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Abstract

We present a class of simple transfer-free rules that are very effective tools for assigning

an unpleasant task among a group of agents: agents decide simultaneously whether or not to

“volunteer”; if the number of volunteers exceeds a threshold number, the task is assigned to a

volunteer; if the number is below the threshold, the task is assigned to a non-volunteer.

In a setting in which agents have non-trivial preferences over who performs the task, such

a threshold rule is utilitarian optimal across all binary-action rules. In a large group, the first

best is reached approximately via a threshold rule with a large threshold. Threshold rules have a

robust-improvement property: any rule with a non-extreme threshold always has an equilibrium

that yields a strict interim Pareto improvement over a random task assignment. We show that

assigning the task to a non-volunteer rather than randomly among all agents if the threshold is

not reached is crucial for this result. Such a uniformly-random default, however, is utilitarian

optimal if ex-post participation constraints are imposed, and is still good enough to approximate

the first best in a large population. The results can be adapted to the problem of assigning a

pleasant task.
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1 Introduction

Imagine a group of people from which one must be selected as the performer of a task. Examples

include the selection of a person to stand first in line in a dangerous (e.g., military battle)

situation, the selection of the salesperson who deals with the unpleasant customer, or the selection

of the chairperson of a department at a university. The performance of the task is similar to the

provision of a public good, with the two special features that this particular public good must

be provided without delay, and that no monetary transfers are feasible.

The optimal task assignment depends on the agents’ preferences, which are private infor-

mation. If each person was solely interested in minimizing the probability of being personally

selected for the task, then, due to incentive constraints and given the lack of remuneration, no

screening of any private information would be possible, whatever the prevailing rule is. Fortu-

nately, in many situations people are also genuinely interested in who performs the task. This

can be because some people would perform the task at a higher quality than others, or because

people are at least slightly altruistic and care about others’ costs of being selected. Formally,

we assume that a general affine function of the performing agent’s (privately known) payoff de-

termines the other agents’ payoffs. Both the standard private-values and complete-information

model are limits of our setup. Perhaps surprisingly, theoretical analyses of our setup are rare

(see the literature discussion below).

What are practical task-assignment rules in such situations? In many problems of mechanism

design, ex-post incentive-compatible (EPIC) rules are attractive because of their robustness with

respect to beliefs. In our setting, however, the only anonymous EPIC rule is the uniformly-

random task assignment.1 We take a different route and restrict attention to rules that are

practical due to their small number of available choices. Specifically, we focus on rules in which

agents choose simultaneously from just two available actions, using symmetric Bayes-Nash equi-

librium as a solution concept. Bayes-Nash equilibrium is particularly plausible for binary-action

rules because with just two alternatives a player can quickly find a best response via trial and

error. We show that these rules can be quite powerful.2

Our results, which are derived under the assumption of continuously distributed private in-

formation, are as follows. First, we identify a one-parameter class of rules called threshold rules

which always contains a rule that is utilitarian-optimal among the binary-action rules. Second, we

show that any non-extreme threshold rule always allows for a strict interim Pareto-improvement

over a uniformly-random task assignment, even if the task-performance cost is very high, or if

the agents are just a tiny bit altruistic; we call this the robust-improvement property. Third, we

consider the limit case of a large population. Any given threshold number leads to an efficiency

loss in the limit, but with a sequence of increasingly large thresholds the first best can be approx-

1Feng, Niemeyer, and Wu (2022) derive a similar conclusion in a class of allocation problems without monetary
transfers, showing that only constant rules are EPIC. Their technical assumptions, however, exclude our setting. We
use a different proof technique; see the Appendix.

2Implementing a binary-action rule can involve the commitment to implement a task assignment that is inefficient,
given the information revealed by the agents’ actions. Our assumption that the task must be assigned without delay
helps justify this commitment, as the possibility of renegotiation usually relies on the option to delay (cf. Coase (1972)
in the context of monopoly).
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imated arbitrarily closely. Proving our results requires novel methods; the equilibrium conditions

for binary-action games, though one-dimensional, are non-linear, and we have to compare the

equilibrium welfare across all such games.

The binary-action rule that first comes to mind as a potential improvement over a uniformly-

random assignment of the task is the any-volunteer rule: all agents are asked simultaneously about

who would like to “volunteer”; if at least one agent volunteers, the task is assigned randomly

among the volunteering agents; if no agent volunteers, the task is assigned randomly among all

agents. The any-volunteer rule often leads to expected (utilitarian) welfare gains relative to a

uniformly-random assignment because agents can self-select into volunteers and non-volunteers

according to their private information. But, and this is the starting point of our paper, other

equally simple rules can yield even higher welfare.

For example, a two-volunteers rule may be used which stipulates that the task is assigned

among the non-volunteers unless at least two volunteers come forward. As we show, if performing

the task is sufficiently costly, or if agents’ altruism is small, then in the unique equilibrium of the

any-volunteer rule no volunteers will come forward so that a uniformly-random task assignment

obtains, but the two-volunteers rule always has an equilibrium in which all types of all agents

(volunteers as well as non-volunteers) are strictly better off than with a uniformly-random as-

signment; this holds, in fact, for any dynamically stable equilibrium. This robust-improvement

property generalizes to threshold rules with thresholds higher than two. The basic intuition is

that by committing to select a non-volunteering agent for the task if the threshold is not reached,

the designer effectively creates a cost of non-volunteering that always keeps up some volunteering

activity. The principle of requiring multiple volunteers although one agent would be sufficient to

perform a task may be called the multiple-volunteers principle.

It is instructive to compare any threshold rule to its uniformly-random-default counterpart, in

which the task is assigned randomly among all agents—rather than only the non-volunteers—if

the threshold is not reached. These rules lack the “cost of non-volunteering”. We show that the

threshold rules with uniformly-random default do not share the robust-improvement property:

like in the any-volunteer rule, if performing the task is rather costly or if agents’ altruism is

rather small, the unique equilibrium is such that no volunteers will come forward. On the

other hand, many threshold rules with uniformly-random default have a desirable equilibrium

property that is not shared by the standard threshold rules: even after learning how many

volunteers have come forward, each agent type still expects to receive at least the uniformly-

random assignment payoff. Augmenting the utilitarian designer’s problem with corresponding ex-

post participation constraints, a threshold rule with uniformly-random default becomes utilitarian

optimal among binary-action rules. Our large-population welfare results, however, hold for both

classes of threshold rules, with and without uniformly random default.

Literature

Volunteering, according to Wilson (2000), is “any activity in which time is given freely to benefit

another person, group or cause.” Implicit here is the assumption that there is little or no

remuneration for the activity. Volunteering plays an important role in many different areas of
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any modern economy.3 While many volunteering activities are informal, in the UK the economic

value of formal volunteering alone is estimated at ↔39 billion, according to the report by Low,

Butt, Ellis, and Davis Smith (2007). An extensive sociological literature focuses on the nature

of and motivations for volunteering (see the survey by Wilson (2000)).

Volunteering as a strategic game has mainly been studied in private-value settings or under

complete information (both of which are limits of our model). In the simplest version of the

volunteers’ game, the task is a public good that is provided if and only if at least one volun-

teer comes forward, and every volunteer pays the (homogeneous) cost of providing the public

good. Olson (2009, first edition: 1965) conjectured that the equilibrium probability of a volun-

teer coming forward is decreasing in the group size. Olson’s conjecture was proven by Diekmann

(1985) assuming complete information. Nöldeke and Peña (2020) generalize this result for vol-

unteers’ games where multiple contributors may be required to produce the public good.4 In

an incomplete-information setting with private values, Bergstrom and Leo (2015) characterize

the type distributions for which Olson’s conjecture holds. We obtain, in essence, a conclusion

opposite to the Olsen conjecture: volunteering can be organized more efficiently in a large pop-

ulation than in a small population. Formally, in our second best, at any finite population size

the probability that the task is provided at a quality that is ϵ-close to the highest among all

agents is strictly below 1 if ϵ > 0 is sufficiently close to 0, but this probability tends to 1 in the

large-population limit.

The volunteers game has also been studied in a coordinated version meaning that one of

the volunteers is randomly selected to provide the public good (this rule is similar to the any-

volunteers rule with the crucial difference that the public good is not provided if no volunteer

comes forward). Weesie and Franzen (1998) prove Olson’s conjecture for this game, assuming

complete information.5

In the private-values or complete-information settings discussed above, incentives for volun-

teering arise from the threat that the public good is not provided at all rather than, as in our

setting, from the threat that the public good is provided by the wrong agent. Our model could

be extended to allow for the possibility that the public good is not provided at all, but given

our model of preferences and private information, the wrong-agent threat is already a powerful

3To give just one example, the German association of hospices reports that most of the 120.000 individu-
als working under their roof are volunteers who are not remunerated, see https://www.dhpv.de/themen hospiz-
palliativ ehrenamt.html.

4De Jaegher (2020) shows that there are cases in which (i) multiple, say k, contributors are needed to produce the
public good, (ii) in equilibrium no contributor will come forward, and (iii) a positive equilibrium level of contributing
can be restored by committing to produce the public good only if at least k+1 contributors come forward. This result
can be seen as an instance of the multiple-volunteers principle.

5Makris (2009), still maintaining complete information, characterizes the symmetric equilibria in the coordinated
volunteers game where multiple contributors may be required to produce the public good. Requiring multiple contribu-
tors implies that there exists an additional, unattractive, equilibrium in which nobody contributes. Makris shows that
this equilibrium vanishes if two conditions are jointly satisfied: a small expected fraction of the population are “warm
glow” givers for whom contributing is a dominant action, and the population size is Poisson distributed; precisely,
he shows that there always exists a unique symmetric equilibrium, and in this equilibrium every regular (i.e., not
warm-glow) agent contributes with a positive probability if the expected fraction of warm-glow givers is sufficiently
small.
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incentive device.

Our preference model in which a general affine function of the performing agent’s type de-

termines the other agents’ payoffs first appears in Li, Rantakari, and Yang (2016). They restrict

attention to settings with two agents, but—in contrast to us—allow preferences to be ex-ante

asymmetric across agents. The focus is on cheap talk rather than on mechanism design, where

the receiver’s preferences correspond to our planner’s objective. It is shown that, in the receiver-

preferred equilibrium, the precision of both agents’ communication is increasing in each agent’s

preference alignment with the planner.

Bhaskar and Sadler (2019) consider transfer-free mechanism design (without a binary-action

restriction) among agents with private information and multiplicative, but not additive, prefer-

ence misalignment, which is a special case of the pleasant-task variation of our preference model.

They consider a public good that may or may not be provided. They identify an interesting

class of mechanisms called bin-mechanisms. Simple bin mechanisms with two bins are equivalent

to our threshold rules. Bhaskar and Sadler (2019) also define non-simple (”better”) bin mecha-

nisms and show that one such mechanism is welfare maximizing among all transfer-free rules if

the distribution of types is uniform.

The altruism-case of our model can be seen as an example of private provision of a public

good with other-regarding preferences, where each agent is privately informed about her provision

cost. We did not find a Bayesian-Nash analysis of this particular setting in the literature. Palfrey

and Rosenthal (1988) analyze volunteering assuming that each agent has a private ”warm-glow”

benefit from contributing. Kucuksenel (2012) considers mechanism design with transfers when

agents are altruistic in the sense of caring about a weighted average of their own and others’

material payoffs. He characterizes interim-efficient mechanisms. In his public-good application,

he assumes that each agent is privately informed about her willingness to pay and provides

comparative statics with respect to the degree of altruism.

A threshold rule that requires multiple volunteers can be seen as a new design that provides

an alternative to the common any-volunteer rule. This is in the spirit of many other examples of

mechanism design, where new designs have been proposed (and often implemented in practise)

as replacements of existing ones. Alternatively, a multiple-volunteers rule can be an implicit

social norm that exists without a social planner. To quote an example from biology, Magurran

and Pitcher (1987) report that in fish swarms threatened by a predator volunteers are needed to

“inspect” whether the predation threat is real. Some individual fish volunteer as inspectors to

share a risk that would be borne by the entire swarm if the inspection did not happen (cf. Figure

8 in Magurran and Pitcher (1987)). To the extent that a volunteering group consists of multiple

animals when one is technically sufficient to inspect the predator, this can be interpreted as an

instance of a multiple-volunteers rule with uniformly random default.

Closely related to the multiple-volunteers principle as a design element is the idea of a con-

ditional volunteering strategy by an individual agent. Schelling (2006) casts the idea of “vol-

unteering if 20 others do likewise” (p. 95). Reischmann and Oechssler (2018) and Oechssler,

Reischmann, and Sofianos (2022) provide a theoretical and experimental analysis of mechanisms

that explicitly allow for conditional volunteering in the context of the provision of a continuous
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public good. Agents can send messages of the form “I am willing to contribute x units to the

public good if in total y units are contributed”. If we re-interpret x and y as probabilities of a

contribution, then volunteering in our model is in effect such a conditional-contribution message,

where x and y are determined by the equilibrium conditions. In the approach of Reischmann

and Oechssler, however, agents are free to choose x and y. Considering settings with complete

information or private values, they show that conditional-contribution mechanisms are powerful

tools for improving welfare.6

An important strand of literature that focusses on binary-action rules in settings with (often)

continuously distributed types is the literature on voting over two alternatives, where each agent

can only vote for either alternative (abstention may constitute a third action). This literature

presents many positive results for large-population limits, concerning either full information

aggregation (e.g., Feddersen and Pesendorfer (1997), Krishna and Morgan (2011)) or first-best

utilitarian welfare (e.g., Ledyard and Palfrey (2002), Krishna and Morgan (2015)). These results

are different from our limit result. Voting limit results typically rely on the law of large numbers,

while our result relies on bounds for tail probabilities of the Poisson distributions. This is because

in the voting models, the planner’s (or pivotal voter’s) optimal choice in a large population relies

on some average of the individuals’ private information, while in our case the identity of the

agent with the maximum type is of interest.

In between our assumption that the public good must be provided now and the opposite

assumption that it can be avoided lies the possibility that the provision can be delayed, leading

to discounted costs and benefits. The possibility of delay naturally leads to a war-of-attrition

game in which each agent waits, or engages in some other costly search process, until someone

agrees to provide the service. In a private-values setting with heterogenous costs, such a game

has been analyzed by Bliss and Nalebuff (1984).7 In equilibrium, it is often the “right” person

who volunteers first, e.g., the one who has the lowest cost of providing the service, but it can

also be the one who has the highest cost of waiting, and substantial waiting costs may have to

be incurred before a volunteer is found.

2 Model

A task of public interest needs to be allocated among a group of agents 1, . . . , n, where n ≥ 2.

2.1 Preferences and information

Each agent is privately informed about her type. Each agent’s type is independently distributed

on an interval [tL, tH ] ⊆ IR according to some strictly increasing and continuous cumulative

6Earlier contributions have proposed provision-point mechanisms as simple rules that may lead to increased public
good provision in the private-values setting. In these mechanisms, the cost of the public good acts as a threshold, as
the public good is provided only if the sum of contributions equals or exceeds its cost (Bagnoli and Lipman, 1989).

7See also Bilodeau and Slivinski (1996) for a related model with complete information. See Klemperer and Bulow
(1999) for a general approach to war-or-attrition games, and see LaCasse, Ponsati, and Barham (2002) and Sahuguet
(2006) for more special extensions.
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distribution function F . We denote the expected type by

t̄ =

∫ tH

tL

tdF (t).

If agent i performs the task, then her utility is ti and each other agent’s utility is αti+β. Agents

are expected-utility maximizers.

There are several special cases of this model that illustrate possible interpretations. One is

that the cost of providing the task is the same for all agents, but each agent is privately informed

about her ability at performing the task. If the task is performed by an agent of ability θ, then

every agent obtains the benefit θ. In addition, the performing agent bears a cost c. If each

agent’s ability type is drawn from an interval [θL, θH ], then [tL, tH ] = [θL − c, θH − c]. This case

fits our general model with α = 1 and β = c.8 For tiny ability differences (θL ≈ θH), the setting

approximates one with complete information.

Another special case of our model is that the agents differ in the cost of providing the service,

have identical abilities, and are at least somewhat altruistic in the sense that they feel bad if

someone else has to incur a cost for their benefit. In this case, we may think of the ability or

benefit as being normalized to 0 and the provision cost being −t, leading to parameters α ∈ (0, 1)

and β = 0. For small values of α, agents care just a tiny bit about the cost of others; such a

setting approximates one with private values.

The ability to provide the task can also be related to the effort cost that is needed for the

task. For concreteness, suppose that the task can be successful or not, where e ∈ [0, 1] denotes

the probability of success and is an unobservable effort choice by the selected agent. In case of

a success each agent receives a reward payoff of R ∈ (0, 1). Agents differ in their cost of effort,

which is c(e) = e2

θ
, with θ ∈ [1, 2]. An agent of type θ who chooses effort e receives eR − c(e)

and provides an expected utility eR to the others. Effort choice of the selected agent will be

e(θ) = θR/2 such that utility from being selected is R2θ
4 , while the benefit for the others is R2θ

2 .

Hence, with t = R2θ
4 , α = 2 and β = 0 this example with effort choice fits our framework.

In order to keep the presentation concise and to reduce the number of cases to distinguish, we

assume that the performer’s utility is congruent with the other agents’ utilities, and that agents

of all types prefer someone of their own type providing the service over doing it themselves. The

latter condition means that there is a free-riding problem and finding a volunteer for the task is

indeed difficult or, put differently, that the task is unpleasant.

Assumption 1.

α > 0 and t < αt+ β for all t ∈ [tL, tH ]. (1)

In the heterogenous-ability case, Assumption 1 means that the cost c > 0. In the altruism

case, it means that only strictly negative types are possible, tH < 0. Assumption 1 is also satisfied

in the above effort-choice example.

8The heterogeneous-ability case can be generalized by allowing an agent’s cost to be a function of her ability, that
is, c(θ) = γθ + γ′, where γ < 1 and γ′ are commonly known parameters. This fits our model with α = 1/(1− γ) and
β = γ′/(1− γ).
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2.2 Mechanisms

A social planner or the group of agents themselves can commit to the rules of a mechanism

to allocate the task among them. We are interested in symmetric equilibria of (anonymous)

mechanisms that allow only two messages. In a binary mechanism, each player chooses between

two actions, denoted by “Y ” and “N”. We do not allow players to opt out because we will

show that in any equilibrium each type of agent is at least as well off as in a uniformly-random

assignment, by which we mean that the task is always assigned with equal probability to any

agent, independently of the realized type profile.

Assuming anonymity, a binary mechanism is characterized by a list

p1, . . . , pn−1.

For all j = 1, . . . , n − 1, the number pj denotes the probability that the task is assigned to a

randomly selected Y -player if there are j Y -players; with probability 1 − pj , it is assigned to

a randomly selected N -player if there are j Y -players. If the number of Y -players is 0 or n,

the task is assigned randomly among all agents, that is, each agent gets assigned the task with

probability 1/n.

