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Abstract

This paper introduces and analyzes sequentially stable outcomes in extensive-form games. An

outcomeω is sequentially stable if, for any ǫ>0 and any small enough perturbation of the play-

ers’ behavior, there is an ǫ-perturbation of the players’ payoffs and a corresponding equilibrium

with outcome close to ω. Sequentially stable outcomes exist for all finite games and are out-

comes of sequential equilibria. They are closely related to stable sets of equilibria and satisfy

versions of forward induction, iterated strict equilibrium dominance, and invariance to simul-

taneous moves. In signaling games, sequentially stable outcomes pass the standard selection

criteria, and when payoffs are generic, they coincide with outcomes of stable sets of equilibria.
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1 Introduction

Equilibrium refinements play a central role in the study of extensive-form games. Among these, the

concept of a sequential equilibrium, introduced by Kreps and Wilson (1982), stands out because of

its universality, simplicity, desirable properties (such as existence, belief consistency, and sequential

rationality), and ease of use. Sequential equilibria have been widely used in analyzing games of

incomplete information across a broad range of applications.

We start by providing a characterization of sequential outcomes (i.e., outcomes of sequential

equilibria), presenting them as behavior that is robust to some tremble sequence: We show that

an outcome ω is sequential if and only if there is some vanishing sequence of (behavioral) trem-

bles (ξn) for which there exist a sequence (ǫn)→0 and a sequence of strategy profiles (σn) with

outcomes converging to ω, such that each σn is a sequential ǫn-equilibrium of the game perturbed

according to ξn.1 Note that if one requires ǫn=0 for all n instead of ǫn→0, our characterization of

sequential outcomes coincides with the definition of outcomes of perfect equilibria in Selten (1975).

We then introduce and analyze a strengthening of sequentiality suggested by our character-

ization: We study behavior that is robust to all tremble sequences instead of just one. We say that

an outcome ω is sequentially stable if, for any vanishing sequence of trembles (ξn), there exist a

sequence (ǫn)→0 and a sequence of strategy profiles (σn) with outcomes converging to ω, such

that each σn is a sequential ǫn-equilibrium of the game perturbed according to ξn.2 This paper’s

main contribution is to propose sequential stability as a new equilibrium concept and show that it

significantly strengthens sequentiality while keeping its ease of use. We relate sequentially stable

outcomes to stable sets of equilibria (Kohlberg and Mertens, 1986) and also to the selection criteria

for signaling games introduced in Cho and Kreps (1987).

We first establish that all extensive-form games have at least one sequentially stable outcome.

To prove this, we perturb the payoffs of the agent-extensive form of the game. We then use that,

for a generic payoff perturbation, there is a connected stable set of equilibria of the agent-extensive

form of the game with the same outcome. We finally show that a limit of such outcomes for some

vanishing sequence of generic payoff perturbations exists and is sequentially stable in the original

game. This existence property is important not only because it ensures that sequential stability can

1A behavioral tremble assigns a minimal probability with which each action is played at each information set. We say

that a strategy profile is a sequential ǫn-equilibrium of a game perturbed by a tremble if, whenever a player chooses to

play an action with a probability higher than the tremble at a given information set, the payoff from playing such an

action is at most ǫn lower than the payoff from the best response (see Definition 2.3).

2We show that this definition of sequentially stable outcome is equivalent to that in the abstract (see Proposition 4.2).
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be used in all games, but also because it enables us to show that an outcome is sequentially stable

by eliminating alternatives. Also, when an outcome is the unique limit equilibrium outcome along

some tremble sequence, it is the unique sequentially stable outcome.

Next, we provide some properties satisfied by sequentially stable outcomes. First, they satisfy

a version of the never a weak best response (NWBR) condition (Kohlberg and Mertens, 1986): If

ω is sequentially stable and an action a is not a best response in any sequential equilibrium with

outcome ω, then ω is also sequentially stable in the game where a is removed. We use this result

to show versions of both forward induction and iterated strict equilibrium dominance. We also

establish that the restriction of a sequentially stable outcome to an on-path subgame is sequentially

stable in that subgame, and that a subgame with a unique sequential outcome can be replaced

by that outcome without affecting the set of sequentially stable outcomes. Finally, we prove that

the set of sequentially stable outcomes is invariant to how simultaneous moves are represented in

the extensive form of the game. However, like sequential outcomes, sequentially stable outcomes

may fail admissibility and may not be invariant to coalescing consecutive moves. Through several

examples, we illustrate how these properties can be used to simplify proving or ruling out the

sequential stability of a given outcome.

Lastly, we apply our analysis to signaling games. We show that sequentially stable outcomes

pass the Intuitive Criterion, D1, and D2 (Cho and Kreps, 1987), and we provide a full characteri-

zation of sequential stability without using trembles. Sequential stability thus has the potential to

provide a unified approach to selecting equilibria in signaling games. Additionally, we obtain that

a signaling game has a unique sequentially stable outcome if and only if there is a unique joint

outcome of a stable set of equilibria. We also show that the set of sequentially stable outcomes co-

incides with the set of outcomes of stable sets of equilibria in signaling games with generic payoffs.

Relationship to Kohlberg and Mertens (1986, KM): Sequential stability is closely related to the

concept of stability, which from now we will refer to as “KM-stability,” introduced by Kohlberg and

Mertens (1986). Roughly speaking, a set of Nash equilibria is KM-stable if it is minimal with respect

to the property that, for any vanishing sequence of normal-form trembles (assigning a positive prob-

ability to each contingent plan of each player), there is a sequence of Nash equilibria approaching

the set. KM-stable sets of equilibria exist for all games and have desirable properties (they satisfy

forward induction, iterated dominance, and invariance). Still, KM-stability is rarely applied as a

selection criterion in practice. The main reason is that KM-stable sets of equilibria are difficult to

characterize and use. In many extensive-form games, the number of sets of Nash equilibria that

may be KM-stable a priori is large. While forward induction and iterated dominance allow some
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of them to be ruled out, it is typically infeasible to identify a KM-stable set by ruling out all al-

ternatives. On the other hand, directly proving that a given set of equilibria is KM-stable requires

showing that it is minimal with respect to the property that any perturbed version of the game has

an equilibrium close by; this is often impractical as well.3

Both sequential stability and KM-stability are based on the requirement of robustness to all

small perturbations of the game. However, these concepts differ in two important ways. First,

sequential stability requires ǫ-optimality along the sequence (for some ǫ→0) instead of exact opti-

mality. This weakening permits the existence of an outcome-valued concept for all games, which is

much easier to work with than a set-valued concept, but it also implies that sequential stability is not

powerful in selecting equilibria in normal-form games, where all Nash outcomes are sequentially

stable. Nevertheless, sequential stability offers significant selection power in extensive-form games;

for example, it is stronger than the standard selection criteria in signaling games. The requirement

of ǫ-optimality for some ǫ→0 also makes it easier to construct supporting equilibrium sequences,

since, as with sequential equilibria, exact sequential optimality is only required in the limit. We

are able to show that, if a game has a unique sequentially stable outcome, such an outcome is the

limit of a sequence of Nash outcomes (i.e., with ǫn=0 for all n) along any sequence of vanishing

trembles. The second main difference between sequential stability and KM-stability is that the for-

mer applies to the extensive form of the game, instead of the reduced normal form. This permits

us to use simpler, more intuitive arguments. It also lets us apply methods such as NWBR or strict

domination action by action, instead of considering full contingent plans, and it lets us simplify the

analysis by replacing subgames with their sequentially stable outcomes.

Contribution to the literature: Since the definition of Nash equilibria (Nash, 1951), many equi-

librium concepts have been developed to select equilibria without undesirable properties. Impor-

tant examples include subgame-perfect equilibria (Selten, 1965), perfect equilibria (Selten, 1975),

proper equilibria (Myerson, 1978), sequential equilibria (Kreps and Wilson, 1982), KM-stable sets

(Kohlberg and Mertens, 1986), and perfect Bayesian equilibria (Fudenberg and Tirole, 1991b).4

3Okada (1981) defined strictly perfect equilibria as those that are robust against all perturbations. However, such equilib-

ria do not exist in many games of interest, even when payoffs are generic. Kohlberg and Mertens (1986) show that “there

exists a [KM-]stable set which is contained in a single connected component of the set of Nash equilibria” (p. 1027) and

that, generically in payoffs, “all equilibria in the same connected component give rise to identical outcomes” (p. 1020).

Nevertheless, joint outcomes of KM-stable sets contained in connected sets of equilibria are difficult to compute, and

cannot be used as a universal equilibrium concept because many games of interest do not have generic payoffs due to

quasilinear preferences, payoff-irrelevant signals, assumed functional forms, or constant discount factors.

4Sometimes, when a given equilibrium concept is not powerful enough as a selection criterion, additional ad-hoc require-
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In signaling games, selection criteria such as the Intuitive Criterion, D1, and D2 of Cho and Kreps

(1987) or the divinity criterion of Banks and Sobel (1987) may be used. This variety of concepts

has made it increasingly difficult to compare equilibrium predictions across different games.5

We contribute to the literature by providing a new equilibrium concept that is suited for use

across many applications, making it easier to compare predictions. There are three main reasons

for this. First, sequentially stable outcomes constitute a single-valued equilibrium concept and

always exist. Second, sequential stability is stronger than numerous previous equilibrium concepts,

including subgame-perfect, sequential, and perfect Bayesian equilibria, and it passes commonly

used selection criteria in signaling games. It can therefore be used directly with previous work

involving unique solutions: for example, any game having a unique sequential outcome, or a unique

outcome passing D1, automatically has a unique sequentially stable outcome. Third, the properties

of sequentially stable outcomes—such as NWBR and forward induction, which are defined through

natural conditions on the optimality of actions in each information set instead of on the global

optimality of full contingent plans—make them easier to compute. We provide examples illustrating

this throughout the paper. In a companion paper, Dilmé (2023b), we introduce the (lexicographic)

ℓ-numbers as a tool for obtaining and using sequentially stable outcomes without needing to work

with vanishing trembles.

The rest of the paper is organized as follows. In Section 2 we establish our notation for

extensive-form games, define vanishing trembles and sequential ǫ-equilibria, and provide a new

characterization of sequential equilibria. In Section 3 we define sequentially stable outcomes, relate

them to KM-stable sets of equilibria, and prove that all games have a sequentially stable outcome. In

Section 4 we obtain properties of sequentially stable outcomes and describe techniques for finding

them. In Section 5 we characterize sequential stability in signaling games and show that sequen-

tially stable outcomes pass common selection criteria. Finally, Section 6 concludes. The appendix

contains the proofs of the results.

ments are imposed, such as the “no signaling what you do not know” and “never dissuaded once convinced” conditions

for perfect Bayesian equilibria (see Osborne and Rubinstein, 1994). Alternative restrictions on belief updating off the

path of play have been used in Cramton (1985), Rubinstein (1985), Bagwell (1990), and Harrington (1993).

5Our analysis does not consider payoff uncertainty, which is studied in Fudenberg et al. (1988). Recently, Takahashi and

Tercieux (2020) have shown the existence of outcomes robust to payoff uncertainty for generic payoffs.
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2 Sequential ǫ-equilibria and sequential outcomes

2.1 Extensive-form games

We now provide the definition and corresponding notation for an extensive-form game.

A (finite) extensive-form game G :=〈A, H,I, N , ι,π, u〉 has the following components: (1) A

finite set of actions A. (2) A finite set of histories H containing finite sequences of actions such

that, for all (a j)
J
j=1∈H with J>0, we have (a j)

J−1
j=1∈H (hence ;=:(a j)

0
j=1∈H); the set of terminal

histories is denoted by Z . (3) An information partition I of the set of non-terminal histories such

that there is a partition {AI |I∈I} of A with the property that, for each I∈I and h∈H, we have

(h, a)∈H for some a∈AI if and only if h∈ I .6 (4) A finite set of players N 6∋0. (5) A player assignment

ι :I→N∪{0} assigning each information set to a player or nature such that there is perfect recall.7

(6) A strategy by nature π:∪I∈ι−1({0}) A
I→(0, 1] satisfying

∑

a∈AI π(a)=1 for each I∈ι−1({0}). (7)

For each player i∈N , a (von Neumann–Morgenstern) payoff function ui : Z→R. For convenience,

we set u0(z)=0 for all z∈Z .

A strategy profile is a map σ :A→[0,1] such that
∑

a∈AI σ(a)=1 for all I∈I (i.e., it is a pro-

bability distribution for each set of actions available at each information set) and σ(a)=π(a) for

all a played by nature (i.e., nature plays according to π). We let Σ be the set of strategy profiles.

An outcome ω (of G) is a probability distribution over terminal histories. We use Ω :=∆(Z) to

denote the set of outcomes. Each strategy profile σ∈Σ generates a unique outcome ωσ, where

each terminal history (a j)
J
j=1∈Z is assigned probability ωσ((a j)

J
j=1):=
∏J

j=1σ(a j)∈[0,1].

2.2 Trembles and vanishing trembles

Next we define trembles and vanishing trembles. The analysis of trembles and the correspond-

ing perturbed games was initiated by Selten (1975). For each a∈A, we let Ia∈I be the unique

information set where a is available, that is, satisfying a∈AIa

.

Definition 2.1. A (behavioral) tremble of G is a function ξ:A→(0,1] satisfying
∑

a∈AI ξ(a)≤1 for

all I∈I and ξ(a)≤π(a) for all a∈A such that ι(Ia)=0.

As is common, we interpret ξ(a)∈(0,1] as the smallest probability with which player ι(Ia)

6Note that we assume, without loss of generality, that each action is available at a unique information set (otherwise,

one can rename actions).

7Perfect recall requires that for all I , I ′∈I with ι(I)=ι(I ′) and all h, ĥ∈ I , if (h′, a)�h for some h′∈ I ′ and a∈A, then

(ĥ′, a)� ĥ for some ĥ′∈ I ′, where (h′, a)�h indicates that (h′, a) preceeds or is equal to h.

6



can decide to select action a∈A. A tremble thus represents the probability with which players make

mistakes. We denote by Σ(ξ) the set of strategy profiles σ∈Σ such that, for all a∈A, σ(a)≥ξ(a).

For each tremble, G(ξ) denotes the perturbed game defined by G together with the set of strategy

profiles Σ(ξ). As we are interested in small trembles, we will often work with vanishing trembles.

Definition 2.2. A vanishing tremble is a sequence of trembles (ξn) such that ξn(a)→0 for all a∈A.

