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Abstract

We propose a framework for merger analysis with multiproduct firms under gen-

eralized CES (GCES) and generalized multinomial logit (GMNL) demand. Despite

allowing for arbitrary firm and product heterogeneity, we obtain the type aggregation

property : All relevant information about a firm’s product portfolio can be summarized

in a uni-dimensional sufficient statistic, the firm’s type. Indeed, GCES and GMNL are

shown to be the only IIA demand systems giving rise to that property. Relative to

standard CES and MNL demand, our generalization implies that prices, locally, can be

strategic complements or substitutes, depending on the local behavior of the curvature

of indirect utility. In turn, this distinction is shown to determine whether competition

authorities should be more or less strict on mergers in more competitive industries. We

obtain further results on the static and dynamic consumer surplus effects of mergers,

the aggregate surplus and external effects of mergers, and on the relationship between

the market power effect of a merger and the merger-induced change in the Herfindahl

index.
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1 Introduction

Although almost all mergers involve multiproduct firms selling differentiated products, much

of the IO literature on horizontal merger analysis has focused on the homogeneous-goods

Cournot model (Farrell and Shapiro, 1990; McAfee and Williams, 1992; Nocke and Whinston,

2010, 2013). We propose a framework for horizontal merger analysis with multiproducts firms

under generalized CES (GCES) and generalized multinomial logit (GMNL) demand. Using

this framework, we revisit classic questions such as the consumer surplus, aggregate surplus

and external effects of mergers. We also relate the harm inflicted on consumers (and society

at large) by a merger without synergies to the induced change in the Herfindahl index.

In Section 2, we introduce the oligopoly model with multiproduct firms and GCES/GMNL

demand. In Section 3, we show that the multiproduct-firm pricing game is aggregative in

that each firm’s profit depends on the prices of its rivals only through a uni-dimensional ag-

gregator, which is also a sufficient statistic for consumer surplus. Moreover, we also show that

the type aggregation property holds: All relevant information on a firm’s product portfolio

(number of products, qualities, marginal costs) can be summarized by a uni-dimensional

statistic, the firm’s type. Relative to standard CES/MNL demand, our generalization to

GCES/GMNL demand implies that prices, locally, can be strategic complements or substi-

tutes, depending on the local behavior of the curvature of indirect utility. The equilibrium

exists and is unique, and has intuitive comparative statics.

The type aggregation property permits a parsimonious modeling of mergers and merger-

induced synergies. In principle, synergies could be reflected not only in changes in the

marginal costs of the merger partners’ products but also in quality improvements of pre-

existing products and a change in the set of products offered by the merged firm. The

type aggregation property allows us to summarize such multi-dimensional synergies in a uni-

dimensional sufficient statistic, which corresponds to the ratio of the merged firm’s type to

the sum of the merger partners’ pre-merger types.

In Section 4, we study the consumer surplus effects of mergers. We show that for a merger

not to harm consumers requires synergies. Moreover, the required synergies are smaller in

more competitive industries if prices are local strategic complements but larger if prices are

local strategic substitutes. Next, we turn to a dynamic environment in which merger oppor-

tunities arise stochastically over time and merger proposals are endogenous. We show that

a myopic merger approval policy (which approves a merger whenever it statically raises con-

sumer surplus) is dynamically optimal, provided prices are (global) strategic complements.

Instead, under local strategic substitutability, we show that a competition authority adopt-

ing a myopic merger approval policy may well have ex-post regret about previously approved

mergers. Our results on the dynamic (non-)optimality of a myopic merger approval policy

both extend and qualify the earlier results by Nocke and Whinston (2010), obtained in a
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homogeneous-goods Cournot model, and Nocke and Schutz (2019), obtained in a model with

(nested) CES/MNL demand in which prices are always strategic complements.

In Section 5, we show that for a merger to raise aggregate surplus, the type of the merged

firm has to be above a unique threshold. The required synergies, if any, are lower than for

the merger not to harm consumers. Extending Farrell and Shapiro (1990), we also relate the

external effect of a merger (on consumers and the non-merging outsiders) to the level and

dispersion of pre-merger market shares.

In Section 6, we study the market power effect of a merger, defined as the impact on

consumer (or aggregate) surplus in the absence of synergies. Using Taylor approximations,

both around small market shares and around monopolistic competition conduct, we show

that a merger’s market power effect is positively related to the merger-induced change in

the Herfindahl index. This complements Nocke and Whinston (2022) who relate the level

of synergies required for a merger not to harm consumers to the change in the Herfindahl

index.

