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Abstract

Since the Great Financial Crisis, the share of deposits—both insured and uninsured—in bank

liabilities has increased substantially. In this paper, we document this fact for the largest US

banks. We show that it can be theoretically explained by the introduction of resolution powers,

i.e. the ability to impose losses on bank shareholders and creditors. In such a world, banks issue

deposits in order to channel resources towards uninsured depositors, imposing losses on insured

depositors and forcing the government to conduct bailouts. Our model suggests that resolution

and deposit insurance must be complemented by equity or long-term debt requirements.
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1 Introduction

Why do banks issue deposits? Considerable research has argued that deposits fulfill a vital role in the

economy: they provide liquidity insurance (Diamond and Dybvig, 1983), help overcome information

frictions in financial markets (Gorton and Pennacchi, 1990), and ensure market discipline (Calomiris

and Kahn, 1991; Diamond and Rajan, 2001). Deposits further allow banks to hedge their interest

rate risk (Drechsler et al., 2021). Given their many functions, it is then unsurprising that banks

heavily rely on deposit financing. In Figure 1, we see that total deposits amounted to around 70%

of total liabilities for the 30 largest banks in the US before the Great Financial Crisis (GFC).1 Since

the GFC, we can see that deposit financing has increased significantly, accounting for almost 90%

of bank liabilities in Q4 2022.

Figure 1: Deposits to liabilities for the 30 largest banks. Source: FDIC.

One possible explanation for this increase are changes in the level of deposit insurance which

reduce the relative cost of deposit financing.2 Figure 2 shows that the increase in deposits is driven

by domestic insured and uninsured deposits which have both increased substantially since the pre-

crisis period. Temporary changes to the level of deposit insurance can only explain the relationship

1We identify the 30 largest banks by asset size in Q4 2022. We choose Q4 2022 as the cut-off point for our sample
given runs on the failure of Silicon Valley Bank in March 2023. See Appendix A for a list of banks in our sample.

2A temporary increase in the deposit insurance limit from USD 100k to USD 250k passed in October 2008
was made permanent in 2010. Furthermore, the Federal Deposit Insurance Corporation (FDIC) provided unlimited
deposit insurance coverage to certain transaction accounts for institutions that chose to participate from October
2008 to December 2010. Under the Dodd-Frank Act, this program was expanded to all institutions for 2011 and
2012. For a more detailed description, see the FDIC report Options for deposit insurance reform (May 1, 2023).
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between insured and uninsured deposits from 2008 to 2012. Permanent changes can perhaps explain

the change in insured deposits but fail to explain the increase in uninsured deposits. Furthermore,

one may be tempted to explain the increase in deposits by the low interest rates of the post-GFC

period. However, the interest rate in the economy, here captured by the fed funds rate, seems to

have little explanatory power for the share of uninsured deposits in bank liabilities.

Figure 2: Domestic uninsured and insured deposits to liabilities for the 30 largest US banks. Source: FDIC.

So why do banks issue more deposits? And perhaps more importantly, why do banks issue

more uninsured deposits? In this paper we offer an explanation, based on the shift in the policy

environment in the aftermath of the GFC. Before 2008, governments could only rescue failing banks

considered ‘too big to fail’ by injecting costly public funds, i.e. using bailouts. Nowadays, in order

to avoid the fiscal and incentive costs of bailouts, governments can put failing banks into resolution.

During a bank resolution, equity and debt write-downs as well as debt-to-equity conversions, often

referred to as ‘bail-ins’, aim to recapitalize banks without the need for public funds. At the same

time, governments continue to provide partial deposit insurance with the goal of curbing financial

fragility.

We develop a model that highlights a delicate interaction between bank resolution and deposit

insurance that operates through the banks’ financing choices. If the government provides little de-

posit insurance, then banks finance using equity and long-term debt. Resolution effectively prevents

bank failure in times of crisis without the need for bailouts, and the economy achieves efficiency.

However, if the government provides a sufficiently large amount of deposit insurance, banks finance

exclusively using insured and uninsured deposits. Then, upon the arrival of unfavourable news
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about the value of bank assets, uninsured depositors withdraw in anticipation of intervention. This

imposes losses on insured depositors. The fragility resulting from the anticipation of bail-ins thus

stands in the way of resolution, and the government is forced to conduct bailouts after all.

The aforementioned mechanism provides a rationale for why banks issue increasing amounts of

uninsured deposits: front running a government with resolution powers. Resolution thus cannot

replace bailouts but instead contributes to financial fragility. If so, then neither policy achieves its

desired goal: resolution does not successfully recapitalize banks, and deposit insurance spurs rather

than curbs fragility.

We obtain these insights in a model of a bank which seeks financing for a risky asset. The

government allows the bank to partially finance using insured deposits. This deposit insurance is

free.3 The remaining financing need is covered by a combination of equity, long-term debt, and

uninsured deposits, all issued to a market of fragmented investors. The key feature of uninsured

deposits is that investors can demand to be repaid in full at any instant, forcing (partial) liquidation

of the asset. The return of the asset is determined partly by an unknown state, which captures

anything that exogenously affects the value of a bank’s asset, i.e. both idiosyncratic or economy-wide

shocks. Additionally, the asset’s per-unit returns can be enhanced by costly and non-contractible

investment. This investment occurs after the quality of the asset is revealed. It captures productive

activities of banks such as monitoring borrowers and conducting due diligence, which affect returns

positively, as well as the prevention of harmful activities such as risk shifting and diversion of funds.

The key friction in our model is the lack of commitment by all parties involved. First, the bank

cannot commit to its ex-post investment strategy which gives rise to moral hazard. In particular,

investment is inefficient if there is a debt overhang, generating a scope for government intervention.

Second, the government is unable to commit to its crisis policy and seeks to recapitalize banks at

minimal costs to the taxpayer, given the tools at hand. Thus, a government with resolution capa-

bilities cannot commit not to impose losses on bank creditors once a bank is taken into resolution.

Similarly, a government without resolution capabilities cannot commit not to bail out bank credi-

tors. Essentially, we model banks as too big to fail, motivated by the many historical examples of

government interventions, e.g. during the GFC or the 2023 banking crises of Silicon Valley Bank in

the US and Credit Suisse in Switzerland.

3This assumption simplifies the exposition but is not necessary for our results. We require that the insurance
premium is actuarially unfair, i.e. too cheap. See Section 5 for a discussion.
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We derive our main result for a government with resolution capabilities. We find that banks

prefer a fragile financing structure if the level of deposit insurance is sufficiently high. That is,

banks issue as many insured deposits as allowed by the regulator and issue uninsured deposits

otherwise. The resulting fragility channels resources towards investors and inflicts losses on insured

depositors in times of crisis, forcing the government to conduct bailouts. Banks therefore trade off

the liquidation loss, i.e. inefficient investment, against the bailout transfer that can be generated

from the government. Whenever the transfer is larger than the liquidation loss, banks optimally

choose a fragile financing structure which is illustrated in Panel A of Figure 3.

B) Resolution & stability, or bailouts.

LA

Insured deposits

Uninsured deposits

Long-term debt

(Inside) equity

A) Resolution & fragility.

LA

Insured deposits

Uninsured deposits

(Inside) equity

Figure 3: Balance sheets for the different types of intervention.

Whenever the level of deposit insurance and thus the corresponding transfer is small, banks

choose a stable financing structure, issuing long-term debt rather than uninsured deposits. Issu-

ing many uninsured deposits opens up the door for coordination among investors to run on the

bank which the bank cannot always prevent. In particular, if all investors demand to be repaid

immediately upon the arrival of unfavourable news, the bank has insufficient resources to do so.

This justifies a run in the first place. With few uninsured deposits, banks prevent liquidation and

resolution ensures efficient investment. Welfare is maximized. Panel B of Figure 3 illustrates the

bank’s balance sheets for a stable financing structure.

We contrast our main results to a scenario in which the government both lacks resolution capa-

bilities and commitment not to to bailout banks at times of crises. In this scenario, banks again limit
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their exposure to uninsured deposits and fully lever up. Panel B of Figure 3 again illustrates the

corresponding bank balance sheet. Issuing few uninsured deposits is privately optimal for the bank

since it prevents asset liquidations and thus increases the scope for government bailouts. Issuing

long-term debt rather than equity is optimal because it maximizes government transfers and thus

minimizes the cost of financing. The market outcome therefore features stability but inefficiently

high levels of debt.

Our model highlights a non-monotone welfare effect of deposit insurance in the presence of

resolution, illustrated in Figure 4. Welfare is maximized if the level of deposit insurance is low. If

the level of deposit insurance increases above a threshold, then the bank chooses a fragile financing

structure. This fragility is privately optimal but socially costly for two reasons: liquidations are

inefficient and transfers are socially costly. For high levels of deposit insurance, welfare is increasing

in the level of deposit insurance. Replacing an additional unit of uninsured deposits with insured

deposits comes at no further fiscal cost: one unit of the asset which otherwise would have been

liquidated can now be used to fully cover the additional unit of insured deposits. With lower asset

liquidations, deposit insurance then facilitates higher investment, leading to an increase in welfare.

Welfare

Deposit insurance
0 1

W ∗

Equilibrium

welfare

Welfare with equity and long-term debt requirements

Figure 4: Welfare.

Our model has important policy implications. The model’s results rely on cheap deposit insur-

ance and therefore highlight the importance of computing fair deposit insurance premia correctly.

Moreover, we stress that fair pricing requires taking the whole liability structure into consideration:
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even though the asset is sufficient to fully cover all insured deposits for a stable financing structure,

uninsured deposits force liquidation, inflicting losses on the deposit insurance facility for a fragile

financing structure. In this context, complementing deposit insurance with long-term debt and

equity requirements prevents fragility directly even if the insurance premium is unfair. Figure 4

illustrates that such a policy strictly increases welfare for a given level of deposit insurance whenever

the equilibrium outcome features fragility. The model thus justifies the minimum maturity of bail-in

debt of existing bank capital regulation.4

Literature Review.—Our paper is closely related to Brunnermeier and Oehmke (2013), in which

financial institutions cannot commit their aggregate debt maturity structure and issue short ma-

turity debt to dilute existing creditors. In our model, banks issue short-term debt—even if they

can commit their debt maturity structure—in order to dilute the claims of insured depositors, and

thus of the government. We describe newly introduced resolution capabilities as a rationale for the

increase in uninsured deposit financing by banks.5

Highlighting this increase as an unintended consequence of resolution is also our contribution

to the literature on bail-ins and fragility. Walther and White (2020) find that the regulator may

conduct too small bail-ins when they are read as bad signals over bank fundamentals, triggering runs

after intervention. We allow investors to act before the regulator. We find fragility in anticipation of

intervention. Schilling (2023) features a non-strategic bank with a fixed balance sheet and a regulator

that can commit its ex-post policy. The paper discusses the optimal timing of intervention if the

resolution authority learns from the number of withdrawals; with earlier intervention, depositors

withdraw in more states of the world. In Keister and Mitkov (2023), banks do not impose bail-ins

if they anticipate bailouts. Informed investors may run on the bank if they expect some bail-ins

to take place, forcing the government to conduct even larger bailouts. Furthermore, the fragility

that we point out may impair the mechanism described by Philippon and Wang (2023). They

show that a regulator can use the distribution of bailout funds to implement the ex-post efficient

4See, for example, the one year minimum maturity requirement for unsecured debt to contribute to "minimum
requirement for own funds and eligible liabilities" (MREL) under the Bank Recovery and Resolution Directive (BRRD)
of the European Union, or to the "total loss absorbing capacity" (TLAC) as defined by the Financial Stability Board
(FSB).

