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Abstract

This paper explores how a benevolent policy maker should optimally tax
(or subsidize) product attributes when consumers are behaviorally biased. We
demonstrate that market choices are informative about biases, which can be ex-
ploited for targeting biased consumers via a non-linear tax schedule. We show
that its properties depend on few parameters of the joint distribution of consumer
valuations and biases. Furthermore, we provide a novel justification for behav-
iorally motivated product standards and derive when a combination of taxes and
standards is optimal. We illustrate our findings based on a numerical example
from the lightbulb market.
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1 Introduction

A growing body of literature has demonstrated that consumers may make decisions

that are not in their best interest. For example, present focused consumers undervalue

the future cost from consuming ªsin goodsº, such as cigarettes or sugar (Allcott et al.,

2019; O’Donoghue and Rabin, 1999, 2006). Consumers are often inattentive to opaque

product attributes, such as the energy efficiency of an appliance (Allcott and Taubin-

sky, 2015a) or the expected out-of-pocket costs of a health insurance plan (Abaluck

and Gruber, 2011). Furthermore, consumers hold biased beliefs concerning school-

ing returns, the caloric content of nutrition, and energy efficiency (Attari et al., 2010;

Bollinger et al., 2011; Jensen, 2010). Misoptimizing consumers inflict a so-called ªinter-

nalityº upon themselves, which provides a justification for corrective taxation beyond

the classical case of externalities.

In practice, the notion that consumers make mistakes has led policy makers to im-

pose taxes, product bans or standards, and combinations thereof. For example, policy

makers have taxed cigarettes and sugar, and banned unhealthy foods, drugs, and risky

financial contracts (see, e.g., Chaloupka et al., 2019). Another important application is

the regulation of energy efficiency. Policy makers in the US and the EU have imposed

minimum standards for appliances and buildings (DOE, 2017; European Commission,

2015) and initiated large-scale subsidy programs (BMF, 2019; EIA, 2018). To influence

car ownership decisions, governments have levied car registration taxes that are non-

linear in fuel efficiency, imposed fleet-wide emission standards, and subsidized the

scrappage of inefficient vehicles. While taxes (or subsidies), standards, and combi-

nations thereof are widely used in practice, there is little theoretical guidance on the

optimal regulation of internalities to increase consumer welfare.

In this paper, we derive optimal internality taxes in a non-linear commodity taxa-

tion framework. The main application of our approach is the taxation (or subsidiza-

tion) of product attributes, such as the energy efficiency of an electrical appliance, the

fuel efficiency of a car, and the sugar content of a beverage. In these cases, non-linear

taxation is feasible as all consumers have to pay the same price for a product variety,

which rules out problems of resale. We employ a general model of biases that en-

compasses a broad class of behavioral failures driving a wedge between ªnormativeº

and ªdecision utilityº (Bernheim and Taubinsky, 2018), such as present focus, limited

attention, and biased beliefs. We also allow for arbitrary consumer heterogeneity in

preferences and biases. Based on this generic specification of a behavioral bias, we

derive the optimal non-linear commodity tax. Using data by Allcott and Taubinsky

(2015a), we apply our results to the light bulb market and determine the optimal non-

linear subsidy for energy efficiency.
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Our paper puts forward a simple, but so far little appreciated, economic logic

whereby behavioral consumers partly reveal their bias through their position on the

demand curve. The policy maker uses this information to target internality taxes to-

wards biased consumers via a possibly non-linear tax schedule, taking consumers’

self-selection into account. Our framework also allows us to explore the optimality of

uniform product standards that mandate a particular attribute level, as well as mini-

mum and maximum standards that ban products with low or high attribute levels.

Our results show that the optimal tax rate is determined by two components. The

first term captures the corrective motives and corresponds to the average bias of con-

sumers who are marginal to a local change in the tax rate, while the second term

captures redistributive motives. We explore the properties of the optimal tax schedule

and demonstrate that it hinges crucially on what we denote as the ªlocal bias hetero-

geneityº. It measures the degree to which consumers with marginally different per-

ceived valuations vary in their average bias. Based on a first-order approximation, we

demonstrate that local bias heterogeneity depends on the correlation between biases

and valuations, as well as the ratio of their standard deviations. We find that knowl-

edge of these two parameters is sufficient to derive whether the optimal tax schedule

is convex, concave, or linear.

Furthermore, we provide a novel rationale for product standards. We show that

the optimal internality tax scheme involves standards if there is a fundamental mis-

alignment between consumers’ perceived preferences and the normative stance of the

policy maker. More precisely, standards become necessary as soon as higher valua-

tions, as perceived by consumers, coincide with lower normative valuations, as in-

ferred by the policy maker. When preferences are fundamentally misaligned, the use

of price instruments for correcting behaviorally biased consumers leads to a failure

of incentive compatibility. The policy maker must then optimally resort to standards,

i.e., she must restrict the set of product varieties on the market. Furthermore, we find

that the degree of local bias heterogeneity determines the relative merits of linear taxes

(ªprice regulationº) relative to standards (ªquantity regulationº). As we show, stan-

dards yield higher expected welfare when local bias heterogeneity is high, whereas

linear taxes are better suited for situations where the local bias heterogeneity is low.

In addition, we investigate mixed policies that combine taxes or subsidies with

minimum or maximum standards. We demonstrate that their optimality hinges cru-

cially on the concept of coskewness, which has previously been applied in finance

(see, e.g., Kraus and Litzenberger, 1976). The coskewness of perceived valuations v̂

and biases b is defined as their standardized third cross central moment: cosk(v̂, b) =

E
(
(v̂ − µv̂)2(b − µb)

)
/(σ2

v̂ σb). It measures how outliers in v̂ coincide with values of

b. We show that imposing a maximum standard, i.e., banning products with attribute
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levels above the standard, is optimal if two conditions are met. First, perceived val-

uations must be positively skewed, so that positive outliers in v̂ exist. Hence, some

individuals would demand product varieties with extreme attribute levels in the ab-

sence of regulation. Second, the skew in v̂ must originate predominantly from biases,

as measured by the coskewness of v̂ and b. Conversely, a minimum standard is opti-

mal when the presence of a negative skew in the distribution of perceived valuations

can be attributed to the bias b. These insights demonstrate when mixed policies are

optimal and provide a novel rationale for their widespread use in practice.

To illustrate our findings, we determine the optimal non-linear tax for energy effi-

ciency in the light bulb market. We show that the optimal non-linear tax increases wel-

fare significantly beyond the optimal linear tax. In this empirical setting, we find that

the optimal policy involves minimum standards that ban very inefficient light bulbs.

Yet, we also find that implementing the optimal internality tax based on our first-order

approximation realizes similar welfare gains without restricting consumers’ choice

sets.

Our paper contributes to several strands of the literature. First and foremost, it

is closely related to a literature on the optimal taxation of behaviorally biased con-

sumers. Allcott and Taubinsky (2015a) derive the optimal corrective tax for a binary

choice and show that it corresponds to the average bias of consumers who are indif-

ferent between both options at market prices. O’Donoghue and Rabin (2006) show

that linear corrective taxes on sin goods are welfare-improving when some consumers

are present-biased, while others are unbiased. More recently, Farhi and Gabaix (2020)

provide a general framework for assessing optimal non-linear income taxation and lin-

ear commodity taxation with behavioral agents. Furthermore, Allcott et al. (2019) in-

vestigate the interplay between redistributive and corrective motives by allowing for

non-linear income taxes and linear commodity taxes. Ferey et al. (2021) explore opti-

mal non-linear income and commodity taxes under two-dimensional heterogeneity in

abilities and preferences for the commodity. They also investigate a corrective taxation

motive by allowing for biased consumers and one-dimensional consumer heterogene-

ity.1

We extend this body of literature by deriving the optimal internality tax schedule

for behaviorally biased consumers who choose from a spectrum of quality-differentiated

products. By allowing for non-linear tax schedules, our approach generalizes previ-

ous research on optimal binary subsidies for energy efficiency (Allcott and Taubinsky,

2015a) and optimal linear commodity taxation (e.g., O’Donoghue and Rabin 2006, All-

cott et al. 2019). In comparison to Ferey et al. (2021), we explore corrective taxation

1Furthermore, Allcott et al. (2014) and Carlsson and Johansson-Stenman (2019) analyze the use of
multiple policy instruments in the presence of internalities and externalities.
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in a setting where biases may be heterogeneous conditional on an individual’s type.

Such heterogeneity has important implications for the shape of the optimal non-linear

tax schedule and the question whether price instruments or standards are welfare-

optimal.

Our paper also relates to studies on the relative merits of price versus quantity reg-

ulation and extends them to behavioral consumers. In a seminal contribution, Weitz-

man (1974) showed that quantity regulation may yield higher welfare than price reg-

ulation when uncertainty about the cost and benefits of a good exists. Beyond that,

economic justifications for bans are limited. Their widespread use in practice is com-

monly explained by normative views that certain behaviors are undesirable, as well as

practical considerations that the enforcement of bans may be less costly (e.g., Glaeser

and Shleifer, 2001). More recently, Farhi and Gabaix (2020) provide a behavioral ra-

tionale for quantity regulation. Assuming that valuations and biases are uncorrelated,

they show that a large variance of the bias favors quantity instruments relative to lin-

ear tax instruments. Similarly, Houde and Myers (2019) find that minimum energy

efficiency standards yield higher welfare than a Pigouvian tax on energy when con-

sumers differ strongly in their misperception of operating cost.2

Our results add to this literature by formalizing when bans and standards are op-

timal among all feasible (possibly non-linear) price instruments. They provide a novel

rationale for product standards by showing that standards are optimal when there is

a fundamental misalignment of preferences between the consumers and the regulator.

We also provide conditions under which it is optimal to regulate behaviorally biased

consumers via a mix of taxes and standards. Furthermore, we compare linear tax in-

strument with standards allowing for any joint distribution of perceived preferences

and biases.

More broadly, our paper is related to a literature that has explored how firms can

use price discrimination to maximize profits (see, e.g., Mussa and Rosen, 1978; Berge-

mann et al., 2015; and Wilson, 1997, for a summary). In industrial organization, the ra-

tionale of non-linear pricing is to separate consumers with different valuations, which

allows firms to extract consumer surplus. As part of the optimal pricing problem,

firms may also decide to engage in product line pruning, i.e., to offer only a subset

of all possible product varieties (Johnson and Myatt, 2003). We build on the same ba-

sic intuition, but explore the potential of a differentiated internality tax schedule to

correct choices of behaviorally biased consumers.

2More generally, our results relate to Moser and Olea de Souza e Silva (2019), who allow for two-
dimensional heterogeneity in present focus and abilities to show that optimal savings policies for
present-biased workers involve bunching for low-ability types.
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From a methodological angle, we build on Mirrlees’s (1971) seminal work on op-

timal non-linear income taxation and combine it with the presence of behavioral bi-

ases. In that regard, our paper is close to recent work on the optimal income taxa-

tion of workers who misjudge the benefit of working because of present focus (Lock-

wood, 2020) or because of biases more broadly (Gerritsen, 2016). These papers have

shown that workers’ behavioral biases provide a corrective motive for subsidizing

work through lower tax rates if consumers undervalue the benefit of working, and

for increasing tax rates in case of an overvaluation. We add to this literature strand

by exploring the rationale of a policy maker to impose bans or product standards and

by showing that the shape of the optimal non-linear internality tax schedule can be

derived from two parameters of the joint distribution of valuations and biases.

While the main application of our paper is the taxation of product attributes, its

results also carry over to the case when a policy maker taxes quantities and issues

consumption bans. Non-linear taxes on quantities are feasible if purchases can be

tracked and resale is forbidden or difficult. This holds true for cannabinoids that must

be purchased in officially recognized stores, for instance. Other examples include the

purchase of cars, guns, and houses, where policy makers can observe all purchases

based on official registers.

The remainder of the paper is structured as follows. In Section 2, we introduce our

model. Section 3 derives the analytical characterization of the optimal tax schedule

and the conditions that ensure its implementability. In Section 4, we investigate the

curvature of the optimal tax schedule and the optimality of standards. In Section 5, we

provide a numerical example, which we use to illustrate our findings and to quantify

the optimal non-linear subsidy scheme for energy efficiency in the light bulb market.

Section 6 discusses our findings and concludes.

2 Model

In this section, we present a model that allows us to analyze how the policy maker (she)

implements a welfare maximizing tax schedule in an economy with behaviorally bi-

ased consumers (he).3 The policy maker commits to a (possibly non-linear) tax regime

t : Q → R, where Q ⊆ [0, ∞) is the consumer’s choice set. Subsequently, a consumer

chooses q ∈ Q, his consumption of the product attribute level (or ªqualityº). We begin

by presenting the decision problem of the consumer and then describe the problem of

the policy maker.

3To simplify notation and without loss of generality, we assume that the mass of consumers is one.
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2.1 Consumer

The choice variable of a consumer is the attribute level q of a quality-differentiated

product, where q ∈ Q ⊆ [0, ∞). The consumer has unit demand for the good. His

normative per-unit valuation of the benefits of consuming a good with attribute level

q is captured by the random variable v, which is distributed according to the cumu-

lative distribution function Fv with support supp(Fv) := [v, v] ⊆ (−∞, ∞), density

function fv, a finite expected value µv, and variance σv. The bias b, reflecting a misper-

ception of the valuation of q, is distributed according to the cumulative distribution

function Fb with support supp(Fb) :=
[

b, b
]

⊆ (−∞, ∞), density function fb, a finite

expected value µb, and variance σb. We allow for arbitrary correlation patterns be-

tween valuations and biases, given by the correlation coefficient ρ. The consumer’s

perceived per-unit valuation of the benefits of consuming attribute level q is given by

v̂ : [v, v]×
[

b, b
]

→ R, (v, b) 7→ v̂(v, b), which depends on the normative valuation v

and the bias b. The perceived valuation v̂ is induced by the distributions of v and b.

It is distributed according to the cumulative distribution function F and the density f

and its mean is denoted by µv̂.4

Let z ∈ R denote the money (numeraire good) a consumer spends for the con-

sumption of other goods. For simplicity, we assume a quasilinear utility function that

abstracts from income effects.5 The increasing and weakly convex cost function of

producing q is given by c : Q → R. We assume that the good with product attribute

level q is produced on competitive markets so that the cost function corresponds to the

price of consuming q net of taxes. The exogenous, real-valued scalar m > 0 denotes

the initial endowment with the numeraire. Therefore, the budget constraint is given

by z ≤ m − c(q)− t(q).

Under the standard assumption that the consumer fully utilizes his budget for

consumption, decision utility can be written as:

ud(q, t, v̂) = z + v̂q = m + v̂q − t(q)− c(q),

and normative utility as:

un(q, t, v) = z + vq = m + vx − t(q)− c(q).

4More formally, the density f is determined by the joint distribution f(v, b) of v and b according to
f (v̂) =

∫

v f(v, v̂− v)dv and its support supp(F) :=
[
v̂, v̂
]

is determined by the support of the distributions
Fv and Fb.

5This assumption is particularly plausible for applications such as the subsidization of appliances
with high energy efficiency or the taxation of beverages with high sugary content.
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As common in the behavioral public finance literature, we model the bias as the wedge

between marginal decision and normative utility (see, e.g., Allcott et al. 2019 and Farhi

and Gabaix 2020). The bias is defined as b = ud
q(q, t, v̂) − un

q (q, t, v) = v̂ − v, where

ud
q and un

q denote the first derivatives of decision and normative utility with respect

to q. Hence, a consumer with bias b = 0 is unbiased, while b < 0 (b > 0) imply

underestimation (overestimation) of the marginal utility of consumption. Intuitively,

the bias is a money-metric measure of the difference between a consumer’s perceived

and normative valuation. We write qd as shorthand notation for the choice of a biased

consumer given by:

qd(v̂, t) := arg max
q

ud(q, t, v̂).