In Section 7, we provide an if-and-only-if characterization of the class of IIA demand

systems giving rise to the type aggregation property. We show that, essentially, only GCES

and GMNL demand permit that property, justifying our focus on those demand systems.

Our paper contributes to two literatures. First, the paper advances the literature on

oligopoly with multiproduct firms (e.g., Anderson and de Palma, 1992, 2006; Konovalov and

Sándor, 2010; Gallego and Wang, 2014; Nocke and Schutz, 2018, 2023; Garrido, forthcoming)

by providing necessary and sufficient conditions for the type aggregation property to obtain.

We show that the demand systems consistent with type aggregation are generalizations of

standard CES and MNL demand, which—through the local behavior of the curvature of the

indirect utility function—allow prices, locally, to be strategic complements or substitutes.

Second, the paper advances the theoretical literature on the unilateral price effects of

horizontal mergers (e.g., Williamson, 1968; Farrell and Shapiro, 1990; McAfee and Williams,

1992; Werden, 1996; Froeb and Werden, 1998; Goppelsroeder, Schinkel, and Tuinstra, 2008;

Nocke and Whinston, 2010, 2013, 2022; Jaffe and Weyl, 2013; Johnson and Rhodes, 2021).

We study the price and welfare effects of mergers in a framework with multiproduct firms,

allowing for arbitrary firm and product heterogeneity, and rich forms of merger-induced syn-

ergies. This paper complements our earlier work, Nocke and Schutz (2019), by studying the

role of strategic complementarity and substitutability for merger analysis in multiproduct-

firm oligopoly with generalized CES/MNL demand.

3



2 The Multiproduct-Firm Oligopoly Model

2.1 Demand Side

Consider an industry with a finite set N of imperfectly substitutable products. We assume

throughout that preferences are smooth and quasi-linear, and that the demand system has

the IIA property. As shown in Anderson, Erkal, and Piccinin (2020) (see also Goldman

and Uzawa, 1964), given the assumption on preferences, the IIA property is equivalent to

consumer surplus taking the form

V (p) = Ψ

󰀣
H0 +

󰁛

j∈N

hj(pj)

󰀤
(1)

for some H0 ≥ 0 and some smooth, univariate functions Ψ and hj (j ∈ N ). Applying Roy’s

identity, we obtain the demand for product i ∈ N , Di(p) = −h′
i(pi)Ψ

′(H(p)), where

H(p) ≡ H0 +
󰁛

j∈N

hj(pj)

is the industry aggregator.

In Section VII in the Online Appendix to Nocke and Schutz (2018), we showed that the

following conditions are necessary and sufficient for the above demand system to be derivable

from multistage discrete/continuous choice:

Assumption 1. The function H 󰀁→ HΨ
′(H) is strictly positive and non-decreasing.

Assumption 2. Each function hj is strictly positive, strictly decreasing, and log-convex.

In the multistage discrete/continuous choice micro-foundation, a continuum of consumers

are engaged in a sequential choice process. In the first stage, each consumer observes the

vector of prices p and her idiosyncratic valuation for the stage-1 outside option, and decides

whether to take up that outside option. In stage 2, consumers that turned down the outside

option observe a vector of idiosyncratic, product-specific taste shocks, drawn i.i.d. from a

type-I extreme value distribution, and chooses one of the products or the stage-2 outside

option. In stage 3, consumers that chose product i (i ∈ N ) decide how many units of that

product to purchase.

With this micro-foundation, log hj(pj) and logH0 are the mean utilities of product j and

the stage-2 outside option, respectively, whereas the function Ψ embodies the distribution of

the value of the stage-1 outside option in the population. Under optimal consumer behavior,

a mass H(p)Ψ′(H(p)) of consumers turn down the stage-1 outside option, each consumer

that remains chooses product i with probability hi(pi)/H(p) in stage 2, and the stage-3,

conditional demand for product i is −h′
i(pi)/hi(pi) by Roy’s identity. Taking the product of
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these three terms yields the total demand for product i, −h′
i(pi)Ψ

′(H(p)), which coincides

with the above expression for Di(p).

We assume throughout that Assumption 1 holds. Moreover, we significantly strengthen

Assumption 2 as follows:

Assumption 3. Either (i) for every j, hj(pj) = ajp
1−σ
j for some parameters aj > 0 and

σ > 1; or (ii) for every j, hj(pj) = exp
aj−pj

λ
for some parameters aj and λ > 0.