The restriction to binary mechanisms is motivated by their simplicity. Each player can be

imagined to find a best response action, e.g. by trial and error in an adaptive process the rest

points of which are the equilibria. We will show that binary mechanisms, in spite of their sim-

plicity, are quite powerful. In contrast, a restriction to ex-post incentive-compatible mechanisms

with arbitrary action spaces, which would address similar concerns, only leaves the possibility of

random assignment.

Lemma 1. The only anonymous ex-post incentive-compatible (EPIC) task-assignment rule is

the one that induces the uniformly-random assignment.

The proof of this result can be found in the Appendix.

Given any mechanism (p1, . . . , pn−1), a symmetric strategy profile is characterized by a func-

tion σ that determines the strategy for each agent, where σ(t) denotes the probability that type

t ∈ [tL, tH ] chooses Y . Given any symmetric strategy profile σ, the ex-ante probability that a

given agent chooses Y is denoted by

y(σ) =

∫

σ(t)dF (t).

The expected type of a Y -player in this equilibrium is denoted by

tY (σ) =
1

y(σ)

∫

σ(t)tdF (t) if y(σ) > 0,

and of an N -player by

tN (σ) =
1

1− y(σ)

∫

(1− σ(t))tdF (t) if y(σ) < 1.
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Moreover, the expected benefit that accrues to every other agent if the task is assigned to an

a-player is denoted by

ua(σ) = αta(σ) + β for a = Y,N.

The expected utility Ua(σ, t) of any type t taking action a, who anticipates that the other

agents will use the strategy σ, is

UY (σ, t) =

n−1∑

j=0

Bn−1
y(σ)(j)

(

pj+1
juY (σ) + t

j + 1
+ (1− pj+1)uN (σ)

)

, (2)

UN (σ, t) =

n−1∑

j=0

Bn−1
y(σ)(j)

(

pjuY (σ) + (1− pj)
(n− j − 1)uN (σ) + t

n− j

)

. (3)

Using the binomial distribution, Bn−1
y (j) =

(
n−1
j

)
(1 − y)n−1−jyj denotes9 the probability that,

from the point of view of the given agent, j of the n− 1 other agents choose Y , given that each

of them chooses Y with probability y. We also use the notation pn = 1 and p0 = 0.

The function σ is an equilibrium if the following implications hold for all t:

if σ(t) > 0 then UY (σ, t)− UN (σ, t) ≥ 0,

if σ(t) < 1 then UY (σ, t)− UN (σ, t) ≤ 0.

Mechanism-equilibrium combinations (p1, . . . , pn−1, σ) and (p′1, . . . , p
′
n−1, σ

′) are equivalent if

each type obtains the same expected utility in both combinations.

In the uniformly-random assignment rule given by pj = j/n for all j, any strategy is an

equilibrium that induces the uniformly random assignment.

2.3 Welfare

The social planner’s problem is to find a mechanism-equilibrium combination (p1, . . . , pn−1, σ)

that maximizes utilitarian welfare,10

n∑

j=0

Bn
y(σ)(j)

(

pj
(
tY (σ) + (n− 1)uY (σ)

)
+ (1− pj)

(
tN (σ) + (n− 1)uN (σ)

))

.

Because the task cannot be avoided, the terms involving β add up to a constant additive term

(n− 1)β in the utilitarian welfare. Dropping this constant, the planner maximizes

(1 + α(n− 1))W,

9We use the convention that 00 = 1.
10Given our focus on symmetric equilibria, this objective is equivalent to maximizing any agent’s ex-ante expected

utility.
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where we use the shortcut

W =
n∑

j=0

Bn
y(σ)(j) (pjtY (σ) + (1− pj)tN (σ)) .

for the expected type of the selected agent. Since α > 0, the planner’s objective boils down

to maximizing W . In terms of our two leading interpretations, this means that the planner

maximizes the expected ability or minimizes the expected cost of the selected agent.

3 Preliminary Results

In this section, we introduce a particular class of equilibria called partition equilibria that will play

a central role. We formulate the planner’s first- and second-best problems under the restriction

to binary-action rules, and we show that, concerning the first best, the binary-action assumption

vanishes to be restrictive in a large population.

3.1 Notation: selection-probability functions and expected utilities

We first introduce four auxiliary functions, hY , hN , qY and qN and discuss their basic properties.

We will express the agents’ expected utilities in terms of these functions. This has the advantage

that binomial sums can remain hidden behind these functions for a large part of the analysis.

Taking the point of view of a given agent who has chosen an action (Y or N), the functions qY

and qN describe the probability of personally getting assigned the task, and the functions hY

and hN describe the probability that someone in the group of Y -playing agents gets assigned the

task.

Let y ∈ [0, 1] denote every other (i.e., not the given) agent’s probability of playing Y . The

probability that anyone of the Y -playing agents is selected, conditional on the event that the

given agent plays Y , is denoted

hY (y) =

n−1∑

j=0

Bn−1
y (j)pj+1. (4)

Similarly, the probability that anyone of the Y -playing agents is selected, conditional on the

event that the given agent plays N , is denoted by

hN (y) =

n−1∑

j=0

Bn−1
y (j)pj . (5)

The probability that the given agent is selected herself if she chooses action a = Y,N is denoted

qa(y); i.e.,

qY (y) =

n−1∑

j=0

Bn−1
y (j)

pj+1

j + 1
(6)
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and

qN (y) =

n−1∑

j=0

Bn−1
y (j)

1− pj
n− j

. (7)

As an example, consider the uniformly-random-assignment rule. Here, a computation that applies

standard properties of the binomial distribution to the definitions (4)–(7) shows that11

hY (y) =
1 + y(n− 1)

n
, hN (y) =

y(n− 1)

n
, (8)

qY (y) =
1

n
, qN (y) =

1

n
.

Next we establish several useful algebraic relations between the auxiliary functions. These rela-

tions hold independently of the underlying mechanism. A particularly simple formula is available

for expressing qY and qN in terms of hY and hN . To see it, suppose that all agents play Y with

probability y. Then the probability that the task is assigned to a Y -player can be expressed in

the form yhY +(1−y)hN . Alternatively, the same probability can be expressed in the form nyqY

because every Y -playing agent is selected with the same probability. Thus,

nyqY (y) = yhY (y) + (1− y)hN (y). (9)

Similarly, the probability that an N -player is selected is given by

n(1− y)qN (y) = y(1− hY (y)) + (1− y)(1− hN (y)). (10)

Adding up the equations (9) and (10) confirms the ex-ante probability that any given agent is

selected:

yqY (y) + (1− y)qN (y) =
1

n
. (11)

The derivatives of qY and qN can again be related to the selection-probability functions.

Lemma 2. Consider any mechanism and any 0 < y < 1. Then

q′Y (y) =
hY (y)− hN (y)− qY (y)

y
, (12)

q′N (y) =
hN (y)− hY (y) + qN (y)

1− y
. (13)

The proof, which relies on standard properties of Bernstein polynomials, is relegated to the

Appendix. Towards computing equilibria, it is crucial to evaluate an agent’s expected-utility gain

from playing Y versus playing N , assuming that all other agents use a strategy σ. The agent’s

expected utility can be written as

UY (σ, t) = (hY − qY )uY + qY · t+ (1− hY )uN (14)

11To understand the numerators in the formulas for hY and hN , note that, from the point of view of a given agent,
the expected number of other Y -players is equal to y(n− 1); by playing Y , the agent adds in herself (1+).
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and

UN (σ, t) = (1− hN − qN )uN + qN · t+ hNuY . (15)

The functions on the right-hand sides are evaluated at y(σ), which is omitted as an argument

for the sake of brevity. The interpretation of these expressions is straightforward. Consider for

instance the expected utility (14) from playing Y : the first term captures the payoff that arises

from the event that the task is performed by a Y -player other than the agent herself, which

happens with probability hY − qY ; the second term captures the event that the agent is selected

herself, which happens with probability qY , yielding the utility t; the third term captures the

payoff that arises from the event that the task is performed by an N -player.

Combining the expressions (14) and (15) and cancelling terms, the utility gain from playing

Y versus playing N is

UY (σ, t)− UN (σ, t) = (qY − qN )t+ (hY − hN − qY )uY − (hY − hN − qN )uN . (16)

Note that the first term on the right-hand side is the only one that involves the agent’s type t.

The expression is linear in t, the sign being determined by qY − qN . This gives us some intuition

for the general shape of equilibria in this setting.

3.2 Partition equilibria

We now introduce a special class of equilibria, in which all agents with types below a cut-off

type choose N and all agents with types above choose Y . A strategy σ is a partition strategy

if there exists a cut-off type t̂ ∈ [tL, tH ] such that σ(t) = 0 for all t < t̂ and σ(t) = 1 for all

t > t̂. A symmetric equilibrium in which the agents use a partition strategy is called a partition

equilibrium. There are mechanisms for which no such partition equilibrium exists. If one exists, it

is not clear whether it yields the highest welfare among all equilibria. We will show, however, that

a social planner who is free to choose the mechanism can focus on partition equilibria without

loss of generality (see Lemma 3).

Any partition strategy is characterized by the Y -playing probability y = 1 − F (t̂). In the

following, we will identify any partition strategy σ with the number y = y(σ). Whenever we deal

with a partition strategy y ∈ [0, 1], we define the cut-off type by

t̂(y) = F−1(1− y).

We adapt the notation for the expected type of a Y -player and N -player, respectively, and write

tY (y) = E[t|t ≥ t̂(y)] and tN (y) = E[t|t ≤ t̂(y)].

We define the continuous extensions tY (0) = tH and tN (1) = tL. The expected benefit created

by an a-player is ua(y) = αta(y) + β for a = Y,N . Given any partition strategy y ∈ [0, 1], it
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holds that tY (y) > tN (y), and since α > 0 also

uY (y) > uN (y). (17)

The strategies y = 0 and y = 1 imply that one action is chosen with probability 1, so that the

uniformly-random-assignment payoffs obtain. In any equilibrium y in which both actions are

chosen with positive probability (i.e., 0 < y < 1), the type t̂(y) is indifferent between the two

actions, that is,

∆(y) = 0, where ∆(y) = UY (y, t̂(y)))− UN (y, t̂(y)). (18)

A type t′s utility gain from playing Y , given by equation 16, can be written as

UY (y, t)− UN (y, t) = (qY (y)− qN (y))(t− t̂(y)).

In any partition equilibrium, this utility gain must be nonnegative for all t > t̂(y), implying

qY (y) ≥ qN (y). (19)

Lemma 3 shows that focusing on mechanism-partition-equilibrium combinations is without loss

of generality for a social planner.

Lemma 3. For any mechanism-equilibrium combination, there exists an equivalent mechanism-

partition-equilibrium combination, (p1, . . . , pn−1, y), such that ∆(y) = 0 and qY (y) ≥ qN (y).

Any mechanism-equilibrium combination with qY (y) = qN (y) is equivalent to uniformly-random

assignment.

The proof (see the Appendix) uses the fact that in a mechanism-equilibrium combination

with qY (y) < qN (y), the agents will use a reverse partition strategy where low types play “Y ”

and high types play “N”. An equivalent mechanism-equilibrium combination is obtained by

switching the labels of the actions Y and N in the mechanism.

Given any partition-equilibrium strategy y, (19) implies that qY (y) ≥ 1/n if y > 0 and

qN (y) ≤ 1/n if y < 1 (cf. (11)). In other words, relative to a uniformly-random assignment,

playing Y increases the probability of getting assigned the task and playing N reduces this

probability. In line with our focus on partition equilibria, from now on we adopt the convention

of calling the action Y “volunteering” and the action N “non-volunteering”.

3.3 The planner’s problem

As explained in the description of the model, the planner’s objective boils down to assigning the

task such that the expected type of the selected agent is maximized.

Without loss of generality, we restrict the allowed mechanism-equilibrium combinations in

line with the result of Lemma 3. In particular, we only consider partition equilibria. Given any

strategy y, a volunteer is selected with probability nyqY (y) and a non-volunteer is selected with

13



probability n(1− y)qN (y). Thus, the expected type of the selected agent is

W (y) = nyqY (y)tY (y) + n(1− y)qN (y)tN (y). (20)

Hence, the planner’s (binary-second-best) problem is to

max
p1...,pn−1,y

W (y)

s.t. 0 ≤ pj ≤ 1 (j = 1, . . . , n− 1),

0 ≤ y ≤ 1,

∆(y) = 0,

qY (y)− qN (y) ≥ 0.

The functions W (y),∆(y), qY (y), qN (y) of course depend on the mechanism, which is not made

explicit in the notation.

Note that the planner’s problem does not include a participation constraint. As implied by

the lemma below, this omission is without loss of generality under the assumption that the default

assignment is uniformly random. For later use, the lemma also provides conditions for a strict

improvement over the uniformly-random assignment.

Lemma 4. Consider any mechanism-equilibrium combination. Then all types are at least as well

off as in the uniformly-random assignment. Let y denote the equilibrium volunteering rate. If

0 < y < 1 and qY (y) ̸= qN (y), then all types are strictly better off than in the uniformly-random

assignment.

The intuition behind Lemma 4 is as follows. Let 0 < y < 1 be a partition strategy, with

qY (y) ≥ qN (y). Suppose that any agent of a given type deviates from the equilibrium by vol-

unteering with probability y and not volunteering with probability 1 − y. Because the agent

mimics the average behavior of any other agent, she will be selected with probability 1/n; in this

event, her payoff is the same as in a uniformly-random assignment. In the complementing event

that the agent is not selected, her payoff equals the equilibrium expected ability of the selected

agent, which is weakly higher than the expected ability in a random assignment, and strictly so

if qY > qN . The formal proof can be found in the Appendix.

3.4 The binary-first-best benchmark

Before we solve the planner’s problem in Section 4.1, we solve the problem of a planner who is

not restricted by equilibrium constraints. This binary-first-best benchmark constitutes an upper

bound for what can be achieved in the planner’s (second-best) problem. We will show that due

to the free-riding problem that is present in our model, this upper bound can typically not be
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achieved. The planner’s binary-first-best problem is defined as follows:

max
p1...,pn−1,y

W (y)

s.t. 0 ≤ pj ≤ 1 (j = 1, . . . , n− 1),

0 ≤ y ≤ 1.

The interpretation is that, by setting any y, the planner has the power to make the types in

[t̂(y), tH ] play Y and to make the types in [tL, t̂(y)] play N .

This problem has a straightforward solution. Given any volunteering rate y, the welfare is

maximized by maximizing the probability of assigning the task to a Y -player. This is achieved

by the any-volunteer rule (p1 . . . , pn−1) = (1, . . . , 1).

Remark 1. The solution to the binary-first-best problem involves the any-volunteer rule. Any

welfare-maximizing volunteering rate y∗ satisfies 0 < y∗ < 1.

The details of the proof are relegated to the Appendix. In the case n = 2, the first-order

condition underlying Remark 1 simplifies to t̂(y∗) = t̄, that is, in the optimum the marginally

volunteering type is the expected type. For n ≥ 3, one can show that t̂(y∗) > t̄.

Social welfare and individual incentives are aligned if and only if the marginal type from the

binary-first-best is indifferent between performing the task herself and letting someone else do it.

Corollary 1. The binary second best coincides with the binary first best if and only if β+αt̂(y∗) =

t̂(y∗) for a binary-first-best y∗. Thus, with Assumption 1 in place, the binary first-best cannot be

obtained by any mechanism-equilibrium combination.

In the heterogenous-ability case, the condition given in the corollary means that the volun-

teering cost is equal to 0. In the altruism case it means that α = 1, i.e., that the other agents

fully internalize the cost imposed on the selected agent. Both these limit cases are ruled out by

the strict free-riding condition in Assumption 1.

The proof of Corollary 1 (see the Appendix) makes use of a formula for the welfare effect

of marginally increasing the volunteering rate y. Because this formula is interesting in its own,

provides good intuition, and is also used in the proof of Lemma 6, we state it as a separate

result (Lemma 5). The formula holds for any binary-action rule and connects the welfare effect

to ∆(y), the marginal type’s utility gain from playing Y versus playing N . It captures how the

misalignment between the planner’s welfare goal and an agent’s equilibrium condition depends on

the strength of the marginal type’s free-riding incentive. The free-riding incentive is proportional

to the effect of the agent’s own action choice on the probability of being selected, qY (y)− qN (y),

and is proportional to the cutoff-type agent’s change in utility if she performs the task versus if

someone else of her type does it, αt̂(y) + β − t̂(y).

Lemma 5. Consider any mechanism and any (not necessarily equilibrium) partition strategy y.

Then
α

n
W ′(y) = ∆(y) + (qY (y)− qN (y))((α− 1)t̂(y) + β). (21)
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To illustrate, consider any partition-equilibrium strategy y (i.e., ∆(y) = 0) with qY (y) >

qN (y). Since the marginal type t̂(y) has a free-riding incentive (i.e., (α − 1)t̂(y) + β > 0),

marginally increasing the volunteering rate increases the welfare (i.e., W ′(y) > 0). This result

reflects the very idea of free riding: individual agents have insufficient volunteering incentives

from a social point of view.

3.5 Approximating the standard first-best

The binary-first-best problem maintains the restriction to binary mechanisms and partition

strategies. The standard first best, in contrast, is defined without these restrictions. The solution

to the standard first-best problem is to always assign the task to the agent with the highest type

among all agents. Given that a continuum of types exists, this solution can obviously not be

reached exactly with a binary mechanism.

Remark 2. The first-best welfare is approximated arbitrarily closely by the binary-first-best wel-

fare as the population becomes arbitrarily large. Formally, let y∗ denote a binary-first-best vol-

unteering rate; as n → ∞, y∗ → 0, ny∗qY (y
∗) → 1, and t̂(y∗) → tH .

The formulas say that, in the binary first-best in a large population, the individual volunteer-

ing probability tends to 0, the probability that at least one agent volunteers tends to 1, and the

expected type of the selected agent tends to the highest possible type. Remark 2 follows from

the fact that in a large population, an agent with an ability close to the highest possible type

exists with a probability close to 1; a detailed proof can be found in the Appendix.

4 Utilitarian optimality

In this section, we introduce a particular class of binary-action rules called threshold rules, as well

as a variant of these, threshold rules with uniformly random default, and present their utilitarian

optimality properties.

4.1 Solving the binary-second-best problem: threshold rules

Our first main result is that the solution to the planner’s problem always involves a threshold rule

(Proposition 1). A mechanism (p1, . . . , pn−1) is called a threshold rule if there exists a number

i∗ (1 ≤ i∗ ≤ n− 1) such that pj = 1 for all j > i∗ and pj = 0 for all j < i∗. We call such a rule

pure if pi∗ = 1.

The any-volunteer rule is a threshold rule; set i∗ = 1 and pi∗ = 1. Other threshold rules

capture the idea of what we call the multiple-volunteers principle. Each agent anticipates that

volunteering puts her in a lottery box together with the other volunteers if there are more than

i∗ volunteers in total. If the required number of i∗ volunteers is not reached (or, put differently,

the number of non-volunteers exceeds n− i∗), then all volunteers are free and the non-volunteers

are put into a lottery box.

Proposition 1. Any solution to the binary-second-best problem involves a threshold rule.

