

Collaborative Research Center Transregio 224 - www.crctr224.de

Rheinische Friedrich-Wilhelms-Universität Bonn - Universität Mannheim

Discussion Paper No. 522

Project C 01

Tranquilo: An Optimizer for the Method of

Simulated Moments

Janoś Gabler1

Sebastian Gsell2

Tim Mensinger3

Mariam Petrosyan4

April 2024

1University of Bonn, Email: janos.gabler@gmail.com
2LMU Munich, Email: sebastian.gsell@econ.lmu.de

3University of Bonn, Email: tmensinger@uni-bonn.de
4University of Bonn, Email: mpetrosyan@uni-bonn.de

Support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)

through CRC TR 224 is gratefully acknowledged.

Discussion Paper Series – CRC TR 224

Tranquilo: An Optimizer for the Method of Simulated
Moments⋆

Janoś Gablera, Sebastian Gsellb, Tim Mensingera, Mariam Petrosyana

a University of Bonn
b LMU Munich

March 29, 2024

We propose the tranquilo algorithm, a trust-region optimizer that aims to facilitate optimization

problems that arise during the method of simulated moments estimation (MSM). The algorithm is

particularly suited for this type of problem as it (1) can utilize the least-squares structure of the

MSM problem, (2) can be parallelized on the level of the algorithm, and (3) can adaptively deal

with noise in the objective function. The adaptive nature of tranquilo makes it particularly suited

for domain experts such as statisticians and social science researchers without extensive training in

numerical optimization. Extensive benchmarks show that tranquilo is competitive with state-of-the-art

algorithms in noise-free settings and outperforms them in the presence of substantial noise.

1 Introduction

Economists frequently encounter “hard” optimization problems when fitting structural models to

empirical data. By “hard” we mean that solving the optimization problem requires a significant

amount of computation time, often hours or days; that manual intervention like tuning start values

or adjusting algorithm parameters is required to obtain a solution; and that solving the optimization

problems takes up a significant portion of the researcher’s time. A prime example where such

problems arise is the estimation of discrete choice models via the method of simulated moments

(MSM).

Despite the prevalence of MSM estimation in structural papers (see Eisenhauer, Heckman, and

Mosso (2015) for a review) and widely available anecdotal evidence that structural researchers

⋆Corresponding author: Janoś Gabler, janos.gabler@gmail.com. We are grateful for funding by Kenneth Judd and

the Hoover Institution at Stanford University. Janoś Gabler is grateful for financial support from the German Research

Foundation (DFG) through CRC-TR 224 (Project C01). Tim Mensinger thanks the Hausdorff Center for Mathematics for

financial support. We thank Kenneth Judd, Michael Griebel, Hans-Martin von Gaudecker, and all other participants of the

2023 workshop “Numerical Methods and Applications in the Social Sciences” (University of Bonn) for helpful comments.

1

would love to spend less time on solving optimization problems, there are no specialized optimiza-

tion algorithms that are tailored to the characteristics of MSM estimation problems.

The goal of our paper is to close this gap by proposing the tranquilo (TrustRegion Adaptive Noise ro-

bust QUadratIc or Linear approximation Optimizer) algorithm – an optimizer that helps researchers

solve hard optimization problems, as they arise during MSM estimation, faster and with less need

for manual intervention. tranquilo is designed to take three main characteristics of MSM estimation

problems into account:

First, MSM estimation problems are nonlinear least-squares problems. Least-squares optimization

problems lie within the general class of blackbox optimization problems

min
l≤x≤u

f(x) (DET)

where f : Rp→ R. In the least-squares case, the objective function f has the structure f(x)=
k∑

j=1

rj(x)2

and thus the optimization problem can be written as

min
l≤x≤u

k∑

j=1

rj(x)2
= min

l≤x≤u
∥r(x)∥2 (DET-LS)

where r(x)≡ [r1(x), . . . , rk(x)]T : Rp→ Rk and ∥·∥ is the 2-norm of a vector. rj(x) is called a least-

squares residual and r(x) is called a residual vector.

It is easy to see that MSM problems are nonlinear least-squares problems. The objective function of

an MSM problem is given by

f(x) = (m(x) − m̂)TW(m(x) − m̂)

where x are the parameters to be estimated, m(x) is a vector of simulated moments from the

economic model, and m̂ is a vector of empirical moments. W is a positive definite weighting matrix.

By defining L= chol(W) as the lower triangular Cholesky factor of W, we can rewrite the objective

function as

f(x) = (m(x) − m̂)TLLT(m(x) − m̂)

By defining r(x)= LT(m(x)− m̂), we can rewrite the objective function as

f(x) = r(x)Tr(x) =

k∑

j=1

rj(x)2
= ∥r(x)∥2

2

Which shows the least-squares structure of the MSM objective function.

There is a class of optimization algorithms that exploit the least-squares structure of the objective

function, and it is a robust result that they outperform general-purpose algorithms when applicable

(Cartis, Fiala, et al., 2019; Levenberg, 1944; Marquardt, 1963; Wild, 2017). A review of existing

algorithms can be found in Section 2. Tranquilo builds on the class of derivative-free least-squares

optimizers and extends them to meet the requirements of an efficient optimizer for MSM problems.

Second, MSM estimation problems as they arise in economics have an expensive objective function

that is hard to parallelize.

In structural economic models, each evaluation of the MSM objective function first requires solving

the model and then simulating data based on the solution. Solving a model can take anywhere

from a few seconds to a few hours but is never in the range of milliseconds. Simulating data from

a model is usually much faster but still adds some computation time.

An optimization algorithm that is designed for MSM estimation problems can thus assume that

the evaluation of the objective function is a runtime bottleneck. Whenever there is a trade-off be-

tween reducing calculations done by the optimizer (e.g., doing linear algebra to calculate candidate

points) vs. saving a few function evaluations, the optimizer should always prioritize saving function

evaluations. This is in stark contrast to traditional objectives of optimization algorithms where often

a significant amount of effort is spent on optimizing calculations done by the optimizer so that they

perform well in cases where the evaluation of the objective function is very fast. .

Nowadays, most researchers have access to parallel hardware: 8 to 16 cores in a laptop; 16 to

64 cores in desktop computers and small servers, up to hundreds of cores in clusters. However, in

many codebases, the objective function is not parallelized. This may partially be due to the fact

that economists are not trained in parallel programming, but there are also inherent difficulties

in parallelizing the solution of economic models. In any case, parallelizing the objective function

would require a large time investment of the researcher.

This implies that an optimization algorithm should parallelize the evaluation of the objective func-

tion and thus shift the burden of parallel programming from researchers to algorithm developers.

Algorithms that parallelize on the level of function evaluations exist (Lee and Wiswall, 2007), but

to the best of our knowledge, none of them exploits the least-squares structure of the objective

function.

A primary goal for tranquilo was to develop an algorithm that evaluates the objective function in

batches and, instead of trying to minimize the number of function evaluations, tries to minimize

the number of batches. The batch size corresponds to the number of available cores in the system.

This design choice stems from the understanding that researchers typically do not benefit from idle

cores on their computers. Instead, their priority is often to minimize the time it takes to solve the

optimization problem.

3

Third, MSM estimation problems have a noisy objective function. Noise in the objective function

means that we only observe noisy evaluations of the true objective function, but we are interested

in finding the minimum or minimizer of the true objective function.

Thus, the problem to be solved is not given by equations DET or DET-LS but by their stochastic

counterparts

min
l≤x≤u
Ef(x,ξ) (STOCH)

min
l≤x≤u
E∥r(x,ξ)∥2 = min

l≤x≤u
E

k∑

j=1

rj(x,ξj)
2 (STOCH-LS)

In the method of simulated moments, the noise in the objective function comes from the fact that

we are simulating data of a stochastic model. As researchers, we can influence the amount of noise

in the objective function by increasing the number of simulation draws. However, this comes at the

cost of increased computation time; in many cases, reducing the amount of noise to a level that

is acceptable for standard optimizers is usually prohibitively expensive. This is especially the case

in dynamic discrete models where initially small random influences may propagate over time and

thus lead to large differences in the simulated data of later periods.

A common approach to deal with noisy objective functions inolves fixing the seed of the random

number generator and using the same random draws in each iteration of the optimizer. In general,

this approach is not suitable for solving STOCH or STOCH-LS. The reason is that the optimizer

will be influenced by lucky draws under the chosen seed and has no chance to optimize the true

objective function, i.e., the expected value of the observed function f(x,ξ).

Moreover, in dynamic discrete models, this approach of fixing the seed also fails to produce a well-

behaved objective function. While it renders the objective function deterministic, it can introduce

discontinuities and local optima even if the underlying true objective function is smooth.

In order to partial out noise, any optimizer that aims to solve STOCH or STOCH-LS has to evaluate

the objective function more often than an equivalent optimizer for deterministic problems. Typically,

such optimizers ask a user to specify the number of function evaluations, either as a fixed sequence

or a function that depends on the iteration counter and other internal variables of the optimizer.

This does not only require knowledge about the inner workings of the optimizer but is very hard to

do in practice, as the ideal number of function evaluations depends on problem properties that are

not known ex-ante. We illustrate this in Subsection 5.1. Usually, the ideal sequence is increasing in

the iteration counter. Choosing too many evaluations slows down the progress. Choosing too few

can lead to a catastrophic failure of the optimizer.

4

A primary goal of our optimizer is, therefore, to determine the optimal number of function eval-

uations in an adaptive fashion without requiring any user-provided information on the amount or

type of noise in the objective function.

While tranquilo is tailored to MSM estimation problems as they arise in economics, it is not limited

to these. Problems with the same characteristics are also encountered in other fields. Prime exam-

ples are design optimization in engineering or calibrating epidemiological models to empirical data.

In fact, one of the main motivations for developing tranquilo comes from an epidemiological model

(Gabler, Raabe, et al., 2022).

To summarize the contributions on a technical level, some familiarity with derivative-free trust-

region optimizers is required. We describe the basic intuition of derivative-free trust-region opti-

mization in Section 2 and refer the reader to Conn, Gould, and Toint (2000) for a more detailed

introduction. The technical contributions are as follows.

First, We take a fairly standard trust-region framework for nonlinear least-squares optimizers (see

for example, Conn, Gould, and Toint (2000)) and reformulate it in a modular fashion that allows

us to replace individual components of the algorithm in order to customize it to the characteris-

tics of MSM estimation problems. Besides the obvious benefit of easing the implementation, this

modularization generates important insights. For example, we show that the fundamental differ-

ence between a scalar and least-squares version of tranquilo is concentrated in one single step (see

Section 15), which is not obvious when looking at other codebases that implement scalar and least-

squares versions of an algorithm (e.g., Cartis, Fiala, et al. (2019) implement the scalar PY-BOBYQA

and least-squares DFO-LS in two separate codebases even though they highlight the similarity of

both algorithms in their paper).

Second, we add parallelization capabilities to the trust-region framework. Some parts of derivative-

free trust-region algorithms, such as the evaluation of the objective function on an initial set of

points, are embarrassingly parallel and have been parallelized in other algorithms (e.g., Cartis,

Fiala, et al. (2019)). We add two new ideas for more efficient parallelization: The first is a parallel

line search that tries out multiple step lengths in the search direction obtained by solving the trust-

region subproblem. The second is speculative sampling: While doing the function evaluation(s)

needed to decide whether a candidate point is accepted, we already sample points that would be

helpful in the next iteration if the candidate point is accepted, and evaluate the objective function

on those points. Both strategies have diminishing returns if many cores are available. Therefore, we

find that a combination of both approaches works best.

Third, we propose novel ways of adaptively determining how many function evaluations are needed

to average out the noise just enough so that the optimizer can make progress. We distinguish two

different situations within each iteration.

In the model building phase, we need to determine how often the objective function should be

evaluated on each model point. The goal here is to build a model that is as cheap as possible but

good enough to send us in the right direction. We treat the error that derives from noise in a similar

5

form as the error that derives from approximating a general nonlinear function over the trust-region

with a low-order polynomial. To this end, we introduce a new measure of model quality ρnoise

that measures how strongly random error impedes the surrogate model’s ability to produce good

candidate points. This measure is then used to adjust the number of repeated function evaluations

at each model point. In this sense, it is similar to the traditional measure of model quality ρ that

is used to adjust the trust-region radius. The calculation of ρnoise is based on a simulation approach

that is computationally costly compared to an iteration of a normal trust-region algorithm but small

compared to a single evaluation of the objective function in typical applications.

In the acceptance phase, we need to determine how many function evaluations are needed to decide

whether the candidate point is actually an improvement over the currently accepted point. We use

power analysis to determine the minimal number of additional function evaluations on both the

candidate point and the currently accepted point that are needed to decide which point is better

given some pre-specified statistical certainty. The approach takes the existing number of evaluations

on both points as well as the expected improvement – a by-product of the trust-region step – into

account.

Both approaches require an estimate of the variance of the noise in the objective function. We

estimate this variance from existing function evaluations on points in a neighborhood of the current

trust-region. By doing multiple function evaluations on the start parameters, we can guarantee

that a sufficient number of function evaluations is available in all iterations and no extra function

evaluations are needed for the noise estimation. This approach treats the noise variance as locally

constant over the trust-region but otherwise accommodates both additive and multiplicative noise

as well as mixtures thereof and does not require the user to specify which type of noise is present.

Fourth, we make tranquilo (Gabler, Gsell, et al., 2024) available as an open-source Python package

that can be used in isolation or via the estimagic package (Gabler, 2022).

Tranquilo builds heavily on previous algorithms and the literature on derivative-free optimization

(Cartis, Fiala, et al., 2019; Conn, Gould, and Toint, 2000; Powell, 2009; Wild, 2017). While this

literature uses terminology that is not commonly familiar to economists, it is surprising that large

parts of tranquilo can be understood in terms of concepts that are familiar to economists: Power

analysis is routinely used to determine sample sizes in empirical work; in tranquilo, it is used to

determine the number of function evaluations for accepting a candidate point. Using model-based

simulations to determine optimal policies is the core business of structural economists; in tranquilo

we use them to determine an optimal policy for the number of function evaluations used in the

model building phase. Finally, ordinary least-squares regression is the workhorse method for every

empirical economists; in tranquilo we use it to fit linear or quadratic approximations to a general

nonlinear function.

We benchmark tranquilo against existing solvers on the Morę-Wild benchmark set Morę and Wild

(2009), which is the standard benchmark set for derivative-free least-squares solvers. To assess the

6

performance of tranquilo on noisy problems, we add artificial noise to the objective functions of the

benchmark set.

In a baseline setting without noise and parallelism, the least-squares and scalar versions of tranquilo

are competitive with comparable existing solvers. The least-squares version is slightly slower than

the best existing least-squares solver DFO-LS, but faster than POUNDERS, which came out as the best

optimizer in Eisenhauer, Heckman, and Mosso (2015). The scalar version is slightly slower than the

NlOpt implementation of BOBYQA but beats the scipy and NlOpt implementations of Nelder-Mead

as well as the NAG implementation of BOBYQA. While this is not the primary use case for tranquilo,

it is reassuring that tranquilo is competitive with existing solvers in the baseline setting. The full

results and details of the benchmarking procedure for this setting can be found in Subsection 3.3.

To assess parallel performance, we compare tranquilo versions with 1, 2, 4, and 8 cores against each

other. We also include DFO-LS as a reference. Importantly, this time, the goal is not to minimize the

number of function evaluations but the number of batches, where each batch is a set of function

evaluations that can be run in parallel. As before, we find that DFO-LS is faster than the serial

version of tranquilo, but with two cores, tranquilo is already considerably faster than DFO-LS. Adding

more cores keeps improving the performance of tranquilo, and the 8-core version is the fastest

solver for more than 80% of the problems in the benchmark set. The full results and details of the

benchmarking procedure for this setting can be found in Subsection 4.2.

In a noisy setting, we compare tranquilo against DFO-LS – the only other derivative-free least-

squares solver that is designed to handle noisy objective functions. Since DFO-LS requires the user to

specify the number of function evaluations at each parameter vector, we compare tranquilo against

multiple variants of DFO-LS. We restrict our attention to a fixed number of function evaluations

because correctly guessing sequences that vary in each iteration is very hard to do in practice.

Compared to the noisy benchmarks in Cartis, Fiala, et al. (2019), we use a much larger amount of

noise.

We find that tranquilo outperforms all configurations of DFO-LS in the noisy setting. While DFO-

LS configurations with few function evaluations per parameter vector solve some problems very

quickly, they fail to solve others. Configurations with many function evaluations per parameter

vector solve more problems but are very slow. Due to its adaptive nature, tranquilo is able to solve

problems quickly while still being robust to solve many problems. The full results and details of the

benchmarking procedure for this setting can be found in Subsection 5.4.

The remainder of the paper is structured as follows: Section 2 reviews core concepts and termi-

nology of derivative-free optimization and discusses how existing algorithms relate to tranquilo.

Section 3 describes the modular formulation of our general trust-region framework and discusses

the implementation of each component for the baseline case without noise and parallelization. It

also shows the results of benchmarking tranquilo against existing solvers in this setting. Section 4

explains our two ideas for improving the parallelization of derivative-free trust-region optimizers

7

and shows the speed-up we achieve via parallelization. Section 5 describes our approaches for noise

handling as well as the corresponding benchmarks. Section 6 concludes.

8

2 Literature review

The literature review is split into two parts. The first reviews important concepts of derivative-free

optimization and is dedicated to readers with little or no background in optimization. We introduce

all essential concepts needed to understand the rest of the paper, as well as the technical description

of contributions in the introduction. The second part reviews related algorithms and identifies gaps

in the literature that are filled by tranquilo.

2.1 Concepts of derivative-free optimization

Local and global optimization. In economics and statistics, it is often the goal to find a global

minimum of a scalar objective function defined on Rp. Without further assumptions, this is an

impossible task, as the only way to guarantee that a global optimum was found is to evaluate the

objective function at all points in Rp.

There are two ways to solve global optimization problems in practice: Global optimizers or local

optimizers in a multistart framework.

Global optimizers require finite bounds for all parameters and sample the parameter space. The

simplest algorithms are random search and grid search; other algorithms sample candidate points

in more sophisticated ways. Global algorithms often yield relatively imprecise solutions that must

be refined with a local optimizer. Moreover, they suffer from the curse of dimensionality, i.e., they

become extremely expensive as soon as there are more than a handful of parameters. A big draw-

back of global optimizers is that they typically do not exploit any known properties of the objective

function. For example, we are not aware of global optimizers that exploit the least-squares structure.

Without further precautions, global optimizers are also not robust to noise in the objective function.

A simple example of this is random search. While random search is a very robust global optimizer

for deterministic functions, it breaks down if there is considerable noise in the objective function,

as it might select a point that just had a lucky draw.