As we show in Section 7, this stronger version of the assumption is necessary for the

type-aggregation property (see Section 3.1) to obtain. Note that if Ψ is (a positive affine

transformation of) the logarithm, the demand system is of the CES type when part (i) of

Assumption 3 holds and of the MNL type when part (ii) of Assumption 3 holds. Thus,

we will henceforth say that demand is generalized CES (GCES) when part (i) holds and

generalized MNL (GMNL) when part (ii) holds.

For every H, let 󰂃(H) ≡ H(−Ψ
′′(H))/Ψ′(H) denote the curvature of Ψ. We make the

following additional assumption:

Assumption 4. The function 󰂃 is strictly positive and non-decreasing.

The first part of the assumption (which boils down to Ψ
′′ < 0) says that products are

always substitutes.1 The second part of the assumption is a technical requirement that,

together with the other assumptions, implies that any multiproduct-firm pricing game has

a unique Nash equilibrium by Theorem III in the Online Appendix to Nocke and Schutz

(2018). Note that Assumptions 1 and 4 imply that 󰂃(H) ∈ (0, 1] for every H.

A reformulation of Assumption 4. Consider the multistage discrete/continuous choice

micro-foundation sketched above. To simplify the exposition, assume that there is a unit

mass of consumers and that each consumer’s valuation for the stage-1 outside option is zero.

At the beginning of stage 1, each consumer observes the realization of an idiosyncratic taste

shock ξ, drawn from some smooth cumulative distribution function F . A consumer that

turns down the stage-1 outside option expect to receive a utility of ξ plus the expected value

of behaving optimally in stage 2. The properties of the type-I extreme value distribution

imply that the latter is equal to logH. Thus, a consumer optimally turns down the stage-1

outside option if and only if logH + ξ ≥ 0, which happens with probability

1− F (− logH) = HΨ
′(H).

Taking the logarithmic derivative yields:

F ′(− logH)

1− F (− logH)
= 1− 󰂃(H). (2)

1To see this, note that, for i ∕= j, ∂Di/∂pj = −h′

ih
′

jΨ
′′, which has the same sign as −Ψ

′′.
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In words, 1− 󰂃 corresponds to the hazard rate of F in the discrete/continuous choice micro-

foundation. Assumption 4 can therefore be rephrased as follows: The hazard rate of F is

non-decreasing (so that 󰂃 is non-decreasing) and strictly less than 1 (so that 󰂃 > 0).

2.2 Supply Side

We partition the set of products, N , into a set of firms, F . That is, each firm f has exclusive

property rights over the production of all products in set f . We assume throughout that

there are at least two firms, |F| ≥ 2. Each product j has a constant unit cost of production,

cj > 0. The profit of firm f ∈ F is thus equal to

Π
f (p) =

󰁛

j∈f

(pj − cj)(−h′
j(pj))Ψ

′(H(p)). (3)

Firms compete by simultaneously setting the prices of all of their products; the equilibrium

concept is Nash equilibrium. As welfare measures, we will use both consumer surplus (CS =

Ψ(H)) and aggregate surplus (AS = Ψ(H) +
󰁓

f∈F Π
f ).

Firm-level shares will play an important role in our analysis. In terms of the multistage

discrete/continuous choice micro-foundation outlined in the previous subsection, the relevant

concept for us will be the market share of firm f among the consumers who did not take up

the stage-1 outside option:

sf =
󰁛

j∈f

hj(pj)

H
.

Thus, sf corresponds to the probability that a consumer who turned down the stage-1 outside

option chooses one of firm f ’s products. Moreover, it is easily verified that sf is firm f ’s

output share under GMNL demand and firm f ’s revenue share under GCES demand—again,

this does not account for consumers who took the stage-1 outside option. The market share

of the stage-2 outside option is H0/H.