16



Towards proving this, it is useful to know that the equilibrium condition can be relaxed so

that it becomes an inequality. Put simply, due to the free-rider problem the planner cannot gain

from artificially restricting the volunteering level.

Lemma 6. Any solution to the binary second-best problem also solves the relaxed problem in

which the constraint ∆(y) = 0 is replaced by the inequality ∆(y) ≥ 0.

To prove Proposition 1, we first invoke Proposition 5 below which implies that some improve-

ment over a uniformly-random assignment is possible in any group of at least three agents (with

two agents, Proposition 1 is void). Thus, from Lemma 3 the constraint qY (y) ≥ qN (y) is not

binding at the optimum. Fixing any volunteering rate y, we consider the Lagrangian first-order

conditions with respect to the rule-defining probabilities pi, where the Lagrangian multiplier of

the constraint ∆(y) = 0 can be assumed to be non-negative by Lemma 6. Now the stochastic

independence of agents’ types (as captured by the binomial distribution) leads to the optimality

of a threshold rule.

The answer to the question which threshold rule is optimal depends on the parameters. The

results in Section 4.3 imply that threshold rules with arbitrarily large i∗ can be optimal as the

group size n becomes large.

4.2 Binary second-best with ex-post participation constraints: rules

with random default

In a threshold rule, once a volunteering agent learns the total number of volunteers, she may

regret her participation if non-participation induces the uniformly-random task assignment as a

default outcome. To see this, consider a partition equilibrium y in the two-volunteers rule (i.e.,

i∗ = 2 and pi∗ = 1). Suppose that an agent with a non-volunteering type t < t̂(y) finds out that

only one volunteer shows up. Then the task is assigned among the n−1 non-volunteers, yielding

the payoff 1
n−1 t +

n−2
n−1uN (y). But if she refuses to participate, then with probability 1/n the

task will be assigned to the volunteer, giving the payoff uY (y) > tY (y) > t̂(y) > t, which is also

higher than uN (y).12

To alleviate the regret concern, we now consider ex-post participation constraints. For any

type of a given agent, her ex-post payoff is defined as the expected payoff at the point when she

learns the actual number of volunteers. The binary second-best problem with ex-post participation

constraints is defined as the planner’s binary second-best problem augmented by the additional

requirement that, given any number of volunteers, the ex-post payoff of any type of agent in

equilibrium is at least as large as her ex-post payoff in a uniformly-random assignment.

In some cases, such as those with sufficiently high volunteering costs, the solution to the

binary-second-best problem with ex-post participation constraints is the uniformly-random task

12Regret of participation may also occur for a volunteer. If an agent with type t finds out she is the only volunteer
in the two-volunteers rule, then someone else performs the task; the agent’s payoff will be equal to the benefit uN (ŷ).
Had she refused to participate, then with probability 1/n she would have been assigned to the task herself and she
would have gained the payoff (1/n)(t− uN (ŷ)), which can be a strictly positive number for a sufficiently large type t.
A concrete example is the setting where all other parameters are as in Figure 1, except that β = 0.1.
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assignment. In such cases, any rule is optimal. In all other cases, any solution is a threshold rule

with uniformly-random default, by which we mean a mechanism (p1, . . . , pn−1) with the following

property: there exists a number i∗ (1 ≤ i∗ ≤ n − 1) such that pj = 1 for all j > i∗, pj = j/n

for all j < i∗, and pi∗ ≥ i∗/n. Such a rule is called “pure” if pi∗ = 1. Threshold rules with

a uniformly-random default capture the multiple-volunteers principle in a similar way as the

standard threshold rules. The only difference is that the assignment falls back to uniformly-

random if not enough volunteers show up.

Proposition 2. Suppose that the value at the solution to the binary-second-best problem with ex-

post participation constraints exceeds that of a uniformly-random assignment. Then the solution

involves a threshold rule with uniformly-random default.

The proof (see the appendix) follows the lines of the proof of Proposition 1, taking account

of the additional constraints as formulated below.

Lemma 7. The binary-second-best problem with ex-post participation constraints is obtained by

augmenting the binary-second-best problem with the constraints

pi ≥
i

n
(i = 1, . . . , n− 1) (22)

and

(pi −
i

n
)
(
i(uY (y)− uN (y))− (uY (y)− t̂(y))

)
≥ 0 (i = 1, . . . , n− 1). (23)

The constraints (22) require that no matter how many agents volunteer, the probability of

selecting a volunteer is at least as large as in a uniformly-random assignment. It is important

to note that the constraints (22) alone are not sufficient to capture the ex-post participation

constraints. Indeed, numerical examples of threshold rules with uniformly-random default can

be given such that an ex-post participation constraint is violated in some partition equilibrium.

But this problem cannot occur for pure rules.

Remark 3. In any partition equilibrium of a pure threshold rule with uniformly-random default,

the ex-post participation constraints are satisfied.

The intuition behind this result is as follows. If the required number of volunteers i∗ is not

reached, the uniformly-random assignment obtains and the ex-post participation constraints hold

with equality. If the required number of volunteers is reached, the non-volunteers receive more

than the uniformly-random-assignment payoff since the task is assigned to the volunteers, who

have a larger expected type than the non-volunteers. The only ex-post participation constraints

that remain are those of the volunteers when the threshold i∗ is reached.

Intuitively, reaching the threshold is good news for the volunteers as well, who would other-

wise not have volunteered. The motivation to volunteer is due to the chance to be pivotal for

assignment to the volunteers, which occurs if the number of other volunteers is equal to i∗ − 1.

Therefore, a volunteer’s payoff if there are exactly i∗ volunteers is larger than the uniformly-

random-assignment payoff. The ex-post payoff of the marginal volunteer’s type t̂(y) is increasing

in the number of volunteers, and hence all ex-post participation constraints are satisfied in any
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partition equilibrium of a threshold rule with uniformly-random default that has pi∗ = 1. If

pi∗ < 1, then the intuition outlined here only has the weaker implication that the ex-post par-

ticipation constraints hold if there are strictly more than i∗ volunteers.

4.3 Volunteering in a large population

In this section, we consider a large population of agents. We demonstrate that the first best

can be approximated using a threshold rule without or with random default if the threshold is

sufficiently large (Proposition 3). This result demonstrates once more the power of threshold

rules. In particular, in large populations there can be no substantial efficiency gain from rules

with more than two actions, or from using monetary transfers. This insight is diametrically

opposed to the situation in settings of pure private values. There each agent only cares about

her personal probability of getting assigned the task. In such settings, no type-specific incentives

can be provided without monetary transfers, so that the assignment will always be uniformly

random, whereas with monetary transfers the first best could be reached.

As a preliminary step, we characterize large-population limits of equilibrium volunteering

levels for arbitrary threshold rules. Lemma 8 considers sequences of equilibria that are indexed

by the population size. We show that any pure i∗-threshold rule with a sufficiently large threshold

i∗ has a sequence of partition equilibria along which the expected number of volunteers remains

bounded away from 0 as the population becomes arbitrarily large; we derive a formula (25) for

the large-population limit of the expected number of volunteers (denoted z∗). The lower bound

on i∗ in Lemma 8 guarantees that the right-hand side in (25) is less than 1, so that (25) has

a (unique) solution. Lemma 8 also provides a formula for the limit probability that the task is

assigned to a volunteer (denoted r∗), which in turn yields a formula for the limit expected type

of the selected agent.

Our approach to keep i∗ fixed while we let the population size grow to infinity suffices for

the proof that the first best can be approximated with increasingly large thresholds, as implied

by Proposition 3. A central role is played by the Poisson distribution. For any z > 0, let

Pois(z)(i) = e−zzi/i! denote the probability of the realization i = 0, 1, . . . according to the

Poisson distribution with expectation z. The corresponding hazard-rate function is

hPois(z)(i) =
Pois(z)(i)

∑∞
j=i Pois(z)(j)

=
1

i!
∑∞

j=i
zj−i

j!

. (24)

Lemma 8. Consider a threshold rule, with or without uniformly-random default, with parameter

i∗ > (αtH + β − tH)/(α(tH − t)) and pi∗ = 1.

Given any sequence of partition equilibria (ŷn) defined for all population sizes n > i∗, let

zn = nŷn denote the corresponding expected number of volunteers.

There exists a sequence of partition equilibria such that lim infn zn > 0. For any such sequence,

zn → z∗, where hPois(z∗)(i∗) =
αtH + β − tH
i∗α(tH − t)

. (25)
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Let (rn) denote the sequence of equilibrium probabilities that the task is assigned to a volunteer,

that is, rn = nŷnqY (ŷn) for all n > i∗. Then

rn → r∗ ∈ (0, 1), where r∗ =

∞∑

j=i∗

Pois(z∗)(j).

The sequence of equilibrium levels of the expected type of the selected agent converges to r∗tH +

(1− r∗)t.

The intuition behind Lemma 8 is as follows (for proof details see the Appendix). First, recall

that the Poisson distribution is the limit of binomial distributions as the number of draws grows

large and the expected number of successes stabilizes. For large n, the number of volunteers

therefore approximately follows a Poisson distribution with mean z∗. The intuition behind the

formula for z∗ stated in Lemma 8 is as follows. In a large population, each agent will volunteer

with a small probability, that is, the marginally volunteering type is approximately equal to tH .

Her decision to volunteer is pivotal for the population if exactly i∗ − 1 other agents volunteer,

which happens with probability

Pois(z∗)(i∗ − 1) =
i∗

z∗
Pois(z∗)(i∗).

In this event, the marginal agent’s decision to volunteer implies that the task will be assigned

to a top type rather than to a mean type, yielding an additional benefit for every agent of

approximately α(tH − t).

Any given agent’s payoff, however, is also affected by the probability that she is selected

herself for the task if she volunteers. In a large population, this probability is approximately

equal to

∑

j≥i∗−1

Pois(z∗)(j)
1

j + 1
=

1

z∗

∑

j≥i∗

Pois(z∗)(j).

In this event, the agent’s payoff will be determined by her own type rather than by the benefit

provided by someone else, contributing a payoff loss of approximately αtH + β − tH for the

marginal type. Overall, the marginal type’s payoff gain from volunteering is approximately equal

to

i∗

z∗
Pois(z∗)(i∗)α(tH − t)− 1

z∗

∑

j≥i∗

Pois(z∗)(j)(αtH + β − tH).

This is equal to 0 because the marginal type is indifferent between volunteering and not volun-

teering, yielding (25).13

13In the case i∗ = 1, we can make a connection to the literature on of public-good provision with complete infor-
mation. Bergstrom and Leo (2015) define the coordinated volunteer’s dilemma as the game in which, similar to the
any-volunteer rule, the task is performed by a randomly selected volunteer if and only if at least one volunteer comes
forward; if nobody volunteers, then the task is not performed at all. The task has a commonly known provision cost c
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The formula for r∗ is straightforward from the fact that the number of volunteers approxi-

mately follows a Poisson distribution with mean z∗.

We remark that, because the hazard-rate function hPois(z)(i) is strictly decreasing in the mean

z, the expected number of volunteers, z∗, is uniquely determined and is strictly decreasing in the

ratio (αtH + β − tH)/(α(tH − t)). Moreover, because the function z 7→ hPois(z)(i) approaches the

value 1 as z → 0, z∗ is close to 0 if the ratio is close to i∗.

The following result shows that the first-best optimal assignment can be approximated ar-

bitrarily closely via an i∗-threshold rule if i∗ is chosen sufficiently large and the population is

sufficiently large. This result is important because it shows that binary mechanisms, although

being very simple with just two possible actions for each agent, are sufficient to approximate the

first best in a large population. The reason a binary mechanism may be good enough is that

the information to be extracted from the agents is binary as well: each agent is essentially asked

whether or not her type is close to the highest feasible type. The nonobvious feature of the

i∗-threshold rule with large i∗ is that in equilibrium it becomes almost certain that at least i∗

volunteers will come forward if the population is sufficiently large.

Proposition 3. As the population size converges to infinity, any corresponding sequence of

welfare-optimal threshold levels also converges to infinity, and the resulting second-best welfare

level converges to the first-best welfare level. Formally, limi∗→∞ r∗ = 1, where r∗ is defined in

Lemma 8.

The proof relies on the fact that, by the equilibrium condition (25), an agent’s pivotality

probability and her probability of getting assigned the task if she volunteers must remain com-

parable in size as the threshold i∗ grows large; i.e., the ratio of the two probabilities converges to

a number strictly between 0 and infinity as i∗ tends to infinity. This implies that the expected

number of volunteers, z∗, will remain sufficiently (just a little) above i∗ such that at large thresh-

olds i∗ it becomes almost certain that the threshold will be reached in equilibrium. The proof

uses the Chernoff bounds for tail probabilities of Poisson random variables.

5 Robust improvement-property

We now move from optimality to improvement considerations. Which threshold rules allow for

some improvement over a uniformly random task assignment? In the spirit of Wilson’s ideal of

detail-freedom, a social planner will find it reassuring to implement a rule that allows for a robust

improvement in the sense that the improvement occurs across a large range of parameters.

and a commonly known benefit b to each agent; they consider symmetric equilibria in mixed strategies. As shown by
Bergstrom and Leo (2015), in their setting formulas analogous to those in Lemma 8 for the heterogenous-ability case
(i.e., α = 1 and β = c) hold if tH − t is replaced by b. This is intuitive because, in our model, the social benefit of the
volunteering decision of the marginal type is that the task is done at highest quality, tH , rather than average quality,
t. The lower bound for i∗ in Lemma 8 is then satisfied for the any-volunteer rule (i∗ = 1) if 1 > c/b, implying that a
sequence of equilibria with a strictly positive limit for the expected number of volunteers exists if c < b.
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5.1 Breakdown of volunteering with random-default rules

One may conjecture that a robust improvement is impossible because in a setting with large

volunteering costs or too little altruism there would be no volunteering at all. In this section, we

confirm this conjecture for the threshold rules with uniformly-random default (Proposition 4).

This negative conclusion sets the stage for our result in the next section that yields the opposite

conclusion for any non-extreme threshold rule without uniformly-random default: any such rule

always allows for an improvement over a uniformly random assignment!

Proposition 4. Consider any threshold rule with uniformly-random default that is different

from the uniformly-random-assignment rule, (p1, . . . , pn−1) ̸= (1/n, . . . , (n− 1)/n). Let i∗ be the

smallest i such that pi > i/n.

For all y ∈ (0, 1], it holds that qY (y) > qN (y), implying that any equilibrium is a partition

equilibrium.

If tH + (i∗ − 1)(αtH + β) ≤ i∗(αt̄ + β), then in the unique equilibrium nobody volunteers.

Otherwise, there exists an equilibrium in which every type of agent is strictly better off than in

the uniformly-random assignment.

The reason for the possible breakdown of volunteering is easiest to explain for the any-

volunteer rule (i.e., i∗ = 1, pi∗ = 1). Consider an agent of highest type who believes that

nobody else will volunteer. Switching her action from non-volunteering to volunteering raises

the probability that she herself gets assigned the task by 1− 1/n. At the same time, the switch

reduces, by the same amount, the probability that a non-volunteer other than herself is selected.

Thus, the agent faces an equal-probability tradeoff between the payoff from volunteering herself,

tH , and the payoff from letting somebody else do the job, αt̄ + β. Thus, non-volunteering is

optimal if tH ≤ αt̄ + β and otherwise volunteering is optimal. A more elaborate argument

shows that under the same condition, for any volunteering rate the marginal type prefers to not

volunteer. Thus, everybody non-volunteering constitutes the unique equilibrium. The arguments

generalize to other threshold rules with uniformly-random default, in particular rules with i∗ ≥ 2.

The details of the proof are relegated to the Appendix.

In the heterogeneous-ability interpretation of our model, the no-volunteering condition in

Proposition 4 translates to i∗(θH − θ̄) ≤ c, where θH denotes the highest skill type, θ̄ denotes the

average skill type, and c denotes the volunteering cost. Hence, in the heterogeneous-ability case

of our model, volunteering breaks down if and only if the volunteering cost is sufficiently high

or all agents have sufficiently similar abilities. In the altruism interpretation, the condition in

Proposition 4 is −tH ≥ αi∗

1−α
(−t̄), where −tH denotes the lowest provision cost, −t̄ denotes the

average provision cost, and 0 < α < 1 is the level of altruism. Hence, in this case volunteering

breaks down if and only if the level of altruism is sufficiently close to 0.

5.2 Improvement over the uniformly-random assignment

The main result in this section is Proposition 5, in which we show that any threshold rule

that is sufficiently different from the any-volunteer rule (and its mirror rule, the all-volunteer
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rule), always has an equilibrium that provides a strict improvement over the uniformly-random

assignment. We call these threshold rules non-extreme.

The robust-improvement property of non-extreme threshold rules marks a crucial advantage

of these rules over using a threshold rule with a uniformly-random default. By committing

to select a non-volunteering agent for the task if the threshold is not reached, the designer

effectively creates a cost of non-volunteering that always keeps up some volunteering activity.

In equilibrium, still all non-volunteering agent types are strictly better off than in a uniformly

random assignment.

A threshold rule (p1, . . . , pn−1) is called non-extreme if the assignment probability to a volun-

teer is below uniform randomness if there is a single volunteer (i.e., p1 < 1/n), and the assignment

probability to a non-volunteer is below uniform randomness if there is a single non-volunteer (i.e.,

pn−1 > 1 − 1/n). This condition is satisfied for all threshold rules with 2 ≤ i∗ ≤ n − 2. A non-

extreme threshold rule exists if and only if n > 2. Proposition 5 shows that any non-extreme

threshold rule always allows for a strict improvement over the uniformly-random assignment.

Note that the result holds for arbitrarily large volunteering-cost levels and for altruism levels

that are arbitrarily close to 0.

Proposition 5. Any non-extreme threshold rule has an equilibrium in which every type of agent

is strictly better off than in a uniformly-random assignment. A partition-equilibrium strategy with

the strict-improvement property is given by the maximal element ŷ of the set {y ∈ [0, 1] | ∆(y) =

0}.

The contribution of Proposition 5 is not the existence of some equilibrium with a positive

volunteering rate, but of a partition-equilibrium strategy ŷ that satisfies the strict-improvement

conditions, 0 < ŷ < 1 and qY (ŷ) > qN (ŷ). It is straightforward to see that in any equilibrium

(partition or else) there is some volunteering. Indeed, the no-volunteering strategy y = 0 is never

an equilibrium: an agent with a type t ≈ tL (sic!) who expects no other volunteers to come

forward will be selected with probability p1 if she volunteers and with probability 1/n otherwise,

inducing a payoff gain from volunteering that is equal to (p1 − 1/n)(t− αt− β), which is > 0 by

Assumption 1.

Figure 1 helps to understand the proof of Proposition 5. Consider the function qY , which

captures an agent’s probability of getting assigned the task if she volunteers. A crucial point of

comparison is the agent’s ex-ante selection probability 1/n, marked as a horizontal line in the

figure. For any volunteering rate y ∈ (0, 1) of the other agents, volunteering increases the personal

selection probability (i.e., qY (y) > qN (y)) if and only if qY (y) > 1/n. To prove Proposition 5, we

show that qY (ŷ) > 1/n at the last point ŷ where the function ∆ crosses the y-axis.