2.2 Policy Maker

The policy maker’s objective is to find the welfare-maximizing tax schedule t : Q → R,

based on information about the distributions F, Fv, and Fb. She can condition taxes on

the consumer’s choice of q, but not on a realization of the random variables v, b, and v̂.

This assumption reflects that obtaining information about individual-level valuations

and biases prior to a purchase may be infeasible or associated with prohibitive cost.

We model the policy maker’s social welfare function W : R → R using non-negative

Pareto weights α(v̂), so that un 7→ α(v̂)un with α :
[
v̂, v̂
]
→ R+.6 Furthermore, we

assume that the policy maker considers the implications of tax revenues for financing

a government budget of B:
∫

v̂ t(qd) f (v̂)dv̂ ≥ B.7

Let T := { f | f : Q → R} denote the function space containing all functions with

domain Q and codomain R. The policy maker’s optimization problem is then given

by:

max
t∈T

∫

v̂
α(v̂) · E

[

un
(

qd, t, v
) ∣
∣v̂
]

f (v̂)dv̂ + λ

(∫

v̂
t(qd) f (v̂)dv̂ − B

)

, (1)

where λ ∈ R denotes the multiplier of the budget constraint.

2.3 Internality Revelation and Local Bias Heterogeneity

In the policy maker’s optimization problem, we can rewrite E
[
un
(
qd, t, v

)
|v̂
]

=

ud
(
qd, t, v̂

)
− E [b|v̂] qd. A crucial term in this expression is the conditional expecta-

tion E [b|v̂], which captures the information a policy maker can learn about individual

6Modeling Pareto weights as a function of v would introduce an additional updating problem about
E(α(v)|v̂), without adding substantive insights. In particular, the optimal tax formula from Equation (2)
would then contain the covariance between biases and welfare weights, cov

(
b(v̂q), ĝ(v̂q)

)
, as an addi-

tional summand.
7We make this assumption for consistency with the optimal taxation literature. Abstracting from a

government budget constraint leaves our results unaffected.
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biases from observing his perceived valuation v̂. We start by defining ªinternality

revelationº and ªlocal bias heterogeneityº as follows.

Definition 1 (Internality Revelation and Local Bias Heterogeneity). Internality revela-

tion occurs when the policy maker can extract information about the magnitude of a consumer’s

internality after observing his perceived valuation v̂. Formally, internality revelation occurs if

and only if:

∃v̂1, v̂2 ∈
[
v̂, v̂
]
, v̂1 ̸= v̂2 : E [b|v̂1] ̸= E [b|v̂2] .

For a differentiable conditional expectation function E [b|v̂], internality revelation exists if and

only if local bias heterogeneity A(v̂) = ∂E[b|v̂]/∂v̂ is non-zero at some point, i.e., ∃v̂ ∈
[
v̂, v̂
]

: A(v̂) ̸= 0.

Under internality revelation, a policy maker can learn about the local heterogene-

ity in consumers’ biases by observing their perceived valuations. Local bias hetero-

geneity, which we define as A(v̂) = ∂E[b|v̂]/∂v̂, is important from two perspectives.

First, it has an information value because it captures the extend to which the policy

maker can infer a higher or lower bias from observing a higher perceived valuation.

Second, it describes the degree of the local (mis)alignment of preferences between the

consumer and the policy maker. Differentiating the definition E[v̂|v̂] = E[b|v̂] + E[v|v̂]

with respect to v̂ shows that if local bias heterogeneity is too large, i.e., ∂E[b|v̂]/∂v̂ >

1, there is a fundamental misalignment of preferences among consumer and policy

maker. In that case, a consumer with a higher v̂ would like to consume a product of

higher attribute level, but the normative stance of the policy maker implies that he

should consume a product of lower attribute level (∂E[v|v̂]/∂v̂ < 0).

3 Optimal Internality Taxation

In this section, we derive the optimal tax schedule. We proceed in two steps. First,

we derive the optimal non-linear tax schedule and discuss its properties. Second,

we determine the conditions under which the optimal non-linear tax schedule can

be implemented. We also explore the consequences of a failure of implementability,

which arises if the smooth tax schedule is not incentive compatible, i.e., if consumers

do not reveal their perceived valuations via their choices. We solve for the optimal

tax schedule using a mechanism design approach (Mirrlees, 1971) as it provides a

unified framework for analyzing both the optimal tax schedule and the conditions for

its implementability. A derivation of the optimal non-linear tax schedule using the

so-called perturbation approach (Saez, 2001) is provided in Appendix A.A.2.
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3.1 The Optimal Smooth Non-Linear Tax Schedule

We first assume that the optimal tax schedule, i.e., the solution to the policy maker’s

problem in Equation (1), satisfies incentive compatibility and characterize it in Propo-

sition 1.8

Proposition 1 (Optimal Non-linear Commodity Tax). If the solution to the policy maker’s

problem in Equation (1) is characterized by first-order conditions, the optimal non-linear com-

modity tax rate is given by:

t′(q) = ĝ(v̂q) E[b|v̂q] + (1 − Ĝ(v̂q))
1 − F(v̂q)

f (v̂q)
∀q ∈ Q, (2)

where v̂q is the type of a consumer that yields the allocation q under the optimal tax schedule,

ĝ(v̂) := α(v̂)
λ is the social marginal welfare weight, and Ĝ(v̂) :=

∫
∞

v̂ ĝ(m) f (m)dm

1−F(v̂)
.

Equivalently, the optimal tax schedule can be written as:

t′(q) = g(q)E[b|q] +
1 − G(q)

e(q)a(q)

(
t′(q) + c′(q)

)
∀q ∈ Q, (3)

where g(q) := ĝ(v̂q), G(q) := Ĝ(v̂q), a(q) := qh(q)
1−H(q)

, and h and H are the density and

distribution of attribute levels q under the optimal tax schedule. The term e denotes the price

elasticity of demand for q evaluated at the net-price t′ + c′.

Proof. See Appendix A.A

To convey the intuition of the optimal tax rate, we analyze the two summands

separately. We first examine the first summand of Equation (2), which embodies a

corrective taxation motive. It is proportional to the expected bias of a consumer con-

ditional on his perceived valuation, which represents the information a policy maker

can infer about internalities from observing consumer choices. The policy maker uses

her potential to correct the choice of a consumer to the extent that she can infer his

internality. The expected bias of a type is weighted by his social marginal welfare

weight g, which captures the policy maker’s valuation of increasing the utility of the

respective consumer, measured in terms of public funds λ. This weight reflects that

the rationale of corrective taxation is to make an individual consumer better off. It dif-

fers from the rationale of externality taxation, where the degree of correction depends

on the damage suffered by other consumers.

8Participation constraints do not matter as a consequence of the assumption of unit demand. This
assumption is common in the literature (e.g., Mussa and Rosen 1978). In our case, it can also be motivated
by products from which a policy maker would not want to exclude participants by taxation, such as
electric appliances and real-estate.
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If the policy maker does not have redistributive preferences (g = G = 1), the

marginal tax rate from Equation (2) simplifies to the expected bias conditional on the

type, t′(q) = E[b|v̂q]. This result bears close similarity with the findings of Allcott

and Taubinsky (2015a) who show that in a binary investment setting the optimal tax

is equal to the average bias of the consumers who are indifferent between both goods

at market prices. Yet, the optimal non-linear tax differs from that result by its depen-

dence on v̂ rather than a fixed market price. This dependence has important implica-

tions for the optimal tax schedule, which we analyze in Section 4. Furthermore, the

optimal non-linear tax improves upon a constant per-unit tax by exploiting additional

information on consumers’ perceived valuations, as revealed under the non-linear tax

schedule. By contrast, the optimal linear tax corresponds to an average bias, weighted

by the consumer’s demand responsiveness. Because it uses only an aggregate mea-

sure of bias, a linear tax has a lower potential to target behaviorally biased consumers

(for derivations, see Appendix A.B).

The second summand of Equation (2) captures a redistributive motive of taxation.

It only matters if the government has preferences for redistribution, as reflected by

social margial welfare weights that are unequal to one (g ̸= 1). Without corrective

motives (E[b|v̂q] = 0), the policy maker encounters a classical equity-efficiency trade-

off (for analogous results in the income taxation literature, see Mirrlees 1971; Diamond

1998). The optimal tax rates increase in the product attribute q (are ªprogressiveº)

if the welfare weight of a consumer choosing at least attribute level q is lower than

the average welfare weight (Ĝ < 1). If the reverse holds true, the tax rates decrease

in q (are ªregressiveº). The term (1 − Ĝ) is weighted more strongly in the optimal

tax formula if the probability mass above v̂q as measured by 1 − F(v̂q) is high and

if the probability density f (v̂q) is low. In that case, an increase of the tax rate at q

is effective in raising additional revenue while causing only modest distortions for

marginal consumers.

In Equation (3), we express the optimal taxation formula in terms of consumers’

product choices q. Its first term captures the corrective rationale of the tax, which

depends on the average bias of consumers who consume an attribute level of q un-

der the optimal tax schedule. It bears similarity to findings by Gerritsen (2016) and

Lockwood (2020), who show that the optimal income tax rate includes an additive

corrective term, which captures the average degree of misoptimization of consumers

at a given income level, weighted by their (average) social marginal welfare weight.

The second term captures redistributive motives. As in the optimal income tax-

ation literature (e.g., Saez 2001), the curvature of the tax depends on three factors.

First, it increases in the strength of preferences for redistribution (∂|t′|/∂|1 − G| > 0).

Second, it decreases in the elasticity e of the demand for q (|∂t′|/∂e < 0). Third, if
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the distribution of consumption is thin at the top, as measured by a low value of the

Pareto parameter a, the distortive effects of a tax are small relative to the effects of

raising revenue from all consumers choosing higher product attribute levels. Hence,

a low value of a increases the curvature of the tax (∂|t′|/∂(−a) > 0). Our findings

differ from optimal income taxation literature in that the optimal tax rate is propor-

tional to the marginal net-price of the attribute level q, t′ + c′, rather than the net-of-tax

rate 1 − t′ (see e.g. Saez 2001). This difference reflects that consumers’ marginal rate

of substitution between numeraire consumption and q in our model is not identical

to the respective rate between numeraire consumption and gross income in income

taxation models.

3.2 Failure of Incentive Compatibility and Implementation via Bunching

We now allow for a situation where the smooth optimal tax schedule from Proposi-

tion 1 does not satisfy incentive compatibility and hence cannot be implemented. We

first investigate the conditions that guarantee the implementability of the smooth op-

timal internality tax schedule and then discuss the implications for policy when these

conditions are not met.

Proposition 2 (Internality Tax Implementability). A necessary and sufficient condition for

the implementability of the optimal tax schedule from Proposition 1 is satisfied at v̂ if:

1 − ĝ(v̂) ∂E[b|v̂]
∂v̂

︸ ︷︷ ︸

①
≥0 if ªno fundamental

misalignmentº

− ∂ĝ(v̂)
∂v̂ E[b|v̂]

︸ ︷︷ ︸

②
=0 if ªwelfare

weights uniformº

− ∂
∂v̂

[

(1 − Ĝ(v̂)) · 1−F(v̂)
f (v̂)

]

︸ ︷︷ ︸

③
≥0 if ªno excess
redistributionº

≥ 0. (4)

In the absence of redistributional preferences (ĝ = 1), the expression simplifies to a ªno fun-

damental misalignmentº condition between the normative stance of the policy maker and the

consumer.

Proof. See Appendix A.C

To give an intuition for Proposition 2, we start by considering its first term (ªno

fundamental misalignmentº). In the absence of redistributive motives (ĝ = 1), it can

be rewritten as ∂E[v|v̂]/∂v̂ ≥ 0, using that v̂ = v + b. This term requires that there

exists a minimum alignment between the normative stance of a policy maker and the

perceived valuations of the consumer. The condition is violated if higher valuations as

perceived by the consumer are valued less by the policy maker (∂E[v|v̂]/∂v̂ < 0). This

condition follows from the distinction between perceived and normative valuations

and, to the best of our knowledge, is novel to the literature on optimal taxation and
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mechanism design. It is violated when when equilibrium normative utility should op-

timally be decreasing in v̂, while incentive compatibility requires that decision utility

is non-decreasing in v̂.

Since the policy maker must ensure a minimum alignment of preferences, there is

a maximum degree of bias heterogeneity that she can exploit through corrective taxa-

tion. Higher values of local bias heterogeneity ∂E[b|v̂]/∂v̂ imply that a policy maker

can extract much information about consumer biases from observing perceived val-

uations. In that case, she would like to strongly differentiate tax rates (Proposition

1). Yet, tax differentiation is only feasible to the extent that a fundamental misalig-

ment between the normative stance of the policy maker and the consumer does not

materialize.

When we allow for redistributive tastes of the government, i.e., g(v̂) ̸= 1, the im-

plementability condition from Proposition 2 involves a second and a third term. The

second term captures that a policy maker would like to differentiate corrective taxes if

the social marginal welfare weights differ across v̂. The third term reflects that the pol-

icy maker may want to differentiate tax rates for redistributional motives alone. It is

equivalent to the implementability condition in the optimal income taxation literature

(e.g. Mirrlees 1971; Diamond 1998) and depends on the hazard rate and on 1 − Ĝ(v̂),

i.e., the deviation of the average marginal welfare weight of all consumers above v̂,

Ĝ(v̂), from the mean of all weights (which equals one).

The rationale of the implementability condition from Proposition 2 is to set an up-

per limit for the differentiation of tax rates. To see that link, it is useful to consider

the optimal tax formula from Equation (1). The implementability condition requires

that ∂t′/∂v̂ ≤ 1, i.e., it limits the increase of the tax rate in the attribute level. Intu-

itively, if a tax schedule increases too steeply in the attribute level, it disincentivizes

the consumption of higher attribute levels to such an extent that a violation of incen-

tive compatibility occurs.

Proposition 3 (Standards as Part of the Optimal Policy). If the solution to the policy

maker’s problem in Equation (1) does not satisfy Internality Tax Implementability, the optimal

policy includes bunching. In particular, if Internality Tax Implementability...

1. ... is violated globally, i.e., for every v̂, the optimal policy consists of setting a uniform

standard;

2. ... is violated at the lower bound of the perceived valuation distribution, i.e., for every

v̂ ∈ [v̂, v̂l ], the optimal policy consists of setting a minimum standard;

3. ... is violated at the upper bound of the perceived valuation distribution, i.e., for every

v̂ ∈ [v̂h, v̂], the optimal policy consists of setting a maximum standard.
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Proof. See Appendix A.D.

If Internality Tax Implementability from Proposition 2 is not met, incentive com-

patibility can be ensured by applying the so-called ironing approach (Myerson, 1981;

Guesnerie and Laffont, 1984). The approach achieves implementability by bunching,

i.e., by assigning the same commodity bundle to individuals with different (perceived)

valuations. Proposition 3 demonstrates that if implementability fails globally, the only

way to ensure incentive compatibility is to impose a uniform standard. Minimum or

maximum standards, i.e., bans of high or low attribute levels, are part of the opti-

mal non-linear tax schedule if failure of implementability occurs at the bounds of the

distribution of perceived valuations. In all three cases, the policy maker restricts the

set of product varieties available to consumers in order to approximate the optimal

non-linear tax schedule, while taking implementability constraints into account.

4 Properties of the Optimal Non-Linear Tax Schedule

In this section, we investigate the properties of the optimal internality tax schedule.

For the ease of exposition, we assume that the government has no preference for re-

distribution, which implies that marginal social welfare weights equal one for every

consumer.9 In that case, according to Proposition 1, the optimal tax rate equals the ex-

pected bias conditional on the perceived valuation v̂ of consumers consuming q; that

is, t′(q) = E[b|v̂q].

The optimal tax rate can be decomposed into two components. The first compo-

nent is v̂q, i.e., the relation between v̂ and q, which is endogenous to the tax schedule.