3 Equilibrium Analysis of the Oligopoly Model

Given Assumptions 1, 3, and 4, Theorem III in the Online Appendix to Nocke and Schutz

(2018) implies that first-order conditions are necessary and sufficient for optimality and that

the multiproduct-firm pricing game has a unique equilibrium, which can be characterized

using an aggregative-games approach. In this section, we establish the type-aggregation

property, derive the firm’s fitting-in functions, and characterize the unique equilibrium (Sec-

tion 3.1), establish the key properties of firms’ fitting-in functions (Section 3.2), and use them

to perform comparative statics that will be useful for the merger analysis (Section 3.3).
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3.1 Fitting-in Functions, Type Aggregation, and Equilibrium Char-

acterization

The first-order condition for product i sold by firm f can be written as:

−h′
i(pi)Ψ

′(H)

󰀥
1− (pi − ci)

h′′
i (pi)

−h′
i(pi)

−
Ψ

′′(H)

Ψ′(H)

󰁛

j∈f

(pj − cj)(−h′
j(pj))

󰀦
= 0,

which simplifies to

(pi − ci)
h′′
i (pi)

−h′
i(pi)

= 1 +
󰂃(H)

H

󰁛

j∈f

(pj − cj)(−h′
j(pj)). (4)

Nocke and Schutz (2018) refer to the left-hand side of equation (4) as the ι-markup on

product i. As the right-hand side of that equation is independent of the identity of i, it

follows that firm f charges the same ι-markup, call it µf , on all of the products in its

portfolio—the common ι-markup property. Under GCES demand, the left-hand side of

equation (4) simplifies to σ(pi − ci)/pi, and so the common ι-markup property means that

firm f charges the same Lerner index on all its products. Under GMNL demand, the left-

hand side is (pi−ci)/λ and firm f thus charges the same absolute markup on all its products.

Let us now use the common ι-markup property to simplify the second term on the right-

hand side of equation (4). Setting α equal to (σ−1)/σ under GCES demand and to 1 under

GMNL demand, we have:

1

H

󰁛

j∈f

(pj − cj)(−h′
j(pj)) =

1

H

󰁛

j∈f

=µf

󰁽 󰂀󰁿 󰁾
(pj − cj)

h′′
j (pj)

−h′
j(pj)

=αhj(pj)󰁽 󰂀󰁿 󰁾
h′
j(pj)

2

h′′
j (pj)

= αµf 1

H

󰁛

j∈f

hj(pj)

= αµfsf , (5)

Thus, equation (4) simplifies to

µf =
1

1− α󰂃(H)sf
. (6)

Moreover, equation (5) also implies that, at firm f ’s optimum:

Π
f = αµfsfHΨ

′(H). (7)

Next, we use the common ι-markup property to express sf as a function of µf . Under

GCES demand, we have:

sf =
1

H

󰁛

j∈f

hj(pj) =
1

H

󰁛

j∈f

aj

󰀕
σ

σ − µf
cj

󰀖1−σ
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=
1

H

󰀃
1− (1− α)µf

󰀄 α

1−α

󰁿 󰁾󰁽 󰂀
≡υ(µf )

󰁛

j∈f

ajc
1−σ
j

󰁿 󰁾󰁽 󰂀
≡T f

. (8)

Similarly, under GMNL demand we obtain:

sf =
1

H

󰁛

j∈f

hj(pj) =
1

H

󰁛

j∈f

exp
aj − cj − (pj − cj)

λ

=
1

H
e−µf

󰁿󰁾󰁽󰂀
≡υ(µf )

󰁛

j∈f

exp
aj − cj

λ
󰁿 󰁾󰁽 󰂀

≡T f

. (9)

Thus, regardless of whether demand is of the GCES or GMNL type, the market share of

firm f can be written as

sf =
T f

H
υ(µf ), (10)

where υ is a strictly decreasing function and T f , firm f ’s type, is a sufficient statistic

that summarizes all the relevant information about firm f ’s product portfolio—the type-

aggregation property. That sufficient statistic has the same interpretation (and, in fact, the

same expression) as in Nocke and Schutz (2018, 2019): T f will be higher if firm f supplies

more products, delivers higher quality, or has lower costs; it is thus a measure of how good

firm f is.

The above analysis implies that the pair (µf , sf ) must jointly solve equations (6) and (10).

It is easily seen that this system has a unique solution:

Lemma 1. The system of equations (6) and (10) has a unique solution in (µf , sf ) in the

domain
󰀃
1, 1

1−α

󰀄
×
󰀓
0, 1

󰂃(H)

󰀔
.2 The solution,

󰀃
m(H, T f ), S(H, T f )

󰀄
, is smooth. The function

S is strictly decreasing in H, and there exists a cutoff H(T f ) ≥ 0 such that S(H, T f ) < 1 if

and only if H > H(T f ). Moreover, limH→H(T f ) S(H, T f ) = 1 and limH→∞ S(H, T f ) = 0.

