫ θ̄

θ

cθ ( x̄(τ | θ̂ ),τ) dτ. (99)

But this is inequality (4) which we wanted to show. QED

Proof of Proposition 4 By Lemma 1, it is sufficient to show that x = y = x∗
2

and U = U∗
2

is a

solution to R1.

Suppose first, x∗
0

is decreasing. Let x̃ , ỹ , Ũ be feasible for R1. Then x(θ ) = min{ ỹ(θ ), x∗
0
(θ )}

together with ỹ , Ũ is also feasible. Moreover, (x , ỹ , Ũ) is a (weak) improvement over ( x̃ , ỹ , Ũ),

since we have that x(θ ) ∈ [ x̃(θ ), x∗
0
(θ )], and hence the total surplus v(x(θ ),θ )− c(x(θ ),θ ) goes

up due to concavity. In addition, the information rent Ũ is unchanged.

Given x , y(θ ) = min{ ỹ(θ ), x∗
0
(θ )} with U defined by (25) is feasible, because (a) x = y ,

and (b) y(θ ) is decreasing in θ , because ỹ(θ ) is decreasing (since it is feasible), and x∗
0
(θ ) is

decreasing by assumption. Moreover, (x , y, U) is a (weak) improvement over (x , ỹ , U) because

the total surplus is unchanged, and the information rent U is (weakly) reduced since y ≤ ỹ (recall

that cθ (y,θ ) is increasing in y due to single-crossing).

We conclude that there is a solution (x , y, U) to R1 that satisfies y = x with y decreasing. If

we insert U into the objective and perform a standard integration by parts step, we obtain that

problem R1 reduces to

max
x

∫ θ̄

θ

v(x(θ ),θ )− c(x(θ ),θ )−
F(θ )

f (θ )
cθ (x(θ ),θ ) dF(θ ) s.t. (100)

x(θ ) is decreasing in θ . (101)
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But this is identical to the problem that we obtain after performing the corresponding integration

of parts step in P2. Hence, x = y = x∗
2

with U = U∗
2

is a solution to R1, which is what we wanted

to show.

Suppose next that x−(θ ) is decreasing. Relax problem R1 by disregarding the monotonicity

constraint (28), and call this problem R̃1. Because the information rent U is increasing in y , it is

optimal to set y as small as possible. Hence, in light of constraint (29), a solution (x , y) to R̃1

satisfies x = y and it follows as in the previous paragraph that x is thus given as the solution to

max
x

∫ θ̄

θ

v(x(θ ),θ )− c(x(θ ),θ )−
F(θ )

f (θ )
cθ (x(θ ),θ ) dF(θ ). (102)

The solution to this problem is x−, and hence, x = y = x− with U given by (27) is a solution to

R̃1. Because x− is decreasing by assumption, the neglected constraint (28) is also satisfied, and

hence x = y = x− is also a solution to R1. Finally, note that since x− is decreasing, we have that

x− = x∗
2

and thus also U = U∗
2
. Hence, x = y = x∗

2
with U = U∗

2
is a solution to R1, and this is

what we wanted to show. QED

Proof of Proposition 5 Recall that (x∗
2
, U∗

2
) is a solution to P2 and feasible in P1. Adapting (x∗

2
, U∗

2
),

we construct a contract (x , U) that is feasible for P1 and yields the principal a strictly higher utility

than the value of P2.

To do so, let x = min{x∗
2
, x∗

0
}, and define U by (25). Note that inequality (98) applies, and

thus (x , U) is feasible for P1. Moreover, since x∗
2
(θ ) > x∗

0
(θ ) for some positive measure of θ ’s, x

is more efficient than x∗
2

and yields a strictly higher surplus than x∗
2
. Furthermore, x ≤ x∗

2
implies

that x̄(· | θ̄ ) ≤ x∗
2
, and hence U ≤ U∗

2
. Therefore, (x , U) both yields a strictly higher surplus and

goes along with (weakly) lower information rents than (x∗
2
, U∗

2
). Thus, the value from problem

P1 is strictly larger than that from problem P2.