It mirrors that product choices of a consumer can be understood as a signal of her

perceived valuation v̂. The second component is the expected bias conditional on a

type v̂, E[b|v̂]. It reflects that the policy maker faces a signal extraction problem. She

receives a signal v̂ from a consumer’s position on the demand curve. Based on this

signal, she makes inferences about E[b|v̂] in order to determine the optimal tax sched-

ule. Such inferences are independent of the tax schedule and depend only on the joint

distribution of valuations and biases in the population of consumers. In the following,

we first formalize the signal extraction problem and explore how it relates to parame-

ters of the joint distribution of v̂ and b. We then derive how the shape of the optimal

tax schedule can be inferred from these parameters.

9In the absence of income effects, constant Pareto weights α(v̂) = α imply that marginal social welfare
weights g are equal to one (see, e.g., Piketty and Saez 2013).
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We start by assuming that biases and valuations follow a joint normal distribution.

This assumption allows us to describe the global relationship between b and v̂ in terms

of its first two moments. The conditional expectation E[b|v̂] is then given by:

E [b|v̂] = E[b|µv̂] +
(σb/σv) + ρ

(σb/σv) + (σv/σb) + 2ρ
︸ ︷︷ ︸

=:A

· (v̂ − µv̂) , (5)

where the measure of bias heterogeneity, A = ∂E[b|v̂]/∂v̂, is constant across v̂. If

valuations and biases are not jointly normal distributed, Equation (5) corresponds to

a first-order approximation to the conditional expectation E[b|v̂]. As shown in Ap-

pendix A.E, it minimizes the Mean Squared Error between b and its linear prediction

b̃, E(b − b̃)2.

As described in Equation (5), the magnitude of updating depends crucially on two

factors. First, it increases in the difference between a perceived valuation v̂ and its

expected value µv̂. Hence, the expected bias deviates most strongly from the mean

bias for consumers with extreme perceived valuations.10 Second, it increases in the

absolute value of the local bias heterogeneity A, which reflects an information value

of v̂ about consumer biases. The information problem of the policy maker consists

of decomposing the information contained in the ªtruth-plus-noiseº signal v̂ into its

components E [v|v̂] and E [b|v̂]. In this decomposition problem, the term A has the role

of a decomposition weight. It captures how much of a one-unit increase in v̂ can be

attributed to a change in E(b|v̂). The remaining part, (1− A), is attributed to a change

in E(v|v̂).11

The local bias heterogeneity A measures the extent to which the average bias varies

across consumers with different perceived valuations. In addition, it represents the

degree to which a policy maker would optimally like to differentiate the tax schedule.

Local bias heterogeneity depends only on two statistics of the joint distribution of v

and b: their correlation coefficient ρ and the ratio σb/σv. When σb/σv is equal to one,

variation in the perceived valuations is equally likely to stem from variation in the

bias and in the valuation, which implies A = 1 − A = 1
2 . When it is equal to zero,

observing v̂ is uninformative about the bias, but very informative about the valuation.

The reverse holds true when σb/σv becomes infinitely large.

10As a consequence, the optimal non-linear tax implies ªno distortion at the top and at the bottomº
when the distribution functions Fv and Fb both have a bounded support and the condition for internality
tax implementability (Proposition 2) is satisfied. In this case, an extreme signal resolves all uncertainty
about the bias of the respective consumer, which allows the policy maker to fully correct for it.

11This can be seen from the first-order approximation for E[v|v̂], which is given by Ê [v|v̂] = E[v|µv̂] +
(1 − A) · (v̂ − µv̂).

14



4.1 Curvature of the Optimal Non-Linear Tax Schedule

We continue by exploring the curvature of the optimal tax schedule, which is given by

t′′(q) = ∂E[b|v̂]/∂v̂ · ∂v̂/∂q. As a consequence of incentive compatibility, an allocation

must be non-decreasing in perceived valuations (∂v̂/∂q ≥ 0). Hence, the sign of t′′(q)

is determined by the local bias heterogeneity A = ∂E[b|v̂]/∂v̂. Following that insight,

Proposition 4 characterizes the curvature of the optimal tax schedule in terms of the

two determinants of A: the correlation between normative valuations and biases, ρ,

and the ratio of their standard deviations σb/σv. We provide a graphical overview in

Figure 1.

Proposition 4. The curvature of the optimal tax schedule is determined by the correlation

between normative valuations and biases, ρ, and the ratio of their standard deviations, σb/σv.

The optimal tax is ...

1. ... concave in q if and only if A < 0 ⇔ ρ < −(σb/σv);

2. ... linear in q if and only if A = 0, i.e., if either (σb/σv) = 0 or ρ = −(σb/σv);

3. ... convex in q if and only if A ∈ (0, 1) ⇔ ρ > −(σb/σv) and ρ > −(σv/σb).

Proof. Follows from Proposition 1 (for g = 1) and Equation 5.

Proposition 4 clarifies that a linear tax is optimal when local bias heterogeneity

is zero (A = 0). In that case, nothing can be learned about the bias from obtaining

information about consumers’ perceived valuations v̂, which eliminates the benefit

from targeting consumers via non-linear taxes. If A is between zero and one, the

expected bias increases in v̂, which implies a convex optimal tax schedule. With a

negative A, larger perceived valuations are associated with a lower expected bias and

the optimal tax schedule is concave.

Furthermore, Proposition 4 has direct relevance for policy makers with qualitative

information about the source of a bias. The curvature of the optimal tax schedule cru-

cially depends on the sign of the correlation between valuations and biases, ρ. That

sign can be derived from knowing the specific behavioral bias at work, even in the ab-

sence of data. For example, exogenous inattention implies that valuations are uncor-

related with biases (ρ = 0) and rational addiction models imply a positive correlation

(ρ > 0).12 As shown by Proposition 4 and Figure 1, the optimal tax schedule is convex

in both cases (except for σb = 0, in which case it would be linear). The rationale for

a convex schedule is that higher biases b translate into higher perceived valuations

12This follows from the fact that consumers with large valuations for an addictive good consume it
more than consumers with low valuations.
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Figure 1: Optimal Internality Taxation (see Proposition 4 and 5)

σb/σv

ρ

1

0

1

−1

linear tax

concave tax
uniform standard

(bunching)

convex tax

v̂ = v + b. Hence, the conditional expectation of the bias E(b|v̂) and the optimal tax

rate increases in v̂ and q, respectively.

4.2 Taxation vs. Standards

We now turn to the question when behaviorally motivated bans of certain product at-

tribute levels, i.e., product standards, are optimal. In our model, standards imply that

consumers with different perceived preferences choose the same attribute level under

the optimal tax schedule. Proposition 5 and Figure 1 show that a uniform standard is

optimal when ρ is negative and sufficiently small.

Proposition 5 (Uniform Standard). The optimal tax corresponds to a uniform standard if

and only if A > 1 ⇔ ρ < −(σv/σb).

Proof. Follows from Proposition 3 (Case 1) and Equation 5.

In this case, there exists a large degree of local bias heterogeneity A, which the

policy maker would like to correct. Yet, she cannot differentiate corrective taxes to the

extent required because incentive compatibility would fail if she did. It fails because

A > 1 implies a fundamental disagreement of preferences between the policy maker

and the consumer, which cannot be corrected via a price instrument (Proposition 2).

When A is constant, incentive compatibility fails globally for every v̂. ªIroningº the

optimal smooth tax schedule then results in a uniform standard (Proposition 3).
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Next, we compare the welfare implications of linear taxes with those of a uniform

standard. This analysis extends Weitzman’s (1974) investigation of price and quantity

regulation to a setting with behavioral consumers who choose among a variety of

quality-differentiated products.

Proposition 6 (Linear Taxation vs. Uniform Standard). There exists an Â ∈ [0, 1] such

that for all A < Â (A > Â) as defined in Equation (5) price regulation via linear taxes is

welfare-superior (welfare-inferior) compared to regulation that sets a uniform standard.

Proof. See Appendix A.F.

Proposition 6 clarifies the rationale of a benevolent policy maker to employ either

linear taxes or standards. Ultimately, the policy maker is interested in using the instru-

ment that better approximates the slope of the expected bias function, which is given

by the local bias heterogeneity A. When A is sufficiently small, a linear tax approxi-

mates the expected bias function better than a standard, while the reverse holds true

for large values of A. This logic is similar to the rationale by Weitzman (1974), where

a policy maker chooses the instrument that better approximates the marginal damage

function from an externality.

Our analysis extends the behavioral analysis of linear taxes and quantity regula-

tions by Farhi and Gabaix (2020). In a setting with uncorrelated normative valuations

and biases, they show that quantity regulation yields a higher expected welfare than

a linear tax if the variation in the bias is sufficiently large relative to the variation in

normative valuations. In our model, this finding corresponds with the result that A

increases in σb/σv, when ρ equals zero. Our approach demonstrates that this finding

does not necessarily hold true when normative valuations are correlated with biases.

When ρ < 0, an increase in σb/σv may reduce the local bias heterogeneity A and hence

the expected welfare of a standard relative to a linear tax.13 Furthermore, our results

show when a uniform standard is welfare-superior to all linear and non-linear taxes

rather than to linear taxes alone. As shown by Figure 1, a uniform standard is never

welfare-superior to all price instruments when ρ = 0, which corresponds to the case

investigated by Farhi and Gabaix (2020).

In the following, we analyze when a policy maker should optimally set minimum

or maximum standards. So far, our analysis of optimal policies has relied on the con-

ditional expected bias function from Equation 5, which corresponds to a first-order

approximation of E(b|v̂) with a constant local bias heterogeneity A. To assess mini-

mum and maximum standards, we turn to a second-order approximation. This ap-

13For ρ ≥ 0, we have that ∂A/∂ (σb/σv) > 0. For ρ < 0, we have that ∂A/∂ (σb/σv) < 0 if either

σb/σv < − 1
ρ −

√
1
ρ2 − 1 ≤ 1 or σb/σv > − 1

ρ +
√

1
ρ2 − 1 ≥ 1. Furthermore, ∂A/∂ρ < 0 if and only if

σb/σv > 1.
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proximation allows A to vary across perceived valuations v̂. We use it to investigate

how higher-order moments of the joint distribution of perceived valuations and biases

affect the shape of the optimal non-linear tax schedule.

Proposition 7 (Minimum and Maximum Standards). The optimal non-linear tax schedule

involves a maximum standard, i.e., a ban of high product varieties with v̂ ∈ (v̂h, Å̂v] from the

market, where v̂h
> v̂, if:

cosk (v̂, b)

sk (v̂)
> ρ (v̂, b) and sk(v̂) > 0, (6)

and it involves a minimum standard, i.e., a ban of low product varieties with v̂ ∈ [v̂, v̂l ] from

the market, where v̂l
< Å̂v, if:

cosk (v̂, b)

sk (v̂)
> ρ (v̂, b) and sk(v̂) <

cosk (v̂, v)

ρ (v̂, v)
< k < 0, (7)

where sk(·) denotes the skewness, cosk(v̂, y) = E
(
(v̂ − µv̂)2(y − µy)

)
/(σ2

v̂ σy) is the coskew-

ness of v̂ and a random variable y, ρ (·) denotes the correlation, and k := −2(µv̂/σv̂)− σv̂2 /σ2
v̂

is a negative constant. Both conditions require that [v̂, Å̂v) := [0, ∞) and that A < 1, so that

bunching all individuals is not optimal (as stated in Proposition 5).

Proof. See Appendix A.G

Proposition 7 states when a mix of taxation with bans for either high or low at-

tribute levels is optimal. To provide intuition, let us first assume that perceived val-

uations v̂ are positively skewed as required by the second of the two inequalities in

(6). In this case, the policy maker observes some consumers with very high perceived

valuations who would demand product varieties with a very high attribute level q in

the absence of regulation. If such extreme preferences are mostly due to a large bias,

a regulator should intervene to prevent welfare losses for these consumers. How ex-

treme perceived valuations relate to the bias is captured by the term cosk (v̂, b) /sk (v̂).

A large coskewness implies that extreme values of v̂ are associated with a large bias.

Normalizing the coskewness by the skewness yields a measure of the extent to which

extreme observations of v̂ are explained by the bias.14 If this term is sufficiently large,

the policy maker should regulate choices of consumers with very high perceived val-

uations because they originate from high biases, as reflected by the first of the two

inequalities in (6).

14The skewness of v̂ can be expressed as a weighted mean of the coskewnesses: sk(v̂) =
(σb/σv̂)cosk(v̂, b) + (σv/σv̂)cosk(v̂, v). As the weights are non-negative, cosk(v̂, b)/sk(v̂) measures the
extent to which the coskewness between v̂ and b explains the overall skewness of v̂.
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To regulate the choices of these consumers, the policy maker must rely on bans

if tax instruments cannot be implemented due a violation of incentive compatibility.

As shown in Proposition 2, implementability fails if higher perceived valuations are

associated with lower normative valuations as assigned by the policy maker. This can

occur locally for consumers with very high perceived valuations if their choices are

much more informative about biases than the choices of the average consumer. The

average informativeness of perceived valuations about biases is measured by ρ(v̂, b).

If it is large, choices are very informative on average and local bunching becomes more

unlikely, as shown by the right hand side of the first of the two inequalities in (6).15

The same rationale applies for a ban of low attribute levels. As described by Propo-

sition 7, such a ban is part of the optimal non-linear tax if perceived valuations are

negatively skewed and if the bias explains a sufficiently large share of the negative

skew, as measured by the term cosk (v̂, b) /sk (v̂). As shown by the second of the in-

qualities in (7), the skew must be larger (in absolute terms) than a constant k and the

(variance-weighted) coskewness of v̂ and b.16

5 Optimal Internality Taxation in the Light Bulb Market

In this section, we illustrate our findings based on a numerical example from the light

bulb market. First, we discuss consumer choices in the light bulb market and calibrate

the joint distribution of perceived valuations and biases based on data elicited by All-

cott and Taubinsky (2015a). Second, we derive the local bias heterogeneity A in our

setting and discuss how it determines the shape of the optimal tax schedule. Third,

we quantify the optimal tax schedule.

In the light bulb market, consumers face a trade-off between paying a higher pur-

chase price for a more energy efficient bulb or bearing higher operating and replace-

ment cost (ORC) for a less efficient one. The regulator is concerned that consumers are

only imperfectly informed about and inattentive towards ORC savings at the time of

the purchase, thereby underinvesting into energy efficiency. We measure the attribute

level of a light bulb in terms of its energy efficiency. In particular, we define product

attribute level q as the ORC savings relative to the most energy inefficient light bulb

on the market over a time period of eight years.17

15Note that bunching over the entire support of v̂ becomes more likely as ρ(v̂, b) increases.
16The latter follows from: cosk(v̂, v)/ρ(v̂, v) = (σv̂sk(v̂)− σbcosk(v̂, b)) /(ρ(v̂, v)σv) < k < 0.
17For simplicity, we assume that bulbs are identical in all other attribute level dimensions (e.g., lumi-

nosity and light color). In practice, consumers choose among four main light bulb technologies that differ
in their energy efficiency: incandescent light bulbs, halogen bulbs, compact fluorescent bulbs (CFL), and
LED bulbs. Within each category, small differences in energy efficiency exist (see Appendix Figure 2).
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We start by discussing how information about the joint distribution of biases and

valuations can be elicited in practice. For the purpose of quantifying biases, the lit-

erature has suggested the use of surveys to elicit experts’ decision-making as a ratio-

nal consumer benchmark (e.g., Handel and Kolstad 2015), to measure beliefs directly

(e.g., Rees-Jones and Taubinsky 2019), and to debias consumers in survey-based exper-

iments (e.g., Allcott and Taubinsky 2015a). Perceived preferences can also be collected

in surveys or obtained from observational data through calibration so that they reflect

the distribution of actual behaviour. As an alternative to survey-based approaches, the

joint distribution of biases and preferences can be obtained from observational studies

that use semi-parametric estimators for discrete choice models (see, e.g., Houde and

Myers 2019).