5See also Flannery (1986), Diamond (1991) and Stein (2005) who find that debt maturity may be excessively short
due to asymmetric information on borrower quality. Similarly, Segura and Suarez (2017) find that banks’ maturity
transformation may be excessive if they fail to internalize a pecuniary externality. See also He and Xiong (2012),
Diamond and He (2014), and He and Milbradt (2016).
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allocation—importantly, allowing the worst banks to fail in the process and thus correcting the ex-

ante incentives usually associated with bailouts. However, this may not be feasible if the government

supplies partial deposit insurance and banks issue ample amounts of uninsured deposits.6

Turning to the literature on deposit insurance and fragility, Diamond and Dybvig (1983) show

that banks provide liquidity insurance by issuing demand deposits and investing into illiquid assets.

This liquidity mismatch creates fragility which can be overcome using deposit insurance.7 Demirgüç-

Kunt and Detragiache (2002) provide empirical evidence that deposit insurance has adverse effects

on bank system stability, and these effects are larger when the coverage is extensive and supplied by

the government. Other studies have shown that deposit insurance may lead to excessive risk taking

(Pennacchi, 1987a; Keeley, 1990; Matutes and Vives, 2000; Gropp and Vesala, 2004; Ioannidou

and Penas, 2010). Recent work by Dávila and Goldstein (2022) characterizes optimal deposit

insurance in a structural, heterogeneous depositor version of Diamond and Dybvig (1983), taking

the deposit contract as given. The authors find that fairly-priced deposit insurance is neither

necessary nor sufficient for optimal regulation since banks can adjust their asset allocations.8 Our

findings highlight adjustments on the liability side which lead to fragility if a government with

resolution capabilities provides partial deposit insurance.

These findings resonate with Ahnert et al. (2019), where banks issue unsecured, demandable

debt and encumber assets for secured long-term borrowing. If some of the demandable debt is

insured by the government, banks optimally encumber more assets to issue long-term debt, and

the uninsured holders of demandable debt run in more states of the world. The authors take

6Martynova et al. (2022) analyse the strategic interaction between banks and the resolution authority without
commitment to resolve undercapitalized banks. Banks take inefficiently low private initiative to recapitalize, and
more banks require resolution as a result. Clayton and Schaab (2020) discuss bail-ins and bailouts in the presence
of a bank monitoring problem. Banks issue too little (long-term) bail-in debt because they do not internalize a
pecuniary externality. In Shapiro and Skeie (2015), the regulator trades off injecting capital, revealing its cost of
recapitalisation and potentially induces higher risk-taking in the process, against letting a bank fail, leading to the
possibility of bank runs. In Pandolfi (2021), bail-ins are ex-post efficient but lead to a breakdown of financing markets
ex-ante. A combination of bail-ins and bailouts are the optimal policy. See Bolton and Oehmke (2019) and Clayton
and Schaab (2022) for bail-ins in multinational banks. Farhi and Tirole (2020) discuss bail-ins of shadow bank debt
holders. See Bernard et al. (2022) for an analysis of bail-ins in a model of financial contagion. Mendicino et al. (2017)
and Tanaka and Vourdas (2018) are concerned with optimal capital regulation and conduct numerical exercises for
bail-ins and equity requirements. Dewatripont and Tirole (2018) discuss liquidity support in a bail-in environment.

7See further canonical papers by Gorton and Pennacchi (1990) and Goldstein and Pauzner (2005).
8See also Kareken and Wallace (1978), Acharya and Dreyfus (1989), Dreyfus et al. (1994), Matutes and Vives

(1996), Hazlett (1997), Freixas and Gabillon (1999), Cooper and Ross (2002), Duffie et al. (2003), Pennacchi (2006),
Acharya et al. (2009). See Iyer and Puri (2012) for a study of a bank run under deposit insurance using minute-
by-minute deposit withdrawal data. See De Roux and Limodio (2021) for a recent study on the effect of deposit
insurance increases on the size of insured bank deposits.
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demandable debt as given; we highlight resolution as a rationale for this type of debt and offer an

explanation for the observed increase in uninsured deposits. Finally, our results stand in contrast

with the results of Allen et al. (2018) who augment the Goldstein and Pauzner (2005) model with

both fundamental and panic-driven runs to include different forms of government guarantees. They

find that a deposit insurance payment up to a threshold—as in our model and observed in reality—

prevents fundamental runs and reduces the likelihood of panic runs.

Outline of paper. We introduce the model in Section 2. Section 3 presents our main results. Section

4 highlights welfare implications and policy options. Section 5 discusses the main results. Section

6 presents a benchmark for a government without commitment not to conduct bailouts.

2 Environment

Our model has three kinds of agents: a Banker, a Regulator, and a competitive market of Investors.

The Banker has access to an asset of uncertain quality but is in need of initial financing. Investors

have cash and compete to purchase securities from the Banker. The model evolves over three

time periods. The Banker seeks financing in period 1. At the beginning of period 2 the quality

of their asset is publicly revealed. In light of this information, and in anticipation of a return-

enhancing investment opportunity in period 3, the Banker attempts to renegotiate with Investors.

The game ends in period 3 after the investment takes places, all uncertainty is resolved, and funds

are distributed among Banker and Investors. To this game, we add a Regulator who cannot commit

not to intervene at the end of period 2, after observing the renegotiation outcome. Figure 5 presents

a timeline of events.

t = 1 t = 2 t = 3

Banks seek unit financing

Revelation of asset quality

Renegotiation

Regulator intervention

Return-enhancing investment

Resolution of uncertainty

Distribution of funds

Figure 5: Timeline of events.
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2.1 Banker, Asset & Investment

In period 1, the Banker has no funds but can access a unit of a fully divisible asset which generates

returns in period 3. To initiate the project a unit initial investment is required. Each unit of the

asset generates base returns Xθ ∈ R
+, where θ ∈ {L,H} is an ex-ante unknown state of the world,

with P(θ = H) = p. The state θ is publicly revealed in the beginning of period 2, which triggers

potential renegotiation (see Section 2.3). At that point in the game, any amount of the asset can

be liquidated prematurely at a liquidation price Xθ.

In the spirit of Walther and White (2020), per-unit returns can be enhanced via non-contractible

investment in period 3. Importantly, such an opportunity implies that the balance-sheet with which

the bank enters period 3 matters, as it affects investment incentives and ultimately gives scope for a

Regulator to intervene. More specifically, in the beginning of period 3 the bank has access to a set

of state-independent9 investment opportunities
{(
G(·| e), h(e)

)
∈ ∆(R+) × R

+ : e ∈ [0, ē]
}
, where

G(·| e) are full-support CDFs with G(q| e) > G(q| ê) for all realizations q ∈ R
+, whenever ê > e.10

Without loss of generality we set G(0| 0) = 1.

Investment enhances per unit base returns additively. That is, if the bank has χ ∈ [0, 1] units of

the asset and the realization of the technology is q ∈ R
+, the final returns are given by χ · (Xθ + q).

The function h(e) is the associated cost for G(·| e), which we assume to be convex in e ∈ [0, ē].

Importantly, this cost is paid by the residual claimants (inside and outside equity). That is, h(e)

is shared among holders of bank equity according to their respective shares.11,12 Moreover, for a

choice e ∈ [0, ē], and for χ ∈ [0, 1] units of the asset, we denote the expected continuation return

net of effort costs by y(e, χ), given by

y(e, χ) = χ

∫ ∞

0
q dG(q|e)− h(e) (1)

For technical convenience, we assume that y(e, 1) is twice continuously differentiable, and strictly

9This assumption is immaterial, as only investment opportunities in the low state matter for the results.
10That is, the CDFs are ranked according to first-order stochastic dominance on the ‘effort’ variable e ∈ [0, ē].
11The non-contractable investment and the corresponding cost—borne by inside and outside equity—capture the

agency problem between bank owners and bank managers in a reduced form. One could consider a model in which
bank owners pay out working capital as bonuses to bank managers or as dividends among themselves. Bonuses induce
managers to monitor borrowers, increasing the return on assets.

12This is a critical assumption differentiating our framework from that in Diamond and Rajan(2000, 2001, 2005,
and 2012), where ‘investment costs’ are not transferable between the Banker and other contracting parties.
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concave in e, which implies the same properties for y(e, χ) for all χ ∈ [0, 1]. We denote y∗ =

maxe∈[0,ē] y(e, 1) which is the efficient continuation return, and by e∗ the unique efficient investment.

Since investment is non-contractible, choices must be privately optimal given the liability struc-

ture. Equity is protected by limited liability, so investment is characterized by the solution to

E(χ,B| θ) = max
e

∫ +∞

0
max

{
χ · (Xθ + q)−B, 0

}
dG(q| e)− h(e) (E)

where B is the level of debt outstanding. We denote the resulting effort by e(χ,B| θ).

Whenever there is strictly positive probability that χ · (Xθ + q) − B ≤ 0, some of the returns

to investment accrue to outside creditors and not the residual claimants who incur the investment

costs. In these cases investment is distorted downwards. This is the classic debt-overhang problem.

From the full-support assumption we can see that investment is inefficiently low whenever Xθ < B;

that is, when base returns cannot fully cover the outstanding debt.13

Finally, we make the following assumption regarding the asset returns.

Assumption 1. E[X] > 1 > XL + y∗ and XL ≥
∫∞
0 q dG(q|ē)

The first inequality implies that base returns are sufficient to make the asset ex-ante profitable. The

second inequality implies that low quality assets are not profitable even with efficient investment.

The third inequality says that the asset base returns exceed the asset enhancing investment returns

even at the highest level of effort. Jointly these assumptions capture the idea that the high state

corresponds to ‘normal times’ while the low state is a sufficiently bad crisis. Moreover, that invest-

ment is small relative to the outstanding asset. One interpretation is that Xθ is the accumulation

of past investments. Note that Assumption 1 implies that XL > y∗.

2.2 Investors & Contracts

In period 1, there is a market with an infinite measure of infinitesimally small potential Investors

who are risk-neutral, are endowed with a unit of money, and do not discount the future. The Banker

needs to cover the unit initial investment by borrowing from a total measure 1 of Investors. This

assumption is warranted by the observed dispersion in banks’ depositor bases. As an example, the

13Indeed, we have 0 < B −Xθ ≤ B
χ
−Xθ, so there is an interval of positive values where χ · (Xθ + q) − B < 0.

Since all distributions have full support this interval has strictly positive probability.
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two largest external depositors of Silicon Valley Bank were Circle Internet Financial and Sequioa

Capital with deposits as a share of total assets of 1.53% and 0.46%, respectively.14 Note that our

model shares the assumption of fragmented investors, giving rise to coordination and commitment

problems, with Brunnermeier and Oehmke (2013) and Admati et al. (2018).

The Banker chooses a portfolio of securities c ∈ C, which is then priced competitively by the

market. We call such c ∈ C a ‘contract.’ The contract space C comprises of mixtures of four kinds

of securities: (i) equity (E), (ii) long-term debt (D), (iii) uninsured deposits (d), and (iv) insured

deposits (δ).15 A contract c ∈ C can be identified with the shares of the unit initial investment

raised by each of these securities:

C =
{
(ξE , ξD, ξd, ξδ) ∈ [0, 1]4 : ξE + ξD + ξd + ξδ = 1

}

For instance, a contract c = (0.5, 0, 0, 0.5) raises half of the initial investment using equity and half

using insured deposits. We now describe the properties of these component securities in more detail.

