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Abstract

Auction models are convenient abstractions of informal price-formation processes

that arise in markets for assets or services. These processes involve frictions such as

bidder recruitment costs for sellers, participation costs for bidders, and limitations

on sellers’ commitment abilities. This paper develops an auction model that cap-

tures such frictions. We derive several novel predictions; in particular, we find that

outcomes are often inefficient, and the market sometimes unravels.

To organize a successful auction, it is essential for the seller to recruit bidders and

motivate them to participate; indeed, this can have a greater impact on revenue than

the details of the bidding mechanism.1 Recruitment is often difficult, because bidders

may need to incur substantial costs to evaluate an item, line up financing, and prepare

bids. Sellers’ recruitment costs and bidders’ participation costs are particularly likely to

be significant in the sale of idiosyncratic assets.

This paper investigates how sellers’ recruitment efforts and bidders’ entry decisions

jointly determine auction participation and outcomes. We conduct our analysis under

the assumption of limited seller’s commitment ability, which is pervasive in auctions for

idiosyncratic assets.

∗We gratefully acknowledge financial support from the German Research Foundation (DFG) through
Germany’s Excellence Strategy–EXC 2126/1390838866 and through the CRC TR 224 (Project B04).
We thank Yi-Chun Chen and Audra Boone for helpful comments and Simon Block for research assistance.

†The University of Bonn, Department of Economics, s.lauermann@uni-bonn.de.
‡Northwestern University, Department of Economics, a-wolinsky@northwestern.edu.
1See Bulow and Klemperer (1996) for the revenue effects of attracting an additional bidder.
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The main novelty of the model is that it combines these elements–costly recruitment,

costly participation, and limited commitment. It captures the fundamental tension be-

tween the seller’s interest in recruiting more bidders–to intensify competition and draw

high-value bidders–and the resultant bidders’ concern about costly entry into an overly

competitive auction. When the seller cannot commit to participation levels, this tension

may lead to excessive recruitment effort and, in some cases, a complete shutdown of trade.

These inherent inefficiencies are the subject of our first set of insights.

A related set of insights concerns the effects of the bidders’ ability to observe the level

of participation (or the seller’s ability to disclose it credibly). We identify conditions under

which observability can promote or suppress trade. These insights are shown to translate

into results comparing the first-price auction (FPA) and the second-price auction (SPA):

these are not equivalent in the presence of recruitment and entry costs, and their ranking

depends on these costs.

The tensions and insights described above have not been studied before, since the

existing literature has studied entry and recruitment separately.

Our insights may help explain the viability of costly intermediary services that recruit

bidders, enable seller commitment, and reduce bidders’ costs. Sellers’ willingness to pay

20− 30% of their revenues to auction houses such as Christie’s and Sotheby’s2 indicates

the magnitude of the inefficiencies that these services reduce.

Our model features a seller who offers a single item for sale. In the recruitment

stage, the seller makes a costly effort to attract bidders. The random number of bidders

contacted follows a Poisson distribution whose mean is determined by the seller’s effort.

A contacted bidder decides whether to incur a cost that enables him to discover his

private value and participate in the auction. The bidding stage features a first-price

auction (FPA). The seller cannot commit to the level of the recruitment effort (which is

unobservable to the bidders) or to a reserve price. We consider two variants of the auction

stage: the PO scenario (“participation-observable”) and the PU scenario (“participation-

unobservable”).

In the PO scenario, the bidders observe the number of auction participants before

bidding. This can happen, for example, if the bidding is in person at the auction site. In

this case, our analysis identifies the inefficiencies mentioned above (excessive recruitment

and potential market shutdown).

In the PU scenario, the bidders do not observe the number of participants and the

2Ashenfelter and Graddy (2005) describe the fees and other institutional details for such auction
houses.
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seller cannot credibly disclose the number of bidders.3 Unobservability generates a new

consideration: an incentive for the seller to secretly reduce recruitment. This may give rise

to multiple equilibria sustained by different levels of fulfilled expectations. In particular,

an equilibrium with no trade always exists.

The two scenarios cannot be uniformly ranked: trade volume and profits are higher

in the PO scenario for some recruitment and participation cost configurations and in the

PU scenario for others. In particular, trade is supported only by the PO scenario in some

circumstances, and only by the PU scenario in others. This reversal creates incentives for

the seller to either conceal or disclose participation information (in settings where this

can credibly be done). Which of these scenarios is more profitable depends on the nature

of the seller’s commitment problem–whether she would like to commit to a recruitment

effort greater or smaller than the equilibrium effort.

The same results can be viewed from another angle: they apply verbatim to a com-

parison of the FPA and SPA, both with unobservable participation. This is because,

in terms of payoffs and participation, the PO equilibrium outcome is equivalent to the

outcome of the dominant-strategy equilibrium of the SPA (for which observability does

not matter). In the absence of the frictions considered here–costly recruitment, costly

participation, and lack of commitment–these two auction formats yield equal profit and

surplus. With such frictions, they are not equivalent, because they affect the seller’s

recruitment incentives; their ranking depends on recruitment and entry costs.

In Section 5, we examine the effect of bidders’ uncertainty about the seller’s recruit-

ment effort, modeled by introducing uncertainty about the seller’s recruitment cost. We

show that the market may unravel almost completely: almost all seller types may stay out

of the market, even though each type would be active in equilibrium if it were commonly

known. This result is driven by a “sampling curse”: conditional on being recruited, each

bidder believes that the seller is likely to have recruited many other bidders, rendering

participation unprofitable.

The core of our model is the interaction between costly recruitment and costly par-

ticipation when the seller cannot commit. Other features, such as the Poisson arrivals

or whether bidders learn their values before or after entry, are not essential for the main

insights. Several extensions illustrate the robustness of our qualitative findings. In par-

ticular, in the online appendix we consider the case in which bidders know their values

before entry, as well as the cases in which the seller can set an entry fee/subsidy or a

reserve price. In an earlier version of the paper, we established the same main insights

3For example, even with in-person bidding, other bidders may be “shills” or may be bidding via agents.
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with deterministic (rather than Poissonian) recruitment.

Anecdotal evidence. Ample anecdotal evidence demonstrates the relevance of the key

elements in our auction model: limited seller commitment, recruitment costs, and entry

costs.

Limited commitment. Subramanian (2010) and Boone and Mulherin (2004, 2009)

study merger and takeover proceedings, which often involve auctions of some form. De-

spite the high stakes involved, such auctions are often conducted in a way that suggests

limited seller commitment. First, many of these auctions (the majority, according to

Boone and Mulherin, 2009, p. 31) are “informal,” in the sense that they are a mixture

of auctions and negotiations rather than “a structured process where the rules are laid

out in advance.” Second, sellers seem unable to credibly commit ex-ante to a level of

participation or its disclosure.4 Sellers’ commitment ability is sometimes further limited

by confidentiality agreements with certain bidders (see also Gentry and Stroub, 2018),

or other legal considerations, such as the reluctance of courts to enforce certain contract

clauses.

Recruitment costs. Subramanian (2010) describes the critical role of bidder recruit-

ment in merger and acquisition auctions. Milgrom (2003) states that, based on his con-

sulting experience, the marketing of an auction is often more critical for its success than

clever design. Fees paid by sellers to intermediaries go partly towards recruitment efforts.

Recruitment costs may reflect also implicit costs, such as the costly disclosure of sensitive

information to motivate potential buyers.5

Entry costs. An extensive empirical literature documents the importance of bidders’

entry and participation costs; see, for example, Gentry and Stroub (2018) and the work

discussed there.

The process of obtaining bids for home repair provides an example of an informal

auction that will be familiar to many readers, in which both recruitment and entry costs

play a major role. A homeowner may wish to suggest to prospective contractors that they

have some competition, but not so much as to scare them away.

4Subramanian (2010) provides examples of sellers trying to increase competitive pressure by using
fictitious bidders.

5Bulow and Klempere (1996, p 190) mention the implicit costs of revealing information as an additional
(unmodeled) reason for restricting bidder numbers. To give an idea of recruitment in practice, the first
case discussed in Boone and Mulherin (2009) is the sale of a firm, Blount Inc., where 65 potential buyers
where contacted, of which 28 signed confidentiality agreements, and 2 submitted a bid (Lehman Brothers
won).
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Related literature. Our model’s main novelty is the combination of costly recruitment

and costly entry with limited commitment. There are strands of the literature discussing

each of these frictions in isolation; we are not aware of any references that discuss all three

jointly, or that derive insights similar to ours.

An extensive literature on auctions with costly entry has found that when bidders enter

before learning their values, their entry decisions are efficient, and the seller’s incentives

align with the social planner’s as she obtains the full surplus (McAfee and McMillan, 1987;

Levin and Smith, 1994; Crémer, Spiegel, and Zheng, 2007).6 These models correspond to

versions of our model with positive entry costs and an exogenously given expected number

of potential bidders.

Szech (2011) examines costly recruitment in an FPA where all contacted bidders en-

ter. Her model corresponds to our PO scenario with costless entry. She shows that the

seller’s profit-maximizing choice of recruitment effort generally exceeds the efficient one.

Lauermann and Wolinsky (2017, 2021) also feature costly recruitment and costless entry,

but in a common value setting. They focus on different questions related to information

aggregation with a privately informed seller.

Milgrom (1987), McAfee and Vincent (1997), and Liu et al. (2019) study limited

commitment to a reserve price in auctions with a fixed set of bidders.

Our model can be viewed as a simultaneous search model in which the seller is the

searcher. Renaming the actors turns our model into a stochastic version of the simultane-

ous search model of Burdett and Judd (1983), with the added features of heterogeneous

production costs and price-quoting costs.

1 The PO auction: Observable participation

1.1 The model

One seller owns an indivisible item that has value 0 to her. She makes recruitment effort

γ ≥ 0, resulting in a random number of prospective bidders that is Poisson-distributed

with mean γ; i.e., the probability of her contacting t bidders is γt

t!
e−γ. The cost of effort

γ is γs, for some s > 0.

The prospective bidders are ex-ante symmetric. A prospective bidder i who decides

to participate incurs a cost c > 0. He then observes his own value vi for the item and the

6However, this is not the case when bidders have private information at entry (Samuelson, 1984; Ye,
2007).
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total number n of bidders who chose to enter the auction (including i himself). The vi are

private values, independently and identically distributed with a cumulative distribution

function (c.d.f.) G, with support [0, 1], a continuous density g, and increasing virtual

values, v − 1−G(v)
g(v)

. The bidders do not observe γ. Finally, the participating bidders

submit bids. The highest bidder wins and pays his bid.

When an auction ends with winning bid p, the payoff is p−γs for the seller, vi−p−c for

the winning bidder i, −c for each participating bidder who lost, and 0 for each contacted

bidder who declined entry.

1.2 Interaction: Strategies and equilibrium

The seller’s strategy is her recruitment effort γ ≥ 0. Bidder i’s strategy is (qi, βi), where

qi ∈ [0, 1] is the entry probability and βi : [0, 1] × {1, 2, ...} → [0, 1] describes i’s bid

as a function of his information (vi, n)–that is, his private value and the number of

participating bidders. Bidder i’s belief concerning the seller’s effort, conditional on being

contacted–but before observing (vi, n)–is a probability measure µi on [0,∞).

We study symmetric behavior in which all bidders employ the same strategy (q, β)

and hold the same belief µ. An equilibrium consists of γ∗, q∗, and β∗ such that the

following hold:

(E1) The effort γ∗ maximizes the seller’s expected payoff given q∗ and β∗.

(E2) There exists a belief µ such that

(i) q∗ and β∗ maximize each bidder’s payoff, given µ and the other bidders’ strategy

(q∗, β∗);

(ii) if γ∗ > 0, then µ(γ∗) = 1, i.e., the belief is confirmed on the path;

(iii) if γ∗ = 0, then the seller’s payoff is not negative for any γ̂ in the support of µ,

given (q∗, β∗).

Thus, the equilibrium allows only pure recruitment and bidding strategies; mixing is

allowed only in the bidders’ entry decisions, q ∈ [0, 1].

Off-path beliefs arise only when γ∗ = 0, but their role is not negligible since this is an

important case of extreme market failure. The last condition in the equilibrium definition

imposes a refinement on the off-path beliefs, which allows us to rule out no-trade equilibria

that rely on unfounded beliefs. This will be discussed in Section 6.3, where we present

alternative ways to obtain the needed refinement.
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The random number of actual participants in the auction is Poisson distributed with

mean
λ := qγ.

Given the Poisson distribution, λ is not just the expected number of participants from

an outsider’s perspective, but also the expected number of competitors of a participating

bidder; see Myerson (1998).

For convenience, we will mostly use λ (instead of γ). Thus, the bidders’ belief µ will

be over λ, and the equilibrium will be expressed in terms of λ∗ := q∗γ∗.

2 Equilibrium analysis for the PO scenario

2.1 Solving backward

The interaction in the PO scenario unfolds in three stages: recruitment, entry, and bid-

ding. We can solve for the equilibrium backward.