Multistart frameworks run local optimizers from multiple starting points. While any single opti-

mization run might get stuck in a local minimum, the hope is that the best local minimum is also

the global minimum. As with global optimizers, multistart frameworks come without guarantees

that the global minimum was found. Their biggest advantage is that they work with any local opti-

mizers and, thus, can exploit known properties of the objective function, such as the least-squares

structure. As long as the local optimizer is robust to noise, multistart frameworks are also robust to

noise.

Given these trade-offs, we decided to develop a local optimizer. If a global optimum is required, we

recommend to run tranquilo in an efficient multistart framework such as tiktak (Arnoud, Guvenen,

and Kleineberg, 2019).

9

Derivative free optimization. Local optimizers move iteratively through the parameter space of

an optimization problem to find a parameter vector that minimizes the objective function. Thus, in

each iteration, the algorithm needs to decide on a search direction and a step size. In derivative-

based optimization, the search direction is usually based on the gradient of the objective function,

and the step size is chosen based on its Hessian (see Nocedal and Wright (2006) for examples).

While this approach is very successful, it requires a means to evaluate the gradient and, potentially,

the Hessian of the objective function. Whenever one has access to the objective function itself, a

way to get at its derivatives is to use finite differences. However, this approach is very expensive.

If there are p parameters, calculating a gradient via finite differences takes at least p additional

evaluations of the objective function, and second derivatives are even more expensive.

Gradient-free optimizers do not make direct use of the derivatives of the objective function. By

not using derivatives, their goal is to be faster than a gradient-based optimizer employing finite

differences. There are different classes of gradient-free optimizers. Each of them uses a different

approach to finding a search direction and a step size without using the derivatives of the objective

function. We restrict our attention to the class of derivative-free trust region optimizers. For an

overview of other approaches, see Larson, Menickelly, and Wild (2019).

Importantly, many derivative-free optimizers assume that the derivatives of the objective function

exist. They simply do not use them because they are too expensive to evaluate. The existence of

derivatives is needed for convergence proofs. In practice, some derivative-free optimizers work even

if the derivatives do not exist.

The basic idea of trust-region optimization. An important class of derivative-free optimizers are

trust-region methods (Conn, Gould, and Toint, 2000; Nocedal and Wright, 2006). One iteration of

a prototypical trust-region algorithm looks as follows

(1) Given a current parameter vector xt as trust-region center and a radius ∆t, form a surrogate

model Mt that approximates the objective function inside the trust-region. The surrogate model is

usually a quadratic model or some other low-order polynomial.

(2) Find the minimizer of the surrogate model using a specialized optimizer that is tailored to the

functional form of the surrogate model. This minimizer becomes a candidate step.

(3) Evaluate the objective function at the candidate point and accept or reject the candidate point.

(4) Adjust the trust-region radius for the next iteration based on a measure of progress.

The basic idea of a trust-region optimizer is to iteratively replace an expensive objective function

that is hard to optimize with a local surrogate model that can be optimized very cheaply. The

acceptance decision and trust-region management play an important role in ensuring that the

model approximates the function well enough.

10

Surrogate models. Different trust-region optimizers form the surrogate models in different ways.

Derivative-based methods use the gradient and Hessian of the objective function at xt to form a

second-order Taylor expansion that serves as the surrogate model. To save costly evaluations of

the Hessian, some optimizers use approximations to the Hessian. A robust result in the literature

is that (underdetermined) quadratic surrogate models work best (Conn, Gould, and Toint, 2000).

Linear surrogate models have no internal minimum and can thus only suggest candidate points

on the boundary of the trust-region, which makes them unsuitable for choosing good step lengths.

Higher-order polynomials are not just too expensive to form but also too hard to optimize.

Derivative-free optimizers form surrogate models by evaluating the objective function on a sample

of points and forming a quadratic model by interpolation or regression. The points are chosen

carefully based on geometric considerations to maximize the model’s approximation accuracy. To

save function evaluations, only a few points in the sample are replaced in each iteration. Fully

determined quadratic interpolation models require the function to be evaluated at
(p+1)(p+2)

2 points.

Since this number grows quickly in p, many algorithms use underdetermined interpolation models

based on 2p+ 1 function evaluations. The remaining degrees of freedom are resolved by choosing

a solution to the interpolation conditions that minimize the Frobenius norm of the model Hessian

or the Frobenius norm of the change in the model Hessian between iterations. This idea was first

popularized by Powell in the NEWUOA and BOBYQA algorithms (Powell, 2009; Powell, 2006) and

has since been used by many others (see Larson, Menickelly, and Wild (2019) for a review).

A special case are derivative-free trust-region methods for least-squares problems. Instead of forming

just one surrogate model for the function value, they form a surrogate model for each least-squares

residual. The surrogate models for the residuals are then aggregated into a surrogate model for

the actual function value. While there are no proofs that this approach works better than forming

scalar surrogate models directly, a vast amount of benchmarks shows that as few as p+ 1 function

evaluations can be enough to create useful surrogate models using this principle (see for example

Cartis, Fiala, et al. (2019) and Cartis and Roberts (2019)).

Trustregion radius management. The surrogate models in trust-region optimizers only approx-

imate the objective function locally. Using simple models like quadratic ones can, therefore, be

justified by Taylor’s theorem. This shows that the trust-region radius plays a central role in govern-

ing the approximation quality. If the radius is large, the optimizer can make large steps, but the

model might be a poor approximation to the objective function. Making the radius smaller increases

the model accuracy at the cost of slower progress.

It is very important that the model only has to be good enough to make progress, and it is not an

explicit goal to minimize the overall approximation error on the trust-region. The radius adjustment

is, therefore, based on a measure of model quality that specifically takes into account how well the

model predicts good candidate points

11

ρt ≡
f(x∗

t
) − f(x∗

t
+ st)

Ms
t(x
∗
t) −Ms

t(x
∗
t + st)

=
Actual Improvement

Expected Improvement
(2.1)

The basic idea is then as follows: If ρ is large, the model worked well in predicting a descent

direction, and the radius can be increased or kept constant. If ρ is small, the radius has to be

reduced in order to improve the model quality in the next iteration. If suitable surrogate models

are used and regularity conditions are fulfilled, Taylor-like error bounds guarantee that a good

approximation quality can be achieved by making the radius small enough. The actual radius

adjustment is slightly more complex and depends on additional quantities and conditions. Several

methods are discussed in Conn, Gould, and Toint (2000).

Convergence. The word convergence is used for two very different things: In the theoretical lit-

erature, a convergence proof means that a mathematical algorithm is guaranteed to find a local

optimum or stationary point if run for long enough. Among practitioners, convergence means that

an algorithm stopped the optimization process because a condition was achieved. Since those con-

ditions can usually be set by a user, reaching them is not a strong guarantee that an optimum has

been found, and practitioners should always verify that convergence was not spuriously induced by

weak convergence criteria.

Tranquilo is loosely based on a trust-region framework for which a convergence proof exists (Conn,

Gould, and Toint, 2000), and the components that play a central role in the convergence proof (e.g.,

solvers for the surrogate problem and trust-region radius handling) are fairly standard. However,

tranquilo is meant as an algorithm for practitioners, and we do not make an attempt at extending

the convergence proof to cover the modifications we propose in tranquilo. Instead, we rely on

extensive benchmarks to show the practical performance of tranquilo.

2.2 Related algorithms

We restrict our attention to derivative-free trust-region methods for bound-constrained optimization.

A more comprehensive overview discussing other methods can be found in Larson, Menickelly, and

Wild (2019).

While derivative-free trust-region optimizers based on quadratic models have been used since the

early 1970s (Winfield, 1973), the interest in these methods has been revitalized by the influential

work of Powell. An important contribution of Powell was the introduction of underdetermined

interpolation for the construction of quadratic surrogate models –first introduced in the NEWUOA

and BOBYQA algorithms– which drastically improve the efficiency for higher dimensional problems

(Powell, 2009; Powell, 2006). As an algorithm that supports bound constraints, BOBYQA can be

seen as the direct predecessor of most algorithms that we discuss in this section.

12

The BOBYQA algorithm (Powell, 2009) maintains a sample of 2p+ 1 points that are used to form

a quadratic surrogate model. The model is fit using underdetermined interpolation. The remaining

degrees of freedom are resolved by choosing the solution to the interpolation conditions that min-

imize the Frobenius norm of the change in the model Hessian between two iterations. Between

two iterations, at most one model point is replaced. The replacement point is chosen to maximize

the stability of the model. Several variants of the BOBYQA algorithm are available as open-source

software and compare very favorably against other derivative-free optimizers like the Nelder-Mead

algorithm (see Subsection 3.3).

The DFBOLS (Zhang, Conn, and Scheinberg, 2010) and POUNDERS algorithm (Wild, 2017) can be

seen as a translation of BOBYQA to least-squares problems. Both algorithms use 2p+ 1 interpola-

tion points and the same underdetermined interpolation method as BOBYQA. The main difference

is that they construct one quadratic surrogate model for each least-squares residual and aggregate

those models into a quadratic model for the objective function. The aggregation method differs

between the optimizers: POUNDERS’ aggregation method can be described as a Full-Newton ap-

proach whereas DFBOLS incorporates elements from a Gauss-Newton approach. The POUNDERS

algorithm is available as a pure Python implementation in the estimagic library. A C implementa-

tion of POUNDERS is available in the toolkit for advanced optimization (TAO) (Dener et al., 2021).

DFBOLS is available as Fortran code. The performance of DFBOLS and POUNDERS is expected to be

very similar (Wild, 2017). Due to the lack of a DFBOLS implementation with Python bindings, we

only compare tranquilo to POUNDERS.

DFO-LS (Cartis, Fiala, et al., 2019) is another derivative-free trust-region method for least-squares

problems. The key difference is that DFO-LS uses only p+ 1 interpolation points and fits fully de-

termined linear surrogate models for each residual. Those linear models are then aggregated into a

quadratic model for the objective function. This change drastically improves DFO-LS’s performance

for larger problems. We use the same approach in tranquilo. On top of this change, DFO-LS intro-

duces several new features: First, a fast start option tries to make progress before there are enough

function evaluations to fit an initial model. Second, there is a heuristic that detects whether the

trust-region radius collapsed due to the presence of noise and if so, the algorithm is automatically

restarted. Third, the user can specify sequences that control how often a noisy objective function

should be evaluated. The sequence can depend on several quantities, among them the iteration

counter and a restart counter. The same new features are also available in Py-BOBYQA, which is

developed in the same paper and works for scalar objective functions. The performance of DFO-LS

is excellent (see Subsection 3.3) and we use it as the main benchmark for tranquilo. Py-BOBYQA is

also included in the benchmarks but performs slightly worse than other BOBYQA implementations.

Both algorithms are available as standalone Python packages.

The main problem of derivative-free trust-region optimizers applied to noisy objective functions is

that the trust-region radius collapses to zero. This is caused by bad candidate points from noise-

affected surrogate models and spurious rejections due to unlucky draws in the acceptance evalu-

ation. While DFO-LS is the only least-squares optimizers for noisy objective functions that we are

13

aware of, there are several optimizers for scalar objective functions that employ strategies to avoid

the collapsing of the radius.

SNOWPACK (Augustin and Marzouk, 2017) ties the trust-region radius management to an estimate

of the noise in function evaluations. Moreover, it uses Gaussian process models instead of quadratic

interpolation models to reduce the effect of noise.

Shashaani, Hashemi, and Pasupathy (2018) recognize that user-specified sequences for the number

of function evaluations needed to average out noise are impractical and propose the ASTRO-DF

algorithm that uses adaptive sampling: The number of evaluations is increased until an estimated

standard error falls under a threshold. The threshold is a fixed factor of the squared trust-region

radius. This incorporates the idea that smaller trust-region radii require more precise models. More-

over, it prevents the radius from shrinking too much before a good model quality has been achieved.

The adaptive sampling in ASTRO-DF is, however, not based on the magnitude of the function eval-

uations. ASTRO-DF is available as part of the simopt library, where it can be benchmarked against

other simopt optimizers. We currently exclude ASTRO-DF from our benchmarks because we could

not get it to solve our benchmark problems precisely enough, but we want to exclude all errors

that might be caused on our side before drawing any conclusions.

Parallelization on the algorithm level has not been a focus of the literature on derivative-free

trust-region optimizers or derivative-free least-squares optimizers. However, there are parallel direct

search algorithms for scalar problems.

Lee and Wiswall (2007) introduce a parallel version of the Nelder-Mead simplex algorithm. The

classical Nelder-Mead algorithm maintains a set of p+ 1 points that are used to form a simplex

in the parameter space. In each iteration, the worst point is replaced by a new point. There are

different strategies for calculating the new point, which are selected based on the function values.

The parallel version replaces more than one point in each iteration and evaluates the objective

functions on all new points in parallel. Depending on the function value, an initial candidate for a

new point might be rejected, and a second function evaluation is necessary before a new point is

accepted. The empirical results in Lee and Wiswall (2007) show strong gains in efficiency, which

are sometimes substantially larger than the number of processors. They explain this by the fact

that the parallel version might sometimes create better search directions than the serial one. An

implementation of the parallel Nelder-Mead algorithm is available in the estimagic library. We are

currently working on incorporating it into our benchmarks.

14

3 Tranquilo core algorithm

In this section, we describe a core version of the tranquilo algorithm that is suitable for solving the

deterministic nonlinear least-squares problem DET-LS as well as the deterministic scalar problem

DET without using parallelization. The extension to the parallel case is described in Section 4. The

extension to the stochastic case is described in Section 5.

The structure is as follows: In Subsection 3.1, we describe our modular formulation of a general

trust-region algorithm that formalizes the interface of components in the algorithm. Most compo-

nents are mathematical functions that have a one-to-one correspondence in the Python implemen-

tation of the algorithm. At this stage, we only describe the inputs and outputs of functions and

are agnostic about their inner workings. In Subsection 3.2, we change our focus and describe the

algorithmic implementation of each component. We focus on the deterministic and serial case, and

draw ample comparisons to existing algorithms. In Subsection 3.3, we describe how we benchmark

optimizers and show how tranquilo compares to other algorithms.

3.1 The trust region framework

In this section, we lay out the general trust-region framework of the tranquilo algorithm in a

modular fashion with a high level of abstraction. Doing so allows us to describe the concrete

implementation of our baseline algorithm as well as its extensions to the parallel and noisy case

clearly and without repeating what stays unchanged. The full algorithm is described in Algorithm 1.

A lookup table for our notation can be found in Appendix A.

Tranquilo is flexible because it is made up of replaceable components. By replaceable component,

we mean a function that takes a specified set of inputs and produces a specified set of outputs.

A simple example of a replaceable component is a Sampler, which takes existing points, a trust-

region, and a target sample size as inputs and produces a set of new points as output. How the

new points are created is not specified and varies across different samplers. Importantly, all other

parts of tranquilo will work with any sampler that conforms to the specified set of inputs and

outputs. This has, of course, a clear mapping to the Python implementation of tranquilo: For every

replaceable component, we implement several different versions that a user of the algorithm can

select by providing the name of that version. Advanced users can go beyond what we offer and

implement their own versions of components.

A full list of replaceable components and a definition of their interfaces can be found in Table A.4.

The implemented versions of each component are described in Sections 3.2, 4.1, and 5. Before

looking at these implementations, we first describe how the different components interact to create

the tranquilo algorithm.

15

Algorithm 1: Tranquilo algorithm

Input: Starting point x∗
0
, initial trust-region radius ∆

region

0 , target sample size ntarget, search factor γsearch,

minimum step size smin, sample increment n
drop
stag , maximum number of iterations tmax, maximum

number of trials to avoid stagnation nmax
stag

, lower and upper bounds l and u.

1 Initialize history with H0 = {(x∗
0
, r(x∗

0
))}

2 Initialize vector model Mv
0
with intercept terms at r(x∗

0
) and all other coefficients set to zero

3 for t=0,1,.. .,tmax do

4 Calculate the search radius ∆search
t

= γsearch∆
region
t

5 Calculate the effective trust-region Rt based on x∗
t
, ∆

region
t , l and u

6 Scan the history for existing points X
existing
t = {x ∈Ht : ∥x∗

t
− x∥ ≤∆search

t
}

7 Filter existing points: X
filtered
t = Filter(X

existing
t)

8 if |X
filtered
t |< ntarget then

9 Sample ntarget − |X
filtered
t | new points in the trust-region: X new

t
= Sample(X

filtered
t , Rt, ntarget)

10 X model
t

=X
filtered
t ∪X new

t

11 else

12 X model
t

=X
filtered
t

13 end

14 Build a vector model Mv
t
= Fit(X model

t
,Rmodel

t
, Mv

t−1
, Rt)

15 Aggregate the vector model: Ms
t
= Aggregate(Mv

t
)

16 Solve the surrogate problem: st = Subsolve(Ms
t
, Rt)

17 while |X model
t
|> ntarget and ∥st∥ ≤ smin do

18 Reduce the sample: X reduced
t

= Drop(X model
t

, n
drop
stage,∆

region
t) and set X model

t
=X reduced

t

19 Build a vector model Mv
t
= Fit(X model

t
,Rmodel

t
, Mv

t−1
, Rt)

20 Aggregate the vector model: Ms
t
= Aggregate(Mv

t
)

21 Solve the surrogate problem: st = Subsolve(Ms
t
, Rt)

22 end

23 nstag = 0

24 while ∥st∥ ≤ smin and nstag ≤ nmax
stag

do

25 Reduce the sample: X reduced
t

= Drop(X model
t

, n
drop
stag ,∆

region
t)

26 Sample new points in the trust-region: X new
t
= Sample(X reduced

t
, Rt, ntarget) and set

X model
t

=X reduced
t

∪X new
t

27 Build a vector model Mv
t
= Fit(X model

t
,Rmodel

t
, Mv

t−1
, Rt)

28 Aggregate the vector model: Ms
t
= Aggregate(Mv

t
)

29 Solve the surrogate problem: st = Subsolve(Ms
t
, Rt)

30 nstag = nstag + 1

31 end

32 Calculate ∆Ms
t
=Ms

t
(x∗

t
)−Ms

t
(x∗

t
+ st)

33 Accept or reject the step and calculate a measure of progress (x∗
t+1

,ρt)= Accept(x∗
t
, st,∆Ms

t
)

34 Adjust the trust-region radius: ∆
region

t+1 = AdjustRadius(∆
region
t ,ρt, st)

35 if x∗
t+1
̸= x∗

t
and Converged(Ht, Ms

t
, x∗

t
, x∗

t+1
) then

36 break

37 end

38 end

16

At the beginning of tranquilo, we are equipped with a starting point x∗
0
∈ Rp, an initial radius

∆
region

0 > 0, as well as the lower and upper bounds of the optimization problem l, u ∈ Rp. Together,

those quantities define the initial trust-region. Moreover, we have several algorithm constants like

the target sample size ntarget, the search factor γsearch, the minimum step size smin, the sample

increment n
drop
stag , the maximum number of iterations tmax, and the maximum number of trials to

avoid stagnation nmax
stag

. For now, we abstract from constants that are only used by the specific

implementation of components.

