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Abstract

We study a persuasion problem when the receiver has the ability to probabilistically verify

the state at a cost. The sender wants to convince the receiver to accept a project but the

receiver is only willing to accept the project when the quality is above a threshold. The

optimal disclosure policy balances between in�uencing the receiver�s decisions to accept and

to verify the quality. The optimal disclosure is deterministic and involves at most three

messages, each consisting of an action recommendation and a veri�cation recommendation. In

the optimal disclosure, the action recommendation has a cuto¤ structure while the veri�cation

recommendation has a negative assortative structure. Speci�cally, the optimal disclosure

recommends acceptance when the quality is above a threshold. When the quality is below this

threshold, rejection without veri�cation is recommended. Above this threshold, veri�cation

is not recommended when the quality lies in the middle range of the interval. The optimal

disclosure reveals more information compared to the case where veri�cation is exogenous.

Keywords: Bayesian persuasion, Information design, Costly information acquisition, Costly
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1 Introduction

The literature on Bayesian persuasion has made signi�cant progress in understanding strategic

communication when the sender has commitment power. However there is a limited under-

standing of the optimal disclosure policy when the receiver has the option to acquire additional

information. This is because the inclusion of endogenous information acquisition introduces a

second dimension into the action space. In this paper, we study how the sender strikes a bal-

ance between in�uencing the receiver�s action choice and the information acquisition choice and

characterize the optimal disclosure policy within our framework.

To motivate the receiver�s option to acquire additional information, consider a regulatory

authority conducting stress tests on �nancial institutions and publicly disclosing the results. As

discussed in Leitner (2005) and Goldstein and Leitner (2018), such disclosure aims to prevent

disruptions in �nancial activities. However, market participants have the capacity to generate

their own information by launching independent investigations and gaining private insights. As

another example, an online platform provides product information to persuade customers to

make purchases, while customers also have the option to seek product information and read

reviews on other websites. In a third scenario, an applicant submits information to a certifying

body for certi�cation, and the certifying body can independently gather �rsthand information

about the applicant through tests and interviews, as explored in Bizzotto et al. (2020). In

these three examples and many other applications of Bayesian persuasion, the key feature of our

model that the receiver can acquire additional information besides the sender�s disclosure, is a

natural assumption. This assumption is particularly relevant in environments where the party

that designs the disclosure has no control over alternative sources of information. For instance,

while the platform can provide information through product reviews and recommendations, it is

di¢cult to forbid customers from learning about the product outside the platform. In this paper,

we study how to design a disclosure policy when the receiver can acquire additional information

about the asset, product or applicant.

Environment. Consider an environment with a sender and a receiver. The primary objective

of the sender is to persuade the receiver to accept a particular project. The receiver�s payo¤ of
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acceptance is equal to the project�s quality net of the cost of implementing the project and the

payo¤ of rejection is normalized to zero. Consequently, the receiver accepts the project when the

quality is high enough, but the sender simply wants to maximize the chance of acceptance.

The sender designs and commits to a disclosure policy about the quality. Following the

sender�s initial disclosure, the receiver can choose whether to acquire information about the

quality at a cost or to make the decision to accept or reject the project immediately. We assume

that if the receiver decides to acquire information, the quality is revealed with some positive

probability, and otherwise the receiver remains uninformed about the quality except what the

sender has disclosed. We refer to this information technology as a state-veri�cation technology.

After observing the result of the veri�cation, the receiver decides whether to accept the project.

In our model, the receiver is endogenously privately informed. Disclosure a¤ects the receiver

through three distinct channels. First, disclosure a¤ects how an uninformed receiver updates his

belief about the quality. Second, disclosure a¤ects the receiver�s incentive to become privately in-

formed through the veri�cation decision. Third, disclosure a¤ects how an endogenously informed

receiver updates his belief. Our assumption of a state-veri�cation technology eliminates the need

to consider the last channel. In case of a successful veri�cation, the quality is fully revealed,

rendering the sender�s disclosure irrelevant. Because of our assumption of state-independent suc-

cess probability, the receiver gains no information about the quality from a failed veri�cation

attempt. In this case, disclosure in�uences the belief updating in the same manner as how it

a¤ects the updating of an uninformed receiver. Thus, the focus of this paper is on the �rst and

second channels, exploring how the interplay between these two aspects in�uences the design of

the optimal disclosure policy.

Main result. We show that the optimal disclosure policy is deterministic, and it is without

loss to assume that it sends a maximum of three distinct messages, each consists of an action

recommendation and a veri�cation recommendation. The optimal disclosure policy combines a

cuto¤ structure for action recommendation and a negative assortative structure for veri�cation

recommendation. On the one hand, there is a quality cuto¤ for action recommendation, and

acceptance is only recommended above the cuto¤. On the other hand, veri�cation is not rec-

ommended for any quality below the cuto¤. Above the cuto¤, lowest and highest qualities are
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pooled together and veri�cation is recommended. See Figure 1.

Figure 1. The optimal disclosure policy

Since the optimal disclosure policy may not make use of all three messages, the optimal

disclosure policy can take one of four di¤erent forms. First, no disclosure can be optimal. In

this case, no veri�cation occurs and the project is accepted for sure. Second, a cuto¤ rule can be

optimal. In this case, no veri�cation occurs, and the project is accepted if and only if the quality

is above a threshold. Third, a negative assortative rule can be optimal. In this case, acceptance is

always recommended but veri�cation is only recommended for the highest and lowest qualities.1

Finally, a three-message rule, which makes use of all three messages, can be optimal. We further

explore the conditions for the optimality of each of these rules, when the quality is uniformly

distributed.

The implementation of the optimal disclosure policy could be straightforward. To implement

a three-message rule, the sender can announce a quality threshold. Only projects with quality

above the threshold are recommended, and supplemental information is provided for projects

with intermediate quality levels above the threshold. The receiver rejects projects that are not

recommended, and accepts projects without veri�cation when additional information is provided.

For projects that receive recommendation but no additional information is provided, the receiver

veri�es the quality and accepts the project only if the project quality is revealed to be above the

cost.

Related literature. This paper contributes to the literature on Bayesian persuasion initiated

by Rayo and Segal (2010) and Kamenica and Gentzkow (2011). A large body of the existing

literature focuses on the linear case where the receiver�s action depends only on the posterior

1Our terminology here loosely follows Kolotilin et al. (2023), which refers to the situation where the states are
pooled in a negatively assortative manner.
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mean (Gentzkow and Kamenica, 2016; Dworczak and Martini, 2019; Kleiner et al., 2021; Arieli

et al., 2023).2 In our model, the receiver�s veri�cation decision depends not only on the posterior

mean but also on the entire posterior distribution.

Most of the existing literature also assumes that the sender is the exclusive source of informa-

tion. Notable exceptions include Au (2015), Kolotilin et al. (2017), and Guo and Shmaya (2019),

all of which consider the persuasion problem when the receiver has private information. A recent

work by Kolotilin et al. (2023) considers the persuasion problem with non-linear preferences,

which accommodates both the environments explored in Kolotilin et al. (2017), in which private

information is independent of the quality, and Guo and Shmaya (2019), in which private informa-

tion depends on the quality. In contrast, this paper studies an environment where the receiver�s

private information is endogenously determined. Consequently, actions are multidimensional in

our model, while both the action and the state are unidimensional in Kolotilin et al. (2023).3

This paper considers a persuasion problem with endogenous information acquisition, and is

closest to Matyskova and Montes (2023) and Bizzotto et al. (2020). Matyskova and Montes (2023)

consider an environment with uniformly posterior separable information cost, a condition not

applicable in this paper. They demonstrate that, under their assumptions, the persuasion problem

with endogenous information acquisition can be solved as a conventional persuasion problem,

albeit under a receiver-never-learn constraint. In contrast, this paper explores an environment

where the information cost is not uniformly posterior separable and, as a result, one cannot

assume that the receiver would not learn under the optimal disclosure policy.4 Bizzotto et al.

(2020) also consider information acquisition with information cost that is not uniformly posterior

separable so that the receiver-never-learn result does not hold. They consider a persuasion

problem with a binary state, while this paper considers a continuous state space. The assumption

of a su¢ciently rich state space allows more general optimal disclosure policies to arise. With

a binary state space, all the optimal disclosure policies in their model has intrinsically a cuto¤

2The terminology here follows Kolotilin et al. (2023). This speci�cation is called linear case because it is
without loss to assume the receiver�s action is equal to posterior mean.

3 In Appendix B, we reinterpret our two-dimensional action space as a one-dimensional action space, and show
that it is impossible to order the actions in our model so that the assumptions in Kolotilin et al. (2023) are
satis�ed. Therefore, the results in Kolotilin et al. (2023) do not apply in our setting.

4Matyskova and Montes (2023) also show the receiver-never-learn result fails when their assumptions are relaxed.
See their Examples C.1 and C.2.
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structure.5 Additionally, the information technology considered in Bizzotto et al. (2020) is

also di¤erent from ours. They assume that the receiver can run a binary test on the qualities,

which means that the receiver always becomes privately informed once he chooses to acquire

information. In our model, the receiver is not privately informed with positive probability even

veri�cation is conducted.

In terms of our assumption concerning the receiver�s information technology, this paper is

related to a recent literature on cheap talk with detectable deception. Dziuda and Salas (2018),

Balbuzanov (2019), and Ederer and Min (2022) have explored lie detection within this context.

Sadakane and Tam (2022) and Zhao (2018) consider state veri�cation rather than lie detection,

and Zhao (2018) also endogenizes state veri�cation. Levkun (2021) has examined fact checking

provided by a third party, which is equivalent to state veri�cation in the binary-state setting he

considers. When the sender lacks commitment power, the truthful revelation of the lowest states

in any equilibrium becomes unattainable, while optimal disclosure policies frequently involve the

revelation of the lowest states.

Regarding the structure of our optimal disclosure policy, our �ndings exhibit certain sim-

ilarities with the negative assortative information structure observed in Goldstein and Leitner

(2018), Guo and Shmaya (2019), and Kolotilin et al. (2023). Goldstein and Leitner (2018) study

the design of optimal stress tests, showcasing instances of non-monotonic scoring rules. Guo

and Shmaya (2019) consider a persuasion problem with a privately informed receiver and show

that the optimal disclosure policy has a nested-interval structure. Kolotilin et al. (2023) provide

conditions for the optimality of negative assortative patterns of information disclosure and show

that their model accommodates both Goldstein and Leitner (2018) and Guo and Shmaya (2019).