A vanishing tremble (ξn) generates a sequence of perturbed games (G(ξn)). Such a sequence

approaches G (with the set of strategy profiles Σ), in the sense that the sets of strategy profiles

Σ(ξn) approach Σ (under the Hausdorff distance) as n→∞.8

2.3 Sequential ǫ-equilibria

We now define almost-optimal behavior in a perturbed game. Because a player chooses an action

a only if the corresponding information set Ia (i.e., the information set where a is available) is

reached, we will require ǫ-optimality at each information set given the continuation payoffs.

Fix a tremble ξ. Note that all information sets are reached with positive probability under

any strategy profile σ∈Σ(ξ). Then, for each action a∈A, the expected payoff of player ι(Ia) from

playing a conditional on Ia being reached, is uniquely defined. This payoff is

u(a|σ):=
∑

z∈Za

Prσ(z)

Prσ(Ia)σ(a)
uι(Ia)(z) , (2.1)

where Za⊂Z is the set of terminal histories containing a, and where Prσ(·) indicates probability

under σ. We omit the subindex ι(Ia) in u(a|σ) as it is uniquely determined by a.

Definition 2.3. Fix ǫ>0 and ξ. We say that σ∈Σ(ξ) is a sequential ǫ-equilibrium of G(ξ) if, for all

a∈A, we have σ(a)>ξ(a) only if u(a|σ)≥u(a′|σ)−ǫ for all a′∈AIa

.

The set of sequential ǫ-equilibria of G(ξ) is denoted by Σ∗ǫ(ξ). In a sequential ǫ-equilibrium,

each player chooses an action a with a probability higher than the trembling probability only if the

action is sequentially ǫ-optimal, that is, if a is ǫ-optimal conditional on the corresponding informa-

tion set being reached. Because σ(a)≥ξ(a)>0 for all a∈A and σ∈Σ(ξ), the ǫ-optimality of an

action can be evaluated in all information sets without the need to specify a belief system, as all

information sets are on path under σ. We will refer to Σ∗0(ξ) as the set of Nash equilibria of G(ξ).

8Our results hold under any normed distances on the spaces of strategy profiles, outcomes, and payoff functions (since

all normed distances generate the same topology in Rn). For concreteness, we take the sup-norm and sup-distance.
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2.4 A characterization of sequential outcomes

Kreps and Wilson (1982) defined belief system µ as a map assiging a probability µ(h)∈[0, 1] to

each non-terminal history h∈H\Z satisfying that
∑

h∈I µ(h)=1 for all I∈I. They also defined

a sequential equilibrium as a pair consisting of a belief system µ and a strategy profile σ that is

consistent and sequentially rational. Part of their motivation was to make the new equilibrium

concept similarly powerful but simpler to use than the concept of (trembling-hand) perfect equilibria

(Selten, 1975): as Kreps and Wilson state, “It is vastly easier to verify that a given equilibrium is

sequential than that it is perfect” (p. 264). The following characterization of sequential outcomes

brings the two concepts closer together.

Proposition 2.1. An outcome ω is sequential if and only if there exist a vanishing tremble (ξn), a

sequence (ǫn)→0, and a sequence (σn∈Σ
∗
ǫn
(ξn)) such that (ωσn) converges to ω.

This proposition makes it evident that sequential equilibria are a weakening of perfect equi-

libria (as shown by Kreps and Wilson, 1982), requiring only ǫn-optimality along the sequence for

some (ǫn)→0 instead of exact optimality (i.e., ǫn=0). See Blume and Zame (1994) for an analo-

gous characterization of sequential equilibria as limits of Nash equilibria of games with perturbed

actions and payoffs, and Myerson and Reny (2020) for a characterization of sequential equilibria

in terms of conditional ǫ-equilibria.9

Example 2.1. Figure 1 shows the beer–quiche game of Cho and Kreps (1987). In this game, nature

chooses whether player 1’s type is strong or weak; then player 1 chooses either beer or quiche, and

player 2, observing player 1’s choice but not her type, chooses either to fight or to run. We now

use an explicit vanishing tremble to show that the quiche outcome ωq—in which player 1 chooses

qs and qw, and then player 2 chooses rq—is sequential. Let (ξn) satisfy ξn(bs)=ξn(qs)=(n+1)−2

and ξn(a)=(n+1)−1 for all a 6=bs, qs. Note that the weak type trembles with an asymptotically

infinitely higher likelihood than the strong type. Consider the sequence of strategy profiles (σn)

pinned down by σn(a):=ξn(a) for all a∈{bs, bw, rb, fq}. It is then easy to see that σn∈Σ
∗
0(ξn) for

all large enough n and that σn tends to ωq. Hence, by Proposition 2.1, the quiche outcome is

sequential. (Note that the beer–quiche game is simple enough to allow us to construct a sequence

9Myerson and Reny (2020) show that ω is sequential if and only if, for some vanishing tremble, it is the limit of a

corresponding sequence of outcomes of conditional ǫ-equilibria for some ǫ→0, where they define σ to be a conditional

ǫ-equilibrium if
∑

a∈AI σ(a)u(a|σ)≥maxσ̂I∈∆(AI )

∑

a∈AI σ̂I (a)u(a|σ)−ǫ for all I∈I. It is not difficult to verify that, in

fact, ω is sequential if and only if, for any vanishing tremble, it is the limit of a corresponding sequence of outcomes of

conditional ǫ-equilibria for some ǫ→0. As we shall see, requiring instead that ω is the limit of outcomes of sequential

ǫ-equilibria for some ǫ→0 along all vanishing trembles will significantly refine the set of sequential outcomes.
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that is exactly optimal for all n, henceωq is also perfect.) Intuitively, along the sequence of strategy

profiles, the probability that player 2 assigns to the strong type after observing beer tends to 0, while

the probability she assigns to the strong type after observing quiche tends to 0.9. This makes rq and

fb asymptotically optimal for player 2, and hence qs and qw are asymptotically optimal for player

1.

3 Sequentially stable outcomes

In this section, we introduce the concept of sequentially stable outcomes and prove that they exist in

any game. We also discuss their relationship to KM-stable sets of equilibria (Kohlberg and Mertens,

1986; see van Damme, 1991, for a textbook treatment).

3.1 Definition of sequentially stable outcomes

We now define sequentially stable outcomes, the main object of study of the current paper.

Definition 3.1. An outcomeω∈Ω is sequentially stable if, for any vanishing tremble (ξn), there are

two sequences (ǫn)→0 and (σn∈Σ
∗
ǫn
(ξn)) such that (ωσn) converges to ω.

In words, an outcome is sequentially stable if, for any vanishing tremble, it can be approxi-

mated (under the sup-distance; see Footnote 8) by a sequence of sequential epsilon-outcomes of the

corresponding perturbed games, for some vanishing sequence of epsilons. Our definition of sequen-

tially stable outcomes is analogous to the characterization of sequential outcomes in Proposition

2.1 but requires robustness for all vanishing trembles instead of for one of them. As the following

corollary states, this implies that sequential stability is a refinement of sequential equilibrium. In

other words, a sequentially stable outcome conforms to the requirement of “backward induction”
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in Kohlberg and Mertens (1986) (van Damme, 1991, calls such a property “sequential rationality”,

requiring that “any solution contains a sequential equilibrium”).

Corollary 3.1. A sequentially stable outcome is sequential.

Example 3.1 (continuation of Example 2.1). In Example 2.1, we showed that the quiche outcomeωq

is sequential by showing it is robust to a particular vanishing tremble. We now prove that ωq is not

sequentially stable by showing it is not robust to another vanishing tremble. Consider the vanishing

tremble (ξn) where ξn(bw)=ξn(qw)=(n+1)−2 and ξn(a)=(n+1)−1 for all a 6=bw, qw. Note that

now the strong type trembles with an asymptotically infinitely higher likelihood than the weak type.

Assume for the sake of contradiction that there are two sequences (ǫn)→0 and (σn∈Σ
∗
ǫn
(ξn)) with

ωσn→ωq. If there were a strictly increasing sequence (kn) with σkn
(bw)=ξkn

(bw), then we would

have σkn
(fb)=ξkn

(fb) for n large enough: because beer would become an increasingly strong signal

that player 1 is strong, player 2 would respond to it by running. Thus, the strong type’s payoff from

choosing bs would tend to 3 along this subsequence, which is strictly higher than her payoff from

choosing qs, contradicting the assumption that choosing qs is asymptotically optimal (i.e., there

cannot be some (ǫn)→0 such that u(qs|σn)≥u(bs|σn)−ǫn for all n). We conclude that if n is large

enough, σn(bw)>ξn(bw), and so bw must asymptotically optimal. However, since σn(rq)→1 as

n→∞ in the quiche outcome, the weak type’s payoff from choosing qw (which converges to 3) is

larger than her payoff from choosing bw (which is at most 2), contradicting the assumption that

choosing bw is asymptotically optimal. Intuitively, choosing quiche is asymptotically optimal for the

strong type only if player 2 fights after beer with a high enough probability. This means player 2’s

asymptotic posterior about player 1 being strong after beer must be lower than 0.5; hence, choosing

beer must be asymptotically optimal for the weak type. But the weak type obtains 3 by choosing

quiche, which is more than her payoff from choosing beer.

Example 3.2 (continuation of Example 3.1). We now prove that the beer outcome ωb—in which

player 1 chooses bs and bw, and then player 2 chooses rb— is sequentially stable. Fix an ar-

bitrary vanishing tremble (ξn). For each n with ξn(qw)≥9ξn(qs) define σn(a):=ξn(a) for all

a∈{qs, qw, rq, fb}, which pins down the value of σn(a) for all a. Note that, under such σn, if n is

large enough, then both types of player 1 strictly lose from choosing quiche, and player 2 assigns a

probability greater than or equal to 0.5 to (s, qs) after quiche. For each n with ξn(qw)<9ξn(qs), de-

fine σn(qw):=9ξn(qs), σn(rq):=0.5−ξn(fb), and σn(a):=ξn(a) for a∈{qw, fb}, which again pins

down the value of σn(a) for all a. Now, under σn and for n large enough, the strong type strictly

loses from choosing quiche, while the weak type is indifferent between beer and quiche. Also,

player 2 assigns a probability of 0.5 to (s, qs) after quiche. It is easy to see that σn∈Σ
∗
0(ξn) for all

10



n large enough and that ωσn→ωb; hence, ωb is sequentially stable.10

A characterization of sequential stability

To give further intuition for sequential stability, we now characterize sequentially stable outcomes

without using vanishing trembles: An outcome ω is sequentially stable if, for all ǫ>0, any slightly

perturbed version of G has a sequential ǫ-equilibrium with outcome close to ω. In other words, a

sequentially stable outcome is such that, for any degree of optimality and precision, any perturbed

game with small enough tremble has a nearby almost-optimal outcome.

Proposition 3.1. An outcome ω is sequentially stable if and only if for all ǫ,ǫ′>0 there is some δ>0

such that, if ‖ξ‖<δ, then G(ξ) has a sequential ǫ-equilibrium with outcome ǫ′-close to ω.

Extensive-form stable outcomes

It will often be useful to consider the following natural strengthening of sequential stability: We

say that ω is extensive-form stable if it satisfies Definition 3.1 with the additional requirement that

ǫn=0 for all n. That is, if ω is extensive-form stable, then, for any vanishing tremble, there is a

sequence of Nash outcomes of the corresponding perturbed games converging to ω. It is clear that

extensive-form stability is stronger than sequential stability, as it requires ǫn=0 instead of ǫn→0.

We record this observation in the following proposition.

Proposition 3.2. Every extensive-form stable outcome is sequentially stable.

The following result establishes that, while sequential stability is weaker than extensive-form

stability, the two concepts coincide when there is a unique sequentially stable outcome.

Proposition 3.3. If there is a unique sequentially stable outcome, it is the unique extensive-form stable

outcome.

The intuition for Proposition 3.3 is as follows. If there is a unique sequentially stable outcome

ω, then, by Proposition 3.2, either ω is the unique extensive-form stable outcome (in which case

the result holds), or the game has no extensive-form stable outcome. If the latter, then there is a

vanishing tremble with no corresponding sequence of Nash equilibria converging to ω. Combining

10It is also easy to see that in the beer–quiche game, the sets of limits of sequences of sequential ǫn-equilibria for different

vanishing trembles may have empty intersection. This fact and Proposition 3.4 motivates applying sequential stability

(i.e., robustness to small trembles) to outcomes instead of to strategy profiles to guarantee existence in all games.
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this vanishing tremble with a sequence of perturbations of payoffs, we can construct a sequence

of sequentially stable outcomes of nearby games converging to an outcome ω′ different from ω.

However, we show that the correspondence that maps payoffs to the set of sequentially stable

outcomes is upper hemicontinuous, and so ω′ must be sequentially stable. This contradicts the

assumption that ω is the unique sequentially stable outcome.

3.2 Existence of sequentially stable outcomes

We now prove that sequentially stable outcomes always exist.

Proposition 3.4. Any game G has a sequentially stable outcome.

The proof of Proposition 3.4 is divided into two steps. We first argue that the agent-extensive

form of G, denoted by Ĝ, has an outcome that is the limit of extensive-form stable outcomes along

a sequence of generically perturbed payoffs. To prove this result, we first argue that, if the payoffs

of Ĝ are generically perturbed, it has an extensive-form stable outcome.11 We then take a generic

sequence of payoff functions (ûk : Z→RN̂ ) converging to û and, for each k, an extensive-form stable

outcome ωk of Ĝ with payoffs ûk. Taking a subsequence if necessary, we may assume that (ωk)

converges to some ω∈Ω. The second step of the proof shows that ω is sequentially stable in G. In

this step, we take a vanishing tremble (ξn) and fix, for each k, a sequence (σk,n) with outcomes

converging toωk and withσk,n∈Σ
∗
0(ξn, ûk) for all n, whereΣ∗ǫ(ξn, ûk) indicates the set of sequential

ǫ-equilibria of Ĝ perturbed according to ξn with payoff ûk. (Such a sequence exists because ωk is

extensive-form stable.) We use a standard diagonal argument to prove that there exist an increasing

sequence (nk) and a sequence (ǫk)→0 such that σk,nk
∈Σ∗ǫk

(ξnk
, û) for all k andωσk,nk converges to

ω as k→∞. Since the argument holds for any vanishing tremble, we argue that ω is sequentially

stable in G.

The existence of a sequentially stable outcome in all games contrasts with the fact that KM-

stable sets of equilibria with a common outcome only exist for generic payoffs. This negative result

motivated Kohlberg and Mertens (1986) to favor a set-valued equilibrium concept, which is more

difficult to interpret and use. It is thus clear that the converse of Proposition 3.2 is not true in

11This follows from the results in Kohlberg and Mertens (1986) provided in Footnote 3. Hence, using that the sets of

mixed and behavior trembles of Ĝ coincide, we have that, for a generic payoff perturbation of Ĝ, the joint outcome

of a KM-stable set of equilibria contained in a connected set is extensive-form stable. Note that this observation does

not imply that extensive-form stable outcomes exist in games with generic payoffs; instead, implies that they exist in

games with generic payoffs that coincide with their agent-extensive form.
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general: while all games have sequentially stable outcomes, some may not be common outcomes

KM-stable sets of equilibria.