Intuitively, in a non-extreme threshold rule, by volunteering an agent reduces her personal

selection probability if the others’ volunteering rate is sufficiently low, and otherwise increases it.

Formally, we establish the existence of a unique volunteering rate y̌ ∈ (0, 1) where the function

qY crosses the 1/n-line from below. At y̌, because an agent’s action has no impact on her own

selection probability, the benefit from volunteering, ∆(y̌), is proportional to hY − hN − 1/n, the

agent’s effect on the probability that a volunteer other than herself is selected. Hence, once we
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✻
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qY (y)

hY (y)− hN (y)

y∗m

Figure 1: An example of a task assignment problem. There are n = 5 agents. The type of each agent is
uniformly distributed on [−1, 0]. The preference parameters are α = β = 1. The diagram shows several
functions of the volunteering rate y, for the case of the threshold rule that requires two volunteers (i.e., i∗ = 2
and pi∗ = 1). The function hY (y)−hN (y) captures the impact of an agent’s switch from non-volunteering to
volunteering on the probability (computed from the switching agent’s point of view) that the task gets assigned
to a volunteer. The function qY (y) captures the probability an agent assigns to the event of being selected if
she volunteers. The function ∆(y) captures an agent’s payoff gain from volunteering. The volunteering rate
ŷ is a partition-equilibrium strategy that satisfies the strict-improvement conditions stated in Lemma 4.

establish that hY (y̌)−hN (y̌) > 1/n, we can conclude that ŷ > y̌, hence qY (ŷ) > 1/n, and we are

done.

How do we prove that qY crosses the 1/n-line only once, from below, as claimed above? If

nobody else volunteers (i.e., y = 0), a volunteering agent expects to be selected with probability

p1. Thus, qY (0) < 1/n for any non-extreme threshold rule, that is, at the point 0 the function

qY is below the 1/n-line. On the other hand, if everybody else volunteers (i.e., y = 1), then

volunteering herself puts the agent in a pot with everybody, that is, qY (1) = 1/n. Given this, it

is sufficient to show that qY is strictly quasi-concave, that is, is first strictly increasing and then

strictly decreasing. But this is immediate from Lemma 2 and the following result.

Lemma 9. For any non-extreme threshold rule, there exists a ym1 ∈ (0, 1) such that hY (y) −
hN (y) > qY (y) for all y < ym1 and hY (y)− hN (y) < qY (y) for all y > ym1.

Note that qY (y
m1) > 1/n, implying y̌ < ym1.14 Hence, Lemma 9 implies hY (y̌) − hN (y̌) >

qY (y̌) = 1/n, establishing the last remaining claim in the text above.

Lemma 9 says that if the volunteering rate is below some threshold, then by volunteering

an agent increases the probability that a volunteer other than herself gets assigned the task,

and otherwise she decreases this probability. The proof of this single-crossing property relies on

another lemma, Lemma 15, that establishes the quasi-concavity of the function hY − hN . The

quasi-concavity relies on the special form this function has for a threshold rule. All these details

are relegated to the appendix.

14While in Figure 1 it is also true that ŷ < ym1, this inequality can be reversed, such as when β = 0.1 and all other
parameters are as in Figure 1.
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Proposition 5 talks about one particular equilibrium, raising questions about alternative equi-

libria. Recall that any strategy σ gives rise to a volunteering rate y(σ). Any equilibrium strategy

σ with qY (y(σ)) > qN (y(σ)) yields a partition equilibrium. Recall that 0 < y(σ) < 1, imply-

ing ∆(y(σ)) = 0. If ∆′(y(σ)) < 0, then σ is dynamically stable: if an agent expects others to

volunteer at a rate y slightly above y(σ), then ∆(y) < 0, implying that her best response is to

volunteer at a rate slightly below y, and vice versa for volunteering rates slightly below y(σ).

Any equilibrium σ with qY (y(σ)) = qN (y(σ)) is dynamically unstable: if an agent expects others

to volunteer at a rate y slightly above y(σ), then qY (y) > qN (y) and ∆(y) > 0 (cf. Figure 1),

implying that her best response is a partition strategy in which she volunteers at a rate even

higher than y.

Corollary 2. For any non-extreme threshold rule, the equilibrium described in Proposition 5 is

dynamically stable. In any dynamically stable equilibrium, every type of agent is strictly better

off than in a uniformly-random assignment.

Proof. The claims concerning equilibria σ with qY (y(σ)) = qN (y(σ)) or qY (y(σ)) > qN (y(σ))

follow from the explanations given above. An equilibrium σ with qY (y(σ)) < qN (y(σ)) has the

same properties as an equilibrium with qY > qN in the rule that is obtained by switching the

names of the actions Y and N .

6 Assigning a pleasant task

So far we have maintained Assumption 1, which means that the task is unpleasant. With the

opposite assumption, our model is suited for applications in which there are excessive volunteering

incentives. Instead of volunteering for an unpleasant task, agents who choose the message “Y”

propose themselves for a promotion or a prize for some achievement. Agents then prefer to be

selected over another agent with the same merit, but they also care about the merit of the agent

who is selected.15

To model the problem of assigning a pleasant task, we hence keep the condition that the

performer’s utility is congruent with the other agents’ utilities, but we assume that agents of all

types prefer doing the task themselves rather than letting someone of their own type provide

the service. The latter condition means that getting people to refrain from volunteering can be

difficult.

Assumption 1’.

α > 0 and t > αt+ β for all t ∈ [tL, tH ]. (26)

In the heterogenous-ability case, Assumption 1’ means that the cost c < 0. In the altruism

case, it means that only strictly positive types are possible, tL > 0.

15Another example is the setting of Li, Rantakari, and Yang (2016), in which two agents would like their own project
to be chosen, but also have a common interest in the quality of the chosen project. The setting of Bhaskar and Sadler
(2019) also fits in with β = 0, except that they also allow for a non-provision of the public good.

25



Assumption 1’ is interesting beyond the pleasant-task interpretation. We can interpret the

model as the problem of assigning n − 1 unpleasant tasks among n agents (where the spared

agent’s private information determines everybody’s payoff).

The following paragraphs describe how our results continue to hold with some modifications.

This streamlined exposition does not always follow the order of the exposition in the main part

and does not explicitly state all results again. Those that are stated always receive the number

of the corresponding results in the main part. The proofs are mostly analogous to the proofs of

the corresponding results in the main part and can be found in the appendix.

Lemma 1’. The only anonymous ex-post incentive-compatible (EPIC) task-assignment rule is

the uniformly-random rule.

We will use the same expected-utility formulas as in the main part, (2) and (3). Further, note

that the formulas of the selection-probability functions and their properties do not depend on

the utility function. We also still have the equivalence result (Lemma 3): For any mechanism-

equilibrium combination, there exists an equivalent mechanism-partition-equilibrium combina-

tion, (p1, . . . , pn−1, y), such that ∆(y) = 0 and qY (y) ≥ qN (y). Any mechanism-equilibrium

combination with qY (y) = qN (y) is equivalent to uniformly-random assignment. This result

needs no assumptions on α and β. It is basically the result that only monotonically increasing

functions can be implemented. Recall that we use the term “volunteering” for the action Y

and “non-volunteering” for N . Given that we now consider the assignment of a pleasant task, a

Y -playing agent may also be called a “keen” agent.

Some other results only rely on the assumption that α > 0 and do not use the assumption that

the task is unpleasant. For example, the proof of Lemma 4 still holds without any modification.

Hence, we know also in this case that for any mechanism-equilibrium combination, all types

are at least as well off as in the uniformly-random assignment. Moreover, if the equilibrium

volunteering rate y has 0 < y < 1 and qY (y) ̸= qN (y), then all types are strictly better off than

in the uniformly-random assignment.

Since α > 0, maximizing welfare is still equivalent to maximizing the type of the selected

agent. The planner’s binary-first-best problem is defined and solved as in the main part: The

solution to the binary-first-best problem involves the any-volunteer rule, any welfare-maximizing

volunteering rate y∗ satisfies 0 < y∗ < 1, and the first-best welfare is approximated arbitrarily

closely by the binary-first-best welfare as the population becomes arbitrarily large.

The planner’s (binary-second-best) problem is defined as in the main part. The binary-first-

best benchmark constitutes an upper bound for what can be achieved in the planner’s problem.

Due to the excessive volunteering incentives that are present in this model, this upper bound can

typically not be achieved. This can be seen from the formula for the welfare effect of marginally

increasing the volunteering rate y that was derived in the main part (Lemma 5):

α

n
W ′(y) = ∆(y) + (qY (y)− qN (y))((α− 1)t̂(y) + β).

To illustrate, consider any partition-equilibrium strategy y (i.e., ∆(y) = 0). If an agent’s task-

assignment probability is not independent of her action (i.e., qY (y) > qN (y)) and the marginal
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type t̂(y) actually has an excessive volunteering incentive (i.e., (α − 1)t̂(y) + β < 0), then

marginally increasing the volunteering rate decreases the welfare (i.e., W ′(y) < 0). That is,

from a social point of view it would be good to curb the volunteering activity a bit—the volun-

teering incentives are excessive at the margin.

This formula can again be used to prove that social welfare and individual incentives are

aligned if and only if the marginal type from the binary-first-best is indifferent between performing

the task herself and letting someone else do it (Corollary 1), only that now the condition β =

t̂(y∗)(1 − α) cannot be satisfied for a binary-first-best y∗ because of Assumption 1’ instead of

Assumption 1.

Solving the binary-second-best problem: maximum-threshold rules

The main result of this section is that the solution to the planner’s problem always involves a

maximum-threshold rule (Proposition 1’). A mechanism (p1, . . . , pn−1) is called a max(imum)-

threshold rule if there exists a number i∗ (1 ≤ i∗ ≤ n− 1) such that pj = 1 for all 1 ≤ j < i∗ and

pj = 0 for all n − 1 ≥ j > i∗. With a maximum-threshold rule, the task is awarded to a keen

individual if there are sufficiently few keen individuals.16

A max-threshold rule (p1, . . . , pn−1) is called non-extreme if the assignment probability to

a volunteer is above uniform randomness if there is a single volunteer (i.e., p1 > 1/n), and

the assignment probability to a non-volunteer is above uniform randomness if there is a single

non-volunteer (i.e., pn−1 < 1− 1/n). This condition is satisfied for all max-threshold rules with

2 ≤ i∗ ≤ n − 2. Proposition 5’ shows that any non-extreme max-threshold rule always allows

for a strict improvement over the uniformly-random assignment. To prove this, we make the

additional technical assumption here that the density f is at least n times differentiable.

Proposition 5’. Any non-extreme max-threshold rule has a (dynamically stable) equilibrium in

which every type of agent is strictly better off than in a uniformly-random assignment.

The contribution of Proposition 5’ is not the existence of some equilibrium with a volunteering

rate strictly below 1, but of a partition-equilibrium strategy ŷ that satisfies the strict-improvement

conditions, 0 < ŷ < 1 and qY (ŷ) > qN (ŷ). It is straightforward to see that in any equilibrium

(partition or else) some types will refrain from volunteering. Indeed, the all-volunteering strategy

y = 1 is never an equilibrium: an agent with a type t ≈ tH who expects all other agents to

volunteer will be selected with probability 1 − pn−1 if she refrains from volunteering and with

probability 1/n otherwise, inducing a payoff gain from volunteering that is equal to (pn−1 − (1−
1/n))(t− αt− β), which is < 0 by Assumption 1’.

To solve the planner’s problem, it is again useful to show first that the equilibrium condition

can be relaxed so that it becomes an inequality. This result carries over from the unpleasant

16One should nevertheless keep in mind that if no keen individuals show up, then—as in any rule—the task is
allocated to a non-keen individual. Similarly, if all individuals are keen, then the task is naturally allocated to a
keen individual. Hence, in contrast to the case of a threshold rule in the unpleasant task case, the probability that
the task is assigned to a volunteer is not monotonically increasing in the number of volunteers. The analog of that
monotonicity here is that the probability of a keen agent being assigned the task is monotonically increasing in the
number of agents who refrain from volunteering.
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task case with opposite sign: Due to the excessive-volunteering problem the planner cannot gain

from increasing the volunteering level beyond the equilibrium level.

Lemma 6’. Any solution to the binary second-best problem also solves the relaxed problem in

which the constraint ∆(y) = 0 is replaced by the inequality ∆(y) ≤ 0.

To solve the planner’s problem, we first invoke Proposition 5’ which implies that some im-

provement over a uniformly-random assignment is possible in any group of at least three agents

(with two agents, any rule is a max-threshold rule). Thus, the constraint qY (y) ≥ qN (y) is not

binding at the optimum. Fixing any volunteering rate y, we consider the Lagrangian first-order

conditions with respect to the rule-defining probabilities pi, where the Lagrangian multiplier of

the constraint ∆(y) = 0 can be assumed to be non-positive by Lemma 6’. Now the stochastic

independence of agents’ types leads to the optimality of a maximum threshold rule.

Proposition 1’. Any solution to the binary-second-best problem involves a maximum-threshold

rule.

Binary second-best with ex-post participation constraints: rules with

random default

In a max-threshold rule, once a volunteering agent learns the total number of volunteers, she may

regret her participation if non-participation induces the uniformly-random task assignment as a

default outcome. To see this, consider a partition equilibrium ŷ in the max-one-volunteers rule

(p1, . . . , pn−1) = (1, 0, . . . , 0). If an agent with type t finds out she is one of two volunteers, then a

non-volunteer performs the task; the agent’s payoff will be equal to the benefit uN (ŷ). But if she

refuses to participate, then her expected payoff will be (1/n)t+ (1/n)uY (ŷ) + (n− 2)/n uN (ŷ),

which is an improvement because uY (ŷ) > uN (ŷ) and t > t̂(ŷ) > tN (ŷ) > uN (ŷ).

Let us thus consider the binary second-best problem with ex-post participation constraints

as defined in the main part. In some cases, such as those with sufficiently strongly negative

volunteering costs, the solution to the binary-second-best problem with ex-post participation

constraints is the uniformly-random task assignment. In such cases, any rule is optimal. In all

other cases, any solution is amax-threshold rule with uniformly-random default, by which we mean

a mechanism (p1, . . . , pn−1) with the following property: there exists a number i∗ (1 ≤ i∗ ≤ n−1)

such that pj = 1 for all j < i∗, pj = j/n for all j > i∗, and pi∗ ≥ i∗/n. Such a rule is called

“pure” if pi∗ = 1. The only difference to a standard max-threshold rule is that the assignment

falls back to uniformly-random if too many volunteers show up.

Proposition 2’. Suppose that the value at the solution to the binary-second-best problem with ex-

post participation constraints exceeds that of a uniformly-random assignment. Then the solution

involves a max-threshold rule with uniformly-random default.

The proof (see the appendix) follows the lines of the proof of Proposition 1’, taking account

of the additional constraints as formulated below.
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Lemma 7’. The binary-second-best problem with ex-post participation constraints is obtained by

augmenting the binary-second-best problem with the constraints

pi ≥
i

n
(i = 1, . . . , n− 1) (27)

and

(pi −
i

n
)
(
(n− i)(uY − uN )− (t̂(y)− uN )

)
≥ 0. (i = 1, . . . , n− 1). (28)

It is important to note the existence of the constraints (28). For pure rules, however, the

ex-post participation constraints are automatically satisfied.

Remark 3’. In any partition equilibrium of a pure max-threshold rule with uniformly-random

default, the ex-post participation constraints are satisfied.

Breakdown of volunteering with random-default rules

One may conjecture that a robust improvement is impossible because in a setting with large

negative volunteering costs or too little altruism all agent types would volunteer. Here we confirm

this conjecture for the max-threshold rules with uniformly-random default.

Proposition 4’. Consider any max-threshold rule with uniformly-random default that is different

from the uniformly-random-assignment rule, (p1, . . . , pn−1) ̸= (1/n, . . . , (n− 1)/n). Let i∗ be the

largest i ≤ n− 1 such that pi > i/n.

For all y ∈ [0, 1), it holds that qY (y) > qN (y), implying that any equilibrium is a partition

equilibrium.

If tL − uL < (n− i∗)α(t̄− tL), then there exists an equilibrium in which every type of agent

is strictly better off than in the uniformly-random assignment. If there exists an equilibrium in

which everybody volunteers, then it is not dynamically stable.

If tL − uL > (n − i∗)α(t̄ − tL) then there exists a dynamically stable equilibrium in which

everybody volunteers. If t̂ − uN ≥ (n − i∗)α(tY − tN ) for all y ∈ [0, 1], then this is the unique

equilibrium.

In the heterogeneous-ability interpretation of our model, if the type distribution is uniform,

then the condition for a dynamically stable everybody-volunteering equilibrium in Proposition 4’

translates to (n− i∗)(θ̄− θL) ≤ −c, where θL denotes the lowest skill type, θ̄ denotes the average

skill type, and c denotes the volunteering cost. If F is uniform, this condition already implies the

condition for uniqueness of this equilibrium. For all distributions F , the uniqueness condition

is satisfied if the volunteering benefit is sufficiently high or all agents have sufficiently similar

abilities. In the altruism interpretation, the condition for a dynamically stable equilibrium with

everybody volunteering in Proposition 4’ is tL(1 − α) ≥ (n − i∗)α(t̄ − tL), where tL denotes

the lowest provision benefit, t̄ denotes the average provision benefit, and 0 < α < 1 is the

level of altruism. If F is uniform, uniqueness is already implied. Else, it is satisfied for α low

enough. Hence, no screening of types will happen in this case if and only if the level of altruism

is sufficiently close to 0.
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Recall that we arrived at the opposite conclusion for any non-extreme max-threshold rule

without uniformly-random default: any such rule always allows for an improvement over a uni-

formly random assignment. This robust-improvement property of non-extreme max-threshold

rules marks a crucial advantage of these rules over using a max-threshold rule with a uniformly-

random default. By committing to select a non-volunteering agent for the task if the threshold

number of volunteers is surpassed, the designer effectively creates a benefit of non-volunteering

that always repels some types from volunteering. In equilibrium, still all agent types are strictly

better off than in a uniformly random assignment.

Volunteering in a large population

In this section, we consider a large population of agents. We demonstrate that the first best can

be approximated using a max-threshold rule without or with random default if the threshold

is sufficiently large (Proposition 3’). As an intermediate step, we characterize large-population

limits of equilibrium volunteering levels for arbitrary max-threshold rules (Lemma 8’).

To simplify the exposition, we only consider “pure” max-threshold rules, that is, we assume

that pi∗ = 1, where i∗ ≥ 1 is the threshold.

Lemma 8’ considers sequences of equilibria that are indexed by the population size. We

show that any pure i∗-max-threshold rule with a sufficiently large threshold i∗ has a sequence

of partition equilibria along which the expected number of volunteers remains below i∗ as the

population becomes arbitrarily large; we derive a formula (30) for the large-population limit of

the expected number of volunteers (denoted z∗). The lower bound on i∗ in Lemma 8’ guarantees

that (30) has a solution. Lemma 8’ also provides a formula for the limit probability that the task

is assigned to a volunteer (denoted r∗), which in turn yields a formula for the limit expected type

of the selected agent.