Our characterization of the optimal disclosure policy does not follow from their results. It is also

worth highlighting that although our optimal disclosure policy shares similarities with those in

Goldstein and Leitner (2018) and Guo and Shmaya (2019), the underlying reasons behind the

structure are fundamentally distinct. Goldstein and Leitner (2018) obtain the non-monotone

structure because the gain-to-cost ratio, which is crucial to their analysis of the optimal stress

test, is non-monotone in types. Depends on the shape of the gain-to-cost ratio, the optimal

5From a technical viewpoint, the binary state assumption also simpli�es the analysis so that both the receiver�s
action and information acquisition decision depend only on the posterior mean, which is not true in our case.
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stress test can take di¤erent forms. Guo and Shmaya (2019) establish the nest-interval structure

because the acceptance set of a lower type is always a subset of that of a higher type. In this

paper, the negative assortative structure emerges because it is optimal to disclose the quality

levels that are closer to the project cost, in order to reduce the bene�t of state veri�cation.

2 Model

We consider a persuasion game, where a sender (she) selects an information structure to reveal

information to a receiver (he). The receiver, upon receiving the disclosed information, decides

whether to acquire additional information and then takes an action.

Disclosure. Let � represent the state of nature. We assume that � is drawn from a cumulative

distribution function (CDF) F over [0; 1], which admits the strictly positive probability density

function (PDF) f . The sender chooses an information structure. After the state of nature

is drawn, the receiver observes a message generated by the chosen information structure. An

information structure is a combination (M;G (:)) of a message set M and a function G : [0; 1]!

�(M) such that if the state is �, then a message m 2 M is drawn according to distribution

G (�) and observed by the receiver. For no disclosure, G (�) = G
�
�0
�
for all �; �0 2 [0; 1]. For full

disclosure policy, the supports of G (�) are disjoint across �, so that the state is fully revealed.

A deterministic policy has a degenerated G (�) for each � 2 [0; 1], and can be summarized by a

function m : � !M .

State veri�cation. The receiver can verify the state � at a cost c > 0. Denote the state-

veri�cation e¤ort by e 2 f0; 1g. The state veri�cation generates a signal s 2 [0; 1] [ f�g. The

expertise level q 2 (0; 1] determines the probability that the state is revealed. With probability

q, the veri�cation is successful and s = �; with probability 1� q, the veri�cation is unsuccessful

and s = �. The expertise q is independent of the state, so there is no belief updating when the

veri�cation is unsuccessful. We refer to the pair (q; c) as the state-veri�cation technology, and

de�ne C = c=q as the quality-adjusted veri�cation cost. We assume that the receiver would not

verify whenever he is indi¤erent.
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Payo¤s. The receiver chooses a binary action a 2 f0; 1g, and we refer to a = 1 and a = 0 as

Accept and Reject, respectively. The sender�s utility v is independent of the state, and v (a) = a.

The receiver�s utility u depends on both the receiver�s action a and the state �, and u (a; �) =

a (� �R)� ec, where R 2 (0; 1) is the project cost and c is the state-veri�cation cost. Therefore,

the sender�s objective is to maximize the acceptance probability, and the receiver chooses Accept

only when the expected value of � is above R. We further assume that the receiver accepts

whenever he is indi¤erent.

Timeline. The game proceeds as follows. First, the sender chooses an information structure

(M;G). Second, nature draws � according to F , and a message m 2 M is sent to the receiver

according to G (�). Third, the receiver observes the message m, and decides whether to verify

the state. Fourth, the receiver observes the signal s, and decides whether to accept or reject.

The payo¤s are realized.

2.1 An example

Consider an E-commerce platform that receives commission fees according to the sales volume,

so its payo¤ is independent of the product quality. The customer�s payo¤ from purchasing the

product depends on the product quality �, which is uniformly distributed on [0; 1]. The product

price p is 0:6, so the customer�s payo¤ is � � 0:6 if he purchases the product, and 0 otherwise.

The platform�s revenue is 1 if the customer purchases the product, and 0 otherwise.

The platform designs a recommendation rule and can commit to it. If the customer has no

private information, the optimal recommendation rule takes the form of a cuto¤ rule. Speci�cally,

a product is recommended if its quality is above 0:2. The average quality of the recommended

products is 0:6. The customer is indi¤erent between making a purchase and not, and therefore

follows the recommendation. The average quality of the products that do not receive a recom-

mendation is 0:1, and the customer therefore does not make a purchase if the product is not

recommended. Moreover, the platform gets a payo¤ of 0:8 and the customer gets zero payo¤.

Now suppose the customer is able to verify the quality at a cost of 0:01. When the customer

veri�es the quality, he can learn the exact quality with probability 0:9. The optimal recommen-

dation rule is no longer a simple cuto¤ rule, and is depicted in Figure 2.
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Figure 2. The optimal recommendation rule

In this numerical example, � = 0:92, � = 0:50 and �� = 0:34. According to the optimal

recommendation rule, a product is recommended if its quality is above 0:34. Furthermore, the

platform recommends the customer to buy the product immediately, if its quality is between

0:50 and 0:92. The customer follows the recommendation, and only purchases a recommended

product. When a product receives the Buy immediately recommendation, the customer makes

a purchase without veri�cation. Otherwise, the customer purchases the recommended product

only after going through the veri�cation process. The customer buys the recommended product

unless the quality is found to be below 0:6.

The average quality of the recommended products is 0:67. The platform gets a payo¤ of

0:516 and the customer gets a payo¤ of 0:0755. This example shows that the average quality of

recommended products are higher when the customer has access to external information beyond

what is provided by the platform, and the customer gets a higher payo¤.

3 Analysis

In this section, we �rst discuss the benchmark case with exogenous state veri�cation and show

that exogenous state veri�cation has no e¤ect on the optimal disclosure policy. We then study

the optimal disclosure policy when state veri�cation is endogenous.

3.1 Benchmark: exogenous state veri�cation

When state veri�cation is exogenous, the receiver is perfectly informed with probability q, and

remains uninformed with probability 1 � q.6 When the receiver is perfectly informed, no infor-
6When q = 1, the receiver is always perfectly informed. As a result, no information provided by the sender can

alter the receiver�s action and any disclosure policy is optimal. Therefore, we focus on the case with q 2 (0; 1).
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mation provided by the sender can in�uence the receiver�s action. Consequently, the design of

the disclosure policy aims only to a¤ect the action of an uninformed receiver, same as the case

where there is no privately informed receiver.

When there is no private information, the persuasion problem is a simple one: the sender,

who wants to maximize the acceptance probability, chooses an information structure and sends

a message to the receiver accordingly. The receiver accepts if and only if the state is on average

higher than the project cost given the message received.

The optimal disclosure policy is a cuto¤ rule. There is a cuto¤ �e 2 [0; R] such that the sender

reveals whether � is above the cuto¤ �e, and the recommendation is Accept when the state is

above the cuto¤ and Reject otherwise. Denote the recommended action for the uninformed

receiver by a� (m). That is, m (�) = m0 for all � < �e, and m (�) = m00 for all � � �e; a� (m0) = 0

and a� (m
00) = 1. The uninformed receiver adopts the recommended action, and the perfectly

informed receiver chooses according to the state revealed. When E (�) � R, �e = 0. Otherwise,

�e is uniquely de�ned by
Z 1

�e
(��R) f (�) d� = 0:

Figure 3 illustrates the optimal disclosure policy and its action recommendation.

Figure 3. Optimal disclosure policy when state veri�cation is exogenous

The optimal disclosure policy in the benchmark case only aims to in�uence an uninformed

receiver�s belief updating. It does not distort disclosure to in�uence an informed receiver�s belief

updating, because successful veri�cation perfectly reveals the state and a receiver�s updated belief

would then be independent of the disclosure policy.7 Nor does it distort disclosure to in�uence

whether a receiver becomes informed, because veri�cation is exogenous. In our main model

where the veri�cation is endogenous, an informed receiver�s belief updating remains una¤ected

7However, the optimal disclosure policy could in�uence an informed receiver�s belief updating under alternative
assumptions for the receiver�s private information (Guo and Shmaya, 2019).
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by disclosure, but the optimal disclosure policy strikes a balance between shaping an uninformed

receiver�s belief updating and in�uencing whether a receiver becomes informed.

3.2 Preliminary analysis

We now move to our main model. We focus on the case where q < 1. All our results apply when

q = 1, and the assumption that q = 1 allows us to further pin down the optimal disclosure policy

and perform comparative statics analysis analytically, which is discussed in Section 3.6.

The space of all information structures is the space of all functions that map the state space

[0; 1] to the space of all distributions over the message space M . Our �rst result shows that we

can narrow down the search of the optimal information structure to information structures that

involve only three distinct messages.

Denote the receiver�s veri�cation decision given message m by e (m). If e (m) = 0, i.e., the

receiver decides not to verify the state, the receiver�s action depends only on message m, which

we denote by aNV (m). If e (m) = 1, i.e., the receiver decides to verify the state, the receiver�s

action depends also on signal s. We denote it by as (m), where s 2 [0; 1] [ f�g.

Two distinct characteristics of our state-veri�cation technology allow us to signi�cantly sim-

plify the characterization of the receiver�s action. First, upon successful veri�cation, the receiver

receives perfect information about the state. Therefore, any information provided by the sender

becomes irrelevant and it must be the case that as (m) = 1 if s � R and as (m) = 0 if s < R.

Consequently, we do not need to track the recommended action for all s 2 [0; 1]. Second, in the

case of unsuccessful veri�cation, the receiver does not receive additional information about the

state, as the probability of successful veri�cation is independent of the state. This implies that

aNV (m) = a� (m). Therefore, the receiver�s recommended action is completely characterized by

a single function a� (m), which we refer to as the (default) action recommendation of message

m. In a similar fashion, we refer to e (m) as the veri�cation recommendation of message m. A

message thus consists of an action recommendation and a veri�cation recommendation.