Stage 3: Bidding. Once the number of participants n is realized, the ensuing auction

is a standard symmetric FPA with independent private values drawn from the c.d.f. G.

Such an auction has a unique symmetric equilibrium (see, e.g., Krishna 2010),

βFPA (v, n) = v −

∫ v

0

[
G (y)

G (v)

]n−1
dy, (1)

and so β∗ = βFPA is the bidding strategy in every equilibrium. The main properties used

below are that βFPA (v, n) is increasing in v and n, with βFPA (v, n) = 0 if n = 1 and

βFPA (v, n)→ v as n becomes large.

Stage 2: Entry. Let U(λ) be the bidders’ ex-ante expected payoff (gross of the cost of

entry), given a Poisson-distributed number of participating bidders with mean λ who use

βFPA.

The main properties of U used in the equilibrium analysis are illustrated in Figure 1:

U is continuous and decreasing in λ, with U (0) = E [v] and limλ→∞ U (λ) = 0. These

properties follow immediately from the properties of βFPA discussed above, as verified in

the appendix in Claim 11.
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λ

U(λ)

b

λ
c

c

E[v]

Figure 1: The bidder’s payoffs U(λ).

Given the bidders’ belief µ concerning λ, their optimal entry decision q satisfies

Eµ[U(λ̂)] > c ⇒ q = 1,

Eµ[U(λ̂)] < c ⇒ q = 0.
(2)

The case of c ≥ U (0) is uninteresting, since it means that no bidder enters. We

therefore assume from now on that c < U (0) (we already assumed 0 < c). Since U is

continuous and strictly decreasing to 0, for every c there is a unique λ̄
c
such that

U(λ
c
) = c. (3)

This is the bidders’ break-even participation level: given λ, a bidder’s expected payoff

from entering is nonnegative if and only if λ ≤ λ
c
. The upper bar in λ

c
will serve as a

reminder that this is the maximal scale acceptable to bidders. In any equilibrium,

λ∗ ≤ λ
c
and q∗ = 1 if λ∗ ∈ (0, λ

c
). (4)

Stage 1: Recruitment. Given q and βFPA, the seller’s problem is to choose recruitment

effort γ to maximize profit. The choice of effort γ at cost s is equivalent to the choice of

λ = qγ at cost s/q. Let Ro (λ) be the seller’s expected revenue given the participation level

λ and βFPA. (The subscript o here and later indicates that participation is observable.
7)

7There is no subscript on U since payoff equivalence implies it is independent of observability as we
will see later.
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λ

Πo(λ, q)

Ro(λ)

λs
q

Figure 2: Revenue, cost, and profit.

The profit as a function of λ and q > 0 is

Πo(λ, q) = Ro(λ)− λ
s

q
,

with Πo(0, 0) = 0 and Πo(λ, 0) = −∞ for λ > 0.

In any equilibrium, λ∗ ∈ argmaxΠo(λ, q
∗). Below, we describe the solution to this

maximization problem and relate it to the properties of the revenue, Ro.

Figure 2 shows the essential properties of Ro, verified in Claim 12: it is increasing

and continuously differentiable, Ro (0) = 0, and limλ→∞Ro (λ) = 1. Thus, an interior λ

maximizes Πo(λ, q) only if

R′o (λ) =
s

q
, (5)

that is, marginal revenue equals marginal cost. (The first-order condition is necessary but

not sufficient because Ro–and hence Πo–is not concave.)

Figure 3 depicts the marginal revenue R′o (blue) and the average revenue
Ro
λ
(red): R′o

is single-peaked, R′o (0) = 0, and limλ→∞R
′

o (λ) = 0. Therefore, the average revenue has

the same basic shape, and its maximum is at its intersection with R′o, denoted by

s̄o := max
λ

Ro (λ)

λ
.

Thus, when s
q
> s̄o, the profit-maximizing λ is 0 (the seller would incur a loss at all

positive λ). When s
q
< s̄o, the profit-maximizing λ is the larger of the two solutions to

the first-order condition (5). Let λo

(
s
q

)
denote this solution. When s

q
= s̄o, both λ = 0

and λ = λo (s̄o) are profit-maximizing.
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λ

R
′

o(λ)

so

λo λo(
s
q
)

s
q

Ro(λ)
λ

Figure 3: Marginal revenue, average revenue, and marginal cost.

Let
λo := λo (s̄o) ;

that is, R′o(λo) = s̄o. Then, in every equilibrium,

s

q∗
> s̄o ⇒ λ∗ = 0,

s

q∗
< s̄o ⇒ λ∗ = λo(

s

q∗
), (6)

s

q∗
= s̄o ⇒ λ∗ ∈ {0, λo}.

In particular, in equilibrium, the seller will never choose a λ between 0 and λo, her minimal

scale. (The lower bar in λo serves as a reminder of that.) Roughly speaking, the first

few bidders are complementary to each other because they stimulate competitive bidding,

leading to an initially increasing marginal revenue. Therefore, the seller contacts either no

bidders, or some minimal number of bidders above λo. The complementarity of bidders

results from our assumption that the seller cannot commit to an optimal reserve price.8

Solving backward through the three stages above, we conclude that an equilibrium

is a profile (λ∗, q∗, µ∗) such that λ∗ satisfies (6), q∗ satisfies (2), and either λ∗ > 0 and

µ∗ (λ∗) = 1, or λ∗ = 0 and Πo(λ̂, q
∗) = 0 for all λ̂ in the support of µ∗.

8With no reserve price, the marginal revenue from the first bidder at λ = 0 is 0. With a positive reserve
price, the marginal revenue is positive at λ = 0, but it is still initially increasing and the complementarity
is still present as long as the reserve price is below the optimal one. The online appendix contains an
extensive discussion of (optimal) reserve prices.
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2.2 The equilibrium outcome

We now use the characterization above to describe the unique equilibrium outcome. We

start with the case of large c, such that λ
c
< λo.

Proposition 1 If λ
c
< λo, then λ

∗ = 0 (no trade) is the unique equilibrium outcome for

every s > 0.

Proof. For λ∗ > 0 to be an equilibrium, it must be that

λo ≤ λ
∗ ≤ λ

c
. (7)

The right inequality follows from bidder optimality, (4), and the left inequality from seller

optimality, (6). If λ
c
< λo, these inequalities cannot hold simultaneously, so there is no

equilibrium with λ∗ > 0.

We now show that an equilibrium with λ∗ = 0 exists. If s > s̄o, then by (6), λ = 0 is

the seller’s unique optimal choice for any q∗. Therefore, λ∗ = 0 with q∗ = 1 and µ∗(0) = 1

is an equilibrium in this case.

If s ≤ s̄o, then the following is an equilibrium: λ
∗ = 0, q∗ satisfies s̄o =

s
q∗
, and

µ∗ has support on {0, λo} with µ
∗(0)U(0) + µ∗(λo)U(λo) = c. Since λ

c
< λo, such a

µ∗ exists because U(0) > c > U(λo). The choice of µ
∗ implies Eµ∗(U(λ)) = c, so q∗ is

bidder-optimal. The choice of q∗ also implies maxλΠo(λ, q
∗) = 0 and argmaxλΠo(λ, q

∗) =

{0, λo}. Hence, λ
∗ = 0 is seller-optimal, and µ∗ satisfies equilibrium condition E2 (iii). �

Thus, when λ
c
< λo, even if s is small and contacting bidders is arbitrarily easy,

there is no trade. This starkly illustrates the potential inefficiencies arising from limited

commitment. For example, if effort were observable, the seller could choose an effort just

below λ
c
so as to give bidders strict incentives to participate and choose q = 1, yielding

revenue close to Ro
(
λ̄
c)
. This would be profitable for small s. However, because effort is

unobservable, the bidders understand that the seller will target a participation level above

λo, and are therefore unwilling to participate. Note that the initial complementarity of

bidders means it is never optimal for the seller to recruit just a few bidders.

Given λo, the no-trade condition λ
c
< λo obtains when c is too large. If c is small

enough, then λ
c
> λo, and trade is possible for certain values of s. Figure 4 gives the

essential information about the equilibria in this case.

There are three cases, corresponding to three configurations of s, which are illustrated

in the figure by {sL, sM , sH}. At sH > s̄o, the seller cannot profitably recruit bidders and

11



R
′

o(λ)

so

λo λ
c

sL
q∗
L

sL

b

sM

λ
∗

M

b

sH b

0

Figure 4: Equilibria of the PO scenario when c is not too large.

so λ∗H = 0, even though c is small. For the intermediate sM , the seller will choose the

larger solution to the first-order condition, s = R′o (λ
∗

M) and q
∗ = 1. For even smaller s,

sL = R
′

o (λ) would imply λ > λ
c
, which is above the bidders’ maximal acceptable scale.

In this case, q∗ will adjust so that R′o (λ
∗

L) =
sL
q∗
implies λ∗L = λ

c
.

Proposition 2 If λ
c
> λo, then the equilibrium outcome is as follows:

(i) If s > s̄o, then λ
∗ = 0 and q∗ = 1.

(ii) If s̄o > s > R
′

o(λ
c
), then λ∗ = λo (s) and q

∗ = 1.

(iii) If R′o(λ
c
) > s, then λ∗ = λ

c
and s

q∗
= R′o(λ

c
).

Finally, if either s = s̄o or λ
c
= λo, then λ

∗ = 0 and λ∗ = λo are both equilibrium

outcomes. Thus, except in these special cases, the equilibrium is unique. The main step

in the proof of Proposition 2 in the appendix is to show that the equilibrium refinement

in condition E2 (iii) rules out no-trade equilibria when s < s̄o.

To be willing to bear the cost of entry, bidders must believe that the seller is not

recruiting too aggressively. This is immediate for large s. For small s, this is achieved

in equilibrium when bidders are sufficiently reluctant to enter (q∗ is sufficiently small) so

that the marginal recruitment cost is high enough to induce the seller to stop at λ
c
.

The welfare implication of Proposition 2 for small s is that

λ∗
s

q∗
= λ

c
R′o(λ

c
) = const > 0. (8)
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So even if s is vanishingly small, the total recruitment cost does not vanish, because it is

determined by incentives rather than by s.9 For small s, the total recruitment effort is

wasteful. It could be avoided if the seller could commit to some effort level below λ
c
, as

discussed after Proposition 1.

The magnitude of the inefficiency depends on c. When c is small, the total recruitment

cost for small s is also small:10

lim
c→0

λ
c
R′o(λ

c
) = 0.

The occurrence of wasteful recruitment even for small s is due to the seller’s inability to

commit and costly bidder entry.

2.3 Other auction formats and bargaining

The characterization of equilibrium relies only on the properties of the reduced-form

payoffs U and Ro. Thus, we could have started with some reduced-form bargaining model

that maps participation into a split of the available surplus between the seller and bidders.

If the participating bidders’ payoffs are decreasing to 0 in the level of participation and

if the seller’s marginal revenue as a function of participation is single-peaked, then the

characterization results from Propositions 1 and 2 hold.

In particular, our results extend, of course, to all standard auctions in which the

bidder with the highest value wins, such as the SPA or the all-pay auction. This follows

immediately from payoff and revenue equivalence, which imply that U and Ro are the

same across these auction formats.

3 The PU auction: Unobservable participation

After bidders have sunk their entry costs, the seller wants to convince them they have

many competitors. However, she cannot do this unless she can credibly disclose partici-

pation because of her incentive to exaggerate the number of bidders. Subramanian (2010)

gives numerous examples of such exaggeration: realtors pretend to get calls from other

interested parties; companies suggest the existence of additional bidders during takeover

9Equation (8) shows that total recruitment costs are proportional to R′0(λ
c
). A subtle implication

of this is that the seller may be better off in a different trading regime that gives her a lower marginal
revenue–as we will see when we discuss the PU scenario.
10When c → 0, we have λ̄

c
→ ∞. However, limλ→∞ λR

′
o (λ) = 0, since Ro is bounded on R+ and R

′
o

is positive and monotonically decreasing for λ ≥ λo.
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negotiations; at Sotheby’s and other auction houses, auctioneers make up “chandelier

bids” to stimulate bidding.11

The PU scenario captures the effects of limited disclosure ability. It is the same

model as in the PO scenario, except that the bidders cannot observe the number of other

participants at any stage (before or after entry). The equilibrium definition from Section

1.2 remains the same. To simplify the exposition, we further restrict attention to equilibria

in which the bidders’ beliefs have point support, that is, µ∗(λ̂) = 1 for some λ̂.12 We index

the magnitudes for this scenario with the subscript u (for “unobservable”).

3.1 Solving backward

As before, the interaction unfolds in three stages–recruitment, entry, and bidding–and

the equilibrium can be solved for backward.