Equity.— An equity contract is parameterized by a share γ ∈ [0, 1] of the final equity value

in Equation (E) that each equity Investor receives. Importantly, this implies that ‘outside’ equity

participates in investment costs, as was explained in the previous section.

Long-term Debt.— A long-term debt contract is parameterized by a promised repayment D ∈

R
+. It matures in period 3 after all uncertainty is resolved and has the right to seize final output

after all more senior claims have been settled.

Uninsured deposits.— An uninsured deposit contract is parameterized by a promised repayment

d ∈ R
+. It matures in period 2. Uninsured deposits are a ‘hard claim’ on the asset in that holders

can force early liquidation to obtain the promised repayment. Without loss of generality, we model

uninsured deposits as senior to long-term debt.16

Insured Deposits.— We assume that the Regulator commits to fully insure some depositors

without cost to the Banker. Insured deposits enjoy seniority over all other claims. The existence

of such insurance is the identifying feature that makes our financing environment an abstraction of

bank financing. Given this insurance, insured depositors demand a gross interest rate of one. We

14Source: Bloomberg News, June 23, 2023. The FDIC mistakenly released an unredacted list of Silicon Valley
Bank deposits in response to a News Freedom of Information Act request.

15See Section 5 for a discussion of state-contingent contracts.
16This assumption is without loss given the threat of liquidation at the interim which renders uninsured deposits

senior to long-term debt even if it is contractually junior.
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assume that the Regulator limits the amount of insured deposit financing: ξδ ≤ ξ̂δ. Consequently,

the Banker needs to raise at least 1− ξ̂δ from other types of Investors.

The assumption on free deposit insurance warrants discussion. Previous studies have shown that

deposit insurance is not fairly priced (Merton, 1977; Pennacchi, 1987b; Allen and Saunders, 1993).

Other studies have shown that fair pricing may not be feasible (Chan et al., 1992), not desirable

(Freixas and Rochet, 1998), or not necessary and sufficient for efficiency (Dávila and Goldstein,

2022). Furthermore, as will become clearer in the analysis below, a zero deposit insurance premium

is the fair premium for the efficient contract. One part of our contribution is to highlight negative

consequences from deposit insurance that is ‘too cheap’ for the equilibrium contract.

We denote the set of Investors by I, and the subset of Investors holding debt claims by D. For

each i ∈ I, we write ci for the security Investor i holds initially. For example, ci = D means that

Investor i is a long-term debt Investor. The securities different Investors hold determine a seniority

structure, which we model as a total order, �, on the set of Investors I. We say that i is (weakly)

more senior to j, whenever i � j. For instance, if ci = δ, cj = d and ck = D, then i ≺ j ≺ k.

Initially, Investors who hold the same security rank pari passu, i.e. ci = cj implies i ∼ j.

2.3 Renegotiation

A key friction in our model is the inability of parties to commit not to renegotiate the existing

contracts. In particular, after the state θ ∈ {L,H} is revealed in period 2, the Banker renegotiates

(on behalf of all equity) with debt Investors by making simultaneous take-it-or-leave-it offers of new

securities to each type of Investor.17 If an individual Investor rejects the new offer, they keep their

existing security. If they accept, they forfeit the old security, and hold the new one.

In particular, the Banker offers each Investor a new security by choosing a profile from

S =

{(
αi, Bi

)
i∈D

: αi ≥ 0,

∫
αidi ≤ 1, Bi ≥ 0

}

That is, the Banker offers each Investor a share of equity, αi, and a promised debt payment, Bi. The

seniority structure, �, is inherited from the initial contract and is not subject to renegotiation. As

a consequence, if i ≺ j, then Investor i can become (weakly) junior to Investor j only by accepting

17Simultaneity is essentially expressing the idea that Investors do not observe the Banker’s offers to other Investors;
nor do individual Investors communicate with each other.
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an equity contract during renegotiation.

Each choice of security s ∈ S in state θ ∈ {L,H} by the Banker, induces an extensive-form game

Gθ
s (c) among Investors, the Regulator and the Banker. In Gθ

s (c) Investors simultaneously accept or

reject the Banker’s offer s ∈ S. Then, the Regulator observes Investors’ choices and chooses a

policy. Finally, the Banker chooses the continuation investment e ∈ [0, ē]. The precise definition of

the game Gθ
s (c) is notation-heavy and relegated to Appendix B. In what follows, we describe the

Regulator’s policy choices.

2.4 Regulator & Policies

As mentioned above, we are interested in studying the consequences of a Regulator who cannot

commit their ex-post policy. The Regulator observes the outcome of the renegotiation game and

chooses a policy action to maximize ex-post welfare.18

The Regulator has the following tools at hand. First, the Regulator can inject public funds which

are used to reduce the outstanding debt. We call such injections bailouts. The use of public funds

incurs a cost κ > 1 per unit. However, when conducting bailouts, we assume that the Regulator

acts as if the use of public funds is not costly. This assumption has two consequences. First,

it makes the lack of commitment problem more pronounced. Second, conditional on bailing out,

the Regulator fully removes any debt overhang, which simplifies the exposition. This modelling

assumption captures the idea that the Regulator does not fully internalize the full cost of bailouts

at the time of intervention. Furthermore, bailouts frequently occur in reality, often with delayed

transfers via loss guarantees.19

Second, we consider the case where the Regulator has coercive powers to alter existing debt and

equity arrangements without having to respect voluntary participation constraints. In particular,

the Regulator can mandate write downs of either debt or equity, or conduct debt-to-equity swaps.

We interpret such intervention as bail-ins.

A policy for the Regulator is a choice of security ŝ = (α̂i, B̂i)i∈D ∈ S, together with a bailout

transfer, b ∈ R
+, which is incorporated in the total asset value. Such a choice alters the liabilities

by changing promises to (B̂i)i∈D, and redistributes equity across (inside and outside) equity holders

18This is in contrast to Walther and White (2020), where regulators move before the rest of the market.
19E.g. the Swiss government provided loss guarantees of USD 9bn to UBS during the takeover of failing Credit

Suisse in June 2023. See Acharya et al. (2021) for empirical evidence.
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and debt Investors through the new equity shares (α̂i)i∈D. While allowing for coercive powers, we

assume that the Regulator does not treat some asset class preferentially:

Assumption 2. Given a security profile s, security ŝ satisfies the following restrictions:

1. Adherence to the face value of debt securities:

B̂i + α̂i · E(χ, B̂ − b| θ) ≤ Bi for all i ∈ D, where B̂ =

∫

D

B̂idi

2. Adherence to the seniority structure:

B̂j = α̂j = 0 if B̂i + α̂i · E(χ, B̂ − b| θ) < Bi for all i, j ∈ D s.t. i ≺ j

To give an example, Assumption 2 implies that the Regulator cannot fully write down uninsured

deposits while converting more junior long-term debt claims into equity. Similarly, the Regulator

cannot fully write down all equity and long-term debt claims and convert all uninsured deposits into

equity, if the post-resolution equity value exceeds the face value of uninsured deposits. Assumption

2 captures the idea that a government that does not satisfy these restrictions is subject to be

challenged in court.

We now explain how different policy regimes can be thought of as constraints in the policy

choices of the Regulator. We first consider the least constrained regime in which the Regulator can

conduct both bailouts and bail-ins, which we consider in our main analysis (Section 3). Formally,

this environment is characterized by the fact that the policy choice (ŝ, b) ∈ S×R
+ by the Regulator

does not have to respect voluntary participation constraints of Investors and the Banker. Effectively,

the Regulator can coerce parties into ‘accepting’ ŝ.

Second, we consider a regime where only bailouts are available (Section 6). Formally, this envi-

ronment is characterized by the constraint that the Regulator must respect voluntary participation.

It is without loss of generality to assume that in this case ŝ = s. Indeed, if the Banker anticipates

ŝ 6= s, which satisfies voluntary participation, then he can just offer s, which induces the same

strategy profile for Investors.20

20If the Regulator could commit not to intervene, this can be viewed as a constraint that ŝ = s and b = 0.
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2.5 Ex-Ante Solution Concept

When the Banker posts an initial contract in period 1, the market ‘prices’ this contract by deter-

mining the parameters (γ,D, d, δ) of each component security defined in Section 2.2. Due to the

externalities among Investors, the market must take into account the continuation strategy profile.

Whenever a contract c ∈ C achieves financing, it induces a symmetric information extensive-

form game between the Banker, the Investors and the Regulator. We denote by Σ(c) the set of

subgame-perfect equilibria of this game. Formally, we derive a system of pricing equations for each

c ∈ C and σ ∈ Σ(c), whose solution—when it exists—determines (γ,D, d, δ). Whenever a solution

does not exist, we say that c ∈ C fails to achieve financing under σ ∈ Σ(c).

Because of the potential multiplicity of continuation equilibria following a contract posted by

the Banker, we introduce the following notion of robustness. We denote by V (c, σ) the Banker’s

ex-ante payoff from a profile of strategies σ, after posting contract c ∈ C.

Definition 1. A contract c∗ ∈ C is robustly optimal if

inf
σ∗∈Σ(c∗)

V (c∗, σ∗) ≥ sup
σ∈Σ(c)

V (c, σ) for all c ∈ C

Essentially, a robustly optimal contract is optimal in a strong sense: even in the worst-case

scenario for the continuation equilibrium, it delivers at least as high a payoff as the best-case

scenario for any other contract. In what follows, we will assume that the Banker chooses robustly

optimal contracts ex-ante.

2.6 Welfare

Welfare is given by the sum of Banker and Investor payoffs, minus the cost of bailouts:

W = E
[
X + Y (c, σ|θ)− 1− (κ− 1) · b(c, σ|θ)

]

where b(c, σ|θ) are government bailouts and Y (c, σ|θ) are the investment returns which depend on

the chosen contract c, the equilibrium σ ∈ Σ(c), and the state θ ∈ {L,H}.

Welfare is maximized for a contract c ∈ C if investment is efficient without the use of government
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funds for all equilibria σ ∈ Σ(c) and in all states θ ∈ {L,H}:

W ∗ = E [X] + y∗ − 1

It is straightforward to show that such a contract exists. Consider a pure equity contract with

ξE = 1. Without any debt outstanding, assets are never liquidated, no renegotiations with any debt

investors take place, and there is no debt overhang and hence no bailouts. Investment is efficient in

all equilibria. An equity contract also achieves financing since E[X] + y∗ > 1.

In a benchmark model without a Regulator—or equivalently, in a model with a Regulator that

can commit not to bailout and that does not supply deposit insurance—the Banker would issue

a contract that ensures efficient investment in all states and in all equilibria, given its market

power vis-à-vis Investors. This highlights that there is no efficiency role for debt, neither insured

nor uninsured, neither demandable nor non-demandable. While this makes our model a stark

abstraction of reality, it does not conflate arguments and allows us to focus on a particular channel:

the effect of government intervention policies on the liability structure of banks, particularly on the

level of uninsured deposits issued by banks.

We are now ready to commence the main analysis of our paper.