The second statement that a solution to P1 exhibits a non-monotone allocation follows by

contradiction. Indeed, if P1 has a solution (x∗, U∗) with a monotone allocation x∗, then U∗ must

satisfy U∗(θ̄ ) = 0 and (25) because, by Proposition 1, this is a lower bound on information

rents needed to implement x∗. Because x∗ is monotone, U∗ then also satisfies (2), because the

monotonicity of x∗ implies that x̄∗(θ |θ̄ ) = x∗(θ ). Hence, (x∗, U∗) is feasible for P2, and, since P2

is a more constrained problem than P1, (x∗, U∗) is, in fact optimal for P2. This however contradicts

the first statement of the proposition. QED

Proof of Lemma 3 Because U1 equals U∗
2

for types θ ≤ θ R
2

but is strictly lower for all types θ > θ R
2

,
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it is clear that (x1, U1) yields the principal a strictly higher payoff than (x∗
2
, U∗

2
). It also clear from

construction that (x1, U1) is individually rational. To show that (x1, U1) is unidirectional incentive

compatible, we show (4). Let θ < θ̂ . Since x1 = x∗
2

is decreasing, we have that x1(τ) = x̄1(τ | θ̂ ).

Hence, the right hand side in (4) is

RHS =

∫ θ̂

θ

x1(τ) dτ=

∫ θ̂

θ

x∗
2
(τ) dτ= U∗

2
(θ )− U∗

2
(θ̂ ).

The left hand side in (4) is

LHS = U1(θ )− U1(θ̂ )

Thus, RHS = LHS for θ , θ̂ ≤ θ R
2

. Consider next the case that θ R
2
≤ θ , θ̂ . Note first that for τ≥ θ R

2
,

we have that −u′
R
(τ) ≥ x∗

2
(τ) by Lemma 2. Indeed, at θ R

2
, we have −u′

R
(θ R

2
) = xB

2
= x∗

2
(θ R

2
), and

so the claim follows from the fact that −u′
R

is increasing (by concavity of uR) and x∗
2

is decreasing.

Hence,

LHS = uR(θ )− uR(θ̂ ) =

∫ θ

θ̂

u′
R
(τ) dτ=

∫ θ̂

θ

−u′
R
(τ) dτ≥

∫ θ̂

θ

x∗
2
(τ) dτ= RHS.

The argument for the final case where θ ≤ θ R
2
≤ θ̂ is analogous. QED

Proof of Lemma 4 For ω ∈ [θ , θ̄] consider the following relaxation of Pm
1

:

Rm
1
(ω) : max

x ,U

∫ θ̄

θ

v(x(θ ))− θ x(θ )− U(θ ) dF(θ ) s.t. (103)

U(θ )− U(ω)≥

∫ ω

θ

x̄(τ |ω) dτ ∀θ < ω (104)

U(θ )≥ uR(θ ) ∀θ ≥ω (105)

x decreasing.

Rm
1
(ω) relaxes Pm

1
in two ways. First, after replacing (1) by the equivalent conditions (4), it

imposes these constraints only for θ < ω, where ω is fixed. Second, it requires IR only for types

θ ≥ ω. We first derive a solution to Rm
1
(ω) and then find a specific ω so that the solution also

solves the original problem Pm
1

.

Because x is decreasing, we have x̄(τ |ω) = x(τ) in the IC constraints z(104), and since the

objective is decreasing in information rents, both (104) and (105) are binding at an optimum.
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After inserting them into the objective and performing a standard integration by parts step, Rm
1
(ω)

simplifies to

max
x

∫ ω

θ

v(x(θ ))− [θ +
F(θ )

f (θ )
]x(θ ) dF(θ ) +

∫ θ̄

ω

v(x(θ ))− θ x(θ ) dF(θ )− K

s.t. x decreasing

where K = F(ω)uR(ω) +
∫ θ̄

ω
uR(θ ) dF(θ ) is a constant term that does not depend on x .

We relax the problem one step further and replace the monotonicity constraint by the weaker

constraint

x(θ )≥ x(ω) ∀θ < ω, x(ω)≥ x(θ ) ∀θ > ω.