Our approach to keep i∗ fixed while we let the population size grow to infinity suffices for the

proof that the first best can be approximated with increasingly large thresholds, as implied by

Proposition 3’.

A central role is played by the Poisson distribution. For any z > 0, let Pois(z)(i) = e−zzi/i!

denote the probability of the realization i = 0, 1, . . . according to the Poisson distribution with

expectation z.

Lemma 8’. Consider a max-threshold rule, with or without uniformly-random default, with

parameter i∗ so large that17

i∗e−i∗
(
(i∗)i

∗

i∗!
− 1

)

>
tH − (αtH + β)

α(tH − t)
. (29)

Given any sequence of partition equilibria (ŷn), let zn = nŷn denote the corresponding expected

number of volunteers.

17Note that from Stirling’s formula it is straightforward that the left-hand side in (29) tends to infinity, showing
that the condition is satisfied for all sufficiently large i∗.
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There exists a sequence of partition equilibria such that lim infn zn ≤ i∗. For any limit point

z∗ of such a sequence,

Pois(z∗)(i∗)− Pois(z∗)(0)
1
z∗

∑i∗

j=1 Pois(z
∗)(j)

=
tH − (αtH + β)

α(tH − t)
. (30)

Let (rn) denote the sequence of equilibrium probabilities that the task is assigned to a volunteer,

that is, rn = nŷnqY (ŷn). Then

rn → r∗ ∈ (0, 1), where r∗ =

i∗∑

j=1

Pois(z∗)(j).

The sequence of equilibrium levels of the expected type of the selected agent converges to r∗tH +

(1− r∗)t.

The intuition behind Lemma 8’ is as follows. First, recall that the Poisson distribution is

the limit of binomial distributions as the number of draws grows large and the expected number

of successes stabilizes. For large n, the number of volunteers therefore approximately follows a

Poisson distribution with mean z∗. The intuition behind the formula for z∗ stated in Lemma

8’ is as follows. In a large population, each agent will volunteer with a small probability, that

is, the marginally volunteering type is approximately equal to tH . Her decision to volunteer is

positively pivotal for the population if 0 other agents volunteer, and is negatively pivotal if i∗

other agents volunteer, yielding a net negative pivotality probability of

Pois(z∗)(0)− Pois(z∗)(i∗).

Here, the marginal agent’s decision to volunteer reduces the probability that the task will be

assigned to a top type rather than to a mean type, yielding a payoff loss for every agent of

approximately α(tH − t).

Any given agent’s payoff, however, is also affected by the probability that she is selected

herself for the task if she volunteers. In a large population, this probability is approximately

equal to

1

z∗

i∗∑

j=1

Pois(z∗)(j).

In this event, the agent’s payoff will be determined by her own type rather than by the benefit

provided by someone else, contributing a payoff gain of approximately tH − (αtH + β) for the

marginal type. Overall, the marginal type’s payoff gain from volunteering is approximately equal

to

1

z∗

i∗∑

j=1

Pois(z∗)(j)(tH − (αtH + β))− (Pois(z∗)(i∗)− Pois(z∗)(0))α(tH − t).
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This is equal to 0 because the marginal type is indifferent between volunteering and not volun-

teering, yielding (30).

The formula for r∗ is straightforward from the fact that the number of volunteers approxi-

mately follows a Poisson distribution with mean z∗.

The following result shows that the first-best optimal assignment can be approximated ar-

bitrarily closely via an i∗-threshold rule if i∗ is chosen sufficiently large and the population is

sufficiently large. This result is important because it shows that binary mechanisms, although

being very simple with just two possible actions for each agent, are sufficient to approximate the

first best in a large population. The reason a binary mechanism may be good enough is that

the information to be extracted from the agents is binary as well: each agent is essentially asked

whether or not her type is close to the highest feasible type. The nonobvious feature of the

i∗-threshold rule with large i∗ is that in equilibrium it becomes almost certain that at least i∗

volunteers will come forward if the population is sufficiently large.

Proposition 3’. As the population size converges to infinity, any corresponding sequence of

welfare-optimal threshold levels also converges to infinity, and the resulting second-best welfare

level converges to the first-best welfare level. Formally, limi∗→∞ r∗ = 1, where r∗ is defined in

Lemma 8’.

The proof is shorter than the proof of the corresponding result for an unpleasant task. This

is because we know by construction that z∗ ≤ i∗, whereas in the unpleasant-task situation the

corresponding opposite inequality had to be proven first.

Conclusion

If a task is to be assigned among a group of agents, the multiple-volunteers principle turns out to

be a powerful tool for improving welfare with binary-action mechanisms. We expect the principle

to extend to settings in which multiple tasks must be assigned: one should typically require a

number of volunteers that is larger than the number of tasks. While we think that binary-

action rules are a natural starting point due to their practicality, the kind of preferences that we

have modelled clearly deserve attention beyond binary-action rules, including environments with

monetary transfers.
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Appendix: Proofs

Proof of Lemma 1. Using the notation of Bhaskar and Sadler (2019), consider any anonymous

EPIC direct-mechanism rule Q = (Q1, . . . , Qn), where Qi(t) denotes the probability that the

task is assigned to agent i at type profile t = (t1, . . . , tn), and
∑n

j=1 Qj(t) = 1. EPIC means

that, for all i, ti, and t−i,

tiQi(ti, t−i) +
∑

j ̸=i

(αtj + β)Qj(ti, t−i) ≥ tiQi(t
′
i, t−i) +

∑

j ̸=i

(αtj + β)Qj(t
′
i, t−i).

By standard revealed-preference arguments, this implies that Qi is weakly increasing in ti.

Anonymity means that Qρ(i)(t
ρ) = Qi(t) for any permutation ρ of the set {1, . . . , n}, any

agent i, and any type profile t, where tρ denotes the permuted type profile. In particular, for any

i and j, using the permutation ρ that switches i and j, one sees that, for all type profiles t,

Qi(t) = Qj(t) if ti = tj . (31)

We do a proof by induction. For all k = 1, . . . , n, consider the following statement Ak: for all

type profiles t such that the highest n− k+1 components are identical, we have Qi(t) = 1/n for

all i = 1, . . . , n.

The statement A1 is true by (31). We will show Ak ⇒ Ak+1 for all k < n.

Assume Ak. To prove Ak+1, consider any type profile t such that the highest n−k components

are identical. Without loss of generality, we consider an ordered type profile, t1 ≤ · · · ≤ tn. Thus,

there exists a type t̂ such that tk+1 = · · · = tn = t̂. The goal is to show that

Qi(t) =
1

n
for all i. (32)

From Ak,

Qi(t1, . . . , tj−1, t̂, tj+1, . . . , tn) =
1

n
for all i and all j ≤ k. (33)

It remains to consider type profiles t such that

tj < t̂ for all j ≤ k. (34)

Because Qj is weakly increasing in agent j’s type,

Qj(t) ≤ 1

n
for all j ≤ k. (35)

EPIC implies that agent k with type t̂ does not gain from reporting type tk instead. This together

with (33) implies that

t̂
1

n
+
∑

j<k

(αtj + β)
1

n
+
∑

j>k

(αt̂+ β)
1

n
≥ t̂Qk(t) +

∑

j<k

(αtj + β)Qj(t) +
∑

j>k

(αt̂+ β)Qj(t).
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Subtracting αt̂+ β =
∑n

j=1 Qj(t)(αt̂+ β) on both sides yields

(t̂− αt̂− β)
1

n
+
∑

j<k

(αtj − αt̂)
1

n
≥ (t̂− αt̂− β)Qk(t) +

∑

j<k

(αtj − αt̂)Qj(t),

which is equivalent to

(t̂− αt̂− β)
︸ ︷︷ ︸

<0

(
1

n
−Qk(t)

)

+
∑

j<k

α(tj − t̂)
︸ ︷︷ ︸

<0

(
1

n
−Qj(t)

)

≥ 0,

where the underbraced inequalities follow from Assumption 1 and (34). The above inequality

together with (35) implies Qj(t) = 1
n

for all j ≤ k. Thus,
∑

j>k Qj(t) = 1 − k/n. From (31),

Qk+1(t) = · · · = Qn(t), implying Qj(t) = 1/n for all j > k. This completes the proof of (32).

Proof of Lemma 2. Using the definition (6),

yqY (y) =

n−1∑

j=0

(n− 1)!yj+1(1− y)n−(j+1)

(j + 1)!(n− (j + 1))!
pj+1 =

1

n

n−1∑

j=0

Bn
y (j + 1)pj+1. (36)

Taking derivatives on both sides yields

yq′Y (y) + qY (y) =
1

n

n−1∑

j=0

d

dy
Bn

y (j + 1)pj+1.

Thus, using the following standard identity about the derivative of a Bernstein polynomial,

d

dy
Bn

y (j) = n
(
Bn−1

y (j − 1)−Bn−1
y (j)

)
for j = 1, ..., n− 1, (37)

d

dy
Bn

y (j) = nBn−1
y (j − 1) for j = n

we obtain

yq′Y (y) + qY (y) =

n−1∑

j=0

Bn−1
y (j)pj+1 −

n−2∑

j=0

Bn−1
y (j + 1)pj+1

=
n−1∑

j=0

Bn−1
y (j)pj+1 −

n−1∑

j=0

Bn−1
y (j)pj .

Now (12) follows from the definitions (4) and (5). The proof of (13) is analogous.

Proof of Lemma 3. Consider any mechanism-equilibrium combination (p′1, . . . , p
′
n−1, σ

′). Let

y′ = y(σ′) denote the probability that an agent plays Y .

Any equilibrium with y′ = 0 or y′ = 1 yields the uniformly-random-assignment alloca-

tion. Thus, an equivalent mechanism-equilibrium combination in partition form is given by
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the uniformly-random-assignment rule together with any partition strategy y, that is, we can set

(p1, . . . , pn−1, y) = (1/n, . . . , 1/n, y).

Now suppose that 0 < y′ < 1. Then there exists a type tL < t̂ < tH such that UY (σ
′, t̂) =

UN (σ′, t̂). Thus, using (16),

UY (σ
′, t)− UN (σ′, t) = (qY (y

′)− qN (y′))(t− t̂) for all t. (38)

There are three cases, (i) qY (y
′) > qN (y′), (ii) qY (y

′) < qN (y′), and (iii) qY (y
′) = qN (y′).

In case (i), (38) implies that the strategy σ′ is the partition strategy y′. Thus, we can set

(p1, . . . , pn−1, y) = (p′1, . . . , p
′
n−1, y

′).

In case (ii), (38) implies that σ′(t) = 1 for all t < t̂ and σ′(t) = 0 for all t > t̂. We obtain

an equivalent mechanism-equilibrium combination (p1, . . . , pn−1, σ) by setting pj = 1− p′n−j and

σ(t) = 1− σ′(t). Thus σ has the partition form, showing that the desired conclusion holds with

y = 1− y′.

In case (iii), (11) implies qY (y
′) = 1/n = qN (y′). In the case uY = uN , the law of iterated

expectations implies that uY = uN = αt̄ + β. Thus, equivalence to the uniformly-random

assignment holds because the right-hand sides of (14) and (15) are equal to (1− 1
n
)(αt̄+β)+ 1

n
t,

which is the payoff from uniformly-random assignment.

Now suppose that uY ̸= uN . Using (16) and (38),

UY (σ
′, t)− UN (σ′, t) = (hY − hN − 1

n
)(uY − uN ) = 0 for all t.

Thus, hY − hN − 1
n
= 0. On the other hand, (9) implies that y = yhY + (1− y)hN . Solving the

system of these two equations leads to the formulas in (8). Plugging these into (14) yields that

UY (σ, t) = (1− 1

n
)(αt̄+ β) +

1

n
t.

Thus, the payoff from playing Y (and then also from playing N) is the same as in the uniformly-

random-assignment rule.

Proof of Lemma 4. If y = 0 or y = 1, then the uniformly-random assignment obviously obtains.

Thus, assume 0 < y < 1.

If qY (y) = qN (y), then the conclusion follows from Lemma 3. Cases with qY (y) < qN (y) are

analogous to cases with qY (y) > qN (y), with switched roles of the actions Y and N .

Thus, assume qY (y) > qN (y). Thus, y is a partition strategy. This implies nyqY > y and

n(1− y)qN < (1− y). Hence, (20) together with (17) implies

W (y) > ytY (y) + (1− y)tN (y) = t̄, (39)

where the last equality relies on the law of iterated expectations. Using (14) and (15), we see
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that, for any type t,

yUY (y, t) + (1− y)UN (y, t)

= (y(hY − qY ) + (1− y)hN )uY + (y(1− hY ) + (1− y)(1− hN − qN ))uN +
1

n
t

Thus, using (9) and (10), we see that

yUY (y, t) + (1− y)UN (y, t)

= (1− 1

n
)(αW (y) + β) +

1

n
t

> (1− 1

n
)(αt̄+ β) +

1

n
t,

which is the agent’s payoff from a uniformly-random assignment. Therefore, also the equilib-

rium payoff max{UY (y, t), UN (y, t)} is strictly larger than the payoff from a uniformly-random

assignment.

Proof of Remark 1. We do the maximization in two steps. First, we fix any y and solve for the

optimal mechanism (p1, . . . , pn−1) given y. Second, we maximize over y.

Using (11), we can alternatively write the objective W uniformly in terms of qY (y), as

W (y) = nyqY (y)(tY (y)− tN (y)) + tN (y).

Therefore, the optimal mechanism maximizes qY (y). Thus, from (6) the any-volunteer rule is

the unique optimal mechanism if 0 < y < 1. Moreover, the any-volunteer rule is an optimal

mechanism if y = 0 or y = 1. Any binary-first-best y∗ satisfies 0 < y∗ < 1 because otherwise the

uniformly-random assignment would obtain. Thus, W ′(y∗) = 0.

Proof of Lemma 5. Using (20) and applying the product differentiation rule, we find

1

n
W ′(y) =

d

dy
(yqY (y)tY (y) + (1− y)qN (y)tN (y))

= qY tY − qN tN + yq′Y (y)tY + (1− y)q′N (y)tN + yqY t
′
Y (y) + (1− y)qN t′N (y). (40)

We first calculate the derivatives

t′Y (y) =
d

dy

(

1

y

∫ tH

t̂(y)

tdF (t)

)

=
t̂(y)− tY (y)

y
(41)

and

t′N (y) =
d

dy

(

1

1− y

∫ t̂(y)

tL

tdF (t)

)

=
tN (y)− t̂(y)

1− y
. (42)
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Plugging (12), (13), (41), and (42) into (40), and dropping the y-arguments on the right-hand

side, we get

α
1

n
W ′(y) = αtY (hY − hN − qY ) + αtN (hN − hY + qN ) + αt̂(qY − qN )

= uY (hY − hN − qY ) + uN (hN − hY + qN ) + (αt̂+ β)(qY − qN ).

Using (16) and the definition of ∆(y) in (18), we get that

∆(y) = uY (hY − hN − qY ) + uN (hN − hY + qN ) + t̂(qY − qN ). (43)

Combining the two equations, the claimed formula follows.

Proof of Corollary 1. For any binary first best allocation y∗, it holds that W ′(y∗) = 0 for W

evaluated at the any-volunteer rule.

If β− (1−α)t̂(y∗) = 0, then Lemma 5 implies ∆(y∗) = 0 for the any-volunteer rule, meaning

that y = y∗ is a partition-equilibrium strategy of the any-volunteer rule.

Now suppose that β − (1 − α)t̂(y∗) ̸= 0 for all binary first best allocations y∗. Recall that

0 < y∗ < 1. For the any-volunteer rule, qY (y
∗) − qN (y∗) > 0 (see Proposition 4). Because

W ′(y∗) = 0, Lemma 5 implies ∆(y∗) ̸= 0, showing that y∗ cannot be an equilibrium strategy of

the any-volunteer rule.

Proof of Remark 2. There exists a sequence (yn) such that yn → 0 and (1 − yn)
n → 0. For

example, taking yn = 1/
√
n, it holds that (1− yn)

√
n → 1/e by definition of the Euler number e,

and (1/e)
√
n → 0.

Given the any-volunteer rule, (4) and (5) imply that, for all y,

hY (yn) = 1 and hN (yn) = 1− (1− yn)
n−1.

Thus, (9) implies that nynqY (yn) = 1− (1− yn)
n → 1. This together with tY (yn) → tH implies

that W (yn) → tH . Denoting by W ∗
n the expected type of the selected agent in the binary

first-best, obviously W ∗
n ≥ W (yn). Thus, W

∗
n → tH .

For any n, let y∗n denote a binary-first-best volunteering rate. Thus,

W ∗
n = ny∗nqY (y

∗
n)(tY (y

∗
n)− tN (y∗n)) + tN (y∗n).

We note that y∗n → 0 and ny∗nqY (y
∗
n) → 1 because otherwise lim infn tY (y

∗
n) < tH or lim infn

ny∗nqY (y
∗
n) < 1, implying lim infn W

∗
n < tH .

Proof of Lemma 6. Consider any solution to the relaxed problem. Suppose first that y = 1.

Then qY (y) = 1/n by (6), implying that the value at the optimum of the relaxed problem equals

t̄. This value can also be reached within the feasible set of the planner’s binary-second-best
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problem, by using the uniformly-random-assignment rule. Thus, both problems reach the same

value at the optimum, as was to be shown.

Now consider cases in which y < 1. Suppose that ∆(y) > 0. Applying Lemma 5, we see that

α

n

dW

dy
> (qY (y)− qN (y))((α− 1)t̂(y) + β).

The right-hand side is ≥ 0 because of Assumption 1. This is a contradiction to optimality because

none of the constraints on y is binding.

Proof of Proposition 1. If n = 2, then we have nothing to prove because any binary mechanism

is a threshold rule. Assume that n ≥ 3.

Consider any solution (p1 . . . , pn−1, y). By Lemma 6, it also solves the relaxed problem.

From Lemma 4 and Proposition 5 below it follows that the value reached at a solution exceeds

the value at a uniformly-random assignment. Thus, 0 < y < 1 and qY (y) > qN (y) by Lemma 3.

Fixing y, the remaining relaxed maximization problem over (p1, . . . , pn−1) is a linear problem.

Hence the Lagrange conditions are necessary and sufficient, without any qualification. Let λ ≥ 0

denote the Lagrange multiplier for the constraint ∆(y) ≥ 0. Due to qY (y) > qN (y), the Lagrange

multiplier for the constraint qY (y)−qN (y) ≥ 0 equals 0. Thus, using the Lagrangian L = W+λ∆,

for all i = 1, . . . , n− 1,

if ∂L
∂pi

> 0, then pi = 1,

if ∂L
∂pi

< 0, then pi = 0.
(44)

Using (20),

∂W

∂pi
= Bn

y (i) (tY − tN ) =
Bn−1

y (i)

n− i
n(1− y) (tY − tN ) .

Similarly, using the definition of ∆ (see (18)),

∂∆

∂pi
=

Bn−1
y (i)

n− i

((
1− y

y
− 1

)

t̂(y) +

(

i
1− y

y
− (n− i)

)

(uY − uN )− 1− y

y
uY + uN

)

.