In our example, we draw upon data by Allcott and Taubinsky (2015b) to quantify

biases and valuations. After a baseline elicitation of the relative willingness-to-pay

(WTP) for the more energy efficient CFL bulb, consumers in a treatment group obtain

information on the lifetime costs of both bulbs. We use the difference in consumers’

relative WTP before and after information provision as a measure of their bias. We

divide this measure by the ORC difference between both bulbs, which yields a per unit

bias b (in terms of q), whose distribution is presented in Appendix Figure 3a. We then

construct a measure for the normative valuation v of one unit of ORC savings from

individual-specific discount rates (see Appendix Section B for details and Appendix

Figure 3b for the distribution). Knowledge of v and b allows us to determine the joint

distribution of biases and perceived valuations by calculating v̂ as the sum of v and b.

In a second step, we determine the conditional expectation of the bias, E[b|v̂], and

the local bias heterogeneity A(v̂) = ∂E[b|v̂]/∂v̂ using three approximations of the con-

ditional expectation of the bias.18 First, a non-parametric approximation using local

linear regressions that requires full knowledge of the joint distribution of v̂ and b. Sec-

ond, the first-order approximation from Equation (5), which requires only knowledge

of the first two moments of the joint distribution and yields a constant A. Third, the

second-order approximation from Proposition 7, which allows us to capture how A

varies with v̂ by additionally taking information about third moments into account.

We start by discussing the qualitative insights on the optimal tax schedule under

full information. As shown by Figure 2a, the conditional expectation E[b|v̂] increases

in perceived valuations v̂. Hence, the optimal tax rate under a smooth tax schedule

must be increasing in q, which implies a convex tax schedule. Yet, for low perceived

valuations v̂, the local bias heterogeneity A exceeds one. Hence, there is a fundamen-

18We explore E(b|v̂) rather than E(b|q) for two reasons: First, incentive compatibility requires that q in-
creases in v̂. Hence, both functions carry the same qualitative information. Second, E(b|q) is not directly
related to our implementability condition from Proposition 2 and endogenous to the tax schedule.
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Figure 2: Optimal Non-Linear Taxation in the Light Bulb Market

(a) Conditional expectation of the bias

(b) Local bias heterogeneity

(c) Summary Statistics

Min Max µ p50 σ ρ(., b) Skew Coskew(·, b)
Biases b −0.41 0.12 −0.05 −0.02 0.09 − −1.53 −
Norm. valuations v 0.10 0.59 0.29 0.27 0.13 −0.38 0.35 −0.09
Perc. valuations v̂ 0.01 0.58 0.24 0.21 0.13 0.34 0.58 0.01

Notes for Figure a): The conditional expectation of the bias under full information is estimated via local
linear regression (Epanechikov kernel, bandwidth: 0.056, respectively). The first- and second-order ap-
proximations minimize the Minimum Mean Squared Error (MMSE) between the bias and its linear and
quadratic prediction, respectively.
Notes for Figure b): Under full information, the local bias heterogeneity A(v̂) is calculated as the numerical
gradient of the conditional expectation function from Figure 2a. The blue shaded area highlights values
of A(v̂) that exceed one and thus indicate a violation of Internality Tax Implementability (Proposition 2).
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tal misalignment of preferences between the consumer and the policy maker and a

smooth tax schedule does not satisfy incentive compatibility in this range. Consumers

with low perceived valuations are thus bunched to ensure incentive compatibility of

the tax schedule, which implies a ban of low attribute levels (Proposition 3). Under

full information, the optimal policy will thus consist of a minimum standard, coupled

with a convex tax schedule above the bunching range.

If only information about the first two moments of the joint distribution of b and

v̂ are used to determine the optimal non-linear tax, the properties of the optimal non-

linear tax schedule follow from Proposition 4. In our data, the correlation between v

and b is ρ = −0.38, and the standard deviation of b and v are σb = 0.09 and σv = 0.13,

respectively (Figure 2c). These values confirm that the conditional expectation E[b|v̂]

increases in v̂ and the optimal corrective tax schedule is convex, as ρ > −σb/σv (Propo-

sition 4). As shown in Figure 2b, A estimated under the first-order approximation is

constant and smaller than one. Hence, implementing the optimal non-linear tax based

on that approximation would not lead to a violation of incentive compatibility and

thus not require setting a standard.

Next, we approximate the conditional expectation of the bias using a second-order

approximation. Again, A(v̂) is smaller than one for the entire support of perceived

valuations. Hence, the implementation of the optimal non-linear tax under this ap-

proximation is feasible and a minimum standard is not necessary. This is also reflected

by the fact that the sufficient conditions for a minimum standard from Proposition 7

are not fulfilled in our setting (sk(v̂) = 0.58, cosk(v̂, b) = 0.01, ρ(v̂, b) = 0.34). Fur-

thermore, Figure 2b demonstrates that A decreases in v̂, which implies that the policy

maker would like to differentiate taxes more strongly compared to the first-order ap-

proximation.

In a third step, we simulate the optimal non-linear tax in the light bulb market

under either information requirement and compare it with the outcomes under the

optimal linear tax. Following the optimal income taxation literature, we base our

simulations on the distribution of types rather than consumption choices, which are

endogenous to the tax system (see, e.g., Saez 2001 for a discussion). We estimate a

quadratic cost function based on market data (for details, see Appendix Section B).

Based on the conditional expectation function of the bias and the cost function c,

we then quantify the optimal tax schedule. To do so, we exploit that t′(q) = E[b|v̂q]

(Equation 3). For every consumer v̂, we determine the marginal tax rate as t′(q(v̂)) =

E[b|v̂], as well as his consumption choice when facing the tax rate. To obtain consump-

tion choices, we exploit the first-order condition of consumers’ utility maximization

problem, which requires that v̂ = c′(q(v̂)) + t′(q(v̂)). Because t′(q(v̂)) = E[b|v̂],

consumers’ consumption choices under the tax schedule t(q) are equal to q(v̂) =
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Figure 3: Optimal Non-Linear Taxation in the Light Bulb Market

(a) Optimal tax rates as a function of the attribute level q (ORC savings in USD)
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(b) Average welfare increase per bulb as a function of perceived valuations v̂.

Notes for Figure a): Optimal non-linear and linear tax rates are determined by using the formulas from
Proposition 1 and Appendix Section A.B, respectively. The blue shaded area denotes the range of re-
stricted product qualities that fall below the minimum standard for ªNon-linear tax (full information)º.
Notes for Figure b): The average welfare weight is smoothed using local linear regressions (Epanechikov
kernel, bandwidth = 0.05)
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c′−1(v̂ − E[b|v̂]). Knowledge of tax rates and consumption choices q for every con-

sumer type v̂ then allows us to express the tax rates as a function of q. When imple-

mentability of a smooth tax schedule fails, we additionally ªironº the tax schedule in

order to determine the minimum standard, as explained in Appendix A.D.

The optimal tax rates are depicted in Figure 3a. As a reference, we first discuss

the optimal linear tax. In this case, the optimal tax rate is constant and corresponds

to a subsidy of 0.05 U.S. Dollar (USD) per USD of ORC savings over the lifetime of a

light bulb.19 The optimal non-linear tax under full information implies an increasing

tax rate and hence a convex tax schedule. The tax rates are negative for bulbs with

ORC savings smaller than about 42 USD and thus correspond to marginal subsidies

for energy efficiency in that range. The marginal subsidies decrease in q, thereby re-

flecting that consumers who purchase products with a higher attribute level tend to

have lower negative biases (Figure 2a). For individuals with perceived valuations of

less than 18 USD of ORC savings, the regulator would like to differentiate the tax

rates in a manner that is not consistent with incentive compatibility. Hence, the op-

timal non-linear tax results in bunching at the bottom and a minimum standard that

forbids product qualities with ORC savings of less than 18 USD, as depicted by blue

shaded area. For high values of ORC savings above about 42 USD, an increase in

energy efficiency is taxed at the margin. This is optimal as the individuals who are in-

different between very energy efficient product varieties overvalue energy efficiency

on average (Figure 2a).

The optimal tax rates based on a first-order approximation increase in q, which

again reflects a convex tax schedule. The subsidization of energy efficiency at the mar-

gin amounts to 0.15 USD per unit of ORC savings for product with the lowest attribute

level and thus exceeds the respective rate under the linear tax. Furthermore, marginal

subsidies decrease in q and eventually become a marginal tax for product varieties

with the highest attribute level, thereby reflecting that consumers with demand for a

higher product attribute level have a lower bias in absolute terms. As the optimal tax

schedule does not violate incentive compatibility, it does not require setting a stan-

dard and the marginal tax rates span the entire support of q. The optimal tax rates

based on the second-order approximation are qualitatively very similar, yet they are

differentiated more strongly. In this case, marginal subsidies amount up to 0.30 USD

per unit of ORC savings for low energy efficiency levels.

Figure 3b displays the welfare increase of the optimal linear tax, the optimal non-

linear tax under full information, as well as the first- and second-order approximation,

19Assuming for illustration that the subsidy level for the product with the lowest energy efficiency is
zero, the total subsidy payment for a bulb with the maximum energy efficiency of about 50 USD in ORC
savings would equal about 0.05 × 50 = 2.5 USD.
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each compared to no taxation. It shows that linear taxes increase welfare for individ-

uals with low and medium perceived valuations, but decrease it for individuals with

high valuations. Non-linear taxes are better suited to target individuals. They more

than double the welfare gain for individuals with low perceived valuations and re-

duce welfare losses for individuals with high perceived valuations. On aggregate, the

welfare gain over the status quo of no subsidy amounts to 0.12 USD per bulb for the

optimal linear tax, compared to 0.16 and 0.19 USD per bulb for the optimal non-linear

tax under its first-order approximation and full information, respectively (Appendix

Table 1). In relative terms, implementing the non-linear schedule rather than the lin-

ear tax increases welfare by 36% under a first-order approxmation and by 57% under

full information.

Hence, a first-order approximation with modest information requirements is able

to reap a substantial part of the welfare gains of non-linear taxation. Furthermore,

it does not involve restrictions on consumer choice, which might increase its politi-

cal acceptability. Our empirical example also uncovers an apparent paradox: when

information about the joint distribution of biases and valuations is perfectly known,

a policy maker may find it optimal to set standards, but not when information avail-

ability is restricted. This is because more information may imply that the policy maker

would like to differentiate tax rates more strongly than she can without violating in-

centive compatibility. In such a case, price instruments are infeasible and the policy

maker must resort to standards.

6 Discussion and Conclusion

In this paper, we derive the optimal non-linear tax to correct behaviorally biased con-

sumers. We show that consumers’ consumption choices contain information about

their biases, which can be exploited for targeting via a non-linear internality tax. We

also demonstrate how a policy maker can make use of qualitative insights about the

underlying behavioral bias to determine whether the optimal non-linear tax is convex,

linear, or concave.

Our results also provide a novel rationale for behaviorally motivated standards.

When choosing between levying a tax and setting a standard, a policy maker should

use the instrument that better approximates the gradient of the expected bias func-

tion, which we denote as the local bias heterogeneity. It captures the informativeness

of differences in perceived valuations about differences in the average bias and thus

measures the degree to which a benevolent policy maker should differentiate tax rates.

Yet, tax rates that increase too steeply in the attribute levels reflect a fundamental mis-

alignment of preferences between the policy maker and the consumer. In this case,
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the tax schedule cannot be implemented because it violates incentive compatibility

and the policy maker must optimally resort to standards. This rationale results in a

uniform standard when the fundamental misalignment is global, and to minimum

and maximum standards, when it arises at the bounds of the distribution of perceived

valuations.

In a numerical example from the light bulb market, we demonstrate that optimal

non-linear taxation increases welfare beyond the optimal linear tax. Furthermore, we

illustrate that the informational requirements for implementing a first-order approxi-

mation of the optimal non-linear tax are modest and require knowledge of only a few

statistics of the joint distribution of valuations and biases.

In practice, non-linear tax schedules can be implemented based on existing at-

tribute level measures such as the energy efficiency ratings used for energy perfor-

mance certificates and energy labels, for example. In the context of energy efficiency

investments and hybrid car purchases, previous studies have shown that perceived

valuations are positively correlated with the bias (Allcott et al., 2015). In such cases,

the optimal non-linear tax schedule is convex, giving the largest marginal subsidies to

participants with low perceived valuations. This optimal tax schedule contrasts with

many subsidy schedules employed in practice. For example, the German government

grants subsidies for energy efficiency in housing only if a newly built (or retrofitted)

house meets predefined minimum efficiency levels. In other words, marginal sub-

sidies are essentially zero for consumers with low perceived valuations. Hence, the

most heavily biased consumers are not subsidized at the margin. Optimal non-linear

tax and subsidy schedules avoid such shortcomings.

For the application of our results to different contexts, we see at least three valuable

model extensions. First, the assumption of unit demand could be relaxed to explore

how the availability of extensive margin effects changes the rationale of a policy maker

to impose minimum and maximum standards. Second, in some settings, consumers

may choose both the attribute level and the quantity of a product. Hence, extending

our model to include both choice margins would be useful. Third, when analyzing

large-scale internality tax policies, allowing for income effects and the interplay with

other redistributive policies such as income taxes is important. These extensions may

prove useful to establish solid theoretical (and empirical) foundations for the use of

behaviorally motivated taxation and product regulation in practice.
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Online Appendix

Optimal Internality Taxation of Product Attributes

Andreas Gerster and Michael Kramm

A Proofs

A.A Proof of Proposition 1: Optimal Non-Linear Tax

We first use the mechanism design approach to characterize the optimal tax in terms

of types and then employ the perturbation approach to characterize the optimal tax

as a function of the attribute level. Finally, we show that the results we obtain under

either approach are equivalent.

A.A.1 Equation (2) in Types (Mechanism Design Approach)

For our mechanism design approach, we employ the Revelation Principle for dominant-

strategy implementation (Gibbard, 1973) to solve for a direct mechanism, where the

consumer truthfully reveals information about his perceived valuation.

We start by discussing the dimensionality of mechanisms for internality taxation.

In our model, a consumer decides based on his perceived valuation v̂(v, b) rather than

v. Even though a consumer may or may not know his bias, i.e., be sophisticated or

naive, we can, without loss of generality, neglect that distinction and restrict our anal-

ysis to one-dimensional mechanisms in the perceived valuation v̂. Naive consumers

are unaware of their bias and thus cannot report it, so that a social planner can only

employ a one-dimensional mechanism in v̂ to correct them. Sophisticated consumers

know their bias and can, in principle, report it. Yet, as biases do not influence decision

utility, truth-telling in a two-dimensional mechanism is not incentive-compatible.

The formal argument of the above is as follows. We want to show that two-

dimensional mechanisms, where sophisticated consumers report both their perceived

valuation and their bias, lead to a violation of truth-telling. Without loss of generality,

we assume that there exists at least one realization of perceived valuations v̂1 ∈
[
v̂, v̂
]

for which biases differ, so that some consumers are characterized by (v̂1, b1) and others

by (v̂1, b0), where b1 ̸= b0.
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The policy maker wants to implement a direct two-dimensional mechanism where

the allocation ξ
(
ṽ, b̃
)

and the tax τ
(
ṽ, b̃
)

depend on reported valuations ṽ and biases

b̃. Consumers choose their reports to maximize decision utility:

(ṽ∗(v̂), b̃∗(v̂)) = arg max
ṽ,b̃

ud
(
ξ
(
ṽ, b̃
)

, τ
(
ṽ, b̃
)
|v̂
)

.

Importantly, this maximization problem depends only on reported biases b̃ and not

on actual biases b. As a consequence, every sophisticated consumer with perceived

valuation v̂ will report the same bias b̃∗(v̂). As biases differ for v̂1, truth-telling is

violated.

Hence, we can apply the Revelation Principle to our setting, where the space of re-

ports for a consumer is given by the space of his perceived valuation v̂. For simplicity,

we refer to v̂ as a consumer’s type in the following. The policy maker confines herself

to designing a direct mechanism (ξ, τ) :
[
v̂, v̂
]
→ Q × R under truth-telling in order

to implement the welfare maximizing outcome. Based on the consumer’s strategical

report ṽ, the allocation rule of the direct mechanism assigns the consumed attribute

level, ξ(ṽ) ∈ Q, and transfer rule the amount of taxes to be paid, τ(ṽ) ∈ R. Because

the consumer has unit demand for the good, participation constraints are not relevant

in our setting.