3 Equilibrium with resolution

Suppose the Regulator has coercive powers to alter contracts as outlined in Section 2.4.

During the financing stage, the Banker posts a contract c = (ξδ, ξd, ξD, ξE) ∈ C to the market of

competitive Investors. The prices of debt and equity, (d,D, γ), are not only a direct function of c,

but also of the strategies of debt holders during renegotiation, of the Regulator during intervention,

and of the ultimate shareholders of the bank during investment, all induced by c. In other words,

there are many moving parts that affect the Banker’s equilibrium payoff of each contract.

However, both Banker and Investors perfectly anticipate that the government faces a commit-

ment problem at time 2. In particular, once a bank is taken into resolution, the Regulator will fully

recapitalize the banks at minimal cost. First, she uses coercive powers, converting all uninsured

deposits and long-term debt into equity. Importantly, she cannot commit not to bail in uninsured

depositors. If bail-ins are insufficient to fully remove the debt overhang, the Regulator uses bailouts.
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The Regulator’s commitment problem allows us to simplify the expression of the Banker’s payoff

for each contract c ∈ C significantly (Lemma 1 below). To state the lemma, we introduce some more

notation. For each profile σ, we denote by λσ ∈ [0, 1] the fraction of uninsured depositors rejecting

the offer and thus withdrawing rather than rolling over. χσ ∈ [0, 1] denotes the share of the asset

still remaining in the bank after potential liquidation for profile σ.21

Since the Regulator fully removes the debt overhang using bail-ins and bailouts, bailouts in state

L—for a given contract c and in an equilibrium σ ∈ Σ(c) with a share of assets χσ remaining in the

bank—are therefore given by

b(c, σ|L) = max{ξδ − χσ ·XL, 0}

which is piece-wise linear and weakly decreasing in χσ. Once the debt overhang is alleviated,

investment returns Y (c, σ|L) in state L, in any equilibrium σ ∈ Σ(c), are given by

Y (c, σ|L) = max
e

χσ ·

∫ ∞

0
q dG(q|e)− h(e)

As a maximum of increasing linear functions in χσ, Y (c, σ|L) is a strictly increasing, strictly convex

function in χσ.

It turns out that these two items, bailouts and investment in the low state, are sufficient to

describe the equilibrium payoff of any financing contract:

Lemma 1. Consider contracts c, c′ ∈ C and continuation equilibria σ ∈ Σ(c), σ′ ∈ Σ(c′). Then

V (c, σ) > V (c′, σ′) if and only if ψ(c, σ) > ψ(c′, σ′), where

ψ(c, σ) = Y (c, σ|L) + b(c, σ|L)

Proof. See Appendix C.1.

Intuitively, the asset returns in the good state are sufficiently high such that there is never a

debt overhang. In other words, the face value of debt outstanding for all conceivable contracts

c ∈ C is always below XH . Hence, the Banker optimally prevents liquidations, never receives any

bailout funds, and achieves efficient investment. Given perfect competition in financing markets,

21For the formal definitions, see Appendix B.
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differences in equilibrium payoffs across contracts are then determined by the differences in resources

generated in the low state. That is, a contract that maximizes the Banker’s payoff maximizes the

sum of investment returns and the government transfer in the low state. Importantly, the function

ψ(c, σ) is strictly convex, as illustrated by Figure 6.

Y (c, σ|L), b(c, σ|L), ψ(c, σ)

χσ

0 1

y∗

ξδ

ξδ/X
L

Figure 6: The strict convexity of ψ(c, σ).

We are now ready to state the main result of our paper.

Proposition 1. Let C∗ be the set of (robustly) optimal contracts. Then, C∗ is non-empty, and any

c = (ξE , ξD, ξd, ξδ) ∈ C∗ satisfies the following:

If ξ̂δ > y∗, then c =
(
0, 0, 1− ξ̂δ, ξ̂δ

)
, and we have:

1. Fragility: All uninsured depositors demand immediate repayment, λσ = 1 for all σ ∈ Σ(c).

2. Maximal leverage: ξE = 0.

3. Inefficiency in all σ ∈ Σ(c).

If ξ̂δ ≤ y∗, there exists B̄d(c) ∈
[
0, XL + y∗ − ξδ

]
such that ξd ≤ B̄d(c). Moreover, we have:

1. Stability: No uninsured depositor demands immediate repayment, λσ = 0 for all σ ∈ Σ(c).

2. Irrelevant leverage: For any ξ ∈ [0, 1], there exists c′ = (ξE , ξD, ξd, ξδ) ∈ C∗, with ξE = ξ.

3. Efficiency in all σ ∈ Σ(c).

Proof. See Appendix C.2.
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Proposition 1 states that—if the government supplies a sufficiently high level of deposit insurance—

it is optimal to issue insured deposits up the regulatory limit and finance the remainder using unin-

sured deposits. Upon the arrival of bad news about asset returns, all uninsured depositors withdraw

in anticipation of government bail-ins, forcing liquidation of the asset. This constitutes one source of

inefficiency. Furthermore, in order to ensure full repayment of all insured deposits, the government

is forced to transfer resources into the bank, which constitutes another source of inefficiency. Thus,

the private financing arrangement is not socially optimal.

Whenever the government supplies little deposit insurance, it is optimal to finance using limited

amounts of uninsured deposits and primarily issue insured deposits, long-term debt and equity. Since

neither long-term debt nor equity Investors have the right to force liquidation upon the arrival of bad

news, all of the asset is held within the bank until period 3. Bail-ins then ensure efficient investment

without the use of public funds. The private financing arrangement is also socially optimal.

The provision of cheap deposit insurance presents a trade-off to the Banker: issuing many

uninsured deposits leads to inefficient liquidation but forces the government to transfer resources

into the bank, which reduces the cost of financing. Banks prefer to issue uninsured deposits if this

transfer is sufficiently big.

We illustrate this result by considering a limited contract space in which the Banker can issue

insured deposits up to the government-mandated limit but otherwise can only choose between long-

term debt and uninsured deposits: ξδ ∈ [0, ξ̂δ], ξd ∈ {0, 1− ξδ}, and ξD = 1− ξδ − ξd.

Consider first a long-term debt contract cD with ξd = 0, inducing continuation equilibrium

σD. Without any uninsured deposits outstanding, no assets are liquidated (χσD
= 1). During

renegotiations, the Banker cannot do better than offering the same long-term debt contract again,

given the Regulator’s resolution strategy; Investors accept. The Regulator then bails in all long-term

debt to remove the debt overhang, if feasible; any remaining debt overhang stemming from insured

deposits requires bailouts: b(cD, σD|L) = max{ξδ −XL, 0}. Investment is efficient. It follows that

ψ(cD, σD) = y∗ +max{ξδ −XL, 0} (2)

The first panel of Figure 7 depicts Equation (2) as a function of ξδ. The Banker’s payoff is a weakly

increasing function of ξδ. It is strictly increasing whenever ξδ > XL, and bailouts are required to

remove the debt overhang; we call this region in ξδ the bail-in infeasibility region.
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ψ(cD, σD)

0
0 1

y∗ + 1−XL

y∗

1−XL

XL

Bail-in feasibility
region

Bail-in infeasibility
region

ψ

ξδ

ψ(cd, σd)

0 11−XL

Full liquidation
region

Partial liquidation
region

Figure 7: Resources with long-term debt (ξd = 0, LHS) or uninsured deposits (ξd = 1− ξδ, RHS).

Consider next an uninsured deposit contract cd with ξd = 1− ξδ, inducing continuation equilib-

rium σd. The liquidation value of the asset in the low state is given by XL. Full liquidation occurs

whenever ξd ≥ XL and λσd
= 1, resulting in χσd

= 0. Intuitively, the Banker cannot repay all

uninsured deposits even if all uninsured depositors roll over. All uninsured depositors withdraw. As

a consequence, investment is zero, and the Regulator is forced to fully repay all insured deposits:

ψ(cd, σd) = ξδ (3)

Suppose ξd < XL and thus χσd
> 0 for all equilibria. Since all uninsured deposits are safe even

in the low state, their total face value is given by ξd = 1 − ξδ. The bank generates the following

resources as a function of χσd
at the interim:

ψ(cd, σd) = Y (cd, σd|L) + max{ξδ − χσd
XL, 0}

Given the strict convexity of ψ(cd, σd), consider the two extremes where all uninsured depositors

roll over, λσd
= 0 and thus χσd

= 1, and where all uninsured depositors withdraw, λσd
= 1 and

thus χσd
= 1 − 1−ξδ

XL . If χσd
= 1, then the uninsured deposit contract delivers the same payoff as
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the long-term debt contract. If χσd
= 1− 1−ξδ

XL , the uninsured deposit contract delivers

ψ(cd, σd) = Y (cd, σd|L) + (1−XL) (4)

The second panel of Figure 7 depicts Equations (3) and (4) as a function of ξδ.

A robustly optimal contract maximizes the resources available in the low state (in all continuation

equilibria), subject to the limit on insured deposits, ξδ ≤ ξ̂δ. We say that a fragility region exists

whenever there is a region of insured deposits ξδ for which the equilibrium payoff from financing using

uninsured deposits—featuring liquidation at the interim—is strictly larger than the equilibrium

payoff from financing using long-term debt. Figure 8 combines both payoff functions and helps

illustrate the result of Proposition 1. It also clearly shows that the existence of a fragility region,

with its lower bound given by y∗.

ψ

ψ(cD, σD)

ψ(cd, σd)

0
0 1

y∗ + 1−XL

y∗

y∗

ψ

ξδ

ψ(c, σ)

0 1

Stability region Fragility region

y∗ ξ̂δ

Figure 8: Characterising the fragility region and the bank’s equilibrium resources.

In the fragility region, the Banker prefers to maximize the Regulator’s deposit insurance transfer

and forego investment returns correspondingly. If insured deposits are low, ξδ < y∗, the Regulator’s

ex-post transfer in the low state is small relative to the investment loss of having to liquidate all

assets. We refer to this region as the stability region.

The second panel of Figure 8 contains the representation of the Banker’s equilibrium investment

and bailout resources ψ(c, σ) in the low state as a function of ξδ, given by the upper envelope of
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ψ(cD, σD) and ψ(cd, σd). Optimally, the Banker issues as many insured deposits as possible. If the

constraint on insured deposits is binding in the fragility region, as illustrated here, then the Banker

finances the remaining share of the asset using uninsured deposits.

The results generalize to mixed securities: by the convexity of ψ(c, σ) in χσ, the relevant con-

tracts to compare are the contracts with a) the highest level of liquidation, generating the same

payoff as cd, and b) with the lowest level of liquidation, generating the same payoff as cD.

Having described the equilibrium contract, the next section derives the equilibrium welfare and

discussed policies to address the inefficencies.

4 Welfare & Policy

Equation (5) and Figure 9 depict the social welfare generated by the equilibrium financing contract

as a function of the regulatory limit of insured deposits in the economy:

W (ξ̂δ) = W ∗ − (1− p) ·





0 if ξ̂δ ≤ y∗

[
y∗ + (κ− 1)ξ̂δ

]
if ξ̂δ ∈

(
y∗, 1−XL

]

[
y∗ − Y (cd, σd|L) + (κ− 1)

[
1−XL

] ]
otherwise

(5)

Welfare is maximized in the stability region in which neither liquidations occur, nor bailouts are

necessary in order to achieve efficient investment. Once the level of insured deposits crosses the

threshold, ξ̂δ > y∗, the fragility induced by the uninsured deposit contracts reduces welfare both by

forcing deposit insurance payments and by foregoing all continuation investment returns. Welfare

is decreasing in ξ̂δ as the required insured deposit insurance payments increase.