For a fixed value of x(ω), the solution to this problem is as follows: for θ < ω the objective is

maximized by setting x(θ ) equal to the maximizer of the virtual surplus, x−(θ ), if x−(θ )> x(ω),

and to set x(θ ) equal x(ω) otherwise. Likewise, for θ > ω the objective is maximized by setting

x(θ ) equal to maximizer of the surplus, x∗
0
(θ ), if x∗

0
(θ ) < x(ω), and to set x(θ ) equal x(ω)

otherwise:

x̃(θ ; x(ω),ω) =

(

max{x−(θ ), x(ω)} if θ < ω

min{x∗
0
(θ ), x(ω)} if θ > ω.

Notice that x̃ is decreasing in θ and thus satisfies the original monotonicity constraint. Therefore,

problem Rm
1

boils down to a maximization problem over x(ω):

Rm
1
(ω) : max

x(ω)

∫ ω

θ

v( x̃(θ ))− [θ +
F(θ )

f (θ )
] x̃(θ ) dF(θ ) +

∫ θ̄

ω

v( x̃(θ ))− θ x̃(θ ) dF(θ ).(106)

Denote the solution to this problem by xB(ω). It is easy to see that xB(ω) must lie in the interval

[x∗
0
(θ̄ ), x−(θ )] (since otherwise the objective could be improved by either lowering or increasing

x(ω)). Therefore, because both x− and x∗
0

are decreasing, there are (unique) ω− = ω−(xB(ω))

and ω0 =ω0(x
B(ω)) so that

x−(ω−) = xB(ω) and x∗
0
(ω0) = xB(ω), (107)
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and thus the optimal schedule becomes

xω(θ )≡ x̃(θ ; xB(ω),ω) =











x−(θ ) if θ < ω−

xB(ω) if θ ∈ [ω−,ω0]

x∗
0
(θ ) if ω0 < θ .

(108)

If we insert xω into the objective, we obtain:

∫ ω−

θ

v(x−(θ ))− [θ +
F(θ )

f (θ )
]x−(θ ) dF(θ ) +

∫ ω

ω−

v(xB(ω))− [θ +
F(θ )

f (θ )
]xB(ω) dF(θ )

+

∫ ω0

ω

v(xB(ω))− θ xB(ω) dF(θ ) +

∫ θ̄

ω0

v(x∗
0
(θ ))− θ x∗

0
(θ ) dF(θ ).

A straightforward but tedious calculation yields the first order condition for the maximizer

xB(ω):12

∫ ω

ω−

v′(xB(ω))− θ −
F(θ )

f (θ )
dF +

∫ ω0

ω

v′(xB(ω))− θ dF = 0. (109)

In summary, the solution (xω, Uω) to R1
m
(ω) is characterized by the conditions (107), (108), and

(109), and the information rent Uω is pinned down by the binding constraints (104) and (105).

We now choose ω such that (xω, Uω) is also a solution to the original problem Pm
1

. To do so,

let µ be the unique solution to13

−u′
R
(µR) = xB(µR). (110)

Recall the definition of (xm
1

, Um
1
) in the statement of the lemma, and note that (xµ, UR

µ
) = (xm

1
, Um

1
).

Since R1
m
(ω) is a relaxed version of Pm

1
, we have completed the proof if we show that (xµ, UR

µ
)

satisfies all constraints of Pm
1

that are not in R1
m
(ω).

We first verify for θ < µR ≤ θ̂ the neglected IC constraint

Uµ(θ )− Uµ(θ̂ )≥

∫ θ̂

θ

xµ(τ) dτ.

12It is straightforward to check that the first order condition is sufficient.
13To see that such a µ exists and is unique, note that as mentioned above xB(ω) ∈ [x∗

0
(θ̄ ), x−(θ )] = [x∗

0
(θ̄ ), x∗

0
(θ )].