Under the direct mechanism, the decision utility for report ṽ for a given perceived

valuation v̂ is:

ud(ξ(ṽ), τ(ṽ)|v̂) = m + v̂ · ξ(ṽ)− τ(ṽ)− c(ξ(ṽ)).

Since the consumer may strategically misreport his perceived valuation, truth-telling

must be ensured by implementing an incentive compatible mechanism. This implies

that the tax schedule must satisfy:

ud(ξ(v̂), τ(v̂)|v̂) ≥ ud(ξ(ṽ), τ(ṽ)|v̂) ∀v̂, ṽ ∈
[
v̂, v̂
]

. (IC)

Optimal strategic reporting of a consumer implies that the solution v∗ to the prob-

lem max
ṽ

ud(ξ(ṽ), τ(ṽ)|v̂) has to satisfy:

v̂ξ ′(v∗)− τ′(v∗)− ξ ′(v∗)c′(ξ(v∗))
!
= 0. (8)

As incentive compatibility requires that v∗ = v̂, equilibrium decision utility in an

incentive-compatible direct mechanism is given by ûd(v̂) := ud(ξ(v̂), τ(v̂)|v̂), while

equilibrium normative utility is given by ûn(v̂, b) := un(ξ(v̂), τ(v̂)|v) = ûd(v̂)− bξ(v̂).
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Put differently, incentive compatibility implies that, for all v̂ ∈
[
v̂, v̂
]
, the following

equation has to hold:

∂ûd(v̂)
∂v̂ = ξ(v̂) + v̂ξ ′(v̂)− τ′(v̂)− ξ ′(v̂)c′(ξ(v̂))

(8)
= ξ(v̂). (9)

To determine the optimal tax schedule, the policy maker solves an optimization

problem which can be analyzed using an optimal control approach. Note that deter-

mining the equilibrium values of ξ(v̂) and ud(v̂) for all v̂ pins down the equilibrium

value of τ(v̂) for all v̂. Hence, the mechanism design problem of the policy maker is

given by:

max
ξ∈Q

∫

v̂
α(v̂) · E [ûn (v̂, b) |v̂] dF(v̂) + λ

(∫

v̂
τ (v̂) dF(v̂)− B

)

, (10)

subject to the condition from Equation (9), where Q := { f | f :
[
v̂, v̂
]
→ Q} is the func-

tion space containing all functions with domain
[
v̂, v̂
]

and codomain Q. The boundary

conditions of the problem are given by ûd (v̂) = u and ûd
(
v̂
)
≥ u. The control vari-

able is ξ and the law of motion of the state variable ûd is determined by incentive

compatibility and optimal strategic reporting, as given by Equation (9).

Using the definition of decision utility to replace the tax and rewriting equilib-

rium normative utility in terms of equilibrium decision utility, the Hamiltonian for

the problem stated in Equation (10) for all v̂ ∈
[
v̂, v̂
]

is given by:

H
(

v̂,ξ,ûd
)

=







α(v̂)·
(

ûd(v̂)−E[b|v̂]ξ(v̂)
)

︸ ︷︷ ︸

=E[ûn(v̂,b)|v̂]

+λ
(

m+v̂ξ(v̂)−ûd(v̂)−c(ξ(v̂))
)

︸ ︷︷ ︸

=τ(v̂)







f (v̂)+µ(v̂)ξ(v̂).

Following the standard solution procedure for such mechanism design problems,

we employ Pontryagin’s Maximum Principle, which yields the following necessary

conditions for the optimal tax.20

FOC on control: ∂H
∂ξ =

[
−E[b|v̂] · α(v̂) + λ

(
v̂ − c′(·)

)]
f (v̂) + µ (v̂)

!
= 0, (FOCq)

FOC on state: ∂H
∂ûd = [α(v̂)− λ] f (v̂)

!
= −µ′ (v̂) , (FOCu)

Transversality cond.: µ (v̂) · ûd (v̂) = µ
(
v̂
)
· ûd

(
v̂
)
= 0. (TVC)

20In addition, sufficiency is given if the control region is convex and the Hamiltonian is concave in
(ξ, ûd) for every v̂. Both conditions are satisfied in our setup.
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The consumer’s first-order condition characterizing optimal consumption qd is

given by

∂ud(q, t, v̂)

∂q

∣
∣
∣
∣
q=qd

= v̂ − c′(qd)− t′(qd)
!
= 0 ⇔ c′(qd) = v̂ − t′(qd). (11)

The second order condition is satisfied if c′′(q)+ t′′(q) ≥ 0 for all q ∈ Q. Since the costs

are convex in q by assumption, this condition is satisfied if the optimal tax schedule is

convex in q as well. We find that convex optimal tax schedules are optimal for many

behavioral biases (see discussion after Proposition 4). More generally, this condition

also holds if the optimal tax schedule is concave. In that case, the cost function may

not be ªtoo concaveº in the sense that c′′(q) + t′′(q) ≥ 0 holds.

In our setting, we abstract from participation constraints. Hence, we can w.l.o.g.

assume that û (v̂) = u > 0 and û
(
v̂
)
≥ u, so that the transversality condition im-

mediately implies µ (v̂) = 0 and µ
(
v̂
)
= 0. Integrating Equation (FOCu) and using

µ
(
v̂
)
= 0, we obtain

∫ v̂

v̂
−µ′(n)dn = −µ

(
v̂
)
− [−µ (v̂)] = µ (v̂)

!
=
∫ v̂

v̂
[α(m)− λ] f (m)dm. (12)

Using the Equations (11) and (12), we rearrange Equation (FOCq), to obtain the result:

λ
(
v̂ − c′(·)

) !
= −

µ (v̂)

f (v̂)
+ E[b|v̂] · α(v̂)

(11)
⇔ t′(q) = −

µ
(
v̂q

)

λ f (v̂q)
+ E[b|v̂q] ·

α(v̂q)

λ

(12)
⇔ t′(q) =

∫ v̂
v̂q
[1 − ĝ(m)] f (m)dm

f (v̂q)
+ E[b|v̂q] · ĝ(v̂q).

The average marginal social welfare weight for consumers in the upper part of the

distribution (in comparison to v̂) is defined as:

Ĝ(v̂) :=

∫ v̂
v̂ ĝ(m)dF(m)

1 − F(v̂)
= E[g(θ)|θ ≥ v̂]. (13)

Using this we get

t′(qv̂) = ĝ(v̂)E [b|v̂] +

∫ v̂
v̂ [1 − ĝ(n)] f (n)dn

f (v̂)

= ĝ(v̂)E [b|v̂] +

∫ v̂
v̂ f (n)dn −

∫ v̂
v̂ ĝ(n) f (n)dn

f (v̂)
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(13)
= ĝ(v̂)E [b|v̂] +

[1 − F(v̂)]− Ĝ(v̂) [1 − F(v̂)]

f (v̂)

= ĝ(v̂)E [b|v̂] +
[1 − F(v̂)]

[
1 − Ĝ(v̂)

]

f (v̂)

A.A.2 Equation (3) in Attribute Level q (Perturbation Approach)

The perturbation approach uses insights from a local perturbation of the tax sched-

ule to derive the optimal tax. In particular, it examines a change in the slope of the

consumer’s budget set in a small band (q, q + dq) from 1 − c′(q)− t′(q) to 1 − c′(q)−

t′(q) − dτ. Such a change has four effects on welfare. The mechanical effect repre-

sents an increase in collected tax money, since all consumers with consumption levels

higher than q + dq are affected by the increased tax rate. This effect is captured by

dτdq [1 − H(q)] .

The consumer welfare effect captures the social value of the decrease in consump-

tion of the numeraire due to the local tax perturbation:

−dτdq [1 − H(q)] G(q).

Since we abstract from income effects, there is no change of the consumption of q for

these consumers. This is different for the consumers inside the small band (q, q + dq).

Here, relative prices are changed and thus consumers change their consumption of

the attribute level by

δq =
dq

d (c′ + t′)
dτ = −e

q

c′ + t′
dτ. (14)

where the elasticity is defined as

e := −
dq

d (t′ + c′)

t′ + c′

q
. (15)

We define the elasticity at the net price t′ + c′, since the slope of the consumer’s budget

constraint is determined by t′ + c′.

The fiscal externality captures the decrease in collected taxes

δqt′(q)h(q)dq,
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while the bias correction effect

−g(q)δqE [b|q] h(q)dq

captures the change in welfare due to the induced change in consumer utility, which

is caused by the potential correction of an internality.

In optimum, a local perturbation of the tax may not change social welfare. Hence,

the four effects have to sum to zero, so that

0 = dτdq [1 − H(q)] [1 − G(q)] + δq
[
t′(q)− E [b|q] g(q)

]
h(q)dq

⇔ t′(q) = g(q)E [b|q]−
dτ [1 − H(q)] [1 − G(q)]

δqh(q)

(14)
= g(q)E [b|q]−

dτ [1 − H(q)] [1 − G(q)]

−e(q) q
t′(q)+c′(q)

dτh(q)

= g(q)E [b|q] +
1 − G(q)

e(q)a(q)

(
t′(q) + c′(q)

)
.

A.A.3 Equivalence of Equations (2) and (3)

We first linearize the budget constraint of the consumer in the tax so that, using the

virtual income R, it can be rewritten as z = R − c(q)− τq. Then, the decision utility is

given by u = v̂q + R − c(q)− τq.

The goal is now to write the change of consumption q in type v̂ using elasticity e,

which is the elasticity of q with respect to net-price τ + c′. The first-order condition of

the consumer with respect to consumption gives

0
!
= v̂ − τ − c′(q). (16)

Applying the implicit function theorem twice to (16) yields

dq

dv̂
= −

1

−c′′(q)
=

1

c′′(q)

dq

d (τ + c′)
= −

−1

−c′′(q)
= −

1

c′′(q)

⇒
dq

dv̂
= −

dq

d (τ + c′)
. (17)

We use the above results and the definition of the elasticity from (15):

e = −
dq

d (τ + c′)

τ + c′

q

6



(17)
=

dq

dv̂

τ + c′

q

⇔
dq

dv̂
=

qe

τ + c′
. (18)

For density h(q) the following must hold

h(qv̂)dqv̂ = f (v̂)dv̂

⇔ h(qv̂)
dq(v̂)

dv̂
= f (v̂)

(18)
⇔ h(qv̂)

qe

t′ + c′
= f (v̂). (19)

The average marginal social welfare weight for consumers in the upper part of the

distribution (in comparison to q) can be rewritten using a change of variables (Ch.o.V.):

Ĝ(v̂) :=

∫ v̂
v̂ ĝ(m)dF(m)

1 − F(v̂)
Ch.o.V
=

∫ q
qv̂

g(m)dH(qm)

1 − H(qv̂)
=: G(qv̂). (20)

The thinness of the top tail (individuals with consumption above q in relation to

those at q) is given by

a(q) :=
h(q)q

1 − H(q)
. (21)

Using the above results we get

t′(qv̂) = ĝ(v̂)E [b|v̂] +
[1 − F(v̂)]

[
1 − Ĝ(v̂)

]

f (v̂)

(19),C.o.V.
= g(q)E [b|q] +

[1 − H(q)] [1 − G(q)]

h(q) qe(q)
t′(q)+c′(q)

= g(q)E [b|q] +
(t′(q) + c′(q)) [1 − H(q)] [1 − G(q)]

h(q)qe(q)

⇔ t′(q)
(21)
= g(q)E [b|q] +

1 − G(q)

a(q)e(q)

(
t′(q) + c′(q)

)
.

A.B Derivation of the Optimal Linear Tax

The policy maker’s problem of setting the optimal linear tax can be written as

max
t∈R

∫

v

∫

b
α(v, b)un(qd, t, v)dFb(b|v)dFv(v)+λ

(∫

v

∫

b
t · qddFb(b|v)dFv(v)− B

)

=: V(t).
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We evaluate the derivative with respect to the linear tax t:

∂V(t)

∂t
=
∫

v

∫

b
α(v,b)

[

−qd+
(
v−t−c′(·)

)∂qd

∂t

]

dFb(b|v)dFv(v)+λ
∫

v

∫

b

[

qd+t·
∂qd

∂t

]

dFb(b|v)dFv(v)

=
∫

v

∫

b

[

α(v,b)
(
v−c′(·)

)∂qd

∂t
−(α(v,b)−λ)(qd+t

∂qd

∂t
)

]

dFb(b|v)dFv(v).

The individually optimal consumption is again characterized by Equation (11), i.e.,

c′(·) = v̂ − t′(q) = (v + b)− t, where the last equality holds since t is linear. Thus,

∂V

∂t
=
∫

v

∫

b

[

α(v, b)(t − b)
∂qd

∂t
− (α(v, b)− λ)(qd + t

∂qd

∂t
)

]

dFb(b|v)dFv(v)

=
∫

v

∫

b

[

(λt − α(v, b)b)
∂qd

∂t
− (α(v, b)− λ)qd

]

dFb(b|v)dFv(v).

Using that t is constant, we can rewrite the equation as follows:

∂V

∂t
= λt

∂ Åqd

∂t
−
∫

v

∫

b

[

α(v, b)b
∂qd

∂t
+ (α(v, b)− λ)qd

]

dFb(b|v)dFv(v),

where the change in average demand Åqd in response to a tax increase is given by
∂ Åqd

∂t =
∫

v

∫

b

[
∂qd

∂t

]

dFb(b|v)dFv(v). The optimal tax t∗ is given by ∂V
∂t |t=t∗

!
= 0, which gives:

∂V

∂t
= t

∂ Åqd

∂t
−
∫

v

∫

b

[

ĝ(v, b)b
∂qd

∂t
− (1 − ĝ(v, b))qd

]

dFb(b|v)dFv(v) = 0

Abstracting from redistributive motives (ĝ(v, b) = 1 for all (v, b)) implies

t∗ =
∫

v

∫

b
b

[
∂qd

∂t
/

∂ Åqd

∂t

]

dFb(b|v)dFv(v), (22)

where
∂qd

∂t /
∂ Åqd

∂t denotes the relative responsiveness of a consumer type (v, b), i.e., the

change in demand for that consumer type in response to a tax increase, relative to

change in total demand.

If c′′′(·) = 0, the optimal linear tax simplifies to t∗ = E[b]. To see this, differentiate

Equation (11) with respect to t, which yields
∂qd

∂t = − 1
c′′(qd)

. This term is constant if

c′′′(·) = 0, so that ∂qd/∂t = ∂ Åqd/∂t. Hence, the optimal linear tax is t∗ = E[b].
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A.C Proof of Proposition 2: Condition for Implementability

Definition 2 (Internality Tax Implementability). The allocation function ξ :
[
v̂, v̂
]
→

Q is internality-tax implementable if there exists a tax function τ :
[
v̂, v̂
]
→ R such that

{
(ξ(v̂), τ(v̂))|v̂ ∈

[
v̂, v̂
]}

satisfy incentive compatibility according to

ud(ξ(v̂), τ(v̂)|v̂) ≥ ud(ξ(ṽ), τ(ṽ)|v̂) ∀v̂, ṽ ∈
[
v̂, v̂
]

.

Implementability hinges on two necessary conditions, which concern the consumer

preferences or directly stem from them. First, the consumer’s utility function must

satisfy a single-crossing condition. Second, ξ must be monotonic in v̂. Since, in our

setting, the single-crossing condition is satisfied via ∂
(

ud
q/ud

t

)

/∂v̂ < 0, a necessary

condition for implementability is that the allocation is non-decreasing in perceived

types, i.e., ∂ξ/∂v̂ ≥ 0 (Proof: See Appendix A.C.1).