Example 3.3 (continuation of Example 3.2). Cho and Kreps (1987) show that the beer–quiche game

has two sequential outcomes (the beer and the quiche outcomes described in Exercises 2.1 and 3.2).

Because, by Example 3.1, the quiche outcome is not sequential, Proposition 3.4 implies that the beer

outcome is the unique sequentially stable outcome. We now explicitly show that the beer outcome is

the unique sequentially stable outcome by showing it is the unique limit equilibrium outcome along

a particular vanishing tremble. We consider the vanishing tremble (ξn) given by ξn(bw)=ξn(qw)=

(n+1)−2 and ξn(a)=(n+1)−1 for all a 6=bw, qw (which is also considered in Example 3.1). Note that

the strong type trembles asymptotically infinitely more than the weak type. Let (ǫn)→0 and (σn∈

Σ
∗
ǫn
(ξn)) such that (ωσn) converges to some outcomeω. Ifσkn

(bw)=ξkn
(bw) along a sequence (kn),

then player 2 assigns a vanishing probability to (w, bw) after beer along this sequence, hence it must

be that σkn
(rb)→1. It then follows that σkn

(bs)→1, which necessarily implies that σkn
(bw)→1,

contradicting that σkn
(bw)=ξkn

(bw) for all n. It must then be that σn(bw)>ξn(bw) for all n large

enough. Then, because the weak type asymptotically weakly prefers beer to quiche, the strong type

strictly prefers beer to quiche for n large enough. Again, this implies σn(bs)→1 and σn(bw)→1,

so ω is the beer outcome. Because the beer outcome is the unique limit equilibrium outcome for

(ξn), it is the unique sequentially stable outcome of the beer–quiche game. By Proposition 3.3, it

is also the unique extensive-form stable outcome.

Example 3.4. The proof of Proposition 3.4 illustrates how the requirement of ǫn-optimality (instead

of exact optimality) in the definition of sequential stability permits us to simultaneously perturb a

game’s strategies and payoffs to show that the limit of a sequence of extensive-form stable outcomes

of nearby games is a sequentially stable outcome. Such an argument would not apply to extensive-

form stable outcomes, which may not exist in games with non-generic payoffs. To see this, consider

the game in Figure 2(a), which corresponds to Figure 6.4.1 in van Damme (1991). Fix an outcome

ω assigning a positive probability to action T1. Consider a vanishing tremble (ξn) such that ξn(B2)>
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ξn(B
′
2), that is, such that player 2 trembles more toward B2 than toward B′2. Because it is optimal for

player 2 to choose T2 and T′2 in any Nash equilibrium for any n, player 1 prefers choosing B1 (which

gives her a payoff of 1−ξn(B
′
2)) to choosing T1 (which gives her 1−ξn(B2)). Hence, σn(B1)→1 in

any sequence of Nash equilibria along games perturbed according to (ξn), and soω is not extensive-

form stable. A symmetric argument implies that an outcome assigning positive probability to B1 is

not extensive-form stable, so there is no extensive-form stable outcome. Note that, nevertheless,

player 1’s payoffs from playing T1 and B1 are approximately the same, because player 2 chooses

T2 and T′2 with asymptotic probability 1. Thus, it is easy to see that any outcome in which player

2 responds with T2 or T′2 to player 1’s on-path actions is sequentially stable. It is also easy to see

that an outcome in which player 1 fully mixes is not the limit of extensive-form stable outcomes of

nearby games with slightly perturbed payoffs.

3.3 Relationship to KM-stable sets of equilibria

The definition of a sequentially stable outcome differs from the definition of a KM-stable set of

equilibria in Kohlberg and Mertens (1986) in two important ways.12 The first difference is that

sequential stability requires only ǫn-optimality (for some ǫn→0) instead of exact optimality (i.e.,

ǫn=0) along the sequence. The second difference is that Kohlberg and Mertens perturb the set

of mixed strategies (i.e., a player’s tremble assings a postive probability to all her full contingent

plans), while we consider independent trembles to the actions in each information set. We see

these two departures as necessary to produce a single-valued equilibrium concept that exists in all

games, has high selection power, and possesses desirable properties that permit one to consider

incentives related to actions instead of incentives related to full contingent plans. Let us elaborate.

As we shall see, requiring sequential almost-optimality along the sequence (instead of exact

optimality) is a minimal relaxation that maintains important properties while increasing tractabil-

ity and ensuring the existence of sequentially stable outcomes in all games. It is analogous to the

relaxation of the exact optimality of perfect equilibria to the ǫn-optimality of sequential equilib-

ria established in Proposition 2.1.13 While this type of relaxation preserves significant selection

12Roughly speaking, a set of equilibria S is KM-stable if it is minimal with respect to the property of being closed and

such that, for any vanishing sequence of normal-form trembles (each assigning minimal probability to each contingent

plan of each player), there is a corresponding sequence of Nash equilibria of the perturbed games approaching S.

13While the weakening provided by sequential equilibria was not needed for existence (existence of perfect equilibria

had been established in Selten, 1975), it made verifying properties (such as sequential optimality) much easier, as they

could be verified directly “in the limit”. The same applies to sequentially stable outcomes; for example, Dilmé (2023b)
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power in extensive-form games, the same approach does not work for normal-form games. To see

why, note that Jackson et al. (2012) show that the set of Nash equilibria of a normal-form game

coincides with the set of strategy profiles σ such that, for any vanishing tremble (ξn), there exist

two sequences (ǫn)→0 and (σn∈Σ
∗
ǫn
(ξn))→σ. The implication is that all Nash outcomes of a

normal-form game are sequentially stable (and hence sequential outcomes).14

Given our requirement of approximate sequential optimality along the sequence, it is nat-

ural to focus on behavioral vanishing trembles. As Corollary 3.1 establishes, the requirement of

robustness with respect to behavioral trembles implies that sequential stability satisfies sequential

rationality, and we will see that it enables the use of sequential equilibria to characterize sequen-

tially stable outcomes. Similarly, Proposition 3.1 ensures that sequentially stable behavior coincides

with behavior that is nearly sequentially optimal for any small enough tremble, giving an additional

sense of robustness. In contrast, sequential rationality is not guaranteed in KM-stable sets of equilib-

ria. For instance, Kohlberg and Mertens (1986) show that KM-stable sets do not necessarily satisfy

sequential rationality by providing an example of a game with a KM-stable set of equilibria having

a common outcome that is not the outcome of the unique sequential equilibrium (see their Figure

11). Furthermore, van Damme (1991) exhibits a game with a KM-stable set of equilibria having a

common outcome which is not the outcome of the unique subgame-perfect Nash equilibrium (see

his Example 10.3.4).15 By Corollary 3.1, the unique sequentially stable outcome of the games in

these examples is the outcome of their unique sequential equilibrium.

4 Properties of sequentially stable outcomes

In this section, we provide some properties that sequentially stable outcomes satisfy, and we com-

pare them with the properties of KM-stable sets of equilibria. We also provide some examples

showing how these properties are used.

characterizes sequential stability directly at the limit.

14Similarly, Fudenberg and Tirole (1991a, Theorems 14.5 and 14.6) show that, in normal-form games, all outcomes of

Nash equilibria are robust to payoff perturbations. By contrast, Takahashi and Tercieux (2020) show that requiring

outcomes to be robust to payoff perturbations has significant selection power in extensive-form games. However, robust

outcomes do not exist for all games.

15Mertens (1989) provides a definition of KM-stable sets different from that in Kohlberg and Mertens (1986) and shows

that it corrects some undesirable properties of the previous definition (in particular, under his definition, a KM-stable

set contains a sequential equilibrium). However, Mertens’s definition is remarkably involved and difficult to use in

practice.
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4.1 Forward induction and iterated strict equilibrium dominance

We begin with a property that is useful for proving or ruling out the sequential stability of outcomes,

and that implies both forward induction and iterated strict equilibrium dominance.

Proposition 4.1 (never a weak best response (NWBR)). Let ω be a sequentially stable outcome.

Assume a∈A is not sequentially optimal under any sequential equilibrium with outcome ω. Then ω is

a sequentially stable outcome of the game in which a is removed (as are all histories following it).16

The intuition behind NWBR is the following. Let Ĝ be the game obtained by eliminating an

action a that is not sequentially optimal under any sequential equilibrium with outcome ω. Fix a

vanishing tremble in Ĝ, and extend it to a vanishing tremble in G by assigning to a a sequence of

probabilities that vanish much faster than the probabilities assigned by the vanishing tremble to any

other action. Take a corresponding sequence of sequential ǫn-equilibria with outcomes converging

to ω (which exists because ω is sequentially stable). The proof of Proposition 4.1 shows that the

restrictions of sequential ǫn-equilibria to Ĝ generate a sequence of sequential ǫn-equilibria, for some

sequence (ǫ̂n)→0. Intuitively, since a is not sequentially optimal under any sequential equilibrium

with outcome ω, each of the sequential ǫn-equilibria for n high enough assigns to a the same very

low probability as it has in the vanishing tremble. As a result, any history containing a has a

vanishing likelihood relative to any history not containing a, ensuring the asymptotic sequential

rationality of the restrictions of the sequential ǫn-equilibria to Ĝ.

Our definition of NWBR implies the following versions of forward induction and iterated strict

equilibrium dominance.

Corollary 4.1. Let ω be a sequentially stable outcome. Then the following hold:

1. Forward induction: Assume I∈I is on path under ω and a∈AI is such that

max
σ∈Σ∗0(ω)

u(a|σ)<u(I |ω) , (4.1)

where u(I |ω) is player ι(I)’s payoff underω conditional on I being reached, and Σ∗0(ω) is the set

of sequential equilibria with outcome ω. Then, if a is removed, ω remains sequentially stable.

2. Iterated strict equilibrium dominance: If a strictly equilibrium-dominated action (i.e., an

action that is not sequentially rational under any sequential equilibrium) is removed,ω remains

sequentially stable.

16An action a is sequentially optimal if player ι(I a)’s continuation payoff at I a from playing a (computed using the strategy

profile and the belief system) is the maximum continuation payoff that player ι(I a) can obtain by playing some action

in AIa

. Note that ω is an outcome of any game that results from eliminating an action that is off path under ω.
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Forward induction and iterated strict equilibrium dominance are intuitive and often easier

to use than NWBR.17 Forward induction arguments can be used to rule out candidates for sequen-

tially stable outcomes by proving they are not sequentially stable in a simpler game. Iterated strict

equilibrium dominance is applied to the game, not to a particular outcome, and hence can be used

to simplify the game before assessing the sequential stability of a candidate outcome.

Example 4.1. Before, we argued that KM-stability does not imply sequential stability, as there are

games with KM-stable sets of equilibria that do not contain sequential equilibria. Figure 3(a), which

coincides with Figure 2 in Kohlberg and Mertens (1986), provides an example showing that sequen-

tial stability does not imply KM-stability. Assume x∈(0, 1). In this game, the outcome assigning

probability one to T1 is not the outcome of all equilibria in a KM-stable set.18 Still, such an outcome

is sequentially stable: For any vanishing tremble (ξn) and any n, one can define σn(a):=ξn(a)

for all a∈{B′1, M1, T2} (which pins down the full strategy profile), and this supports the outcome.

Intuitively, player 2 interprets the choice of B′1 as a mistake; hence, she believes that player 1 will

play B1 because this is optimal given the prescribed strategy profile.

Example 4.2 (continuation of Example 3.3). Kohlberg and Mertens (1986) argue that the beer

outcome ωb is the unique outcome of a KM-stable set of equilibria of the beer–quiche game (see

Figure 1). They do so by claiming that the set of Nash equilibria has two connected components,

ruling out the KM-stability of one component using forward induction, and finally claiming that

the other component must contain a KM-stable set. A complete argument would require proving

that there are two connected components of Nash equilibria and that there are no KM-stable sets

containing equilibria in both connected components (note that, as defined by Kohlberg and Mertens,

a KM-stable set need not be connected). To characterize the possible KM-stable sets, one would then

need to impose minimality.

17Note that the conclusion of Corollary 4.1 also holds if the left-hand side of (4.1) is replaced by maxz∈Za uι(I)(z) (that is,

if the outcome’s payoff at I is higher than the terminal payoff under any terminal history containing a); this condition is

more restrictive but may be easier to verify (since one need not know Σ∗0(ω)). Similarly, one can weaken iterated strict

equilibrium dominance to iterated strict dominance as follows: If I∈I and a, a′∈AI are such that maxz∈Za uι(I)(z)<

minz∈Za′ uι(I)(z), thenω remains sequentially stable if a is eliminated (recall that Z a is the set of terminal histories that

contain a).

18To see this, assume for the sake of contradiction that there is a KM-stable set of equilibria of the reduced normal-

form game (where players 1 and 2 have action sets {T1, B′1M1, B′1B1} and {T2, B2}, respectively) with outcome assigning

probability one to T1. Because B′1B1 is an inferior response in all equilibria with outcome assigning probability one to

T1, the KM-stable set contains a KM-stable set of the game obtained by deleting B′1B1 (by Proposition 6 in Kohlberg and

Mertens, 1986). Action B2 can be eliminated from the resulting game using a similar argument. Nevertheless, it is easy

to see that there is no KM-stable set with outcome assigning probability one to T1 in the game without B′1B1 and B2.
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We now provide a similar but simpler argument using forward induction and equilibrium

dominance, which is both straightforward and complete (see Examples 3.1–3.3 for analogous re-

sults using vanishing trembles). We start by showing that the quiche outcomeωq is not sequentially

stable. If it were, then by forward induction it would remain sequentially stable upon the elimina-

tion of action bw, since the maximum payoff the weak type can achieve by playing bw is lower than

her payoff under ωq. In the game without action bw, action fb is strictly (equilibrium) dominated,

so it can also be eliminated. In the resulting game, the strong type prefers playing bs (which can

only be followed by rb) to playing qs, so there is no sequential equilibrium with the quiche outcome,

contradicting the assumption of its sequential stability.

Next we show that the beer outcome is the only remaining candidate for a sequential outcome.