Thus,

∂L

∂pi
=

Bn−1
y (i)

n− i
︸ ︷︷ ︸

>0







iλ

(
1− y

y
+ 1

)

(uY − uN )

︸ ︷︷ ︸

>0

+[terms independent of i]








. (45)

Consider the case that λ > 0. If ∂L/∂pi < 0 for all i, then (44) implies that (p1 . . . , pn−1) =

(0, . . . , 0), a threshold rule. Otherwise let i∗ be the smallest integer such that ∂L/∂pi ≥ 0. Then

(44) implies that (p1 . . . , pn−1) is an i∗-threshold rule.

It remains to consider the case λ = 0. Then ∂L/∂pi = ∂W/∂pi > 0 for all i, implying pj = 1

for all j, that is, the solution entails the any-volunteer rule.
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Proof of Lemma 7. For any mechanism-partition-equilibrium combination (p1, ..., pn−1, y), the

ex-post payoff of a volunteering type t ≥ t̂(y) when there are i volunteers is given by piuY (y) +

(1− pi)uN (y) + pi

i
(t− uY (y)). Similarly, the ex-post payoff of a non-volunteering type t < t̂(y)

is given by piuY (y) + (1− pi)uN (y) + 1−pi

n−i
(t− uN ). A volunteering type t ≥ t̂(y) receives more

than the payoff from uniformly-random assignment, which is t−uY

n
+ i

n
uY + n−i

n
uN , if and only

if

i(pi −
i

n
)(uY − uN ) ≥ (pi −

i

n
)(uY − t). (46)

The analogous condition for a non-volunteering type t < t̂(y) is

(n− i)(pi −
i

n
)(uY − uN ) ≥ (pi −

i

n
)(t− uN ). (47)

Adding up these two conditions for t = t̂(y) yields

n(pi −
i

n
)(uY − uN ) ≥ (pi −

i

n
)(uY − uN ).

This implies (22).

The arguments so far show that the constraints stated in the lemma are necessary. To see

sufficiency, note that (22) together with (23) implies (46), and (47) follows because uY ≥ t by

Assumption 1.

Proof of Proposition 2. Because the value reached at a solution exceeds the value at a uniformly-

random assignment, we have 0 < y < 1 and qY (y) > qN (y) by Lemma 3.

We adapt the proof of Proposition 1, where the Lagrangian L = W + λ∆ is used. The

analogue here is the Lagrangian

L = L+

n−1∑

i=1

µi(pi −
i

n
)
(
i(uY − uN )− (uY − t̂)

)
.

First note that in any solution to the planner’s problem as augmented according to Lemma 7 it

holds that (n−1)(uY −uN ) ≥ (uY − t̂) because otherwise the constraint (23) implies that pi =
i
n

for all i, yielding the uniformly-random assignment rule. Let 1 ≤ î ≤ n− 1 be minimal with the

property î(uY − uN ) ≥ (uY − t̂). For all i < î, the constraint (23) implies that pi =
i
n
.

If λ = 0, then ∂L/∂pi ≥ ∂L/∂pi = ∂W/∂pi > 0 for all i ≥ î, implying pi = 1 and we are

done. Suppose that λ > 0.

Let i∗ ≥ î be minimal with the property pi∗ > i∗

n
. Thus, ∂L/∂pi∗ ≥ 0 by the Lagrangian

conditions. It is sufficient to show that

∂L
∂pi∗

=
∂L

∂pi∗
. (48)

Indeed, this implies ∂L/∂pi∗ ≥ 0 and hence, using (45), ∂L/∂pi ≥ ∂L/∂pi > 0 for all i > i∗,
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hence pi = 1, and we are done.

The equation (48) is immediate if µi∗ = 0. If µi∗ > 0, then, by the Lagrangian conditions,

the constraint (23) is binding, which implies i∗(uY − uN ) − (uY − t̂) = 0 and hence again (48)

holds.

Proof of Remark 3. Let y denote a partition equilibrium. The claim is trivial if y = 0 or y = 1,

so assume that 0 < y < 1. Then the equilibrium condition ∆(y) = 0 holds, that is, an agent with

marginal type t̂ is indifferent between volunteering or not:

n−1∑

j=i∗

Bn−1
y (j)

1

j + 1
(t̂− uY ) +Bn−1

y (i∗ − 1)

(

(
1

i∗
− 1

n
)(t̂− uY )−

n− i∗

n
(uN − uY )

)

= 0,

Because t̂(y) < tY < uY from Assumption 1, the sum
∑n−1

j=i∗ . . . above is strictly negative,

implying that

(
1

i∗
− 1

n
)(t̂(y)− uY )−

n− i∗

n
(uN − uY ) ≥ 0.

This inequality is equivalent to (23) at i = i∗, with pi∗ = 1, that is, the ex-post participation

constraint at i∗ volunteers is satisfied. From this the ex-post participation constraints (23) at

i > i∗ volunteers are immediate. The ex-post participation constraints at i < i∗ volunteers are

trivial because pi = i/n.

Proof of Lemma 8. Before presenting the proof, we provide a roadmap. Step 0 recalls the Poisson

approximation of the binomial distribution.

Using the assumption on i∗ made in the lemma, Step 1 shows that there exists a sequence

of strategies along which the expected number of volunteers does not vanish and the marginally

volunteering type strictly prefers volunteering over not-volunteering. Lowering the marginal type

until she becomes indifferent then yields a sequence of equilibria with non-vanishing expected

numbers of volunteers zn (this is Step 2).

In Step 3 we show that zn is bounded. Suppose otherwise, that is, zn → ∞ on some sub-

sequence. That is, the expected number of volunteers tends to infinity. Given that only i∗

volunteers are needed, the probability that the task is assigned to a non-volunteer falls to zero

so fast along the subsequence that the probability tends to 0 even if it is first telescoped by zn.

On the other hand, an agent expects that she is selected with a probability approximately equal

to 1/zn if she volunteers. Therefore, after telescoping payoffs by zn and defining the marginal

type t̂n = F−1(1 − ŷn), with a large n type t̂n’s payoff difference between volunteering and

non-volunteering is ≈ t̂n − uY (yn), which is strictly negative by Assumption 1, contradicting

equilibrium.

Step 4 considers any large-population limit point z∗ of the sequence zn (existence of a limit

point follows from Step 3). We show that z∗ satisfies the equation that is stated in the lemma. The

left-hand-side is strictly decreasing by (24), showing that the limit point is unique. Elementary

properties of the Poisson distribution are useful: the probability Pois(z∗)(i∗ − 1) differs by a
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factor of z∗/i∗ from the probability that there are exactly i∗ volunteers; this probability differs

by a factor of z∗/i∗ from the probability that there are at least i∗ volunteers.

Step 5 establishes the formula for r∗.

Step 0. Consider any sequence of numbers (yn), yn ∈ [0, 1] and a number z > 0 such that

zn → z, where we use the shortcuts zn = nyn. Then

lim
n

Bn−1
yn

(j) = e−z z
j

j!
for j = 0, 1, . . . (49)

and

lim
n

n−1∑

j=i∗−1

Bn−1
yn

(j)
1

j + 1
= e−z

∞∑

j=i∗−1

zj

(j + 1)!
. (50)

Formula (49) is the well-known Poisson limit theorem. To see (50), define Bn−1
yn

(j) = 0 for all

j > n− 1 and note that

∞∑

j=i∗−1

e−z zj

(j + 1)!

(49)
=

∞∑

j=i∗−1

lim
n

Bn−1
yn

(j)
1

j + 1

= lim
n

∞∑

j=i∗−1

Bn−1
yn

(j)
1

j + 1
= lim

n

n−1∑

j=i∗−1

Bn−1
yn

(j)
1

j + 1
.

This completes Step 0.

Using the assumption on i∗ made in the proposition, the argument of the function ln(. . . )

below is larger than 1. Thus, we can fix a number z such that

0 < z < ln

(
α(tH − t)i∗

αtH + β − tH

)

. (51)

We will use the functions hY , hN , qY , and qN , as applied to the threshold rule with parameter

i∗ and pi∗ = 1. (The proof extends to the corresponding threshold rule with uniformly-random

default; the reason is that at any volunteering rate y > 0, the threshold i∗ is reached for sure in

the n → ∞ limit.) Plugging in the definitions,

hY (y)− hN (y) = Bn−1
y (i∗ − 1), (52)

qY (y) =

n−1∑

j=i∗−1

Bn−1
y (j)

1

j + 1
, (53)
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and

qN (y) =

i∗−1∑

j=0

Bn−1
y (j)

1

n− j
. (54)

Using (16) and (18),

∆(y) = (qY − qN )t̂(y) + (hY − hN − qY )uY − (hY − hN − qN )uN . (55)

Step 1. For all n, define y
n
= z/n. Then ∆(y

n
) > 0 for all sufficiently large n.

We take the limit n → ∞ in (18) with y = y
n
.

Because y
n
→ 0, only the highest type volunteers in the large-population limit. Thus, t̂(y

n
) →

tH , tY → tH and tN → t.

Consider a threshold rule (it can be checked that all limits are identical for the corresponding

threshold rule with uniformly-random default).

Applying (49) with j = i∗ − 1 to (52),

lim
n

hY (yn)− hN (y
n
) = e−z (z)i

∗−1

(i∗ − 1)!
.

Applying (50) to (53),

lim
n

qY (yn) = e−z

∞∑

j=i∗−1

zj

(j + 1)!
.

Using (54),

qN (y
n
) ≤ 1

n− i∗
→ 0 as n → ∞.

Thus, using (55) and cancelling terms,

lim
n

∆(y
n
) = e−z (z)i

∗−1

(i∗ − 1)!
α (tH − t)
︸ ︷︷ ︸

>0

+e−z

∞∑

j=i∗−1

(z)j

(j + 1)!
(tH − (αtH + β))
︸ ︷︷ ︸

<0 by Assumption 1

, (56)

where we have used that uY − uN → α(tH − t) and t̂− uY → tH − (αtH + β).

Note that
∞∑

j=i∗−1

(z)j

(j + 1)!
≤

∞∑

j=i∗−1

(z)i
∗−1(z)j−i∗+1

(i∗)!(j − i∗ + 1)!
=

(z)i
∗−1

(i∗)!
ez.
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Thus, (56) implies

lim
n

∆(y
n
) ≥ (z)i

∗−1

(i∗ − 1)!
e−zα(tH − t) +

(z)i
∗−1

(i∗)!
(tH − (αtH + β))

=
(z)i

∗−1

(i∗ − 1)!

(

e−zα(tH − t)− αtH + β − tH
i∗

)

> 0,

where the last inequality follows from (51). This completes Step 1.

Step 2. For all sufficiently large n, there exists a partition-equilibrium strategy yn such that

zn > z, where we define zn = nyn.

To see this, note first that ∆(1) < 0 by Lemma 14. By Step 1 and the Intermediate Value

Theorem, there exists yn such that zn > z and ∆(yn) = 0. Let yn be maximal with these

properties.

For all threshold rules with i∗ ≥ 2, Proposition 5 implies that qY (yn) > qN (yn). For all thresh-

old rules with uniformly-random default (which also includes the any-volunteer rule), Proposition

4 implies qY (yn) > qN (yn).

Thus, yn is a partition-equilibrium strategy.

For the remaining steps, we consider any sequence of partition equilibria (yn) such that

lim infn zn > 0.

Using (52) to (55) with any y,

∆(y) = Bn−1
y (i∗ − 1)(uY (y)− uN (y))

+
∑

j≥i∗−1

Bn−1
y (j)

1

j + 1
(t̂(y)− uY (y))−

∑

j≤i∗−1

Bn−1
y (j)

1

n− j
(t̂(y)− uN (y)).

Multiplying the equilibrium condition ∆(yn) = 0 with zn and using the shortcut t̂n = t̂(yn), we

obtain

0 = znB
n−1
yn

(i∗ − 1)(uY (yn)− uN (yn)) (57)

+ zn
∑

j≥i∗−1

Bn−1
yn

(j)
1

j + 1
(t̂n − uY (yn)) − zn

∑

j≤i∗−1

Bn−1
yn

(j)
1

n− j
(t̂n − uN (yn)).

Step 3. The sequence (zn) is bounded. (In particular, yn → 0.)

We do a proof by contradiction. Suppose that, along some subsequence, zn → ∞. Then,

along this subsequence,

Bn
yn
(j) → 0 for all j = 0, 1, . . . . (58)

To see this, note that, due to elementary properties of the binomial distribution,

Bn
yn
(j) ≤ nj(yn)

j(1− yn)
n−j = (nyn)

j(1− yn)
n−j ,
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implying

ln
(
Bn

yn
(j)
)
≤ j ln(nyn) + (n− j) ln(1− yn).

Hence, using the elementary inequalities ln(1− yn) ≤ −yn and yn ≤ 1,

ln
(
Bn

yn
(j)
)
≤ j ln(nyn)− (n− j)yn ≤ j ln(zn)− zn + j → −∞.

This implies (58).

From (58) it follows that

znB
n−1
yn

(j) → 0 for all j = 0, 1, . . . . (59)

To see this, note that, by elementary properties of the binomial distribution,

nynB
n−1
yn

(j) = (j + 1)Bn
yn
(j + 1). (60)

From (59) it follows that

zn

i∗−1∑

j=0

Bn−1
yn

(j) → 0. (61)

Now we consider the limit n → ∞ in (57). By (59) and (61), the first and third terms vanish,

and in the second term the range of the sum can be replaced by
∑

j≥0. Using (60),

lim
n

zn

n−1∑

j=0

Bn−1
yn

(j)
1

j + 1
= lim

n

n−1∑

j=0

Bn
yn
(j + 1) = 1− lim

n
Bn

yn
(0)

(58)
= 1.

Plugging this into (57) yields limn t̂n − uY (yn) = 0.

Because yn is a partition strategy, the average volunteer type is larger than the marginal

type, tY (yn) ≥ t̂n. Thus, using Assumption 1,

uY (yn)− t̂n = αtY (yn) + β − t̂n ≥ αt̂n + β − t̂n ≥ min
t∈[0,1]

αt+ β − t > 0,

which contradicts the 0 limit derived above. This completes Step 3.

Step 4. Consider any limit point z∗ of (zn). Then hPois(z∗)(i∗) = αtH+β−tH
i∗α(tH−t)

.

To see this, consider a subsequence znk
→ z∗ as k → ∞. A computation analogous to that

leading to (56) implies

lim
k

∆(ynk
) = e−z∗ (z∗)i

∗−1

(i∗ − 1)!
α(tH − t) + e−z∗

∞∑

j=i∗−1

(z∗)j

(j + 1)!
(tH − (αtH + β)).
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Applying the equilibrium condition ∆(ynk
) = 0,

0 = e−z∗ (z∗)i
∗−1

(i∗ − 1)!
α(tH − t) + e−z∗

∞∑

j=i∗−1

(z∗)j

(j + 1)!
(tH − (αtH + β)).

After multiplying by z∗/i∗ and switching to the variable j′ = j + 1 in the sum,

0 = e−z∗ (z∗)i
∗

i∗!
α(tH − t) +

∞∑

j′=i∗

e−z∗ (z∗)j
′

j′!

tH − (αtH + β)

i∗
.

Thus,

0 = Pois(z∗)(i∗)α(tH − t)−
∞∑

j′=i∗

Pois(z∗)(j′)
αtH + β − tH

i∗
.

This implies the claimed formula, completing the proof of Step 4.

From (24) one sees that, for any i, the function z 7→ hPois(z)(i) is strictly decreasing. Thus,

the limit point z∗ established in Step 3 is unique, showing that the sequence (zn) converges to

z∗.

Step 5. The formula for r∗.

The probability that the task is assigned to a volunteer in the equilibrium with the partition

strategy yn is

rn =

n∑

j=i∗

Bn
yn
(j)

(60)
=

n∑

j=i∗

zn
j
Bn−1

yn
(j − 1)

Thus, using Step 0,

lim
n

rn = z∗
∞∑

j=i∗

(z∗)j−1

j!
e−z∗

=

∞∑

j=i∗

(z∗)j

j!
e−z∗

This completes the proof of the lemma.

Proof of Proposition 3. Using the shortcut κ = (αtH +β− tH)/(α(tH − t)), the equation in (25)

can also be written as

i∗Pois(z∗)(i∗) = κ

∞∑

j=i∗

Pois(z∗)(j)

or, using the definition of Pois(z∗)(i∗ − 1), and the definition of r∗ (a function of i∗ and z∗) in

the statement of Lemma 8,

i∗
e−z∗

(z∗)i
∗

(i∗)!
= κr∗. (62)
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We will use the following (Chernoff) bounds for tail probabilities as applied to a Poisson random

variable with mean z:

∞∑

j=i

Pois(z)(j) ≤ e−z(ez)i

ii
for all i ≥ z, (63)

i∑

j=0

Pois(z)(j) ≤ e−z(ez)i

ii
for all i ≤ z. (64)

To prove (63), let X denote a Poisson distributed random variable with mean z. Then

E[

(
i

z

)X

] =

∞∑

k=0

(
i

z

)k
zke−z

k!
=

∞∑

k=0

ik

k!
e−z = ei−z.

Thus, (63) follows from the Markov inequality:

Pr[X ≥ i] = Pr[

(
i

z

)X

≥
(
i

z

)i

] ≤ E[
(
i
z

)X
]

(
i
z

)i
= ei−z

(z

i

)i

.

The proof of (64) is analogous.

We begin by showing that

z∗ ≥ i∗ for all sufficiently large i∗. (65)

Suppose that z∗ < i∗. Using (63) and the definition of r∗,

r∗ ≤ e−z∗

(ez∗)i
∗

i∗i
∗

.

Using (62), we can substitute r∗ and obtain

i∗
e−z∗

(z∗)i
∗

(i∗)!
≤ κ

e−z∗

(ez∗)i
∗

i∗i
∗

.

After cancelling terms,

i∗i
∗+1

(i∗)!ei∗
≤ κ.

By Stirling’s formula, the left-hand side tends to infinity as i∗ → ∞, yielding a contradiction.

This shows (65).

In particular,
√
i∗ − 1/z∗ → 0 as i∗ → ∞. Because the right-hand side of (62) is bounded by

κ, it also follows that

e−z∗

(z∗)i
∗−1

√
i∗ − 1

(i∗ − 1)!
→ 0.
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By Stirling’s formula,

ei
∗−1−z∗

(z∗)i
∗−1

(i∗ − 1)(i∗−1)
→ 0.

Thus, using (64) with i = i∗ − 1,

1− r∗ ≤ ei
∗−1−z∗

(z∗)i
∗−1

(i∗ − 1)(i∗−1)
→ 0,

implying limi∗→∞ r∗ = 1.

Lemma 14. Consider any mechanism (p1, . . . , pn−1) such that pn−1 > 1− 1/n. Then qY (1) >

qN (1) and ∆(1) < 0, implying that there is no equilibrium with y = 1.