Proof. Existence, uniqueness, and monotonicity were established in the Online Appendix

to Nocke and Schutz (2018). The result that limH→∞ S(H, T f ) = 0 follows immediately

as S(H, T f ) ≤ υ(1)T f/H. This, together with the monotonicity of S(·, T f ), implies the

existence of the cutoff H(T f ).

If H(T f ) > 0, then the result that limH→H(T f ) S(H, T f ) = 1 follows immediately by the

definition of H(T f ) and the continuity of S(·, T f ). Suppose instead that H(T f ) = 0. As

S(·, T f ) is bounded, we can take limits in equation (10) to obtain limH→0 υ(m(H, T f )) = 0,

and thus limH→0 m(H, T f ) = 1/(1− α). Rearranging terms in equation (6) yields:

S(H, T f ) =

󰀗
1−

1

m(H, T f )

󰀘
1

α󰂃(H)
−→
H→0

1

󰂃(0)
≥ 1.

2We adopt the convention that 1/(1− α) = +∞ when α = 1.
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Since S(H, T f ) < 1 for every H, it follows that limH→0 S(H, T f ) = 1.

In the following, we refer to m(H, T f ) and S(H, T f ) as the markup and market-share

fitting-in functions. The interpretation is that S(H, T f ) is the share of the aggregator that

is optimally produced by firm f when the aggregator level is H; m(H, T f ) is the associated

optimal ι-markup. Using equation (7), we can also define the profit fitting-in function:

π(H, T f ) = αm(H, T f )S(H, T f )HΨ
′(H)

=
αS(H, T f )

1− α󰂃(H)S(H, T f )
HΨ

′(H), (11)

where we have used equation (6) to obtain the second line. It is also sometimes convenient

to work with the profit-per-active-consumer fitting-in function:

π̃(H, T f ) ≡
π(H, T f )

HΨ′(H)
=

αS(H, T f )

1− α󰂃(H)S(H, T f )
, (12)

which, in the multistage discrete/continuous choice micro-foundation, corresponds to firm

f ’s profit normalized by the number of consumers who turned down the stage-1 outside

option.

Finally, the equilibrium value of the aggregator is pinned down by the condition

H0

H
+
󰁛

f∈F

S(H, T f ) = 1, (13)

i.e., market shares must add up to unity. Lemma 1 implies that the left-hand side of the

above condition is continuous, strictly decreasing, strictly greater than 1 when H is small

enough, and strictly lower than 1 when H is high enough. Hence, equation (13) has a unique

solution and the pricing game has a unique equilibrium. Summarizing:

Proposition 1. The multiproduct-firm pricing game has a unique equilibrium. The equi-

librium aggregator level H∗ is the unique solution of equation (13). In equilibrium, firm f

sets a markup of m(H∗, T f ), commands a market share of S(H∗, T f ), and earns a profit of

π(H∗, T f ).

3.2 Properties of Fitting-in Functions

In this section, we study the properties of fitting-in functions, which will later be useful

for deriving comparative statics in the oligopoly model and studying the welfare effects of

mergers. For the analysis that follows, it is useful to define

ζ(H) ≡ 1−
H󰂃′(H)

󰂃(H)
.

By Assumption 4, ζ(H) ≤ 1 for every H.

We have:
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Lemma 2. The following holds:

(i) Fitting-in functions are increasing in type: The partial derivatives ∂m/∂T , ∂S/∂T ,

and ∂π/∂T are all strictly positive.

(ii) The market-share fitting-in function is decreasing in the aggregator level: ∂S/∂H < 0.

The profit fitting-in function has the same property when evaluated at an economically

relevant aggregator-type pair: ∂π(H, T )/∂H < 0 whenever S(H, T ) < 1.

(iii) Whether the markup fitting-in function is locally increasing or decreasing in H depends

on ζ(H): The partial derivative ∂m/∂H has the same sign as −ζ(H).

Proof. See Appendix A.

Part (i) of the lemma says that, holding fixed the intensity of competition, a firm that

has a higher type (i.e., a “better firm”) sets a higher markup, commands a higher market

share, and makes larger profits. Part (ii) of the lemma says that, holding fixed the type, a

firm that operates in a more competitive environment (higher H) commands a lower market

share and makes less profits.