For high levels of deposit insurance, ξ̂δ > 1 − XL, welfare is increasing in ξ̂δ. Replacing an

additional unit of uninsured deposits with insured deposits comes at no further fiscal cost: one

unit of the asset which otherwise would have been liquidated can now be used to fully cover the

additional unit of insured deposits. With lower asset liquidations, deposit insurance then facilitates

higher investment, leading to an increase in welfare.

Long-term debt and equity requirements.—Our model emphasizes a social cost as an unintended

consequence of increasing the level deposit insurance or introducing a resolution regime, operating
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W ∗
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Figure 9: Welfare.

through the financing contract choice by the Banker. The Regulator can address the resulting

fragility by requiring that all uninsured liabilities are issued in the form of long-term debt or equity.

Welfare is then given by

W̃ (ξ̂δ) = W ∗ − (1− p) ·





0 if ξ̂δ ≤ XL

(κ− 1)
(
ξ̂δ −XL

)
otherwise

(6)

Figure 9 illustrates that such a policy strictly increases welfare for all ξ̂δ < 1. We thus high-

light the complementarities in deposit insurance and minimum maturity capital requirements when

governments intend to resolve failing banks.

This is in line with existing regulation. According to the definition of the Financial Stability

Board (FSB), debt securities contribute to a bank’s ‘total loss absorbing capacity’ (TLAC) only

with a maturity of one year.22

Fair deposit insurance premia.—First, an actuarially fair deposit insurance premium forces the

Banker to internalize the fiscal cost of its liability choice. The trade-off between generating fiscal

22See also the minimum maturity requirement for unsecured debt to contribute to ‘minimum requirement for own
funds and eligible liabilities’ (MREL) under the Bank Recovery and Resolution Directive (BRRD) of the European
Union.

24



transfers from the Regulator and ensuring efficient ex-post investment tips in favour of the latter.

Second, the Regulator can tighten the limit on insured deposits, and demand that ξ̂δ ≤ y∗. This

again lowers the fiscal transfer available to the Banker up to a point where the Banker prefers to

issue long-term debt, inducing efficient ex-post investment.

In reality, it may be hard for the Regulator to compute the appropriate deposit insurance

premium, and to determine at which level of ξ̂δ the limit on insured deposits becomes binding.

Furthermore, our result highlights that simply measuring the overall asset risk against the amount

of deposit insurance is insufficient if uninsured depositors force liquidations and thus inflict losses on

the more senior insured deposits. In other words, in order to compute the fair insurance premium,

one has to consider the whole liability structure.

5 Discussion

The role of commitment. In our model lack of commitment to future actions is pervasive: the Banker

cannot commit not to renegotiate with investors, nor commit to any investment policy; uninsured

depositors cannot commit to roll-over; and the government cannot commit to any resolution policy.

We believe this to be the most realistic framework for our application.

Nevertheless, it turns out that the Banker’s inability to commit is irrelevant for our conclusions.

This is because the Banker can fine-tune the ex-ante liability structure, perfectly anticipating ev-

erybody’s future strategies, including the fragility induced by depositors as well as the government’s

recapitalization policy.

The Regulator’s inability to commit is the critical aspect of our environment. The inability not

to bail out if bail-ins are unsuccessful ensures that the bank receives a transfer which induces the

Banker to opt for a fragile financing structure ex-ante. Furthermore, the inability to commit not

to bail-in is essential: once the initial balance sheet is determined it is (interim) optimal for the

Regulator to promise not to bail-in if the financing structure is fragile. This can be seen in Figure

9: conditional on the bank issuing uninsured deposits, it is optimal to extend deposit insurance to

all uninsured depositors and achieve welfare W̃ (1) > W ∗(ξ̂δ) for all ξ̂δ < 1.

Disciplining effect of demandable debt.—The previous section has demonstrated that the Banker

issues contracts that induce fragility whenever the limit on cheap deposit insurance is sufficiently
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high (y∗ < ξ̂δ). Uninsured deposits become the means of extracting resources from the Regulator

providing deposit insurance, at the social cost of inefficient investment. We interpret this efficiency

loss as ill-discipline. This result stands in contrast with the findings in Diamond and Rajan (2000,

2001, 2005, and 2012). In their seminal papers, demandable debt holders can threaten to force

liquidation of the asset. This disciplines a Banker who would like to extract private rents due

to abilities inalienable to inside equity. Deposit insurance removes this threat of liquidation and

consequently uninsured deposits and long-term debt become alike in terms of discipline.23

Our findings align with those of Diamond and Rajan in the sense that deposit insurance leads

to ill-discipline. However, uninsured deposits are the means of extracting payments from the gov-

ernment. That is, they facilitate this breakdown of discipline.

An important distinction between our respective frameworks is that Diamond and Rajan (2000,

2001, 2005, and 2012) rule out resolution as a measure to achieve efficiency from the outset. The

reason is that key productive resources are inalienable to initial inside equity holders, and therefore

efficiency dictates that they remain part of the bank at all times. Alternatively, we assume that

assets can be managed efficiently as long as they remain within the institution, and not necessarily

in the hands of the initial inside equity holders. We believe this to be the more realistic assumption,

especially in the context of large institutions like banks considered ‘too big to fail’.

State-contingent contracts.—We could allow the Banker to issue state-contingent contracts. Our

main result is that the Banker optimally issues insured deposits, which are not state-contingent

and enforce liquidation upon the arrival of bad news on asset quality. The Banker could have

alternatively issued an equity contract or a long-term debt contract which is renegotiated in the low

state. Equity is naturally state-contingent, and resolution renders long-term debt contracts de facto

state-contingent. However, it is not optimal to issue these type of state-contingent contracts.24

23In Repullo et al. (2013), banks can affect their asset returns by exerting unobservable effort. They find that short-
term debt has a disciplining effect only for low profitability projects. Similarly, Huberman and Repullo (2015) find a
disciplining effect of demandable debt if a bank can shift risks ex-ante. Our model suggests the exact opposite effect:
demandable debt runs prevent efficient renegotiation of debt, inducing default of low profitability banks. Eisenbach
(2017) finds that rollover risk disciplines financial intermediaries but only if asset returns are not correlated across
states.

24If the government only has access to bailouts, it would again not be optimal to issue state-contingent debt
contracts, since such contracts would generate strictly lower government transfers during crises. See Section 6 below.
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6 Bailouts

To contrast the findings of Section 3, and argue that the introduction of resolution powers may

have contributed to the rise in bank financing using uninsured deposits, suppose that bailouts are

the only tool available to the Regulator at the interim. This arguably describes the recapitalization

policy environment before and during the GFC.

Consider three special sets of contracts.

Definition 2 (Liquidation-proof contracts). The set of liquidation-proof contracts, P, is defined

as

P :=
{
c ∈ C | ξd ≤ XL

}

The significance of liquidation-proof contracts is captured by the following Lemma.

Lemma 2. Suppose contract c ∈ C achieves financing. The following are equivalent:

i. c ∈ P.

ii. No liquidation occurs under any σ ∈ Σ(c).

Proof. See Appendix C.3.

Since the government fully removes any debt overhang using bailouts, any investment returns

accrue to the Banker. The Banker thus prefers to avoid liquidation in order to maximize their

investment returns. When c ∈ P, the amount of uninsured deposits outstanding is limited such

that—even if all uninsured depositors but one withdraw—the asset is not fully liquidated. Since

the asset is not fully liquidated, the Banker can tempt uninsured depositors not to withdraw by

marginally raising their claim since full repayment is guaranteed. Consequently, liquidation is

avoided in all equilibria.

When c /∈ P, there is an equilibrium where uninsured depositors withdraw, forcing full liquida-

tion. The reason is that Investors can always mis-coordinate on forcing full liquidation of the asset.

Consider the decision problem of an individual uninsured depositor if all other uninsured depositors

withdraw. Accepting any security offered by the Banker yields a zero payoff which justifies the

choice to withdraw for each uninsured depositor.
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Definition 3 (Maximal-leverage contracts). The set of maximal-leverage contracts, M, is

defined as

M :=
{
c ∈ C | ξD + ξd + ξδ = 1

}

The defining feature of all contracts c ∈ M is that the Banker obtains unit financing by only

issuing debt claims, with the breakdown among insured and uninsured deposits as well as long-term

debt unspecified. Any contract c ∈ C with ξE > 0 is not contained in M.

Definition 4 (Limited-leverage contracts). The set of limited-leverage contracts, L, is defined

as

L :=
{
c ∈ C | ξD + ξd + ξδ ≤ XL

}

The defining feature of all contracts c ∈ L is that the Banker obtains financing using equity and

only partially by issuing debt claims. Any contract c ∈ C with ξE < 1−XL is not contained in L.

We are now ready to state and prove the main results of this section.

Proposition 2. A contract c achieves efficiency in all σ ∈ Σ(c) if and only if c ∈ P ∩ L.

Proposition 3. Let C∗
2 be the set of (robustly) optimal contracts. Then C∗

2 is non-empty and every

c ∈ C∗
2 satisfies:

1. Stability: c ∈ P.

2. Maximal leverage: c ∈ M.

3. Inefficiency in all σ ∈ Σ(c).

Appendix C.4 proves Propositions 2 and 3 jointly. Intuitively, since the Regulator cannot commit

her ex-post policy and only has access to bailouts, the debt overhang is fully removed using costly

public funds upon intervention. Anticipating such transfers, the Banker optimally induces rollover

by all uninsured depositors—which is feasible in all continuation equilibria only if the level of

uninsured deposits is limited. Furthermore, the Banker does not offer any security to long-term

debt holders which they would accept other than their initial debt contract; offering some equity

compensation reduces not only government bailouts but also the Banker’s equity share. The overall

leverage of the bank thus remains unchanged. In this sense, private renegotiations fail to achieve

28



efficient investment, and only government bailouts do. Since public funds are socially costly, the

privately optimal financing arrangement is inefficient.

Maximising leverage at the contracting stage increases the size of bailouts in the low state,

and therefore the share of the initial unit financing that is repaid by the government rather than

the Banker. This in turn reduces the cost of financing and increases Banker payoffs in the high

state. A maximal-leverage liquidation-proof contract achieves the highest feasible Banker payoff as

it maximizes government transfers and achieves efficient investment. Since bailouts are increasing

in leverage and socially costly, the optimal contract is inefficient in all continuation equilibria.

If c /∈ P , the Banker cannot prevent full liquidation in all equilibria in the low state. In these

equilibria, the Banker not only loses the efficient investment in the low state, the cost of debt

also increases in the high state given the government’s response. Optimality then boils down to

maximising leverage and preventing liquidation in all continuation equilibria.

In sum, we conclude that when the Regulator cannot commit her policy and can only conduct

bailouts, banks are inefficiently leveraged but issue limited amounts of uninsured deposits.

7 Conclusion

This paper uncovers a delicate interaction between bank resolution policies and deposit insurance.

We provide a rationale for why banks issue large amounts of uninsured deposit: front running

the government which intends to impose losses on bank creditors. We highlight financial fragility

as an unintended consequence of bail-ins, particularly when combined with high levels of deposit

insurance.