Stage 3: Bidding. Since bidders do not observe the actual participation, this stage cor-

responds to an FPA with an uncertain number of bidders. A straightforward application

of revenue equivalence characterizes its equilibrium.13

Claim 1 An FPA with a Poisson-distributed number of bidders with mean λ has a unique

symmetric bidding equilibrium,

βλ (v) = v −

∫ v

0

e−λ(G(v)−G(x))dx. (9)

In every equilibrium, the bidders have the belief µ∗(λ̂) = 1 for some λ̂, and so their

equilibrium strategy is β∗ = βλ̂.

Stage 2: Entry. The bidders’ ex-ante expected payoff given λ and βλ is U(λ), just

as in the PO scenario. Again, this is immediate from payoff equivalence and βλ being

increasing; see the proof of Claim 1. Thus, as before, q∗ satisfies (2). Hence, in every

equilibrium, λ∗ ≤ λ
c
, and for all λ∗ ∈ (0, λ

c
), q∗ = 1.

11The use of fictitious competitors or bids is limited by law, although US courts permit mild versions
of it as “sales talk.” On the other hand, non-disclosure requirements may prevent sellers from revealing
the presence of actual competitors.
12Since we assume pure strategies by the seller, this is only a restriction in the case of λ∗ = 0, and, as

will become clear later, it entails no further loss of generality.
13For a textbook analysis of an auction with an uncertain number of bidders, see, e.g., Krishna (2009,

Section 3.2.2).
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Stage 1: Recruitment. Let Ru (λ, β) be the seller’s expected revenue given λ and β.

Given q > 0, her expected payoff is

Πu(λ, β, q) = Ru(λ, β)− λ
s

q
;

it is 0 for λ = q = 0, and it is −∞ for q = 0 and λ > 0. The functions Ru and hence Πu

are concave in λ (Claim 13 in the appendix).14 Therefore, for any λ̂ and q, a necessary

and sufficient condition for maximization of Πu with respect to λ is

∂

∂λ
Ru(λ, βλ̂) ≤

s

q
, (10)

with equality holding for λ > 0.

Let

ξ (λ) :=
∂

∂λ
Ru(λ, βλ̂)λ̂=λ,

which is the marginal revenue with respect to λ where it coincides with the bidders’

expectation λ̂. Our previous discussion implies that λ∗ > 0 is part of an equilibrium if

ξ (λ∗) =
s

q∗

and either λ∗ < λ
c
with q∗ = 1 or λ∗ = λ

c
with q∗ ∈ (0, 1].

3.2 The equilibrium outcomes

Claim 2 For all s and c, the PU scenario always has a no-trade equilibrium with λ∗ = 0.

In the no-trade equilibrium, q∗ = 1, β∗ (v) ≡ 0, and µ∗ (0) = 0. Thus, if off the

equilibrium path a bidder is contacted, he believes himself to be the only bidder and bids

0. This means it is indeed optimal for the seller to recruit no bidders. Being unable to

commit to the recruitment effort or disclose the level of participation, the seller cannot

break out of this equilibrium (even if s and c are small).

Turning to equilibria with trade, we consider the function ξ as illustrated in Figure 5.

As shown in the figure and verified in the appendix (Claim 13), ξ is continuous, ξ (λ) > 0

14This follows from the monotonicity of the given β
λ̂
and the concavity in λ of the first order statistic

of a random sample distributed as Poisson(λ).
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Figure 5: The function ξ and the equilibria of the PU scenario for sH and sL.

except at λ = 0, and ξ (λ)→ 0 for λ→∞.15 We let

su := max
λ
ξ (λ) .

For s ≤ su, λu(s) and λu(s) denote the minimal and maximal values of λ such that

ξ (λ) = s. The figure shows three equilibria (marked with dots) for each of two s values,

sH > sL:

• For sH , the equilibria are at λ
∗ = 0, λ∗ = λu(sH), and λ

∗ = λu(sH).

• For sL, the equilibria are at λ
∗ = 0, λ∗ = λu(sL), and λ

∗ = λ
c
.

Figure 5 is for the case where c is small enough so that λ̄
c
is above the maximizer of

ξ. In this case, when s is small, the equilibrium with the largest participation is at λ
c
.

As in the PO scenario, the total recruitment effort in this equilibrium is independent of

s. For small s, q∗ adjusts and the total effort (s/q∗)λ
c
remains constant.

In the PU scenario, there may be equilibria with trade even if c is large so that λ
c
is

small. Figure 6 depicts such a case. Since ξ(0) = 0 and ξ is continuous, λu(s) is below λ
c

for s small enough, such as sL in the figure.

Note that equilibria like the one with λ∗ = λu(sL) in the case of sL are pseudo-unstable,

since ξ crosses s from below.16

15When G is uniform, ξ is single-peaked, as depicted. However, we do not know whether ξ is single-
peaked for general G.
16This is in the sense that if the actual and expected λ are for some reason displaced upwards (down-

wards) from the equilibrium point, the seller has an incentive to recruit more (less) aggressively.
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Figure 6: The equilibria of the PU scenario with large c.

4 Comparison of the PO and PU scenarios

4.1 Ranking reversals

In the PO scenario, the incentive to recruit is driven by two considerations: increasing

the likelihood that high-value bidders will appear and inducing more aggressive bidding.

In the PU scenario, only the former consideration is present. This difference is reflected

by the stronger marginal incentive to recruit in the PO scenario. As shown below, it leads

to ranking reversals: for small c and not-too-small s, the PO scenario generates higher

participation and profit than the PU scenario; the opposite is true for large c or small s.

Figure 7, depicting R′o and ξ, shows equilibria of the two scenarios for two levels of s.

Recall that s̄o and su are the maximal values of s for which an equilibrium with positive λ

exists in the PO and the PU scenario, respectively. The following claim states the essential

features of R′o and ξ. It formalizes the idea that when participation is observable, the

incentive to increase competition leads to strictly higher marginal revenue.

Claim 3 The functions R′o and ξ relate as follows:

R′o(λ) > ξ (λ) for all λ > 0;

s̄o > su.

Of course, when the bidders’ beliefs are correct, revenue equivalence holds, i.e.

Ru(λ, βλ̂) = Ro (λ) for λ̂ = λ, (11)
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Figure 7: Comparison of the PO and PU scenarios, showing R′0 and ξ and the equilibria
for sH and sL.

and so Πo (λ, q) = Πu(λ, βλ, q) for all λ and q. The proof of Claim 3 and our subsequent

discussion make extensive use of this fact. In particular, the first part of the claim is

immediate upon taking the total derivative in (11), which yields

R′o (λ) =
∂

∂λ
Ru(λ, βλ̂)|λ̂=λ︸ ︷︷ ︸

=ξ(λ)

+
d

dλ̂
Ru(λ, βλ̂)|λ̂=λ . (12)

The claim follows from d

dλ̂
Ru(λ, βλ̂) > 0, which holds because βλ̂ is strictly increasing in λ̂.

Thus, as claimed, there is a stronger recruitment incentive in the PO scenario, precisely

because greater participation makes bidders behave more aggressively.

We make four observations about the seller’s relative profits in the two scenarios.

Observation 1. There always exists a robust no-trade equilibrium in the PU scenario. In

the PO scenario, such an equilibrium exists only if either s > s̄o or λ̄
c
< λo. Without the

ability to disclose the level of participation, the seller may be trapped in an equilibrium

without competition.

Observation 2. For intermediate s and small c, the seller’s profit is higher in the PO

than in the PU scenario. Thus, the ability to disclose participation helps the seller.

Claim 4 If λ̄
c
> λo and s satisfies s̄o > s > R′o

(
λ̄
c)
, the seller’s equilibrium profit is

strictly higher in the PO scenario than in any equilibrium of the PU scenario.
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The claim is illustrated in Figure 7. If the seller in the PU scenario could commit

to λ∗o, she would get the same profit as in the PO scenario, by revenue equivalence (11).

However, without commitment, this is not sustainable, because in the PU scenario she

would have an incentive to secretly reduce λ. The bidders, anticipating this, would plan

to bid less aggressively than if they expected λ∗o, thus augmenting the seller’s incentive

to reduce λ. When so > s > su, these self-reinforcing considerations drive the maximal

PU equilibrium participation to 0–complete “unraveling” of the market–even though

s < so implies a positive λ
∗

o. If s < su, then λ
∗

u may settle at some positive level, albeit

lower than λ∗o. In either case, this implies lower profit in the PU scenario.

We can also state this insight in terms of the entry costs c: for any s < so, if c is

small enough, then s > R′o
(
λ̄
c)
. Hence, when c is small, the seller’s profit is higher in

the PO scenario. Roughly speaking, for small c, the seller’s main concern is to stimulate

competition (rather than entry), and for this the ability to disclose participation is helpful.

Observation 3. For small s and small c, the seller’s profit is higher in the PU scenario

than in the PO scenario, because the former reduces wasteful recruitment. Thus, the

ability to disclose participation may hurt the seller.

Claim 5 If λ̄
c
> λo and s < ξ

(
λ̄
c)
, then the seller’s equilibrium profit in the PO scenario

is strictly smaller than in her optimal equilibrium in the PU scenario.

R′

o(λ)

so

λo

bsL
q∗
o,L

ξ(λ)
b

λ
c

sL
q∗
u,L

sL

Figure 8: The seller’s profit is lower in the PO scenario than the PU scenario for small s
and c.

The claim is illustrated by sL in Figure 8. The key idea is that the total recruitment

costs are proportional to the marginal revenue in each scenario; therefore, R′o
(
λ̄
c)
> ξ

(
λ̄
c)
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implies lower recruitment costs in the PU scenario. Thus, when s is sufficiently small so

that the seller would like to commit to limiting her recruitment, the lower recruitment

incentives of the PU scenario are helpful, because they reduce wasteful recruitment.

Observation 4. When c is large enough so that λ̄
c
< λo, there is no trade in the PO

scenario. By contrast, as illustrated in Figure 6, in the PU scenario there is an equilib-

rium with trade for all c provided s is small enough, because here the lower recruitment

incentives help the seller commit to recruiting less than λ̄
c
.

4.2 Comparison of first- and second-price auctions

As noted in Section 2.3, in terms of payoffs and costs, the PO equilibrium is equivalent

to the dominant-strategy equilibrium of an SPA. Since for the latter equilibrium it does

not matter whether participation is observable, we may think of the format as an SPA

with unobservable participation. Hence, the insights obtained in comparing the PO and

PU scenarios in Section 4.1 also arise in comparing the SPA and FPA with unobservable

participation.

Thus, while the FPA and SPA are equivalent in terms of equilibrium profit and welfare

when participation is observable, they are not equivalent with unobservable participation

because they give different recruitment incentives.

4.3 Disclosure

Suppose that the seller could credibly commit in advance either to always disclose or to

never disclose the number of participants prior to the bidding. This is equivalent to the

seller choosing between the PO and PU scenarios. Thus, if such commitment is possible,

the comparison in Sections 4.1—4.2 applies also to the disclosure question. In particular,

our discussion implies that the seller may prefer to commit in advance to disclosure or

non-disclosure depending on s and c.

5 Uncertainty about recruitment costs

It is natural to suppose that the bidders may be uncertain about the seller’s recruit-

ment effort (even in equilibrium). Here, we model this by assuming that the bidders are

uncertain about s and study the implications.
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First, in Sections 5.1 and 5.2, we consider a binary setting in which the seller’s recruit-

ment cost is either high or low, sH > sL > 0. Naturally, optimal recruitment is larger for

sL than for sH . This implies a “sampling curse”: even if both costs are equally likely ex

ante, conditional on being recruited, a bidder will believe sL is more likely, because he is

more likely to have been recruited in this case. A small sL can imply very cautious bidder

entry (small q). This makes entry by sH unprofitable, pushing it out of the market.

In Section 5.3, we ask how general this inefficiency is and study a setting with re-

cruitment costs uniformly distributed on [0, s̄o].
17 We find that in equilibrium, the seller

actively recruits bidders whenever her recruitment cost is below some cutoff. We show

that this cutoff is never interior: either the seller is active for all cost levels, or the market

unravels completely, with no trade happening. Roughly speaking, because of the sampling

curse, if the cutoff were interior, the bidders would believe that the seller had an even

lower recruitment cost.

5.1 Binary setup

We minimally modify the PO model of Section 1.1 to capture the uncertainty about costs

(and hence recruitment). The privately known seller’s type ω has marginal recruitment

cost sω and occurs with prior probability ρω, for ω ∈ {L,H}. Type L is more efficient:

sH > sL > 0. A seller of type ω selects recruitment effort γω.

Contacted bidders decide whether to enter, then observe their own values and the

number of participants, and finally submit bids in an FPA. The bidders’ symmetric entry

and bidding strategy (q,β) and the state-dependent participation rates λ:=(λL, λH), where

λω = qγω, are just as in the PO scenario.

In any symmetric equilibrium, β must be the unique symmetric equilibrium strategy

βFPA (v, n) of the FPA (see (1)). Therefore, for any given participation rate λ, the seller’s

revenue and the bidders’ ex-ante expected payoff are the same as in the PO scenario.