Moreover, we have −u′
R
(θ ) ∈ (x∗

0
(θ̄ ), x∗

0
(θ )) by assumption. Hence, as −u′

R
(ω) is strictly increasing, and xB(ω) is

decreasing in ω, there is a unique solution µ ∈ (θ , θ̄ ) to (110).
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Indeed, since xµ is decreasing, and −u′
R

is strictly increasing, (110) implies that −u′
R
(τ) > xµ(τ)

for all τ > µR. With this and the definition of UR
µ
, we infer

Uµ(θ )− Uµ(θ̂ ) =

∫ µR

θ

xµ(τ) dτ+ uR(µ
R)− uR(θ̂ ) =

∫ µR

θ

xµ(τ) dτ−

∫ θ̂

µR

u′
R
(τ) dτ >

∫ θ̂

θ

xµ(τ) dτ,

as desired. All other constraints can be verified in a similar way. We omit the details. QED

Proof of Lemma 5: To see individual rationality, note that, by construction, we have Uǫ(θ ) =

uR(θ ) for θ ≥ µR − ǫ, while for θ < µR − ǫ, we have yǫ(θ )≥ −u′
R
(θ ), which implies

Uǫ(θ ) = uR(µ
R − ǫ) +

∫ µR−ǫ

θ

yǫ(τ) dτ≥ uR(µ
R − ǫ) +

∫ µR−ǫ

θ

−u′
R
(τ) dτ= uR(θ ). (111)

Hence, (yǫ, Uǫ) is individually rational.

We next show that (yǫ, Uǫ) is also incentive compatible. Note that by (1) and because of

constant marginal cost, we have to show

Uǫ(θ )− Uǫ(θ̂ )≥ (θ̂ − θ )yǫ(θ̂ ) ∀θ ≤ θ̂ . (112)

To see this inequality holds, consider some pair θ < θ̂ . Given µR + δ < µ0, there is a total of

six constellations to check:

Case 1: θ < µR − ǫ.

(a) θ̂ < µR − ǫ: In this case, we have by construction and incentive compatibility of (xm
1

, Um
1
)

that

Uǫ(θ )− Uǫ(θ̂ ) =

∫ θ̂

θ

yǫ(τ)dτ =

∫ θ̂

θ

xm
1
(τ)dτ

= Um
1
(θ )− Um

1
(θ̂ )≥ (θ̂ − θ )xm

1
(θ̂ ) = (θ̂ − θ )xǫ(θ̂ ).

(b) µR − ǫ ≤ θ̂ < µR + δ: For this case, first note that for all τ ∈ [θ ,µR − ǫ], we have

yǫ(τ)≥ xB
m
≥ y(θ̂ ,ǫ) = yǫ(θ̂ ) so that

Uǫ(θ ) = uR(µ
R − ǫ) +

∫ µR−ǫ

θ

yǫ(τ) dτ≥ uR(µ
R − ǫ) +

∫ µR−ǫ

θ

yǫ(θ̂ ) dτ= (µR − ǫ − θ )yǫ(θ̂ ) + uR(µ
R − ǫ).
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Because Uǫ(θ̂ ) = uR(θ̂ ), it follows from (37) that

Uǫ(θ )− Uǫ(θ̂ ) ≥ (µR − ǫ − θ )yǫ(θ̂ ) + uR(µ
R − ǫ)− uR(θ̂ )

= (µR − ǫ − θ )yǫ(θ̂ ) + (θ̂ −µ
R + ǫ)y(θ̂ ,ǫ) = (θ̂ − θ )yǫ(θ̂ ).

(c) µR+δ ≤ θ̂ : Similarly to case (b) we have Uǫ(θ )≥ (µ
R−ǫ−θ )yǫ(θ̂ )+uR(µ

R−ǫ). Moreover,

since µR + δ ≤ θ̂ , we have y(θ̂ ,ǫ) ≥ yǫ(θ̂ ) so that Uǫ(µ
R − ǫ) − Uǫ(θ̂ ) = uR(µ

R − ǫ) − uR(θ̂ ) =

(θ̂ −µR + ǫ)y(θ̂ ,ǫ)≥ (θ̂ −µR + ǫ)yǫ(θ̂ ). Hence, using uR(µ
R − ǫ) = Uǫ(µ

R − ǫ), it follows

Uǫ(θ )− Uǫ(θ̂ ) = Uǫ(θ )− Uǫ(µ
R − ǫ) + Uǫ(µ

R − ǫ)− Uǫ(θ̂ )≥ (θ̂ − θ )yǫ(θ̂ ). (113)

Case 2: µR − ǫ ≤ θ < µR +δ.