Part (iii) is perhaps more surprising: A firm may respond to an increase in the intensity

of competition by raising its markup; this arises whenever ζ(H) < 0. To see the intuition,

note that the absolute value of the price elasticity of demand for product i is given by
󰀏󰀏󰀏󰀏
d log(−h′

i(pi))

d log pi
+ pih

′
i(pi)

Ψ
′′(H(p))

Ψ′(H(p))

󰀏󰀏󰀏󰀏 =
󰀏󰀏󰀏󰀏
d log(−h′

i(pi))

d log pi

󰀏󰀏󰀏󰀏− |pih
′
i(pi)|

󰂃(H(p))

H(p)
.

Thus, whether the demand for product i becomes more or less elastic as pj rises (j ∕= i)

depends on whether pj 󰀁→ 󰂃(H(p))/H(p) is locally decreasing or increasing. This means

that prices are local strategic complements (resp. substitutes) if H 󰀁→ 󰂃(H)/H is locally

decreasing (resp. increasing), which holds whenever ζ(H) > 0 (resp. ζ(H) < 0).

Recall from our discussion at the end of Section 2.1 that, in the multistage discrete/continuous

choice micro-foundation, 1− 󰂃 corresponds to the hazard rate of the distribution of the taste

shock that a consumer receives when turning down the stage-1 outside option. Denoting

that hazard rate function by z(·) and using equation (2), we have:

z(− logH) = 1− 󰂃(H).

Differentiating yields:

z′(− logH) = H󰂃′(H) = 󰂃(H) (1− ζ(H)) ,

which implies that

ζ(H) = 1−
z′(− logH)

1− z(− logH)
.
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It follows that ζ(H) is strictly negative if and only if the derivative of the hazard rate is

(locally) sufficiently high. Intuitively, when that condition holds, an increase in pj (and thus

an increase in − logH) gives rise to a large increase in the relative density of consumers who

are indifferent between taking the stage-1 outside option and moving on to the second stage

of the choice process, thus making the demand for product i ∕= j more elastic.

As discussed in the Online Appendix to Nocke and Schutz (2018), the assumptions made

in Section 2 do not imply that ζ is everywhere non-negative.3 In fact, it is easily checked

that the function Ψ(H) = arsinh(H) satisfies Assumptions 1 and 4, but the associated ζ is

negative on the interval (0, 1) and positive on (1,∞). Thus, the resulting markup fitting-

in function m(·, T ) is strictly increasing on (0, 1) and strictly decreasing on (1,∞). Put

differently, markups are strategic substitutes when prices are high and strategic complements

when prices are low.

There are, of course, examples of functions Ψ that give rise to global strategic complemen-

tarity. For instance, if Ψ is the logarithm or a power function (i.e., Ψ(H) = Hβ, β ∈ (0, 1)),

then it has constant curvature, and so ζ(H) = 1 for every H.

3.3 Comparative Statics

Armed with the equilibrium characterization of Section 3.1 and the results of Section 3.2,

we can study the equilibrium effects of an increase in the type of one of the firms.

The comparative statics of consumer surplus, markups, market shares, and profits are

intuitive. As firm f ’s type increases, the left-hand side of equilibrium condition (13) increases.

Since that left-hand side is decreasing in H, the equilibrium aggregator level must rise.

Lemma 2–(ii) implies that the profits and market shares of rival firms decrease; whether

their markups decrease or increase depends on whether prices are local strategic complements

(ζ(H∗) > 0) or substitutes (ζ(H∗) < 0). As the market shares of rival firms and the outside

option (H0/H∗) decrease, firm f ’s market share must increase. This, combined with the

fact that 󰂃(H∗) increases weakly (Assumption 4), implies that firm f ’s ι-markup rises (see

equation (6)). Combining this with equation (7) and the fact that HΨ
′(H) is non-decreasing,

we obtain that firm f ’s profit increases as well.

Summarizing:

Proposition 2. Let f, g ∈ F with f ∕= g. A small increase in T f

• raises H∗ and thus equilibrium consumer surplus;

• raises the equilibrium values of µf , sf , and Π
f ;

3That being said, these assumptions do imply that ζ cannot be everywhere non-positive, as this would

imply that 󰂃(H) /∈ (0, 1] for H sufficiently high or sufficiently small.
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• lowers the equilibrium values of sg and Π
g;

• lowers the equilibrium value of µg if ζ(H∗) > 0, and raises it if the inequality is reversed.