The algorithm starts by evaluating the objective function at the starting point and initializing the

history of function evaluations with H0 = {(x
∗
0
, r(x∗

0
))} —If it is clear from the context, we some-

times write x ∈H instead of (x, r(x)) ∈H . The history of function evaluations is scanned at the

beginning of each iteration to find points on which the objective function has previously been

evaluated and which are inside or near the current trust-region. Moreover, we initialize a surro-

gate model for the least-squares residuals Mv
0
to equal the constant r(x∗

0
) for all points inside the

trust-region. We call this a vector model to distinguish it from the aggregated scalar model that

approximates the objective function instead of the residuals.

Before the first trust-region iteration, we calculate the effective trust-region Rt which is the subset

of the parameter space in which new points can be sampled and to which the solution of the

trust-region subproblem will be constrained. If no bounds are binding, the effective trust-region is

just the trust-region, i.e., a ball with center x∗
t
and radius ∆

region
t in Euclidean norm. If bounds are

binding, we switch to a hypercube trust-region with the same volume as a ball of radius ∆
region
t .

The hypercube is also centered at x∗
t
and clipped to comply with the bounds of the optimization

problem. Note that a hypercube can be viewed as a ball under the maximum-norm. To avoid

confusion, we stick to saying ball for spherical regions and hypercube for cubical regions. Other

trust-region algorithms that allow for bound constraints (e.g., Wild (2017)) work with a radius in

maximum-norm from the beginning. However, we found that switching between the two shapes

yields a better performance in benchmarks.

At the beginning of each iteration, we scan the history of function evaluations for points that

lie within the search radius of the current trust-region center. These points can be re-used when

building the surrogate model. Next, the set of points is filtered. The filtering step is the first

replaceable component of the tranquilo algorithm. Having a filtering step is a design choice inspired

by the following seemingly counter-intuitive observation: A sample size that is too large can actually

make surrogate models worse (Larson, Menickelly, and Wild, 2019; Powell, 2009). The filtering

step provides the option to discard points that are too close to each other or too close to the

trust-region center. In our practical experiments, however, we could not confirm this observation

and use the identity function as a filter. Other filters we tried and implemented are described in

Subsection 3.2.1.

The scanning and filtering approach differs from other trust-region algorithms that do not maintain

a full history and only store a fixed-size set of model points (Cartis, Fiala, et al., 2019; Powell, 2009;

Wild, 2017). To add a new point, old ones have to be discarded. We find the scanning and filtering

approach appealing because it allows the user to warm-start the algorithm with a database of

previous function evaluations and for costly objective functions, the memory overhead of storing

the full history is not a concern.

17

If the number of filtered points is smaller than the target sample size ntarget, we sample new points

in the current trust-region until we reach the target sample size. The sampling step is another

replaceable component of the tranquilo algorithm. The sampling can be based on the geometry of

the existing points, and all sampled points must lie inside the effective trust-region. We discuss the

sampling strategies we implemented in Subsection 3.2.2.

Scanning, filtering, and sampling leave us with a set of model points X model
t

. After evaluating

the objective function on the newly sampled points, we can also construct a corresponding set

of least-squares residuals Rmodel
t

. These can be used to fit a vector model Mv
t
. Fitting is another

replaceable component of the tranquilo algorithm that allows us to nest the fitting strategies of

different algorithms in a simple way. In addition to X model
t

and Rmodel
t

, the fitting method needs

two more ingredients: First, the previous vector model Mv
t−1

, which can, for example, be used to

penalize changes in the model Hessian and second, the effective trust-region, which is used to

scale the model to a unit-ball or unit-hypercube –depending on the shape of the trust-region– for

numerical stability.

Fitting methods can differ by the type of vector model they fit (e.g., linear or quadratic), by the way

they resolve degrees of freedom in the case of underdetermined interpolation (e.g., penalize Hessian

terms or changes in Hessian terms), and by the way they do the actual fitting (e.g., ordinary least

squares, least absolute deviation, lasso or ridge regression). To ensure that the model fitting is well-

defined, all fitting methods must work for underdetermined, just-determined, and over-determined

fitting problems. We discuss the fitting methods we implemented in Subsection 3.2.3.

The next step is to aggregate the vector model Mv
t
(the surrogate model that approximates the

residual function r(x)) into a scalar model Ms
t
(the surrogate model that approximates the objective

function f(x)). The minimizer of the scalar surrogate model will become the next candidate point.

The aggregation step is another replaceable component of the tranquilo algorithm, but it is impor-

tant that the fitting step, which decides whether linear or quadratic residual models are built, and

the aggregation step are compatible and produce a well-defined quadratic scalar model.

By choosing appropriate pairs of fitting and aggregation methods, we can nest the fitting and

aggregation strategies of different algorithms; such as fitting linear residual models and aggregating

them into a quadratic scalar model (Cartis, Fiala, et al., 2019) or fitting quadratic residual models

and aggregating them into a scalar model (Wild, 2017; Zhang, Conn, and Scheinberg, 2010).

By treating scalar optimization problems as outputting a vector of size one and using an identity

function as the aggregation method, we can even nest the fitting approach of scalar algorithms like

BOBYQA (Powell, 2009). Even though our primary focus is developing a least-squares optimizer,

we show that the resulting algorithm is competitive with other derivative-free scalar optimizers

(see Subsection 3.3). Another possible extension would be a dedicated optimizer for likelihood

functions that leverages the information matrix equality to construct a quadratic scalar model from

linear surrogate models. This would be a derivative-free analog of the popular BHHH algorithm

(Berndt et al., 1974).

Using the scalar model Ms
t
, we solve the trust-region subproblem to obtain a candidate step length

st. The subsolver is again a replaceable component of the tranquilo algorithm. After extensive ex-

18

perimentation, we found that two common methods work best: If bounds are binding, we use the

BNTR algorithm, otherwise we use the GGTPAR algorithm. Both solvers are also available in the

POUNDERS algorithm (Wild, 2017). However, there, the user has to decide before the optimization

which one should be used, whereas we switch dynamically between the two. Both algorithms solve

the quadratic problem (almost) exactly, which is a good choice for our setting with expensive objec-

tive functions. The details of the BNTR and GGTPAR algorithms are described in Subsection 3.2.5.

If the candidate step st is large enough, we directly move to the acceptance step. Here, whether

a step is large enough is determined based on a cutoff that is relative to the trust-region radius

∆
region
t . If the candidate step is too small, we take extra measures to avoid stagnation. If the sample

size of the model points is larger than the target sample size ntarget, we drop n
drop
stag points, re-fit a

vector model, aggregate it, and solve the new trust-region subproblem to get another step size. This

process is repeated until the step size becomes large enough or the sample size equals ntarget. Which

points are dropped is again determined by a replaceable component described in Subsection 3.2.6.

If this is not enough to produce a large enough step, we keep dropping n
drop
stag points, but this time,

we replace them with new points. This process is repeated up to nmax
stag

times.

Two things are important to note here: First, solving the trust-region subproblem many times

adds some overhead, but this cost is negligible compared to the cost of a single evaluation of the

objective function. Second, it seems counterintuitive to drop points instead of simply adding new

ones. However, we found that this approach works better in practice. If only new points are added,

they have a rather small impact on the model and can, therefore, not avoid stagnation. In our

experiments, we found that dropping one point at a time, i.e., n
drop
stag = 1, works best in a serial

algorithm.

Once a sufficiently large candidate step st has been found or the maximum number of trials for

avoiding stagnation has been reached, we move on to the acceptance step. The acceptance step is

a replaceable component of tranquilo that contributes strongly to the flexibility of our framework.

On an abstract level, the acceptance step looks as follows

(x∗
t+1

,ρt) = Accept(x∗
t
, st,∆Ms

t
)

where x∗
t+1

is the candidate point for the next iteration, ρt is a measure of progress or model quality,

and ∆Ms
t
is the expected improvement from taking step st. x∗

t+1
can be equal to x∗

t
+ st, x∗

t
or an

entirely different point. ρt can either be calculated as in Equation 2.1 or in a different way. Any

evaluation of the objective function that happens in the acceptance step will be added to the history

and can be used in the next iteration.

This approach nests the classical case where the acceptance step consists of evaluating the objective

function at x∗
t
+ st and accepting the step if the improvement is large enough, which often just means

larger than zero. Then ρt is simply calculated as in Equation 2.1. The implementation of such a

simple acceptance step is described in Subsection 3.2.7. However, our approach can also express

entirely different methods. Examples are a parallel line-search and speculative sampling, which we

will describe in Subsection 4.1.

19

Given ρt and the step size of st, we can adjust the trust-region radius for the next iteration. Again,

we make the radius adjustment a replaceable component. For our empirical results, we use the

radius adjustment rules of the POUNDERS algorithm (Wild, 2017), which is described further in

Subsection 3.2.8.

If x∗
t+1
̸= x∗

t
, we check for convergence of the algorithm. The convergence check is based on the

history of function evaluations Ht as well as the current scalar model Ms
t
. This allows for all

common convergence criteria, which are either based on absolute or relative improvements in

the objective function, absolute or relative step sizes, or the gradient terms of the scalar surrogate

model. The exact implementation of the convergence check is again replaceable and described in

Subsection 3.2.9

The flexible nature of the tranquilo framework allows for quick experimentation and benchmarking

of different components that are commonly used in trust-region algorithms. For example, we can

easily compare the performance of different model fitting and aggregation strategies, leaving ev-

erything else equal. In the traditional literature, these changes would be considered large enough

to warrant a new algorithm name (compare, e.g., DFBOLS and POUNDERS). This flexibility will

be extremely useful when looking at extensions for parallelization and noise handling. The basic

algorithm as described in this section, will stay virtually unchanged, and only components will

be swapped out. The few changes needed in the algorithm itself are the introduction of a few

new quantities (e.g., a batch size for parallelization or a noise estimate for noisy problems) that

were omitted in the baseline version for simplicity. Moreover, the parallel version of tranquilo (see

Algorithm ??) and the noisy version of tranquilo (see Algorithm 3) nest the baseline algorithm.

3.2 Implementation of the components

In this section, we provide a detailed description of each component and their different implementa-

tions in tranquilo. We begin with a discussion of the components of the noise-free serial optimization

problem, deferring the discussion of components of the noisy and parallel optimization problem to

Subsection 5.3 and 4.1.

3.2.1 Filtering.

At the beginning of each iteration, we get a set of existing points X
existing
t in the neighborhood of

the trust-region center x∗
t
. These points and their corresponding function evaluations can be used

to construct a surrogate model. They are “free” from a computational budget perspective, in the

sense that using them for the surrogate model does not incur any additional evaluations of the

objective function. However, there can be reasons why not all of those points should be used. First,

some of them might be far away from the current trust-region, which might hinder the model from

approximating the objective function well locally. Second, some of them might be very close to

each other, which can lead the model to overfit certain areas of the trust-region. Third, there might

simply be so many points that any newly added point has only a small impact on the model, and

therefore, the next candidate point will be very close to the old one.

20

Filters can address these issues by discarding some of the existing points. More formally, they take

the following form

X
filtered
t = Filter(X

existing
t)

Since existing algorithms do not maintain a full history of function evaluations, filtering has no

counterpart in the literature. However, the filtering methods we implement are inspired by the

traditional goal of producing a well-poised set of model points, i.e., model points with geometric

properties that lead to surrogate models with tight error bounds. This topic is discussed in more

detail in Subsection 3.2.2.

We implement the following filters:

Keep all. As the name suggests, this filter does not discard any points. We use this filter in our

benchmarks for the noise-free and serial case as it yields the best performance in this setting.

Discard all. This filter discards all existing points. Using this filter makes the optimizer slower but,

in some cases, more robust, as it uses a new high-quality sample of points in each iteration and

is therefore not prone to stagnation. The slowdown is not as severe as one might expect: While

each model is now more costly to build, the model quality is also higher, and fewer iterations are

needed.

Drop excess. This filter only drops points if more than nfilter points are available. If so, we first

discard excessive points that are outside the trust-region. We begin with the point farthest from the

trust-region center. If all remaining points are inside the trust-region, we look for the two points

that are closest to each other and discard the one that is closer to the trust-region center, unless

one of the points is the center itself. We repeat this process until only nfilter points remain. The idea

behind this filter is that we want to have points as far out as possible as long as they are inside the

trust-region. This filter is used in our benchmarks for the parallel case with nfilter
= 3ntarget.

3.2.2 Sampling.

Sampling refers to the process of creating new model points X model at which the objective function is

evaluated in order to construct a surrogate model. In the first iteration, a full sample is created from

scratch, and the sample size is set to ntarget. In most other iterations, sampling only complements

a set of existing points, and the sample size might be larger than ntarget. In all cases, the goal is

to create a set of model points with geometric properties that lead to tight error bounds of the

surrogate model. Which points are optimal depends on the type of surrogate model used (e.g.,

linear or quadratic).

We restrict our attention to simple polynomial models that are linear in the parameters. Let nt de-

note the number of model points in iteration t, and d the number of coefficients of the model. In this

case, the quality of the sample is not directly assessed on the model points X model
= [x1, . . . , xnt

]T

21

but on a design matrix X ∈ Rnt×d that is constructed from the model points given the model class.

The design matrix is also known as the matrix of regressors. Note that for all i= 1, . . . , nt the model

points must be inside the effective trust-region, i.e., xi ∈ Rt ⊂ R
p. Abusing notation slightly, we write

X model ∈ R
nt

t .

In the case of a linear model, we have d= p+ 1 coefficients, and the construction of the design

matrix is as follows

Dl(X model) ≡ X l
=






1 x1,1 . . . x1,p

...
...

...
...

1 xnt,1
. . . xnt,p






In the case of a quadratic model, there are additional columns for the cross products and square

terms, so we have d= (p+ 1)(p+ 2)/2 coefficients. The design matrix is constructed as follows

Dq(X model) ≡ Xq
=






1 x1,1 . . . x1,p x2
1,1

x1,1x1,2 . . . x2
1,p

...
...

...
...

...
...

...
...

1 xnt,1
. . . xnt,p

x2
nt,1

xnt,1
xnt,2

. . . x2
nt,p






There are multiple strands of literature that discuss the optimal sampling of model points. The one

that is closest to economics is the one on optimal design (see Pukelsheim (2006) for a compre-

hensive overview). Optimal design asks the question of how to choose a set of points in the space

of potential experiments (which, in our case, is the parameter space) that leads to the most infor-

mative data, i.e., data that allows us to estimate parameters of interest with the highest precision.

Depending on the goal of the experimenter, different statistical measures of precision are maxi-

mized. In the case of a regression model, a frequently used measure is D-optimality. The D-optimal

sample is the one whose design matrix minimizes the determinant of the inverse Fisher information

matrix, i.e.,

X d∗
= argmin
X∈R

nt
t

det
��

D(X)TD(X)
�−1
�

A closely related strand of literature is the one on function approximation. The main difference is

that optimal design typically looks at cases where nt ≥ d, whereas function approximation looks

at the case where nt = d. In this case, the design matrix is square. In the function approximation

literature, the sample of choice is called Fekete points. Fekete points are the set of points that

22

maximize the determinant of the design matrix (see for examples Briani, Sommariva, and Vianello

(2012)), i.e.,

X f∗
= argmax

X∈R
nt
t

det (D(X))

In the case of a square design matrix, the Fekete points are equivalent to the D-optimal sample.v

While familiar to economists, neither of the previous approaches extends to the case where n< d.

Therefore, the literature on trust-region optimizers introduces the concept of Λ-poisedness to mea-

sure the quality of samples. This concept is based on Lagrange polynomials and works for over-

determined, just-determined, and underdetermined interpolation problems. For a definition and

comprehensive treatment of Λ-poisedness, see Conn, Gould, and Toint (2000). While the defini-

tion of the measure Λ relies on concepts that are not typically familiar to economists, it has a

simple interpretation: Λ−1 can be interpreted as the distance a set of model points has to linear

dependence, i.e., the smaller Λ is, the more linearly independent the model points are. In the case

of just-determined and over-determined interpolation problems, the optimal sample according to

Λ-poisedness is equivalent to Fekete points or D-optimal points, respectively.

It is instructive to look at the optimal samples for linear and quadratic models in the case of a

spherical trust-region in two dimensions. These samples are shown in Figure 1.

While one might intuitively think that the optimal sample fills the space uniformly, this is not the

case. The optimal sample for a linear model consists of points that are uniformly spaced on the

sphere, i.e., the boundary of the ball. The same holds for the optimal samples of a quadratic model,

except that here, there is one additional point in the center. This pattern carries over to higher

dimensions and larger samples. In the case of a cubical-shaped trust-region, the optimal sample

also consists of points on the boundary of the cube (and one point in the center for quadratic

models), but the spacing is less regular. When moving to higher-order polynomial models, the

optimal sample consists of concentric rings (see Briani, Sommariva, and Vianello (2012)).

Calculating optimal samples directly based on Λ-poisedness, D-optimality or the Fekete criterion is

expensive. We, therefore, exploit the pattern described above in several of our samplers.

Random hull sampling. This sampler draws points uniformly on the boundary of a spherical or

cubic trust-region. When used to complement an existing sample, it does not take the position

of existing points into account. The sampler is very fast and provides a good baseline for testing

against optimal samplers. Note that even for quadratic models, it is not necessary to sample a

point in the center of the trust-region, as the acceptance step from the previous iteration already

evaluated the objective function at that point.

1. To see this, note that det
��

D(X)TD(X)
�−1
�

= det
�

D(X)TD(X)
�−1
= det (D(X))−2.

23

n=2

Li
ne

ar
 (d

=
3)

n=3 n=5

n=5

Qu
ad

ra
tic

 (d
=
6)

n=6 n=8

Optimal samples on a sphere

Figure 1. Optimal samples for linear and quadratic models on a ball. The őrst row shows the optimal samples for
linear models, the second row shows the optimal samples for quadratic models. The three columns look at the
under-determined, just-determined, and over-determined case. Optimal samples are not space-őlling. For linear
models, all points lie on the boundary of the ball. For quadratic models, there is one additional point in the
center.

Optimal hull sampling. This sampler uses the Random hull sampler to create an initial set of

points and refines these points by maximizing the minimal distance between points, i.e.,

argmax
X∈R

nt
t

�

min
�

∥xi − xj∥ : i, j = 1, . . . , nt, i ̸= j
		

To make the problem differentiable, we approximate the minimal distance by a smooth minimum.