Hence, the seller of type ω has profit

Πω(λω, q) = Ro(λω)− λω
sω
q
.

Given the bidders’ belief µ (the distribution over λ conditional on being contacted), their

expected payoff is Eµ(U(λ)) and their optimal entry decision q satisfies (2).

17Formally, we consider a uniform distribution on [s, s̄o] for some s > 0 and then consider s→ 0. This
circumvents the problem that a seller with s = 0 would choose γ =∞.
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For λ 6= 0, let

φω(λ) =
ρωλω
Σρωλω

.

Since λ 6= 0 implies γ:=(γL, γH) 6= 0, it follows that φω(λ) is the probability of ω

conditional on a bidder being contacted by the seller. An equilibrium consists of λ∗ =

(λ∗L, λ
∗

H) and q
∗ such that the following hold:

(E’1) λ = λ∗ω maximizes Πω(λ, q
∗).

(E’2) There exists a belief µ such that

(i) q∗ is optimal given µ, i.e., it satisfies (2);

(ii) if λ∗ 6= (0, 0), then µ(λ∗ω) = φω(λ
∗) (confirmation on path);

(iii) if λ∗ = (0, 0), the seller’s payoff is not negative for any λ in the support of µ.

Claim 6 There exists an equilibrium.

For the equilibrium analysis, we can simply import what we know from the PO scenario

to the current setting. The following discussion and Figure 9 prove Claim 6 above and

Claim 7 below.

For the following discussion, recall from the PO scenario that so is the maximal s

that sustains equilibrium with trade; that λo(z) is the profit-maximizing λ for a given

z ≤ so (i.e., the larger solution of R
′

o(λ) = z); that λo is the seller’s minimum profitable

scale (λo = λo(so)); and that λ
c
is the maximal λ for which bidder entry is beneficial

(U(λ
c
) = c).

Let

λ̂ω(q) =

{
λo(

sω
q
) if sω

q
≤ so,

0 if sω
q
> so,

and λ̂(q) =
(
λ̂L(q), λ̂H(q)

)
. The PO analysis immediately implies that λ∗ω = λ̂ω(q

∗).

Therefore, an equilibrium with λ∗ = (0, 0) exists if and only if sL
q∗
≥ so, which can occur

if and only if sL ≥ so or λ
c
≤ λo, and it is unique if one of these inequalities is strict.

To consider equilibria with trade, λ∗ 6= (0, 0), let V (λ) denote the bidders’ expected

payoff at λ = (λL, λH),

V (λ) = Σφω(λ)U(λw). (13)

In an equilibrium with trade, q∗ has to satisfy

q∗ ∈ (0, 1) ⇒ V (λ̂(q∗)) = c,

q∗ = 1 ⇒ V (λ∗) ≥ c.
(14)
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Obviously, sH > so implies λ
∗

H = 0 in any equilibrium, and we are back in the PO

scenario with commonly known s = sL, for which existence and characterization are

already established. Therefore, the only interesting case to consider is so > sH > sL > 0.

Figure 9 depicts V (λ̂(q)) as a function of q. The intersection points between V (λ̂(·))

and c correspond to (14), and therefore capture the possible equilibria with trade. The

minimal q that enables a profitable positive scale for seller type ω is qω such that so =
sω
qω
.

At qL, type L becomes active with the minimal positive scale λo; at qH , type H also joins

with the minimal scale λo. This explains the discontinuities of V (λ̂(q)) at qL and qH .
18

V (λ̂(q))

q

c

c
c1

c2

qL qH 1

Figure 9: Equilibrium with two seller types.

The following claim summarizes what the above discussion and the diagram have

established.

Claim 7 For so > sH > sL > 0, the equilibrium set is characterized by three cutoffs

c > c1 > c2:

(i) For c > c, the unique equilibrium has λ∗L = λ
∗

H = 0.

(ii) For c ∈ (c1, c), the unique equilibrium with trade has λ∗L > 0 = λ
∗

H .

(iii) For c < c2, the unique equilibrium with trade has λ∗L > λ
∗

H > 0.

(iv) For c ∈ (c2, c1), there are two equilibria with trade, one with λ
∗

L > 0 = λ∗H and

one with λ∗L > λ
∗

H > 0.

Remark. We have restricted our attention to pure strategies for the seller. However, if we

admit randomized strategies, then for c ∈ (c2, c1) there is also a third equilibrium in which

λ∗L > 0 and λ
∗

H is randomized between a positive level and 0 that ensures V (λ̂(q̄H)) = c.

18In more detail, λ̂(q) = (0, 0) for q < qL; it jumps to (λo, 0) at qL and increases continuously on
[qL, qH) according to (λo(

sL
q
), 0); it jumps again at qH to (λo(

sL
q
H

), λo), and thereafter continues according

to (λo(
sL
q
), λo(

sH
q
)). As for V , note that it is decreasing until qH given that (λo(

sL
q
), 0) is increasing, and

in this range, V (λo(
sL
q
), 0) = U

(
λo(

sL
q
)
)
. As noted, at q̄H , H becomes active. Moreover, at this point,

λo(
sL
q
H

) > λo, which implies that V (λo, 0) > V (λo(
sL
q
H

), λo). This is seen in the diagram as V (λ̂(·)) being

higher at qL than at qH .
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5.2 Unraveling

As noted above, when sL is sufficiently small relative to sH , only type L is active in

equilibrium (i.e., λ∗H = 0). This is so even when sH itself is small enough so that, if it

were commonly known, the equilibrium would involve active recruiting.

Claim 8 Suppose c > 0. For any sH > 0 and ρH > 0, there exists a threshold S(sH , ρH)

such that sL < S(sH , ρH) implies λ
∗

L > 0 and λ
∗

H = 0.

When sL is small, q
∗ must be small as well, for otherwise λ∗L would be very large and

entry would be unprofitable for bidders. However, a small q∗ means high marginal recruit-

ment cost sH/q
∗ for seller type H, making participation unprofitable for this type. More

formally, given sH and ρH , for sufficiently small values of sL, V (λo(sL/qH), λo) < c. Hence,

for any q ≥ qH (that accommodates the participation of H), V (λo(sL/q), λo(sH/q)) ≤

V (λo(sL/qH), λo) < c. Thus, it must be that q
∗ < qH , and the unique equilibrium is with

λ∗L = λ
c
and λ∗H = 0. This outcome is inefficient: a seller of type H might fail to trade

even when sH is quite low and would result in active trade if it were known.

This insight does not depend on the two-type assumption: if there are more than two

seller types, then if the lowest s is low enough, all types with higher s will still be shut out

of the market. However, it does depend on the discreteness of the set of seller types, since

the argument relies on making the ratio of the lowest to the next lowest cost small while

keeping their probabilities constant. We now ask whether a similar unraveling occurs in

an environment where very low costs are associated with very low probabilities.

5.3 Continuum of seller types

We now consider a continuum of possible seller types. The marginal recruitment cost s

is distributed uniformly on [s, so], where s > 0 and so is as defined above (the maximal

s compatible with active recruitment in the commonly-known-type case). Our previous

model extends immediately to this environment. Identifying ω with s itself, we write λs

and λ = (λs)s∈[s,so].

The definition of equilibrium also extends almost directly. For each s, λ∗s and q
∗

satisfy the conditions (E’1) and (E’2) of Section 5.1, with s and λs replacing sω and λω,

respectively. The equilibrium belief density µ also satisfies the analogous conditions. In

particular, let

φs(λ) :=
λs∫ so

s
λsds

.
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If λ∗s 6= 0 for some s ∈ (s, s̄o], then µ(λ
∗

s) = φs(λ
∗) for all s. Let

V (λ) :=
∫ so
s
φs(λ)U(λs)ds =

∫ so
s
λsU(λs)ds
∫ so
s
λsds

. (15)

In an equilibrium with trade, q∗ satisfies (14).

We already know from the discrete-types case that partial unraveling is possible, in

the sense that trade might be shut down for some type, even though trade would be

sustainable if that type were commonly known. The question is whether it is possible to

have complete or nearly complete unraveling in equilibrium, even when c is low enough

to allow trade when s is commonly known.

Obviously, if some seller type in [s, so] is active in equilibrium, so is every lower type.

Hence the equilibrium has a cutoff structure, and moreover, the cutoff must be q∗so.

It follows from the previous discussion that for s < q∗so, λ
∗

s = λo(s/q
∗) > 0, and for

s > q∗so, we have λ
∗

s = 0, where λo(z) is the profit-maximizing λ in the PO scenario when

the marginal recruitment cost is z. Let λo=(λo(s))s∈[s,so], and recall that c is the maximal

cost level compatible with trade in the PO scenario (i.e., λ
c
= λo(so) = λo).

Claim 9 The unique equilibrium outcomes are as follows:

(i) c ≥ c: there is no trade, λ∗ = 0; q∗ = s/so;

(ii) c ≤ V (λo): all types are active, λ
∗ = λo; q

∗ = 1;

(iii) V (λo) < c < c: only s ∈ [s, soq
∗] are active, with

λ∗s =

{
λo(s/q

∗) > 0 for s ∈ [s, soq
∗],

0 for s > soq
∗,

(16)

and q∗ ∈ (0, 1) is such that V (λ∗) = c.

The proof of the claim is in the appendix in Section 7.4.1. Since by definition c =

U(λo), for any c < c and commonly known s < so, the equilibrium in the PO scenario

involves trade. In contrast, Part (iii) of Claim 9 identifies a range of c < c and s < so for

which there is no trade.

The extent of such unraveling depends on c and s. Proposition 3 identifies a threshold

c < c such that if c > c, then the unraveling is nearly complete when s is small; if c < c,

trade always takes place regardless of how small s is.

Given c and s, the probability of no recruitment in equilibrium is Pr({s : λ∗s = 0}|c, s).
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Proposition 3 There is some c such that 0 < c < c and

(i) for any c ∈ (c, c), lims→0 Pr({s : λ
∗

s = 0}|c, s) = 1;

(ii) for any c < c and any s < so, Pr({s : λ
∗

s = 0}|c, s) = 0.

Note again that nearly complete unraveling occurs for a range of c < c for which trade

would take place at any commonly known s ∈ (0, so]. The proof of the Proposition is in

the appendix in Section 7.4.2.

6 Discussion and extensions

This section discusses welfare, seller commitment, and the refinement. The online ap-

pendix discusses reserve prices, fees, bidder heterogeneity (known values at the time of

entry), and a numerical analysis for a uniform value distribution.

6.1 Welfare

Welfare W (λ, q) is identified with the total surplus,

W (λ, q) := T (λ)− λ
s

q
− λc,

where T (λ) =
∫ 1
0
vλe−λ(1−G(v))g(v)dv =

∫ 1
0
[1− e−λ(1−G(v))]dv is the expected value of the

first order statistic given Poisson(λ)-distributed participation. Let λw and qw denote the

welfare-maximizing magnitudes.

Proposition 4 (i) We have qw = 1. (ii) If U(0) > s+ c, then λw is the unique value of

λ satisfying

U(λ) = c+ s. (17)

If U(0) < s+ c, then λw = 0.

Proof. Part (i) is obvious. For Part (ii), note that

T ′(λ) =

∫ 1

0

(1−G(v)) [1− e−λ(1−G(v))]dv = U (λ) ,

where the second equality uses the characterization of U in (19) from Claim 11. Since U

is strictly decreasing, T is strictly concave. It follows that (17) is the first-order condition

for welfare maximization, and the condition is sufficient, proving the claim. �
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The critical equality is

T ′(λ) = U(λ). (18)

For intuition, recall the equivalence of the expected payoffs to those of the SPA, where

each bidder’s payoff is equal to his marginal contribution to the total surplus.

There are two types of inefficiency in equilibrium in the PO scenario. First, as we

already know, we can have q∗ < 1 in equilibrium, which immediately means wasted

recruitment effort. Second, as shown below, for almost all pairs (s, c) in the PO scenario,

λ∗ 6= λw, and both excessive participation, λ∗ > λw, and deficient participation, λ∗ < λw,

may arise in equilibrium.

For the equilibrium of the PO scenario to coincide with the welfare maximum, we

must have R′o(λ
∗) = s and U(λ∗) = s+ c. Since both U and R′o are independent of s and

c, these equalities cannot be expected to hold simultaneously (they fail for almost all c

and s). Thus, in general, the equilibrium does not maximize welfare.

Figure 10 depicts a possible relationship between U(λ) and R′o(λ). Its relevant features

are consistent with a uniform value distribution, that is, G (v) = v.

R
′

o
(λ)so

λo

s+ c

λ
W

b

λ̃

b

s

λ
∗

b

U(λ)

Figure 10: Welfare.