By contrast, the comparative statics of aggregate surplus are less clear-cut: An increase

in T f may or may not raise equilibrium aggregate surplus. Intuitively, although consumer

surplus and firm f ’s profit increase, the profits of firm f ’s rivals fall by Proposition 2. Another

way of seeing this is that the increase in T f redistributes market shares towards firm f , which

may amplify pre-existing inefficiencies if firm f was initially producing too much (relative to

the other firms).4 The following proposition provides sufficient conditions on the primitives

of the demand system (i.e., α and 󰂃) that ensure that, regardless of the original vector of

types, an increase in one of the firms’ types always raises equilibrium aggregate surplus:

Proposition 3. Suppose that at least one of the following conditions holds:

(i) ζ(H) = 1 for every H. (That is, Ψ is either the logarithm or a power function.)

(ii) For every H, 󰂃(H) ≤ 1
1+α

.

(iii) For every H, ζ(H) ≥ 0 (prices are never strategic substitutes) and 󰂃(H) ≤ 1+α
2α+α2 .

Then, equilibrium aggregate surplus is strictly increasing in the firms’ types.

Proof. See Appendix B.

We already know from Proposition 6 in Nocke and Schutz (2018) that, if Ψ is the loga-

rithm, then equilibrium aggregate surplus is increasing in the firms’ types. Part (i) of the

proposition shows that this result extends to any Ψ with constant curvature. Part (ii) of the

proposition says that, even if Ψ does not have constant curvature, aggregate surplus remains

increasing in types provided 󰂃 and α are not too high. The condition on α and 󰂃 can be

made less stringent if one is willing to assume that prices are always strategic complements,

as in part (iii) of the proposition. For example, if α is smaller than approximately 0.62

(which corresponds to the GCES case with σ ≤ 2.61), then the condition on 󰂃 in part (iii) is

automatically satisfied since 󰂃(H) is always less than 1 by Assumption 1.

The intuition for conditions (ii) and (iii) can be understood as follows. In Appendix B

(see Lemma 5), we show that the derivative of aggregate surplus with respect to firm f ’s

type has the same sign as

Γ̃ ≡ 1 + (1− 󰂃)
󰁛

g∈F

αsg

1− α󰂃sg
+

α

(1− α󰂃sf )2

󰀥
1−

󰁛

g∈F

sg

󰀦
+ (1− ζ)󰂃

󰁛

g∈F

󰀕
αsg

1− α󰂃sg

󰀖2

4For similar reasons, equilibrium aggregate surplus in the homogeneous-goods Cournot model is not a

monotonic function of firms’ marginal costs—see Lahiri and Ono (1988) and Zhao (2001).
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−
󰁛

g∈F

󰀏󰀏󰀏󰀏
∂S(H, T g)

∂ logH

󰀏󰀏󰀏󰀏αs
g

󰀕
1

(1− α󰂃sg)2
−

1

(1− α󰂃sf )2

󰀖
,

where (sg)g∈F is the equilibrium vector of market shares, and the functions 󰂃, ζ, and S are

evaluated at the equilibrium aggregator level.

All the terms on the first line are non-negative. The first term corresponds to the rise in

consumer surplus triggered by the increase in T f . The second term captures the fact that,

as H increases, fewer consumers take up the stage-1 outside option, which raises producer

surplus and thus aggregate surplus. (Recall that the mass of consumers who turn down

the stage-1 outside option is HΨ
′(H), which has elasticity 1− 󰂃.) The interpretation of the

third term is that firm f steals market shares from the stage-2 outside option, which also

increases aggregate surplus since firm f was initially producing too little (relative to the

outside option). The fourth term says that, as H increases, 󰂃 rises (with elasticity 1− ζ ≥ 0)

by Assumption 4, which mechanically raises firms’ markups (see equation (6)).5

By contrast, the term on the second line in the definition of Γ̃ can be positive or negative.

That term captures the fact that, as firm f ’s product portfolio improves, firm f steals market

shares from its rivals. This market-share reallocation effect can be positive or negative,

depending on whether firm f ’s markup, 1/(1−α󰂃sf ), is higher or lower than its competitors’.

An immediate observation is that, if firms were initially symmetric or T f ≥ T g (i.e., sf ≥ sg)

for every g, then the reallocation effect is non-negative. Instead, the effect is negative if

sf < sg for every g, as firm f is initially overproducing relative to its competitors.

Regardless of the sign of the market-share reallocation effect, its magnitude will be small

if there is little dispersion in markups or the change in H has little effect on market shares.