To see this, take a sequential equilibrium (σ,µ). It cannot be that σ(bw)∈(0, 1), since then σ(rb)=

σ(rq)+1/2 and the strong type strictly prefers bs to qs, leading toσ(rb)=1 andσ(rq)=0, so that the

weak type strictly prefers bw to qw. Similarly, it cannot be thatσ(bs)∈(0,1), since thenσ(rb)+1/2=

σ(rq) and the weak type strictly prefers qw to bw, leading to σ(rb)=1 and so σ(rq)=3/2. It must

then be that σ(bw),σ(bs)∈{0,1}. If σ(bw) 6=σ(bw) then the weak type is fought on path while the

strong type is not, so the weak type has an incentive to deviate. Hence, the beer outcome is the only

candidate for a sequentially stable outcome. By Proposition 3.4, it follows that the beer outcome is

the unique sequentially stable outcome.

Remark 4.1. Note that our definition of NWBR is analogous to that in Kohlberg and Mertens (1986),

but applied to simpler objects. As Fudenberg and Tirole (1991a) explain, Kohlberg and Mertens

establish that “a stable set contains a KM-stable set of any game obtained by deleting any strategy

that is not a weak best response to any of the opponents’ strategy profiles in the set” (p. 445). In

contrast, we determine that a sequentially stable outcome is a sequentially stable outcome of any
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game obtained by deleting any action that is not a weak best response any sequential equilibria with

that outcome. Our definition of NWBR is thus applied to a single-valued object (outcomes instead

of sets of equilibria) and requires simpler conditions (on actions instead of full contingent plans).19

Similarly, our version of forward induction permits us to eliminate actions that are available on path

but are strictly dominated by not deviating (in the sense of (4.1)). We see it as natural to require

the actions eliminated to be on path, given the use of behavioral strategies in our construction

and the common form of forward induction arguments.20 The definition of forward induction in

Kohlberg and Mertens (1986), by contrast, permits one to eliminate normal-form strategies (i.e.,

full contingent plans) that “are an inferior response in all the equilibria of the [stable] set” (p. 1029);

this is closer to our NWBR condition.

4.2 Admissibility and iterated dominance

It is well known that sequential equilibria fail admissibility; that is, players may play a weakly

dominated strategy on the path of play of a sequential equilibrium. The reason is that sequential

optimality is required only at the limit (or equivalently, under the characterization in Proposition

2.1, only ǫn-optimality is required along the sequence of strategy profiles, for some ǫn→0). (By

contrast, perfect equilibria, where ǫn=0 for all n, satisfy admissibility.) It is not difficult to see

that sequentially stable outcomes may fail admissibility for the same reason. This is unsurprising,

since requiring both admissibility and iterated (strict) dominance leads to the non-existence of

equilibrium concepts that are not set-valued.21 We now describe a sense in which admissibility is

fragile to payoff perturbations, but sequential stability is not.

Consider the game in Figure 2(b). This game has a unique outcome that is the outcome of

a KM-stable set of equilibria, in which player 1 chooses B1 for sure, as B1 is its only admissible

strategy. Intuitively, any small tremble by player 2 brings player 1’s payoff from choosing T1 below

19Note that Kohlberg and Mertens argue that no single-valued concept satisfies NWBR (when applied to strategies instead

of actions), which they see as an argument in favor of using set-valued concepts.

20Cho (1987) defines a refinement of sequential equilibria, called forward induction equilibria, by requiring a condition

similar to (4.1), that is, imposing restrictions on the off-path beliefs after actions that are available on path but strictly

dominated by the equilibrium actions, under a conveniently defined set of possible continuation plays.

21Kohlberg and Mertens (1986) show that KM-stable sets satisfy admissibility (i.e., only contain equilibria in which

players do not play weakly dominated strategies). Also, in Section 2.7.B, they exhibit a game (called Ω) that shows

why requiring admissibility and iterated dominance leads to the non-existence of a single-valued equilibrium concept.

The same example can be used to show that requiring iterated strict dominance together with admissibility leads to

the same non-existence result.
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1, while choosing B1 ensures a payoff of 1. However, this argument is fragile to small perturbations

on payoffs. Indeed, for any small tremble ξ, there is a small perturbation in player 1’s payoff that

makes playing T1 part of a (unique) Nash equilibrium of the perturbed game.

By contrast, the proposition below shows that sequential stability is robust in the following

sense: given a sequentially stable outcome ω, for any perturbation of the game (in terms of trem-

bles), there is a game with nearby payoffs that has an equilibrium outcome close to ω.

Proposition 4.2. Let ω be an outcome. The following assertions are equivalent:

1. The outcome ω is sequentially stable.

2. For all ǫ,ǫ′>0 there exist δ,δ′>0 with the property that, for all trembles ξ with ‖ξ‖<δ and

u′ with ‖u′−u‖<δ′, G(ξ, u′) has a sequential ǫ-equilibrium outcome ǫ′-close to ω.

3. For all ǫ,ǫ′>0 there exists δ>0 with the property that, for all trembles ξ with ‖ξ‖<δ, there is

some u′ with ‖u′−u‖<ǫ such that G(ξ, u′) has a Nash equilibrium outcome ǫ′-close to ω.

4.3 Sequential stability in subgames

Selten (1965) introduced the concept of subgame-perfect (Nash) equilibria to give plausibility to

equilibrium behavior: Even if the players find themselves off path, they should continue playing

mutual best responses. Sequential rationality has since been a crucial property of some equilibrium

concepts (e.g., perfect equilibria) and a requirement in others (e.g., sequential equilibria). As well

as adding plausibility, subgame perfection facilitates the study of games by enabling the use of

backward induction. For example, by iteratively replacing subgames with their Nash equilibria,

one can obtain (subgame-perfect) Nash equilibria of the original game. Analyzing each simpler

subgame separately is often easier than studying the whole game at once.

The credibility of off-path behavior is a crucial aspect of sequential stability: Since all infor-

mation sets are on path for each tremble, requiring robustness to all vanishing trembles provides a

strong sense of sequential rationality. As a result, as we have shown, sequentially stable outcomes

are sequentially rational; that is, they are outcomes of sequential equilibria, which are themselves

subgame-perfect. Still, subgame perfection cannot be applied directly to the concept of sequential

stability, because sequentially stable outcomes do not specify off-path behavior. As Example 3.2

shows, the limit off-path behavior for the sequence of sequential ǫn-equilibria supporting a sequen-

tially stable outcome may depend on the particular vanishing tremble used.

The following proposition establishes three results that help us study sequential stability via

subgames. The first says that a subgame with a unique sequential outcome can be replaced by that
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outcome without altering the set of sequentially stable outcomes. This lets us iteratively reduce

the complexity of a game. The second result says that if an outcome ω is sequentially stable in

the game resulting from replacing a subgame with one of its sequentially stable outcomes, then ω

is also a sequentially stable outcome of the original game. This helps us find sequentially stable

outcomes by iteratively replacing subgames by their sequentially stable outcomes. Finally, the third

result says that the conditional distribution induced by a sequentially stable outcome in an on-path

subgame is itself a sequentially stable outcome of the subgame. This provides a way to rule out

the sequential stability of a candidate outcome (by arguing that its continuation outcome is not

sequentially stable in some on-path subgame) and narrow down the possible on-path behaviors of

sequentially stable outcomes.

Proposition 4.3. 1. Let G′ be a subgame of G with a unique sequential outcome ω′. Then the

game where G′ is replaced by ω′ has the same set of sequentially stable outcomes as G.22

2. Let G′ be a subgame of G and ω′ a sequentially stable outcome of G′. Let ω be a sequentially

stable outcome of the game where G′ is replaced by ω′. Then ω is sequentially stable in G.

3. Letω be sequentially stable and let G′ be a subgame of G that occurs on the path of ω. Then the

conditional distribution of the terminal histories in G′ is a sequentially stable outcome of G′.

4.4 Invariance

Our focus on behavioral trembles permits us to state definitions (e.g., those of a sequential ǫ-

equilibrium or sequentially stable outcome) and properties (e.g., NWBR, iterated strict equilibrium

dominance) in terms of actions instead of normal-form strategies (i.e., probability distributions over

full contingent plans). In extensive-form games, reasoning in terms of the players’ incentives to take

actions in each information set is often easier and more natural than reasoning using normal-form

strategies, as the latter may be highly complex. An implication of our approach is that, like other

equilibrium concepts based on behavioral trembles (e.g., perfect and sequential equilibria), sequen-

tial stability is not invariant to changes in the game tree that preserve the reduced normal form of

the game.

While there is disagreement on the desirability of invariance as a requirement for equilibrium

concepts, most authors agree that invariance to interchanging simultaneous moves is a basic and

22By “the game where G′ is replaced byω′” we mean the game in which, at the node where G′ is initiated, nature chooses

each terminal history z′ in the support ofω′ with probabilityω′(z′). Note that Govindan (1996) proves a result similar

to Proposition 4.3(2), but for KM-stable sets of equilibria.
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necessary requirement (which is also satisfied by KM-stable sets). Indeed, while a modeler of a

particular economic activity may identify the sequence of moves to determine the game tree, she

has freedom in how to encode simultaneous moves. The following proposition states that the set

of sequentially stable outcomes does not depend on the order of the moves.

Proposition 4.4 (invariance to interchanging simultaneous moves). Let ω be a sequentially stable

outcome. If two information sets I and I ′ are such that I ′= I×AI (i.e., I and I ′ are simultaneous), a

game where the order of I and I ′ is reversed has a sequentially stable outcome equivalent to ω.

Example 4.3. Although sequential stability does not satisfy invariance to coalescing consecutive

moves, it relies less on the particular game tree of a given normal-form game than other equilib-

rium concepts. Take, for example, games (a) and (b) in Figure 3 with x∈(1,2), which Kohlberg

and Mertens (1986) use to exemplify the invariance of KM-stability (see their Figures 2 and 3).

Note that game (b) is obtained by “coalescing” two moves of player 1 in game (a). Kohlberg and

Mertens argue that the outcomeω1 assigning probability one to T1 is both a sequential and a perfect

equilibrium outcome in game (b), but not in game (a)—even though games (a) and (b) have the

same reduced normal form—while ω1 is not KM-stable in either game. By the same logic, one can

show thatω1 is not a sequentially stable outcome of game (a) or game (b) (note that B1 is a strictly

dominated action in both games), so the only sequentially stable outcome assigns probability one

to (M1, T2). On the other hand, when x∈(0,1), Example 4.1 explains thatω1 is sequentially stable

in (a) but not in (b).

4.5 Approaches to obtaining sequentially stable outcomes

We now discuss procedures for identifying sequentially stable outcomes in extensive-form games

without explicitly showing sequential stability for all vanishing trembles (as in Example 3.2). These

procedures overcome some of the complications that make using KM-stable sets difficult in practice,

as described in the introduction.

Through applying necessary conditions: The first procedure consists in eliminating all candi-

dates for sequentially stable outcomes except one, by applying necessary conditions such as the

properties established in Propositions 4.1 and 4.3 and Corollary 4.1. Recall that, by Corollary 3.1,

only outcomes of sequential equilibria can be sequentially stable. Since sequential equilibria are

sometimes difficult to compute, candidates for sequentially stable outcomes may be drawn from

outcomes of a weaker class of equilibria, such as perfect Bayesian equilibria (Fudenberg and Tirole,

1991b). Example 4.2 illustrates this technique.
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While NWBR and forward induction can be used to rule out the sequential stability of specific

outcomes, iterated strict equilibrium dominance permits the direct elimination of “implausible”

moves, which simplifies the analysis (note that parts 1 and 2 of Proposition 4.3 also enable one to

simplify the game). For instance, the elimination of a strictly dominated action does not change

the set of sequentially stable outcomes (see Footnote 17) but typically reduces the set of candidates

(e.g., by reducing the set of outcomes of sequential equilibria). It is important to note that if the

game resulting from the elimination of a strictly dominated action has a unique sequentially stable

outcome, then it is the unique sequentially stable outcome of the original game.23

Through a vanishing tremble: The second procedure consists in reducing the field of candidates

for sequentially stable outcomes by considering particular vanishing trembles. If one can find a

vanishing tremble such that all corresponding sequences of almost-optimal behavior have the same

limit outcome ω, then, by the existence of sequentially stable outcomes, ω has to be the unique

sequentially stable outcome. The advantage of this approach is that it does not require ruling out

the sequential stability of all but one outcome; rather, it lets one prove immediately that a given

outcome is the unique sequentially stable outcome. The disadvantage is that it may be difficult to

find the right vanishing tremble and then prove that ω is the unique limit equilibrium outcome

along it.24,25 Examples 3.4 and 5.1 illustrate this technique. See also Examples 3.1 and 5.2 for the

use of a vanishing tremble to rule out the sequential stability of a given outcome.

Elimination through a vanishing tremble is particularly convenient in games where the payoff

from taking certain actions depends on (and hence communicates) private information, and this

payoff satisfies a “single-crossing” condition (e.g., in signaling games or bargaining games with

private information). In these games, even when payoffs are not generic, there is often a very small

set of equilibrium outcomes for perturbed versions of the game where the highest type (i.e., the

type that other types want to mimic) trembles more than the low types. Hence, in many cases,

vanishing trembles where high types tremble asymptotically more than low types have a unique

23Note that a similar argument is difficult to make when using iterated dominance as in Kohlberg and Mertens (1986), as

the uniqueness of a KM-stable set in the simpler game only implies that this set is part of a KM-stable set of the original

game (see Proposition 6 in Kohlberg and Mertens, 1986, which states, “A [KM-]stable set contains a [KM-]stable set of

any game obtained by deletion of a dominated strategy”).

24In Lemma A.1 in the appendix, we provide a convenient characterization: An outcome ω∈Ω is sequentially stable if

and only if the property in Definition 3.1 holds for some subsequence (ξkn
) of (ξn) (instead of the whole sequence).

25In a companion paper (Dilmé, 2023b), we define ℓ-numbers as a way to work with limit likelihoods of actions and

histories. The advantage of using ℓ-numbers is that the sequential stability of a given outcome can be proved without

using sequences of strategy profiles; it is only necessary to verify sequential optimality at the limit.
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limit equilibrium outcome, which is then the unique sequentially stable outcome. In signaling

games à la Spence (1973), for example, such an outcome is often—but not necessarily (see Example

5.1)—the least costly fully separating outcome, called the Riley outcome.

Combining techniques: Note that the two procedures described above are not mutually exclusive.

On the contrary, they can be combined. For example, iterated strict equilibrium dominance can

be used to simplify the game. Then, for a given candidate outcome, one can use NWBR, forward

induction, or a vanishing tremble to show that the outcome is not sequentially stable in the simpli-

fied game, and hence it is not sequentially stable in the original game. If there remains only one

sequential outcome, then this is the unique sequentially stable outcome of the original game.