In this case, since U(λ) < R′o(λ) for any λ ≥ λo, it follows that λ
∗ > λw in any

equilibrium with trade. If λ∗ < λ
c
, then s + c > s = R′o(λ

∗) > U(λ∗); if λ∗ = λ
c
, then

s + c > c = U(λ∗). In the case of λ∗ = λ
c
, there is also the inefficiency of q∗ < 1, except

when s = R′o(λ
c
). On the other hand, there is a range of (s, c) combinations such that

s + c < U(0) requires trade, λw > 0, but either s > so or λ
c
< λo precludes trade in

equilibrium, meaning λw > λ∗ = 0.

We have not examined in detail the relationship between equilibrium and welfare in

the PU scenario, but we expect the equilibria to be generally inefficient in that scenario
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as well. Since the maximal equilibrium in the PU scenario involves lower participation

than that of the PO scenario, there will be less inefficiency due to excessive recruiting.19

For a general G satisfying our regularity assumptions, we have already established

that U is decreasing and R′o is single-peaked, as shown in Figure 10. The fact that U

intersects R′o for the first time at some point λ̃ to the right of the maximum of R′o also

holds for general G (see Claim 14 in the appendix). Some other details in the figure have

not been established analytically for general G,20 but these details do not affect the overall

conclusion that the equilibria are suboptimal.

The excessive recruitment noted above for the uniform distribution recalls the result in

Szech (2011) that whenG exhibits an increasing hazard rate, the equilibrium participation

in an FPA with linear recruitment cost will exceed the welfare-maximizing level. Our

model is somewhat different because of the stochastic arrival and entry costs, but the

insight is similar.

The condition (18) implies that, for a given λ, the individual bidders’ entry decisions

are efficient. This is the counterpart in our model of a central finding in the literature on

costly entry; see Levin and Smith (1994).

Note that λw maximizes welfare only within the constraints of the original Poisson

contacting process. For example, welfare would be higher if the planner could coordinate

entry among the contacted bidders, avoiding excessive participation numbers when the

realized number of contacted bidders is too high.21

6.2 Commitment

Consider the PO scenario under the assumption that the bidders can observe the seller’s

choice of recruitment effort γ.

Claim 10 Suppose γ is observable and s ≤ s̄o. Then the seller’s profit-maximizing effort

γ̂ is as follows:

(i) if λ̄
c
≥λo, then γ̂ = min{λ̄

c
, λo (s)};

(ii) if λ̄
c
<λo, then γ̂ = λ̄

c
if Ro(λ̄

c
) ≥ λ̄

c
s and γ̂ = 0 otherwise.

19When the value distribution G is uniform, then numerically ξ < U , meaning, the seller may often
recruit too few bidders.
20If G is uniform, we have shown that Uo(λ) and R

′
o(λ) intersect only once and that λ̃ is below λo. For

general G, we have not established these properties. However, loosely speaking, we expect Uo(λ) to be
mostly below R′o(λ) since Ro(λ) is below T (λ) and converging to it.
21This is similar to the observation of Levin and Smith (1994) that the randomness over participation

numbers in symmetric mixed equilibria reduces welfare relative to the deterministic participation numbers
in asymmetric pure equilibria.
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The claim is immediate from our previous discussions. Of course, q = 1 for all choices

of γ̂. Whenever γ̂ = λ̄
c
, commitment to γ̂ = λ̄

c
strictly improves the seller’s profit (except

for non-generic parameters): it enables positive trade when λ̄
c
<λo and Ro(λ̄

c
) > λ̄

c
s, and

it saves on recruitment costs when λ̄
c
>λo and R

′

o(λ̄
c
) > s. If γ̂ 6= λ̄

c
, then commitment

does not change the outcome.

Regarding welfare, our observations from Section 6.1 imply that when γ̂ = λ̄
c
, the

recruitment choice with commitment is always inefficiently large, since λ̄
c
> λw if s > 0.

6.3 Uniqueness of equilibrium in the PO scenario

The equilibrium outcome of the PO scenario is unique for almost all values of s and c

(except when s = s̄o or λ
c
= λo), given the refinement imposed by the last condition of

the equilibrium definition in Section 1.2.22 Without the refinement, the no-trade outcome

is always an equilibrium; more precisely,

• if s > s̄o or λ
c
< λo, then no-trade is still the unique equilibrium outcome;

• if s < s̄o and λ
c
> λo, there are now two equilibrium outcomes: one with λ∗ > 0

and one with λ∗ = 0.

In the second case, the additional no-trade equilibrium λ∗ = 0 is supported by the

off-path belief µ(λ
c
) = 1 and q∗ ∈ (0, s

s̄o
]. That is, bidders contacted off-path conjecture

that λ = λ
c
, which makes them indifferent among all choices of q, including q∗. Such an

equilibrium violates the refinement, since λ
c
implies strictly negative profits given λ

c
> λo

and q∗ ≤ s
s̄o
.23

Observe that this no-trade equilibrium is unconvincing on other grounds as well. First,

when s < s̄o and λ
c
> λo, it is Pareto dominated by the equilibrium with trade. Second,

it is not robust to perturbations. Consider a perturbation in which the seller is required

to choose at least an effort γ ≥ ε > 0, for some small ε > 0. As ε → 0, this perturbed

game has a unique limit outcome that corresponds to the equilibrium with trade. This is

because for any q ∈ (0, 1) such that s
q
≥ s̄o, the seller’s best response is either λ = ε or λo

(or mixing between them). However, in all these cases, λ
c
> λo implies that the bidders

have a strict incentive to enter, so that q = 1.

22If γ∗ = 0, then no γ̂ in the support of µ yields negative profits. A slightly more general formulation
would require every γ̂ in the support of µ to be a best response by the seller to q∗ and β∗.
23If q∗ = s

s̄o
, then λ = λo is also a best response, but still λo 6= λ̄

c
.
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Formally, since this game is not finite (it has a continuum of actions and an unbounded

number of players), we cannot directly apply the concept of stability in the sense of

Kohlberg and Mertens (1986). However, for a discretized version in which the seller

chooses λ from a finite grid (that contains 0, λ
c
, and λo), we can define a refinement

in the spirit of stability, requiring that the equilibrium be immune to all vanishing fully

mixed perturbations. It is fairly immediate that the no-trade equilibrium will fail such

refinement, while the unique equilibrium with trade will survive it.24

We can also confirm the instability of the no-trade equilibrium indirectly by observing

that it fails the invariance property of stable equilibrium. To see this, consider the equiv-

alent extensive form in which the seller first chooses between λ = 0, which terminates

the game, and another action, “λ > 0”, which stands for all positive recruitment efforts.

After taking the action “λ > 0”, the seller chooses the specific λ and the bidders make

their entry decisions. The unique subgame-perfect equilibrium here is the equilibrium

with trade, by the same argument as used above for the variation with γ ≥ ε.

6.4 Concluding remarks

This paper contributes to the market approach in auction theory, treating auctions as

abstractions of less formal price formation.25 We examine the roles and interactions of

three ubiquitous frictions in such scenarios: costly recruitment, costly bidder entry, and

the seller’s inability to commit. Our findings demonstrate that their interaction can lead

to significant inefficiencies and, in some cases, the complete unraveling of trade.

Many open questions remain. For instance, it might be interesting to study the com-

parative statics of the outcome with respect to the value distribution–how does the latter

affect the seller’s recruitment effort and the inefficiency? Relatedly, one could explicitly

model a setting where the bidders acquire information at some cost or where the seller

provides information to bidders at some cost, implicitly subsidizing entry. As highlighted

in the introduction, the fundamental inefficiencies of informal auctions may induce de-

mand for intermediaries; it may be worthwhile to study the role of such intermediaries in

our framework.

24Note, however, that the no-trade equilibrium will survive an analogously defined refinement in the
spirit of perfect equilibrium, since we can focus on a sequence of perturbations for which the expectation
conditional on λ > 0 is λ

c
.

25This perspective has its roots in the early literature (Milgrom, 1979; Wilson, 1977).
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7 Appendix

7.1 Proofs for the PO scenario

7.1.1 Bidders’ ex-ante expected payoff

Claim 11 The bidders’ payoff is

U(λ) =

∫ 1

0

e−(1−G(v))λ[1−G (v)]dv. (19)

In particular, U is strictly decreasing and continuous, U (0) = E [v], and limλ→∞ U (λ) =

0.

Proof. When a bidder with value v is in an auction with a total of n bidders, he wins

with probability G (v)n−1 given that βFPA is strictly increasing. Also, the lowest type

obtains no payoff, U (n, 0) = 0. Therefore, the usual envelope argument implies that the

expected equilibrium payoffs must be U (n, v) =
∫ v
0
G (x)n−1 dx; see Krishna (2000).26

Hence, when n is drawn from a Poisson distribution with mean λ, the expected payoff

of type v is

∞∑

n=1

e−λ
λn−1

(n− 1)!
U (n, v) =

∫ v

0

∞∑

n=0

e−λ
λnG (x)n

n!
dx =

∫ v

0

e−λ(1−G(x))dx.

Therefore, the ex-ante expected payoff is

U(λ) =

∫ 1

0

(∫ v

0

e−λ(1−G(x))dx

)
g (v) dv.

Changing the order of integration yields (19). Inspection of the right-hand side of (19)

immediately implies the claimed properties of U . �

Payoff equivalence. The above characterization of the bidders’ payoffs applies to any

standard auction format in which type v in an auction with n bidders wins with probability

G (v)n−1 and U (n, 0) = 0. In particular, the bidders’ expected payoff in an SPA is also

U(λ).

26We start from the characterization of βFPA, since we have already stated it. Of course, the standard
proof works in the opposite direction.
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7.1.2 The seller’s revenue

Claim 12 (i) Ro (λ) is strictly increasing, Ro (0) = 0, and limλ→∞Ro (λ) = 1.

(ii) Ro (λ) is continuously differentiable, R
′

o (0) = 0, R
′

o(λ) → 0 as λ → ∞, and R′o is

single-peaked.

(iii) Ro(λ)
λ

is single-peaked; at its peak, Ro(λ)
λ

= R′o (λ).

Proof. The total surplus (gross of the recruitment costs) is the expectation of the first

order statistic of v given Poisson(λ) distributed participation,

Total Surplus(λ) =

∫ 1

0

[
1− e−(1−G(v))λ

]
dv.

It is equal to the sum of the revenue, Ro(λ), and the total bidders’ expected payoff, λU(λ).

Hence, revenue is simply the difference of Total Surplus(λ) and λU (λ), that is,

Ro(λ) =

∫ 1

0

[
1− e−(1−G(v))λ − e−(1−G(v))λ (1−G (v))λ

]
dv. (20)

Therefore, simple rewriting shows

d

dλ
Ro(λ) =

∫ 1

0

λ (1−G (v))2 e−(1−G(v))λdv. (21)

Parts (i) and (ii). Positivity, continuity, and values at λ = 0 and λ → ∞ are obvious

from (20) and (21). To establish that R′o is single-peaked, consider the second derivative,

d2

dλ2
Ro(λ) =

∫ 1

0

(1−G (v))2 e−(1−G(v))λdv −

∫ 1

0

λ (1−G (v))3 e−(1−G(v))λdv (22)

= e−λ
(
1

g(0)
−

∫ 1

0

(1−G(v))2 eG(v)λ
[
v −

1−G(v)

g(v)

]′

v

dv

)
,

using integration by parts.

Recall that by assumption,
[
v − 1−G(v)

g(v)

]′
v
> 0. Thus, the integral on the last line of

(22) is positive and increasing in λ, while the first term is positive and independent of

λ. Therefore, d2

dλ2
Ro(λ) < 0 for large λ, and once it turns negative, it stays negative.

Inspection of the first line of (22) reveals that d2

dλ2
Ro(λ) > 0 for λ ∈ [0, ε] for some ε > 0.

The two observations imply that d
dλ
Ro(λ) is single-peaked.
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Part (iii). Immediate from Parts (i)—(ii) and d(Ro(λ)/λ)dλ =
[
R′o(λ)−

Ro(λ)
λ

]
/λ. �

Revenue equivalence. The above argument applies again to any standard auction

format in which type v in an auction with n bidders wins with probability G (v)n−1. In

particular, Ro (λ) is also the seller’s revenue in the SPA.

7.1.3 Proof of Proposition 2

Suppose s > s̄o. We already noted in the proof of Proposition 1 that there is a unique

equilibrium. In that equilibrium, λ∗ = 0, and µ∗ (0) = 1 (since all λ in the support must

be profit-maximizing). Hence, q∗ = 1 from bidder optimality.

For the cases with s < s̄o, the profiles described satisfy the bidders’ and the seller’s

optimality conditions. The refinement is vacuous when λ∗ > 0, so these are equilibria.

We show that there are no other equilibria with λ∗ > 0. We first show that when

λ∗ > 0,

λ∗ = min{λ
c
, λo(s)}. (23)

From seller optimality (6), it follows that if λ∗ > 0, then λ∗ ≥ λo and R
′

o (λ
∗) = s

q∗
.