The most recent episode of bank failures has reignited a policy debate, with some arguing in

favour of greatly increasing the insurance limits on short-term bank debt. Our model suggests

that the social cost of fragility—which may be induced by such policies—can be averted with other

prudential policies in form of equity and long-term debt requirements.
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A Banks in sample

The following banks are contained in our sample:

UBS Bank USA, Discover Bank, Regions Bank, Northern Trust, American Express, HSBC Bank

USA, BMO Harris Bank, Ally Bank, Huntington Bank, Keybank, Manufacturers and Traders Trust,

Morgan Stanley Bank, Fifth Third Bank, Silicon Valley Bank, Morgan Stanley Private Bank, First

Republic Bank, Citizens Bank, State Street Bank, The Bank of New York Mellon, Charles Schwab

Bank, TD Bank, Capital One, Goldman Sachs, Truist Bank, PNC Bank, US Bank, Wells Fargo,

Citibank, Bank of America, JP Morgan Chase.

B The Game

Strategies

Here we give all formal details of the game Gθ
s (c). Each Investor chooses whether to accept (1) or

reject (0) the offer s ∈ S. Equity and insured depositors do not take any meaningful action by

assumption and hence we focus on all other demandable and long-term debt Investors. In what

follows, we suppress dependence on (θ, c, s) for clarity, whenever there is no risk of confusion. We

denote pure strategies by σi ∈ {0, 1}, and the profile of strategies as σI := (σi)i∈I. For each profile

σI , we denote by λσI
∈ [0, 1] the fraction of uninsured depositors rejecting the offer and thus

withdrawing rather than rolling over. Formally,

λσI
=

∫
✶ci=d · (1− σi) di
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Given λσI
∈ [0, 1], we denote by χσI

∈ [0, 1] the share of the asset still remaining in the bank after

potential liquidation.25 Formally,

χσI
= max

{
1−

λσI
ξd · d

Xθ
, 0

}

The Regulator observes the profile σI as well as the state and chooses a policy. Consequently,

the Regulator’s strategy is a mapping σR : {0, 1}I 7→ S × R
+, where we write

σR(σI) =
{(
α̂i(σI), B̂i(σI)

)
i∈I
, b(σI)

}

for the pair of security and bailout amount as a function of the security offered during renegotiation,

and the acceptance/rejection decisions of each Investor.26 The Regulator’s strategy must satisfy

the constraints laid out in Section 2.4. Since the Regulator maximizes ex-post welfare, his strategy

depends only on χσI
, and with slight abuse of notation we can write σR(σI) = σR(χσI

).

Finally, the Banker’s investment strategy in state θ, given the strategy profile (σI , σR), is given

by σe : {0, 1}
I × S × R

+ 7→ R
+.

Payoffs

To define the payoffs to Investors we need some notation for the profile of debt promises out of

future output, as a function of the strategy profile. To this end, define for each i ∈ I,

B̃i(σI , σR) = σi · B̂i(1, σ−i) + (1− σi) ·
[
1ci=D · B̂i(0, σ−i)

]

B̃i is the promise Investor i ends up with depending on the strategy profile. If i accepts (σi = 1)

security s ∈ S, then his promise is given by B̂i(1, σ−i)—the promise the Regulator implements if i

accepts and all other Investors play according to σ−i. If he rejects (σi = 0), then his promise is as

follows: if he is a long-term debt Investor it is B̂i(0, σ−i)—the promise the Regulator implements if i

rejects and all other Investors play according to σ−i. For equity Investors and uninsured depositors,

the promised repayment out of future output is formally zero.27

25When we wish to emphasize the dependence on the state, we will write λθ
σI

, and χθ
σI

respectively.
26Again, when we wish to emphasize the dependence on the state θ and the security s, we will write σθ

R(σI | s)
27Uninsured deposits are a promised repayment out of current assets in place; if they reject the offer they have no

claim on future output.
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We can now define the payoffs to Investor i, from accepting and rejecting security s ∈ S un-

der profile σ−i. We should stress that these payoffs are strictly speaking the per-unit returns on

investment, and each individual Investor invests an infinitesimal unit. First, for each final output

realization z ∈ R
+, and investment e ∈ [0, ē], the payoffs to i from accepting are given by

ui
(
z|s, σ−i, σR, e

)
= α̂i(1, σ−i) ·

[
max

{
z −

∫
B̃j(1, σ−i, σR) dj, 0

}
− h(e)

]

+min

{
B̃i(1, σ−i, σR)∫

[j∼i] B̃j(1, σ−i, σR)dj
·

[
max

{
z −

∫

[j≺i]
B̃j(1, σ−i, σR) dj, 0

}]
, B̃i(1, σ−i, σR)

}

The first term captures the payoff to i ∈ I stemming from equity ownership: it is a fraction

α̂i(1, σ−i) of the residual value after debt repayments, net of investment costs, corresponding to the

security implemented by the Regulator after profile (1, σ−i). The second term captures i’s payoff

from holding a debt claim B̃i(1, σ−i, σR) under the seniority structure: if there are enough resources

to pay all Investors with same seniority as i, after all strictly more senior Investors j ≺ i are paid,

then all j ∼ i receive their promises. Otherwise, the set [j ∼ i] seizes output and distributes it

according to the share corresponding to their promise. All claims are protected by limited liability.

The corresponding payoffs from rejecting the offer depend on i’s initial security holding, ci,

under contract c. If i is a long-term debt Investor, ci = D, then for each realization of final output,

z ∈ R
+ the payoff to i from rejecting is given by

rDi
(
z| s, σ−i

)
= min

{
B̃i(0, σ−i, σR)∫

[j∼i] B̃j(0, σ−i, σR)dj
·

[
max

{
z −

∫

[j≺i]
B̃j(0, σ−i, σR) dj, 0

}]
, B̃i(0, σ−i, σR)

}

If i is a uninsured depositor then his payoff from rejection is the expected payoff from demanding

early repayment which is independent of final output, depending only on the current value of assets

x ∈ R
+. That is, if ci = d,

rdi (x | s, σ−i) =





d if λσI
· ξdd ≤ x

x
λσI

·ξd
otherwise

Note that λσI
is also the fraction of uninsured depositors among [j 6= i] rejecting the offer, since

each individual Investor i has no aggregate impact.
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At the time of acceptance/rejection decisions by Investors there is still residual uncertainty re-

garding final output. Ultimately, we want to determine Investors’ expected payoffs at the time of

decision, which amounts to determining the distribution of output. Recall that rejecting uninsured

depositors force early liquidation which reduces the quantity of the asset to χσI
∈ [0, 1]. Further-

more, the Regulator injects an amount b(σI) ∈ R
+. Finally, the distribution of per-unit returns

depends on investment e ∈ [0, ē]. Consequently, output in state θ is given by χσI
· (Xθ + q) + b(σI),

where q ∼ G(·| e).

We can now define the expected payoff to each Investor i from a profile (σI , σR, σe) in the game

Gθ
s (c), depending on the class of debt they initially hold. If ci = D,

Ui(σi, σ−i, σR, σe | θ, s) = σi · Ee

[
ui

(
χσI

· (Xθ + q) + b(σI) | s, σ−i, σR, e
)]

+

+ (1− σi) · Ee

[
rDi

(
χσI

· (Xθ + q) + b(σI) | s, σ−i

)]

If ci = d,

Ui(σi, σ−i, σR, σe | θ, s) = σi ·Ee

[
ui

(
χσI

· (Xθ+ q)+ b(σI) | s, σ−i, σR, e
)]

+(1−σi) · r
d
i

(
Xθ | s, σ−i

)

Equilibria in Gθ
s (c)

We now describe subgame perfect equilibria in the continuation game after contract c ∈ C is posted.

Starting backwards with the Banker, σe is optimal whenever it maximizes the equity value in

Equation E; that is,

σe(σI , σR | θ, s) = e(χσ, B̂(σI) | θ) (7)

where χσ ∈ [0, 1] is the amount of the asset remaining in the bank, and B̂(σI) ∈ R
+ is the total

debt promises, after renegotiation.

Next, we consider the Regulator who maximizes ex-post welfare. Specifically, σR is optimal

whenever it maximizes net continuation investment gains,

E

[
χσ ·q

∣∣∣ σe(σI , σR | θ, s)
]
−h

(
σe(σI , σR | θ, s)

)
≥ E

[
χσ ·q

∣∣∣ σe(σI , σ̃R | θ, s)
]
−h

(
σe(σI , σ̃R | θ, s)

)
(8)

for all σ̃R. Finally, we consider Investors.
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A profile (σI , σR, σe) is an equilibrium of Gθ
s (c), if

Ui(σi, σ−i, σR, σe | θ, s) ≥ Ui(σ̃i, σ−i, σR, σe | θ, s), for all i, and σ̃i,

σR satisfies Equation (8), and σe satisfies Equation (7).

We denote the set of equilibria of Gθ
s (c) by Σ(c | θ, s).

Continuation equilibria Σ(c)

Lastly, we consider the Banker’s optimal choice of security s ∈ S after the state θ is realized, given

that contract c ∈ C is in place. The Banker’s pure strategies in the renegotiation game are mappings

σB : {L,H}×R
3 7→ S, assigning a security in each state for prices (D, d, γ) ∈ R

3, of contract c ∈ C.

Let σ−B = (σI , σR, σe) ∈ ×θ∈{L,H}

(
×s∈S Σ(c | θ, s)

)
be a profile of equilibrium strategies in

Gθ
s (c), for each possible θ ∈ {L,H} and each possible choice s ∈ S.

The payoffs to the Banker are given by:

UB

(
s, σ−B | θ

)
= E

[
χσ ·

(
Xθ + q

)∣∣∣ σe(σI , σR | θ, s)
]
−

∫
Ui(σ−B | θ, s) di− h

(
σe(σI , σR | θ, s)

)

A strategy σB is a best-response to σ−B if and only if

UB

(
σB, σ−B | θ

)
≥ UB

(
s, σ−B | θ

)
for all s ∈ S, and all θ ∈ {L,H} (9)

Finally, we denote by Σ(c) the set of continuation equilibria following the initial offer of contract

c ∈ C.

Σ(c) =
{
(σB, σI , σR, σe) : σB satisfies (9) and (σI , σR, σe) ∈ ×θ∈{L,H}

(
×s∈S Σ(c | θ, s)

)}
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C Proofs

C.1 Proof of Lemma 1

Proof. Let E(c, σ|θ) denote the equity value of a Bank in state θ for contract c and continuation

equilibrium σ ∈ Σ(c). Furthermore, let Ud(c, σ|θ) and UD(c, σ|θ) denote the equilibrium payoffs to

each uninsured deposit and long-term debt Investor in state θ. The equity value is then given by

E(c, σ|θ) = χθ
σX

θ + Y (c, σ|θ)− ξδ − (1− λθσ)Ud(c, σ|θ)ξd − UD(c, σ|θ)ξD + b(c, σ|θ)

Intuitively, the value of equity is given by the total amount of resources within the bank, minus the

equilibrium payoffs to insured depositors, uninsured deposits, and long-term debt Investors.