Proof. The strategy in which y = 1 leads to the following values of the relevant functions:

tY (1) = t̄, hY (1) = 1, hN (1) = pn−1, qY (1) =
1

n
, qN (1) = 1− pn−1. (66)

In particular, qY (1) > qN (1). Because t̂(1) = tL, plugging the expressions from (66) into the

definition of ∆(y) yields that

∆(1) = UY (1, tL)− UN (1, tL) = (
1

n
− 1 + pn−1)

︸ ︷︷ ︸

>0

(tL − αt̄− β)
︸ ︷︷ ︸

<0

,

where the second underbraced inequality follows from Assumption 1.

Proof of Proposition 4. Recall that 1 ≤ i∗ ≤ n − 1, pi = i/n for all i < i∗, and pi = 1 for all

i > i∗.

Note that i∗ + 1 ≤ n implies 1/n ≤ 1/(i∗ + 1), thus (n− i∗)/n ≤ (n− i∗)/(i∗ + 1), or

1− i∗/n ≤ (n− i∗)/(i∗ + 1). (67)

Hence,

1− pi∗ <
n− i∗

i∗ + 1
. (68)

Using the definitions (6) and (7), for any y,

qY (y)− qN (y)

= Bn−1
y (i∗ − 1)

(
pi∗

i∗
− 1

n

)

︸ ︷︷ ︸

>0

+Bn−1
y (i∗)

(
1

i∗ + 1
− 1− pi∗

n− i∗

)

︸ ︷︷ ︸

>0 by (68)

+

n−1∑

j=i∗+1

Bn−1
y (j)

(
1

j + 1
− 0

)

︸ ︷︷ ︸

>0

.
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If y > 0, then at least one of the binomial probabilities above is strictly positive, implying

qY (y) > qN (y).

Thus, the right-hand side in (16) is strictly increasing in t, showing that any equilibrium is

a partition equilibrium with some cut-off type t̂ such that all types t < t̂ play N and all types

t > t̂ play Y .

To get a better understanding of equilibrium, we need an explicit expression for ∆(y). Using

(4), (5), and (6),

hY − hN − qY =

i∗−2∑

j=0

Bn−1
y (j)

1

n
+Bn−1

y (i∗ − 1)(pi∗ − i∗ − 1

n
) +Bn−1

y (i∗)(1− pi∗)

−
i∗−2∑

j=0

Bn−1
y (j)

1

n
−Bn−1

y (i∗ − 1)
pi∗

i∗
−Bn−1

y (i∗)
1

i∗ + 1
−

n−1∑

i∗+1

Bn−1
y (j)

1

j + 1

= Bn−1
y (i∗ − 1) · (i∗ − 1)

(
pi∗

i∗
− 1

n

)

+Bn−1
y (i∗)

(
i∗

i∗ + 1
− pi∗

)

−
n−1∑

i∗+1

Bn−1
y (j)

1

j + 1
.

Similarly, using (4), (5), and (7),

hY − hN − qN = Bn−1
y (i∗ − 1) · i∗

(
pi∗

i∗
− 1

n

)

+Bn−1
y (i∗) · (1− pi∗)

(

1− 1

n− i∗

)

.

Let us first consider cases in which tH + (i∗ − 1)(αtH + β) > i∗(αt̄+ β).

Consider y ≈ 0. Then Bn−1
y (i∗ − 1) is much larger then Bn−1

y (j) for all j ≥ i∗, implying

qY − qN

Bn−1
y (i∗ − 1)

≈ pi∗

i∗
− 1

n
,

hY − hN − qY

Bn−1
y (i∗ − 1)

≈ (i∗ − 1)

(
pi∗

i∗
− 1

n

)

,

hY − hN − qN

Bn−1
y (i∗ − 1)

≈ i∗
(
pi∗

i∗
− 1

n

)

.

Thus,

∆(y)

Bn−1
y (i∗ − 1)

≈
(
pi∗

i∗
− 1

n

)
(
t̂+ (i∗ − 1)uY − i∗uN

)
.

From y ≈ 0 it follows that t̂ ≈ tH , uY ≈ αtH +β, and uN ≈ αt̄+β. Thus, in the case considered,

t̂+(i∗−1)uY − i∗uN > 0 if y is close to 0, implying that ∆(y) > 0 if y is close to 0. From Lemma

14, we know that ∆(1) < 0. By continuity of ∆, there exists y such that ∆(y) = 0, yielding the

desired equilibrium.
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Now consider cases in which

tH + (i∗ − 1)(αtH + β) ≤ i∗(αt̄+ β). (69)

By Lemma 14, it is sufficient to show that ∆(y) < 0 for all 0 < y < 1. Moreover, because ∆(y)

is linear in pi∗ , it is sufficient to consider the extreme cases pi∗ = 1 and pi∗ ≈ i∗/n or, for that

matter, pi∗ = i∗/n.

In fact, it is sufficient to consider the case pi∗ = 1 for any i∗. The case pi∗ = i∗/n leads to

the rule (p1, . . . , pn−1) = (1/n, . . . , i∗/n, 1, . . . , 1), which is already covered by the first case, with

an incremented definition of i∗. The only case not covered by this then is the case i∗ = n − 1,

pi∗ = i∗/n; this is the uniformly-random assignment rule, where ∆(y) = 0 for all y; by linearity

of ∆(y) in pn−1, we conclude that ∆(y) < 0 for all other threshold rules with uniformly random

default.

Assume pi∗ = 1. Note that, using Assumption 1, t̂ < αt̂ + β < uY . Thus, if after plugging

the expressions for qY − qN and hY − hN − qY that were obtained above into (86) we drop the

sums
∑n−1

i∗+1, then we obtain a strict upper bound for ∆(y), that is,

∆(y) < Bn−1
y (i∗ − 1)

·
((

1

i∗
− 1

n

)

(tY + (i∗ − 1)uY − i∗uN ) +
y

1− y

n− i∗

i∗
1

i∗ + 1
(tY − uY )

)

.

where we have also used the inequality t̂ < tY , have plugged in the above expression for hY −
hN − qN , and have used that

Bn−1
y (i∗) = Bn−1

y (i∗ − 1)
y

1− y

n− i∗

i∗
.

Now using (67) we obtain

∆(y)

Bn−1
y (i∗ − 1) · ( 1

i∗
− 1

n
)

< tY + (i∗ − 1)uY − i∗uN +
y

1− y
(tY − uY ).

The assumption (69) implies

tY + (i∗ − 1)(αtY + β) ≤ i∗(αt̄+ β),

which can also be written as

tY − uY ≤ i∗α(t̄− tY ).

Thus,

∆(y)

Bn−1
y (i∗ − 1) · ( 1

i∗
− 1

n
)

< i∗α(t− tN ) +
y

1− y
i∗α(t− tY )).
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Hence,

∆(y)(1− y)

Bn−1
y (i∗ − 1) · ( 1

i∗
− 1

n
)i∗α

< (1− y)(t− tN ) + y(t− tY ) = 0,

where the equation follows from the law of iterated expectations. Thus, ∆(y) < 0.

Lemma 15. If n = 2, then the threshold rule with i∗ = 1 and pi∗ = 1/2 satisfies hY (y)−hN (y) =

1/2 for all y ∈ [0, 1]. For any other threshold rule if n = 2, and for any threshold rule if n ≥ 3,

there exists y∗m ∈ [0, 1] such that, for all y ∈ (0, 1),

(hY − hN )′(y) > 0 if y < y∗m, and (hY − hN )′(y) < 0 if y > y∗m. (70)

Proof of Lemma 15. Plugging in the definitions,

hY (y)− hN (y) = Bn−1
y (i∗)(1− pi∗) +Bn−1

y (i∗ − 1)pi∗ . (71)

Assume first that n = 2. Then i∗ = 1, and (71) implies that hY − hN = y(1− pi∗) + (1− y)pi∗ .

Thus, (hY − hN )′(y) = 1− 2pi∗ . If pi∗ = 1/2, then the difference hY − hN is constant and equal

to 1/2. If pi∗ < 1/2, then (hY − hN )′(y) > 0 for all y ∈ [0, 1], so that we can set y∗m = 1. If

pi∗ > 1/2, then (hY − hN )′(y) < 0 for all y ∈ [0, 1], so that we can set y∗m = 0.

Now assume that n ≥ 3. Suppose that i∗ = 1. Using (71), it is straightforward to verify that

(hY − hN )′(y) = (1− y)n−3(n− 1)l(y),

where we use the auxiliary function

l(y) = 1− 2pi∗ − y(n(1− pi∗)− 1),

which is linear in y. If pi∗ ≥ 1 − 1/n, then l(0) = 1 − 2pi∗ < 0 and l(1) = (n − 2)(pi∗ − 1) ≤ 0,

implying that l(y) < 0 for all y ∈ [0, 1). Thus, (70) holds with y∗m = 0. If pi∗ < 1 − 1/n, then

l(y) is strictly decreasing in y, implying (70).

The case i∗ = n− 1 is treated analogously to the case i∗ = 1.

Suppose that 1 < i∗ < n− 1. Using (71), it is straightforward to verify that

(hY − hN )′(y) =
(n− 1)!yi

∗−2(1− y)n−2−i∗

(i∗)!(n− i∗)!
l(y),

where we use the auxiliary function

l(y) = y(1− y)(1− 2pi∗)i
∗(n− i∗)

− y2(1− pi∗)(n− i∗)(n− i∗ − 1) + (1− y)2pi∗i
∗(i∗ − 1).
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Note that l(0) = (i∗ − 1)i∗pi∗ > 0 if pi∗ > 0, and l′(0) = i∗(n− i∗) > 0 if pi∗ = 0, implying that

l(y) > 0 for all y > 0 that are sufficiently close to 0.

Similarly, l(1) = −(n− i∗)(n− i∗−1)(1−pi∗) < 0 if pi∗ < 1, and l′(1) = i∗(n− i∗) > 0 if pi∗ = 1,

implying that

l(y) < 0 for all y < 1 that are sufficiently close to 1.

Thus, by the mean-value theorem, l(y∗m) = 0 for some y∗m ∈ (0, 1). Moreover, y∗m is unique

because l is quadratic in y. Hence, for all y ∈ (0, 1),

l(y) > 0 if y < y∗m, and l(y) < 0 if y > y∗m,

showing (70).

Proof of Lemma 9. We proceed in two steps. The first step is to show that for any non-extreme

threshold rule,

hY (y)− hN (y)− qY (y) > 0 for all y > 0 sufficiently close to 0, (72)

and hY (y)− hN (y)− qY (y) < 0 for all y < 1 sufficiently close to 1. (73)

This implies that the functions qY and hY − hN are non-identical polynomials that, by the

intermediate-value theorem, intersect at least once.

The second step is to show that given (72) and (73), the functions qY and hY − hN intersect

at most once.

For the first step, let (p1, ..., pn−1) be any non-extreme threshold rule. Let i∗ be minimal such

that pi∗ > 0. Then

qY (y) =

n−1∑

j=i∗

Bn−1
y (j)

1

j + 1
+Bn−1

y (i∗ − 1)
pi∗

i∗
. (74)

Using this and (71), we see that

hY (y)− hN (y) =

(
n− 1

i∗ − 1

)

yi
∗−1pi∗ +O(yi

∗

), qY (y) =

(
n− 1

i∗ − 1

)

yi
∗−1 pi∗

i∗
+O(yi

∗

),

Thus, (72) holds if i∗ ≥ 2. If i∗ = 1, then

hY (y)− hN (y) = p1 + (n− 1)y(1− p1)− (n− 1)yp1 +O(y2),

qY (y) = p1 + (n− 1)y
1

2
− (n− 1)yp1 +O(y2).

Thus, (72) follows from 1− p1 > 1− 1/n > 1/2. Using (77) and the assumption pn−1 > 1− 1
n
,

hY (1)− hN (1)− qY (1) = 1− pn−1 −
1

n
< 0,
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implying (73).

For the second step, note that the functions qY and hY − hN , being polynomials, can have

only a finite number of intersection points. We have to show that they intersect at most once.

From (12), the intersection points are the critical points of qY . We can also calculate the

second derivative for all y ∈ (0, 1):

q′′Y (y) =
(hY (y)− hN (y))′ − 2q′Y (y)

y
.

Thus, at any critical point y of qY , the number q′′Y (y) has the same sign as (hY (y) − hN (y))′.

Hence, using Lemma 15, any critical point y ∈ (0, y∗m) is a local maximum, and any critical

point y ∈ (y∗m, 1) is a local minimum. Taking into account (72) and (73), it becomes clear that

qY must be decreasing at first and intersect hY − hN at its minimum to the right of y∗m.

Proof of Proposition 5. Given that the conditions of Lemma 9 are satisfied, there exists ym1 as

stated there. From (12) and Lemma 9, the function qY is strictly increasing on [0, ym1] and is

strictly decreasing on [ym1, 1]. Note that qY (0) = p1 < 1/n and, using (77), qY (1) = 1/n. Thus,

there exists a unique y̌ < ym1 such that qY (y̌) = 1/n. Moreover,

qY (y) > 1/n for all y ∈ (y̌, 1). (75)

Now Lemma 9 implies that

hY (y̌)− hN (y̌)− qY (y̌) > 0. (76)

Moreover, qN (y̌) = 1/n = qY (y̌). Applying the definition of ∆ at y = y̌,

∆(y̌) = (hY (y̌)− hN (y̌)− qY (y̌))
︸ ︷︷ ︸

>0 by (76)

(uY − uN ) .
︸ ︷︷ ︸

>0 by (17)

On the other hand, ∆(1) < 0 by Lemma 14. Thus, ŷ as defined in the statement of the proposition

satisfies y̌ < ŷ < 1. From (75), qY (ŷ) > 1/n, implying qY (ŷ) > qN (ŷ) by (11). The better-off

claim follows from Lemma 4.

Proofs for the case of a pleasant task

Proof of Lemma 1’. The only difference to the proof of the corresponding lemma in the unpleasant-

task case is that we consider an ordered type profile t1 ≥ · · · ≥ tn. This leads to the inequality

(t̂− αt̂− β)
︸ ︷︷ ︸

>0

(
1

n
−Qk(t))

︸ ︷︷ ︸

≤0

+
∑

j<k

α(tj − t̂)
︸ ︷︷ ︸

>0

(
1

n
−Qj(t))

︸ ︷︷ ︸

≤0

≥ 0,
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where one of the underbraced inequalities follows from Assumption 1’. The above inequality then

implies

Qj(t) =
1

n
for all j ≤ k,

and the remaining argument is again as in the proof of of the corresponding lemma in the

unpleasant-taks case.

Proof of Proposition 5’. Note first that for any mechanism (p1, . . . , pn−1) such that p1 > 1/n,

it holds that ∆(0) > 0, implying that there is no equilibrium with y = 0. This is shown by

calculating the relevant functions for y = 0:

tN (0) = t, hY (0) = p1, hN (0) = 0, qY (0) = p1, qN (0) =
1

n
. (77)

Because t̂(0) = tH , plugging the expressions from (77) into the definition of ∆(y) yields that

∆(0) = (p1 −
1

n
)

︸ ︷︷ ︸

>0

(tH − αt̄− β)
︸ ︷︷ ︸

>0

,

where the second underbraced inequality follows from Assumption 1’.

Now let (p1, ..., pn−1) be any non-extreme max-threshold rule. The proof considers the shape

of the functions qY and qN . Because of (12), we can write

∆(y) = (qY − qN )(t̂− uN ) + yq′Y (uY − uN ).

Moreover, (11) implies that qY (y) > qN (y) is equivalent to qY (y) > 1
n

and that yq′Y + qY =

−(1− y)q′N + qN . The latter generalizes (e.g. by induction) to

yq
(k)
Y (y) + kq

(k−1)
Y (y) = −(1− y)q

(k)
N (y) + kq

(k−1)
N (y) for any k ≥ 1, (78)

where q
(k)
Y denotes the k-th derivative of qY . From (77), we see that qY (0) > qN (0) at y = 0.

Calculations show that

qY (1) =
1

n
< 1− pn−1 = qN (1).

This implies that the functions qY and qN are non-identical polynomials that, by the inter-

mediate value theorem, intersect at least once. There must therefore be a point 0 < y1 < 1 with

qY (y
1) = qN (y1) and qY (y) > qN (y) for all 0 ≤ y < y1. There are three possiblities for the sign

of q′Y (y
1):

Case 1: q′
Y
(y1) < 0

This implies that ∆(y1) = y1q′Y (y
1) < 0. By the intermediate-value theorem, there exists

a y∗ < y1 with ∆(y∗) = 0 and ∆ decreasing at y = y∗. By definition of y1, it must be that
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qY (y
∗) > qN (y∗), which means that the condition for strict improvement over random assignment

in Proposition 4 is satisfied at y∗. This equilibrium is dynamically stable.

Case 2: q′
Y
(y1) > 0

This implies q′N (y1) =
−y1q′Y (y1)

1−y1 < 0. That qY is strictly increasing and qY is strictly decreasing

at y1 is a contradiction to the definition of y1.

Case 3: q′
Y
(y1) = 0

This implies q′N (y1) = 0 and also ∆(y1) = 0. Since q′′Y (y
1) and q′′N (y1) have opposite signs, there

are two possibilities.

The first possibility is that the two functions both have saddle points at y1, with qY strictly

decreasing and qN strictly increasing. This implies that q
(k)
Y (y1) < 0 for some derivative of

order k ≥ 3 with k odd and all derivatives of lower order are equal to zero. As a consequence,

also q′N (y1) = ... = q
(k−1)
N (y1) = 0 and q

(k)
N (y1) > 0. Consider now ∆ and its derivatives at

y = y1. One obvious implication is ∆(y1) = 0, but also ∆′, which is a sum of terms that all

include as factors either qY − qN , q′y, q
′
N , or q′′Y , must be equal to zero at y = y1. Continuing

this logic, if all derivatives up to the k-th derivative of qY and qN are zero at y = y1, then also

∆(k−1)(y1) = y1q
(k)
Y (uY (y

1)−uN (y1)) < 0. Hence, at this saddle-point of qY and qN , the function

∆ must have a local maximum. But if ∆(y1) = 0 is a local maximum, then ∆ must be negative

to the left of y1, such that the intermediate value theorem yields existence of a 0 < y∗ < y1 with

∆(y∗) = 0 and ∆ decreasing at y = y∗.

The second possibility is that at y1, qY has a local minimum and qN has a local maximum.

If this is the case, then to the right of y1 it holds that qY > qN and q′Y > 0, implying ∆(y) > 0.

There must then exist y2 with qY (y
2) = qN (y2) and qY > qN on the interval (y1, y2). The case

distinction can then be repeated for y2, and since qY − qN is a polynomial, there can only be

finitely many such points.

Proof of Lemma 6’. Consider any solution to the relaxed problem. Suppose first that y = 0.

Then qN (y) = 1/n by (11), implying that the value at the optimum of the relaxed problem

equals t̄. This value can also be reached within the feasible set of the planner’s binary-second-

best problem, by using the uniformly-random-assignment rule. Thus, both problems reach the

same value at the optimum, as was to be shown.

Now consider cases in which y > 0. Suppose that ∆(y) < 0. Applying Lemma 5, we see that

α

n

dW

dy
< (qY (y)− qN (y))((α− 1)t̂(y) + β).