A smooth minimum of a vector z= (z1, . . . , zn) can be constructed using various approaches. We

choose the log-sum-exp function, modified for the minimum-case

SmoothMin(z) = −
1

h
ln

�
n∑

i=1

exp
�

−hzi

�
�

.

The h-parameter determines the hardness of the smooth minimum. As h→∞, the smooth mini-

mum approaches the true minimum. If used to complement existing points, the optimal hull sampler

takes the position of all points into account and positions the new points away from the existing

points. This sampler is used by default in tranquilo and was used in all benchmarks. It provides a

good compromise between sample quality and speed.

24

Determinant sampler. This sampler creates a D-optimal sample by minimizing the D-optimality

criterion using a local optimizer. It is much slower than the optimal hull sampler and can produce

lower-quality samples if the optimizer gets stuck in a local optimum. Therefore, this sampler is not

used in any of our benchmarks.

3.2.3 Fitting.

Fitting refers to the process of taking a set of model points X model and corresponding evaluations of

the residual function Rmodel and constructing a surrogate model Mv that approximates the residual

function. As is common in the literature, the model points are scaled to the trust-region before

fitting. This means that the solution of the trust-region subproblem is always performed over a

unit-ball or unit-hypercube. Moreover, scaling increases the numerical stability of the model fitting.

We emphasize this by using s instead of x to denote a scaled model point.

We restrict our attention to linear or quadratic models. A linear model for the j-th residual takes

the following form

M
j
t(s) = c

j
t + sTg

j
t (3.1)

Where c
j
t ∈ R is a scalar intercept term and g

j
t ∈ R

p is a vector of slope coefficients. g
j
t is also known

as the model gradient. Thus, in total, a linear model has p+ 1 coefficients per residual and we

require p+ 1 model points for a just-determined interpolation model.

A quadratic model includes additional terms

M
j
t(s) = c

j
t + sTg

j
t +

1

2
sTH

j
ts (3.2)

Here H
j
t is a symmetric matrix of second-order coefficients, which is also known as the model

Hessian. Due to the symmetry of H
j
t, the total number of coefficients is (p+ 1)(p+ 2)/2 and we

require (p+ 1)(p+ 2)/2 model points for a just-determined interpolation model.

If we have more model points than coefficients, the model is over-determined, and instead of solving

the interpolation conditions exactly, a least-squares solution is used. If fewer model points than

coefficients are available, the model is under-determined, and the remaining degrees of freedom

need to be resolved by an additional criterion. Additional criteria are usually based on the absolute

values or norm of the model coefficients. Methods differ according to two main dimensions: First,

whether they penalize all coefficients or only the coefficients in H
j
t. And second, whether they

penalize the magnitude of the coefficients or the magnitude of the change in coefficients between

two iterations. To capture the first dimension, we implement different fitting methods. To capture

25

the second one, we use a residualization approach that can be used in combination with any fitting

method.

Residualization means that on the left-hand side of the interpolation conditions, we do not use

Rmodel
t

directly. Instead, we subtract the predicted residuals of the previous model Mv
t−1

, evaluated

at the current model points X model
t

from the residuals. Thus, the coefficients of the fitted model

only capture the difference between the previous and the current model, and any penalization

that might be done by the fitting method only penalizes the change in coefficients. After fitting

the model, the coefficients of the previous model can be added back to produce a model that

approximates the current residual function.

OLS fitting. OLS fitting solves overdetermined models by minimizing the squared norm of the

residuals. For just-determined models, this is equivalent to solving the interpolation conditions

exactly. For underdetermined models, there are multiple solutions to the interpolation conditions.

From those solutions, the solution where the Euclidean norm of all coefficients is smallest is chosen.

If used in combination with residualization, the solution with the smallest change in coefficients

(in Euclidean norm) is chosen.

Hessian-norm fitting. This fitting method is equivalent to OLS fitting for over and just-determined

models. For underdetermined models, it penalizes the Frobenius norm of the Hessian coefficients.

This approach is used by Wild (2008) and motivated by theoretical results that guarantee an

approximation quality of the quadratic model (Larson, Menickelly, and Wild, 2019). If used in

combination with residualization, the penalty is only applied to the change in Hessian coefficients

between two iterations. This approach was first introduced by Powell (see Powell (2009) and

Powell (2006)) and is also used in POUNDERS (Wild, 2017) and several other algorithms (Larson,

Menickelly, and Wild, 2019).

Mixed fitting. Motivated by the comparable success of OLS-fitting and Hessian-norm-fitting in

our benchmarks, we also implement a fitting method that combines the two approaches smoothly.

Instead of only penalizing Hessian coefficients or penalizing all coefficients equally, we introduce

the possibility of weighted penalization that differs across the intercept, gradient terms, and Hessian

terms. We use this fitting method by default for underdetermined fitting problems and find that

we get the best performance if we put a weak penalty on the intercept, a medium penalty on the

gradient terms, and a strong penalty on the Hessian terms. The exact weights are not interpretable

and were set empirically by tuning the algorithm against a benchmark set. The fitting method uses

standard OLS-fitting after scaling the columns of the design matrix. After the fitting, we rescale the

coefficients to undo the effects of rescaling the data. For over- and just-determined problems, this

fitting method is equivalent to standard OLS-fitting.

Ridge fitting. An alternative approach to the above three fitting methods is ridge regression. Ridge

regression performs an ℓ2-regularization of the coefficients by adding a penalty to the objective

function of a least-squares regression

26

min
Θ∈Rk×d

nt∑

i=0

∥Mv(x̃i;Θ) − r(xi)∥
2
+ λ∥Θ∥2 (3.3)

where Θ are the coefficients of the regression problem, and the constant λ is a penalty term that

controls the shrinkage of coefficients, which leads to relatively smaller estimates for coefficients

with low explanatory power. The big difference between ridge regression and the fitting methods

discussed above is that the penalty has an effect even for over-determined models. While this could

be attractive in the presence of noise, it introduces a practical problem: The penalty parameter

λ has to be set, for which we did not find an adequate solution that performed well across all

benchmarks.

3.2.4 Aggregation.

Aggregation refers to the process of converting a vector model Mv
t
, that approximates the residual

function r(x), into a scalar model Ms
t
, that approximates the objective function f(x). The scalar

model is used to solve the trust-region subproblem to produce a candidate point st. While vector

models might be linear, we only consider aggregation methods that result in quadratic scalar models.

This is because linear scalar models are not capable of having internal optima, which makes them

unsuitable for trust-region optimization. The choice of aggregation method depends on the type of

residual model (linear or quadratic) and the type of objective function (scalar or least-squares). We

implement aggregation methods for three cases:

Least-squares objective, linear residual models. With linear vector model Mv
t
, we follow DF-OLS

by building the scalar model Ms
t
through substitution of rj by M

j
t (Equation 3.1) in the definition of

the full objective function DET-LS

Ms
t
(s) ≡

k∑

j=1

M
j
t(s)2

= cs
t
+ sTgs

t
+

1

2
sTHs

t
s

Where

cs
t
≡

k∑

j=1

(c
j
t) ∈ R (3.4)

gs
t
≡ 2

k∑

j=1

c
j
tg

j
t ∈ R

p (3.5)

Hs
t
≡ 2

k∑

j=1

(g
j
t)(g

j
t)

T ∈ Rp×p (3.6)

We define the gradient of Ms
t
as gM

t
=

d
ds M

s
t
, which can be derived as

gM
t

(s) = gs
t
+ Hs

t
s (3.7)

27

Least-squares objective, quadratic residual models. With quadratic residual models, POUNDERS

obtains an aggregate model using a “full Newton” approach. The full Newton model approximates

the scalar model obtained by direct substitution of the residual functions by a second-order Taylor

expansion around the current candidate point x∗
t

Ms
t
(s) ≡

k∑

j=1

(M
j
t(s))2 ≈ cs

t
+ gs

t
sT
+

1

2
sTHs

t
s (3.8)

where cs
t
and gs

t
are defined as in 3.4 and 3.5, respectively, and

Hs
t
≡ 2

k∑

j=1

�

(g
j
t)(g

j
t)

T
+ H

j
tc

j
t

�

An alternative approach is implemented in DFBOLS (Zhang, Conn, and Scheinberg, 2010), where

the second-order term of the scalar model is regularized based on cut-offs on the intercept and

the linear terms. The regularization is designed to provide fast local convergence for problems with

sparse residuals (Zhang, Conn, and Scheinberg, 2010). This approach could be implemented in

tranquilo in the future.

Scalar objective, quadratic “residual” models. In the case of a scalar objective function, the resid-

ual function is simply the objective function, and the aggregation method is the identity function.

Using the term aggregation here is simply an abstraction that allows us to use the same algorithmic

framework for both cases.

3.2.5 Subsolvers.

After obtaining a scalar model Ms
t
, we solve the trust-region subproblem to obtain a candidate

step st. The model is already scaled such that the subproblem is solved over the same space in

each iteration, which is either a unit-ball or a unit-hypercube. More formally, we solve one of the

following problems

min
s̃∈Rp

Ms
t
(̃s) s.t. ∥s̃∥ ≤ 1 (SP-Ball)

min
s̃∈Rp

Ms
t
(̃s) s.t. s̃ ∈ [−1, 1]p (SP-Cube)

After solving the subproblem, the resulting vector s̃ is rescaled with the radius of the effective

trust-region to obtain the candidate step st.

The literature on subproblem optimizers is extremely well-developed, and we do not innovate in

this area. Traditionally, subproblem solvers only look for approximate solutions in order to save

28

computational resources. However, in a setting with expensive objective functions, solving the sub-

problem precisely incurs only a negligible overhead that is outweighed by the benefits of a precise

solution. For solving the Problem SP-Ball, we use the GQTPAR algorithm. For solving the Prob-

lem SP-Cube, we use BNTR. Both algorithms are also used by POUNDERS (Wild, 2017). We pro-

vide numba-accelerated Python reimplementations of both algorithms. Our implementations are

described further in Appendix B.

3.2.6 Dropping Points.

To avoid stagnation, there are two situations in which we drop points: In the while loop starting

in Line 22, we are in a situation where the sample is larger than the target sample size and drop

points without replacing them. In the while loop starting in Line 31, we have reached the target

sample size and replace each dropped point with a new one. In both cases, we use the same

dropping algorithm which is also used by the drop-excess filter described in Subsection 3.2.1.

3.2.7 Acceptance decision.

The way we formalize the acceptance step in tranquilo plays a key role in making tranquilo a

flexible algorithmic framework for trust-region optimization. Formally, the acceptance step looks as

follows

(x∗
t+1

,ρt) = Accept(x∗
t
, st,∆Ms

t
) (3.9)

where x∗
t+1

is the candidate point for the next iteration, ρt is a measure of progress or model quality,

and ∆Ms
t
is the expected improvement from taking step st.

Within these boundaries, many different implementations of acceptance steps are possible. Tradi-

tionally, ρt is calculated as the ratio of actual and expected improvement (see Equation 2.1), and

x∗
t+1

is either the candidate point x∗
t
+ st or the current point x∗

t
. In some algorithms, x∗

t+1
can also

be a model point if it yields an improvement over both the candidate point and the current point

(see, for example, Cartis, Fiala, et al. (2019)). Typically, the acceptance step comprises only one

new objective function evaluation at x∗
t
+ st.

In tranquilo, the acceptance step can calculate ρt in any way that is useful for the radius man-

agement and can use any number of objective function evaluations to create x∗
t+1

. While we stick

to traditional approaches for the serial and noise-free case, our extensions to parallel and noisy

settings mainly consist of modifications to the acceptance step. Those extensions are described in

Subsection 4.1.2 and 5.3.5.

Accept classic. In this acceptance step, ρt is calculated as in Equation 2.1 and x∗
t+1

is either x∗
t
+ st

or x∗
t
. The candidate point is accepted if it yields any improvement over the current point.

29

3.2.8 Trustregion radius adjustment.

We base the implementation of the trust-region radius adjustment step on the radius adjustment

rules of Wild (2017), which is given by

∆
region

t+1 =









min{γinc∆
region
t ,∆max} if ρt ≥ ρ

inc and st ≥ cls∆
region
t

γdec∆t if ρt < ρ
dec

∆t otherwise

(3.10)

As we can see from Equation 3.10, the updates to the trust-region radius depend on model perfor-

mance, measured by ρt, and the length of the step st. Only if both are large, the trust-region radius

is increased by a factor γinc. Here, a high ρt indicates that the model is good enough that we can

afford a larger radius. A large step length indicates that the solution lies outside the current trust-

region, and we would actually benefit from a larger trust-region. What counts as a large enough ρt

is determined by a constant cutoff ρinc. As in POUNDERS (Wild, 2017), we bound the trust-region

radius by a constant ∆max.

On the other hand, if the ratio of actual to expected improvement falls below a threshold ρdec ≤ ρinc,

we shrink the trust-region radius by a factor γdec ≤ γinc.

For the values of ρt between cut-off values ρdec and ρinc, we leave the trust-region radius unchanged.

Similarly, if ρt > ρ
inc but the step-length is small st < cls∆

region
t , we also leave the trust-region radius

unchanged.

In tranquilo, we use the values ρdec
= ρinc

= 0.1 for the cut-offs on the ratio ρt. For the expansion

and shrinkage factors of the trust-region radius, we use the values γinc
= 2 and γ= 0.5. To identify

large candidate steps, we use the value of cls
= 0.5 for the relative step length. Finally, for ∆max,

we use the value of 106. All of these values are taken from the TAO implementation of POUNDERS

(Dener et al., 2021).

3.2.9 Convergence and stopping criteria.

We use common convergence criteria in Line 35 of Algorithm 1 based either on absolute or relative

improvements in the objective function, absolute or relative step sizes, or the linear terms of the

scalar surrogate model. Specifically, the algorithm stops at iteration t if Converged(Ht, Ms
t
, x∗

t
, x∗

t+1
)

in Line 35 evaluates to True. This happens if any of the following conditions are satisfied

30

|f(x∗
t
) − f(x∗

t+1
)| ≤ εfatol

|f(x∗
t
) − f(x∗

t+1
)|/|f(x∗

t
)| ≤ εfrtol

∥gM
t

(x∗
t+1

)∥ ≤ εgatol

∥gM
t

(x∗
t+1

)∥/|f(x∗
t+1

)| ≤ εgrtol

∥x∗
t+1
− x∗

t
∥ ≤ εxatol

∥x∗
t+1
− x∗

t
∥/∥x∗

t
∥ ≤ εxrtol

These convergence criteria are taken from the POUNDERS implementation, described in Dener et al.

(2021). Note that gM
t

is the gradient of the scalar model Ms
t
, as defined in Equation 3.7.

3.3 Benchmarking

The ideal way to evaluate the performance of an optimization algorithm would be to run it on a

large set of real-world problems and compare its performance to other optimizers. However, this

approach is not feasible for several reasons. First, for interesting real-world problems, the exact

solution is typically unknown. Second, the real-world problems we are interested in are too costly

to be used in a benchmark. Third, there are no standard sets of real-world problems, so our results

would not be comparable to other results in the literature.

For these reasons, it is common to evaluate optimization algorithms on standardized sets of bench-

mark problems with known solutions. These problems are designed to be representative of real-

world problems and to include features that are challenging for optimization algorithms. However,

they are fast to evaluate, so the benchmark can be run in minutes or hours instead of days or weeks.

A complete benchmark is defined in terms of a set of problems, a set of solvers, and a convergence

test (Dolan and Morę (2002)).

Throughout this paper, we use modified versions of the Morę-Wild benchmark set (Morę and Wild

(2009)) to evaluate the performance of our algorithms. This benchmark set contains 53 non-linear

least squares problems with known solutions. These test cases are constructed based on 22 func-

tions originally derived from the CUTEr Problems (Gould, Orban, and Toint (2003)). The objective

functions are twice continuously differentiable, but we do not make use of the derivatives in our

benchmarks. The parameter dimensions p vary between 2 and 12, where the median dimension is

7. The dimension of the least squares residuals k is between 2 and 65. Only three of the 53 prob-

lems have local minima that are not global minima. These are based on the Freudenstein and Roth

function and the Brown almost-linear function. The remaining 50 problems each have a unique

minimum.

The Morę-Wild benchmark set is standard in the recent literature on derivative-free optimization.

Among others, it has been used to benchmark POUNDERS (Wild (2017)), DFOGN (Cartis and

Roberts (2019)), and DFOLS (Cartis, Fiala, et al. (2019)).

31

The benchmark set plays an important role not only in measuring the final performance of the

algorithm but also in tuning the algorithm’s hyperparameters during development. In order to

avoid overfitting the tuning parameters to the benchmark set and to improve the robustness of

our conclusions, we extend the benchmark set with randomly generated problems. For each of the

53 problems, we generate four additional problems by drawing a new vector of start parameters

in the neighborhood of the original start parameters. The neighborhood is defined by multiplying

the original start parameters with 0.9 or 1.1. In the case of parameter values smaller than 1, we

switch to additive perturbations by adding and subtracting 0.1. The new start parameters are drawn

uniformly from the neighborhood. If the objective function is undefined at the new starting values,

we tighten the neighborhood until we find a valid starting point.

To measure the performance of different algorithms, we need a convergence test. Importantly, a

convergence test is only based on the history of function values of each optimizer and the known

solution of the problem. It is independent of the algorithm’s internal convergence criteria. We use

the following convergence test, as proposed by Morę and Wild (Morę and Wild (2009)), to test

whether algorithm a solved problem i

fi(x
∗
ia

) − f ∗
i

fi(xi0) − f ∗
i

≤ τ (3.11)

where τ > 0 is a tolerance level, xi0 is the vector of start parameters, f ∗
i
is the known minimum of

the objective function, and fi(x
∗
ia

) is the lowest objective function value obtained by the optimizer.

Note that x∗
ij
can be any point that has been tried out by algorithm j. For noise-free problems, we

set τ= 10−3.

Once we have the convergence test to decide whether an algorithm solved a problem, we need

a way to measure the computational budget the algorithm needed until it found a solution. The

computational budget can also be interpreted as the runtime until solution. Since we are interested

in applications where the objective function is expensive, meaning that, by assumption, the algo-

rithm will spent most of its runtime on evaluating the objective function, we use the number of

function evaluations as the measure of the computational budget. Using walltime instead would

mostly measure how much work is done inside the algorithm itself because all objective functions

in the benchmark set are very fast to evaluate. Using the number of function evaluation is common

practice in the literature on derivative-free least-squares optimization (see for example Wild (2017)

and Cartis, Fiala, et al. (2019)).

The standard way of visualizing the performance of a set of solvers on a benchmark set are perfor-

mance profiles (Morę and Wild (2009)), which are also known as profile plots. Performance profiles

show the share of solved problems on the y-axis. On the x-axis, they show a normalized measure

of the computational budget. Normalized here means that the number of function evaluations each

algorithm needed to solve a given problem is divided by the runtime that the fastest algorithm

needed to solve the problem. This makes performance profiles useful even for benchmark sets that

contain problems with very different difficulty levels. Without normalization, the performance pro-

file would be dominated by the hardest problems. The x-axis of performance profiles starts at 1.