Implementability of an incentive compatible mechanism additionally hinges on

conditions, which stem from the policy maker’s preferences. In our setting, these involve

(paternalistic) corrective and redistributive motives. In a setting without corrective

motives, a sufficient condition for this requirement involves the hazard rate of F, that

is, f (v̂)/(1 − F(v̂)), which is a measure of the thinness of the tail of the distribution.

For our setting, Proposition 2 shows that the condition is more restrictive involving

terms that stem from the corrective motive (Proof: See Appendix A.C.2).

A.C.1 Proof: Single-Crossing and Monotonicity

Incentive compatibility requires

v̂ = arg max
ṽ

ud (ξ(ṽ), τ(ṽ), v̂) ∀ṽ ∈ V̂

The first-order condition implies

∂ud (ξ(ṽ), τ(ṽ), v̂)

∂ṽ

∣
∣
∣
∣
ṽ=v̂

=:
∂ud (ṽ, v̂)

∂ṽ

∣
∣
∣
∣
ṽ=v̂

= 0

⇔
∂ud (ṽ, v̂)

∂ξ
·

∂ξ(ṽ)

∂ṽ
+

∂ud (ṽ, v̂)

∂τ
·

∂τ(ṽ)

∂ṽ
= 0

⇔
∂τ(ṽ)

∂ṽ
= −

∂ud (ṽ, v̂) /∂ξ

∂ud (ṽ, v̂) /∂τ
·

∂ξ(ṽ)

∂ṽ
. (23)

Differentiating the first-order condition with respect to v̂ yields

∂2ud (ṽ, v̂)

∂ṽ2

∣
∣
∣
∣
ṽ=v̂

+
∂2ud (ṽ, v̂)

∂ṽ∂v̂

∣
∣
∣
∣
ṽ=v̂

= 0. (24)
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The second-order condition implies that

∂2ud (ṽ, v̂)

∂ṽ2

∣
∣
∣
∣
ṽ=v̂

≤ 0. (25)

Equations (25) and (24) imply

∂ud (ṽ, v̂)

∂ṽ∂v̂

∣
∣
∣
∣
ṽ=v̂

≥ 0

⇔
∂
(

∂ud(ṽ,v̂)
∂ξ

)

∂v̂
·

∂ξ(ṽ)

∂ṽ
+

∂
(

∂ud(ṽ,v̂)
∂τ

)

∂v̂
·

∂τ(ṽ)

∂ṽ
≥ 0

(23)
⇔

∂
(

∂ud

∂ξ

)

∂v̂
·

∂ξ(ṽ)

∂ṽ
−

∂
(

∂ud

∂τ

)

∂v̂
·

∂ud/∂ξ

∂ud/∂τ
·

∂ξ(ṽ)

∂ṽ
≥ 0

⇔

∂
(

∂ud

∂ξ

)

∂v̂ ∂ud/∂τ −
∂
(

∂ud

∂τ

)

∂v̂ · ∂ud/∂ξ

∂ud/∂τ
·

∂ξ(ṽ)

∂ṽ
≥ 0

⇔

∂
(

∂ud

∂ξ

)

∂v̂ ∂ud/∂τ −
∂
(

∂ud

∂τ

)

∂v̂ · ∂ud/∂ξ

(∂ud/∂τ)
2

·
∂ud

∂τ
·

∂ξ(ṽ)

∂ṽ
≥ 0

⇔
∂
(

∂ud/∂ξ
∂ud/∂τ

)

∂v̂
·

∂ud

∂τ
·

∂ξ(ṽ)

∂ṽ
≥ 0,

where the second-but-last step follows from the quotient rule. Since we know that

∂ud

∂τ < 0 and via single crossing
∂

(

∂ud/∂ξ

∂ud/∂τ

)

∂v̂ =
∂
(

v̂−c′−t′

−1

)

∂v̂ = −1 < 0, it follows that we

need monotonicity of the form ∂ξ(ṽ)
∂ṽ ≥ 0.

A.C.2 Proof: Internality Tax Implementability

Inserting the optimal smooth tax from Proposition 1, the consumer’s first-order con-

dition can be rewritten as

c′[ξ(v̂)]
!
= v̂ − ĝ(v̂)E[b|v̂]− (1 − Ĝ(v̂)) 1−F(v̂)

f (v̂)
︸ ︷︷ ︸

=:ϕ(v̂)

. (26)

An incentive compatible mechanism must guarantee that ξ is non-decreasing in v̂ (see

Appendix A.C.1). Since c is convex, ξ is non-decreasing in v̂ if and only if the left-

hand side of Equation (26) is non-decreasing in v̂. Accordingly, the right-hand side of

Equation (26) must be non-decreasing in v̂ as well, which implies

1 − ∂ĝ(v̂)
∂v̂ E[b|v̂]− ∂E[b|v̂]

∂v̂ ĝ(v̂)− ∂[(1−Ĝ(v̂))·({1−F(v̂)}/ f (v̂))]
∂v̂ ≥ 0. (27)
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A.D Proof of Proposition 3: Bunching

In this section, we show that a failure of Internality Tax implementability leads to

bunching and discuss how bunching at the top or at the bottom is equivalent to a

ban for high or low attribute levels. To determine the optimal policy when bunching

occurs, we apply the approach by Guesnerie and Laffont (1984) to conduct ªironingº

using optimal control theory.

Before we present the formal method of ironing, we illustrate the intuition of this

procedure and explain why it implies different forms of standards (uniform, maxi-

mum, and minimum). For the ease of exposition we abstract from redistributive mo-

tives (g = 1 = G). Suppose the smooth tax derived in Proposition 1 implies that

the allocation rule ξ is decreasing in the interval [v̂h, v̂l ], where v̂h denotes the level of

perceived valuation that leads to a higher ξ, while v̂l leads to a lower ξ (v̂h
< v̂l , but

ξ(v̂h) > ξ(v̂l)). The goal of ironing is to determine over which interval [a, b] of the

type space bunching will take place.

Recall that an allocation rule that decreases in v̂ implies a fundamental misalign-

ment of preferences violating the condition in Proposition 2: the policy maker would

like to allocate a lower allocation level to a consumer with a higher perceived valua-

tion. However, incentive compatibility requires a non-decreasing allocation rule (see

Appendix A.C.1): a consumer will not reveal a higher perceived valuation, if he ob-

tains a lower attribute level than a consumer with a lower perceived valuation.

To ensure incentive compatibility, the policy maker resorts to bunching and assigns

the same product attribute ξ∗ = ξ̂ to a subset of consumers. Suppose to the contrary

that the implemented allocation rule ξ were partly increasing in the interval [v̂h, v̂l ].

Then, the welfare of types that underconsume compared to ξ can be increased by

increasing the allocation, while the welfare of types that overconsume can be increased

by decreasing the allocation. This is true up to the point where the consumption of all

types v̂ ∈ [a, b] is equal to ξ̂.

The standard ξ̂ is set such that it minimizes the loss in welfare compared to the

solution candidate ξ. Intuitively, the standard ξ̂ lies in between the extremes of ξ l and

ξh so that some consumers overconsume compared to candidate ξ and some under-

consume. If all consumers underconsume, i.e., ξ̂ = ξ l , then increasing the standard

marginally would raise the welfare of all consumers that still underconsume after the

increase, while it would only decrease the welfare of the consumers who overconsume

after the increase, that is, for types with an ideal consumption ξ = ξ l . An analogous

statement holds for the case when all consumers overconsume, i.e., ξ̂ = ξh.

The exact procedure of determining the types that over- or underconsume com-

pared to ξ is described below for the general case of interior bunching, which sub-
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(a) Interior bunching
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(b) Bunching at the bottom: Banning low attribute levels

Figure 1: Ironing yields the optimal bunching regions

sumes all cases relevant to our scenario (uniform, minimum and maximum stan-

dards). Figure 1 b) visualizes the specific case of minimum standards, i.e., bunching

at the bottom.

We now present the formal method of ironing. Bunching occurs if ξ (or equiva-

lently, the term ϕ(v̂) as defined in Equation (26)) is decreasing over an interval [v̂h, v̂l ] ⊆

[v̂, v̂]. Let ξ denote the non-ironed ªsolution candidateº and let ξ∗ denote the correct

solution involving ironing. Since we cannot guarantee that the allocation is strictly

increasing, write

ν(v̂) := ∂ξ
∂v̂ ≥ 0. (28)

We now have a control problem with an inequality constraint on the control ν. The

Hamiltonian H(v̂, ξ, ν, δ) of the general optimization problem without implicitly as-

suming that the incentive constraints hold, can be written as

H(·) =







α(v̂) ·
(

ûd(v̂)− E[b|v̂]ξ(v̂)
)

︸ ︷︷ ︸

=E[ûn(v̂,b)|v̂]

+λ
(

m + v̂ξ(v̂)− ûd(v̂)− c(ξ(v̂))
)

︸ ︷︷ ︸

=τ(v̂)







f (v̂) + δ(v̂)ν(v̂),

where δ denotes the multiplier for the constraint given by Inequality (28). The first-

order condition on the state ξ yields

−δ′(v̂)

λ

!
=
[
v̂ − ĝ(v̂)E[b|v̂]− c′(ξ∗(v̂))

]
f (v̂). (29)
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Without redistributive motives (Ĝ ≡ 1), the term ϕ(v̂) as defined in Equation (26) is

given by ϕ(v̂) = v̂− ĝ(v̂)E[b|v̂]. For the ease of exposition, we discuss the case without

redistributive motives. Thus, Equation (29) can be rewritten as

−δ′(v̂)

λ

!
=
[
ϕ(v̂)− c′(ξ∗(v̂))

]
f (v̂). (30)

For simplicity, let us assume there is one unique interval [a, b] of bunching.21 Then, in-

tegrating (30) between a and b, and using the transversality conditions δ(a) = δ(b) =

0, which hold since the monotonicity constraint is non-binding at the boundaries,

yields

∫ b

a

[
ϕ(θ)− c′(ξ∗(θ))

]
f (θ)dθ

!
=

1

λ

∫ b

a
−δ′(θ) f (θ)dθ =

−δ(b) + δ(a)

λ
= 0, (31)

which implies that the average difference between the ϕ and the marginal costs (i.e.,

the average distortion of the "virtual surplus") is zero over the bunching interval.22

Equation (31) together with the fact that ξ∗(a) = ξ∗(b) = ξ(a) = ξ(b) characterizes

the allocation ξ∗(v̂) = ξ̂ given to types v̂ ∈ [a, b] in the optimal mechanism.

We now use the above characterization of the bunching region to determine its

boundaries a and b and the allocation ξ̂. The procedure is illustrated in Figure 1. We

first consider a case where the bunching region is in the middle of the range of v̂.

If a > v̂ and b < v̂, then there exists v̂l := arg min
v̂

ξ(v̂) s.t. v̂ ∈ [a, b] and v̂h :=

arg max
v̂

ξ(v̂) s.t. v̂ ∈ [a, b]. Denote ξh := ξ(v̂h) and ξ l := ξ(v̂l). Let κl denote the

inverse function of the increasing part of ξ defined on [v̂b, v̂h] with v̂b := min
v̂

v̂ s.t.

ξ(v̂) = ξ l . Analogously, κh denotes the inverse function of the increasing part of ξ

defined on [v̂l , v̂t] with v̂t := max
v̂

v̂ s.t. ξ(v̂) = ξh. For ξ̃ ∈ [ξh, ξ l ], define

∆(ξ̃) :=
∫ κh(ξ̃)

κl(ξ̃)

[
ϕ(θ)− c′(ξ̃)

]
f (θ)dθ. (32)

Since ξh
> ξ(v̂), ∀v̂ ∈ (v̂h, v̂t), it holds that ∆(ξh) < 0. Analogously, since ξ l

<

ξ(v̂), ∀v̂ ∈ (v̂b, v̂l), it holds that ∆(ξ l) > 0. Therefore, by the intermediate value

theorem, there must exists some ξ̂, such that ∆(ξ̂) = 0 as required by Equation (31).

Thus, a = κl(ξ̂) and b = κh(ξ̂). As a consequence, all individuals with v̂ ∈ [a, b] will

be assigned the same level of the product attribute ξ̂.

21The extension to a setting with several bunching regions is only subject to minor caveats. See Gues-
nerie and Laffont (1984) for details.

22Note that in a mechanism which optimally does not involve bunching, the difference between ϕ and
the marginal costs is zero at each point as can be seen in Equation (26).
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If a = v̂ (analogous reasoning applies for b = v̂), bunching occurs at the bottom

of the type distribution (see Panel b of Figure 1). In that case, we need to define and

evaluate

∆(ξ̃) :=
∫ κh(ξ̃)

v̂

[
ϕ(θ)− c′(ξ̃)

]
f (θ)dθ. (33)

As a consequence, all individuals with v̂ ∈ [v̂, b] will be assigned the same level of the

product attribute ξ̂. As bunching occurs at the bottom, this outcome corresponds to a

minimum standard, i.e., a ban of all realizations of the product attribute below ξ̂. The

rationale is equivalent for bunching at the top.

A.E Proof of Equation (5): First-Order Approximation

As a consequence of the Regression Conditional Expectation Function Theorem (e.g.,

Angrist and Pischke, 2009), the Minimum Mean Squared Error (MMSE) linear approx-

imation of the conditional expectation E [b|v̂] is given by:

Ê [b|v̂] = E(b|v̂ = µv̂) +
cov(b, v̂)

σ2
v̂

· [v̂ − µv̂] . (34)

Using that cov(b, v̂) = cov(b, v) + σ2
b , σ2

v̂ = σ2
v + σ2

b + 2 cov(b, v), and cov(b, v) = ρσvσb,

we obtain after rearranging:

Ê [b|v̂] = E [b|µv̂] +
ρ + (σb/σv)

(σb/σv) + (σv/σb) + 2ρ
· [v̂ − µv̂] . (35)

The existence of the conditional expectation as a function of v̂ is guaranteed by the

Factorization Lemma and the Radon-Nikodym theorem.

In the bivariate normal case, (v, b) is jointly normal distributed with:

(v, b) ∼ N

([

µv

µb

]

,

[

σ2
v ρσvσb

ρσvσb σ2
b

])

. (36)

Hence, the perceived valuation v̂ = v + b has the following normal distribution

v̂ ∼ N
(
µv + µb, σ2

v + σ2
b + 2ρσvσb

)
=:
(
µv̂, σ2

v̂

)
. (37)

The conditional expectation E[b|v̂] of the bias can be calculated as

E [b|v̂] =
cov(b, v̂)

σ2
v̂

· v̂ +

[

µb −
cov(b, v̂)

σ2
v̂

· µv̂

]

= µb +
cov(b, v̂)

σ2
v̂

· [v̂ − µv̂] , (38)
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with cov(b, v̂) = cov(b, v) + σ2
b . Rearranging gives that

E [b|v̂] = µb +
ρ + (σb/σv)

(σb/σv) + (σv/σb) + 2ρ
· [v̂ − µv̂] . (39)

Hence, the approximation error R(v̂) equals zero for all v̂ if v and b follow a bivariate

normal distribution.

A.F Proof of Proposition 6: Prices Vs. Quantities

The proof proceeds in two steps. In a first step, we explore the welfare gains from non-

linear taxation relative to linear taxes and to standards. The corresponding results are

summarized in Proposition 8. In a second step, we then use these results to compare

linear taxes with standards. We analyze a setting in which the local bias heterogeneity

A is constant.

Proposition 8 (Welfare Gain from Non-Linear Taxation). The expected welfare gain of the

optimal non-linear tax relative to the optimal linear tax and the optimal standard is weakly

positive. It depends on the local bias heterogeneity A as follows:

a) The expected welfare gain over the optimal linear tax is zero when A = 0 and increases

in the absolute value of A;

b) The expected welfare gain over the optimal standard is zero when A ≥ 1 and decreases

in A.

We now provide the proof of Proposition 8. We analyze the impact of a change in

the local bias heterogeneity A on expected welfare under the optimal non-linear tax,

the optimal linear tax, and the optimal standard. To separate the impact of changes in

A from changes in the population of consumers, we hold the distribution of v̂ as well

as the first moments of v and b constant. In addition, we consider a scenario in which

redistribution does not matter, i.e., ĝ(v̂) = 1.