We first characterize the price of uninsured deposits, to pin down Ud(c, σ|H). In particular, the

payoff from rejecting any security during renegotiations for any ci = d, is

ri(c, σ|θ) =





d if λθσ · ξdd ≤ Xθ

Xθ

λθ
σ ·ξd

otherwise

Note that Ud(c, σ|θ) ≥ ri(c, σ|θ): the equilibrium payoff is bounded from below by the rejection

payoff. If the Banker successfully induces rollover, he optimally sets Ud(c, σ|θ) = ri(c, σ|θ).

First, if the investor gets fully ‘repaid’ in both states, then d = 1:

1 = p · Ud(c, σ|H) + (1− p) · Ud(c, σ|L) = p · d+ (1− p) · d = d

Second, if the Investor gets the promised payoff in the low state, then he must be getting the

promised payoff in the high state. Indeed, if not, we must have

1 = p · Ud(c, σ|H) + (1− p) · Ud(c, σ|L) ≥ p ·
XH

λHσ ξd
+ (1− p) · d ≥ p ·XH + (1− p) · d

by the pricing equation. Since XH > 1, this necessitates d < 1. But then

λHσ ξd · d < ξd < XH
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which implies Ud(c, σ|H) = d, a contradiction. Furthermore, failure of full repayment cannot occur

in both states since then the pricing equation yields

1 ≥ p ·
XH

λHσ ξd
+ (1− p) ·

XL

λLσξd
≥ p ·XH + (1− p) ·XL

a contradiction. Therefore, failure of full repayment can only occur in the low state. The lower

bound for the repayment to each ci = d in the low state is given by Ud(c, σ|θ) ≥ XL. The pricing

equation then implies an upper bound to d:

1 ≥ p · d+ (1− p) ·XL

Since E[X] > 1, it must be that d < XH , and hence Ud(c, σ|H) = d. The value of equity in the

high state is then given by

E(c, σ|H) = XH + Y (c, σ|H)− ξδ − dξd − UD(c, σ|H)ξD +max
{
ξδ − χH

σ X
H , 0

}

We now show that b(c, σ|H) = 0. This follows from

ξδ − χH
σ X

H ≤ ξδ + dξd −XH ≤ d−XH < 0

where the first inequality follows from the fact that χH
σ X

H ≥ XH − dξd. The second inequality

uses ξδ + ξd + ξD + ξE = 1 and d ≥ 1. The final inequality uses d < XH .

We proceed to show that the bank equity value is increasing in χH
σ , implying Y (c, σ, χσ|H) = y∗

in all continuation equilibria σ ∈ Σ(c) and for all contracts c ∈ C. For this, we need to show that

XH − ξδ − dξd − UD(c, σ|H)ξD ≥ 0

Note that UD(c, σ|H) = D: the payoff to each long-term debt investor, if such debt has been issued,

is given by the face value of its long-term debt claim. Indeed, if not, then no Investor purchases

long-term debt. We consider two cases:

1. Suppose ξd > XL. The pricing equations for long-term debt and uninsured deposits imply
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that

1 ≥ p · d+ (1− p) ·
XL

ξd

and

1 = p ·D + (1− p) · UD(c, σ|L), where UD(c, σ|L) ≥ 0 ⇔ 1 ≥ p ·D

Using these inequalities, it follows that

ξδ + dξd +DξD ≤ dξd +D(1− ξd) ≤
1− (1− p) ·XL

p
< XH

where the last inequality follows from E[X] > 1.

2. Suppose ξd ≤ XL. The pricing equations for long-term debt and uninsured deposits imply

that d = 1 as well as

1 ≥ p ·D + (1− p)
XL − ξδ − ξd

ξD

since

UD(c, σ|L) ≥
XL − ξδ − ξd

ξD

Using these inequalities in exactly the same manner as above gives the desired result.

From here it follows that the bank equity value is increasing in χH
σ . Then, optimally, the Banker

induces rollover by all uninsured depositors, offering a new security with face value Bi = d+ ε with

εց 0 which is accepted, and hence Y (c, σ|H) = y∗. The Banker’s equilibrium payoff is then given

by

V (c, σ) = (1− γ) · [p · E(c, σ|H) + (1− p) · E(c, σ|L)]

= p · E(c, σ|H) + (1− p) · E(c, σ|L)− ξE

= E[X] + p · y∗ + (1− p) ·
(
Y (c, σ|L) + b(c, σ|L)

)

− ξδ −
[
p · d+ (1− p) · Ud(c, σ|L)

]
ξd −

[
p ·D + (1− p) · UD(c, σ|L)

]
ξD − ξE

= E[X] + p · y∗ + (1− p) · ψ(c, σ)− 1
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where the first equality follows from the equity pricing equation:

γ · E [E(c, σ|θ)] = ξE

and the last equality from ξδ + ξd + ξD + ξE = 1. Clearly V (c, σ) > V (c′, σ′) if and only if

ψ(c, σ) > ψ(c′, σ′) for some contracts c, c′ ∈ C and equilibria σ ∈ Σ(c), σ′ ∈ Σ(c′).

C.2 Proof of Proposition 1

The proof of our main result follows from five lemmas. We first show that for any ξδ ∈ [0, 1],

contract c = (0, 0, 1− ξδ, ξδ) uniquely achieves some level of liquidation χσ < 1 in all σ ∈ Σ(c), and

thus also a unique payoff.

Second, consider some contract c′ = (ξ′
E
, ξ′

D
, ξ′

d
, ξ′

δ
) ∈ C. We show that, if ξ′

d
> XL + y∗ − ξ′

δ
,

liquidation cannot be prevented in any equilibrium σ′ ∈ Σ(c′). Thus, to have λσ′ = 0 in all equilibria

σ′ ∈ Σ(c′), there must exist some B̄d(c
′) ∈ [0, XL + y∗ − ξ′

δ
] such that ξ′

d
≤ B̄d(c

′).

Third, we characterize conditions for which ψ(c, σ) > ψ(c′, σ′) for contract c = (0, 0, 1− ξδ, ξδ)

and all σ ∈ Σ(c), and for all contracts c′ ∈ C with λσ′ = 0 for all σ′ ∈ Σ(c′).

Fourth, we show that it is never profitable to increase the level of liquidation by decreasing the

level of insured deposits, ξδ.

Finally, we show that for a given level of ξδ, no other contract ĉ ∈ C achieves strictly higher

payoffs than both contracts c and c′ in any equilibrium σ̂ ∈ Σ(ĉ).

Lemma 3. Contract c = (0, 0, 1 − ξδ, ξδ) achieves a unique level of liquidation, χσ < 1, if θ = L,

and thus also a unique payoff.

Proof. We distinguish two regions in ξδ: a) 1− ξδ ≥ XL, and b) 1− ξδ < XL.

a) We show that χσ = 0. Since ξd ≥ XL, χσ > 0 requires λσ < 1. This in turn requires that

χσX
L + Y (c, σ|L)− ξδ + b(c, σ|L) ≥ (1− λσ)ξd · Ud(c, σ|L)

The LHS captures the bank’s equity value after a write-down of all equity and long-term debt,

the RHS captures the total value of the uninsured depositors who could withdraw but decide
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to roll over. If the inequality is not satisfied, at least one more uninsured depositor prefers to

withdraw even if all remaining uninsured depositors hold all the bank equity after a bail-in.

Since uninsured depositors roll over, it must be that Ud(c, σ|H) = Ud(c, σ|L) = d = 1. Since

(1− χσ)X
L = (1− λσ)dξd

we can rearrange the inequality to read

XL + Y (c, σ|L)− ξδ +max{ξδ − χσX
L, 0} ≥ ξd

With bailouts, it must be that

(1− χσ)X
L + Y (c, σ|L) ≥ ξd

where the LHS is a strictly convex function, maximized at χσ = 0 since XL > y∗. Since

ξd ≥ XL, we have

ξd ≥ XL ≥ (1− χσ)X
L + Y (c, σ|L) > ξd

for any χσ > 0 for ξd ≥ XL, a contradiction. Thus, we obtain χσ = 0. Without bailouts, it

must be that

1 > XL + Y (c, σ|L) ≥ ξd + ξδ = 1

which is a contradiction. It then follows that χσ = 0 for all equilibria.

b) We show that λσ = 1 and thus χσ = 1 − 1−ξδ
XL for all σ ∈ Σ(c). First, note that by ξd < XL

uninsured deposits are safe in both states and hence Ud(c, σ|H) = Ud(c, σ|L) = d = 1. The

value of equity is given by

E(c, σ|L) = max{χσX
L + Y (c, σ|L)− ξδ − (1− λσ)ξd +max{ξδ − χσX

L, 0}, 0}

= max
{
XL + Y (c, σ|L)− ξδ − ξd +max{ξδ + λσξd −XL, 0}, 0

}
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If ξδ ≥ XL, then

E(c, σ|L) = Y (c, σ|L)− (1− λσ)ξd (10)

where χσ = 1− λσξd
XL . Note that E(c, σ|L) > 0 for λσ = 1 since ξd < XL.

If ξδ < XL, equity value is only positive for a sufficiently large level λσ to induce bailouts, for

which it is also given by Equation (10).

Note that the expression in Equation (10) is a strictly convex function in λσ which has its

maximum point at either λσ = 0 or λσ = 1. The maximum point is at λσ = 1 if

y∗ − (1− ξδ) < max
e

[(
1−

(1− ξδ)

XL

)
·

∫ ∞

0
q dG(q|e)− h(e)

]
≡ f

(
ξδ, e(χσ, 0)

)
(11)

where e(χσ, 0) denotes the maximizing effort level given the level of liquidation on zero debt

outstanding. Both LHS and RHS are given by y∗ for ξδ = 1. Also note that f
(
ξδ, e(χσ, 0)

)

is a strictly increasing, strictly convex function and differentiable in ξδ by Danskin’s theorem,

since there is a unique maximizer for any ξδ. Furthermore, we obtain by differentiating an

upper bound on its derivative with respect to ξδ:

∂f
(
ξδ, e(χσ, 0)

)

∂ξδ
=

1

XL
·

∫ ∞

0
q dG

(
q|e(χσ, 0)

)
≤

1

XL
·

∫ ∞

0
q dG

(
q|ē

)
< 1

where the first inequality follows from first order stochastic dominance, and the second in-

equality follows from Assumption 1. Reducing ξδ reduces the LHS of Equation (11) by one,

the RHS by less than one. Hence the inequality of Equation (11) is satisfied for all 1−ξδ < XL

and ξδ < 1. It follows that λσ = 1 in all σ ∈ Σ(c).

Combining the above, the resources from issuing a contract c for a given level of ξδ and all equilibria

σ ∈ Σ(c) in the low state are given by

ψ(c, σ) =





ξδ if ξδ ≤ 1−XL

Y (c, σ|L) + 1−XL if ξδ ∈
(
1−XL, 1

] (12)
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Lemma 4. Consider a contract c′ ∈ C. If ξd > XL + y∗ − ξδ, then λσ′ > 0 in all equilibria

σ′ ∈ Σ(c′).

Proof. Suppose ξd > XL+ y∗− ξδ. If all uninsured depositors roll over, λσ′ = 0, then each Investor

receives

Ud(c, σ|L) =
XL + y∗ − ξδ

ξd
< 1

Rejecting, each investor receives

ri(c, σ|L) = d

From the proof of Lemma 1, we know that d ≥ 1. Uninsured depositors thus withdraw, and

λσ′ > 0.

Lemma 5. Let c∗ = (0, 0, 1 − ξ̂δ, ξ̂δ). Let c′ be a contract such that λσ′ = 0 in every equilibrium

σ′ ∈ Σ(c′).