From bidder optimality (2), it follows that q∗ may differ from 1 only if λ∗ = λ
c
. Therefore,

the only possibilities are λ∗ = λ
c
or λ∗ = λo(s). If λ

c
> λo(s), then for any q, the fact

that R′0 is decreasing means that R
′

o

(
λ
c
)
< s

q
, so λ

c
cannot be an equilibrium outcome.

If λ
c
< λo(s), then U (λo(s)) < c, so λo(s) cannot be an equilibrium outcome. This proves

(23).

In the case s̄o > s > R′o(λ
c
), since R′o is decreasing, λo(s) < λ

c
. So (23) requires

λ∗ = λo(s), and λo(s) < λ
c
requires q∗ = 1, which establishes the uniqueness of the

equilibrium with λ∗ > 0 in this case.

In the case s < R′o(λ
c
), since R′o is decreasing, λo(s) > λ

c
. So (23) requires λ∗ =

λ
c
. Hence, (6) requires that q∗ satisfy R′o(λ

c
) = s

q∗
, establishing the uniqueness of the

equilibrium with λ∗ > 0 in this case, too.

It remains to show that there is no equilibrium with λ∗ = 0.

Seller optimality requires that maxλΠo(·, q
∗) = 0 when λ∗ = 0. So, by the equilibrium

refinement, Πo(λ, q
∗) = 0 for any λ in the support of µ∗. Thus, by (6), the support of µ∗

is contained in {0, λo}. Since λo < λ
c
by the hypothesis of the proposition, and since U is

decreasing, Eµ∗ [U(λ)] > c, and so q
∗ = 1. However, when s < s̄o, we have Πo(λo, 1) > 0,

which contradicts the requirement that maxλΠo(·, q
∗) = 0; thus, there is no equilibrium

with λ∗ = 0.
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7.2 Proofs for the PU scenario

7.2.1 Proof of Claim 1: The bidding strategy

A standard overbidding argument implies that the equilibrium bidding strategy βλ̂ must

be strictly increasing whenever λ̂ > 0. Hence, given expected participation λ̂, a bidder

with value v wins with probability e−λ̂(1−G(v)). Hence, the standard envelope argument

implies that the equilibrium payoffs of a bidder with value v are given by

∫ v

0

e−λ̂(1−G(x))dx,

and the ex-ante expected payoffs are U(λ̂), as in the PO scenario.

Given a winning probability e−λ̂(1−G(v)), this implies that the bid βλ̂ (v) must solve

∫ v

0

e−λ̂(1−G(x))dx = e−λ̂(1−G(v)) (v − βλ̂ (v)) ,

and so

βλ̂ (v) = v −

∫ v

0

e−λ̂(G(v)−G(x))dx.

Revenue equivalence. Given any increasing bidding strategy, the allocation is the same

in the PO and the PU scenario, which implies that the total realized surplus is the same.

When λ̂ = λ, the envelope argument implies that the bidders’ ex-ante expected payoffs

are the same in the two scenarios. Therefore the revenues are also the same:

Ro(λ) = Ru(λ, βλ). (24)

7.2.2 Claim 13

Claim 13 (i) Ru(λ, βλ̂) is twice differentiable (in λ and λ̂), and for λ̂ > 0 it is strictly

concave in λ.

(ii) The function ξ (λ) is continuous, ξ (0) = 0, and limλ→∞ ξ (λ) = 0.

Let Fu (·|λ, βλ̂) be the distribution of the price received by the seller, given that actual

participation is Poisson(λ)-distributed and all bidders bid according to βλ̂, where the

no-trade event is identified with price 0. Let β̃
−1

λ denote the “generalized inverse” of βλ,

defined as follows: β̃
−1

λ = β−1λ over [0, βλ(1)) and β̃
−1

λ ≡ 1 over [βλ(1), 1]. Note that this

implies that β̃
−1

0 ≡ 1. Therefore,
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Fu (b|λ, βλ̂) = e
−λ
(
1−G

(
β̃
−1

λ̂
(b)
))

. (25)

Observe that Fu is indeed a cumulative distribution function and is well defined for

λ̂ = 0 as well: since βλ̂ is non-decreasing for any λ̂ ≥ 0, β̃
−1

λ̂ is non-decreasing and so is

F ; since β̃
−1

λ̂ (1) = 1, Fu (1|λ, βλ̂) = 1, and Fu (0|λ, βλ̂) = e
−λ < 1. Then,

Ru(λ, βλ̂) =

∫ 1

0

[1− Fu (b|λ, βλ̂)]db =

∫ 1

0

[1− e
−λ
(
1−G

(
β̃
−1

λ̂
(b)
))

]db, (26)

where the last equality is obtained by substitution from (25). This and the characteriza-

tion of βλ̂ in (9) imply that Ru is twice continuously differentiable in λ and λ̂:

∂

∂λ
Ru(λ, βλ̂) =

∫ 1

0

(
1−G

(
β̃
−1

λ̂ (b)
))
e
−λ
(
1−G

(
β̃
−1

λ̂
(b)
))

db. (27)

If λ̂ > 0, then β̃
−1

λ̂ (b) < 1 for all b small enough. Therefore,

∂2

∂λ2
Ru(λ, βλ̂) < 0, (28)

so that Ru (λ, βλ̂) and Πu(λ, βλ̂, q) are strictly concave in λ. By definition,

ξ (λ) =

∫ 1

0

(
1−G

(
β̃
−1

λ (b)
))
e
−λ
(
1−G

(
β̃
−1
λ (b)

))

db.

The continuity of ξ (λ) and its other properties follow directly from this functional form

and the properties of β̃
−1

λ . This proves the claim.

7.3 Comparison of PO and PU scenarios

7.3.1 Proof of Claim 3

Using (26),

∂

∂λ̂
Ru(λ, βλ̂)|λ̂=λ =

(
∂

∂λ̂

∫ 1

0

[1− e
−λ
(
1−G

(
β̃
−1

λ̂
(b)
))

]db

)
|λ̂=λ

= −

∫ 1

0

λg
(
β̃
−1

λ (b)
) ∂

∂λ
β̃
−1

λ (b)e
−λ
(
1−G

(
β̃
−1
λ (b)

))

db,
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and from (9),

∂

∂λ
β̃
−1

λ (b) = −
∂
∂λ
βλ (v)

∂
∂v
βλ (v)

= −

∫ v
0
(G (v)−G (x)) e−λ(G(v)−G(x))dx

λg(v)
∫ v
0
e−λ(G(v)−G(x))dx

< 0,

where v = β̃
−1

λ (b). Therefore, we have
∂

∂λ̂
Ru(λ, βλ̂)λ̂=λ > 0 for all λ, which implies Part

(i) of the claim given (12).

Part (ii): We have

Ru (λ, βλ) =

∫ λ

0

∂

∂t
Ru(t, βλ)dt > λ

∂

∂λ
Ru(λ, βλ̂)λ̂=λ, (29)

since (28) implies that ∂
∂t
Ru(t, βλ) is strictly decreasing in t. Since by revenue equivalence

Ru (λ, βλ) = Ro (λ) for all λ, it follows from (29) that

Ro (λ)

λ
>
∂

∂λ
Ru(λ, βλ̂)λ̂=λ.

The claim then follows from so = max
Ro(λ)
λ

and su = max
∂
∂λ
Ru(λ, βλ̂)λ̂=λ.

7.3.2 Proof of Claim 4

The claim is immediate for s such that s̄o > s > s̄u, since in this case there is positive

trade in the PO scenario but no trade in the PU scenario. (The case corresponds to sH

in the figure.)

For values of s in the range s̄u ≥ s > R′o
(
λ̄
c)
, the equilibrium of the PO scenario

has 0 < λ∗o < λ̄
c
and q∗ = 1. (This case corresponds to sM in the figure.) By Claim 3,

the λ∗u in every equilibrium of the PU scenario must be different. For both scenarios and

all equilibria, q∗ = 1, given that participation is below λ̄
c
. Now, a revealed-preference

argument implies that the seller’s profit is strictly higher in the PO scenario: given q∗ = 1,

the seller could have chosen to recruit just λ∗u bidders. By revenue equivalence (11), the

seller’s payoff at λ∗u is

Πo (λ
∗

u, q
∗) = Ru(λ

∗

u, βλ∗u)− sλ
∗

u = Πu(λ
∗

u, βλ∗u , q
∗).

However, λ∗o 6= λ
∗

u is the unique profit-maximizing choice, and soΠo (λ
∗

o, q
∗) > Πu(λ

∗

u, βλ∗u , q
∗).
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7.3.3 Proof of Claim 5

Given the hypothesis, in the PO scenario, the seller’s equilibrium profit is

Ro
(
λ̄
c)
− λ̄

c
R′o
(
λ̄
c)
. (30)

In the PU scenario, there is an equilibrium with the same participation, λ∗u = λ̄
c
, and q∗u

satisfying s
q∗u
= ξ

(
λ̄
c)
. Hence, the seller’s profit in this equilibrium is

Ru(λ̄
c
, βλ̄c)− λ̄

c
ξ
(
λ̄
c)
. (31)

From Claim 3, R′o
(
λ̄
c)
> ξ

(
λ̄
c)
, meaning that total recruitment costs are higher in the

PO scenario. Thus, given that Ro
(
λ̄
c)
= Ru(λ̄

c
, βλ̄c) by revenue equivalence, the PO

profit in (30) is strictly smaller than the PU profit in (31).

7.4 Uncertain recruitment costs–Proofs

7.4.1 Proof of Claim 9

The equilibrium has a cutoff structure with cutoff q∗so, and with λ
∗

s as in (16). It is also

immediate that the configurations described in Parts (i)—(iii) are equilibria.

Part (i). For c > c, the equilibrium is just the same as the λ = 0 equilibrium of the PO

scenario with s = s. That is, the support of the off-path beliefs is {0, λo(so)}, and these

values are optimal for type s given q∗ = s/so. The probabilities µ satisfy µ(0)U(0) +

µ(λo(so))U(λo(so)) = c. The uniqueness is also the same as in the corresponding PO

scenario. For c = c, apart from the above equilibrium, there is also an equilibrium in

which only type s can be active. Since type s is of zero measure, we think of this as a

no-trade outcome as well.

Parts (ii) and (iii). The λ∗s and q
∗ are optimal, and there are no off-path moves. To

see that the equilibria in Parts (ii) and (iii) are unique among those with λs > 0 for some

s, suppose that, in either scenario, there are two equilibria with q∗1 < 1 and q∗2 > q∗1.

The corresponding equilibrium values of λ, namely λ∗s(q
∗

1) and λ
∗

s(q
∗

2), are given by (16).

Hence, V (λ∗(q∗2)) < V (λ∗(q∗1)) = c, in contradiction to q∗2 > 0. Therefore, to establish

uniqueness, we only have to rule out the no-trade equilibrium. Such an equilibrium can be

supported only by the beliefs µ described in the proof of Part (i). But c < c = U(λo(so))

implies that µ(0)U(0) + µ(λo(so))U(λo(so)) = c cannot hold.
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7.4.2 Proof of Proposition 3

Let V (λo, s) from (15) with s as explicit argument. Its limit for s→ 0 is

c :=

∫ so
0
λo (s)U(λo (s)))ds∫ so

0
λo (s) ds

= lim
s→0

∫ so
s
λo (s)U(λo (s)))ds
∫ so
s
λo (s) ds

.

The limit exists since its argument is increasing in s. Now, c > 0 follows from
∫ so
s
λo (s) ds

being uniformly bounded, which is established by the following calculation:

∫ so
s
λo (s) ds = [sλo(s)]

so
s −

∫ so
s
sλ′o(s)ds = [sλo(s)]

so
s −

∫ so
s
R′o(λo(s))λ

′

o(s)ds

= [sλo(s)]
so
s −

∫ λo(so)
λo(s)

R′o(λ)dλ = Ro(λo(s))− sλo(s)− [Ro(λo(so))− soλo(so)]

= Πo(λo(s))− Πo(λo(so)) = Πo(λo(s)) ≤ 1

The first equality is from integration by parts, the second from the first-order condition

of profit maximization, s = R′o(λo(s)), the third from changing the integration variable,

and the last from Πo(λo(so)) = 0 (by definition of so) and that revenue and profit are

bounded by the maximal posssible valuation, 1.

Hence,
∫ so
0
λo (s) ds = lims→0

∫ so
s
λo (s) ds ≤ 1 implying c > 0. Since U(λo(so)) >

U(λo(s)) for s < s̄o, we have c < c = U(λo(so)).
27

If c ∈ (c, c), then for small enough s, V (λo, s) < c, the equilibrium is given by Part

(iii) of Claim 9 and q∗ satisfies

c =

∫ soq∗
s

λo

(
s
q∗

)
U(λo

(
s
q∗

)
)ds

∫ soq∗
s

λo

(
s
q∗

)
ds

=

∫ so
s/q∗
λo (s)U(λo (s))ds
∫ so
s/q∗
λo (s) ds

, (32)

where the second equality follows from change of the integration variable.28

When s → 0, it must be that q∗ → 0, for otherwise the RHS of (32) converges to

c < c, contradicting the equation. Therefore,

lim
s→0

Pr({s : λ∗s = 0}|c, s) = lim
s→0

so − q
∗so

so − s
= 1.