To evaluate welfare implications of a change in A, we need to evaluate the deriva-

tive with respect to A of the expected equilibrium normative utility (net of taxes) for

consumers with v̂ (see also the Hamiltonian of the policy maker’s problem):

∫

v̂
ûn(A)dF(v̂) =

∫

v̂
E[v|v̂](A)qM(A)− c

(

qM(A)
)

dF(v̂), (40)

where qM denotes the allocation under the non-linear, price (linear tax) or standard

(consumption ban) mechanism, qM(A) ∈ {ξ(A), qP(A), qS}, and ûn(A, qM) denotes

the equilibrium normative utility in the respective mechanism.
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We first consider the welfare implications of a change in A under the optimal non-

linear tax. We have that:

∂ûn(A, ξ)

∂A
=

∂E[v|v̂]

∂A
ξ +

∂ξ

∂A
{E[v|v̂]− c′(ξ)
︸ ︷︷ ︸

=0

}.

By an envelope theorem argument, the second summand is zero since E[v|v̂] = v̂ −

E[b|v̂] = c′(ξ) due to optimal consumer behavior (see Equation (11)).

The optimal standard qS can be calculated by solving the following utility maxi-

mization problem: max
q∈R

∫

v un(q, v)dFv(v). Inserting un(q, v) = m + vx − c(q) and solv-

ing for the maximum yields the following implicit solution: c′(qS) = E [v]. Hence, qS

does not depend on A and we obtain:

∂ûn(A, qS)

∂A
=

∂E[v|v̂]

∂A
qS.

As shown in Section A.B, the optimal linear tax is given by the following expres-

sion: t∗(A) =
∫

v̂ E(b|v̂)(A)
[

∂qd

∂t /
∂ Åqd

∂t

]

dF(v̂). From the first order condition of con-

sumer maximization, we know that c′(qd) = v̂ − t∗(A) = E[v|v̂] + E[b|v̂] − t∗(A).

Using this equation, we obtain:

∂ûn(A, qP)

∂A
=

∂E[v|v̂]

∂A
qP +

∂qP

∂A
{E[v|v̂]− c′(qP)} =

∂E[v|v̂]

∂A
qP +

∂qP

∂A
{E[b|v̂]− t∗(A)}.

The second summand vanishes when taking the integral over all types, which can be

seen as follows:

∫

v̂

∂qP

∂A
{E[b|v̂]− t∗(A)}dF(v̂) =

∂t∗(A)

∂A

∫

v̂

∂qP

∂t∗
{E[b|v̂]− t∗(A)}dF(v̂)

=
∂t∗(A)

∂A

(∫

v̂

∂qP

∂t∗
E[b|v̂]dF(v̂)− t∗(A)

∫

v̂

∂qP

∂t∗
dF(v̂)

)

= 0,

where the last equality follows from the definition of t∗(A) and the fact that
∂ Åqd

∂t∗ =
∫

v̂
∂qP

∂t∗ dF(v̂). Hence, we obtain:

∂ûn(A, qP)

∂A
=

∂E[v|v̂]

∂A
qP.

We now evaluate how a change in A changes the relative advantage of non-linear

taxation relative to a standard in terms of expected welfare:

∂∆un
NL,S

∂A
=
∫

∂E[v|v̂]

∂A

(

ξ − qS
)

dF(v̂),
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where ∆un
NL,S :=

∫
ûn(A, ξ)− ûn(A, qS)dF(v̂). Using ∂E[v|v̂]

∂A = (µv̂ − v̂), we obtain:

∂∆un
NL,S

∂A
=
∫

(µv̂ − v̂)
[

ξ(v̂)− qS
]

dF(v̂)

= µv̂

∫

ξ(v̂)dF(v̂)−
∫

v̂ξ(v̂)dF(v̂)− qS

[

µv̂ −
∫

v̂dF(v̂)

]

= E[v̂] · E [ξ(v̂)]− E [v̂ · ξ(v̂)]− 0

= E[v̂] · E [ξ(v̂)]− E[v̂] · E [ξ(v̂)]− cov (v̂, ξ(v̂)) ≤ 0,

where the last inequality holds since ξ is increasing in v̂ for an incentive compatible

mechanism, so that cov (v̂, ξ(v̂)) is positive.

The relative advantage in terms of expected welfare of non-linear taxation relative

to the optimal linear tax is given by:

∂∆un
NL,P

∂A
=
∫

∂E[v|v̂]

∂A

(

ξ(v̂)− qP(v̂)
)

dFv̂.

We approximate ξ − qP by a first-order Taylor approximation in the marginal tax rate

t′ around t′ = t∗, which yields:

ξ − qP ≈
dqP

dt

∣
∣
∣
∣
t′=t∗

[
t′(v̂)− t∗

]
,

where t′(v̂) = E[b|v̂] is the optimal non-linear tax rate from Proposition 1 and t∗ is the

optimal linear tax rate from Equation (22).

Using that E[b|v̂] = E[b|µv̂] + A(v̂ − µv̂), rearranging, and using W(v̂) := dq(v̂)/dt
d Åq/dt

with
d Åq
dt :=

∫

v̂
dq(v̂)

dt dF(v̂) to denote the relative responsiveness of a consumer type v̂

we obtain:

ξ − qP ≈
dqP

dt

∣
∣
∣
∣
t′=t∗

A

(

v̂ −
∫

v̂W(v̂)dF(v̂)

)

.

Denoting vP =
∫

v̂W(v̂)dF(v̂), we have:

∂∆ue
NL,P

∂A
= A

∫

(µv̂ − v̂)(v̂ − vP)
dqP

dt

∣
∣
∣
∣
t′=t∗

dF(v̂)

= A
∫

(µv̂v̂ − µv̂vP − v̂2 + v̂vP)
dqP

dt

∣
∣
∣
∣
t′=t∗

dF(v̂)

= A

(

(µv̂ + vP)
∫

v̂
dqP

dt

∣
∣
∣
∣
t′=t∗

dF(v̂)− (µv̂vP)
∫

dqP

dt

∣
∣
∣
∣
t′=t∗

dF(v̂)−
∫

v̂2 dqP

dt

∣
∣
∣
∣
t′=t∗

dF(v̂)

)

= A
d ÅqP

dt

(

(µv̂ + vP)
∫

v̂W(v̂)dF(v̂)− µv̂vP −
∫

v̂2W(v̂)dF(v̂)

)
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= A
d ÅqP

dt

(

(vP)2 −
∫

v̂2W(v̂)dF(v̂)

)

= A
d ÅqP

dt
︸ ︷︷ ︸

≤0 if A≥0

((∫

v̂W(v̂)dF(v̂)

)2

−
∫

v̂2W(v̂)dF(v̂)

)

︸ ︷︷ ︸

≤0

≥ 0,

where
d ÅqP

dt =
∫ dqP

dt

∣
∣
t′=t∗

dF(v̂). The fact that the third factor is non-positive follows

from Jensen’s inequality because d(v̂) = W(v̂) f (v̂) satisfies the properties of a density

function, with d(v̂) ≥ 0 ∀ v̂ and
∫

d(v̂)dv̂ =
∫

W(v̂)dF(v̂) = 1.

Comparison of Linear Price Instruments with Standards

In Proposition 8, we have shown that a linear price instrument is welfare-optimal for

A = 0, a standard is optimal for A = 1, and the advantage of a standard compared to

a linear price instrument increases in A. Hence, the existence of Â from Proposition 6

is guaranteed by applying the intermediate value theorem.

To complete the proof of Proposition 6, we need to show that the welfare advan-

tage of a price instrument over a quantity instrument becomes more pronounced as A

decreases below zero. For that purpose, it is sufficient to show that the difference in the

expected equilibrium normative utility between the linear tax and the quantity regu-

lation, ∂∆un
P,S/∂A =

∫
ûn(A, qP)− ûn(A, qS)dF(v̂), decreases in A. Let Åv be the v̂ such

that qP (v̂) = qS. We approximate the demand function by a first-order Taylor approx-

imation at Åv, which yields qP (v̂) ≈ qP ( Åv) +
∂qP

∂v̂

∣
∣

Åv
(v̂ − Åv) . As the first-order conditions

of utility maximization imply v̂− t∗ = c′
(
qP (v̂)

)
for linear taxation and c′

(
qS
)
= E [v]

for quantity regulation, we have that Åv = E [v] + t∗, where t∗ =
∫

v̂ E [b|v̂]W (v̂) dF (v̂).

We can now show that the welfare difference between prices and quantities decreases

in A, since

∂∆un
P,S

∂A
=
∫

v̂

∂E [v|v̂]

∂A

[

qP (v̂)− qS
]

dF (v̂)

=
∫

v̂
(µv̂ − v̂)

[

qP (v̂)− qS
]

dF (v̂)

= −
∂qP

∂v̂

∣
∣
v̂= Åv

∫

v̂
(µv̂ − v̂) (v̂ − Åv) dF (v̂)

= −
∂qP

∂v̂

∣
∣
v̂= Åv

∫

v̂
(µv̂ − v̂) [(v − E [v]) (b − t∗)] dF (v̂)

= −
∂qP

∂v̂

∣
∣
v̂= Åv

︸ ︷︷ ︸

<0

[
E
[
v̂2
]
− µ2

v̂

]

︸ ︷︷ ︸

>0

< 0,
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where the evaluation of the second factor in the last line follows from Jensen’s inequal-

ity.

A.G Proof of Proposition 7: Minimum and Maximum Standards

The proof proceeds as follows. From Proposition 3, we know that ∂E[v|v̂]/∂v̂ < 0 for

some v̂ implies that a policy maker will use bunching as part of the optimal policy.

Furthermore, we know from Appendix A.D that bans are part of the optimal policy

mix if bunching occurs at the top or the bottom of the perceived valuation distribution.

We use a second-order Taylor approximation to approximate E[v|v̂] as a function of v̂

and v̂2. This allows to derive the conditions under which mixed policies optimally

involve bans for high or low levels of the product attribute in terms of higher-order

moments of the (joint) distributions of the random variables v, b, and v̂.

The second-order Taylor approximation of E [v|v̂] is:

Ê [v|v̂] = c0 + c1v̂ + c2v̂2. (41)

Bunching occurs whenever ∂E [v|v̂] /∂v̂ = c1 + 2c2v̂ ≤ 0 for some v̂. For the purpose of

this proof, we are interested in bunching at the top and at the bottom. With v̂ ∈ [0, ∞),

we have:

1. Bunching at the Top if c1 > 0 and c2 < 0.

2. Bunching at the Bottom if c1 < 0 and c2 > 0.

Otherwise, bunching takes place over the entire support of v̂ (c1 < 0, c2 ≤ 0) or not at

all (c1 > 0, c2 ≥ 0). We proceed by first calculating c1 and c2. In a subsequent step, we

derive sufficient conditions for bunching at the top and at the bottom.

The Frisch-Waugh-Lovell Theorem demonstrates that cr for r ∈ {1, 2}, as defined

by Equation (41), can be calculated as

cr =
cov (ϵr, ϵ̂r)

var (ϵ̂r)
, (42)

where ϵ̂r is the ªresidualº of v̂r after regressing it on all covariates except v̂r, and ϵr is

the ªresidualº of v after regressing it on all covariates except v̂r.

We first calculate c1. Regressing v̂ on v̂2 and a constant yields:

v̂ = d1 + d2v̂2 + ϵ̂1

= E
[
v̂|v̂2 = 0

]
+

cov
(
v̂, v̂2

)

var (v̂2)
v̂2 + ϵ̂1.
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The residual ϵ̂1 is then given by:

ϵ̂1 = v̂ −

{

E
[
v̂|v̂2 = 0

]
+

cov
(
v̂, v̂2

)

var (v̂2)
v̂2

}

.

Regressing v on v̂2 and a constant yields:

v = e0 + e1v̂2 + ϵ1

= E
[
v|v̂2 = 0

]
+

cov
(
v, v̂2

)

var (v̂2)
v̂2 + ϵ1

The residual ϵ1 is then given by:

ϵ1 = v −

{

E
[
v|v̂2 = 0

]
+

cov
(
v, v̂2

)

var (v̂2)
v̂2

}

.

Therefore, by Equation (42), the coefficient c1 is given by:

c1 =
cov (ϵ1, ϵ̂1)

var (ϵ̂1)

=

cov

(

v −

{

E
[
v|v̂2 = 0

]
+

cov(v,v̂2)
var(v̂2)

v̂2

}

, v̂ −

{

E
[
v̂|v̂2 = 0

]
+

cov(v̂,v̂2)
var(v̂2)

v̂2

})

var (ϵ̂1)

=

cov

(

v, v̂ −
cov(v̂,v̂2)

var(v̂2)
v̂2

)

var (ϵ̂1)
+

cov

(

−
cov(v,v̂2)

var(v̂2)
v̂2, v̂ −

cov(v̂,v̂2)
var(v̂2)

v̂2

)

var (ϵ̂1)

=

cov

(

v, v̂ −
cov(v̂,v̂2)

var(v̂2)
v̂2

)

var (ϵ̂1)
−

cov(v̂,v̂2)
var(v̂2)

cov
(
v, v̂2

)

var (ϵ̂1)
+

cov(v̂,v̂2)cov(v,v̂2)
[var(v̂2)]

2 cov
(
v̂2, v̂2

)

var (ϵ̂1)

=

cov

(

v, v̂ −
cov(v̂,v̂2)

var(v̂2)
v̂2

)

var (ϵ̂1)
. (43)

Next, we calculate c2. Regressing v̂2 on v̂ and a constant yields:

v̂2 = d0 + d1v̂ + ϵ̂2

= E
[
v̂2|v̂ = 0

]
+

cov
(
v̂2, v̂

)

var (v̂)
v̂ + ϵ̂2.
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The residual ϵ̂2 is then given by:

ϵ̂2 = v̂2 −

{

E
[
v̂2|v̂ = 0

]
+

cov
(
v̂2, v̂

)

var (v̂)
v̂

}

.

Regressing v on v̂ and a constant yields:

v = d0 + d1v̂ + ϵ2

= E [v|v̂ = 0] +
cov (v, v̂)

var (v̂)
v̂ + ϵ2.

The residual ϵ2 is then given by:

ϵ2 = v −

{

E [v|v̂ = 0] +
cov (v, v̂)

var (v̂)
v̂

}

.