Despite the potential complexity of the optimal disclosure policy, given that the receiver�s

action and veri�cation decisions are both binary, any disclosure policy is outcome-equivalent to

one characterized by four distinct types of messages: 1) Verify then Accept, e (m) = 1, a� (m) =
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1; 2) Accept without veri�cation, e (m) = 0, a� (m) = 1; 3) Verify then Reject, e (m) = 1,

a� (m) = 0; 4) Reject without veri�cation, e (m) = 0, a� (m) = 0. For instance, when the

message is Verify then Accept, the receiver �rst veri�es the state as recommended. When the

veri�cation is successful, the receiver takes the action according to the revealed state. Only when

the veri�cation is unsuccessful, would the receiver accept as recommended. Such a message can

also be interpreted as Accept unless �nding bad news.8

Now we show that the message Verify then Reject is not a part of any optimal disclosure policy.

In the main text, we provide heuristic derivations of all the results, focusing on deterministic

policies. The formal proofs for the general case can be found in Appendix A.

Lemma 1 In the optimal disclosure policy, Verify then Reject is never recommended, i.e., if

a� (m) = 0 and e (m) = 1, then Pr (m) = 0.

Suppose there exists a message m 2M in the optimal disclosure policy such that a� (m) = 0

and e (m) = 1 but Pr (m) > 0. Given the veri�cation recommendation e (m) = 1, there must exist

some � > R that this message is sent. Otherwise, the receiver will not follow the recommendation

to verify. Given the action recommendation a� (m) = 0, for all � < R that this message is sent, the

acceptance probability is zero; for all � > R that this message is sent, the acceptance probability

is q < 1. Now, consider an alternative disclosure policy, which di¤ers from the original disclosure

policy only in that all ��s that the message Verify then Reject is sent are fully revealed. Full

disclosure of all � < R still results in certain rejection. However, full disclosure of all � > R

results in certain acceptance, which is a strict improvement. This means that Pr (m) = 0.

Denote the three messages in the optimal disclosure policy by m�, m0, and m1, respectively,

which correspond to 1) Reject without veri�cation: e (m�) = 0 and a� (m�) = 0; 2) Accept without

veri�cation: e (m0) = 0 and a� (m0) = 1; and 3) Verify then Accept : e (m1) = 1 and a� (m1) = 1.

Form0 andm1, the recommended action is Accept. It implies that both E (�jm0) and E (�jm1)

should be above R. Moreover, no veri�cation is recommended for m0. It implies that the cost of

veri�cation must be higher than the bene�t. Therefore, by individual rationality and incentive

8Similarly, the other three messages can be interpreted as Immediate accept, Reject unless �nding good news,
and Immediate reject.

12



compatibility, we have

E (�jm0) � R; (A0)

qPr (� < Rjm0) (R� E (�j� < R;m0)) � c; (V0)

and

E (�jm1) � R; (A1)

qPr (� < Rjm1) (R� E (�j� < R;m1)) > c: (V1)

The left-hand sides of (V 0) and (V 1) are the bene�ts of veri�cation. With probability q, veri�ca-

tion is successful. Since the recommended action is Accept, veri�cation only changes the receiver�s

action for � < R and the resulting change in payo¤ is R� �.

The presence of the constraints (V 0) and (V 1) indicates that the receiver�s veri�cation decision

depends on the entire posterior distribution, rather than the posterior mean only. As noted in the

literature review, this aspect separates our model from a large body of the persuasion literature

where the receiver�s action depends only on the posterior mean.

Our next lemma shows that the optimal disclosure policy has a cuto¤ structure for action

recommendation.

Lemma 2 (Cuto¤ for action recommendation) There is some �� 2 [0; R) such that in the

optimal disclosure policy, m� is sent if and only if � < �
�.

We prove the lemma formally in Appendix A using calculus of variations. To provide some

intuition, suppose that, for some ��s above R, the message is m� (Reject without veri�cation).

Now, consider an alternative disclosure policy, which only di¤ers in fully revealing all ��s that

m� is sent in the original disclosure policy. Full disclosure of � < R leads to certain rejection,

which is the same as under the original one. On the other hand, full disclosure of � > R leads to

certain acceptance, and it is a strict improvement. Consequently, for all � > R, m� is never sent

in the optimal disclosure policy.
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Now suppose that the message is m� for some �
0 < R, and the message is m0 (Accept

without veri�cation) for some �00 < �0. For illustration simplicity, assume F (�) = �. Consider

an alternative disclosure policy, which only di¤ers in switching messages for �0 and �00. Under

the alternative disclosure policy, E (�jm0) and E (�j� < R;m0) are higher, while Pr (� < Rjm0)

remains the same. Such a change relaxes both (A0) and (V 0), which enables the alternative

disclosure policy to sendm0 for some other ��s. It leads to a strictly higher acceptance probability

for � < R, and no change in the acceptance probability for � > R. The same logic applies to m1

(Verify then Accept). Figure 4 illustrates the cuto¤ structure for action recommendation.

Figure 4. Cuto¤ structure for action recommendation

Next, we develop a notion of informativeness that will be useful in our setting. This is because

there may be multiple disclosure policies that are outcome-equivalent and, as a result, give the

receiver the same payo¤ but di¤er in the Blackwell ordering.

Note that our optimal disclosure policy with three messages pools all the states below ��

together and discourages the receiver from both acceptance and veri�cation in these states. This

disclosure policy is outcome-equivalent to one that truthful reveals all � < �� while keeping the

messages for all � � �� the same. Our notion of informativeness requires that when we compare

the informativeness of two disclosure policies, we compare the rules that are outcome-equivalent

to them, in which all � < �� are truthfully revealed rather than pooled together. Formally,

De�nition 1 Given a message set M = fm�;m0;m1g and two disclosure policies G and G0 that

send m� below cuto¤s �
� and (��)0, respectively. We say that G is more informative than G0 if

and only if the disclosure policy that is outcome-equivalent to G and truthful reveals all � < �� is

more informative in the sense of Blackwell than the disclosure policy that is outcome-equivalent

to G0 and truthful reveals all � < (��)0.

The receiver is indi¤erent to whether all � < �� is fully revealed or the same message is sent
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for all � < ��. However, when G is more informative to than G0 according to De�nition 1, the

receiver gets a higher payo¤ under G. Therefore, the rede�ned informativeness is more indicative

of the disclosure policy�s value to the receiver, given the structure of our optimal disclosure policy.

With De�nition 1, we are ready to compare the informativeness of the optimal disclosure

policies under endogenous and exogenous veri�cation. Given (A0) and (A1), we have E (�jm0) �

R and E (�jm1) � R. Therefore, �� � �e, which implies that the optimal disclosure policy reveals

more � < R when veri�cation is endogenous. Moreover, the optimal disclosure policy sends only

one message for � > �e when veri�cation is exogenous and sends potentially two messages for

� > �� when veri�cation is endogenous. Therefore, we have

Corollary 1 More information is disclosed when state veri�cation is endogenous than when it

is exogenous.

3.3 Sender�s problem

Lemma 1 reduces the number of messages sent in an optimal disclosure policy to three, and

Lemma 2 establishes the cuto¤ structure for action recommendation. From these two lemmas,

we have

Proposition 1 (Sender�s problem) The sender�s problem can be formulated as

max
x0(�)2[0;1]
��2[0;R]

Z R

��
[x0 (�) + (1� x0 (�)) (1� q)] f (�) d� +

Z 1

R

f (�) d� (S)

s.t.

Z 1

��
(� �R)x0 (�) f (�) d� � 0; (A0)

Z 1

��
(� �R) (1� x0 (�)) f (�) d� � 0; (A1)

c

Z 1

��
x0 (�) f (�) d� + q

Z R

��
(� �R)x0 (�) f (�) d� � 0: (V)

Constraints (A0) and (A1) follow from the fact that the recommended action for both m0

and m1 is Accept. These two constraints require that, given both messages, the state on average
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is above R. Constraint (V ) follows from the fact that the veri�cation recommendation for m0 is

No veri�cation. This constraint requires that, given this message, the veri�cation bene�t must

be smaller than c. Otherwise, the receiver would not follow the recommendation and verify the

state instead.

Constraints (A0) and (A1) can be interpreted as persuasion constraints. The sender�s ob-

jective is to convince the receiver to accept. Therefore, the states that receive recommendation

for acceptance must be above R on average. Essentially, the sender pools states above R and

below R, maintaining the average above R. Moreover, constraints (A0) and (A1) can also be

interpreted as credibility constraints, similar to constraint (6) in Goldstein and Leitner (2018),

where states above R provide credibility and states below R require credibility. Each state above

R produces credibility resource in the amount ��R, and each state below R requires credibility

resource in the amount R� �.

Constraint (V ) can be interpreted as a veri�cation constraint, which is required to dissuade

the receiver from veri�cation after receiving message m0. The cost of veri�cation is always c,

while the bene�t depends on how often the state is revealed to be below R, and how much the

receiver can bene�t from choosing Reject instead of Accept as recommended. Each state above

R imposes veri�cation cost in the amount c, and each state below R yields veri�cation bene�t in

the amount q (R� �)� c.

It is worth noting that constraint (V 1), which requires that the receiver �nds it optimal to

verify upon receiving m1, is ignored in our formulation of the sender�s problem. This is because,

if (V 1) is violated in the optimal disclosure policy under our formulation, the receiver would

not verify the state given m1. This means that we can simply replace m1 with m0 and the new

disclosure policy is also feasible under our formulation. Thus, there is no loss to ignore (V 1).

Note that, from (V ), for � 2 (R� c=q;R), the net veri�cation bene�t is negative. This means

that the sender can always pool states slightly below R together with states higher than R such

that the state is higher than R on average and send m0 to the receiver. As a result, we conclude

that

Lemma 3 Full disclosure is never optimal. Moreover, in the optimal disclosure policy, Pr (m0) >

0.
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We close this section with a lemma that allows us to simplify the search for the optimal

disclosure policy, which will be useful in later sections.

Lemma 4 For any optimal disclosure policy, if Pr (m1) > 0, then (V ) and (A1) are binding.

To understand Lemma 4, note that, by (A0) and (A1), the states that m0 is sent and the

states that m1 is sent are both larger than R on average. Thus, if (V ) was slack, it would be

possible to move some mass from m1 to m0 so that all the constraints remain satis�ed and the

resulting acceptance probability is higher. As a result, m1 will not be sent as long as (V ) is slack.

On the other hand, if (A1) was slack, it would be possible to replace m1 with m0 for some states

above R. This would result in a slack (V ) after the change, which contradicts the optimality of

the disclosure policy.

3.4 Optimal disclosure policy

In this section, we characterize the optimal disclosure policy in Theorem 1 and discuss its prop-

erties.