32

The y-value each algorithm achieves at 1 is the share of problems for which this algorithm was the

fastest.

Figure 2 shows the performance profiles for the least-squares version of tranquilo and compares it

against DFO-LS and POUNDERS.

5 10 15 20 25
Computational budget (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Sh
ar

e
of

 s
ol

ve
d

pr
ob

le
m

s

DFO-LS Tranquilo-LS Pounders

Figure 2. Comparison of least-squares optimizers on an augmented Moré-Wild benchmark set. The y-axis shows
the share of problems solved. The x-axis shows the normalized computational budget. The computational budget
is measured in terms of objective function evaluations needed by the optimizers. Normalized means that the
number of function evaluations each algorithm needed to solve a given problem is divided by the number of
function evaluations the fastest algorithm needed to solve that problem.

Both DFO-LS and tranquilo solve the same number of problems. In most problems, DFO-LS is slightly

faster than tranquilo. POUNDERS is slower than the other two on most problems. Moreover, it fails

to solve some problems to the required level of precision. This is in line with results by Cartis, Fiala,

et al. (2019) who suspect that the lack of precision is related to the minimal trust-region radius

POUNDERS uses.

Figure 3 shows the performance profiles for the scalar version of tranquilo and compares its perfor-

mance against BOBYQA implementations from NlOpt and the Numerical Algorithms Group (NAG)

as well as Nelder-Mead implementations from NlOpt and SciPy.

33

5 10 15 20 25
Computational budget (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Sh
ar

e
of

 s
ol

ve
d

pr
ob

le
m

s

Tranquilo-Scalar
NlOpt-Nelder-Mead

NAG-BOBYQA
SciPy-Nelder-Mead

NlOpt-BOBYQA

Figure 3. Comparison of scalar optimizers on an augmented Moré-Wild benchmark set. The y-axis shows the
share of problems solved. The x-axis shows the normalized computational budget. The computational budget
is measured in terms of objective function evaluations needed by the optimizers. Normalized means that the
number of function evaluations each algorithm needed to solve a given problem is divided by the number of
function evaluations the fastest algorithm needed to solve that problem.

The fastest and most robust optimizer is the NlOpt implementation of BOBYQA. The slowest and

least robust optimizer is the SciPy implementation of Nelder-Mead. All other algorithms solve slightly

fewer problems than the NlOpt implementation of BOBYQA. Among them, tranquilo is the fastest,

followed by the NAG implementation of BOBYQA and the NlOpt implementation of Nelder-Mead.

Generally, the derivative free trust-region optimizers seem faster and more robust than the direct

search methods.

Figure 4 combines the two cases and compares scalar and least-squares algorithm in a single plot.

The main purpose of this plot is to show that the least-squares algorithms indeed outperform similar

scalar algorithms when applicable.

34

10 20 30 40 50
Computational budget (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Sh
ar

e
of

 s
ol

ve
d

pr
ob

le
m

s

DFO-LS
Tranquilo-Scalar

Tranquilo-LS
NlOpt-BOBYQA

Pounders
NlOpt-Nelder-Mead

Figure 4. Comparison of scalar and least-squares optimizers on an augmented Moré-Wild benchmark set. The y-axis
shows the share of problems solved. The x-axis shows the normalized computational budget. The computational
budget is measured in terms of objective function evaluations needed by the optimizers. Normalized means that
the number of function evaluations each algorithm needed to solve a given problem is divided by the number
of function evaluations the fastest algorithm needed to solve that problem.

The combined plot shows a clear separation of several groups of algorithms: Least-squares al-

gorithms that use linear residual models and aggregate them into quadratic scalar models are

clearly faster than all other algorithms. POUNDERS, as the only least-squares algorithm that uses a

quadratic residual model, is faster than scalar optimizers but cannot solve all problems to the re-

quired level of precision. The scalar optimizers can again be split into two groups: The two BOBYQA

implementations (i.e., model-based trust-region optimizers) are faster than the NlOpt implementa-

tion of Nelder-Mead (i.e., a direct search method). The SciPy implementation of Nelder-Mead is

omitted because it is much slower than the other algorithms (see Figure 3).

35

4 Parallelization

Tranquilo is designed for objective functions f that cannot easily be parallelized. This means that if

parallel hardware is available, the parallelization should be done on the algorithm level.

When designing a parallel algorithm, the focus shifts from minimizing the number of objective

function evaluations to minimizing the number of batches, where each batch consists of nbatch

objective function evaluations that can be done in parallel.

For instance, assume that nbatch is equal to four and we require seven function evaluations. This

example is depicted in the following illustration:

�
�

f(x1), f(x2), f(x3), f(x4)
︸ ︷︷ ︸

Batch 1

�

,
�

f(x5), f(x6), f(x7)
︸ ︷︷ ︸

Batch 2

�
�

If all seven function evaluations are independent, we can perform them in two batches. Further,

the second batch is not full. If we do not derive utility from idle resources, an additional evaluation

in the second batch would come as a “free lunch.” The goal of our parallelization approaches in

tranquilo is therefore to do as many function evaluations as possible in parallel and to find good

ways to use up any “free” evaluations.

In most cases, the batch size (nbatch) is equal to the number of cores that are available to the

optimizer.

The basic version of tranquilo as described in Algorithm 1 already creates some situations in which

the objective function needs to be evaluated on multiple points and there are no dependencies

between these evaluations: In the first iteration, the objective function is evaluated at every point

in the initial sample which contains at least p+ 1 points. In all subsequent iterations, the objective

function is evaluated at all newly sampled points. Of course, the parallel version of tranquilo exploits

these situations. However, in most of these cases, the number of function evaluations required are

not multiples of the batch size and therefore, “free” evaluations are left on the table. Moreover, there

are several situations in which just one function evaluation is required. This is for example the case

when points are replaced to avoid stagnation (Line 22 of Algorithm 1) and in the acceptance step.

The parallel version of tranquilo exploits most of these situations and fills up the “free” function

evaluations with different strategies.

4.1 Adding parallelization to tranquilo

Almost all of the changes required to add parallelization to tranquilo are done by switching out

components. The only exception is the sampling step in each iteration. Here, instead of passing

ntarget as target sample-size into the samplers (see Line 13), we pass in a target sample size that

makes sure that the number of newly sampled points is a multiple of nbatch. Moreover, the acceptance

step now depends on the batch size.

36

4.1.1 Filtering. As the usage of these “free” evaluations potentially leads to many more available

points in the history, we observed that using no filter leads to worse benchmark results compared

to using the Drop excess filter. The Drop excess filter is described in Subsection 3.2.1 and activated

by default when nbatch > 1. In the parallel benchmarks we set nfilter
= 3ntarget; see Figure 7 for

reference.

4.1.2 Acceptance Step.

During the acceptance step, we determine the new candidate point x∗
t+1

and a measure of model

quality ρt. A typical serial acceptance step requires a single function evaluation at the candidate

point x∗
t
+ st (see Subsection 3.2.7). In the parallel case, this leaves us with many “free” evaluations,

which we can use to improve efficiency.

In the parallel acceptance step, we invest one evaluation in the candidate point, which leaves us

with nbatch − 1 available evaluations to fill up the batch. We use these in two ways. First, we check

whether the candidate point lies at the trust-region border. If so, we interpret it as a signal that the

direction of the step is good, but the step size might be too small. We thus sample points on the

line that goes through the current best point and the candidate point. We call this a line search.

Second, we try to predict at which points the objective function needs to be evaluated in the next

iteration and perform the evaluations. We call this speculative sampling.

Line Search. Consider the illustration in Figure 5. For the line search, we sample points on a

line starting at the current best point (the center point of the circle in the illustration) and going

through the candidate point (the red point in the illustration). Formally, the line is given by

Line(α) = x∗
t
+ α st

where Line(1) equals the candidate point. For values α < 1, Line(α) represents points inside the

trust-region, while for α > 1, Line(α) represents points outside of the trust-region. Since we believe

the step was too small, we want to sample outside of the trust-region. In one iteration, the trust-

region radius can increase by a maximum of 2. To simulate a continuous maximal increase of the

radius, we sample a maximum of three points on the line with α= 2, 4,8, respectively, depending

on the number of “free” evaluations (the blue points in the illustration).

If the search direction of the candidate step is good, a line search can dramatically increase the

speed of the algorithm, allowing us to go as far as 23 times the initial trust-region radius, which

translates to jumping ahead three iterations of the algorithm. If any of the line search points is

better than the current best point, we accept it.

37

Figure 5. Illustration of the line search. The candidate point is shown in red. The black dot shows the current
center. The blue dots show the line search points. The line search points are all on a line that goes through the
current best point and the candidate point. The spacing is at 2, 4, and 8 times the current current trust-region
radius.

Speculative Sampling. Consider the illustration in Figure 6. For the speculative sampling, we

assume that the candidate point will be accepted (the red point in the illustration). In this case,

we can use any “free” evaluations to sample points around the candidate, as these points will

be required in the next iteration. We do not know, however, how the radius will change. After

empirical testing, we found that setting the radius of the region from which we draw the speculative

sampling to 0.75 times the current trust-region radius results in the best benchmark performance.

The speculative sample points are shown in blue in the illustration.

Figure 6. Illustration of the speculative sampling. The candidate point is shown in red. The black dots show a
hypothetical sample of existing points that would be available in the next iteration if the candidate point was
accepted. The blue dots show the speculative sample. The points are sampled in the same way they would be
sampled in the next iteration if the candidate point was accepted and the radius was 0.75 times the current
trust-region radius.

Implementation of the Parallel Acceptance Step. If enough “free” function evaluations are avail-

able, we combine both, the line search and speculative sampling in our parallel acceptance step.

For an efficient combination, we first calculate the line-search points and already take them into ac-

count as existing points when creating the speculative sampling. Of course, the function evaluations

38

on both, the line-search points and the speculative sample are done in parallel, together with the

function evaluation at the candidate point. The parallel acceptance step is shown in Algorithm 2.

Algorithm 2: Parallel acceptance step

Input: The current parameter vector x∗
t
, the candidate step st, the expected improvement

∆Ms
t
, the effective trust-region Rt, the history Ht, and the batch size nbatch.

1 if nbatch
= 1 then

2 return AcceptClassic(x∗
t
, st,∆Ms

t
)

3 else

4 end

5 if x∗
t
+ st is on the border of Rt then

6 Calculate the number of available line search points: nls
=min{nbatch − 1,3}

7 Sample nls points on a line: X ls
t
= {x∗

t
+ 2i st : i= 1, . . . , nls}

8 else

9 nls
= 0 and X ls

t
= {}

10 end

11 Calculate number of speculative sampling points: nspeculative
= nbatch − 1− nls

12 Define a speculative sampling region: R
speculative
t with the same center as Rt, and a radius of

0.75 times that of Rt

13 Scan the history for existing points X
existing
t = {x ∈Ht : x ∈ R

speculative
t }

14 Sample speculative points: X
speculative
t = Sample(X ls

t
∪X existing, R

speculative
t , nspeculative)

15 Compute ρt = (f(x∗
t
)− f(x∗

t
+ st))/∆Ms

t

16 Compute x∗
t+1
= argmin{f(x) : x ∈ {x∗

t
+ st}∪X

ls
t
∪X

speculative
t }

17 return (x∗
t+1

,ρt)

4.2 Benchmarking

The performance-profiles have to be adjusted for the parallel case, as the number of objective

evaluations does not provide a good measure of runtime anymore. Instead, we use the number of

batch evaluations to measure the computational budget. This reflects our assumption that in the

parallel case the evaluation of a batch takes as much time as the evaluation at a single point.

Figure 7 shows the benchmark results of our parallel algorithm on the Morę and Wild (2009)

benchmark set. We compare the parallel least-squares version of tranquilo, for batch sizes 2, 4, and

8, to the serial version of tranquilo and the DF-OLS algorithm.

39

1 2 3 4 5 6
Computational budget (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Sh
ar

e
of

 s
ol

ve
d

pr
ob

le
m

s

Tranquilo-LS (2 cores)
DFO-LS

Tranquilo-LS (4 cores)
Tranquilo-LS

Tranquilo-LS (8 cores)

Figure 7. Comparison of parallel and serial least-squares optimizers on an augmented Moré-Wild benchmark
set. The y-axis shows the share of problems solved. The x-axis shows the normalized computational budget. The
computational budget is measured in terms of batches of objective function evaluations needed by the optimizers.
Normalized means that the number of batches each algorithm needed to solve a given problem is divided by the
number of batches the fastest algorithm needed to solve that problem.

As in Subsection 3.3, the y-axis denotes the share of solved problems, while the x-axis denotes

the multiple of the minimal number of batches needed to solve the problem. This implies that the

intercept can be interpreted as the share of problems that the respective algorithm was able to solve

the fastest.

The serial version of tranquilo (lightest blue) is slower than the DF-OLS algorithm (green), as was

also seen in the least-square benchmark (see Figure 2). The parallel versions of tranquilo, however,

dominate the DF-OLS algorithm for given batch sizes. In particular, when using a batch size of 8,

tranquilo is the fastest algorithm for roughly 85% of the problems. In some sense, this comes as

no surprise, as there are multiple effects playing a role when using a larger batch size. First, the

sample sizes will be larger, and second, we can fully utilize the combination of line search and

speculative sampling.

40

5 Noisy optimization

As described in Section 2.2, the main challenge for trust-region optimizers in the case of noisy

objective functions is to determine how often the objective function should be evaluated at each

point. Multiple evaluations at the same points are necessary in order to average out the noise to a

level that allows the optimizer to make progress. DFO-LS places this burden on the user. ASTRO-DF

determines the sample size adaptively by adding evaluations until an estimated standard error falls

under a fixed factor of the squared trust-region radius.

Tranquilo takes an entirely different approach that recognizes that the effects of noise are similar

to the effect of approximation error in the surrogate model –which is handled very well by trust-

region optimizers. Tranquilo therefore introduces a new measure of model quality, ρnoise, that can

be used to adjust the number of function evaluations used to construct surrogate models. Moreover,

we employ statistical power analysis to determine the number of function evaluations required to

make an acceptance decision.

The structure of this section is as follows: Subsection 5.1 discusses the effects of setting sub-optimal

sample sizes and why determining optimal sample sizes ex-ante is hard. Subsection 5.3 describes

the changes to the core algorithm framework that are necessary to make tranquilo robust to noise,

as well as the implementation of new components for noisy optimization. Subsection 5.4 compares

the noise-robust version of tranquilo against different configurations of DFO-LS on a noisy version

of the Morę-Wild benchmark set.

5.1 The importance of sample sizes

To make things precise, we use the following notation: mmodel
t

denotes the number of repeated

function evaluations at each model point in iteration t. m
accept

t1 and m
accept

t2 are the number of repeated

function evaluations at the current x and the candidate point in the acceptance step of iteration t.

For convenience, most algorithms for noisy optimization set all three numbers equal, even though

they are conceptually quite different. In tranquilo, we therefore keep the distinction, and since each

number of repetitions is set adaptively, they do not generally coincide. Although the number of

repetitions (symbolized by the letter m) will often be called sample size in the following sections, it

is not to be confused with the sample size as used in the earlier sections of this paper (symbolized

by the letter n), which measures the number of distinct x-vectors used for building a surrogate

model. If the distinction is not clear from the context, we will use the term number of repetitions.

If mmodel
t

is too small, the surrogate model will be estimated imprecisely, even if the trust-region

radius is chosen appropriately and a quadratic model can approximate the true objective function

well. This means that the candidate points obtained from minimizing the surrogate model have

low quality, and therefore, the measure of model quality ρ will be low in many iterations. If no

further measures are taken, the radius is decreased until it collapses to zero, and the algorithm

stagnates. On the other hand, if the sample size is too large, the algorithm will become prohibitively

expensive.

41

A similar effect occurs in the acceptance step: If the sample size is too small, the acceptance decision

will be based on noisy information. It becomes possible that candidates that are worse than the

current point in expectation are accepted due to lucky draws and, conversely, it can happen that

very good candidates are rejected. Moreover, ρ becomes noisy and the radius adjustment erratic.

To talk about noisy and noise-free function evaluations and residuals, respectively, we use the

following conventions: f(x,ξj) is the j-th noisy realization of the objective function at x and Ef(x,ξ)

is the expectation of the objective function at x. F
model

t
is used to denote the average of all function

evaluations at the model points. Analogous notation is used for the residual function r.

Figure 8 illustrates why it is hard to pick optimal sample sizes. We focus on mmodel, but very similar

arguments apply to maccept. The left and right plot show the same objective function. The vertical

lines mark trust-regions bounds. In both plots, the trust-region radius is the same, but the centers

differ. In each trust-region, we plot a D-optimal sample (x1, x2, x3). At each point, we observe one

noisy function evaluation f(x1,ξ1), f(x2,ξ1) and f(x3,ξ1). The realizations of the random term ξ

are the same in both plots.

In the left plot, the trust-region is in a steep area of the objective function. While the effect of

noise makes the approximation quality of the surrogate model worse compared to a noise-free case,

the differences in observed function evaluations f is dominated by differences in Ef . Therefore, the

surrogate model still points into the right direction.

In the right plot, the trust-region is in a flat area of the objective function. Therefore, the differences

in observed function evaluations f are dominated by differences in the realized noise and do not

reflect differences in Ef . As a result, the surrogate model points in the wrong direction.

−2 −1 0 1
−5

0

5

10

15

20

25

(a) Noise with a steep function

−2 −1 0 1
−5

0

5

10

15

20

25

(b) Noise with a ŕat function

Figure 8. Effect of noise on a surrogate model

This simple illustration shows that setting the sample size based on the variance of the error term

and the trust-region radius alone is not sufficient to ensure that sample sizes are close to optimal.

Since objective functions are typically steeper in the beginning and flatter as we get closer to the

42

optimum, the optimal sample size will typically be increasing in the iteration. However, it is very

hard to pick an optimal schedule for this. Therefore, approaches that require the user to set a

sequence of sample sizes as a function of the iteration counter require a lot of trial and error in

practice. This motivates us to develop a fully adaptive approach to selecting the sample sizes in

tranquilo.

5.2 Core ideas for noise handling

5.2.1 Determining mmodel.

Our approach is based on the observation that the effects of noise on model quality are similar to

the effects of approximation error and can, therefore, be handled in a similar way.

Approximation error is introduced by the fact that a quadratic surrogate model is not able to

capture the shape of the objective function exactly. The tuning parameter to govern the size of

the approximation error is the trust-region radius. A larger radius means a larger approximation

error. Talyor-like error bounds ensure that by making the radius small enough, the approximation

error can be made arbitrarily small. Of course, a small radius comes with the cost of smaller step

sizes and slower progress. Therefore, it is not a goal to make the approximation error as small as

possible but to make the radius as large as possible while ensuring that the model is good enough

to produce suitable candidate points.