Therefore, by Equation (42), the coefficient c2 is given by:

c2 =
cov (ϵ2, ϵ̂2)

var (ϵ̂2)

=

cov

(

v −
{

E [v|v̂ = 0] + cov(v,v̂)
var(v̂)

v̂
}

, v̂2 −

{

E
[
v̂2|v̂ = 0

]
+

cov(v̂2,v̂)
var(v̂)

v̂

})

var (ϵ̂2)

=
cov

(
v, v̂2

)
− cov(v,v̂)

var(v̂)
cov

(
v̂2, v̂

)

var (ϵ̂2)
+

cov

(

− cov(v,v̂)
var(v̂)

v̂, v̂2 −
cov(v̂2,v̂)

var(v̂)
v̂

)

var (ϵ̂2)

=
cov

(
v, v̂2

)
− cov(v,v̂)

var(v̂)

[
cov

(
v̂2, v

)
+ cov

(
v̂2, b

)]

var (ϵ̂2)
+

− cov(v,v̂)
var(v̂)

cov
(
v̂, v̂2

)
+ cov (v, v̂)

cov(v̂2,v̂)
var(v̂)

var (ϵ̂2)

=
cov

(
v, v̂2

)
− cov(v,v̂)

var(v̂)

[
cov

(
v̂2, v

)
+ cov

(
v̂2, b

)]

var (ϵ̂2)
(44)

=
cov

(
v, v̂2

)
cov (b, v̂)− cov (v, v̂) cov

(
v̂2, b

)

var (v̂) var (ϵ̂2)

=
cov

(
v̂, v̂2

)
cov (b, v̂)− cov (v̂, v̂) cov

(
v̂2, b

)

var (v̂) var (ϵ̂2)

(∗)
=

[
2µv̂σ2

v̂ + sk(v̂)σ3
v̂

]
cov (b, v̂)− σ2

v̂ cov
(
v̂2, b

)

var (v̂) var (ϵ̂2)

=
σ2

v̂

=:K
︷ ︸︸ ︷
{
[2µv̂ + sk(v̂)σv̂] cov (b, v̂)− cov

(
v̂2, b

)}

var (v̂) var (ϵ̂2)
,
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where the denominator is always positive and (∗) follows from the fact that, for every

random variable Y, we have:23

cov
(
Y, Y2

)
= [sk(Y)σY + 2µY] σ2

Y. (45)

We now analyze the term K:

K
BG1969
= [2µv̂ + sk(v̂)σv̂] cov (b, v̂)−

[

2µv̂cov (v̂, b) + E
[

(v̂ − µv̂)
2 (b − µb)

]]

= sk(v̂)σv̂cov (b, v̂)− E
[

(v̂ − µv̂)
2 (b − µb)

]

= E

[(
v̂ − µv̂

σv̂

)3
]

σv̂E [(v̂ − µv̂) (b − µb)]− E
[

(v̂ − µv̂)
2 (b − µb)

]

=
E
[

(v̂ − µv̂)
3
]

E [(v̂ − µv̂) (b − µb)]

σ2
v̂

− E
[

(v̂ − µv̂)
2 (b − µb)

]

=
E
[

(v̂ − µv̂)
3
]

E [(v̂ − µv̂) (b − µb)]

σ2
v̂

− E
[

(v̂ − µv̂)
2 (b − µb)

]

= σ2
v̂ σb







E
[

(v̂ − µv̂)
3
]

E [(v̂ − µv̂) (b − µb)]

σ4
v̂ σb

−
E
[

(v̂ − µv̂)
2 (b − µb)

]

σ2
v̂ σb







= σ2
v̂ σb {sk (v̂) ρ (v̂, b)− cosk (v̂, b)} ,

where BG1969 refers to Bohrnstedt and Goldberger (1969). Hence, a sufficient (and

necessary) condition for c2 < 0 is:

c2 < 0 ⇐⇒ ρ (v̂, b) sk (v̂) < cosk (v̂, b) (46)

and a sufficient (and necessary) condition for c2 > 0 is:

c2 > 0 ⇐⇒ ρ (v̂, b) sk (v̂) > cosk (v̂, b) . (47)

23This can be seen as follows:

cov
(

Y, Y2
)

= E
(

Y3
)

− µY2 µY = E
(

Y3
)

− µY

[

E
(

Y2
)

− µ2
Y + µ2

Y

]

= E
(

Y3
)

− µYσ2
Y − µ3

Y

=

[
E
(
Y3
)
− µ3

Y − 3µYσ2
Y + 3µYσ2

Y

]
σ3

Y

σ3
Y

− µYσ2
Y = sk(Y)σ3

Y + 3µYσ2
Y − µYσ2

Y = sk(Y)σ3
Y + 2µYσ2

Y .
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Sufficient Conditions for Bunching at the Top

To obtain sufficient conditions for Bunching at the Top, we need to find sufficient

conditions for c1 > 0, given that c2 < 0. Using the results for c1 from Equation (43),

we obtain:

c1 > 0

⇔

cov

(

v, v̂ −
cov(v̂,v̂2)

var(v̂2)
v̂2

)

var (ϵ̂1)
> 0

⇔ cov (v, v̂)
︸ ︷︷ ︸

(1)

− cov
(
v, v̂2

)

︸ ︷︷ ︸

(2)

cov
(
v̂, v̂2

)

var (v̂2)
︸ ︷︷ ︸

(3)

> 0. (48)

Term (1) of Inequality (48) is positive by assumption because we restrict ourselves to

settings where partial bans become relevant (note that A < 1 from Proposition 5 is

equivalent to cov(v, v̂) > 0). A sufficient condition for Term (3) to be positive is that

the skewness is positive, which follows from:

cov
(
v̂, v̂2

)
> 0 ⇔ 2µv̂σ2

v̂ + sk(v̂)σ3
v̂ > 0

⇔ sk(v̂) > −
2µv̂

σv̂

⇐ sk(v̂) > 0 .

Next, we show that Inequality (48) holds under the assumptions made so far. When

cov
(
v, v̂2

)
≤ 0, the inequality holds because Term (1) and Term (3) are positive. When

cov
(
v, v̂2

)
> 0, we can derive an upper bound for Term (2) by rearranging Equation

(44):

c2 < 0 ⇐⇒ cov
(
v, v̂2

)
< cov (v, v̂)

cov
(
v̂2, v̂

)

var (v̂)
. (49)

Then, Inequality (48) holds if it holds after substituting the upper bound from Inequal-

ity (49) for Term (2):

cov (v, v̂)− cov (v, v̂)
cov

(
v̂2, v̂

)

var (v̂)

cov
(
v̂, v̂2

)

var (v̂2)
> 0

⇔cov (v, v̂)
(

1 − ρ2
v̂2,v̂

)

> 0,

where ρ2
v̂2,v̂

∈ (−1, 1) is the square of the correlation between v̂2 and v̂. As we consider

settings with cov(v, v̂) > 0, this inequality holds.
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To close the proof, note that sk(v̂) > 0 in combination with Equation (46) implies

that:

cosk (v̂, b)

sk (v̂)
> ρ (v̂, b) .

Hence, this condition and the condition that sk(v̂) > 0 are sufficient for Bunching at

the Top if v̂ ∈ [0, ∞) and cov(v, v̂) > 0.

Sufficient Conditions for Bunching at the Bottom

To obtain sufficient conditions for Bunching at the Bottom, we need to find sufficient

conditions for c1 < 0, given that c2 > 0. Using the results for c1 from Equation (48),

we obtain:

c1 < 0 ⇐⇒ cov (v, v̂)− cov
(
v, v̂2

) cov
(
v̂, v̂2

)

var (v̂2)
< 0. (50)

Using Equation (45), we obtain that

cov
(
v̂, v̂2

)
= [sk(v̂)σv̂ + 2µv̂] σ2

v̂ .

Furthermore,

cov
(
v, v̂2

)
= E

[
(v − µv)

(
v̂2 − µv̂2

)]

= E
(
vv̂2
)
− µv̂2 µv − µvE

(
v̂2
)
+ µvµv̂2

=

[
E
(
vv̂2
)
− µvE

(
v̂2
)
− 2E (vv̂) µv̂ + 2µ2

v̂µv + 2E (vv̂) µv̂ − 2µ2
v̂µv

]
σ2

v̂ σv

σ2
v̂ σv

(∗)
= cosk(v̂, v)σ2

v̂ σv + 2E (vv̂) µv̂ − 2µ2
v̂µv

= cosk(v̂, v)σ2
v̂ σv + 2µv̂ [E (vv̂)− µv̂µv + µv̂µv − µv̂µv]

= cosk(v̂, v)σ2
v̂ σv + 2µv̂cov (v, v̂)

= [cosk(v̂, v)σv̂ + 2µv̂ρ (v, v̂)] σv̂σv,

where in (∗) we use that cosk(v̂, v) = E
(
vv̂2
)
− 2E (vv̂) µv̂ − 2E

(
v̂2
)

µv + 2µ2
v̂µv. Hence,

we can rewrite Inequality (50) as follows

cov (v, v̂)− cov
(
v, v̂2

) cov
(
v̂, v̂2

)

var (v̂2)
< 0

⇔ cov (v, v̂)− [cosk(v̂, v)σv̂ + 2µv̂ρ (v, v̂)] σv̂σv
[sk(v̂)σv̂ + 2µv̂] σ2

v̂

var (v̂2)
< 0
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⇔ [cosk(v̂, v)σv̂ + 2µv̂ρ (v, v̂)] σv̂σv
[sk(v̂)σv̂ + 2µv̂] σ2

v̂

var (v̂2)
> cov (v, v̂)

⇔ [cosk(v̂, v)σv̂ + 2µv̂ρ (v, v̂)]
[sk(v̂)σv̂ + 2µv̂] σ2

v̂

var (v̂2)

(∗)
> ρ (v, v̂)

⇔

[
cosk(v̂, v)

ρ (v, v̂)
σv̂ + 2µv̂

]
[sk(v̂)σv̂ + 2µv̂] σ2

v̂

var (v̂2)
> 1

⇔

[
cosk(v̂, v)

ρ (v, v̂)
σv̂ + 2µv̂

]

[sk(v̂)σv̂ + 2µv̂] >
var

(
v̂2
)

σ2
v̂

⇔

[
cosk(v̂, v)

ρ (v, v̂)
σv̂ + 2µv̂

]

[sk(v̂)σv̂ + 2µv̂]−
σ2

v̂2

σ2
v̂

> 0

⇔

[
cosk(v̂, v)

ρ (v, v̂)
σv̂ + 2µv̂ +

σv̂2

σv̂

]

︸ ︷︷ ︸

(1)

[

sk(v̂)σv̂ + 2µv̂ −
σv̂2

σv̂

]

︸ ︷︷ ︸

(2)

+ σv̂2

[
cosk(v̂, v)

ρ (v, v̂)
− sk(v̂)

]

︸ ︷︷ ︸

(3)

> 0,

where in (∗) we use that cov (v, v̂) > 0. The last inequality holds if (1) < 0, (2) < 0,

and (3) > 0. Note that (3) > 0 follows from c2 > 0. Furthermore, (1) < 0 if:

cosk(v̂, v)

ρ (v, v̂)
< −2

µv̂

σv̂
−

σv̂2

σ2
v̂

=: k, (51)

where k < 0. From (3) > 0 and (1) < 0 it also follows that (2) < 0, which can be seen

as follows:

sk(v̂)
(3)>0
<

cosk(v̂, v)

ρ (v, v̂)

(1)<0
< −2

µv̂

σv̂
−

σv̂2

σ2
v̂

< −2
µv̂

σv̂
+

σv̂2

σ2
v̂

. (52)

To close the proof, note that sk(v̂) < 0 in combination with Equation (47) implies that:

cosk (v̂, b)

sk (v̂)
> ρ (v̂, b) .

Hence, this condition and the condition that sk(v̂) <
cosk(v̂, v)

ρ (v, v̂)
< k < 0 are sufficient

for Bunching at the Bottom if v̂ ∈ [0, ∞) and cov(v, v̂) > 0.
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B Optimal Non-Linear Taxation in the Light Bulb Market

We first explain how we approximate the cost function for energy efficiency and con-

sumers’ normative valuations v. In a subsequent step, we present the aggregate wel-

fare effects of the optimal linear and non-linear subsidy on energy efficiency, relative

to no taxation.

Our supply data stems from a price comparison service, geizhals.de, which reports

the cheapest price of a product offered on an online website. We focus on light bulbs

that are typically purchased by households. In particular, we consider bulbs with

an energy intensity of 25 to 75 Watt-equivalents and a warm light color of around

2700 Kelvin. To reduce the impact of branding effects, we focus on bulbs produced

by one of the two large manufacturers, Osram and Philips, that offer bulbs both in

the European Union and the United States. As in Allcott and Taubinsky (2015a), we

express all prices in 2012 US dollars (USD) and collect product prices during that year.

Some LED and CFL bulbs enter the market after 2012: in these cases, we extrapolate

their 2012 price based on their aggregate annual price trends, which imply a 20% and

10% price decrease per annum for LED and CFL bulbs, respectively. For every bulb,

we determine the operating and replacement cost (ORC) to consume 8.000 hours of

light over eight years, which corresponds to three hours per day, assuming electricity

prices of 0.1 USD per kWh (Allcott and Taubinsky, 2015a).

Based on this data, we determine the purchase price premiums and ORC savings

relative to the most electricity-intensive bulb. In the following, we use ORC savings

as the measure of attribute level q, i.e., of energy efficiency. Figure 2 plots the price

premiums against ORC savings, which corresponds to the cost function c(q) in our

model. The least energy inefficient, yet cheapest, bulbs are incandescent bulbs, fol-

lowed by halogen, CFL and LED bulbs. The cost curve is convex, which reflects that

a one unit increase in ORC savings becomes increasingly more expensive as the level

of energy efficiency increases. In 2012, the most energy efficient LED bulbs sold at a

price premium of around 30 USD and yielded cost savings of about 50 USD over the

course of eight years, compared to the most energy inefficient incandescent bulbs.

We use the elicitation of time preferences by Allcott and Taubinsky (2015a) to de-

termine individual-specific discount factors. We assume that all other factors that in-

fluence normative valuations do not vary by participant and thus merely constitute a

scaling factor. This assumption allows us to calibrate valuations to match the supply

function from Figure 2. In particular, we set valuations to v = s · D(δ), where s is a

scaling factor that ensures that consumers demand every product variety offered on

the market. To illustrate, consider a consumer with a discount rate of δ = 20% and

annual operating cost of 1/8 USD for eight years, which results in ORC savings of 1
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Figure 2: Energy Efficiency Cost Function in the Light Bulb Market
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Note: Price premiums, as well as operating and replacement cost savings are determined relative to the
most electricity intensive bulb. Operating and replacement cost assume eight years of total usage (8.000
hours) and an electricity price of 0.1 USD per kWh, as in Allcott and Taubinsky (2015a). The solid line
plots predictions from a local linear regression (bandwidth: 9), while the dashed line plots predictions
from a regression on quadratic terms.

USD. For that consumer, the normative valuation of 1 USD in ORC savings is then

D(δ) = (1 + 1/(1 + δ) + · · ·+ 1/(1 + δ)7) · (1/8) = 0.58 USD. We consider this ap-

proach as a useful approximation of individuals’ normative preferences v that isolates

one source of heterogeneity in v and is consistent with observable market behavior.24

We assume a quadratic cost function and estimate it based on the data from Fig-

ure 2. We derive consumers’ choices in five scenarios: the absence of a corrective tax,

the presence of the optimal linear tax, the optimal non-linear tax a) under full infor-

mation, b) under a first-order approximation of the conditional bias, and c) under a

second-order approximation of the conditional bias. The aggregate welfare effects are

presented in Table 1.

24We set the scaling factor to 0.6, which ensures that the largest perceived valuations are equal to the
highest gradient of the cost function from Figure 2. In addition, we impose some consistency restrictions
on the data. Starting with a sample of 633 individuals with non-censored valuations in the treatment
groups, we drop all observations with missing values on biases and discount rates (23 observations). We
also drop observations where the elicitation of time preferences does not yield a discount factor between
0 and 1 (50 observations) and where biases or perceived valuations are above below the 1 or above the
99 percentile (14 observations). In addition, we drop all observations where perceived valuations would
be negative (57 observations), which leaves us with 489 observations for our numerical example.
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Table 1: Welfare Implications of Taxation
Mean welfare, Mean welfare gain over Mean welfare gain
in USD/bulb status quo, in EUR/bulb relative to linear tax, in %

Status quo (no tax) 3.79 0.00 −
Linear tax 3.91 0.12 0
Non-linear tax (first-order approx.) 3.96 0.16 36
Non-linear tax (second-order approx.) 3.97 0.17 44
Non-linear tax (full information) 3.98 0.19 57

Welfare effects under a first-order approximation, (wrongly) setting ρ = 0
Non-linear tax (first-order approx, ρ = 0) 3.95 0.16 31

Note: Mean welfare is calculated under the optimal linear and non-linear tax schedules using the joint
distribution of perceived valuations and biases, as well as the cost function estimated in Section 5 and
Appendix Section B. ªNon-linear tax (first-order approx, ρ = 0)º implements the optimal non-linear tax
based on the first-order approximation to the expected bias, (wrongly) setting ρ = 0.
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Figure 3: Distribution of bias and normative valuations
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Notes for Figure a) and b): Densities estimated via kernel density estimation (Epanechikov kernel, band-
width: 0.03 and 0.1, respectively).
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