Theorem 1 Any optimal disclosure policy is outcome-equivalent to a disclosure policy with at

most three messages, which is characterized by three cuto¤s ��, �, and � such that 0 � �� � � <

� � 1 and satis�es

1. m (�) =

8
>>>><

>>>>:

m� if � < ��,

m0 if � � � � �,

m1 o.w.

2. a� (m�) = 0, a� (m0) = a� (m1) = 1, e (m�) = e (m0) = 0, and e (m1) = 1.

The optimal disclosure policy is deterministic. In terms of action recommendation, it adopts

a cuto¤ structure, with the cuto¤ ��. Speci�cally, for � < ��, the recommended action is Reject ;

for � � ��, the recommended action is Accept. The receiver follows the recommended action

whenever he is not privately informed. In terms of veri�cation recommendation, the optimal

disclosure policy has a negative assortative structure, given the same action recommendation.

For � < ��, No veri�cation is always recommended. This veri�cation recommendation, together
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with the action recommendation, is equivalent to full disclosure for � < ��. For � � ��, No

veri�cation is recommended for � 2
�
�; �
�
. A typical optimal disclosure policy with three messages

is illustrated in the following �gure.

Figure 5. The optimal disclosure policy

Proposition 1 formulates the sender�s choice of cuto¤ �� and choice between message m0

and m1 as an in�nite-dimensional maximization problem, which we use to prove Theorem 1 in

Appendix A. The proof shows that, for any cuto¤ ��, it is optimal to send m0 on an interval

nested in the interval [��; 1] that contains R. In the following, we provide a heuristic proof of

Theorem 1 for such a negative assortative structure, focusing on deterministic disclosure policies.

By Lemma 4, we can show that, for any disclosure policy that does not have a negative

assortative structure for veri�cation recommendation, there is an alternative disclosure policy that

leads to a strictly higher acceptance probability or a weakly higher acceptance probability with

a slack (V ), which, by Lemma 4, would imply that the original disclosure policy is suboptimal.

Consider states above R. Each � > R contributes to the pool of credibility resource in the

amount ��R, while all � > R induce the same amount of veri�cation cost. Importantly, a lower

value of � induces the same amount of veri�cation cost, yet generates fewer credibility resource.

Consequently, when generating the same amount of credibility resource, opting for message m0

for lower values of �, instead of higher values of �, induces higher veri�cation cost. This, in turn,

relaxes the constraint (V ). The acceptance probability is one for all � > R, which implies that

such a change does not reduce the overall acceptance probability.

Consider states below R. Each � < R requires credibility resource in the amount R � �,

while yielding a veri�cation bene�t in the amount q (R� �) � c. Importantly, a higher value

of � corresponds to a reduced requirement for credibility resource and lower veri�cation bene�t.

Consequently, given the same requirement of credibility resource, opting for messagem0 for higher
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values of �, instead of lower values of �, leads to more frequent acceptance, while inducing lower

veri�cation bene�t. This, in turn, relaxes the constraint (V ) and raises the overall acceptance

probability at the same time.

Hence, it is evident that for any disclosure policy lacking a negative assortative structure for

veri�cation recommendation for states above the cuto¤ ��, one can always construct an alternative

disclosure policy, which achieves either the same acceptance probability while allowing for a slack

(V ) or a strictly higher overall acceptance probability.

3.5 Properties of optimal disclosure policy

Based on Theorem 1, we can further classify the optimal disclosure policy into four types.

Proposition 2 Without loss of generality, the optimal disclosure policy is one of the following

rules:

1. No disclosure, and the message sent is Accept without veri�cation;

2. Cuto¤ rule, and the messages sent are Accept without veri�cation above a cuto¤ and Reject

without veri�cation otherwise;

3. Negative assortative rule, and the messages sent are Accept without veri�cation on an in-

terval around R and Verify then Accept otherwise;

4. Three-message rule, the messages sent are Reject without veri�cation below a cuto¤, Accept

without veri�cation on an interval around R, and Verify then Accept otherwise.

Figure 6 illustrates all four rules.
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Figure 6. Classi�cation of optimal disclosure policies

No disclosure can be optimal. When the optimal disclosure policy discloses no information, by

Lemma 3, the message sent is always Accept without veri�cation, and the receiver always accepts.

To see that, suppose the message sent is Reject without veri�cation instead. In this case, the

sender�s payo¤ is zero, while full disclosure induces certain acceptance for all states above R and

generates strictly higher payo¤ for the sender. Similarly, if the message sent is Verify then Accept,

then the sender can send m0 for states in a small neighborhood around R and generate a strictly

higher payo¤.

No disclosure corresponds to a disclosure policy that only recommends Accept without veri�-

cation (m0). This gives the sender the highest possible payo¤. Using constraints (A0) and (V ),

we can obtain the necessary and su¢cient condition for the optimality of no disclosure.
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Proposition 3 No disclosure is optimal if and only if

E (�) � R and q
Z R

0
(R� �) f (�) d� � c:

When the project quality improves in the �rst-order stochastic dominance (FOSD) sense,

it becomes more likely for no disclosure to be optimal. If F 0 FOSD F , the expected state

E (�) is higher under F 0, and the veri�cation bene�t
R R
0 (R� �) f 0 (�) d� is lower as well. In

other words, when the quality is improving, the receiver is more inclined to accept the project

without veri�cation because he anticipates a higher expected quality and veri�cation becomes

less pro�table.

On the other hand, when the project cost gets higher, it becomes less likely for no disclosure

to be optimal. Under no disclosure, a higher R requires a higher expected state E (�), and

simultaneously induces higher veri�cation bene�t. In other words, when the project cost gets

higher, it is more di¢cult for the sender to convince the receiver to accept the project without

veri�cation because such a recommendation requires a higher expected quality. Additionally,

veri�cation becomes more pro�table, because the project quality is now more likely to be below

its cost, while the bene�t is also higher whenever low qualities are discovered.

A negative assortative rule corresponds to a disclosure policy that does not recommend Reject

without veri�cation (m�). The sender recommends Accept without veri�cation (m0) on an interval

around R, and recommends Verify then Accept (m1) for both the lowest states and highest states.

By (A0) and (A1), this means that the unconditional expected state must be higher than R, i.e.,

E (�) � R. However, the optimal disclosure policy sometimes would recommend Reject without

veri�cation (m�) even when E (�) � R. The sender is facing a trade-o¤ between recommending

Verify then Accept (m1), which leads to acceptance with probability 1 � q, and recommending

Accept without veri�cation (m0), which leads to certain acceptance. This trade-o¤ is crucial in

determining the optimal disclosure policy. For states below R, sending m1 and m0 requires the

same amount of credibility resource, however sending m0 raises the veri�cation bene�t, which

makes it harder to satisfy (V ). When the veri�cation cost is high, (A0) binds while (V ) is slack.

Such a trade-o¤ leads to sending m� for some of the lowest states in order to send m0 for more
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states below R, despite that E (�) � R.

When the prior belief is less optimistic, the sender is forced to reveal some of the lowest states

to convince the receiver. Therefore, we have

Corollary 2 If E (�) < R, the optimal disclosure policy is either a cuto¤ rule or a three-message

rule.

A cuto¤ rule corresponds to a disclosure policy that does not recommend Verify then Accept

(m1). It is outcome-equivalent to an upper censorship that reveals all states below a certain

cuto¤ and pools all states above that cuto¤. In this case, veri�cation is never recommended. On

the other hand, a three-message rule makes all three recommendations with positive probability,

which has been discussed in detail following Theorem 1.

We can also examine the consequences of varying the state-veri�cation technology (c; q) and

the project cost R on the sender�s payo¤.

Corollary 3 The sender�s payo¤ under the optimal disclosure policy is increasing in c and de-

creasing in q and R.

Corollary 3 follows directly from Proposition 1 and the envelope theorem. The intuition

is straightforward. First, an increase in veri�cation cost c relaxes (V ). In other words, when

veri�cation becomes more costly, the receiver has less incentive to verify the state. Therefore,

the sender can recommend Accept without veri�cation (m0) more often, leading to a higher

acceptance probability. Second, an increase in the project cost R makes it more likely that the

state is below R and tightens all three constraints (A0), (A1) and (V ). To be more speci�c, when

the project cost gets higher, it is more di¢cult to persuade the receiver to accept and veri�cation

also becomes more pro�table. Third, an increase in q tightens (V ) and decreases the objective

function (S). For the receiver, veri�cation becomes more pro�table. For the sender, the bene�ts

from recommending Verify then Accept (m1) diminishes. Both factors contribute to a reduction

in the sender�s payo¤.

However, the envelope theorem does not provide us with comparative statics on the informa-

tion revealed or the receiver�s payo¤. To gain further insights, we examine a special case with

q = 1 in Section 3.6.
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It is also worth highlighting three nice features of our optimal disclosure policy. First, the

acceptance probability is increasing in the state. In the context of the platform interpretation,

this implies that products with higher quality are sold more frequently, and the products with

quality above the price are always sold. Suppose, instead of independently testing the products,

the platform relies on the seller to provide information, and the seller can potentially underreport

by providing insu¢cient information. If the probability of a sale is not increasing in quality, then

some sellers may have an incentive to manipulate the quality report downward, posing potential

problems for the platform. A similar concern is raised in Goldstein and Leitner (2018), where the

optimal scoring rule is non-monotonic, resulting in some banks with lower asset values receiving

higher scores. Such a concern does not arise under our optimal disclosure policy.

Second, the policy has some form of monotonicity of the acceptance probability and the

posterior mean in the message sent. The sender induces certain acceptance by sending m0 and

certain rejection by sending m�, and the acceptance probability is 1 for � � R and 1 � q for

� < R if the sender sends m1.
9 Thus, in terms of the acceptance probability, we can rank the

three recommendations as m0 � m1 � m�. In terms of posterior mean, there is a similar ranking:

E (�jm0) � E (�jm1) � E (�jm�). The states that m� is sent are always lower than R on average,

otherwise the sender can send m1 instead. In contrast, by Lemma 4, the expected value of the

states that m1 is sent is exactly equal to R. Finally, the states that m0 is sent are always higher

than R on average. This is due to (A0). When (A0) is slack, the expected value of the states

that m0 is sent is strictly higher than R.