27In fact, lims→0Πo(λo(s)) = 1 from sλo (s)→ 0 (see Footnote 10), and so
∫ so
0
λo (s) ds = 1, implying

that E[λ (s)] =
∫ so
0
λo (s)

ds
s̄0
= s̄0.

28This step is where we make use of the uniform distribution.
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If c < c, then for any s, V (λo, s) > c, the equilibrium is given by Part (ii) of Claim 9

and q∗ = 1. Therefore, Pr({s : λ∗s = 0}|c, s) = 0.

7.5 Welfare—Proofs

Claim 14 (i) For any Λ, there is λ > Λ such that U(λ) < R′o(λ). (ii) There is λ̃ > λ

such that U(λ) ≥ R′o(λ) for λ ≤ λ̃ and U(λ) < R′o(λ) at least over some interval just

above λ̃.

Proof. Obviously, Ro(λ) is also the residual surplus not received by the bidders,

Ro(λ) = T (λ)− λU(λ),

and Ro(λ)→ T (λ) as λ→∞.

Part (i). If there is Λ such that U(λ) > R′o(λ) for all λ ≥ Λ, then, by (18), for all such

λ, T (λ) − Ro(λ) > T (Λ) − Ro(Λ) > 0, which contradicts the fact that Ro(λ) → T (λ) as

λ→∞.

Part (ii). By (18),

R′o(λ) = −λU
′(λ) = λ

∫ 1

0

e−(1−G(v))λ[1−G (v)]2dv (33)

and

U(λ)−R′o(λ) = U(λ) + λU
′(λ) =

∫ 1

0

e−(1−G(v))λ[1−G (v)] [1− (1−G (v))λ] dv. (34)

Therefore,

R′′o(λ) = −U ′(λ)− λU ′′(λ) =

∫ 1

0

e−(1−G(v))λ[1−G (v)]2dv (35)

−λ

∫ 1

0

e−(1−G(v))λ[1−G (v)]3dv

=

∫ 1

0

e−(1−G(v))λ[1−G (v)]2 [1− (1−G (v))λ)] dv.

Recall that R′o(λ) is single-peaked and let λ denote the argument of the peak. Thus,

R′′o(λ) = 0, and it follows from (35) that there must be x such that (1−G (x))λ = 1, so

the integrand on the right-hand side of (35) is positive for v > x and negative for v < x.
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Therefore,

0 = R′′o(λ) <

∫ x

0

e−(1−G(v))λ[1−G (x)][1−G (v)]
[
1−

(
1−G (v))λ

)]
dv

+

∫ 1

x

e−(1−G(v))λ[1−G (x)][1−G (v)]
[
1−

(
1−G (v))λ

)]
dv

= [1−G (x)]

∫ 1

0

e−(1−G(v))λ[1−G (v)]
[
1−

(
1−G (v))λ

)]
dv

= [1−G (x)][U(λ)−R′o(λ)].

The first inequality follows from 1 − G (x) < 1 − G (v) for the range v < x where the

integrand is negative, and from 1 − G (x) > 1 − G (v) for the range v > x where the

integrand is positive; the last equality follows from (34). Therefore, U(λ) > R′o(λ). Since

U is decreasing and R′o is increasing for λ < λ, it follows that U(λ) > R
′

o(λ) for all λ ≤ λ.

This and Part (i) imply that U and R′o first intersect at some λ̃ > λ. �
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A Online appendix

This appendix is not intended for publication. It includes the discussion of some variations

of the model, namely, optimal fees, (optimal) reserve prices, and bidder entry with known

values. Finally, we illustrate our findings with a numerical example in which the value

distribution is uniform.

A.1 Fees to influence participation

The question of optimal entry fees (or subsidies, when they are negative) is of secondary

importance for this paper. First, it belongs more to the “design” paradigm of auction

theory, which assumes significant seller commitment power and which we, therefore, de-

emphasize in this paper. Second, non-serious bidders and sellers may abuse entry fees, so

their credible implementation may require commitment and enforcement capabilities.

Here, we put aside those issues and consider a flat fee that is collected from, or offered

to, each auction entrant in the PO scenario. Let D denote this fee (D < 0 means it is

a subsidy). The subsequent interaction is formally equivalent to the PO scenario with

bidders’ cost c+D and seller’s marginal cost s
q
−D. Let λ∗(D) and q∗(D) be the unique

equilibrium magnitudes given D, and let λ
c+D

be the solution to U(λ
c+D

) = c+D.

Claim 15 (i) If the seller can commit to recruitment effort γ, then profit is maximized

at γ = λw with D = s.

(ii) Suppose that the seller cannot commit to γ. If there exists a D that enables trade

(i.e., s−D ≤ so and λ
c+D

≥ λo), then profit is maximized with D
∗ that satisfies s−D∗ =

R′o(λ
c+D∗

), with

λ∗(D∗) = λ
c+D∗

and q∗(D∗) = 1.

Part (ii) implies that the profit-maximizing fee is related to the equilibrium configura-

tion that prevails when fees cannot be imposed (i.e., the case of D = 0). If λ∗(0) < λ
c
(i.e.,

recruiting is unconstrained when fees are not allowed), then D∗ > 0–a fee. If λ∗(0) = λ
c
,

then D∗ < 0–a subsidy.

Proof of Claim 15: Part (i). If the seller commits to γ = λw and imposes an entry

fee D such that U(λw) = c + D, then all contacted bidders will choose to enter: q = 1.

Therefore, the surplus is maximal and the seller fully appropriates it since the bidders’

payoff is 0. Since U(λ) is decreasing and λ
c
> λw, it follows that D = s > 0.

42



Part (ii). Given D, we noted that this is the PO scenario with seller cost s
q
− D and

bidders’ cost c+D. Thus, in equilibrium given D, either λ∗(D) ≤ λ
c+D

and R′o(λ
∗(D)) =

s−D, or λ∗(D) = λ
c+D

and R′o(λ
∗(D)) = s

q∗
−D.

If λ∗(D) < λ
c+D

, then any fee D′ > D such that the inequality still holds yields

λ∗(D′) > λ∗(D) and higher profit.

If λ∗(D) = λ
c+D

and R′o(λ
∗(D)) > s−D, then q∗(D) < 1. In this case, a fee of D′ < D

defined by

s−D′ =
s

q∗(D)
−D

results in q∗(D′) = 1, λ
c+D′

> λ
c+D

, and λ∗(D) = λ∗(D′). This and the equality of the

marginal recruitment costs imply that the profits for D and D′ are equal as well. But

then, by the argument of the previous paragraph, a fee slightly higher than D′ would be

even more profitable.

Thus, by elimination, D∗ satisfies λ∗(D∗) = λ
c+D∗

and R′o(λ
c+D∗

) = s−D∗. �

The welfare effects of fees depend on whether the seller can commit. With commit-

ment, the optimal fee leads to an efficient equilibrium outcome: the seller chooses the

welfare-maximizing effort γw and all bidders enter when contacted. Without fees, the

outcome is generally inefficient, as discussed in Section 6.1. In contrast, without commit-

ment, fees might actually decrease welfare. For instance, in the PO scenario without fees,

if the parameters are such that λw < λ∗ < λ
c
, then the profit-maximizing fee is strictly

positive and pushes the equilibrium λ farther away from λw.

The version of our model with s = 0 and seller commitment is related to the model

of Levin and Smith (1994). In this case, Claim 15(i) implies D = 0, which is consistent

with their finding that an auction without fees maximizes the seller’s profit.29

A.2 Reserve price

Here we discuss the effects of a reserve price r–a minimum bid below which the item

is not sold. Before turning to the details, we note that the imposition of a reserve price

requires commitment power that might not be available in the less formal settings we

have in mind; see the discussion in the introduction. However, it is still interesting to

understand the role of reserve prices even if their use is limited or imperfect.

29Furthermore, since the seller captures the full surplus, even if she could set a positive reserve price,
doing so would only lower profits.

43



Assume that the auctions in both scenarios are subject to a reserve price r > 0 (not

necessarily the optimal one). The equilibrium then differs in some details, but not in the

main qualitative features, from that of the r = 0 case analyzed above. Graphically, the

marginal revenue curves in the diagrams change somewhat: for small λ they lie above the

r = 0 curve (in particular, the intercept at λ = 0 is r(1 − G(r)) rather than 0), and for

large λ they lie below the r = 0 curve. However, their general properties (such as the

single-peakedness of dRo/dλ and the relationship between the PO and PU curves) remain

the same, as does the relationship between the curves and the nature of the equilibria.

One immediate implication of the intercept at λ = 0 being r(1−G(r)) is that, in the PU

scenario, the no-trade equilibrium λ = 0 continues to exist only for s ≥ r(1−G(r)). For

smaller s, the equilibrium necessarily involves trade. The reserve price also affects the

bidders’ entry decisions, since it lowers the benefit of entry for any level of anticipated

participation.

Recall from the literature that, under the assumptions maintained on G, the revenue-

maximizing rmax for a standard auction solves r =
1−G(r)
g(r)

. It follows immediately that

this is also true for the FPA with stochastic participation in the PU scenario. Therefore,

if the seller commits to r only after bidders enter, then the profit-maximizing r is rmax.
30

Let us add the argument r to our functions, writing U(λ; r), Ro(λ; r), Πo(λ, q; r), etc.

Claim 16 (i) For a given λ, Ro(λ; r) (and hence
31 Ru(λ, βλ(r))) is maximized at rmax.

(ii) If the seller commits to r only after bidders enter, the reserve price is rmax in any

equilibrium.

If the seller can commit to a reserve price before bidders enter, then it affects entry;

hence the profit-maximizing r may differ from rmax. Suppose the seller commits to a

reserve price r, and then the interaction proceeds as in the PO scenario. Essentially

the same arguments as in the r = 0 case establish that in the subgame following the

selection of r, there is a unique equilibrium. Let λ∗(r), q∗(r), and λ
c
(r) denote the

equilibrium magnitudes in that subgame, and let r∗ denote the seller’s profit-maximizing

r, i.e., r∗ = argmaxr Πo(λ
∗(r), q∗(r); r).

Claim 17 In the PO scenario, the following hold:

(i) If λ∗(r∗) > 0 and the bidders’ entry cost does not constrain the equilibrium, i.e.,

30Of course, since rmax maximizes the revenue in any realized auction, it also maximizes the expected
revenue in both scenarios, given any fixed participation rate λ.
31By revenue equivalence, Ru(λ, βλ(r)) = Ro(λ; r).
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λ∗(r∗) < λ
c
(r∗), then r∗ = rmax.

(ii) If the bidders’ entry constrains the equilibrium, i.e., λ∗(r∗) = λ
c
(r∗), then r∗ 6= rmax.

The proof is at the end of this section. However, both parts of this claim are almost

immediate. In Part (i), the bidders’ entry does not constrain the equilibrium, so the seller

has no reason to deviate from rmax. In Part (ii), the bidders’ entry does constrain the

equilibrium, so the first-order effect of a change in r at r = rmax is its effect on entry,

which does not vanish.

The introduction of r > 0 affects both the seller’s profit and the bidders’ expected

benefit. First, it makes the auction more profitable, which increases the range of s for

which an equilibrium with trade can be sustained; i.e., so(r) > so(0). Second, it lowers

the bidders’ benefit from entry for any expected level of participation, which decreases

the maximal level of participation for which entry is profitable; i.e., λ
c
(r) < λ

c
(0).

Intuitively, it seems that r∗ should be lower than rmax, because decreasing r slightly

when it is above rmax makes the auction more profitable and relaxes the bidders’ entry

constraint. However, this intuition is incomplete, because changing r would change q∗

and increase the total recruitment cost. For this reason, although r∗ < rmax might hold in

general, we have been able to establish it only under additional conditions that guarantee

that the λ
c
(r) values corresponding to the r values in the relevant range are not too small.

This will be the case if c is not too large.32

Analogous results most likely hold for the equilibria with trade in the PU scenario,

but we have not proved this. However, it is immediate that if s ≤ r[1−G(r)] and c is not

prohibitive, then the no-trade outcome is not an equilibrium in the PU scenario. Since

r[1 − G(r)] is maximized at rmax, it follows that if s < rmax[1 − G(rmax)], the seller can

avoid the no-trade outcome by selecting an appropriate reserve price.