5 Sequential stability in signaling games

Since the introduction of signaling games by Spence (1973), many selection criteria have been sug-

gested to address their inherent multiplicity of equilibria. Many such selection criteria are specific

to signaling games and difficult to generalize to other classes of games; examples include the Intu-

itive Criterion, D1, and D2 (Cho and Kreps, 1987) and divinity and universal divinity (Banks and

Sobel, 1987). In this section, we relate selection criteria in signaling games to sequential stability.

5.1 Signaling games and sequential stability

A signaling game Gsig proceeds as follows. First, nature chooses a type θ ∈Θ with distribution

π∈∆(Θ). Having observed θ , the sender chooses a message m∈Mθ ⊂M . Finally, having observed

the message but not the type, the receiver chooses a response r∈Rm⊂R. We assume Θ, M , and R

are finite sets. As usual, we let Θm be the set of types who can send message m.26 Abusing notation,

we let uθ (m, r) and ur(θ , m, r) denote the payoffs of the sender and the receiver, respectively, at

(θ , m, r)∈Z , and we let uθ (ω) denote the sender’s payoff under outcome ω conditional on the re-

alized type being θ . We let BRm(µm)⊂∆(Rm) be the set of (mixed) best responses of the receiver to

message m when her belief about the sender’s type is µm∈∆(Θm), and BRm :=∪µm∈∆(Θm)
BRm(µm).

The following is a characterization of the set of sequentially stable outcomes of Gsig.

26Note that we abuse notation by letting m denote a message that can be sent by different sender types, given that our

definition of an extensive-form game requires that each action is only played in a unique information set.
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Proposition 5.1. The outcome ω is sequentially stable if and only if it is the outcome of a sequential

equilibrium and, for any off-path m∈M and µm∈∆(Θm), there are some α∈[0, 1], µ′m∈∆(Θm),

and ρ∈BRm(αµm+(1−α)µ
′
m) with the following properties: uθ (m,ρ)≤uθ (ω) for all θ ∈Θm, and if

α 6=1, then uθ (m,ρ)=uθ (ω) for all θ ∈Θm with µ′m(θ )>0.

Banks and Sobel (1987) and Cho and Kreps (1987) find that, in a signaling game with generic

payoffs, an outcome satisfies the conditions in Proposition 5.1 (or, more precisely, it satisfies sim-

ilar but slightly more complicated conditions) if and only if it is KM-stable; see their Theorem 3

and Proposition 4, respectively.27 Consequently, the following is an immediate corollary of our

Propositions 3.2 and 5.1.

Corollary 5.1. Generically in payoffs, the set of KM-stable outcomes and the set of sequentially stable

outcomes of Gsig coincide.

We end this section with a result that enables one to show that an outcome of Gsig is KM-stable

by proving it is the unique sequentially stable outcome of Gsig, or the other way around.

Proposition 5.2. If an outcome is the unique sequentially stable outcome of Gsig, then it is its unique

KM-stable outcome.

To prove Proposition 5.2, we first show that in a signaling game, ifω is extensive-form stable,

then it is KM-stable.28 We then show that if ω is KM-stable, then it is sequentially stable. The

implication is that if Gsig has a unique sequentially stable outcome, then (i) such an outcome is

extensive-form stable (by Proposition 3.3) and hence KM-stable, and (ii) there is no other KM-

stable outcome, since any KM-stable outcome would be sequentially stable.

5.2 Signaling refinements

Cho and Kreps (1987) proposed several distinct criteria for selecting equilibria in signaling games.

These criteria have shaped the handling of equilibrium multiplicity across diverse applications. In

this section, we argue that sequential stability is stronger than all of these criteria.

27We say an outcome ω is KM-stable if, for any vanishing tremble of the reduced normal form of the game, there is

a corresponding sequence of Nash equilibrium outcomes converging to ω. KM-stable outcomes exist in games with

generic payoffs (see Footnote 3).

28This is non-trivial to prove, because the trembles of the reduced-form game (used to determine KM-stability) affect all

sender types equally and may be correlated across types, while the sizes of the behavioral trembles (used to determine

extensive-form stability) may depend on the type and are uncorrelated across types.
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For conciseness, we refer to the IC (Intuitive Criterion), D1, D2, and NWBRCK (i.e., Cho and

Kreps’s version of NWBR; see below) as the standard selection criteria (for signaling games).29 They

are based on the following procedure: First, fix an outcome of a sequential equilibrium. Then, for

each off-path message, prune out all types deemed implausible according to the criterion. Finally,

if not all types have been pruned out, check whether there is a sequential equilibrium in which,

if the sender chooses an off-path message, the receiver assigns probability zero to the pruned-out

types. If one such sequential equilibrium exists, the outcome passes the criterion; otherwise, it fails

it. Cho and Kreps (1987) provide intuition and motivation for each selection criterion.

The proposition below shows that sequentially stable outcomes pass the standard selection

criteria. An implication is that, for each standard selection criterion, there is an outcome passing

it. Additionally, if there is a unique outcome passing one of the standard selection criteria, such an

outcome is the unique sequentially stable (and KM-stable) outcome of Gsig.

Proposition 5.3. Let ω be a sequentially stable outcome of Gsig and m an off-path message. For each

type θ ∈Θm, define conditions IC, D1, D2, and NWBRCK as follows:

IC: ∀ρ∈BRm uθ (m,ρ)<uθ (ω) .

D1: ∃θ ′∈Θm\{θ} ∀ρ∈BRm uθ (m,ρ)≥uθ (ω)⇒ uθ ′(m,ρ)>uθ ′(ω) .

D2: ∀ρ∈BRm ∃θ
′∈Θm\{θ} uθ (m,ρ)≥uθ (ω)⇒ uθ ′(m,ρ)>uθ ′(ω) .

NWBRCK: ∀ρ∈BRm ∃θ
′∈Θm\{θ} uθ (m,ρ)=uθ (ω)⇒ uθ ′(m,ρ)>uθ ′(ω) .

For each X ∈{IC,D1,D2,NWBRCK}, let Θ̂X be the set of all θ ∈Θm satisfying condition X . Then, if

Θ̂X 6=Θm, there is a sequential equilibrium (σ,µ) with outcome ω where µm(Θ̂X )=0.

5.3 Examples

In this section, we provide two examples. Example 5.1 illustrates how sequential stability helps

select outcomes in a standard signaling game where a single-crossing condition applies and shows

that the selected outcome may fail to be the Riley outcome. Example 5.2 illustrates how sequential

stability can be used in a signaling game not satisfying single crossing, where other selection criteria

cannot be used. Note also that since the beer–quiche game studied in Examples 2.1, 3.1–3.3, and

4.2 is a signaling game, we can use the results of Section 5 to analyze it further. See Dilmé (2023b)

for more examples.

29We omit the criteria of divinity and universal divinity proposed by Banks and Sobel (1987), since they are based on a

different methodology. In Dilmé (2023a), we show that sequentially stable outcomes also pass iterated applications of

the criteria of Cho and Kreps (1987).

26



Example 5.1 (signaling with single crossing). In this example, we consider a version of the model of

Spence (1973). First, nature decides the type of the sender, θ ∈{θ0=0,θ1=1}, with π(θ0):=3/4.

Then the sender chooses the message (effort) m∈M :={0,∆, 2∆, . . . , ⌊∆−1⌋∆}, for some small∆>

0. Finally, after observing the effort, the receiver chooses a response r∈{0,1}. The payoffs are

uθ (m, r):= r−cθ m and ur(θ , m, r):= r (2θ−1) , (5.1)

with 1< cθ1
< cθ0

<1/∆. Note that the receiver prefers to choose r=0 when θ=θ0 and r=1 when

θ=θ1, while both sender types prefer a low message and want the receiver to choose r=1. Let

m be the smallest message bigger than 1/cθ0
. We consider the following vanishing tremble (ξn):

Sender types θ0 and θ1 tremble to all messages with likelihoods n−2 and n−1, respectively (i.e.,

ξn(m|θ0)=n−2 and ξn(m|θ1)=n−1 for all m), while the receiver trembles to all responses with

probability n−1 (we initialize n so that all trembles are smaller than 1).

Let (ǫn)→0 and let (σn∈Σ
∗
ǫn
(ξn)) be such that (σn) supports an assessment (σ,µ) (which by

Proposition 2.1 is a sequential equilibrium). Let m+<1 be the highest effort such that σn(m|θ0)>

ξn(m|θ0) for an infinite number of n∈N. It must then be that σn(r=1|m)→1 for all m>m+.

Since, for type θ0, choosing message 0 strictly dominates choosing any message m≥m, we have

that m+<m. It must be that type θ0 prefers not to deviate to choose m++∆, that is,

σn(r=1|m+)−cθ0
m+≥1−(m++∆) cθ0

−ǫn ⇒ cθ0
≥

1−σn(r=1|m+)+ǫn

∆
.

Since m+ is optimal for type θ0, the usual single-crossing property implies thatσn(m|θ1)=ξn(m|θ1)

for all m<m+ if n is large enough.30 Since type θ0 has to assign positive probability to at least one

effort below m+ in the limit, and since the receiver chooses r=0 if her posterior about the type

being θ1 is small enough, type θ0 must choose m=0 with positive probability in the limit. Hence,

m+=⌊(cθ0
∆)−1⌋∆ and σ(r=1|m)= cθ0

m ∀m≤m+ .

Generically in cθ1
, there are then two cases.31 In the first case, that is, when ⌊(cθ0

∆)−1⌋ cθ0
∆<

30Here, the single-crossing property says that if θ0 (weakly) prefers m+ to m<m+, then type θ1 strictly prefers m+ to m

(this holds because cθ1
< cθ0

). So, for all m<m+, limn→∞(uθ1
(m+|σn)−uθ1

(m|σn))>0; hence σn(m|θ1)=ξn(m|θ1) if

n is large enough.

31We require that ⌊(cθ0
∆)−1⌋ cθ0

∆ 6=1−cθ1
∆, since otherwise there is a spurious multiplicity of limit equilibrium out-

comes. Note that, while our specification is standard, it is also highly non-generic, because of both the structure of the

message space and the payoffs (5.1). So KM-stable outcomes cannot be assumed to exist.
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1−cθ1
∆, type θ1 strictly prefers m++∆ to m+. This implies that σ is uniquely determined by32

�

σ(m|θ0),σ(m|θ1),σ(r=1|m)
�

=



















(1,0, 0) if m=0,

(0,0, cθ0
m) if 0<m≤m+,

(0,1, 1) if m=m++∆,

(0,0, 1) if m>m+.

Hence the only candidate for a sequentially stable outcome is the Riley outcome, in which type

θ0 chooses the least costly message, while type θ1 chooses the cheapest message that allows full

separation. Since the Riley outcome is the unique limit equilibrium outcome for the vanishing

tremble under consideration, it must be both sequentially stable and KM-stable. In the second

case, when ⌊(cθ0
∆)−1⌋ cθ0

∆>1−cθ1
∆, type θ1 strictly prefers m+ to m++∆. Thus σ is uniquely

determined by

�

σn(m|θ0),σn(m|θ1),σn(r=1|m)
�

→



















(2/3, 0,0) if m=0,

(0, 0, cθ0
m) if 0<m<m+,

(1/3, 1, cθ0
m+) if m=m+,

(0, 0,1) if m>m+.

In this case, there is again a unique candidate for a sequentially stable outcome, but it does not

coincide with the Riley outcome. In this outcome, type θ0 randomizes between the lowest message

and a separating message, while type θ1 chooses the separating message with probability one.

Again, this outcome is both sequentially stable and KM-stable.

Example 5.2 (signaling without single crossing). We now present an example of a signaling game

where no single-crossing condition holds. Consider two types, Θ :={θ0=0,θ1=1}, two messages,

M :={m0=0, m1=1}, and actions in a grid, R:={0, 1/r, . . . , 1−1/r, 1}, for some large even number

r/2∈N (so 1/2∈R). Nature chooses θ=θ1 with probability 1/2. The receiver’s payoff is −(r−θ )2;

32An example of a sequence (σn) converging to σ such that σn∈Σ
∗
ǫn
(ξn) for all n and some sequence (ǫn)→0 is

�

σn(m|θ0),σn(m|θ1),σn(r=1|m)
�

:=



















(K0
n
, n−1, n−1) if m=0,

(n−1, n−1, cθ0
m) if 0<m≤m+,

(n−2, K1
n
, 1−n−1) if m=m++∆,

(n−2, n−1, 1−n−1) if m>m+,

where the choice of each K i
n

ensures that σn(·|θi) is a probability distribution (note that K i
n
→1 as n→∞).
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that is, he “tries to match” the belief about type θ1. We also assume that message m1 is costly, that

type θ0 prefers high actions, and that type θ1 prefers intermediate actions:

uθ0
(m, r):=1[1/3,1](r)−m cθ0

and uθ1
(m, r):=1[1/4,3/4](r)−m cθ1

,

where cθ0
, cθ1
∈(0, 1). Consider an outcome in which both types choose m1 and the receiver chooses

r=1/2. Such an outcome passes all standard selection criteria (IC, D1, D2, and NWBRCK), because

the sets of receiver actions that make deviating profitable for each type are not ordered by inclusion.

To prove that the outcome is not sequentially stable, consider a tremble in which type θ1 trembles

to m0 with a higher likelihood than type θ0, say ξn(m0|θ1):=(n+1)−1 and ξn(m0|θ0):=(n+1)−2.

Assume there are two sequences (ǫn) and (σn) with the properties in Definition 3.1. Note that type

θ0’s payoff from choosing m0 has to be asymptotically the same as her payoff from choosing m1,

since otherwise, the receiver would assign an increasingly high posterior to type θ1 after m0, leading

her to choose r=1 and making type θ0 strictly willing to deviate. As a result, the probability with

which the receiver plays an action in [1/3,1] after m0 must tend to 1−cθ0
as n→∞. Note that, for

n large enough, the receiver chooses an action r with positive probability after m0 only if |µm(θ1)−

r|<1/r. Hence, letting k∈N be such that k/r≤1/3<(k+1)/r, we have that the receiver puts an

increasingly high probability on {k/r, (k+1)/r} after m0 as n increases. Hence, type θ1’s payoff gain

from choosing m0 instead of m1 remains positive and bounded away from 0 as n increases, since

by doing so, she obtains approximately 1 instead of approximately 1−cθ1
. This is a contradiction.

It is not difficult to see that the game has a unique sequentially stable outcome in which both types

choose m0 for sure. By Proposition 5.2, such an outcome is KM-stable as well.

6 Conclusions

We have investigated the limits of near-optimal behavior along sequences of perturbed games.

When convergence is required along some vanishing tremble, sequential outcomes are obtained.

When instead convergence is required along all vanishing trembles, sequentially stable outcomes

are obtained. As sequential equilibria have been extensively studied, our analysis has focused on

characterizing sequentially stable outcomes.