To achieve this balance, trust-region optimizers use ρ, the ratio of actual to predicted improvement,

as a measure of model quality. If the actual improvement is larger or similar to the predicted

improvement, the model was good enough to find suitable candidates, and, therefore, the radius

can be increased or kept constant. Otherwise, the radius can be decreased.

Random error is introduced by the fact that observations of the objective function are noisy. The

tuning parameter to govern the size of the random error is the number of repeated function evalua-

tions. Under regularity conditions, a law of large numbers ensures that making mmodel large enough

will make the random error arbitrarily small. It is worth emphasizing that making the error small

comes at the cost of more function evaluations and it is, therefore, not a goal to make the error as

small as possible but to make it just small enough to ensure that the model is good enough to find

suitable candidates.

The presence of random error does, of course, not alleviate the approximation error. If ρ is calcu-

lated as usual it reflects both kinds of errors:

ρ =
f(x∗,ξ) − f(x∗ + s,ξ)

Ms(x∗) −Ms(x∗ + s)
=

Actual Improvement

Expected Improvement

To obtain a measure that mostly reflects approximation error, we could, of course, replace the

noisy function evaluations with averages over multiple repetitions. However, this again requires

43

determining a sample size. We, therefore, first focus on finding a measure ρnoise that only reflects

the effect of random error on the model’s ability to produce good candidate points.

We start by noting that the denominator of ρ is made up of quadratic models and that any alter-

native measure that puts a similar focus on the model’s ability to produce good candidate points

will likely have quadratic models in the denominator as well. If ρnoise should not be affected by

approximation error, we have to replace all occurrences of the objective function f in the numerator

with a quadratic model that approximates f . Of course, the best quadratic approximation of f we

have available is the surrogate model Ms.

We therefore construct ρnoise with a simulation approach in which we use the current surrogate

models Mv and Ms as a stand-in for the residual and objective functions. Using Mv we can create

a sample of “true” residuals for each point in the current set of model points X model
t

. Using an

estimate of the noise variance, we can then simulate noisy function evaluations. On the simulated

function evaluations, we can fit simulated vector models Mv,sim, aggregate them into simulated

scalar models Ms,sim, and solve the simulated trust-region subproblem. This yields a candidate step

ssim. Given these ingredients, we can calculated ρnoise as follows:

ρnoise
=

Ms(x∗) −Ms(x∗ + ssim)

Ms,sim(x∗) −Ms,sim(x∗ + ssim)
(5.1)

All steps in the calculation of the simulated candidate step ssim completely mirror the steps done

to calculate the normal candidate step s in tranquilo. The only difference is that the true objective

function f is replaced by the surrogate model Ms and that noisy function evaluations are replaced by

their simulated counterparts. This means that ρnoise is a pure measure of the effects of random error

on the model’s ability to produce good candidate points. As both the numerator and denominator

are made up of quadratic models, it does not contain any approximation error.

In our practical implementation, we repeat the simulation b times to create a vector of ρnoise values.

This vector can then be used to adjust mmodel
t

.

5.2.2 Determining maccept.

In the absence of noise, accepting or rejecting a candidate step s boils down to the simple question

of whether f(x∗
t
+ s) is smaller than f(x∗

t
). In the presence of noise, this turns into a question of

expected values: Is Ef(x∗
t
+ s,ξ) smaller than Ef(x∗

t
,ξ)? This is a hypothesis test.

Empirical economists who collect data frequently have to make decisions about sample sizes. Col-

lecting data is expensive, but collecting too little data might render non-zero effects statistically

insignificant. The method of choice for determining sample sizes to alleviate this problem is power

analysis.

For simplicity, we assume that our test statistic of interest –the difference in means between function

evaluations at the current and candidate point– is normally distributed. This can either be seen as

44

a finite sample assumption or justified with asymptotic arguments. Given this assumption, we need

to fix three ingredients for a power analysis: First, the significance level of the hypothesis test that

is going to be performed. Second, the desired power for detecting an effect. Third, the minimal

detectable effect size.

We treat the first two as tuning parameters of the algorithm and set them to maximize performance

in benchmarks. For the minimal detectable effect size, this cannot be done because it depends on

the scale of the objective function. However, the solution of the trust-region subproblem generates an

expected improvement as a by-product. We use this expected improvement as a minimal detectable

effect size.

The results of the power analysis, together with the existing number of function evaluations at x∗
t

and x∗
t
+ s, can then be used to calculate optimal values for m

accept

t1 and m
accept

t2 that minimize the

number of additionally required function evaluations while achieving the desired power. In our prac-

tical implementation we also keep the number of function evaluations used in the acceptance step

between a lower and upper bound that can be set by the user. The details of this implementation

are described in Subsection 5.3.5.

5.3 Adding noise handling to tranquilo

5.3.1 Noisy-trustregion-framework.

In this section, we describe the changes to the core algorithm framework as depicted in Algo-

rithm 1 that are necessary to make tranquilo robust to noise. The modified algorithm is shown in

Algorithm 3. The changes are highlighted in green.

The noisy version of tranquilo contains two additional inputs: m0, which determines how often the

objective function is evaluated at the start parameters, and mmodel
0

, which is the initial value for the

adaptively chosen number of repeated function evaluations. m0 needs to be larger or equal to two,

such that we cannot just get an estimate of the function value at the start parameters but also an

estimate of the noise variance. In our benchmarks, we set m0 to 5 and mmodel
0

to 1.

The first thing that changes in the algorithm is that the History Ht is now initialized with a set of

function evaluations at the start parameters instead of just one function evaluation. In general, each

parameter vector in the history can now be associated with several observed function evaluations,

and the number of function evaluations varies over time. As a consequence, Fmodel
t

and Rmodel
t

are now replaced by F
model

t
and R

model

t
which contain averages over multiple function or residual

evaluations at each model point. Similarly, the initial vector model Mv
0
is now initialized with the

average of the function evaluations as intercept terms. All other coefficients stay at zero.

The main loop of tranquilo proceeds as before through the process of scanning the history, filtering

existing points, sampling new points, fitting and aggregating vector models, and solving the trust-

region subproblem. The two while loops for stagnation handling are also unchanged.

45

Algorithm 3: Tranquilo algorithm (noisy case)

Input: Starting point x∗
0
, initial trust-region radius ∆

region

0 , target sample size ntarget, search factor γsearch,

minimum step size smin, sample increment n
drop
stag , maximum number of iterations tmax, maximum

number of trials to avoid stagnation nmax
stag

, lower and upper bounds l and u, the number of function

evaluations at the start parameters m0, and the initial value for the number of repeated function

evaluations mmodel
0

.

1 Initialize history with H0 =

��

x∗
0
, {rj(x∗

0
) : j= 1, ..., m0}

�	

2 Initialize vector model Mv
0
with intercept terms at 1

m0

∑m0

j=1
rj(x∗

0
) and all other coefficients set to zero

3 for t=0,1,.. .,tmax do

4 Calculate the search radius ∆search
t

= γsearch∆
region
t

5 Calculate the effective trust-region Rt based on x∗
t
, ∆

region
t , l and u

6 Scan the history for existing points X
existing
t = {x ∈Ht : ∥x∗

t
− x∥ ≤∆search

t
}

7 Filter existing points: X
filtered
t = Filter(X

existing
t)

8 if |X
filtered
t |< ntarget then

9 Sample ntarget − |X
filtered
t | new points in the trust-region: X new

t
= Sample(X

filtered
t , Rt, ntarget)

10 X model
t

=X
filtered
t ∪X new

t

11 else

12 X model
t

=X
filtered
t

13 end

14 Build a vector model Mv
t
= Fit(X model

t
,R

model

t
, Mv

t−1
, Rt)

15 Aggregate the vector model: Ms
t
= Aggregate(Mv

t
)

16 Solve the surrogate problem: st = Subsolve(Ms
t
, Rt)

17 while |X model
t
|> ntarget and ∥st∥ ≤ smin do

18 Reduce the sample: X reduced
t

= Drop(X model
t

, n
drop
stage,∆

region
t) and set X model

t
=X reduced

t

19 Build a vector model Mv
t
= Fit(X model

t
,R

model

t
, Mv

t−1
, Rt)

20 Aggregate the vector model: Ms
t
= Aggregate(Mv

t
)

21 Solve the surrogate problem: st = Subsolve(Ms
t
, Rt)

22 end

23 nstag = 0

24 while ∥st∥ ≤ smin and nstag ≤ nmax
stag

do

25 Reduce the sample: X reduced
t

= Drop(X model
t

, n
drop
stag ,∆

region
t)

26 Sample new points in the trust-region: X new
t
= Sample(X reduced

t
, Rt, ntarget) and set

X model
t

=X reduced
t

∪X new
t

27 Build a vector model Mv
t
= Fit(X model

t
,R

model

t
, Mv

t−1
, Rt)

28 Aggregate the vector model: Ms
t
= Aggregate(Mv

t
)

29 Solve the surrogate problem: st = Subsolve(Ms
t
, Rt)

30 nstag = nstag + 1

31 end

32 Estimate the noise variance of the objective and residual functions σt,Σt = Varest(Ht, Rt)

33 Calculate ∆Ms
t
=Ms

t
(x∗

t
)−Ms

t
(x∗

t
+ st)

34 Accept or reject the step and calculate a measure of progress (x∗
t+1

,ρt)= Accept(x∗
t
, st,∆Ms

t
,σt)

35 Simulate the effect of noise on ρ: ρnoise
= {ρnoise

1
, . . .ρnoise

b
}= SimNoise(X model,Rmodel, Mv

t−1
, Mv

t
, Rt,Σt)

36 Adjust the number of repeated function evaluations: mmodel
t+1

= AdjustRep(ρnoise,ρt, mmodel
t

)

37 Adjust the trust-region radius: ∆
region

t+1 = AdjustRadius(∆
region
t ,ρt, st, mmodel

t
, mmodel

t+1
)

38 if x∗
t+1
̸= x∗

t
and Converged(Ht, Ms

t
, x∗

t
, x∗

t+1
) then

39 break

40 end

41 end

46

The major changes appear when the original algorithm would have proceeded with the acceptance

step. In the noisy case, we first estimate the variance of the noise term in the objective function

(σt) as well as the variance-covariance matrix of the noise terms in the residual function (Σt). The

actual implementation of the noise estimation is again a replaceable component, which is further

described in Subsection 5.3.2.

While the expected improvement is calculated as before, the acceptance step now takes the esti-

mated noise variance σt into account. Implementations of noise robust acceptance steps are de-

scribed in Subsection 5.3.5.

After the acceptance step, two new steps are introduced. The first is to simulate our noisy measure

of model quality ρnoise, and the second is to adjust the number of repeated function evaluations

mmodel
t

based on the simulated values. Both are replaceable components, which are further described

in Subsection 5.3.3 and Subsection 5.3.4. Finally, the trust-region radius is adjusted as before. The

only difference is that it now takes two additional arguments mmodel
t

and mmodel
t+1

. This can be used

to skip radius decreases in situations where the number of repetitions was increased.

5.3.2 Estimation of noise variance.

The literature on noisy optimization generally distinguishes between two types of noise: Additive

noise is a noise term with fixed variance over the entire parameter space that is added to the

objective function. Multiplicative noise is a noise term that enters the objective function as a mul-

tiplicative factor, and therefore, the effective variance of the noise varies with the value of the

objective function. In least-squares optimization, the noise term is added to the residual function,

and therefore, even additive noise leads to a noise term whose variance varies over the parameter

space.

In tranquilo, we treat the noise term as constant over the current trust-region. This can be seen as

a locally constant approximation to more general noise terms. We do not make any assumptions

about how the noise term varies between trust-regions. We distinguish between Σt, the variance-

covariance matrix of the noise terms in the residual function, and σt, the variance of the noise term

in the objective function.

While we implement the noise estimation as a replaceable component, we provide just one imple-

mentation: We first calculate a search radius ∆varest
t

= γvarest∆
region
t and scan the history for function

evaluations within this radius of the current point. Out of these points, we only keep the ones at

which the objective function was evaluated at least mvarest times. Next, we de-mean the function and

residual evaluations at each point. Finally, we calculate σt as the variance of the de-meaned function

evaluations and Σt as the variance-covariance matrix of the de-meaned residual evaluations.

To make sure that at least one point exists in the current trust-region at which the function has been

evaluated often enough to get a variance estimate, the minimal number of repeated function eval-

uations in the acceptance step m
accept

min
needs to be set larger or equal to mvarest

min
. In our benchmarks,

we set mvarest
min

= 3 and m
accept

min
= 4.

47

5.3.3 Simulating ρnoise.

The goal of this step is to simulate multiple instances of measures of model quality ρnoise
=

{ρnoise
1

, . . . ,ρnoise
b
} that can be used to adjust mmodel

t
. In principle, there are many possibilities for

doing this, which can range from heuristics to computationally costly simulation approaches. Cur-

rently, we implement just one approach, which is based on simulations.

The approach for generating ρnoise is described in Algorithm 4. The inputs of the algorithm are

the current set of model points X model
t

, the current and previous vector models Mv
t−1

and Mv
t
, the

current effective trust-region Rt, the estimated variance-covariance matrix of the noise terms in the

residual function Σt, the current parameter vector x∗
t
, the number of simulations b, and the number

of repeated function evaluations mmodel
t

. The first few inputs provide almost all ingredients for a

standard fitting step in tranquilo. The only thing that is missing are the residuals at the model

points Rmodel
t

, because those will be replaced by simulated counterparts.

The simulation starts by calculating the “true” and noise-free residuals at the model points. They

are denoted by Rmodel
sim,true

and calculated by evaluating the current vector model Mv
t
at the model

points. These “true” residuals play the role of the unobservable Er(x,ξ) during the simulation.

For each ℓ= 1, . . . , b simulation draw, we start by creating averages of simulated noisy residuals,

denoted by R
model

sim,ℓ
. These play the role of the average observed residuals R

model
in the simulation,

i.e., they will be used to fit vector models M
v,sim

ℓ
. To capture residualized model fitting, the previous

vector model Mv
t−1

is used inside each simulated fitting step. The simulated vector models are

then aggregated into simulated scalar models M
s,sim

ℓ
and used to solve the simulated trust-region

subproblem. This yields a candidate step ssim
ℓ

.

Given these ingredients, we can calculate the simulated measure of model quality ρnoise
ℓ

as in

Equation 5.3.3. Since the simulated ρnoise
ℓ

mimics all steps of the actual algorithm, it is a pure

measure of the effect of random error on the model’s ability to produce good candidate points.

All other errors, such as approximation error, as well as imperfect solutions of the trust-region

subproblem or numerical imprecisions in the fitting process are reflected in the standard ρ but not

in ρnoise.

In our practical implementation, we set b= 100. This means that simulating ρnoise incurs the compu-

tational overhead of fitting, aggregating and minimizing 100 surrogate models. While this overhead

is much larger than an iteration of a typical trust-region algorithm, it is justified in a setting with

an expensive objective function.

48

Algorithm 4: Simulating ρnoise

Input: Model points X model
t

, current and previous vector models Mv
t−1

and Mv
t
, the current

effective trust-region Rt, The variance-covariance matrix of the noise terms in the

residual function Σt, the current parameter vector x∗
t
, the number of simulations b

and the number of repeated function evaluations mmodel
t

.

1 Calculate “true” residuals Rmodel
sim,true

= {Mv
t
(x) : x ∈ X model

t
}

2 for ℓ= 1, . . . , b do

3 Simulate average noisy residuals R
model

sim,ℓ
over mmodel

t
simulated noisy residuals that are

created by adding noise draws from N(0,Σt) to “true” residuals in Rmodel
sim,true

4 Fit a simulated vector model: M
v,sim

ℓ
= Fit(X model

t
,R

model

sim,ℓ
, Mv

t−1
, Rt)

5 Aggregate the simulated vector model: M
s,sim

ℓ
= Aggregate(M

v,sim

ℓ
)

6 Solve the simulated trust-region subproblem: ssim
ℓ
= Subsolve(M

s,sim

ℓ
, Rt)

7 Calculate the simulated measure of model quality: ρnoise
ℓ
=

Ms
t
(x∗

t
)−Ms

t
(x∗

t
+ssim
ℓ

)

M
s,sim

ℓ
(x∗t)−M

s,sim

ℓ
(x∗t+ssim

ℓ
)

8 end

5.3.4 Adjusting mmodel.

The goal of this step is to adjust the number of repeated function evaluations mmodel
t

based on the

simulated ρnoise
ℓ

values. A simple possibility would be to calculate the average of the simulated ρnoise
ℓ

values and then adjust mmodel
t

in a very similar way to the adjustment of the trust-region radius. A

drawback of this approach is that the denominator of the simulated ρnoise
ℓ

can be very small and

therefore, a non-robust statistic like the average is strongly affected by a few outliers.

To avoid this problem, we choose an approach that is not based on the average but on the share of

simulated ρnoise
ℓ

values below and above certain cutoffs. In particular, we use the following approach:

ρnoise
high

and ρnoise
low

are cutoffs thate determine whether a simulated ρnoise
ℓ

is considered high or low. If

more than πhigh of the simulated ρnoise
ℓ

are high, we conclude that mmodel
t

is unnecessarily large and

decrease it by one in order to save costly function evaluations in the next iteration. If this is not

the case but more than πlow of the simulated ρnoise
ℓ

are high or the overall ρt is larger than ρkeep,

we conclude that mmodel
t

is just right and leave it unchanged. Otherwise, we increase mmodel
t

by one.

To improve robustness, we also keep the number of repeated function evaluations between a lower

and upper bound. mmodel
min

is the minimal number of function evaluations, which we set to 1 in our

benchmarks. mmodel
max

is the maximal number of function evaluations, which we set to 30.

5.3.5 Noisy acceptance steps.

The noisy acceptance step requires an additional input σt, over the noise-free acceptance step

(Equation 3.9). It is a replaceable component, but we only provide one implementation based on

the power analysis ideas described in Subsection 5.2.2.

49

(x∗
t+1

,ρt) = Accept(x∗
t
, st,∆Ms

t
,σt)

As in the noise-free case, x∗
t+1

is the candidate point for the next iteration, ρt is a measure of

progress or model quality, ∆Ms
t
is the expected improvement from taking step st, and now addi-

tionally, σt is the estimated variance of the noise term in the objective function.

In the noise-free case, we would, generally, accept the candidate step st if it yields any improvement

over the current point. That is, if f(x∗
t
+ st)< f(x∗

t
). In the noisy case, we are ultimately interested

in minimizing the Ef , and thus we would like to make the comparison Ef(x∗
t
+ st,ξ)< Ef(x∗

t
,ξ).