Third, the implementation of the optimal disclosure policy can be straightforward. To imple-

ment a three-message rule, the sender can 1) recommend the project when the quality is above

a certain cuto¤, and 2) provide additional information for some quality levels around R. As a

response, the receiver immediately rejects any project that is not recommended. If a project

is recommended, the receiver accepts the project right away whenever additional information is

provided. Otherwise, veri�cation is initiated.

9This also implies that there is no point in sending m1 when q = 1. See detailed discussion of the case where
q = 1 in Section 3.6.

23



3.6 Special case: q = 1

Given the characterization of the optimal disclosure policy, deriving comparative statics on the

information revealed or the receiver�s payo¤ is not straightforward. This challenge arises because

the disclosure policy is not characterized by a single cuto¤, as an upper censorship (Kolotilin et.

al., 2023), or as in an environment with a binary state space (Bizzotto et. al. 2020). In this

section, we consider the special case where q = 1 and examine the e¤ect of varying the other

parameters within the model.

When q = 1, veri�cation always results in state discovery. Therefore, whenever the receiver

decides to verify, he always learns the state. This implies that recommending veri�cation for

any state below R does not bring any bene�t to the sender. For states above R, recommending

veri�cation takes away credibility resource and reduces veri�cation cost of sending m0. As a

result, when q = 1, the optimal disclosure policy never sends m1.

Proposition 4 Suppose q = 1. The optimal disclosure policy is either no disclosure or a cuto¤

rule.

Thus, the optimal disclosure policy can be characterized by a single cuto¤ ��, and the sender�s

problem is reduced to

min
��2[0;R]

��

s.t.

Z 1

��
(� �R) f (�) d� � 0; (A)

c

Z 1

��
f (�) d� +

Z R

��
(� �R) f (�) d� � 0: (V)

The �rst constraint is the persuasion constraint, and the second constraint is the veri�cation

constraint. When the optimal �� is equal to zero, the optimal disclosure policy is no disclosure.

Otherwise, it follows a cuto¤ rule. Recall that we use an outcome-equivalent policy that perfectly

reveals states below �� when comparing the amount of information disclosed across disclosure
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policies. As a result, the amount of information revealed increases with ��.10 Our next result

follows directly from the envelope theorem.

Proposition 5 Suppose q = 1. Increasing c or decreasing R reduces the amount of information

disclosed.

An increase in the veri�cation cost c loosens the veri�cation constraint, while an increase in the

project cost R tightens both constraints. The intuition is straightforward: as veri�cation becomes

more expensive, the sender can disclose less information without encouraging veri�cation; as the

project cost increases, it requires more credibility resource to recommend Accept, and it also

raises veri�cation bene�t. The sender must disclose more information as a result.

The monotone comparative statics come from the assumption of certain state discovery, which

implies that the optimal disclosure policy never recommends veri�cation, which corresponds to

the aggressive disclosure in Bizzotto et. al. (2020). Therefore, the non-monotonicity due to

shifting between aggressive disclosure and conservative disclosure, which is observed in their

model, does not occur in our setting. Instead, we have

Proposition 6 Suppose q = 1. Increasing c reduces the receiver�s payo¤.

Since the optimal disclosure policy never recommends veri�cation, a change in veri�cation

cost c a¤ects the receiver�s payo¤ exclusively through its e¤ect on disclosure. This implies that

an increase in c unambiguously results in a decrease in the receiver�s payo¤, due to an increase

in ��.

The e¤ect of a change in the project cost R is less straightforward. An increase in the project

cost R leads to more information disclosure, but it also results in a lower payo¤ conditional on

acceptance for all �. The overall e¤ect of such a change is ambiguous. The following example

demonstrates that, when � follows a uniform distribution, increasing R reduces the receiver�s

payo¤.

Example 1 Suppose F (�) = � and q = 1. When
p
2c < R < 1� 4c, the veri�cation constraint

is the binding constraint, and �� = R � c �
p
2c (1�R) + c2. When R > max

�
1� 4c; 12

	
, the

10As noted previously, this approach can be justi�ed by considering value of information to the receiver, as
demonstrated in Proposition 6.
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persuasion constraint is the binding constraint, and �� = 2R � 1. When R < min
�p
2c; 12

	
,

neither of the constraints is binding, �� = 0. In all three cases, we can show that the receiver�s

payo¤ decreases with R.

4 Optimal disclosure policy under uniform distribution

In this section, we consider a special case with the uniform distribution, i.e., for all � 2 [0; 1],

F (�) = �. Our objective is to demonstrate how our characterization result can be applied to

derive the optimal disclosure policy in this speci�c case.

Given the uniform distribution, by Proposition 3, we have

Corollary 4 Suppose F (�) = �. No disclosure is optimal if and only if R � 1
2 and R �

p
2C.

Next, we provide the necessary and su¢cient condition for the optimality of recommending

veri�cation, i.e., m1 is sent with positive probability.

Proposition 7 Suppose F (�) = �. When q � 2
3 , the optimal disclosure policy recommends

veri�cation with positive probability if and only if

p
2C < R < 1� 4C.

When 2
3 < q < 1, the optimal disclosure policy recommends veri�cation with positive probability

if and only if
p
2C < R < 1�Q (q)C,

where

Q (q) :=
4q

3� 2q � q2 � (1� q)
3

2

p
9� q

.

When q = 1, the optimal disclosure policy never recommends veri�cation.

To understand Proposition 7, note that we can identify the necessary and su¢cient condition

for the optimality of recommending veri�cation by establishing the necessary and su¢cient con-

dition for the optimality of a cuto¤ rule. This is because Corollary 4 has already established the
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condition for the optimality of no disclosure. By Proposition 2, if we can further establish the

condition for the optimality of a cuto¤ rule, we are left with rules that recommend veri�cation,

a negative assortative rule and a three-message rule. We illustrate how to �nd the condition for

q � 2
3 , and leave the rest of the proof to Appendix A.

By Theorem 1, any optimal disclosure policy is characterized by three cuto¤s, ��, �, and �.

A cuto¤ rule corresponds to the case where � = �� > 0 and � = 1. By Corollary 4, no disclosure

is never optimal when R > 1
2 . It implies that the optimal disclosure policy is either a cuto¤ rule

or a rule that recommends veri�cation with positive probability.

Given any � 2 [R; 1], if (V ) is binding, � is uniquely pinned down by

C
�
� � �

�
+

Z R

�

(� �R) d� = 0.

Denote its solution by �V
�
�
�
. On the other hand, if (A0) is binding, � is uniquely pinned down

by
Z �

�

(� �R) d� = 0:

Denote its solution by �A0
�
�
�
. (A0) is equivalent to � � �A0

�
�
�
while (V ) is equivalent to

� � �V
�
�
�
.

We can further show that �V
�
�
�
� �A0

�
�
�
is strictly increasing in �, and �V

�
�
�
� �A0

�
�
�
= 0

when � = R+4C. This implies that, when R+4C > 1, �V
�
�
�
< �A0

�
�
�
for all � 2 [R; 1]. Thus,

(V ) cannot be binding if R+4C > 1. By Lemma 4, this means that the optimal disclosure policy

does not recommend veri�cation at all. As a result, we get the following su¢cient condition for

the optimality of a cuto¤ rule:

R >
1

2
and R � 1� 4C.

When q � 2
3 , it can be shown that this condition is also necessary. Together with Corollary 4,

this implies that when q � 2
3 , the optimal disclosure policy recommends veri�cation with positive

probability if and only if
p
2C < R < 1� 4C.

Corollary 4 and Proposition 7 are illustrated in Figures 7(a) and 7(b). In both �gures,

no disclosure is optimal in the white region, and a cuto¤ rule is optimal in the yellow region.
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Both rules recommend no veri�cation. A three-message rule is optimal in the red region and a

negative assortative rule is optimal in the blue region. Both rules recommend veri�cation with

positive probability. Figure 7(a) depicts the case where q < 2
3 , when the veri�cation technology is

relatively imprecise. In this case, the line R = 1�Q (q)C always lies above the line R = 1� 4C.

Consequently, the combined area of the blue and red regions remains constant, which corresponds

to the �rst part of Proposition 7. When q = 2
3 , the two lines coincide. Figure 7(b) depicts the

case where q > 2
3 , when the veri�cation technology is relatively precise. In this case, the line

R = 1 � Q (q)C always lies below the line R = 1 � 4C and determines the boundary between

the yellow region and the combined blue and red regions, which corresponds to the second part

of Proposition 7. The boundary between the blue and red regions does not admit a closed-form

expression and is determined numerically.

White: no disclosure; Yellow: cuto¤ rule; Blue: negative assortative rule; Red: three-message rule

Figure 7(a). Optimal disclosure policy (q = 0:6) Figure 7(b). Optimal disclosure policy (q = 0:8)

Comparing Figures 7(a) and 7(b), we can see that the combined area for negative assortative

and three-message rules (blue and red regions) shrinks as q increases. This is because when q

gets higher, the bene�t of sending m1 gets lower. Consequently, the sender sends m1 less often.

When R > 1
2 , by Corollary 2, the optimal disclosure policy is either a cuto¤ rule or a three-

message rule. In this case, as illustrated in the Figures 7(a) and 7(b), the optimal disclosure

policy is a cuto¤ rule when C is high, and a three-message rule when C is low. Intuitively, when
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C gets lower, it is more di¢cult to convince the receiver not to verify. The sender sends m1 more

often. To summarize, we have

Corollary 5 Suppose F (�) = � and R > 1
2 . A cuto¤ rule is optimal if and only if C �

minf1�R4 ; 1�R
Q(q)g, and a three-message rule if and only if C < minf

1�R
4 ; 1�R

Q(q)g.

When R < 1
2 , the sender faces a more intricate trade-o¤. Once C gets below

R2

2 , no disclosure

can no longer induce immediate acceptance. The sender faces three options: a cuto¤ rule, which

does not send m1, a negative assortative rule, which does not send m�, and a three-message rule,

which sends both m� and m1. Sending m1 leads to potential rejection but imposes no addition

constraint on the persuasion problem aside from the requirement of credibility resource. Sending

m0 ensures certain acceptance but is very costly, requiring credibility resource and inducing

veri�cation bene�t. A slack (A0) means that sending m0 requires extra credibility resource,

relative to sending m1. In order to send m0 for more states below R, the sender needs to opt

for m� over m1 due to the extra requirement of credibility resource. Thus, when C decreases,

veri�cation becomes less costly, but the optimal disclosure policy does not necessarily recommend

veri�cation more often.