(a) µR − ǫ ≤ θ̂ < µR +δ. In this case, the concavity of uR and (37) imply

uR(θ )− uR(θ̂ )

θ̂ − θ
≥

uR(µ
R − ǫ)− uR(θ̂ )

θ̂ −µR + ǫ
= y(θ̂ ,ǫ) = yǫ(θ̂ ), (114)

which implies Uǫ(θ )− Uǫ(θ̂ ) = uR(θ )− uR(θ̂ )≥ (θ̂ − θ )yǫ(θ̂ ).

(b) µR +δ ≤ θ̂ : As in case (a), the concavity of uR implies that

uR(θ )− uR(θ̂ )

θ̂ − θ
≥ y(θ̂ ,ǫ)≥ yǫ(θ̂ ), (115)

where the second inequality follows because µR+δ ≤ θ̂ . Hence: Uǫ(θ )−Uǫ(θ̂ ) = uR(θ )−uR(θ̂ )≥

(θ̂ − θ )yǫ(θ̂ ).

Case 3: µR +δ ≤ θ < θ̂ : In this case, we have

Uǫ(θ )− Uǫ(θ̂ ) = uR(θ )− uR(θ̂ ) =

∫ θ̂

θ

−u′
R
(τ)dτ

≥

∫ θ̂

θ

yǫ(θ̂ )dτ= (θ̂ − θ )yǫ(θ̂ ),

where the inequality follows because −u′
R
(τ)≥ yǫ(τ)≥ yǫ(θ̂ ) for all τ ∈ [θ , θ̂].

This completes the proof. QED

Proof of Lemma 6

Let ∆S(ǫ) and ∆U(ǫ), respectively, be the difference in surplus and rents, respectively, be-
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tween the non-monotone contract (yǫ, Uǫ) and the optimal monotone contract (xm
1

, Um
1
). Hence,

∆V (ǫ) ≡ ∆S(ǫ) − ∆U(ǫ) expresses the principal’s payoff difference between (yǫ, Uǫ) and

(xm
1

, Um
1
). We will show that ∆S′(0) = ∆U ′(0) = ∆V ′(0) = 0 so that marginally the modifi-

cation does not affect the surplus, rents, and principal’s payoff. However, we show that we have

∆V ′′(0) =∆S′′(0)−∆U ′′(0)> 0 if and only if (41) is true. Thus, ∆V (ǫ) attains a local minimum

at ǫ = 0 in this case.

We begin with three auxiliary observations that we prove at the end of the proof. We have:

∂ y(µR − ǫ,ǫ)

∂ ǫ
=

u′′
R
(µR − ǫ)

2
, δ′(0) = 1, lim

ǫ→0

∂ y(µR +δ(ǫ),ǫ)

∂ ǫ
=

u′′
R
(µR)

2
. (116)

We first compute ∆S(ǫ) for sufficiently small ǫ > 0:

∆S(ǫ) =

∫ θ̄

θ

[v(yǫ(θ ))− θ yǫ(θ )]− [v(x
m
1
(θ ))− θ xm

1
(θ ))] dF

=

∫ µR+δ(ǫ)

µR−ǫ

[v(y(θ ,ǫ))− θ y(θ ,ǫ)]− [v(xB
m
)− θ xB

m
] dF

Hence,

∆S′(ǫ) = [v(y(µR +δ,ǫ))− (µR +δ)y(µR +δ,ǫ)− v(xB
m
) + (µR +δ)xB

m
] f (µR +δ)δ′(ǫ)

+[v(y(µR − ǫ,ǫ))− (µR − ǫ)y(µR − ǫ,ǫ)− v(xB
m
) + (µR − ǫ)xB

m
] f (µR − ǫ)

+

∫ µR+δ

µR−ǫ

[v′(y(θ ,ǫ))− θ]
∂ y(θ ,ǫ)

∂ ǫ
− y(θ ,ǫ) + xB

m
dF

The first term vanishes because, as previously noted, y(µR + δ,ǫ) = xB
m

. Moreover, by (39), we

can replace y(µR − ǫ,ǫ) by −u′
R
(µR − ǫ) in the second line. Thus

∆S′(ǫ) = [v(−u′
R
(µR − ǫ))− v(xB

m
) + (µR − ǫ){u′

R
(µR − ǫ) + xB

m
}] f (µR − ǫ)

+

∫ µR+δ

µR−ǫ

[v′(y(θ ,ǫ))− θ]
∂ y(θ ,ǫ)

∂ ǫ
− y(θ ,ǫ) + xB

m
dF.