However, this is, of course, not observed. Instead, we can try to reduce the effect of the noise by

averaging multiple function evaluations at each point. Define the averages of the objective function

at the candidate and current point as:

Åf(x∗
t
+ st) =

1

m
accept

t2

m
accept

t2∑

i=1

f(x∗
t
+ st,ξi) and Åf(x∗

t
) =

1

m
accept

t1

m
accept

t1∑

j=1

f(x∗
t
,ξj)

The noisy acceptance decision is then based on the following condition:

Accept st ⇐⇒
Åf(x∗

t
+ st) <

Åf(x∗
t
) (5.2)

Similarly to the noise-free case in Equation 2.1, we can compute ρt by replacing f with Åf :

ρt =

Åf(x∗
t
) − Åf(x∗

t
+ st)

Ms
t(x
∗
t) −Ms

t(x
∗
t + st)

While the mechanics of the noisy acceptance step are straightforward, as alluded to in the previous

sections, the difficulty stems from determining m
accept

t1 and m
accept

t2 such that the decision based on

the averages Åf is a good proxy for the decision based on expected values Ef .

One way to solve this problem is to use a two-sample power analysis. For this we need to assume

that

(1) f(x∗
t
+ st,ξi) is independent of f(x∗

t
,ξj) for all i, j

(2) 1

m
accept

t1

∑m
accept

t1

j=1
f(x∗

t
,ξj)≈ N
�

Ef(x∗
t
),σ2/m

accept

t1

�

(3) 1

m
accept

t2

∑m
accept

t2

i=1
f(x∗

t
+ st,ξi)≈ N
�

Ef(x∗
t
+ st),σ2/m

accept

t2

�

(4) σt is a reasonable estimate of σ

50

Given a significance level α ∈ (0,1), a power level 1− β ∈ (0, 1), and a minimal detectable effect

size Ms
t
(x∗

t
)−Ms

t
(x∗

t
+ st), by choosing m

accept

t1 and m
accept

t2 under following condition, we can guaran-

tee that the noisy acceptance condition (Equation 5.2) is done with a significance level of α and a

power level of 1− β :

m
accept

t1 m
accept

t2

m
accept

t1 +m
accept

t2

≥

�

Φ−1(1 − α) + Φ−1(1 − β)

(Ms
t(x
∗
t) −Ms

t(x∗t + st))/σt

�2

(5.3)

Since we still want to minimize the number of function evaluations, the actual choice of m
accept

t1 and

m
accept

t2 is based on the following problem:

minimize
m

accept

t1 ,m
accept

t2 ∈N

m
accept

t1 +m
accept

t2 s.t. Equation 5.3 holds

A detailed derivation of Equation 5.3 is provided in Appendix C.

5.3.6 Noisy radius adjustment.

The noise robust radius adjustment is identical to the noise-free version, except that radius decreases

are skipped if mmodel
t+1

is larger than mmodel
t

. This successfully prevents the trust-region radius from

collapsing to zero before a suitable value for mmodel is found.

5.4 Benchmarking

To test the performance of tranquilo in a noisy setting, we use the bootstrapped version of the Morę-

Wild benchmark set. Following Cartis, Fiala, et al. (2019), we add identical and independently

normal-distributed noise terms to each residual. We choose a large standard deviation of 1.2 to

create a challenging benchmark set (compared to 0.01 in Cartis, Fiala, et al. (2019)). Note that the

scale of the residuals in the Morę-Wild benchmark varies drastically across problems. This means

that even though we add the same amount of noise to each residual, we obtain problems with very

different difficulties and with very different optimal sequences of sample sizes.

Since tranquilo is fully adaptive, we only run it in one configuration. For DFO-LS, we choose con-

figurations with three different sample sizes. Note that in DFO-LS, mmodel
=maccept. Since it is very

hard to pick optimally increasing sequences of sample sizes in practice, we restrict ourselves to

fixed sequences of 3, 5, and 10 function evaluations at each point.

Since we are interested in minimizing the expected value of our objective functions, the convergence

test is based on evaluating the noise-free objective function at the parameter vectors generated by

the algorithm. Then the convergence test is as before, but the tolerance level τ is relaxed to 0.1

to reflect that we cannot expect the same precision for noisy and noise-free optimization problems.

The results of the benchmark are shown in Figure 9.

51

5 10 15 20 25
Computational budget (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Sh
ar

e
of

 s
ol

ve
d

pr
ob

le
m

s

DFO-LS (3 evals)
Tranquilo-LS

DFO-LS (5 evals) DFO-LS (10 evals)

Figure 9. Comparison of least-squares optimizers on an augmented Moré-Wild benchmark set with added noise.
The noise is normally distributed with a standard deviation of 1.2. The x-axis shows the normalized computa-
tional budget. The computational budget is measured in terms of objective function evaluations needed by the
optimizers. Normalized means that the number of function evaluations each algorithm needed to solve a given
problem is divided by the number of function evaluations the fastest algorithm needed to solve that problem.
The different DFO-LS conőgurations vary in the number of repeated function evaluations at each point. tranquilo
is fully adaptive and therefore does not need multiple conőgurations. The plot shows that tranquilo outperforms
the DFO-LS conőgurations in speed and robustness.

We see that DFO-LS with three evaluations solves some problems very quickly but then stagnates

abruptly. Using 5 evaluations at each point makes the algorithm slower but helps to solve more

problems. The pattern repeats for 10 evaluations, even though only a few additional problems are

solved by switching from 5 to 10 evaluations. This shows that it is very hard to pick a sample size

that works well for several problems, and in fact, the sample sizes 3, 5, and 10 are already the

result of some trial and error in which the whole benchmark set was solved multiple times.

Tranquilo starts at a low sample size and can, therefore, solve easy problems very quickly. If neces-

sary, the sample size is increased, and therefore, tranquilo solves more problems than any config-

uration of DFO-LS. In total, tranquilo is the fastest algorithm for more than 40 % of the problems.

Moreover, its performance-profile is consistently above the performance profiles of all DFO-LS con-

figurations.

52

6 conclusion

This paper presents the tranquilo algorithm, an optimizer for noisy nonlinear least-squares prob-

lems with expensive objective functions. A typical situation in which such problems arise is the

estimation of econometric models using the method of simulated moments (MSM). Tranquilo im-

proves over existing least-squares optimizers in two important ways: By introducing a line-search

and speculative sampling approach, the algorithm becomes more parallelizable and the solution can

be accelerated if multi-core machines are available. By introducing novel approaches for adaptive

noise handling, the algorithm can solve noisy optimization problems without requiring the user to

set any advanced algorithm parameters.

We show that in a noise-free and serial setting, tranquilo is roughly competitive with other state-of-

the-art optimizers. The parallel version of tranquilo is much faster that the serial version. For noisy

objective functions, tranquilo outperforms existing optimizers.

53

Appendix A Notation

Table A.1. Algorithm constants

Symbol Description

p ∈ N Number of parameters in the optimization problem
k ∈ N Number of least-squares residuals. 1 for scalar problems
ntarget ∈ N Target for the number of points used to construct surrogate models. Independent of the

number of evaluations at each point in the noisy case. Usually p + 1 for least-squares
optimizers

nőlter ∈ N Maximum number of points that remain after őltering. Typically larger than ntarget

l ∈ Rp ∪ −∞ Lower bounds for parameters
u ∈ Rp ∪∞ Upper bounds for parameters
γsearch ∈ R+ Search radius factor, usually ≥ 1
smin ∈ R+ Minimum step size
nmaxstag ∈ N Maximum number of trials to avoid stagnation
ndropstag ∈ N Sample increment
tmax ∈ N Maximum number of iterations
ds ∈ N Number of free coefficients of a scalar surrogate model
dv ∈ N Number of free coefficients of each individual model in a vector surrogate model
ncores ∈ N Number of available cores
nbatch ∈ N Batch size

54

Table A.2. Component speciőc constants

Symbol Description

AdjustRadius

ρinc ∈ R+ Radius shrinking cutoff
ρdec ∈ R+ Radius expansion cutoff
γinc ∈ R+ Radius expansion factor
γdec ∈ R+ Radius shrinking factor
∆max ∈ R+ Radius bound
cls ∈ R+ Large radius cut-off

Converge

εfatol ∈ R+ Convergence absolute tolerance objective function
εfrtol ∈ R+ Convergence relative tolerance objective function
εgatol ∈ R+ Convergence absolute tolerance surrogate model gradient
εgrtol ∈ R+ Convergence relative tolerance surrogate model gradient
εxatol ∈ R+ Convergence absolute tolerance parameters
εxrtol ∈ R+ Convergence relative tolerance parameters

Varest

γvarest Factor to calculate a search radius for points used for noise variance estimation
mvarest
min Minimal number of function evaluations required to use a point for variance estimation

Accept

maccept
min Minimal number of repeated function evaluations for acceptance steps

maccept
max Maximal number of repeated function evaluations for acceptance steps

SimulateNoise

b Number of simulation runs for the calculation of ρnoise

AdjustRep

m0 Number of repeated function evaluations at start parameters
ρnoisehigh Threhshold for a simulated ρnoise to be considered high
ρnoiselow Threhshold for a simulated ρnoise to be considered low
πhigh Minimal share of high ρnoise-estimates required to decrease mmodel

t

πlow Minimal share of low ρnoise-estimates required to increase mmodel
t

ρkeep Threshold for ρt to be considered good enough that m does not have to be increased.
This refers to the overall ρ, not ρnoise

mmodel
min Minimal number of repeated function evaluations for surrogate model construction

mmodel
max Maximal number of repeated function evaluations for surrogate model construction

55

Table A.3. Internal algorithm variables

Symbol Description

x∗t ∈ Rp Accepted parameter vector at the beginning of iteration t. Also serves as trustregion
center

∆regiont Trust region radius in iteration t
∆searcht Search radius, deőned as γsearch∆regiont

Rt Effective trustregion in iteration t. If no bounds are binding, Rt is deőned as a ball with
center x∗t and radius ∆

region
t . If bounds are binding, Rt is deőned as a hypercube with the

same volume as a ball with radius ∆regiont that contains x∗t and respects bound constraints
Ht History of function evaluations and parameter vectors up to period t
X

existing
t ⊂ Rp Points inside the search radius for which the function has previously been evaluated
X

őltered
t ⊂ Rp Filtered existing points
X new

t Newly sampled points in iteration t. Deőned as X őltered ∪X new
t

X model
t Model points
R

existing
t ,Rőltered

t , . . . Least-squares residuals evaluated on the corresponding set of points
F

existing
t ,F őltered

t , . . . Objective function evaluations on the corresponding set of points
Ms
t ∈M = R × Rp × Rp×p Scalar quadratic model deőned by an intercept, gradient-terms and hessian-terms

Mv
t ∈M

k Vector model consisting of one scalar model per least-squares residual
∆ft ≡ f (x∗t) − f (x∗t + st) Actual improvement through step st
∆Ms

t ≡ M
s
t (x∗t) − M

s
t (x∗t + st) Expected improvement through step st

R
existing
t ,R

őltered
t , . . . Averaged Least-squares residuals evaluated on the corresponding set of points

F
existing
t ,F

őltered
t , . . . Averaged function evaluations on the corresponding set of points

σt Estimate of the noise variance in the objective function in iteration t
Σt Estimate of the noise variance-covariance matrix in the residual function in iteration t
mmodel
t Number of repeated function evaluations for surrogate model construction in iteration t

maccept
t1 and maccept

t2 Number of repeated function evaluations at x∗t and x∗t + st for the acceptance step in
iteration t. These are actually component variables of acceptance steps but listed here
because all noise-robust acceptance steps use these variables

56

Table A.4. Component functions

Symbol Description

X
őltered
t = Filter(X existing

t) Filter applied to sample of existing points
X new

t = Sample(X őltered
t , Rt, ntarget) Sample new points inside the trustregion

Mv
t = Fit(X model

t ,Rmodel
t ,Mv

t−1, Rt) Fit a quadratic model scaled to the trustregion
Ms
t = Aggregate(Mv

t) Aggregate vector model into scalar model
st = Subsolve(Ms

t , Rt) Solve the trustregion subproblem
X reduced

t = Drop(X model
t , ndrop, ∆regiont) Drop the ndrop worst points

(x∗t+1, ρt) = Accept(x∗t , st, ∆M
s
t , σt) Accept or reject the proposed step and calculate a measure of

progress. The argument σt is only used in the noisy case
∆regiont+1 = AdjustRadius(∆regiont , ρt, st) Adjust the trustregion radius
Converged(Ht,Ms

t , x∗t , x∗t+1) Check for convergence
σt, Σt = Varest(Ht, Rt) Estimate the noise variance
ρnoise = SimNoise(X model,Rmodel,Mv

t−1,M
v
t , Rt, Σt) Simulate ρ that would obtain in the absence of Approximation error

due to noise. ρnoise = (ρnoise1 , . . . , ρnoiseb) is a vector of simulated ρ’s.
mmodel
t+1 = AdjustRep(ρnoise, ρt,mmodel

t) Adjust the number of repeated function evaluations for surrogate
model construction

Table A.5. Mathematical symbols

Symbol Description

∥x∥ The Euclidean norm of a vector x
N(µ, Σ) A (multivariate) Normal distribution with mean µ and variance-covariance (matrix) Σ
Φ(x) The cumulative distribution function of the standard Normal distribution evaluated at x
⌈x⌉ The smallest integer greater than or equal to x

57

Appendix B Subsolvers

B.1 GQTPAR

In the SP-Ball case, GQTPAR finds an exact solution to the trust-region subproblem (Morę and

Sorensen (1983)), which satisfies

(H + λI) s∗ = −g (B.1)

where g is the model gradient, H denotes the model Hessian, and I is the identity matrix. GQTPAR

determines the Lagrange multiplier λ ≥ 0 such that the matrix (H+λI) is positive definite and

λ(1− ∥s∗∥)= 0. The latter is a complementary slackness condition which states that at least one of

the quantities λ and (1− ∥s∗∥) must be zero at the optimum s∗. Recall that in the problem SP-Ball,

the subspace B is a ball with a center of 0 and a radius of 1, defined as B := {s ∈ Rp : ∥s∥ ≤ 1}.

When the solution s∗ is interior to B, i.e. ∥s∗∥< 1, then λ = 0 and GQTPAR terminates immediately.

Otherwise, when s∗ lies on the boundary of B, i.e. ∥s∗∥= 1, λ > 0, and Newton’s method is applied

to find the value of λ such that ∥s∗∥= 1 is satisfied. Rearranging Equation B.1, Morę and Sorensen

(1983) show that the unique solution s∗, which depends on λ, is defined as

s∗(λ) = −(H + λI)−1 g (B.2)

for λ > 0 sufficiently large so that (H+λI) is positive definite and ∥s(λ)∥= 1. To obtain s∗, one

first needs an expression for λ. Starting with an initial guess, GQTPAR updates λ in each iteration

ℓ of Algorithm 5 via

λ(ℓ+1)
= λ(ℓ) −

φ(λ(ℓ))

φ′(λ(ℓ))
(B.3)

where the function φ(λ(ℓ)) is defined as:

φ(λ(ℓ)) =
1

∥s(λ(ℓ))∥ − 1
(B.4)

and φ′(λ(ℓ)) is the first derivative of φ(λ(ℓ)) with respect to λ(ℓ). GQTPAR finds the optimal λ(ℓ)

by applying Newton’s root finding method to the function φ(λ(ℓ)) in Equation B.4, which is almost

58

linear around the optimal λ(ℓ) (Nocedal and Wright (2006)). Before updating λ(ℓ), however, an

expression for s(λ(ℓ)) satisfying Equation B.2 is needed. GQTPAR obtains a candidate s(λ(ℓ)) by

factorizing the model Hessian H via Cholesky factorization and solving the resulting linear system

(see lines 4 and 5 of Algorithm 5). Conn, Gould, and Toint (2000) show that Equation B.3 can

be simplified to the updating formula in line 11 of Algorithm 5, which makes the dependence on

sℓ apparent. The vector qℓ is the solution to the linear system in line 10 of Algorithm 5, where R

denotes the upper triangular matrix of H. The details are omitted here for brevity but are available

in Conn, Gould, and Toint (2000). With expressions for sℓ and qℓ in hand, GQTPAR calculates their

respective norms ∥sℓ∥ and ∥qℓ∥, and updates λ(ℓ+1) in line 11 of Algorithm 5.

Note that in line 2 of Algorithm 5, λ(ℓ) is safeguarded. This is necessary to ensure that the matrix

(H+λ(ℓ))I is positive definite and its Cholesky factorization exists. For details on the safeguarding

procedure, see Morę and Sorensen (1983) or Nocedal and Wright (2006). This concludes Algo-

rithm 5 for the “easy case”.

Algorithm 5: GQTPAR algorithm - The “easy case”

Input: Initial guess s0, λ
(0), λ

(0)
L , λ

(0)
U

1 for ℓ=0,1,2,... do

2 Safeguard λ(l) to obtain λ
(ℓ)
S

3 if H+λ(ℓ)I is positive definite then

4 Factor H+λ(l)I = RT R

5 Solve sℓ = −(RTR)−1g

6 end

7 Update λ
(ℓ)
L , λ

(ℓ)
U , λ

(ℓ)
S

8 Check convergence criteria

9 if H+λ(l)I is positive definite and g ̸= 0 then

10 Solve qℓ = (RT)−1sℓ

11 Set λ(ℓ+1)
= λ(ℓ)

+

�
∥sℓ∥

∥qℓ∥

�2 �

∥sℓ∥ − 1
�

12 else

13 Set λ(ℓ+1)
= λ

(ℓ)
S

14 end

There may be situations, where (H+λ(ℓ)I) is positive definite but the solution s∗ to Equation B.1 is

not unique. This is what Morę and Sorensen (1983) call the “hard case”, which is not described in

Algorithm 5. We refer the interested reader to Morę and Sorensen (1983) and Conn, Gould, and

Toint (2000) for details. In short, in the “hard case”, Equation B.1 is replaced by

�

H − λ1I
�

(s∗ + τz) = −g (B.5)

where z is the eigenvector of the model Hessian H corresponding to the first eigenvalue λ1 of H.

Moreover, z is such that ∥s+τz (λ)∥= 1 for some τ.