We have shown that sequential stability shares many desirable properties with KM-stability.

First, it gives robust predictions: Any perturbation of a game has almost-optimal behavior close to

a sequentially stable outcome. Second, a sequentially stable outcome satisfies various plausibility

requirements: It is the outcome of a sequential equilibrium, and it remains sequentially stable after

the elimination of strictly dominated actions or the interchange of simultaneous moves. Finally,
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sequentially stable outcomes exist in all games and pass most selection criteria; hence, they can be

used to select and compare equilibria across games.

The existence of sequentially stable outcomes for all games facilitates their use in practice.

Sequentially stable outcomes can be identified by ruling out the alternatives through some va-

nishing tremble, using properties such as NWBR or forward induction, or using a combination of

these techniques. Sequentially stable outcomes are extensive-form stable when they are unique.

Our results on signaling games illustrate the strength of sequential stability. Sequentially stable

outcomes pass most of the commonly used selection criteria, and they coincide with KM-stable

outcomes when they are unique or when payoffs are generic.

Several questions not addressed in our analysis may constitute avenues for future research.

First, an axiomatic characterization of sequential stability would be desirable.33 Second, it may

be interesting to investigate which classes of games beyond signaling games feature generic equiv-

alence between KM-stability and sequential stability. Finally, it may be possible to strengthen se-

quential stability to a criterion that retains the existence properties of sequential stability, yet selects

unique outcomes.
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A Proofs of the results

A.1 A useful result

Before proceeding to the proofs of the results in the main text, we state and prove a result that will

be useful for proving that an outcome is sequentially stable. It establishes that sequential stability

can be equivalently defined in an apparently weaker form than our Definition 3.1.

Lemma A.1. An outcomeω∈Ω is sequentially stable if and only if for any vanishing tremble (ξn) there

exist a strictly increasing sequence of indexes (kn) and two sequences (ǫn)→0 and (σn∈Σ
∗
ǫn
(ξkn
)) such

that (ωσn) converges to ω.

Proof. The “if” direction is obvious: if ω is sequentially stable, the result holds by setting kn :=n

for all n∈N. Assume then that ω is such that, for any vanishing tremble (ξn), there is a strictly

increasing sequence (kn) and two sequences (ǫn)→0 and (σn∈Σ
∗
ǫn
(ξkn
)) such that (ωσn) converges

to ω. Fix some vanishing tremble (ξn), and assume for the sake of contradiction that there is no

pair of sequences (ǫn)→0 and (σn∈Σ
∗
ǫn
(ξn)) such that (ωσn) converges toω. Then, there must be

some ǫ,ǫ′>0 and a strictly increasing sequence (kn) such that d(ω,Ω∗ǫ(ξkn
))≥ǫ′ for all n, where

Ω
∗
ǫ(ξkn

) is the set of sequential ǫ-equilibria of G(ξkn
) and

d(ω,Ω∗ǫ(ξkn
)):= inf

ω′∈Ω∗ǫ(ξkn
)
d(ω,ω′) .

(Recall that, as explained in Footnote 8, we use the sup distance between outcomes; that is, for

any pair of outcomes ω and ω′, d(ω,ω′):=maxz∈Z |ω(z)−ω
′(z)|). This contradicts our original

assumed property of ω, since the vanishing tremble (ξkn
) does not have a subsequence and cor-

responding sequences of epsilons and sequential epsilon-equilibria with outcomes converging to

ω.

A.2 Proofs of the results in Section 2

Proof of Proposition 2.1

Proof. “Only if” part: Assume (σ,µ) is a sequential equilibrium supported by a fully-mixed se-

quence of strategy profiles (σn). Let A∗ :={a∈A|σ(a)>0}, and define

ξn(a):=







σn(a) if a /∈A∗,

1/n otherwise.

33



(We initialize the index n so that the conditions in Definition 2.1 are satisfied for all n.) It is clear

that ξn(a)→0 for all a∈A. We define

ǫn :=1/n+max
a∈A∗

max
a′∈AIa

(u(a′|σn)−u(a|σn))

︸ ︷︷ ︸

(∗)

.

Note that the term (∗) is non-negative because a∈AIa

. Note also that, given our definition of ǫn,

we have that u(a|σn)≥u(a′|σn)−ǫn for all a∈A∗, a′∈AIa

and n∈N, hence σn∈Σ
∗
ǫn
(ξn). Also, for

all a∈A∗, we have that (∗) tends to 0 as n→+∞, because u(a′|σn)→u(a′|σ,µ) for all a′∈A and

also because u(a|σ,µ)=maxa′∈AIa u(a′|σ,µ) by sequential rationality. It is then clear that ǫn→0.

“If” part: We now fix some ω and assume that there exists a vanishing tremble (ξn), a sequence

(ǫn)→0, and a sequence (σn∈Σ
∗
ǫn
(ξn)) such thatωσn→ω. Let (kn) be strictly increasing and satisfy

that (σkn
) converges to some σ and has a corresponding sequence of belief systems converging to

some µ. Then, take a∈A such that σ(a)>0 and some a′∈AIa

. We then have that, since u(a|σn)≥

u(a′|σn)−ǫn for all n high enough (because σn∈Σ
∗
ǫn
(ξn)), we have u(a|σ,µ)≥u(a′|σ,µ). It is

then clear that σ is sequentially rational under (σ,µ), which is supported by (σkn
), so (σ,µ) is a

sequential equilibrium with outcome ω.

A.3 Proofs of the results in Section 3

Proof of Proposition 3.1

Proof. “Only if” part: Assumeω is sequentially stable. Fix some ǫ,ǫ′>0 and assume, for the sake of

contradiction, that there is no δǫ,ǫ′>0 such that G(ξ) has a sequential ǫ-equilibrium with outcome

ǫ′-close to ω for all ‖ξ‖<δǫ,ǫ′ . Then, there exists a vanishing tremble (ξn) such that there is no

(σn∈Σ
∗
ǫ(ξn)) such that ωσn is closer to ω than ǫ′. This contradicts that ω is sequentially stable.

“If” part: Assume that for all ǫ,ǫ′>0 there is some δǫ,ǫ′>0 such that, if ‖ξ‖<δǫ,ǫ′ , then G(ξ) has

a sequential ǫ-equilibrium with outcome at a distance lower than ǫ′ fromω. Take a vanishing trem-

ble (ξn). Let u:=maxi∈N (maxz∈Z ui(z)−minz∈Z ui(z)). Fix some sequence (ǫ̂n) strictly decreasing

towards 0 with ǫ̂0=u, and recursively define each ǫn as follows:

1. We define n0 :=0 and ǫ0 := ǫ̂0.

2. For all k≥1 we let nk :=min{n>nk−1 | ‖ξn′‖<δǫ̂k ,ǫ̂k
for all n′>n }. We let ǫn := ǫ̂k−1 for all

n=nk−1+1, ..., nk.

It is clear that (ǫn)→0. Note that, for each k, ‖ξn‖<δǫ̂k−1,ǫ̂k−1
for all n∈{nk−1+1, ..., nk}. Hence,

there exists a sequence (σn) where, for each k and n∈{nk−1+1, ..., nk}, σn is a sequential ǫ̂k−1-
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equilibrium of G(ξn) with outcome ǫ̂k−1-close to ω. Hence, since ǫ̂k−1=ǫn for all n∈{nk−1+

1, ..., nk}, we have that ωσn→ω. Since the argument holds for any vanishing tremble (ξn), ω

is sequentially stable.

Proof of Corollary 3.1

Proof. The proof is immediate from the arguments preceding the result.

Proof of Proposition 3.2

Proof. The proof is immediate from the arguments in the main text.

Proof of Proposition 3.4

Proof. It is convenient to first prove Proposition 3.4 and then Proposition 3.3. Let Ĝ be the agent

extensive form of G.34 Let N̂ and û denote the set of players and their payoff functions in Ĝ,

respectively. Note that Ĝ has the same set of sequentially stable outcomes as G. For each given

payoff function ũ≡(ũi : Z→R)i∈N̂ , we let Ĝ(ũ) be the agent extensive form of G with payoff function

given by ũ instead of û. Let (ûk) be a sequence of payoff functions converging to û such that, for

each k, Ĝ(ûk) has an extensive-form stable outcome denoted ωk, which by Proposition 3.2 is also

sequentially stable.35 Note that, since an extensive-form stable outcome exists for generic payoff

functions (recall Footnote 3), a sequence (ûk) with the previous properties exists.36 We can assume

without loss of generality for our argument that (ωk) converges to some outcome ω. Then, the

following lemma shows that ω is sequentially stable.

Lemma A.2. Let (uk) be a sequence of payoff functions converging to u. Let (ωk)→ω be such that

each ωk is sequentially stable in G(uk). Then, ω is a sequentially stable outcome of G.

34That is, Ĝ coincides with G except that N̂ is bigger than N , each information set is associated with a different player,

and each player associated with a given information set has the same payoff for each terminal history as the player

associated to this information set in G.

35Recall that, as explained in Footnote 8, we use the sup distance between payoff functions; that is, for any pair of payoff

functions u and u′, d(u, u′):=maxi∈N maxz∈Z |ui(z)−u′
i
(z)|.

36Because Ĝ coincides with its agent extensive form, Kohlberg and Mertens (1986)’s definition of KM-stability is based

on perturbing the game as follows. Fix a vector (δi)i∈N ∈(0, 1)N and a completely mixed strategy profile σ̂∈Σ. Then,

when players use a strategy profile σ in the perturbed game, the corresponding outcome and payoffs are computed

by replacing each strategy σi by (1−δi)σi+δiσ̂i in the unperturbed game. Defining ξi :=δiσ̂i , their formulation

becomes equivalent to the tremble-based formulation we use, where agents choose strategies σi satisfying σi≥ξi .
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Proof. Let (uk) be a sequence of payoff functions converging to u. Let (ωk)→ω be such that each

ωk is sequentially stable in G(uk). Fix a vanishing tremble (ξn). For each k∈N, let (ǫk,n)→0 and

(σk,n∈Σ
∗
ǫk,n
(ξn, uk)) be such that ωσk,n→ωk as n→∞, which exist by the assumption that ωk is

sequentially stable in G(uk). Note that for each a∈A and k, n∈N with σk,n(a)>ξn(a), we have

uk(a|σk,n)≥uk(a
′|σk,n)−ǫk,n for all a′∈AIa

.

Hence,

u(a|σk,n)≥u(a′|σk,n)−2 d(u, uk)−ǫk,n for all a′∈AIa

.

Let (nk) be a sequence of indexes such that ǫk,nk
→0 and ωσk,nk→ω as k→∞, which exists by a

standard diagonal argument.37 Then, defining ǫk :=2 d(u, uk)+ǫk,nk
, we have that each σk :=σk,nk

is a sequential ǫk-equilibrium of G(ξnk
). Then, since ǫk→0 as k→∞, and since the argument

holds for any vanishing tremble (ξn), Lemma A.1 implies that ω is sequentially stable.

Proof of Proposition 3.3

Proof. We assume that ω is the unique sequentially stable outcome of G and, for the sake of con-

tradiction, assume that it is not extensive-form stable. Note that there is no extensive-form stable

outcome of G different fromω, since otherwise, such an outcome would also be sequentially stable

(by Proposition 3.2), contradicting the assumption thatω is the unique sequentially stable outcome.

Hence, it must be that ω is not extensive-form stable.

Let Ĝ be the agent extensive form of G and let û be its corresponding payoff function. The

previous assumptions imply that ω is the unique sequentially stable outcome of Ĝ and that Ĝ has

no extensive-form stable outcome. Let (ξ̂n) be a tremble such that there is no sequence of indexes

(kn) such that there is some sequence (σ̂n∈Σ
∗
0(ξ̂kn

)) with outcomes converging to ω (where (ξ̂n)

exists sinceω is not extensive-form stable). By Proposition 3.4, each Ĝ(ξ̂n̂) has at least one sequen-

tially stable outcomeωn̂. We let (kn) be a sequence of indexes such thatωkn
converges to someω′.

Since, for each n, ωσ̂n=ωkn
for some σ̂n∈Σ

∗
0(ξ̂kn

), the previous assumption on (ξ̂n) implies that

ω′ 6=ω. We then reach a contradiction by proving that ω′ is sequentially stable. This follows from

the following result, which is analogous to Lemma A.2 below.

37Indeed, the diagonal argument sets n0 :=1 and, for all k>0, nk :=min{n>nk−1|max{ǫk,n, d(ωσk,n ,ω)}<1/k}.
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Lemma A.3. Let (ξn) be a vanishing tremble. Let (ωn)→ω be such that eachωn is sequentially stable

in G(ξn). Then, ω is a sequentially stable outcome of G.

Proof. The proof is similar to that of Lemma A.2 below and left to the reader.

A.4 Proofs of the results in Section 4

Proof of Proposition 4.1

Proof. Letω be a sequentially stable outcome. Let â∈AI be an action that is not sequentially optimal

in any sequential equilibrium with outcome ω (hence â is not played under ω, either because I â

is off-path or because I â is on path but â is chosen with probability zero). Let G′ denote the game

where â (and all consecutive histories) is eliminated, and A′⊂A\{â} be its set of actions. Let (ξ′n)

be a vanishing tremble in G′, and let ξ′
n
:=min{ξ′n(a

′)|a′∈A′}. Define the vanishing tremble (ξn)

as follows:

ξn(a):=







ξ′n(a) if a∈A′,

(ξ′
n
)|A| otherwise,

for all a∈A, and note that (ξn) is a vanishing tremble in G. Note also that, under the vanishing

tremble (ξn), any history in H not belonging to H ′ (i.e., with some a /∈A′) has a vanishing relative

likelihood with respect to any history in H ′. Let (ǫn)→0 and (σn∈Σ
∗
ǫn
(ξn)) be such that ωσn→ω

as n→+∞ (which exists sinceω is sequentially stable). Taking a subsequence if necessary, assume

that (σn) supports some assessment (σ,µ), which by Proposition 2.1 is a sequential equilibrium.

Note that (σ,µ) has outcomeω.38 Note also that, if n is large enough, it must be thatσn(â)=ξn(â),

since by assumption â is not sequentially optimal under (σ,µ), hence there is some â′∈AIa

such

that

lim
n→∞

u(â′|σn)=u(â′|σ,µ)>u(â|σ,µ)= lim
n→∞

u(â|σn) .

Let â′∈AI â

be an action played with positive probability under σ. Define, for all a′∈A′,

σ′n(a
′):=







σn(a
′)+σn(â) if a′= â′,

σn(a
′) if a′ 6= â′.