Now observe that by definition of µR, we have −u′
R
(µR) = xB

m
. Therefore, when inserting ǫ = 0,

we obtain ∆S′(0) = 0.
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To identify a second order effect, we calculate the second derivative:

∆S′′(ǫ) = −[v(−u′
R
(µR − ǫ))− v(xB

m
) + (µR − ǫ){u′

R
(µR − ǫ) + xB

m
}] f ′(µR − ǫ)

+[v′(−u′
R
(µR − ǫ))u′′

R
(µR − ǫ)− {u′

R
(µR − ǫ) + xB

m
} − (µR − ǫ)u′′

R
(µR − ǫ)] f (µR − ǫ)

+{[v′(y(µR +δ,ǫ))−µR −δ]
∂ y(µR +δ,ǫ)

∂ ǫ
− y(µR +δ,ǫ) + xB

m
} f (µR +δ)δ′(ǫ)

+{[v′(y(µR − ǫ,ǫ))−µR + ǫ]
∂ y(µR − ǫ,ǫ)

∂ ǫ
− y(µR − ǫ,ǫ) + xB

m
} f (µR − ǫ)

+

∫ µR+δ

µR−ǫ

∂

∂ ǫ

�

[v′(y(θ ,ǫ))− θ]
∂ y(θ ,ǫ)

∂ ǫ
− y(θ ,ǫ) + xB

m

�

dF

= T1 + T2 + T3 + T4 + T5.

We next evaluate the five different terms of ∆S′′(ǫ) at ǫ = 0. Recalling that −u′
R
(µR) = xB

m
, the

first term vanishes at ǫ = 0, and the second term becomes

T2 = {v
′(xB

m
)−µ}u′′

R
(µR) f (µR).

Moreover, the fact that y(µR+δ,ǫ) = xB
m

together with (116) implies that the third term becomes

T3 = [v
′(xB

m
)−µ]

u′′
R
(µR)

2
f (µR).

Further, by (39), we have y(µR−ǫ,ǫ) = −u′
R
(µR−ǫ). Thus, with (116) and the fact that−u′

R
(µR) =

xB
m

, the fourth term becomes at ǫ = 0:

T4 = [v
′(xB

m
)−µR]

u′′
R
(µR)

2
f (µR).

Finally, the fifth term vanishes at ǫ = 0, as δ(0) = 0. Collecting the five terms, we get:

∆S′′(0) = 2[v′(xB
m
)−µR]u′′

R
(µR) f (µR)< 0,

where the strict inequality follows, because u′′
R
< 0, as uR is strictly concave, and v′(xB

m
) > µR, as

xB
m
< x0(µ

R) is distorted downwards.

We next consider the difference in information rents:

∆U(ǫ) ≡

∫ θ̄

θ

Uǫ(τ)− Um
1
(τ) dF.
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Note that for types τ ≥ µR we have Uǫ(τ) = Um
1
(τ) = uR(τ), while for types τ ∈ (µR − ǫ,µR), we

have

Uǫ(τ)− Um
1
(τ) = uR(τ)− uR(µ

R)−

∫ µR

τ

xm
1
(θ ) dθ

= uR(τ)− uR(µ
R)−

∫ µR

τ

xB
m

dθ

= uR(τ)− uR(µ
R)− [µR −τ]xB

m
.

Moreover, for types τ≤ µR − ǫ, the difference in information rents is

Uǫ(τ)− Um
1
(τ) = uR(µ

R − ǫ)− uR(µ
R) +

∫ µR−ǫ

τ

yǫ(θ ) dθ −

∫ µR

τ

xm
1
(θ ) dθ

= uR(µ
R − ǫ)− uR(µ

R)−

∫ µR

µR−ǫ

xB
m

dθ

= uR(µ
R − ǫ)− uR(µ

R)− ǫxB
m

.

It therefore follows that

∆U(ǫ) =

∫ µR−ǫ

θ

uR(µ
R − ǫ)− uR(µ

R)− ǫxB
m

dF +

∫ µR

µR−ǫ

uR(τ)− uR(µ
R)− [µR −τ]xB

m
dF.