For instance, consider the case when q is smaller than 2
3 and R is smaller than but close

to 1
2 , as depicted in Figure 8(a). The optimal disclosure policy is to have no disclosure when

C � R2

2 . When C <
R2

2 , the optimal disclosure policy transitions from a negative assortative rule

for high values of C, to a three-message rule for intermediate values of C, and back to a negative

assortative rule for low values of C. The rationale behind this shift is as follows: as C drops below

R2

2 , the sender must disclose some information to the receiver, otherwise the receiver would verify

the state. The sender starts replacing m0 with m1 to reduce veri�cation bene�t, resulting in a

negative assortative rule. As C decreases further, sending m0 becomes more costly in terms of

the extra requirement of credibility resource. To met the requirement for credibility resource, the

sender further reveals the lowest states, sending m� alongside m1, resulting in a three-message

rule. When C gets close to zero, sending m0 becomes prohibitively costly, and as a result, the

sender rarely sends m0, freeing up most credibility resource. This, in turn, eliminates the need

to send m�. This reasoning leads to the non-monotone behavior of the optimal disclosure policy
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regarding the revelation of the lowest states (sending m�) as C changes.

Furthermore, for some R, all four rules can occur as C varies. For instance, consider again

the case when R is smaller than but close to 1
2 . However, assume instead q >

2
3 , as depicted

in Figure 8(b). The optimal disclosure policy is to have no disclosure for all C � R2

2 . When

C < R2

2 , the optimal disclosure policy transitions from a cuto¤ rule for high values of C, to a

three-message rule for intermediate values of C, and to a negative assortative rule for low values

of C.

Figure 8. The e¤ect of changing C on the recevier�s payo¤

5 Discussions

5.1 Multiple rounds of state veri�cation

One limitation of our information acquisition technology is that the receiver is restricted to

verifying the state only once. This is, however, without loss of generality. Consider a scenario

where the receiver can choose to verify the state for a maximum of k rounds, where k 2 f1; 2; :::g.

Each round of veri�cation incurs a cost of c. We have

Lemma 5 Suppose the receiver can verify the state for a maximum of k rounds, where k 2

f1; 2; :::g. The receiver either does not verify the state or verify as many rounds as possible until
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the state is discovered. When k goes to in�nity, the receiver either does not learn the state or

learns the state for sure in the limit.

To gain some intuition for the lemma, consider the scenario, in which the receiver has the

ability to verify for unlimited rounds. After an unsuccessful round of veri�cation, the receiver�s

belief remains unchanged. This implies that the receiver faces the same decision problem as

at the beginning of the previous round. Consequently, if a receiver has incentive to verify for

one round, then he has incentive to verify for any number of rounds as long as the state is not

revealed. Conversely, if a receiver lacks incentive to verify for one round, then he lacks incentive

to verify at all. Given Lemma 5, we immediately have

Proposition 8 Given k 2 f1; 2; :::g, the sender�s problem can be formulated as

max
x0(�)2[0;1]
��2[0;R]

Z R

��

h
x0 (�) + (1� x0 (�)) (1� q)k

i
f (�) d� +

Z 1

R

f (�) d�

s.t.

Z 1

��
(� �R)x0 (�) f (�) d� � 0; (A0)

Z 1

��
(� �R) (1� x0 (�)) f (�) d� � 0; (A1)

C

Z 1

R

x0 (�) f (�) d� +

Z R

��
(� �R+ C)x0 (�) f (�) d� � 0: (V)

Thus, if we consider the transformation q0 = 1 � (1� q)k and C 0 = C, the problem reduces

to the one in our baseline model and Theorem 1 applies. This implies that when the receiver can

choose unlimited rounds of veri�cation, the optimal disclosure policy is the same as when q = 1,

and Proposition 4 applies.

5.2 Role of commitment power

Communication with detectable deception has been studied in the cheap-talking setting (Dziuda

and Salas, 2018; Balbuzanov, 2019; Levkun, 2021; Sadakane and Tam, 2022; Zhao, 2018). In

cheap talk, detectable deception often leads to equilibrium communication strategies with a
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structure that pools the highest types with the lowest types. In a cheap talk game, low types

can always mimic high types. Therefore, there is no way to truthfully reveal the lowest types

as in a persuasion problem. Such feature can be observed in settings with both exogenous and

endogenous deception detection. With exogenous lie detection, for instance, Dziuda and Salas

(2018) show that the moderate types and the highest types tell the truth, and the lowest types

pretend to be the highest types. With endogenous state veri�cation, for instance, Zhao (2018)

shows that the sender-preferred equilibrium also pools the lowest and the highest types.

Furthermore, Zhao (2018) shows that the receiver never accepts without successful veri�cation

in a cheap-talk setting, otherwise every type would lie. In equilibrium, the lowest types never

bene�t from lying. Only two types of messages are sent in equilibrium, Verify then Reject and

Reject without veri�cation. The fewer low types are lying, the higher the veri�cation e¤ort,

because the purpose of veri�cation is to �nd out the high types. In contrast, the sender is always

able to reveal the lowest types in information design. In the optimal disclosure policy, the lowest

types are revealed to persuade the sender to accept without successful veri�cation. The optimal

disclosure policy never recommends Verify then Reject, and moderate types are pooled and no

veri�cation is recommended. The better the pooling moderate types, the lower the incentive for

veri�cation, because the purpose of veri�cation is to �nd out the low types.
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Appendix A

Proof of Lemma 1. The proof here is identical to the one in the main text except that the

disclosure policy is not necessarily deterministic and is included here for completeness. Suppose

q < 1 and there exists a messagem 2M in the optimal disclosure policy such that a� (m) = 0 and

e (m) = 1 but Pr (m) > 0. There must be a positive measure of � � R such that Pr (mj�) > 0.

Otherwise, state veri�cation always leads to rejection and it would be suboptimal to verify the

state. Consider another information structure that, for all � 2 [0; 1], given which m is sent with

positive probability, truthfully reveals the state with the same probability instead. This results

in a strict improvement, which contradicts the optimality of the original disclosure policy.

Proof of Lemma 2. Our information design problem can be formulated as

max
x0(�);x1(�)2[0;1]

Z R

0
[x0 (�) + x1 (�) (1� q)] f (�) d� +

Z 1

R

(x0 (�) + x1 (�)) f (�) d�

s.t.

Z 1

0
(� �R)x0 (�) f (�) d� � 0, (A0)

Z 1

0
(� �R)x1 (�) f (�) d� � 0, (A1)

C

Z 1

R

x0 (�) f (�) d� +

Z R

0
(� �R+ C)x0 (�) f (�) d� � 0, (V)

8� 2 [0; 1] , 1� x0 (�)� x1 (�) � 0, (TP)
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where x0 (�) and x1 (�) are probabilities that m0 and m1 are sent, respectively, and the last

inequality follows from the law of total probability, i.e., the probabilities that m�, m0 and m1

are sent must sum up to 1. Let �0, �1, � and � (�) be the Lagrange multipliers corresponding to

the constraints (A0), (A1), (V ) and (TP ), respectively, and x�0 (�) and x
�
1 (�) be the maximizers.

The Euler�Lagrange equations are given by

8� > R,
�0 (� �R) + 1 + �C � �̂ (�) > 0) x�0 (�) = 1;

�0 (� �R) + 1 + �C � �̂ (�) < 0) x�0 (�) = 0;
(1)

8� > R,
�1 (� �R) + 1� �̂ (�) > 0) x�1 (�) = 1;

�1 (� �R) + 1� �̂ (�) < 0) x�1 (�) = 0;
(2)

8� < R,
(�0 + �) (� �R) + 1 + �C � �̂ (�) > 0) x�0 (�) = 1;

(�0 + �) (� �R) + 1 + �C � �̂ (�) < 0) x�0 (�) = 0:
(3)

8� < R,
�1 (� �R) + 1� q � �̂ (�) > 0) x�1 (�) = 1;

�1 (� �R) + 1� q � �̂ (�) < 0) x�1 (�) = 0;
(4)

where �̂ (�) := � (�) =f (�). For � > R, de�ne the marginal bene�ts of sending messages m0 and

m1, B0 (�) and B1 (�), by

B0 (�) : = �0 (� �R) + 1 + �C;

B1 (�) : = �1 (� �R) + 1:

For all � > R, B0 (�) ; B1 (�) > 0. This means that we cannot have x
�
0 (�) + x

�
1 (�) < 1. This is

because, in that case, (1) and (2) imply �̂ (�) � max
�
B0 (�) ; B1 (�)

	
> 0, which in turn implies

that (TP ) is binding. Thus, m� is not sent for any � > R.

Similarly, for � < R, de�ne the marginal bene�ts of sending messages m0 and m1, B0 (�) and

B1 (�), by

B0 (�) : = (�0 + �) (� �R) + 1 + �C;

B1 (�) : = �1 (� �R) + 1� q:
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Suppose �0 = � = 0, then B0 (�) > 0. This means that m� is not sent for any � < R.

Otherwise, �̂ (�) � B0 (�) > 0, which in turn implies that (TP ) is binding. Similarly, if �1 = 0,

then B1 (�) > 0, which implies that m� is not sent for any � < R.

Finally, suppose �1 and at least one of �0 and � are strictly larger than 0. De�ne

�� := max

�
min

�
R� 1� q

�1
; R� 1 + �C

�0 + �

�
; 0

�
.

For all � < ��, we must have x�0 (�) = x�1 (�) = 0 and m� is sent with probability 1. This is

because, by construction, �� > 0 implies that for all � < ��, B0 (�) ; B1 (�) < 0. Since �̂ (�) � 0,

(3) and (4) imply that x�0 (�) = x
�
1 (�) = 0. For all � 2 (��; R), at least one of B0 (�) and B1 (�)

is strictly larger than 0. Suppose B0 (�) > 0. We must have x�0 (�) = 1 or �̂ (�) � B0 (�) > 0.

In both cases, (TP ) is binding. Similarly, (TP ) must be binding when B1 (�) > 0. Thus, for all

� 2 (��; R), m� is not sent.

Proof of Corollary 1. In the main text.

Proof of Proposition 1. Follows immediately from Lemma 2.

Proof of Lemma 3. Follows immediately from Theorem 1.

Proof of Lemma 4. From the proof of Theorem 1, the only case in which m1 is sent with

positive probability in the optimal information structure is when �0 < �1 and � > 0. Since � > 0,

(V ) is binding. Since �1 > 0, (A1) is binding.