38Recall that, by Lemma A.1, it is enough to prove that the property in Definition 3.1 holds for a subsequence of (ξn).
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Note that σ′n∈Σ
′(ξ′n) (i.e., σ′n belongs to the set of strategy profiles of G′ satisfying σ′n≥ξ

′
n). We

claim that there is some sequence (ǫ′n)→0 such that (σ′n∈Σ
′∗
ǫ′n
(ξ′n)). This follows from the fact

that all information sets of G that contain both histories in H ′ and not in H ′, the relative weight of

histories not in H ′ shrinks to 0 as n increases because all of them have â as one of its elements. It

then follows that, as n increases, all actions a′∈A′ with σ(a′)>0 are asymptotically sequentially

optimal as n→∞.39

Proof of Corollary 4.1

Proof. Forward induction: Let ω be sequentially stable, and I and a satisfy the conditions in the

statement. It is then clear that a is not sequentially optimal under any sequential equilibrium with

outcome ω. Hence, the result holds from applying NWBR.

Iterated strict equilibrium dominance: Let ω be sequentially stable and a satisfy the conditions

in the statement. Since a is not sequentially optimal under any sequential equilibrium, it is not

sequentially optimal under any sequential equilibrium with outcome ω. Hence, the result holds

from applying NWBR.

Proof of Proposition 4.2

Proof. We prove the equivalence between parts 1 and 3. Proving that parts 1 and 2 are equivalent

is easy using Proposition 3.1.

Proof that 3⇒1: Assume that for all ǫ,ǫ′>0 there is some δ>0 with the property that, if ‖ξ‖<δ,

then there is some u′ with ‖u′−u‖<ǫ such that G(ξ, u′) has a Nash equilibrium with outcome ǫ′-

close to ω. Fix some ǫ,ǫ′>0, and let δ satisfy the aforementioned property. We then have that, if

‖ξ‖<δ, then G(ξ) has a sequential ǫ-equilibrium with outcome ǫ′-close toω. Applying Proposition

3.1, we then have that ω is sequentially stable.

Proof that 1⇒3: Letω be a sequentially stable outcome. Fix some ǫ,ǫ′>0. By Proposition 3.1 we

have that there is some δ>0 such that, if ‖ξ‖<δ, then G(ξ) has a sequential ǫ-equilibrium with

outcome ǫ′-close to ω. We fix some ξ with ‖ξ‖<δ and let σ∈Σ∗ǫ(ξ) be a sequential ǫ-equilibrium

with outcome ǫ′-close to ω. We want to show that there is some u′ with ‖u′−u‖< |I|ǫ such that σ

is a Nash equilibrium of G(ξ, u′).

39Even though we proved that a subsequence of (ξ′
n
) is such that there are (ǫ′

n
)→0 and (σ′

n
∈Σ∗

ǫ′n
(ξ′

n
|G′)) with ωσn→ω,

Lemma A.1 ensures that this is enough to prove the sequential stability of ω in G′.
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We propose an algorithm that will change the payoff function from u to some u′ with the

desired property. It will do so by changing the payoffs of the terminal histories so that ǫ-optimal

actions under u will become exactly optimal under u′. To do so, recall that Za⊂Z is the set of

terminal histories containing a∈A. We denote the information sets I :={I1, ..., I|I|}. We define û j

recursively from j=1 to |I|, and we initialize û0 :=u. As we shall see, in each step j, the expected

continuation payoff difference between two actions played at any information set different from I j

remains unchanged. For each j=1, ..., |I|, we proceed as follows:

1. Define u
j

ι(I j)
:=max

a∈A
I j û j−1(a|σ). Let A

I j

∗ be the set of actions a∈AI j such that û j−1(a|σ)≥

uι(I j)
−ǫ. Note that a∈AI j is such that σ(a)>ξ(a) only if a∈A

I j

∗ .

2. We define û j as a payoff function assigning to each i∈N and z∈Z the value û
j−1
i
(z), except

for the value assigned to player ι(I j) at terminal histories z∈Za for some a∈A
I j

∗ , where

û
j

ι(I j)
(z):= û

j−1
ι(I j)
(z)+u

j

ι(I j)
−û j−1(a|σ)
︸ ︷︷ ︸

≥0

−K(I j) , (A.1)

where K(I j) is chosen such that

E[û
j

ι(I j)
(z)|σ, I j]=E[û

j−1
ι(I j)
(z)|σ, I j] . (A.2)

Note that K(I j)∈[0,ǫ). Note also that, under û j , player ι(I j)’s continuation payoff is the same

for all a∈A
I j

∗ , (and equal to û j(a|σ)=u
j

ι(I j)
−K(I j)), which is weakly higher than û j(a′|σ) for

all a′∈AI j . This guarantees that player ι(I j) plays a best response to σ at I j under û j .

3. Note that, for each a∈AI j , we have that

û
j

ι(I j)
(z)−û

j

ι(I j)
(z′)= û

j−1
ι(I j)
(z)−û

j−1
ι(I j)
(z′)

for all z, z′∈Za, hence payoff difference from choosing an action instead of another at an

information set of player ι(I j) that follows I j remains the same. Condition (A.2) guarantees

that the continuation payoff player ι(I j) obtains at information set I j is the same under û j−1

and under û j; hence, her incentives in one of her information sets that precedes I j remains

the same. Note finally that ‖û j−û j−1‖<ǫ.

Using the triangle inequality, we have that

‖u−û|I|‖≤
∑|I|

j=1 ‖û
j−û j−1‖< |I|ǫ .

Since, as we argued, each player plays a best response to σ in each information set under û|I|, we

have that the desired u′ is û|I|.
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Proof of Proposition 4.3

Proof. Proof of part 1: Let G′ be a subgame of G originated at an information set denoted I ′.

Assume that G′ has a unique sequential outcome ω′, hence ω′ is a sequentially stable outcome of

G′ (by Corollary 3.1 and Proposition 3.4). Let Ĝ be the game obtained by replacing G′ byω′ (recall

Footnote 22). Let A′ be the set of actions of G′, Z ′
ω′

be the support of ω′, and Â be A\A′. We want

to prove that G and Ĝ have the same set of sequentially stable outcomes. We divide the proof into

two subparts.

1. Let ω be a sequentially stable outcome of G. Take some vanishing tremble (ξ̂n) in Ĝ and

some vanishing tremble (ξ′n) in G′. Let (ξn) be defined as

ξn(a):=







ξ′n(a) if a∈A′,

ξ̂n(a) if a∈ Â,

for all a∈A. Let (ǫn)→0 and (σn∈Σ
∗
ǫn
(ξn)) be such that ωσn→ω (which exist because ω

is sequentially stable in G). By Proposition 2.1 and the fact that ω′ is the unique sequential

outcome in G′, we have that the conditional distribution of ωσn on Z ′ converges to ω′ as

n→∞. Let σ̂n be defined as σ̂n(a):=σn(a) for all a∈A and σ̂n(z
′):=ω′(z′) for all terminal

histories z′∈Z ′
ω′

(note that, in G′, A′I
′
=Z ′

ω′
, and so nature plays each z′∈A′I

′
with probability

ω′(z′)>0). It is clear thatωσ̂n→ω. Also, it is easy to see that there exists some (ǫ̂n)→0 such

that σ̂n∈Σ̂
∗
ǫ̂n
(ξ̂n) for all n. Hence, ω is sequentially stable in Ĝ.

2. Let ω̂ be a sequentially stable outcome of Ĝ. Take some vanishing tremble (ξn) in G and let

(ξ′n) be its restriction to G′. Let (ξ̂n) be a vanishing tremble in Ĝ satisfying that ξ̂n(a):=ξn(a)

for all a∈ Â and ξ̂n(z
′)≤ω′(z′) for all z′∈Z ′

ω′
. Let (ǫ̂n)→0 and (σ̂n∈Σ̂

∗
ǫ′n
(ξ̂n)) be such that

ωσ̂n→ω̂ (which exist because ω̂ is sequentially stable in Ĝ). Let (ǫ′n)→0 and (σ′n∈Σ
′∗
ǫ′n
(ξ′n))

be such that ωσ
′
n→ω′ (which exist by Proposition 2.1 and the fact that ω′ is the unique

sequential outcome in G′). Let σn be defined as σn(a):=σ̂n(a) for all a∈ Â and σn(a):=

σ′n(a) for all a∈A′. It is then clear that ωσn→ω̂. Again, it is easy to see that there exists

(ǫn)→0 such that σn∈Σ
∗
ǫn
(ξn) for all n. Hence, ω̂ is sequentially stable in G.

Proof of part 2: The proof is similar to that of the second case in part 1 and hence omitted.

Proof of part 3: Let G′ be a subgame of G played with positive probability under ω, and let Z ′

be the set of terminal histories of G′.40 Assume, for contradiction, that the restriction of ω to

40We use the standard definition of subgame (e.g., from Osborne and Rubinstein, 1994).
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G′, ω′ :=ω|Z ′ , is not a sequentially stable outcome of G′, and let (ξ′n) be a tremble sequence of G′

destroying it (i.e., such that there are no corresponding sequences (ǫ′n) and (σ′n)with the properties

in Definition 3.1). Then, it is clear that any perturbation ξn that coincides with ξ′n when restricted

to G′ destroys ω, contradicting that ω is a sequentially stable outcome of G.

Proof of Proposition 4.4

Proof. Let I , I ′∈I be such that I ′= I×AI . For each terminal history (a1, ..., aJ )∈Z , define

T (a1, ..., aJ ):=







(a1, ..., a j+1, a j , ..., aJ ) if a j∈AI for some j,

(a1, ..., aJ ) otherwise.

Let G′ be a game obtained from G by replacing Z by T (Z), and also replacing H, I, and ι accordingly

(note that the set of actions does not change). Let u′ :=u◦T be the payoff function in G′.

We now fix some sequentially stable outcome ω of G, and we will show that the outcome

analogous to ω in G′, denoted ω′ :=ω◦T −1, is also sequentially stable. To see this, fix some va-

nishing tremble (ξn), and let (ǫn) and (σn) satisfy the conditions in Definition 3.1, with ωσn→ω

(which exist since ω is sequentially stable). We argue that (ξn), (ǫn) and (σn) also satisfy the

conditions in Definition 3.1 in G′ and the limit of (ωσn) is ω′.41 To see this, note that for a given

a∈A, player ι(Ia)’s payoff from playing a in G under σn is

u(a|σn)=

∑

z∈Za Prσn(z)uι(Ia)(z)

Prσn(Ia)σn(a)
=

∑

z∈Za Prσn(T (z))u′
ι(Ia)
(T (z))

Prσn(T (Ia))σn(a)
=u′(a|σn) ,

where the second equality follows because of Prσn(T (z))=Prσn(z) (since z and T (z) contain the

same actions), u′
ι(Ia)
(T (z))=uι(Ia)(z) (by definition of u′) and Prσn(T (Ia))=Prσn(Ia) (because T

applied to all terminal histories that follow Ia in G equals the set of all terminal histories that follow

T (Ia) in G′). It is then clear that (ξn), (ǫn), and (σn) also satisfy the conditions in Definition 3.1

in G′, hence ω′ is a sequentially stable outcome of G′.

41Note that since G′ has the same set of actions as G and since, for each a∈A, the set of available actions at the information

set where a is available is the same in both G and G′, we have that (ξn) is also a vanishing tremble of G′, and σn is a

sequential ǫn-equilibrium of G′(ξn) for each n.
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A.5 Proofs of the results in Section 5

Proof of Proposition 5.1

Proof. In this proof, we will use the following notation. For a given strategy profile σ∈Σsig, we will

use σ(m|θ ) and σ(r|m) to indicate the probability with which the sender chooses m after θ and

the probability with which the receiver chooses r after m, respectively.

“Only if” direction. Assume ω is a sequentially stable outcome. Let m be a message unsent under

ω. Take a probability distribution µm over Θm and a vanishing tremble (ξn) such that

lim
n→∞

π(θ )ξn(m|θ )
∑

θ ′∈Θm
π(θ ′)ξn(m|θ ′)

=µm(θ )

and such that ξn(m|θ
′)/ξn(m|θ )=µm(θ

′)/µm(θ ) for all θ ,θ ′∈Θm with θ ∈supp(µm).
42 Let (ǫn)

and (σn) be two sequences satisfying that ǫn→0, σn∈Σ
∗
ǫn
(ξn) for all n, and ωσn→ω (they exist

because ω is a sequentially stable outcome). Taking a subsequence if necessary, assume that (σn)

supports some sequential equilibrium (σ,µ′′) (with outcome ω). Note that uθ (m|σ)≤uθ (ω) for

all θ ∈Θm. There are two cases:

1. Assume first that uθ (m|σ)=uθ (ω) for all θ with µ′′(θ |m)>0. Then, the result holds for

α:=0, µ′m(·):=µ
′′(·|m), and ρ :=σ(·|m).

2. Assume now that uθ (m|σ)<uθ (ω) for some θ with µ′′(θ |m)>0. Then, there is some n such

that σn(m|θ )=ξn(m|θ ) for all n>n. Note further that it must be that θ ∈supp(µm), since

by the definition of (ξn), we have that ξn(m|θ
′)/ξn(m|θ

′′)=0 whenever θ ′ /∈supp(µm) and

θ ′′∈supp(µm). There are then two cases:

(a) If µm(θ )=µ
′′(θ |m), then it must be that µm(θ

′)=µ′′(θ ′|m) for all θ ′∈Θm.43 Hence,

the result holds for α:=1, µ′m(·):=µ
′′(·|m), and ρ :=σ(·|m).

(b) If µm(θ ) 6=µ
′′(θ |m) then it must be that µm(θ )<µ

′′(θ |m), since

µ′′(θ |m) = lim
n→∞

π(θ )ξn(m|θ )
∑

θ ′∈Θm
π(θ ′)σn(m|θ ′)

≤ lim
n→∞

π(θ )ξn(m|θ )
∑

θ ′∈Θm
π(θ ′)ξn(m|θ ′)

=µm(θ ) .

42For example, ξn(m|θ ):=π(θ )
−1 µ(θ )n−1 for all θ ∈supp(µ) and ξn(m|θ ):=n−2 for all θ 6∈supp(µ).

43Indeed, because σn(m|θ )=ξn(m|θ ) for large n, µm(θ )=µ
′′(θ |m) only if limn→∞σn(m|θ

′)/ξn(m|θ
′)=1 for all θ ′∈

supp(µ′′) and limn→∞σn(m|θ
′)/ξn(m|θ )=0 for all θ ′ 6∈supp(µ′′).
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Define α:=1−µm(θ )/µ
′′(θ |m)∈(0, 1], so µ′′(θ |m)=(1−α)µm(θ ). Note that, for any

other θ ′ such that uθ ′(m|σ)<uθ ′(ω) it must be that µ′′(θ ′|m)=(1−α)µm(θ
′), since

σn(θ
′)=ξn(θ

′) for n large enough in this case. We then have that the result holds for

the obtained value of α, for µ′m(θ ):=(µ
′′(θ |m)−(1−α)µm(θ ))/α, and for ρ :=σ(·|m).