Taking the derivative with respect to ǫ, we get

∆U ′(ǫ) =

∫ µR−ǫ

θ

[−u′
R
(µR − ǫ)− xB

m
] dF − [uR(µ

R − ǫ)− uR(µ
R)− ǫxB

m
] f (µR − ǫ)

+[uR(µ
R − ǫ)− uR(µ

R)− (µR −µR − ǫ)xB
m
] f (µR − ǫ)

= F(µR − ǫ)[u′
R
(µR)− u′

R
(µR − ǫ)].

Hence, ∆U ′(0) = 0 so that there is no first order effect at ǫ = 0.

To derive the second order effect at ǫ = 0, observe:

∆U ′′(ǫ) = − f (µR − ǫ)[u′
R
(µR)− u′

R
(µR − ǫ)] + F(µR − ǫ)u′′

R
(µR − ǫ).

Hence, ∆U ′′(0) = F(µR)u′′
R
(µR)< 0.
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Combining the expressions for∆S and∆U , we obtain for the principal’s payoff difference that

∆V ′(0) =∆S′(0)−∆U ′(0) = 0,

and

∆V ′′(0) = ∆S′′(0)−∆U ′′(0)

= 2[v′(xB
m
)−µ]u′′

R
(µR) f (µR)− F(µR)u′′

R
(µR)

=

�

v′(xB
m
)−µR +

�

v′(xB
m
)−µ−

F(µR)

f (µR)

��

f (µR)u′′
R
(µR).

Because f (µR)u′′
R
(µR)< 0, this expression is positive (and thus the marginal modification is prof-

itable) if and only if the term in the square brackets is negative, i.e., if and only if condition (41)

is true, and this establishes the first part of the proposition.

It remains to show the auxiliary observations (116) that

∂ y(µR − ǫ,ǫ)

∂ ǫ
=

u′′
R
(µR − ǫ)

2
, δ′(0) = 1, lim

ǫ→0

∂ y(µR +δ(ǫ),ǫ)

∂ ǫ
=

u′′
R
(µR)

2
.

To see the first and the third part, note that, by (37,) we have

∂ y(θ ,ǫ)

∂ ǫ
=

∂

∂ ǫ

uR(µ
R − ǫ)− uR(θ )

θ −µR + ǫ
=
−u′

R
(µR − ǫ)(θ −µR + ǫ)− (uR(µ

R − ǫ)− uR(θ ))

(θ −µR + ǫ)2
.

By using l’Hopital’s rule twice,

∂ y(µR − ǫ,ǫ)

∂ ǫ
= lim

θ→ µR−ǫ

∂ y(θ ,ǫ)

∂ ǫ

= lim
θ→µR−ǫ

−u′
R
(µR − ǫ)(θ −µR + ǫ)− uR(µ

R − ǫ) + uR(θ )

(θ −µR + ǫ)2

= lim
θ→µR−ǫ

−u′
R
(µR − ǫ) + u′

R
(θ )

2(θ −µR + ǫ)

= lim
θ→µR−ǫ

u′′
R
(θ )

2
=

u′′
R
(µR − ǫ)

2
.
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Similarly,

lim
ǫ→0

∂ y(µR +δ(ǫ),ǫ)

∂ ǫ
= lim

ǫ→0

−u′
R
(µR − ǫ)(δ(ǫ) + ǫ)− [uR(µ

R − ǫ)− uR(µ
R +δ(ǫ))]

(δ(ǫ) + ǫ)2

= lim
ǫ→0

−u′
R
(µR − ǫ)(δ(ǫ) + ǫ)− xB

m
(δ(ǫ) + ǫ)

(δ(ǫ) + ǫ)2

= lim
ǫ→0

−u′
R
(µR − ǫ) + u′

R
(µR)

δ(ǫ) + ǫ

= lim
ǫ→0

u′′
R
(µR − ǫ)

δ′(ǫ) + 1
=

u′′
R
(µR)

2
.

Here, we have used (36) in the second line and l’Hopital’s rule as well as the fact that δ′(0) = 1

in the final line.