1. If ξ̂δ ∈ (y∗, 1), then ψ(c∗, σ∗) > ψ(c′, σ′) for all σ∗ ∈ Σ(c∗).

2. If ξ̂δ ≤ y∗, then ψ(c∗, σ∗) ≤ ψ(c′, σ′) for all σ∗ ∈ Σ(c∗), with equality if and only if ξ̂δ ∈ {y∗, 1}.

Proof. To show the first part, note that ψ(c∗, σ∗) is strictly increasing in ξδ by Equation (12).

Furthermore, if λσ′ = 0 and ξδ ≤ XL, then ψ(c′, σ′) = y∗. If λσ′ = 0 and ξδ > XL, then

ψ(c′, σ′) = y∗+ξδ−X
L. The result therefore immediately follows for ξ̂δ ∈ (y∗, XL]. If ξ̂δ ∈ (XL, 1),

then the result follows the proof to Lemma 3, which shows that the Banker’s equity value of Equation

(10) is maximized at λσ = 1 rather than λσ = 0.

The second part follows immediately by observing that ψ(c∗, σ∗) = ξ̂δ ≤ y∗ = ψ(c′, σ′) if ξ̂δ ≤ y∗,

as well as ψ(c∗, σ∗) = y∗ + (1−XL) = ψ(c′, σ′).

Lemma 6. It is never profitable to increase the level of liquidation by decreasing ξδ.

Proof. The resources generated by contract c and thus the Banker’s payoff are strictly increasing

in ξδ. It follows that ψ(c, σ) > ψ(c′′, σ′′) for any contract c′′ ∈ C featuring ξ′′
δ
< ξδ, ξ

′′
d
= 1− ξ′′

δ
and

λσ′′ = 1. It also follows that if ψ(c′, σ′) > ψ(c, σ), then ψ(c′, σ′) > ψ(c′′, σ′′).
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Lemma 7. For a given level of ξδ, no contract c′′ ∈ C, in any equilibrium σ′′ ∈ Σ(c′′), achieves

strictly higher payoffs than both contract c = (0, 0, 1 − ξδ, ξδ) and all contracts c′ ∈ C with λσ′ = 0

in all equilibria σ′ ∈ Σ(c′).

Proof. The resources generated by a contract c′′ ∈ C in an equilibrium σ′′ ∈ Σ(c′′) are given by

ψ(c′′, σ′′) = Y
(
c′′, σ′′|L

)
+ max

{
ξδ − χσ′′XL, 0

}

By the strict convexity of ψ(c′′, σ′′) in χσ′′ , it is maximized at either the highest or the lowest level of

χσ′′ which can be implemented given ξδ. The result follows immediately from realizing that contract

c achieves the highest level of liquidation given ξδ in all equilibria σ ∈ Σ(c), and any contract c′ s.t.

λσ′ = 0 in all equilibria σ′ ∈ Σ(c′) achieves the lowest level of liquidation given ξδ.

From here we conclude on the robust optimality of contracts c = (0, 0, 1− ξ̂δ, ξ̂δ) and λσ = 1 for

all σ ∈ Σ(c) if ξ̂δ > y∗, and otherwise on the robust optimality of contracts c′ that feature λσ′ = 0

for all σ′ ∈ Σ(c′).

C.3 Proof of Lemma 2

Proof. (i) ⇒ (ii): We show that it cannot be optimal for the Banker to allow for some liquidation

to occur. Notice that the Banker can always offer s =
(
αi, Bi

)
i∈D

∈ S with (αi, Bi) = (0, D) for all

ci = D; and (αi, Bi) = (0, 1 + ε) for all ci = d, with εց 0.

First, we show that s is accepted by all Investors in every equilibrium. Long-term debt Investors

are indifferent by construction. Consider an uninsured depositor. Rejecting ŝ delivers ri(σ−i) =

d = 1 in every equilibrium (see Proof to Lemma 1). Consequently, if the Banker can ’repay’ in full

in period 3, Investors get 1 + ε ≥ ri(σ−i). Since dξd ≤ XL, and given the seniority of uninsured

deposits, the Banker can promise full repayment, and thus s is accepted by all Investors.

With χσ = 1, the Regulator optimally chooses

b(c, σ|L) = max

{∫

i∈D

Bi di−XL, 0

}

which alleviates debt overhang and induces efficient investment. Consequently, offering s yields

a payoff of UB(s, σI , σR, σe|L) = y∗ to the Banker. By a similar computation, any security s,

46



which leads to some liquidation, χσ > 0, generates payoff UB(s, σI , σR, σe|L) = Y (c, σ|L) < y∗

Consequently, the Banker prevents liquidation in equilibrium.

(ii) ⇒ (i): We show that if c /∈ P there exists an equilibrium σ in which λσ = 1 and χσ = 0.

From the proof to Lemma 1, we know that d ≥ 1. Then dξd > XL. Suppose θ = L and λσ = 1.

The payoff from withdrawing to each uninsured depositor is given by

ri(c, σ|L) =
XL

ξd

The payoff for each individual uninsured depositor who accepts a is zero. Hence λσ = 1 is indeed

an equilibrium outcome for c /∈ P.

C.4 Proof of Propositions 2 and 3

Proof. To show optimality (Proposition 3), we need to show that

inf
σ∗∈Σ(c∗)

V (c∗, σ∗) ≥ sup
σ∈Σ(c)

V (c, σ) for all c∗ ∈ P ∩M and c /∈ P ∩M

To this end, we first compute V (c∗, σ∗) for all c∗ ∈ P ∩ M, and show that it is unique. We then

compute the lowest and the highest equilibrium payoffs V (c, σ) for all contracts c ∈ P ∩M∁ and all

contracts c ∈ P∁.

Consider contract c∗ ∈ P∩M. From Lemma 2, we know that χσ = 1 in all equilibria σ∗ ∈ Σ(c∗)

and d = 1. As above, the Banker can always offer s =
(
αi, Bi

)
i∈D

∈ S with (αi, Bi) = (0, D) for

all ci = D, which long-term debt holders accept by construction. The Regulator’s optimal bailouts

are given by

b(c, σ|L) = max

{∫

i∈D

B̂i di−XL, 0

}

where B̂i = Bi for all i ∈ D. Since the government removes all debt overhang, it follows that D = 1,

and thus
∫
i∈D

B̂i di = ξδ + dξd +DξD = 1. Efficient investment ensues in both states. The payoffs

are given by

V (c∗, σ) = p · [XH + y∗ − 1] + (1− p) · y∗ for all σ ∈ Σ(c∗), c∗ ∈ P ∩M
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Note that offering security s′ ∈ S with αi > 0 for any i ∈ D cannot be optimal since it reduces

b(c, σ|L) directly but cannot induce higher levels of investment.

Next, consider any contract c ∈ P ∩M∁. Following the steps from above, we know that χσ = 1

and Y (c, σ|L) = y∗ in all states as well as d = D = 1 which implies
∫
i∈D

B̂i di = ξd + ξD + ξδ =

1− ξE < 1. Bailouts are given by

b(c, σ|L) = max
{
1− ξE −XL, 0

}

and are thus directly reduced by ξE in the low state. The pricing Equation for equity is given by

1 = γ ·
{
p · [XH + y∗ − (1− ξE)] + (1− p) · y∗

}

and the Banker’s payoffs are given by

V (c, σ) = (1− γξE) ·
{
p · [XH + y∗ − (1− ξE)] + (1− p) · y∗

}

= p · [XH + y∗ − 1] + (1− p) · (y∗ − ξE)

Clearly, setting ξE = 0 maximizes payoffs, and thus

inf
σ∗∈Σ(c∗)

V (c∗, σ∗) > sup
σ∈Σ(c)

V (c, σ) for all c∗ ∈ P ∩M and c ∈ P ∩M∁

Next, consider c ∈ P∁. Suppose there is no liquidation, λσ = 0, which is consistent with

equilibrium. To see this, note that the Banker optimally offers s =
(
αi, Bi

)
i∈D

∈ S with (αi, Bi) =

(0, d+ ε), with ε ց 0, for all ci = d which uninsured depositors accept and (αiBi) = (0, D) for all

ci = D which long-term debt holders accept by construction. Note that B̂i = Bi for all i ∈ D, and

thus

b(c, σ, χσ|θ) = max

{∫

i∈D

B̂i −Xθ, 0

}

which implies d = D = 1. Following exactly the same steps as for contract c ∈ P ∩M∁, the Banker
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payoffs are again given by

V (c, σ) = p · [XH + y∗ − 1] + (1− p) · (y∗ − ξE)

which is again maximized at ξE = 0. Thus,

inf
σ∗∈Σ(c∗)

V (c∗, σ∗) ≥ sup
σ∈Σ(c)

V (c, σ) for all c∗ ∈ P ∩M and c ∈ P∁

It remains to be shown that

inf
σ∗∈Σ(c∗)

V (c∗, σ∗) > inf
σ∈Σ(c)

V (c, σ) for all c∗ ∈ P ∩M and c ∈ P∁

Consider some contract c ∈ P∁. By Lemma 2, if c ∈ P∁, there exists an equilibrium in which full

liquidation occurs, and Y (c, σ|L) = 0. With full liquidation, there is partial default on uninsured

deposits and full default on long-term debt. By the pricing equations, we then know that D > 1

and d > 1. By the proof of Lemma 1, we know that ξδ + dξd + DξD < XH and hence χσ = 1,

b(c, σ|H) = 0 and Y (c, σ|H) = y∗ for all contracts c ∈ P∁. Then

V (c, σ) = (1− γξE) ·
{
p · [XH + y∗ − ξδ − dξd −DξD] + (1− p) · 0

}

The pricing equation for equity is given by

1 = γ · p · [XH + y∗ − ξδ − dξd −DξD]

and hence

V (c, σ) = p · [XH + y∗ − ξδ − dξd −DξD]− ξE

≤ p · [XH + y∗ − (1− ξE)]− ξE

≤ p · [XH + y∗ − 1]

< inf
σ∗∈Σ(c∗)

V (c∗, σ∗)
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for all c∗ ∈ P ∩M, which completes the proof of optimality.

To show the claim of Proposition 2, consider contract c ∈ L. From above we know that the

Banker optimally offers s =
(
αi, Bi

)
i∈D

∈ S with (αi, Bi) = (0, d + ε), with ε ց 0, for all ci = d

which uninsured depositors accept, and (αiBi) = (0, D) for all ci = D which long-term debt holders

accept by construction. Note that B̂i = Bi for all i ∈ D, and thus

b(c, σ|θ) = max

{∫

i∈D

B̂i −Xθ, 0

}

which implies d = D = 1. Since
∫
i∈D

B̂i = ξd + ξD + ξδ ≤ XL < XH , it follows b(c, σ|θ) = 0 and

Y (c, σ|θ) = y∗ for all states θ and equilibria σ ∈ Σ(c).

Consider next c ∈ L∁ ∩ P∁. Lemma 2 has shown that there exists an equilibrium σ ∈ Σ(c) in

which χσ = 0, which is inefficient. Consider c ∈ L∁ ∩ P. Since b(c, σ|θ) = max
{∫

i∈D
B̂i −Xθ, 0

}
,

following the same steps as above yields that b(c, σ|θ) > 0 if c ∈ L∁ in at least the low state θ = L,

and the claim for inefficiency follows.
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