The right-hand side is ≤ 0 because of Assumption 1′. This is a contradiction to optimality

because none of the constraints on y is binding.
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Proof of Proposition 1’. If n = 2, then we have nothing to prove because any binary mechanism

is a maximum-threshold rule. Assume that n ≥ 3.

Consider any solution (p1 . . . , pn−1, y). By Lemma 6’, it also solves the relaxed problem.

From Lemma 4 and Proposition 5’ below it follows that the value reached at a solution exceeds

the value at a uniformly-random assignment. Thus, 0 < y < 1 and qY (y) > qN (y) by Lemma 3.

Fixing y, the remaining relaxed maximization problem over (p1, . . . , pn−1) is a linear problem.

Hence the Lagrange conditions are necessary and sufficient, without any qualification. Let λ ≤ 0

denote the Lagrange multiplier for the constraint ∆(y) ≤ 0. Due to qY (y) > qN (y), the Lagrange

multiplier for the constraint qY (y)−qN (y) ≥ 0 equals 0. Thus, using the Lagrangian L = W+λ∆,

for all i = 1, . . . , n− 1,

if ∂L
∂pi

> 0, then pi = 1,

if ∂L
∂pi

< 0, then pi = 0.
(79)

The derivative of the Lagrangian can be obtained as in the proof of Proposition 1’:

∂L

∂pi
=

Bn−1
y (i)

n− i
︸ ︷︷ ︸

>0







iλ

(
1− y

y
+ 1

)

(uY − uN )

︸ ︷︷ ︸

>0

+[terms independent of i]








. (80)

Consider the case that λ < 0. If ∂L/∂pi > 0 for all i, then (79) implies that (p1 . . . , pn−1) =

(1, . . . , 1), a maximum-threshold rule. Otherwise let i∗ be the smallest integer such that ∂L/∂pi ≤
0. Then (79) implies that (p1 . . . , pn−1) is a maximum-threshold rule.

It remains to consider the case λ = 0. Then

∂L

∂pi
=

∂W

∂pi
> 0

for all i, implying (p1 . . . , pn−1) = (1, . . . , 1), a maximum-threshold rule.

Proof of Lemma 7’. For any mechanism-partition-equilibrium combination (p1, ..., pn−1, y), one

can show as in the proof of the corresponding Lemma 7 that a volunteering type t ≥ t̂(y) receives

more than the payoff from uniformly-random assignment if and only if

i(pi −
i

n
)(uY − uN ) ≥ (pi −

i

n
)(uY − t). (81)

The analogous condition for a non-volunteering type t < t̂(y) is

(n− i)(pi −
i

n
)(uY − uN ) ≥ (pi −

i

n
)(t− uN ). (82)

Adding up these two conditions for t = t̂(y) yields

n(pi −
i

n
)(uY − uN ) ≥ (pi −

i

n
)(uY − uN ).
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This implies (27).

The arguments so far show that the constraints stated in the lemma are necessary. To see

sufficiency, note that (27) together with (28) implies (82), and (81) follows because uN ≤ t by

Assumption 1’.

Proof of Proposition 2’. Because the value reached at a solution exceeds the value at a uniformly-

random assignment, we have 0 < y < 1 and qY (y) > qN (y) by Lemma 3.

We adapt the proof of Proposition 1’, where the Lagrangian L = W + λ∆ is used. The

analogue here is the Lagrangian

L = L+

n−1∑

i=1

µi(pi −
i

n
)
(
(n− i)(uY − uN )− (t̂− uN )

)
.

First note that in any solution to the planner’s problem as augmented according to Lemma 7’ it

holds that (n−1)(uY −uN ) ≥ (t̂−uN ) because otherwise the constraint (28) implies that pi =
i
n

for all i, yielding the uniformly-random assignment rule. Let 1 ≤ î ≤ n− 1 be maximal with the

property (n− î)(uY − uN ) ≥ (t̂− uN ). For all i > î, the constraint (28) implies that pi =
i
n
.

If λ = 0, then ∂L
∂pi

≥ ∂L
∂pi

= ∂W
∂pi

> 0 for all i ≥ î, implying pi = 1 and we are done. Suppose

that λ < 0.

Let i∗ ≤ î be maximal with the property pi∗ > i∗

n
. Thus, ∂L

∂pi∗
≥ 0 by the Lagrangian

conditions. It is sufficient to show that

∂L
∂pi∗

=
∂L

∂pi∗
. (83)

Indeed, this implies ∂L
∂pi∗

≥ 0 and hence, using (80), ∂L
∂pi

≥ ∂L
∂pi

> 0 for all i < i∗, hence pi = 1,

and we are done.

The equation (83) is immediate if µi∗ = 0. If µi∗ > 0, Then, by the Lagrangian conditions,

the constraint (28) is binding, which implies (n− i∗)(uY − uN )− (t̂− uN ) = 0 and hence again

(83) holds.

Proof of Remark 3’. Let y denote a partition equilibrium. The claim is trivial if y = 0 or y = 1,

so assume that 0 < y < 1. It is sufficient to show that

(n− i∗)(uY − uN ) ≥ t̂(y)− uN . (84)

Indeed, bringing everything to the left-hand side and multiplying by 1 − i∗

n
shows that the

inequality is equivalent to (28) at i = i∗, with pi∗ = 1, that is, the ex-post participation constraint

at i∗ volunteers is satisfied. From this the ex-post participation constraints (28) at i < i∗

volunteers are immediate. The ex-post participation constraints at i > i∗ volunteers are trivial

because pi = i/n.
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The equilibrium condition ∆(y) = 0 can be written as

Bn−1
y (0)

n− 1

n
(t̂− uN ) +

i∗−1∑

j=1

Bn−1
y (j)

(t̂− uY )

j + 1
+Bn−1

y (i∗)

(
1

n
(t̂− uN )− n− i∗

n
(uY − uN )

)

= 0,

or



Bn−1
y (0)

n− 1

n
+

i∗−1∑

j=1

Bn−1
y (j)

1

j + 1
+Bn−1

y (i∗)
1

n



 (t̂− uN )

=





i∗−1∑

j=1

Bn−1
y (j)

1

j + 1
+Bn−1

y (i∗)
n− i∗

n



 (uY − uN ).

Suppose that (84) fails. Then the above inequality implies



Bn−1
y (0)

n− 1

n
+

i∗−1∑

j=1

Bn−1
y (j)

1

j + 1
+Bn−1

y (i∗)
1

n



 (n− i∗)

<

i∗−1∑

j=1

Bn−1
y (j)

1

j + 1
+Bn−1

y (i∗)
n− i∗

n
.

Equivalently,

Bn−1
y (0)

n− 1

n
(n− i∗) +

i∗−1∑

j=1

Bn−1
y (j)

1

j + 1
(n− i∗ − 1) < 0,

which is impossible because i∗ ≤ n− 1.

Proof of Proposition 4’. Note that pi∗ > i∗/n, implying

1− pi∗ <
n− i∗

n
. (85)

Using the definitions (6) and (7), for any y,

qY (y)− qN (y)

= Bn−1
y (0)(1− 1

n
) +

i∗−2∑

j=1

Bn−1
y (j)

1

j + 1
+Bn−1

y (i∗ − 1)
pi∗

i∗
+Bn−1

y (i∗) (
1

n
− 1− pi∗

n− i∗
)

︸ ︷︷ ︸

>0 by (85)

.

If y < 1, then at least one of the binomial probabilities above is strictly positive, implying

qY (y) > qN (y).

Thus, the right-hand side in (16) is strictly increasing in t, showing that any equilibrium is a

partition equilibrium with some cut-off type t̂ such that all types t < t̂ play N and all types t > t̂
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play Y . According to Lemma 4, every 0 < y < 1 with ∆(y) = 0 is an equilibrium that yields a

strict improvement over uniformly-random assignment. Recall that

∆(y) = (qY − qN )(t̂− uN ) + (hY − hN − qY )(uY − uN ). (86)

Since ∆(0) = (p1 − 1
n
)(tH − ū) > 0, everybody volunteering is the unique equilibrium if and only

if ∆(y) > 0 for all 0 < y < 1. Conversely, if we find a point where ∆ < 0, we can conclude that

a better equilibrium exists. Note further that ∆(1) = (pn−1 − n−1
n

)(tL − ū), implying that for

any non-extreme max-threshold rule, or if tL > ū, there is an equilibrium in which everybody

volunteers. To see whether this equilibrium is dynamically stable, we need to know how ∆

behaves close to 1.

Using (4), (5), and (6),

hY − hN − qY = −
i∗−2∑

j=1

Bn−1
y (j)

1

j + 1
−Bn−1

y (i∗ − 1)(1− i∗ − 1

i∗
pi∗) +Bn−1

y (i∗)(
i∗

n
− pi∗).

Consider y ≈ 1. Then Bn−1
y (i∗) is much larger then Bn−1

y (j) for all j < i∗, implying

qY − qN

Bn−1
y (i∗)

≈ 1

n
− 1− pi∗

n− i∗
,

hY − hN − qY

Bn−1
y (i∗)

≈ i∗

n
− pi∗ = −(n− i∗)

(
1

n
− 1− pi∗

n− i∗

)

.

Thus,

∆(y)

Bn−1
y (i∗)

≈ (
1

n
− 1− pi∗

n− i∗
)

︸ ︷︷ ︸

>0 by (85)

(
t̂− uN − (n− i∗)(uY − uN )

)
.

From y ≈ 1 it follows that t̂ ≈ tL, uY ≈ αt̄ + β, and uN ≈ αtL + β. Let us first consider

cases in which tL − uL < (n − i∗)α(t̄ − tL). In this case, t̂ − uN + (n − i∗)(uY − uN ) < 0 if y

is close to 1, implying that ∆(y) < 0 if y is close to 1. By continuity of ∆, there exists y such

that ∆(y) = 0, yielding the desired equilibrium. Moreover, this equilibrium is dynamically stable

while the all-volunteer equilibrium, should it exist, is not.

Now consider cases in which tL − uL > (n − i∗)α(t̄ − tL). This implies that ∆(y) ≥ 0 and

∆(y) > 0 for y < 1 close to 1. Hence, everybody volunteering is a dynamically stable equilibrium.

Finally, consider the case that t̂ − uN ≥ (n − i∗)α(tY − tN ) for all y ∈ [0, 1]. Note that for

y = 1, this coincides with tL − uL ≥ (n − i∗)α(t̄ − tL). For some settings, the latter condition

already implies the former. If for example F is uniform and α ≤ 2, then tY − tN = t̄− tL for all

y and t̂− uN − (tL − uL) = (1− α/2)(t̂− tL) ≥ 0.

In order to show that everybody volunteering is the unique equilibrium, it is sufficient to show

that ∆(y) > 0 for all 0 < y < 1. Moreover, because ∆(y) is linear in pi∗ , it follows as in the
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proof of Proposition 4 that it is sufficient to consider the extreme case pi∗ = 1. With pi∗ = 1,

∆(y) = Bn−1
y (0)

n− 1

n
(t̂−uN )+

i∗−1∑

j=1

Bn−1
y (j)

(t̂− uY )

j + 1
+Bn−1

y (i∗)
1

n
(t̂−uN − (n− i∗)(uY −uN )).

Since t̂− uN > 0, the first term is positive. Our assumption that t̂− uN ≥ (n− i∗)(uY − uN )

implies that the last term is nonnegative. It also implies that t̂ − uY ≥ (n − i∗ − 1)(uY − uN )

and therefore t̂− uY > 0. Thus, ∆(y) > 0 for all 0 < y < 1.

Proof of Lemma 8’. The proof follows the roadmap of the proof of the corresponding Lemma

8. Step 0. Consider any sequence of numbers (yn), yn ∈ [0, 1] and a number z > 0 such that

zn → z, where we use the shortcuts zn = nyn. Then we can apply the Poisson limit theorem to

get the formula

lim
n

Bn−1
yn

(j) = e−z z
j

j!
for j = 0, 1, . . . . (87)

Step 1. For all n, define yn = i∗/n. Step 1 is to show that ∆(yn) < 0 for all sufficiently

large n.

We will use the functions hY , hN , qY , and qN , as applied to the max-threshold rule with

parameter i∗ and pi∗ = 1. (The proof extends to the corresponding max-threshold rule with

uniformly-random default; the reason is that at any volunteering rate y > 0, the number of vol-

unteers remains below the threshold i∗ for sure in the n → ∞ limit.) Plugging in the definitions,

hY (y)− hN (y) = Bn−1
y (0) +Bn−1

y (n− 1)−Bn−1
y (i∗), (88)

qY (y) =
i∗−1∑

j=0

Bn−1
y (j)

1

j + 1
+Bn−1

y (n− 1)
1

n
, (89)

and

qN (y) = Bn−1
y (0)

1

n
+

n−1∑

j=i∗+1

Bn−1
y (j)

1

n− j
. (90)

Using (16) and (18),

∆(y) = (qY − qN )t̂(y) + (hY − hN − qY )uY − (hY − hN − qN )uN . (91)

We take the limit n → ∞ in (91) with y = yn.

Because yn → 0, no type volunteers in the large-population limit. Thus, t̂(yn) → tH , tY → tH

and tN → t.
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Consider a max-threshold rule (it can be checked that all limits are identical for the corre-

sponding max-threshold rule with uniformly-random default).

Applying (87) alternatively with j = 0, j = i∗ − 1, and j = n− 1, to (88),

lim
n

hY (yn)− hN (yn) = e−i∗ − e−i∗ (i
∗)i

∗

i∗!
.

Applying (87) to (89),

lim
n

qY (yn) =

i∗−1∑

j=0

e−i∗ (i
∗)j

j!

1

j + 1
.

By elementary properties of the binomial distribution, Bn−1
y (j)/(n− j) = (y/(1− y))Bn−1

y (j −
1)/j. Therefore, (90) implies

qN (yn) = Bn−1
yn

(0)
1

n
+

yn
1− yn

n−1∑

j=i∗+1

Bn−1
yn

(j − 1)
1

j
≤ 1

n
+

1

i∗ + 1

yn
1− yn

→ 0 as n → ∞.

Thus, using (91) and cancelling terms,

lim
n

∆(yn) =

(

e−i∗ − e−i∗ (i
∗)i

∗

i∗!

)

α (tH − t)
︸ ︷︷ ︸

>0

+e−i∗
i∗−1∑

j=0

(i∗)j

(j + 1)!
(tH − (αtH + β))
︸ ︷︷ ︸

>0 by Assumption 1’

, (92)

where we have used that uY − uN → α(tH − t) and t̂− uY → tH − (αtH + β).

Note that

e−i∗
i∗−1∑

j=0

(i∗)j

(j + 1)!
= e−i∗ 1

i∗

i∗−1∑

j=0

(i∗)j+1

(j + 1)!
≤ 1

i∗
.

Thus, (92) together with (29) implies

lim
n

∆(yn) < 0.

This completes Step 1.

Step 2. Step 2 is to show that for all sufficiently large n, there exists a partition-equilibrium

strategy yn such that zn < i∗, where we define zn = nyn.

To see this, note first that ∆(0) > 0 (see the proof of 5’). By Step 1 and the intermediate

value theorem, there exists yn such that zn < i∗ and ∆(yn) = 0. Let yn be maximal with these

properties.

For all max-threshold rules with i∗ ≤ n−2, Proposition 5’ implies that qY (yn) > qN (yn). For

all max-threshold rules with uniformly-random default (which also includes the any-volunteer

rule, that is, i∗ = n− 1), Proposition 4’ implies qY (yn) > qN (yn).

Thus, yn is a partition-equilibrium strategy.
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Step 3. Step 3 is to show that for any limit point z∗ of (zn), the formula in (30) holds.

In this pleasant-task situation, the expected number of volunteers remains below the threshold

i∗, but converges to infinity if i∗ converges to infinity.

To see this, consider a subsequence znk
→ z∗ as k → ∞. A computation analogous to that

leading to (92) implies

lim
k

∆(ynk
) =

(

e−z∗ − e−z∗ (z∗)i
∗

i∗!

)

α(tH − t) + e−z∗

i∗−1∑

j=0

z∗j

(j + 1)!
(tH − (αtH + β)),

Applying the equilibrium condition ∆(ynk
) = 0,

0 =

(

e−z∗ − e−z∗ (z∗)i
∗

i∗!

)

α(tH − t) + e−z∗

i∗−1∑

j=0

z∗j

(j + 1)!
(tH − (αtH + β)).

After switching to the variable j′ = j + 1 in the sum,

0 =

(

e−z∗ − e−z∗ (z∗)i
∗

i∗!

)

α(tH − t) + e−z∗ 1

z∗

i∗∑

j′=1

z∗j
′

(j′)!
(tH − (αtH + β)).

Thus,

0 = − (Pois(z∗)(i∗)− Pois(z∗)(0))α(tH − t) +
1

z∗

i∗∑

j′=1

Pois(z∗)(j′)(tH − (αtH + β)),

which is equivalent to the formula given in (30). This completes the proof of Step 3.

Step 4. The formula for r∗.

The probability that the task is assigned to a volunteer in the equilibrium with the partition

strategy yn is

rn =

i∗∑

j=1

Bn
yn
(j) +Bn

yn
(n).

Thus, using Step 0,

lim
n

rn =

i∗∑

j=1

(z∗)j

j!
e−z∗

This completes the proof of the lemma.

Proof of Proposition 3’. For each i∗, let z∗ ≤ i∗ denote a solution to (30). That is, throughout

the proof z∗ is considered as a function of i∗.

As in the main part, we will use a (Chernoff) bound for tail probabilities as applied to a
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Poisson random variable with mean z:

∞∑

j=i

Pois(z)(j) ≤ e−z(ez)i

ii
for all i ≥ z. (93)

Applying this with i = i∗ + 1 and using the definition of r∗ in the statement of Lemma 8’, it is

sufficient to show that

1− r∗ =
e−z∗

(ez∗)i
∗+1

(i∗ + 1)(i∗+1)
+ e−z∗ → 0 as i∗ → ∞. (94)

Using the shortcut κ = (tH − (αtH +β))/(α(tH − t)), the equation in (30) can also be written as

Pois(z∗)(i∗)− Pois(z∗)(0)
1
z∗

∑i∗

j=1 Pois(z
∗)(j)

= κ.

or, using the definition of Pois(z∗)(i∗) and the definition of r∗,

z∗e−z∗

(
(z∗)i

∗

(i∗)!
− 1

)

= κr∗. (95)

Note that

z∗ → ∞. (96)

Indeed, if there exists a finite limit point ẑ, then the left-hand side in (95) tends to −ẑe−ẑ < 0,

contradicting (95).

Now (95) implies that

lim sup
i∗→∞

e−z∗ (z∗)i
∗+1

(i∗)!
≤ κ

Thus,

lim sup
i∗→∞

e−z∗

(ez∗)i
∗+1

(i∗ + 1)(i∗+1)
≤ κ lim sup

i∗→∞

ei
∗+1(i∗)!

i∗(i∗)i∗
= 0, (97)

where the last equation follows from Stirling’s formula. This proves (94).
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