Proof of Theorem 1. Let �0, �1 and � be the Lagrange multipliers corresponding to the

constraints (A0), (A1), and (V ), respectively, in the sender�s problem formulated in Proposition

1 and let x�0 (�) be the maximizer. The Euler�Lagrange equations are given by

8� > R,
(�0 � �1) (� �R) + �C > 0) x�0 (�) = 1;

(�0 � �1) (� �R) + �C < 0) x�0 (�) = 0;
(5)

8� < R,
(�0 � �1 + �) (� �R) + q + �C > 0) x�0 (�) = 1;

(�0 � �1 + �) (� �R) + q + �C < 0) x�0 (�) = 0:
(6)
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Moreover, the optimality of �� implies

[x�0 (�) + (1� x�0 (�)) (1� q)] + [�0x�0 (�) + �1 (1� x�0 (�))] (�� �R)

+� (�� �R+ C)x�0 (�) = 0
if �� > 0,

[x�0 (�) + (1� x�0 (�)) (1� q)] + [�0x�0 (�) + �1 (1� x�0 (�))] (�� �R)

+� (�� �R+ C)x�0 (�) � 0
if �� = 0.

(7)

Suppose �rst �0 > �1. (5) implies that x
�
0 (�) = 1 for all � > R. (A1) then implies that

x�0 (�) = 1 for all � > ��. Similarly, if �0 = �1 and � > 0, then x�0 (�) = 1 for all � > R. As a

result, x�0 (�) = 1 for all � > �
�.

If �0 � �1 and � = 0, then x�0 (�) = 1 for all � 2 (��; R). Since m1 is not sent below R, if

m1 is sent for a positive measure of � above R, then (V 1) is violated and the receiver would not

verify the state. This means that x�0 (�) = 1 for all � > R as well.

Next, suppose �0 < �1 and � > 0. Consider

� := R+
�C

�1 � �0
.

If � � 1, then m1 is not sent with positive probability above R. (A1) then implies m1 is not

sent with positive probability. If � < 1, then x�0 (�) = 1 for all � 2
�
R; �

�
and x�0 (�) = 0 for all

� 2 (�; 1]. Since �1 > 0, (A1) implies x�0 (�) = 0 for some � 2 (��; R). Since q > 0, (6) implies

that x�0 (�) = 1 for � smaller than but close enough to R. Moreover, by (6), in order to have

x�0 (�) = 0 for some � < R, we must have �0 � �1 + � > 0. De�ne

� := R� q + �C

�0 � �1 + �
.

In this case, x�0 (�) = 1 for all � 2 (�;R) and x�0 (�) = 0 for all � 2 (��; �).

In all cases, m (�) satis�es the descriptions in Theorem 1.

Proof of Proposition 2. Follows immediately from Theorem 1.

Proof of Proposition 3. Follows immediately from (A0), (V ) and the fact that the sender

achieves her highest possible payo¤ when only m0 is sent.
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Proof of Corollary 2. Follows immediately from (A0), (A1) and Proposition 2.

Proof of Corollary 3. Let �0, �1 and � be the Lagrange multipliers corresponding to the

constraints (A0), (A1), and (V ), respectively, in the sender�s problem formulated in Proposition

1. The Lagrangian is given by

L (x0; ��) =

Z R

��
[x0 (�) + (1� x0 (�)) (1� q)] f (�) d� +

Z 1

R

f (�) d�

+�0

Z 1

��
(� �R)x0 (�) f (�) d� + �1

Z 1

��
(� �R) (1� x0 (�)) f (�) d�

+�

�
C

Z 1

��
x0 (�) f (�) d� +

Z R

��
(� �R)x0 (�) f (�) d�

�
:

We have

@L (x0; ��)
@c

=
�

q

Z 1

��
x0 (�) f (�) d� > 0,

@L (x0; ��)
@R

= � (1� x0 (R)) qf (R)� �0
Z 1

��
x0 (�) f (�) d�

��1
Z 1

��
(1� x0 (�)) f (�) d� � �

Z R

��
x0 (�) f (�) d�

< 0,

@L (x0; ��)
@q

= �
Z R

��
(1� x0 (�)) f (�) d� � �cq�2

Z 1

R

x0 (�) f (�) d� < 0.

The result then follows from the envelope theorem.

Proof of Proposition 4. When q = 1, veri�cation never fails. As a result, the messages

Verify then Accept and Verify then Reject can be considered as the same message, which we

denote by m1, and constraint (A1) can be dropped. Thus, our information design problem can

be formulated as

max
x0(�);x1(�)2[0;1]

Z R

0
x0 (�) f (�) d� +

Z 1

R

(x0 (�) + x1 (�)) f (�) d�
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s.t.

Z 1

0
(� �R)x0 (�) f (�) d� � 0, (A0)

C

Z 1

R

x0 (�) f (�) d� +

Z R

0
(� �R+ C)x0 (�) f (�) d� � 0, (V)

8� 2 [0; 1] , 1� x0 (�)� x1 (�) � 0, (TP)

where x0 (�) and x1 (�) are probabilities that m0 and m1 are sent, respectively, and the last

inequality follows from the law of total probability, i.e., the probabilities that m�, m0 and m1

are sent must sum up to 1. Let �0, �, and � (�) be the Lagrange multipliers corresponding to

the constraints (A0), (V ), and (TP ), respectively, and x�0 (�) and x
�
1 (�) be the maximizers. The

Euler�Lagrange equations are given by

8� > R,
�0 (� �R) + 1 + �C � �̂ (�) > 0) x�0 (�) = 1;

�0 (� �R) + 1 + �C � �̂ (�) < 0) x�0 (�) = 0;

8� > R,
1� �̂ (�) > 0) x�1 (�) = 1;

1� �̂ (�) < 0) x�1 (�) = 0;

8� < R,
(�0 + �) (� �R) + 1 + �C � �̂ (�) > 0) x�0 (�) = 1;

(�0 + �) (� �R) + 1 + �C � �̂ (�) < 0) x�0 (�) = 0:

8� < R,
��̂ (�) > 0) x�1 (�) = 1;

��̂ (�) < 0) x�1 (�) = 0;

where �̂ (�) := � (�) =f (�). For � > R, de�ne the marginal bene�ts of sending messages m0 and

m1, B0 (�) and B1 (�), by

B0 (�) : = �0 (� �R) + 1 + �C;

B1 (�) : = 1:

Similarly, for � < R, de�ne the marginal bene�ts of sending messages m0 and m1, B0 (�) and
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B1 (�), by

B0 (�) : = (�0 + �) (� �R) + 1 + �C;

B1 (�) : = 0:

Suppose �0 = � = 0, then B0 (�) = 1 > 0 = B1 (�). m1 is not sent for � < R. If m1 is sent

for a positive measure of � above R, then the receiver would not verify the state. This means

that m1 is not sent for all � 2 [0; 1]. Moreover, since B0 (�) > 0 for all � > R and B0 (�) > 0 for

all � < R, we have m0 is sent with probability 1 for all � 2 [0; 1].

If at least one of �0 and � is nonzero, then for all � > R, B0 (�) > B1 (�), which implies that

m1 is not sent for all � > R. If m1 is sent for a positive measure of � below R, then the receiver

would not verify the state. This means that m1 is not sent for all � 2 [0; 1]. De�ne

�� := max

�
R� 1 + �C

�0 + �
; 0

�
.

Thus, m0 is sent with probability 1 for all � � �� and m� is sent with probability 1 for all � < �
�.

The optimal disclosure policy must be no disclosure or a cuto¤ rule.

Proof of Proposition 5. Let � and � be the Lagrange multipliers corresponding to the

constraints (A) and (V ), respectively, in the sender�s problem when q = 1 in the main text. The

Lagrangian is given by

L (��) = ���+�
Z 1

��
(� �R)x0 (�) f (�) d�+�

�
c

Z 1

��
x0 (�) f (�) d� +

Z R

��
(� �R)x0 (�) f (�) d�

�
:

We have

@L (��)
@c

= �

Z 1

��
x0 (�) f (�) d� > 0,

@L (��)
@R

= ��
Z 1

��
x0 (�) f (�) d� � �

Z R

��
x0 (�) f (�) d� < 0.

The result then follows from the envelope theorem.
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Proof of Proposition 6. Since veri�cation does not occur under the optimal disclosure policy,

the receiver�s expected payo¤ WR is given by

WR =

�
1 + ��

2
�R

�
(1� ��) .

Moreover,

@WR

@��
= R� �� > 0.

By Proposition 5, �� decreases with c. As a result, the receiver�s expected payo¤ also decreases

with c.

Proof of Example 1. Suppose F (�) = � and q = 1. By Proposition 4, the sender will never

send m1. Thus, the sender�s problem becomes

min
��2[0;R]

��

s.t.

1 + ��

2
� R; (A)

c (1� ��)� (R� �
�)2

2
� 0: (V)

By Corollary 4, the optimal disclosure policy is no disclosure if R � min
�p
2c; 12

	
. In this

case, the receiver�s expected payo¤ WR is
1
2 �R, which is strictly decreasing in R.

If R > min
�p
2c; 12

	
, the optimal disclosure policy is a cuto¤ rule, i.e., �� > 0. Moreover,

from (8) and (9) in the proof of Proposition 7, we �nd that when c > 1
4 (1�R), (A) is the

binding constraint, and �� = 2R � 1; when c < 1
4 (1�R), (V ) is the binding constraint, and �

�

= R � c �
p
2c (1�R) + c2. When (A) is the binding constraint, the receiver�s payo¤ WR is

equal to 0. Therefore, we focus on the case where (V ) is the binding constraint.
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The receiver�s payo¤ WR in this case is

WR =

Z 1

��
(� �R) d� = 1

2
(1 + �� � 2R) (1� ��)

=
1

2

�
1�R� c�

p
2c (1�R) + c2

��
1�R+ c+

p
2c (1�R) + c2

�
:

We have

@WR

@R
= R+ c� 1 + c2

p
2c (1�R) + c2

.

Moreover,

@2WR

@c@R
= 1 +

3c2 (1�R) + c3

(2c (1�R) + c2)
3

2

> 0.

Thus, @WR

@R
is maximized at c = 1

4 (1�R).

@WR

@R
jc= 1

4
(1�R) = �

2

3
(1�R) < 0.