“If” direction. Assume ω satisfies the condition in the statement of Proposition 5.1. We fix a va-

nishing tremble (ξn). We will construct a strictly increasing sequence (kn) and a sequence (σkn
)

such that σkn
∈Σ∗ǫkn

(ξn) for all n for some sequence (ǫkn
)→0 and ωσkn→ω as n→∞; hence, the

sequential stability of ω will follow from Lemma A.1.

We denote the messages which are off path of ω as M0 :={m1, ..., m|M0|} (we assume that

|M0|≥1 since the result is trivial otherwise). We first constructσn(m|θ ) andσn(r|m) for all m∈M0,

θ ∈Θm, and r∈Rm. We do it by first proceeding recursively over the set of messages that are off-

path under ω, and then we will define the values for on-path messages. We begin with k=1 and

( j0n):=(n). Then, for each k=1, ..., |M0|, we proceed as follows:

1. We let ( jk
n) be a strictly increasing subsequence of ( jk−1

n ) such that

µmk(θ ):= lim
n→∞

π(θ )ξ jk
n
(mk|θ )

∑

θ ′∈Θ
mk
π(θ ′)ξ jk

n
(mk|θ ′)

is well defined for all θ ∈Θmk .

2. Let µ′
mk , α, and ρ be the ones determined by the statement for µmk and mk.

3. There are two cases:

(a) If α=1 then we set σn(m
k|θ ):=ξn(m

k|θ ) for all θ ∈Θmk and ( jk
n):=( ĵ

k
n).

(b) If α 6=1 then let Kn :=
∑

θ∈Θ
mk
µmk(θ )ξn(m

k|θ ). We then define, for each θ ∈Θmk ,

σn(m
k|θ ):=ξn(m

k|θ )+ α
1−α Knµ

′
mk(θ ) .

Note that, for all θ ∈Θmk , we have

lim
n→∞

π(θ )σn(m
k|θ )

∑

θ ′∈Θ(mk)π(θ
′)σn(m

k|θ ′)
= lim

n→∞

π(θ ) (ξn(m
k|θ )+ α

1−α Knµ
′
mk(θ ))

Kn+
α

1−α Kn

=(1−α)µmk(θ )+αµ′
mk(θ ) .

4. We finally define σn(r|m
k) as

σn(r|m
k):=







ξn(r|m
k) if ρ(r)=0,

ρ(r)
�

1−
∑

r ′ /∈supp(ρ) ξn(r
′|mk)
�

if ρ(r)>0.
(A.3)

Note that, as n→∞, we have that σn(m
k|θ )→ρ.
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For all messages m that occur on path under ω (that is, m 6∈M0), we define

σn(m|θ ):=







ξn(m|θ ) if ω(m|θ )=0,

ω(m|θ )
�

1−
∑

θ ′|ω(m|θ ′)=0 ξn(m|θ
′)
�

if ω(m|θ )>0,

where ω(m|θ ) is the probability that type θ sends m under ω, and also

σn(r|m):=







ξn(r|m) if ω(r|m)=0,

ω(r|m)
�

1−
∑

r ′|ω(r ′|m)=0 ξn(r
′|m)
�

if ω(r|m)>0,

whereω(r|m) is the probability that the receiver chooses r after m underω (where m is an on-path

message). It is not difficult to see that our construction (together with the properties of µ′m, α, and

ρ) guarantees that σn∈Σ(ξn), that ωσ jn→ω, and that there is some sequence (ǫn)ց0 such that

σ jn
∈Σ∗ǫ jn

(ξ jn
) for all n (note that, by Lemma A.1, showing the convergence for a subsequence is

enough to show sequential stability).

Proof of Corollary 5.1

Proof. As indicated in the main text, the proof is immediate from our Proposition 5.1 and Theorem

3 and Proposition 4 in Banks and Sobel (1987) and Cho and Kreps (1987), respectively.

Proof of Proposition 5.2

Proof. Part 0: Notation. To formally define a KM-stable outcome, we need some notation re-

garding the normal form of the extensive-form game G defined in Section 2 (which is naturally

extended to Gsig). For each player i, we let ~Ai :=
∏

I∈ι−1(i) A
I denote her set of her (normal-form)

pure strategies and ~a≡(~ai)i∈N be a generic pure strategy. We use a∈ ~ai to denote that a∈A is one of

the components of ~ai∈ ~Ai . We also let Σ̂i :=∆(~Ai) be player i’s set of (normal form) mixed strategies

and let σ̂≡(σ̂i)i∈N be a generic mixed strategy, for each i∈N∪{0} (where nature plays according

to the corresponding mixed strategy consistent with π). A normal-form vanishing tremble is a se-

quence (ξ̂n)≡((ξ̂
i
n)i∈N ), where ξ̂i

n : ~Ai→(0, 1] is such that ξ̂i
n(~a

i)→0 as n→∞ for all ~ai∈ ~Ai . Then,

ω is stable if, for any normal-form vanishing tremble (ξ̂n), there is a sequence (σ̂n) such that (i)

σ̂i
n(~a

i)≥ ξ̂i
n(~a

i) for all ~ai and n, (ii) σ̂i
n(~a

i)> ~ξi
n(~a

i) only if ~ai is optimal, for all ~ai and n, and (iii)

ωσ̂n→ω as n→∞.

Part 1: Proof that if ω is extensive-form stable in Gsig, then it is KM-stable. Let ω be an

extensive-form stable in Gsig. Let (ξ̂n) be a normal-form vanishing tremble. Define the following
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extensive-form vanishing tremble for all a and n:

ξn(a):=
∑

~a∋a

ξ̂i
n(~a

i) .

We define ξ
i
:=
∑

~ai∈~Ai ξ̂
i
n(~a

i). Note that, for any information set I with i=ι(I), we have

∑

a∈AI

ξn(a)=
∑

a∈AI

∑

~ai∋a

ξ̂i
n(~a

i)=
∑

~ai∈~Ai

ξ̂i
n(~a

i)=ξ
i

.

Sinceω is extensive-form stable, there is a sequence of Nash equilibria (σn∈Σ
∗
0(ξn))with outcomes

converging to ω. Taking a subsequence if necessary, assume (σn) supports an assessment (σ,µ).

We let ~Ai
∗ be the set of action vectors ~ai such that a is sequentially optimal under (σ,µ) for all a∈ ~ai .

We now define

σ̂i
n(~a

i):=









ξ̂i
n(~a

i) if σn(a)=ξn(a) for some a∈ ~ai ,
∏

a∈~ai (σn(a)−ξn(a))

(1−ξ
i

n)
|Ii |−1

+ξ̂i
n(~a

i) otherwise.

Note that

∑

~ai∋a

σ̂i
n(~a

i) =
∑

~ai∋a|~ai∈~Ai
∗

∏

a′∈~ai (σn(a
′)−ξn(a

′))

(1−ξ
i

n)
|I i |−1

+
∑

~ai∋a|~ai∈~Ai
∗

ξ̂i
n(~a

i)+
∑

~ai∋a|~ai /∈~Ai
∗

ξ̂i
n(~a

i)

=
∑

~ai∋a|~ai∈~Ai

∏

a∈~ai (σn(a
′)−ξn(a

′))

(1−ξ
i

n)
|I i |−1

+ξn(a)

=
σn(a)−ξn(a)

(1−ξ
i

n)
|I i |−1

(1−ξ
i

n)
|I i |−1+ξn(a)

=σn(a) .

Then, since each player plays once on the path of play in Gsig, it is clear that (1) σ̂i
n(~a

i)≥ ξ̂i
n(~a

i)

for all ~ai∈ ~Ai , and that (2) σ̂i
n(~a

i)>ξ̂i
n(~a

i) only if ~ai is optimal for i. Hence, σ̂n∈Σ̂
∗
0(ξ̂n) (that is,

is a Nash equilibrium of the normal-form of Gsig perturbed wih ξ̂n). Since σ̂n generates the same

outcome as σn, we have that ω is KM-stable.

Part 2: Proof that if ω is KM-stable in Gsig, then it is sequentially stable. In this part of the

proof, we adapt the notation further to Gsig, as different arguments are made for the sender and

the receiver. Now, ~m≡( ~mθ ∈Mθ )θ∈Θ and ~r≡(~rm∈Rm)m∈M denote normal-form pure strategies

of the sender and the receiver, respectively. Let {Iθ |θ ∈Θ}⊂I and {Im|m∈M}⊂I be the set of the

information sets of the sender and the receiver, respectively. Consider a vanishing tremble (ξn). Let

ξn(I):=
∑

a∈AI ξn(a) be the sum of the trembles of information set I . We define ξn :=maxθ (ξn(Iθ )).

Note that ξn→0.
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Fix a KM-stable outcome ω. Abusing notation, we let ω(m|θ ) be the probability with which

type θ sends message m under ω, and let M∗
θ

:={m∈Mθ |ω(m|θ )>0}. For each θ and message

m∈Mθ , we define

ξ′n(m|θ ):=







ξ
1/|Θ|−1

n ξn(m|θ ) if m∈Mθ\M
∗
θ
,

ξ
1/|Θ|−1

n ω(m|θ )
�

ξn−
∑

m′∈Mθ \M
∗
θ
ξn(m

′)
�

if mθ ∈M∗
θ
.

Note that ξ′n(m|θ )ց0 as n→∞ for all m and that ξ′n(Iθ )=ξ
1/|Θ|

n for all θ ∈Θ. Then, we define

ξ̂s
n( ~m):=
∏

θ∈Θ

ξ′n( ~mθ |θ ) and ξ̂r
n(~r):=
∏

m∈M

ξn(~rm|m) .

Since ω is KM-stable, there is a sequence (σ̂n) with the properties described above. Taking a

subsequence if necessary (which, by Lemma A.1, is without loss for our argument), we assume that

σ(r|m):= lim
n→∞

∑

~r|~rm=r

σ̂n(~r) (A.4)

is well defined for all m and r∈Rm (note that
∑

r∈Rm
σ(r|m)=1 for all m). Let R∗m :={r∈Rm|σ(r|m)>

0}. For each n, define a behavior strategy profileσn∈Σ as follows, for all θ ∈Θ, m∈Mθ , and r∈Rm:

σn(θ ):=π(θ ) , σn(m|θ ):=
∑

~m| ~mθ=m

σ̂i
n( ~m) , and

σn(r|m):=







ξn(r|m) if r∈Rm\R
∗
m,

Kn(m)σ(r|m) if r∈R∗m,

where Kn(m) is chosen to be such that
∑

r∈Rm
σn(r|m)=1 for all m∈M . Note that

σn(m|θ )≥
∑

~m| ~mθ=m

ξ̂s
n( ~m)=
∑

~m| ~mθ=m

∏

θ ′∈Θm

ξ′n( ~mθ ′ |θ
′)=

� ∏

θ ′∈Θm\{θ}

ξ′n(Iθ ′)

�

ξ′n(m|θ )

=
�

ξ
1/|Θ|

n

�|Θ|−1
ξ

1/|Θ|−1

n ξn(m|θ )=ξn(m|θ ) ,

where we used that ξ′n(Iθ )=ξ
1/|Θ|

n by construction. Hence, since σn(r|m)≥ξn(r|m), we have that

σn∈Σ(ξn). Standard continuity arguments imply that, since σ̂n is a Nash equilibrium of the normal-

form game perturbed with ξ̂n, σn is asymptotically sequentially optimal for all types θ .44 Then, ω

is sequentially stable.

44This is because the receiver’s response to message m tends to σ(·|m)∈∆(R) defined in (A.4) under both sequences

(σn) and (σ̂n), and since the belief of the receiver after each message m coincide under both sequences (σn) and (σ̂n).
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Proof of Proposition 5.3

Proof. We prove the result for NWBRCK, as it is the strongest statement. The other cases can be

proven similarly. Take then a sequentially stable outcome ω and an off-path message m. We let

(σ̌, µ̌) be a sequential equilibrium with outcome ω (which exists by Corollary 3.1). We let Θ̂⊂Θm

be the set of types θ ∈Θm satisfying (NWBRCK), that is, θ ∈Θ̂ if and only if, for all ρ∈BRm such

that uθ (m,ρ)=uθ (ω), there is some θ ′∈Θm such that uθ ′(m,ρ)>uθ ′(ω). We assume Θ̂ 6=Θm.

Fix some µm∈∆(Θm\Θ̂). Sinceω is sequentially stable, Proposition 5.1 establishes that there

are some α∈[0, 1], µ′m∈∆(Θm), and ρ∈BRm(αµm+(1−α)µ
′
m), satisfying that uθ (m,ρ)≤uθ (ω)

for all θ ∈Θm and, if α 6=1, then uθ (m,ρ)=uθ (ω) for all θ ∈Θm with µ′m(θ )>0. If α=1, define

α̂:=1, µ̂′m :=µm, and ρ̂ :=ρ. If α 6=1, then we argue that µ′m(θ )=0 for all θ ∈Θ̂. Indeed, assume

for the sake of contradiction that µ′m(θ̂ )>0 for some θ̂ ∈Θ̂. In this case, by definition of Θ̂ and

since ρ∈BRm, there is some type θ ′∈Θm such that uθ ′(m,ρ)>uθ ′(ω), but this contradicts that

uθ ′′(m,ρ)≤uθ ′′(ω) for all θ ′′∈Θm. Define then, for the case α 6=1, α̂:=α, µ̂′m :=µ′m, and ρ̂ :=ρ,

and note that we have shown that µ̂′m∈∆(Θm\Θ̂). It then follows that, for all µm∈∆(Θm\Θ̂), there

are α̂∈[0, 1], µ̂′m∈∆(Θm\Θ̂), and ρ̂∈BRm(αµm+(1−α) µ̂
′
m) such that the properties in Proposition

5.1 hold. Define (σ̌′, µ̌′) as

(σ̌′(m̃|θ ), σ̌′(r|m̃), µ̌′m̃(θ )):=







(σ̌(m̃|θ ), σ̌(r|m̃), µ̌m̃(θ )) if m̃ 6=m,

(σ̌(m̃|θ ), ρ̂(r|m̃),αµm̃(θ )+(1−α) µ̂
′
m̃
(θ )) if m̃=m,

for all θ ∈Θ, m̃∈Mθ , and r∈Rm̃. It is then not difficult to see that (σ̌′, µ̌′) is a sequential equilibrium

with outcome ω satisfying that µ̌′m(Θ̂)=0.
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