59

B.2 BNTR

BNTR stands for “Bounded Newton Trust-Region” algorithm and was developed for the Toolkit of

Advanced Optimization (Dener et al. (2021)). It employs a trust-region-like approach combined

with an active set method to solve the bound-constrained problem SP-Cube. A search direction of

the candidate step is considered “active” if it lies at the boundary of the trust-region. The active

and inactive sets are defined as follows (Bertsekas (1982))

lower bounded: L (s) = {i : si ≤ li ∧ g(s)i > 0},

upper bounded: U (s) = {i : si ≥ ui ∧ g(s)i < 0},

fixed: F (s) = {i : li = ui},

active-set: A (s) = L (s) ∪ U (s) ∪ F (s),

inactive-set: I (s) = {1,2, . . . , n} \ A (s).

where li and ui are the lower and upper bound on the ith search direction in s, respectively. Instead

of fitting a full surrogate model, BNTR uses a simplified quadratic model in the surrogate step in

line 5 of Algorithm 6. In particular, it solves for the minimizer rℓ of the reduced quadratic model

Mr
ℓ
(r) for the unconstrained (i.e. inactive) search directions only via a conjugate gradient method.

The available methods are Conjugate Gradient, Steihaug-Toint, and TRSBOX. The reduced model

is formed using the reduced model gradient gr and the reduced model Hessian Hr based on the

inactive set I (s), i.e. the unbounded search directions.

With the reduced conjugate gradient step rℓ in hand, BNTR constructs a new candidate step pℓ (line

6 of Algorithm 6). It does so by projecting rℓ onto the lower and upper bounds of the active set

A (s)

p =









li if si < li

ui if si > ui

ri otherwise

(bound-projection)

where the subscript ℓ is omitted for readability. Similar to other trust-region optimizers, acceptance

of the candidate step pℓ is determined based on the ratio of the actual over expected improvement of

the surrogate model (see line 7 of Algorithm 6). The actual improvement is defined as the difference

between the surrogate model evaluated at the candidate sℓ + pℓ and the surrogate model evaluated

at the current iterate sℓ. The expected improvement is defined as the value of the reduced surrogate

model evaluated at rℓ. If the ratio is larger than a threshold, the candidate step pℓ is accepted and

the trust-region radius is increased. Else, the candidate is rejected and the trust-region radius is

decreased. The process is repeated until convergence criteria are met.

60

Algorithm 6: BNTR algorithm

Input: Initial guess s0, ∆
sub
0
> 0

1 Take a finite number of gradient descent steps and update s0, ∆
sub
0

2 for ℓ=0,1,2,... do

3 Create active set of bounds A (s) and set of inactive directions I (s)

4 Construct reduced model gradient and reduced model Hessian based on I (s)

5 Solve for the optimum of the reduced model Mr
ℓ
: r≈ arg min

r
Mr
ℓ
(r) s.t. r≤∆sub

ℓ

6 Construct new candidate step pℓ by projecting rℓ onto A (s)

7 Calculate κℓ =
Ms
ℓ
(sℓ+pℓ)−Ms

ℓ
(sℓ)

Mr
ℓ
(rℓ)

, the ratio of actual over expected improvement

8 if κℓ is larger than a threshold then

9 Accept step sℓ+1 = sℓ + pℓ
10 Expand trust-region radius: ∆sub

ℓ+1
= αinc∆sub

ℓ

11 else

12 Reject step sℓ+1 = sℓ
13 Shrink trust-region radius ∆sub

ℓ+1
= αdec∆sub

ℓ

14 Check convergence criteria

15 end

61

Appendix C Power Analysis

In this section, we derive the optimization problem we solve in the noisy acceptance step to deter-

mine the optimal number of objective function evaluations. For a more detailed discussion of power

analysis, we refer to Montgomery (2008) or Cohen (1988).

C.1 Statistical Motivation

Suppose we observe two samples {y
(1)
1 , . . . , y(1)

n1
} and {y

(2)
1 , . . . , y(2)

n2
}. The first sample has a mean of

E[y
(1)

i
]= µ1 and the second a mean of E[y

(2)

i
]= µ2. We assume that both samples are independent

of another and that the variance of both samples is σ2. Assume further that the sample averages

can be approximated by normal distributions, i.e.,

1

n1

n1∑

i=1

y
(1)

i
≈ N(µ1,σ2/n1) and

1

n2

n2∑

i=1

y
(2)

i
≈ N(µ2,σ2/n2)

Note that this can be justified by distribution assumptions on the y
(k)

i
or by asymptotic arguments.

In particular, we do not want to assume that the variables in a sample are independent, i.e., y
(k)

i

and y
(k)

j
may be dependent.

Our target parameter is ∆ := µ1 −µ2, and our goal is to test whether this parameter is greater

than zero: ∆> 0. The key assumption underlying power analysis is that we can choose the values

of n1 and n2.

For this, we first need to select a statistical significance level α ∈ (0,1), a power level 1− β ∈ (0, 1),

and a minimal detectable effect size ∆min. The formal test is then

H0 : ∆ = 0 v.s. H1 : ∆ = ∆min

Define the estimators µ̂1 := 1
n1

∑n1

i=1
y

(1)

i
and µ̂2 := 1

n2

∑n2

i=1
y

(2)

i
of µ1 and µ2, respectively, and the

estimator ∆̂ = ∆̂(n1, n2) := µ̂1 − µ̂2. Under the normality assumption stated above, we get

∆̂(n1, n2) ≈ N(∆,σ2
∆

)

With σ2
∆
= σ2 n1+n2

n1n2
. Define the t-test statistic t̂ = ∆̂/σ∆.

Under the null hypothesis H0, we find t̂ ≈ N(0,1), so that we can choose the critical value, i.e.,

the value such that the Type-1 error is α, as Φ−1(1−α). Note furthter that under the alternative

hypothesis H1, we have t̂−∆min/σ∆ ≈ N(0, 1).

62

We also require that the Type-2 error is at most β , i.e., we want that the probability of accepting

H0, when H1 is true, is at most β . More formally,

β ≥ P[̂t ≤ z1−α|H2]

= P[̂t −∆min/σ∆ ≤ Φ
−1(1 − α) −∆min/σ∆|H2]

≈ Φ(Φ−1(1 − α) −∆min/σ∆)

And so,

Φ−1(β) ≳ Φ−1(1 − α) −∆min/σ∆

= Φ−1(1 − α) −∆min/σ

√
√ n1n2

n1 + n2

Rearranging the previous equation then gives

n1n2

n1 + n2

≥

�

Φ−1(1 − α) + Φ−1(1 − β)

∆min/σ

�2

(C.1)

C.2 Optimal sample sizes

Given the condition in Equation C.1, we want to minimize the total number of samples n1 + n2.

However, the exact problem we face in the noisy acceptance step (Subsection 5.3.5) in tranquilo

may slightly differ from Equation C.1, as there may already exist previous samples nexist
1

and nexist
2

.

In this case, we solve the following problem

minimize
n1,n2∈N

n1 + n2 s.t
(n1 + nexist

1
)(n2 + nexist

2
)

n1 + nexist
1 + n2 + nexist

2

≥

�

Φ−1(1 − α) + Φ−1(1 − β)

∆min/σ

�2

63

References

Arnoud, Antoine, Fatih Guvenen, and Tatjana Kleineberg. 2019. łBenchmarking Global Optimizers.ž NBER Working
Papers 26340. National Bureau of Economic Research, Inc. URL: https://ideas.repec.org/p/nbr/nberwo/26340.
html. Tiktak. [9]

Augustin, F., and Youssef Marzouk. 2017. łA trust-region method for derivative-free nonlinear constrained stochas-
tic optimization.ž (03): [14]

Berndt, Ernst R., Bronwyn Hall, Robert Hall, and Jerry Hausman. 1974. łEstimation and Inference in Nonlinear
Structural Models.ž In Annals of Economic and Social Measurement, Volume 3, number 4. National Bureau of
Economic Research, Inc, 653–65. URL: https://EconPapers.repec.org/RePEc:nbr:nberch:10206. [18]

Bertsekas, Dimitri P. 1982. łProjected Newton Methods for Optimization Problems with Simple Constraints.ž SIAM
Journal on Control and Optimization 20 (2): 221–46. DOI: 10.1137/0320018. [60]

Briani, Matteo, Alvise Sommariva, and Marco Vianello. 2012. łComputing Fekete and Lebesgue points: Simplex,
square, disk.ž Journal of Computational and Applied Mathematics 236 (9): 2477–86. DOI: https://doi.org/10.
1016/j.cam.2011.12.006. [23]

Cartis, Coralia, Jan Fiala, Benjamin Marteau, and Lindon Roberts. 2019. łImproving the Flexibility and Robustness
of Model-Based Derivative-Free Optimization Solvers.ž ACM Trans. Math. Softw. 45 (3): DOI: 10.1145/3338517.
[3, 5–7, 11, 13, 17, 18, 29, 31–33, 51]

Cartis, Coralia, and Lindon Roberts. 2019. łA derivative-free Gauss–Newton method.ž Mathematical Programming
Computation 11 (4): 631–74. DOI: 10.1007/s12532-019-00161-7. [11, 31]

Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates. [62]
Conn, Andrew R., Nicholas I. M. Gould, and Philippe L. Toint. 2000. Trust Region Methods. Society for Industrial,

and Applied Mathematics. DOI: 10.1137/1.9780898719857. eprint: https://epubs.siam.org/doi/pdf/10.1137/1.
9780898719857. [5, 6, 10–12, 23, 59]

Dener, Alp, Adam Denchőeld, Hansol Suh, Todd Munson, Jason Sarich, Stefan Wild, Steven Benson, and Lois
Curfman McInnes. 2021. łTAO Users Manual (Rev. 3.15).ž (3): DOI: 10.2172/1814593. [13, 30, 31, 60]

Dolan, Elizabeth D., and Jorge J. Moré. 2002. łBenchmarking optimization software with performance proőles.ž
Mathematical Programming 91: 201–13. [31]

Eisenhauer, Philipp, James J. Heckman, and Stefano Mosso. 2015. łESTIMATION OF DYNAMIC DISCRETE CHOICE
MODELS BY MAXIMUM LIKELIHOOD AND THE SIMULATED METHOD OF MOMENTS.ž International Economic Review
56 (2): 331–57. DOI: https://doi.org/10.1111/iere.12107. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1111/iere.12107. [1, 7]

Gabler, Janoś. 2022. łA Python Tool for the Estimation of large scale scientiőc models.ž URL: https://github.com/
OpenSourceEconomics/estimagic. [6]

Gabler, Janoś, Sebastian Gsell, Tim Mensinger, and Mariam Petrosyan. 2024. łTranquilo.ž URL: https://github.com/
OpenSourceEconomics/tranquilo. [6]

Gabler, Janoś, Tobias Raabe, Klara Röhrl, and Hans-Martin von Gaudecker. 2022. łThe effectiveness of testing,
vaccinations and contact restrictions for containing the CoViD-19 pandemic.ž en. Sci. Rep. 12 (1): 8048. [5]

Gould, Nicholas I. M., Dominique Orban, and Philippe L. Toint. 2003. łCUTEr and SifDec: A Constrained and
Unconstrained Testing Environment, Revisited.ž ACM Trans. Math. Softw. 29 (4): 373–94. DOI: 10.1145/962437.
962439. [31]

Larson, Jeffrey, Matt Menickelly, and Stefan M. Wild. 2019. łDerivative-free optimization methods.ž Acta Numerica
28 (5): 287–404. DOI: 10.1017/s0962492919000060. [10–12, 17, 26]

Lee, Donghoon, and Matthew Wiswall. 2007. łA Parallel Implementation of the Simplex Function Minimization
Routine.ž Computational Economics 30 (02): 171–87. DOI: 10.1007/s10614-007-9094-2. [3, 14]

Levenberg, Kenneth. 1944. łA Method for the Solution of Certain Non-Linear Problems in Least Squares.ž Quarterly
of Applied Mathematics 2 (2): 164–68. URL: http://www.jstor.org/stable/43633451 (visited on 01/09/2024). [3]

64

https://ideas.repec.org/p/nbr/nberwo/26340.html
https://ideas.repec.org/p/nbr/nberwo/26340.html
https://EconPapers.repec.org/RePEc:nbr:nberch:10206
https://doi.org/10.1137/0320018
https://doi.org/https://doi.org/10.1016/j.cam.2011.12.006
https://doi.org/https://doi.org/10.1016/j.cam.2011.12.006
https://doi.org/10.1145/3338517
https://doi.org/10.1007/s12532-019-00161-7
https://doi.org/10.1137/1.9780898719857
https://epubs.siam.org/doi/pdf/10.1137/1.9780898719857
https://epubs.siam.org/doi/pdf/10.1137/1.9780898719857
https://doi.org/10.2172/1814593
https://doi.org/https://doi.org/10.1111/iere.12107
https://onlinelibrary.wiley.com/doi/pdf/10.1111/iere.12107
https://onlinelibrary.wiley.com/doi/pdf/10.1111/iere.12107
https://github.com/OpenSourceEconomics/estimagic
https://github.com/OpenSourceEconomics/estimagic
https://github.com/OpenSourceEconomics/tranquilo
https://github.com/OpenSourceEconomics/tranquilo
https://doi.org/10.1145/962437.962439
https://doi.org/10.1145/962437.962439
https://doi.org/10.1017/s0962492919000060
https://doi.org/10.1007/s10614-007-9094-2
http://www.jstor.org/stable/43633451

Marquardt, Donald W. 1963. łAn Algorithm for Least-Squares Estimation of Nonlinear Parameters.ž Journal of
the Society for Industrial and Applied Mathematics 11 (2): 431–41. URL: http://www.jstor.org/stable/2098941
(visited on 01/09/2024). [3]

Montgomery, D.C. 2008. Design and Analysis of Experiments. Student solutions manual. John Wiley & Sons. URL:
http://books.google.de/books?id=kMMJAm5bD34C. [62]

Moré, Jorge J., and Danny C. Sorensen. 1983. łComputing a Trust Region Step.ž Siam Journal on Scientiőc and
Statistical Computing 4: 553–72. [58, 59]

Moré, Jorge J., and Stefan M. Wild. 2009. łBenchmarking Derivative-Free Optimization Algorithms.ž SIAM Journal
on Optimization 20 (1): 172–91. DOI: 10.1137/080724083. [6, 31, 32, 39]

Nocedal, Jorge, and Stephen Wright. 2006. Numerical optimization. Springer Science & Business Media. [10, 59]
Powell, M. 2009. łThe BOBYQA Algorithm for Bound Constrained Optimization without Derivatives.ž Working paper

DAMTP 2009/NA06. Centre for Mathematical Sciences, University of Cambridge. [6, 11–13, 17, 18, 26]
Powell, M. J. D. 2006. łThe NEWUOA software for unconstrained optimization without derivatives.ž In. Large-Scale

Nonlinear Optimization. Edited by G. Di Pillo and M. Roma. Boston, MA: Springer US, 255–97. DOI: 10.1007/0-
387-30065-1_16. [11, 12, 26]

Pukelsheim, Friedrich. 2006. Optimal Design of Experiments (Classics in Applied Mathematics) (Classics in Applied
Mathematics, 50). USA: Society for Industrial, and Applied Mathematics. [22]

Shashaani, Sara, Fatemeh S. Hashemi, and Raghu Pasupathy. 2018. łASTRO-DF: A Class of Adaptive Sampling Trust-
Region Algorithms for Derivative-Free Stochastic Optimization.ž SIAM Journal on Optimization 28 (4): 3145–76.
DOI: 10.1137/15M1042425. eprint: https://doi.org/10.1137/15M1042425. [14]

Wild, Stefan M. 2008. łMNH: A Derivative-Free Optimization Algorithm Using Minimal Norm Hessians.ž In
Tenth Copper Mountain Conference on Iterative Methods. URL: http://grandmaster.colorado.edu/~copper/2008/
SCWinners/Wild.pdf. [26]

Wild, Stefan M. 2017. łSolving Derivative-Free Nonlinear Least Squares Problems with POUNDERS.ž In Advances
and Trends in Optimization with Engineering Applications. Edited by Tamas Terlaky, Miguel F. Anjos, and
Shabbir Ahmed. SIAM, 529–40. DOI: 10.1137/1.9781611974683.ch40. [3, 6, 13, 17–20, 26, 29–32]

Winőeld, D. 1973. łFunction Minimization by Interpolation in a Data Table.ž IMA Journal of Applied Mathematics
12 (3): 339–47. DOI: 10.1093/imamat/12.3.339. eprint: https://academic.oup.com/imamat/article-pdf/12/3/
339/1918553/12-3-339.pdf. [12]

Zhang, Hongchao, Andrew R. Conn, and Katya Scheinberg. 2010. łA Derivative-Free Algorithm for Least-Squares
Minimization.ž SIAM Journal on Optimization 20 (6): 3555–76. DOI: 10.1137/09075531X. [13, 18, 28]

65

http://www.jstor.org/stable/2098941
http://books.google.de/books?id=kMMJAm5bD34C
https://doi.org/10.1137/080724083
https://doi.org/10.1007/0-387-30065-1_16
https://doi.org/10.1007/0-387-30065-1_16
https://doi.org/10.1137/15M1042425
https://doi.org/10.1137/15M1042425
http://grandmaster.colorado.edu/~copper/2008/SCWinners/Wild.pdf
http://grandmaster.colorado.edu/~copper/2008/SCWinners/Wild.pdf
https://doi.org/10.1137/1.9781611974683.ch40
https://doi.org/10.1093/imamat/12.3.339
https://academic.oup.com/imamat/article-pdf/12/3/339/1918553/12-3-339.pdf
https://academic.oup.com/imamat/article-pdf/12/3/339/1918553/12-3-339.pdf
https://doi.org/10.1137/09075531X

	Abstract
	1 Introduction
	2 Literature review
	2.1 Concepts of derivative-free optimization
	2.2 Related algorithms

	3 Tranquilo core algorithm
	3.1 The trust region framework
	3.2 Implementation of the components
	3.2.1 Filtering
	3.2.2 Sampling
	3.2.3 Fitting
	3.2.4 Aggregation
	3.2.5 Subsolvers
	3.2.6 Dropping Points
	3.2.7 Acceptance decision
	3.2.8 Trustregion radius adjustment
	3.2.9 Convergence and stopping criteria

	3.3 Benchmarking

	4 Parallelization
	4.1 Adding parallelization to tranquilo
	4.1.1 Filtering
	4.1.2 Acceptance Step

	4.2 Benchmarking

	5 Noisy optimization
	5.1 The importance of sample sizes
	5.2 Core ideas for noise handling
	5.2.1 Determining mmodel
	5.2.2 Determining maccept

	5.3 Adding noise handling to tranquilo
	5.3.1 Noisy-trustregion-framework
	5.3.2 Estimation of noise variance
	5.3.3 Simulating noise
	5.3.4 Adjusting mmodel
	5.3.5 Noisy acceptance steps
	5.3.6 Noisy radius adjustment

	5.4 Benchmarking

	6 conclusion
	Appendix A Notation
	Appendix B Subsolvers
	B.1 GQTPAR
	B.2 BNTR

	Appendix C Power Analysis
	C.1 Statistical Motivation
	C.2 Optimal sample sizes

	References