We now prove Claim 17. Obviously, r∗ satisfies dΠo(λ
∗

o(r),q
∗(r);r)

dr
|r=r∗ = 0. Observe that

dΠo(λ
∗

o(r), q
∗(r); r)

dr
=

d

dr

[
Ro(λ

∗

o(r); r)−
s

q∗(r)
λ∗o(r)

]

=

(
∂Ro(λ

∗

o(r); r)

∂λ
−

s

q∗(r)

)
dλ∗o(r)

dr
+
λ∗o(r)s

(q∗(r))2
dq∗(r)

dr
+
∂Ro(λ

∗

o(r); r)

∂r

=
λ∗o(r)s

(q∗(r))2
dq∗(r)

dr
+
∂Ro(λ

∗

o(r); r)

∂r
,

32The precise condition is λ
c
(r) [2−G(r)] > 1.
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where the first term on the second line vanishes because it is the first-order condition with

respect to λ. Also observe that, using integration by parts,

Ro(λ; r) = 1− e
−λ(1−G(r))

[
r −

1−G(r)

g(r)

]
−

∫ 1

r

e−(1−G(b))λ
[
b−

1−G(b)

g(b)

]′

b

db,

and therefore
∂

∂r
Ro(λ; r) = −g(r)λe

−(1−G(r))λ

[
r −

1−G(r)

g(r)

]
.

Hence, ∂
∂r
Ro(λ; r) = 0 if and only if r = rmax.

Now if λ∗o(r
∗) < λ

c
(r∗), then q∗(r) = 1 in a neighborhood of r∗. Hence dq∗(r)

dr
|r=r∗ = 0

and
dΠo(λ

∗

o(r), q
∗(r); r)

dr
=
∂Ro(λ

∗

o(r); r)

∂r
.

Therefore, dΠo(λ
∗

o(r),q
∗(r);r)

dr
= 0 if and only if r = rmax, implying r

∗ = rmax.

If λ∗o(r) = λ
c
(r), then dq∗(r)

dr
is obtained from total differentiation of the first-order

condition with respect to λ, ∂Ro(λ
∗

o(r);r)
∂λ

− s
q∗(r)

= 0. Thus,

dq∗(r)

dr
= −

∂2Ro(λ
∗

o(r);r)

∂λ2
dλ∗o(r)
dr

+ ∂2Ro(λ
∗

o(r);r)
∂λ∂r

s
(q∗(r))2

.

Now, dλ∗o(r)
dr

= dλ
c
(r)
dr

= −
∂U(λ∗o(r);r)

∂r

∂U(λ∗o(r);r)
∂λ

< 0 and ∂2Ro(λ
∗

o(r);r)

∂λ2
< 0 from the second-order

condition of profit maximization with respect to λ. Furthermore, at r = rmax both
∂2

∂λ∂r
Ro(λ; r) = 0 and

∂Ro(λ
∗

o(r);r)
∂r

= 0. Therefore, at r = rmax,

dΠo(λ
∗

o(r), q
∗(r); r)

dr
= λ∗o(r)

∂2Ro(λ
∗

o(r); r)

∂λ2

∂U(λ∗o(r);r)
∂r

∂U(λ∗o(r);r)
∂λ

< 0,

implying that r∗ 6= rmax. This finishes the proof.

A.3 Bidder entry with known values

The models discussed so far feature costly information acquisition: bidders learn their

private values only after incurring the cost c. If, however, their values are readily known

and their main costs lie in bid preparation or other aspects of bidding, then it would

be more suitable to assume that their costly entry decisions take place with knowledge

of their values. We now outline how to expand our analysis to cover this case. A full
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analysis would take too much space, but we believe that it would be doable and that

the main qualitative insights would be the same as for the models discussed earlier. In

particular, we show below for the case of small s that the recruitment cost is higher in

the PO scenario than in the PU scenario.

Consider the PO scenario in this case. If entry is profitable for a bidder with value v,

then it is profitable for all bidders with higher values. Therefore, a prospective bidder will

enter if and only if his value v exceeds a certain cutoff v ∈ (0, 1), at which he is indifferent

about entry.

As before, let γ denote the Poisson rate of contacts made by the seller. The probability

that a contacted bidder enters (the counterpart of q above) is 1−G(v), and the effective

Poisson rate of entry into the auction is λ = γ(1 − G(v)). For a given v, the seller’s

problem of choosing γ at marginal cost s is equivalent to choosing λ at marginal cost

s/(1−G(v)). As before, it will be convenient to express the relevant magnitudes in terms

of λ rather than γ.

The bidding game among entrants is an FPA with observable participation and private

values independently drawn from [v, 1]. In equilibrium, if there is only one entrant, the

winning bid is 0; if there are two or more entrants, the bids lie in [v, 1] and are monotone

in values. Therefore, the seller’s revenue is 0 if fewer than two bidders enter, and otherwise

it is the appropriate equilibrium winning bid which lies in [v, 1]. Given λ and v < 1, the

seller’s payoff Πo(λ, v) is

Πo(λ, v) = Ro(λ, v)− λs/(1−G(v)). (36)

Since the equilibrium bids are monotone in values when there are two or more entrants,

the marginal entrant with value v will win only if he is the sole entrant, in which case he

will pay 0. The probability that he is the sole entrant is e−λ. Therefore, his payoff from

entering is ve−λ, and his indifference with respect to entry implies

ve−λ = c. (37)

An equilibrium with trade is characterized by some λ > 0 and v < 1 such that λmaximizes

Πo(λ, v) and v satisfies (37).

Consider next the PU scenario. Here, too, a bidder enters if his value v exceeds a

threshold v. Given the Poisson rate γ of contacts made by the seller, the effective Poisson

rate of entry into the auction is λ = γ(1−G(v)). As before, we express all magnitudes in
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terms of λ rather than γ. The bidding game among entrants is an FPA with unobservable

participation and independent private values drawn from [v, 1]. Given that bidders expect

an effective Poisson rate λ̂ of entry, the entrants’ equilibrium bidding strategy, β(v; v, λ̂),

is strictly increasing in v ∈ [v, 1].

With probability e−λ, no bidders enter, in which case the seller’s revenue is 0; otherwise

it is the winning bid. Let Ru(λ, v, λ̂) denote the expected winning bid given λ, λ̂, and

v < 1. The seller’s payoff Πu(λ, v, λ̂) is

Πu(λ, v, λ̂) = Ru(λ, v, λ̂)− λs/(1−G(v)). (38)

Since β(v; v, λ) is strictly increasing in v, the marginal entrant v will win only if he is the

sole entrant. Therefore, β(v; v, λ̂) = 0, and v satisfies the same entry condition (37).

An equilibrium with trade is characterized by λ > 0 and v < 1 such that λ maximizes

Πu(λ, v, λ̂) with λ̂ = λ and v satisfies (37).

The existence of an equilibrium here is somewhat more complicated than in Sections

2.2 and 3.2, since now v varies with λ. We do not analyze this case in full, but we

conjecture that for sufficiently small s and c, equilibria with trade exist in both scenarios.

Under this assumption, we compare the equilibrium outcomes in the limit as s→ 0.

Let λi(s) and vi(s) denote the equilibriummagnitudes in the equilibrium with maximal

λ in the PO (i = o) and PU (i = u) scenarios, respectively.33

Claim 18 (i) We have lims→0 λi(s)=− ln c for i = u and i = o.

(ii) In the limit, the total recruitment cost is higher in the PO scenario:

lim
s→0

λo(s)
s

1−G(vo(s))
= (ln c)2c > lim

s→0
λu(s)

s

1−G(vu(s))
.

Thus, in the limit as s→ 0, both scenarios lead to the same level of effective partici-

pation, but the total recruitment cost is higher in the PO scenario. This cost ranking is

the same as in the original setting, where bidders learn their values only after incurring

c. We now proof the claim.

Part (i). In both scenarios, vi(s)→ 1 as s→ 0. Therefore, the entry condition ve−λ = c

for both scenarios implies lims→0 λi(s)=− ln c.

33In the PO scenario, this is probably the unique equilibrium. However, we do not prove this, because
a proof would essentially repeat the analysis in Section 2.2.
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Part (ii). For a given s, the respective equilibria (with trade) of the two scenarios satisfy

the first-order conditions ∂Πo(λo(s), vo(s))/∂λ = 0 and ∂Πu(λu(s), vu(s), λ̂)/∂λ|λ̂=λu(s) =

0, where

∂Ro(λo(s), vo(s))/∂λ =
s

1−G(vo(s))
(39)

and

∂Ru(λo(s), vo(s), λ̂)/∂λ|λ̂=λo(s) =
s

1−G(vu(s))
. (40)

Thus, in each of the scenarios, the total recruitment cost is

λi(s)
s

1−G(vi(s))
= λi(s)∂Ri/∂λ. (41)

By revenue equivalence, Ro(λ, v) and hence ∂Ro(λ, vo)/∂λ are the same as they would be

with the SPA for the same participation process. Let F SPA denote the price distribution

in the SPA; that is,

F SPA (b|λ) = e−
1−G(b)
1−G(v)

λ + e−
(1−G(b))
1−G(v)

λ 1−G (b)

1−G (v)
λ for b ≥ v

and F SPA (b|λ) = e−λ (1 + λ) for b ≤ v. By revenue equivalence, Ro(λ, v) =
∫ 1
0

(
1− F SPA (b|λ)

)
db.

Therefore,

∂Ro(λ, v)/∂λ = λve
−λ +

∫ 1

v

((
1−G (b)

1−G (v)

)2
λe−

1−G(b)
1−G(v)

λ

)
db.

Since vo(s) → 1 as s → 0, we have lims→0 ∂Ro(λo(s), vo(s))/∂λ = lims→0 λo(s)e
−λo(s) =

−c ln c. Therefore, lims→0 λo(s)
s

1−G(v
o
(s))
=(ln c)2c.

The inequality in Part (ii) of the claim will follow from lims→0 λi(s)=− ln c and (41)

after we have established

lim
s→0

∂Ru(λ, v, λ̂)/∂λ|λ̂=λ < lims→0
∂Ro(λ, v)/∂λ. (42)

To prove (42), observe that by revenue equivalence, Ro(λ, v) = Ru(λ, v, λ) and hence

∂Ro(λ, v)/∂λ = dRu(λ, v, λ)/dλ = ∂Ru(λ, v, λ̂)/∂λ|λ̂=λ + ∂Ru(λ, v, λ̂)/∂λ̂|λ̂=λ.
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Then, by adapting the arguments used in Section 3.2, it can be shown that

lim
v→1

∂Ru(λ, v, λ̂)/∂λ̂|λ̂=λ =

lim
v→1

∫ 1

0

[
e−λ[1−G(β

−1(b;v,λ))]/[1−G(v)]
] (G(β−1(b; v, λ))−G (v)

)

(1−G (v))
db > 0,

which implies (42) and hence Part (ii) of the claim.

A.4 Numerical Example: Uniform Distribution

We illustrate our finding with the uniform distribution, G (v) = v. The following formulas

summarize the explicit expressions that we derived in the paper, after substituting for G:

U(λ) =

∫ 1

0

e−(1−v)λ[1− v]dv

W (λ) =

∫ 1

0

[
1− e−(1−v)λ

]
dv

Ro(λ) =

∫ 1

0

[
1− e−(1−v)λ

]
− λe−(1−v)λ[1− v]dv

R′o(λ) =

∫ 1

0

λ (1− v)2 e−λ(1−v)dv

ξ (λ) =

∫ 1

0

(1− v) e−λ(1−v)
(
1− e−λv

)
dv.

For the following plots, we chose c ≈ 0.03, implying λ̄
c
≈ 5. We first plot the analogue

of Figure 4 for the PO scenario with a uniform value distribution.
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Marginal revenue and average revenue in the PO scenario with a uniform value

distribution, with s̄0 ≈ 0.14 and λo ≈ 2.69. For c = 0.03, we have λ̄
c
≈ 5.

To compare the PO and PU scenario, we plot the analogue of Figure 7. As can be
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seen, for s between 0.085 and 1.4, there is trade in the PO scenario but in the PU scenario,

trade unravels.
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Comparison of the PO and the PU scenario, showing R′o (blue, top) and ξ (siena,

bottom). The maximum of ξ is at about ξ (1.45) ≈ 0.085.

Finally, we illustrate the welfare properties, plotting Figure 10 for this case. Recall

that the welfare optimal λw satisfies U (λw) = c + s. As noted, in the PO scenario,

R′o (λ) > U (λ) means that the seller recruits too many bidders for all s ≤ s̄o ≈ 0.14.

0 1 2 3 4 5 6

0.00

0.05

0.10

0.15

0.20

Illustrating the welfare properties, with U (λ) in black, R′o (λ) in blue and ξ (λ) in siena.

We include the ξ function to show the welfare properties of equilibrium in the PU

case. In the range shown in the figure, for λ ≤ 6, we have ξ (λ) < U (λ).34 Hence, when

c = 0, then the seller will recruit too few bidders in the PU scenario.

In general, the numerical analysis suggests that U − ξ is eventually monotone decreas-

ing. Hence, for c small enough, this suggests that there is some cutoff ŝ such that the

seller recruits too few bidders in the PU scenario when s is above ŝ and she recruits too

many when s is smaller (in the equilibrium with larger participation).

34This remains the case for λ ≤ 50, where U and ξ become numerically indistinguishable at 20 digits.
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