Finally, to see δ′(0) = limǫ→0δ
′(ǫ) = 1, recall from (36) that δ(ǫ) is implicitly defined by the

relationship

uR(µ
R − ǫ)− uR(µ

R +δ) = (δ+ ǫ)xB
m

.

By the implicit function theorem and using u′
R
(µR) = −xB

m
, we obtain:

δ′(ǫ) =
u′

R
(µR)− u′

R
(µR − ǫ)

u′R(µ
R +δ(ǫ))− xB

m

.

By l’Hopital’s rule, it follows that

δ′(0) = lim
ǫ→0
δ′(ǫ) = lim

ǫ→0

u′′
R
(µR − ǫ)

u′′R(µ
R +δ(ǫ))δ′(ǫ)

=
1

δ′(0)
.

Hence, we have δ′(0)2 = 1, and since δ′(ǫ)≥ 0, this implies δ′(0) = 1.

And this completes the proof. QED

Proof of Proposition 6: We show that an increasing density f implies (41). Suppose to the

contrary that f is increasing and (41) is not true, that is,

−

�

v′(xB
m
)−µ−

F(µR)

f (µR)

�

≤ v′(xB
m
)−µR. (117)

45



We derive a contradiction to (34). Indeed, we show first that (117) implies

−

∫ µR

µ−

v′(xB
m
)− θ −

F(θ )

f (θ )
dθ <

∫ µ0

µR

v′(xB
m
)− θ dθ . (118)

To see this, note that with the change of variables θ = 2µR − θ̃ , we can write the first integral as

−

∫ µR

µ−

v′(xB
m
)− θ −

F(θ )

f (θ )
dθ =

∫ 2µR−µ−

µR

−

�

v′(xB
m
)− (2µR − θ̃ )−

F(2µR − θ̃ )

f (2µR − θ̃ )

�

dθ̃

By (117), we have for θ̃ = µR:

−

�

v′(xB
m
)− (2µR − θ̃ )−

F(2µR − θ̃ )

f (2µR − θ̃ )

�

�

�

θ̃=µR

�

= −

�

v′(xB
m
)−µ−

F(µR)

f (µR)

�

≤ v′(xB
m
)−µR.

Moreover, since the hazard rate F/ f is increasing, we have that

d

dθ̃
−

�

v′(xB
m
)− (2µR − θ̃ )−

F(2µR − θ̃ )

f (2µR − θ̃ )

�

< −1=
d

dθ̃
(v′(xB

m
)− θ̃ ).

These two observations imply that for all θ̃ > µR, we have

−

�

v′(xB
m
)− (2µR − θ̃ )−

F(2µR − θ̃ )

f (2µR − θ̃ )

�

< v′(xB
m
)− θ̃ .

Because, by definition, v′(xB
m
)− (2µR− θ̃ )−

F(2µR−θ̃ )

f (2µR−θ̃ )
equals zero at θ̃ = 2µR−µ−, and v′(xB

m
)− θ̃

equals zero at θ̃ = µ0, this also implies that µ0 > 2µR−µ− and v′(xB
m
)> θ̃ for θ̃ ∈ (2µR−µ−,µ0).

Taken together, these observations imply:

−

∫ µR

µ−

v′(xB
m
)− θ −

F(θ )

f (θ )
dθ =

∫ 2µR−µ−

µR

−

�

v′(xB
m
)− (2µR − θ̃ )−

F(2µR − θ̃ )

f (2µR − θ̃ )

�

dθ̃

<

∫ 2µR−µ−

µR

v′(xB
m
)− θ̃ dθ̃

≤

∫ µ0

µR

v′(xB
m
)− θ̃ dθ̃ ,

which proves (118) whenever (117) is true. Since the density is increasing and all terms are
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positive, we conclude:

−

∫ µR

µ−

§

v′(xB
m
)− θ −

F(θ )

f (θ )

ª

f (θ ) dθ ≤ −

∫ µR

µ−

§

v′(xB
m
)− θ −

F(θ )

f (θ )

ª

f (µR) dθ

<

∫ µ0

µR

�

v′(xB
m
)− θ̃
	

f (µR) dθ̃

≤

∫ µ0

µR

�

v′(xB
m
)− θ̃
	

f (θ̃ ) dθ̃ ,

but this contradicts (34) and completes the proof. QED
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