Thus, WR must decrease with R.

Proof of Corollary 4. By Proposition 3, no disclosure is optimal if and only if E (�) = 1
2 � R

and
R R
0 (R� �) d� = R2

2 � C:

Proof of Proposition 7. Consider
p
2C < R < 1�4C. By Corollary 4, the optimal disclosure

policy is not no disclosure. This means that one of (A0) and (V ) must bind. Otherwise, the

sender can send more m0 and increase his payo¤.

To determine which constraint is binding, note that given � 2 [R; 1], if (V ) is binding, � is

uniquely pinned down by (V ) and has the expression

�V
�
�
�
:= R� C �

q
2C
�
� �R

�
+ C2. (8)

Similarly, given � 2 [R; 1], if (A0) is binding, � is uniquely pinned down by (A0) and has the

expression

�A0
�
�
�
:= 2R� �. (9)
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Note that

@

@�
(�V (�)� �A0 (�)) = 1�

C
p
2C (� �R) + C2

> 0

for all � > R. Moreover, �V (�) = �A0 (�) if � = R+4C. As a result, (A0) is binding if � < R+4C

and (V ) is binding if � > R+ 4C.

We are now ready to show that (V ) must be binding. Suppose, by way of contradiction,

that it is not. By Lemma 4, we must have � = 1 under the optimal disclosure policy. But since

1 > R + 4C by assumption, we have �V (1) � �A0 (1) and (V ) is binding. Therefore, under the

optimal information structure, (V ) must be binding and � 2 [R+ 4C; 1].

In the remaining of the proof, we check that under the conditions given in Proposition 7,

� 6= 1 in the optimal disclosure policy. This means that m1 is sent with positive probability. To

do so, we �rst write down the sender�s problem as an optimization problem over � and show the

�rst order condition at � = 1 is not satis�ed under the stated conditions. Then, we show the �rst

order condition is necessary and su¢cient for � = 1 to be the maximizer.

De�ne

��A1
�
�; �
�
:= R�

q
(R� �)2 + (1�R)2 �

�
� �R

�2
.

If �� = ��A1
�
�; �
�
, then �� is the solution to

�
1� �

��1 + �
2

�R
�
= (� � �)

�
R� � + �

2

�
,

which means that (A1) binds. Thus, given � and �, ��A1
�
�; �
�
identi�es �� under the assumption

that (A1) binds.

Suppose that (V ) is binding and �� = 0, the sender�s objective function becomes

Pr (a = 1) = 1� �V
�
�
�
+ (1� q) �V

�
�
�
= 1� q

�
R� C �

q
2C
�
� �R

�
+ C2

�
,

which is strictly increasing in �.
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Next, suppose (A1) and (V ) are binding and �� > 0, the sender�s objective function becomes

Pr (a = 1)

= Pr (� � R) + Pr (� < R) [Pr (m = m0j� < R) + (1� q) Pr (m = m1j� < R)]

= 1�R+R� �V
�
�
�
+ (1� q)

�
�V
�
�
�
� ��A1

�
�; �V

�
�
���

= 1�R+
�
C +

q
2C
�
� �R

�
+ C2

�

+(1� q)
�
R� C �

q
2C
�
� �R

�
+ C2 �

�
R�

q
(R� �)2 + (1�R)2 �

�
� �R

�2
��

= 1�R+ q
�
C +

q
2C
�
� �R

�
+ C2

�

+(1� q)

0

@

s�
C +

q
2C
�
� �R

�
+ C2

�2
+ (1�R)2 �

�
� �R

�2
1

A .

Di¤erentiating the objective function yields

dPr (a = 1)

d�
=

qC + (1� q)
q

2C(��R)+C2(C+R��)+C2
r

�

C+
q

2C(��R)+C2
�2

+(1�R)2�(��R)
2

q
2C
�
� �R

�
+ C2

.

Suppose q = 1. Then, dPr(a=1)
d�

> 0, which implies that � = 1 is optimal. The optimal disclosure

policy would never recommend state veri�cation.

Consider next q 2 (0; 1). Let A := 1
1�q . We have

dPr(a=1)

d�
j�=1 < 0

, (A� 1)C
�
C +

p
2C (1�R) + C2

�
+
p
2C (1�R) + C2 (C +R� 1) + C2 < 0

, AC2 �
p
2C (1�R) + C2 (1�R�AC) < 0

If R + AC � 1, then dPr(a=1)

d�
j�=1 > 0. Thus, to identify the condition for

dPr(a=1)

d�
j�=1 < 0, we
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only need to focus on the case when R+AC < 1. Thus,

dPr(a=1)

d�
j�=1 < 0

, A2C4 �
�
2C (1�R) + C2

�
(1�R�AC)2 < 0

, �C (1�R)
�
2A (A� 1)C2 � (1�R) (4A� 1)C + 2R2 � 4R+ 2

�
< 0

, 2A (A� 1)C2 � (1�R) (4A� 1)C + 2R2 � 4R+ 2 > 0

Let

H (R) := 2A (A� 1)C2 � (1�R) (4A� 1)C + 2R2 � 4R+ 2.

The function H (:) is quadratic and H (1) = H (�1) =1. Moreover,

H (1�AC) = �AC2 < 0

and for R 2 (0; 1�AC) and q 2 (0; 1),

H 0 (R) = (4A� 1)C + 4R� 4 < (4A� 1)C � 4AC = �C < 0.

Thus, there is at most one root of H (:) on [0; 1�AC] and it is given by

R� (C) = 1� 4A (A� 1)
4A� 1�

p
8A+ 1

C.

Thus, dPr(a=1)
d�

j�=1 < 0 if and only if R < R� (C).

Finally, we show that the �rst order condition is su¢cient. Let



�
�
�
:=

q
2C
�
� �R

�
+ C2

�
C +R� �

�
+ C2

s�
C +

q
2C
�
� �R

�
+ C2

�2
+ (1�R)2 �

�
� �R

�2
.

Note that dPr(a=1)
d�

7 0 if and only if 

�
�
�
7 � qC

1�q . The �rst order condition is su¢cient if for
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all � 2 [R+ 4C; 1], 
0
�
�
�
< 0.


0
�
�
�

= � C

q
2C
�
� �R

�
+ C2

 �
C +

q
2C
�
� �R

�
+ C2

�2
+ (1�R)2 �

�
� �R

�2
! 3

2

�f2C3 +
�
� �R

� �
6C2 � 3CR+ 3C� + 2R2 + 2R� � 6R� �2 + 3

�

+2C
q
2C
�
� �R

�
+ C2

�
C + 2

�
� �R

��
g.

which is negative if

�
�
�; C

�
= 6C2 � 3CR+ 3C� + 2R2 + 2R� � 6R� �2 + 3 > 0.

We have

d�
�
�; C

�

d�
= 3C + 2R� 2� < 3C + 2R� 2 (R+ 4C) = �5C < 0,

d�
�
�; C

�

dC
= 12C + 3

�
� �R

�
> 0.

Thus, �
�
�; C

�
is minimized at

�
�; C

�
= (1; 0). Since

� (1; 0) = 2 (1�R)2 > 0,

for all � 2 [R+ 4C; 1], �
�
�; C

�
> 0.

Proof of Corollary 5. Since R > 1
2 , (A0) and (A1) imply that the optimal disclosure policy

cannot be no disclosure or a negative assortative rule. The result then follows immediately from

Proposition 7.

Proof of Lemma 5. Suppose the receiver is given k rounds to verify the state. Let V (m) be

the expected payo¤ of choosing the action knowing the state � given message m, V� (m) be the

expected payo¤ of choosing the action without veri�cation, and Vt (m) be the receiver�s expected

payo¤ at the beginning of the t-th round. Denote the veri�cation decision for the t-th round by
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et.

Suppose by way of contradiction that the receiver only veri�es until t < k. Then et = 1 and

et+1 = 0. For round t, et = 1 implies that

qV (m)+(1� q)Vt+1 (m)� c > Vt+1 (m), q
�
V (m)� Vt+1 (m)

�
> c, q

�
V (m)� V� (m)

�
> c;

For round T + 1, et+1 = 0 implies that

qV (m) + (1� q)V� (m)� c � V� (m), q
�
V (m)� V� (m)

�
� c,

which is a contradiction. As a result, if the receiver decides to verify the state, he must continue

until it is successful or round k is reached.

Proof of Proposition 8. Follows immediately from Proposition 1 and Lemma 5.

Appendix B

In Kolotilin et al. (2023), the authors discuss the di¢culty to extend their analysis of persuasion

with non-linear preferences to allow multidimensional actions and suggest that it is unclear what

the appropriate generalization is in this situation. In our model, actions are two-dimensional. We

show here that it is impossible to transform the receiver�s actions into a unidimensional model

so that the assumptions in Kolotilin et al. (2023) are satis�ed. As a result, our model is not a

special case of their model and our results cannot be obtained by directly applying their results.

Since the receiver always chooses optimally when veri�cation is successful, we can de�ne the

sender�s utility V (b; �) and the receiver�s utility U (b; �) according to the corresponding entry in
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the following table.

� � R � < R

V U V U

b1 a� = 1 and e = 0 1 � �R 1 � �R

b2 a� = 1 and e = 1 1 � �R� c 1� q (1� q) (� �R)� c

b3 a� = 0 and e = 1 q q (� �R)� c 0 �c

b4 a� = 0 and e = 0 0 0 0 0

Since the receiver�s action choice b is discrete, assumptions in Kolotilin et al. (2023), which

presume di¤erentiability, are naturally not satis�ed. We check instead the discrete version of their

assumptions. Assumption 2 in Kolotilin et al. (2023) requires that the receiver�s expected utility

is single-peaked in action given any posterior belief. Assumption 4 requires that the receiver

prefers higher actions at higher states and the sender prefers always higher actions.

There is a natural order of b such that the sender always prefers higher actions, i.e., b1 � b2 �

b3 � b4. However, according to this ordering, U (b; �) is not single-peaked in b, which implies

that the receiver�s expected utility is not single-peaked in action for some posterior belief. For

example, for � = R, U (b1; �) = U (b4; �) = 0, and U (b2; �) = U (b3; �) = �c. This suggests that

the common theoretical structure considered by Kolotilin et al. (2023), which applies to several

other applications (Zhang and Zhou, 2016; Guo and Shmaya, 2019; Goldstein and Leitner, 2018)

does not apply to our setting.
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