A sufficient condition for the former is that α and/or 󰂃 is small, so that ι-markups do not

differ much from 1. A sufficient condition for the latter is that ζ is sufficiently high, as, in

that case, firms respond to the increase in H by cutting their markups, thereby mitigating

the decrease in their market shares. Parts (ii) and (iii) of Proposition 3 confirm that, under

those conditions, the overall effect of an increase in T f is to raise aggregate surplus.

3.4 Modeling Mergers

As in Nocke and Schutz (2019), the type-aggregation property permits a parsimonious mod-

eling of mergers. Consider a merger between the firms M ⊊ F , and let O ≡ F \M be the

set of non-merging firms—the outsiders. We assume throughout that the merger does not

directly affect the outsiders. That is, each firm f ∈ O continues to supply the same products,

with the same qualities and costs, post-merger, which implies that T f remains unchanged.

5This is only a partial effect, which does not account for the fact that the market share of firm g ∕= f

decreases, thus potentially resulting in a lower markup—see Proposition 2.
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By contrast, the merger may affect the merging firms’ set of products: New products may

be added; some products may be dropped; the qualities and costs of pre-existing products

may change. By virtue of the type-aggregation property, we do not need to keep track of

each of those individual changes, as all that matters is the type of the merged firm, TM .

A special case of interest arises when the merger does not involve any synergies, in the

sense that the merged firm supplies the same products, with the same qualities and costs,

as the merger partners did pre-merger. In that case, the type of the merged firm is given by

TM =
󰁓

f∈M T f . We say that the merger involves synergies if TM >
󰁓

f∈M T f .

4 Consumer Surplus Effects of Mergers

In this section, we study the consumer surplus effects of mergers. We provide a static analysis

in Section 4.1 and a dynamic one with endogenous mergers in Section 4.2.

4.1 Static Analysis

Consider a merger M between the firms in M ⊊ F , and let TM be the merged firm’s type.

Let H∗ and H
∗
denote the pre- and post-merger equilibrium aggregator levels, respectively.

We say that the merger is CS-neutral if it does not affect the equilibrium aggregator level,

H∗ = H
∗
; it is CS-increasing if H

∗
> H∗, and CS-decreasing if the inequality is reversed.

Suppose first that the merger is CS-neutral. Then, the merger affects neither the out-

siders’ nor the outside option’s market share. Since market shares must add up to unity, it

follows that the market share of the merged firm must be equal to the sum of the pre-merger

market shares of the merger partners:

S(H∗, TM) =
󰁛

f∈M

S(H∗, T f ). (14)

Conversely, if condition (14) holds, then H∗ continues to be a solution to equation (13)

post-merger, and so the merger is CS-neutral.

As S(H, ·) is continuous and strictly increasing (see Lemma 2) and has full range (see

Lemma 3 in Appendix A), there exists a unique cutoff type 󰁥TM such that condition (14) holds

if and only if TM = 󰁥TM . Moreover, since the post-merger equilibrium value of the aggregator

is strictly increasing in TM (Proposition 2), the merger is CS-increasing if TM > 󰁥TM and

CS-decreasing if the inequality is reversed.

Next, we show that a CS-nondecreasing merger must involve synergies. As S(H, ·) is

strictly sub-additive (see again Lemma 3), we have that, at TM =
󰁓

f∈M T f , i.e., if there are

no synergies, the right-hand side of equation (14) strictly exceeds the left-hand side. Since

S(H, ·) is increasing, it follows that 󰁥TM >
󰁓

f∈M T f .
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Finally, let us show that a CS-nondecreasing merger is privately profitable, in the sense

that it strictly raises the equilibrium joint profits of the merger partners. Suppose first that

the merger is CS-neutral, TM = 󰁥TM . Then, the market share of the merged firm, sM , is

equal to the sum of the market shares of the merger partners,
󰁓

f∈M sf . Hence, sM > sf for

every merger partner f . Combining this with equation (6) and the fact that the merger does

not affect the equilibrium H, we obtain that the markup of the merged firm, µM , strictly

exceeds the markup µf of every merger partner f . Therefore, using equation (7),

Π
M = αµMsMH∗

Ψ
′(H∗) = αµM

󰁛

f∈M

sfH∗
Ψ

′(H∗) > α
󰁛

f∈M

µfsfH∗
Ψ

′(H∗) =
󰁛

f∈M

Π
f .

Hence, a CS-neutral merger is profitable. Moreover, by Proposition 2, the merged firm makes

larger profits when its type is TM > 󰁥TM than when its type is 󰁥TM . A CS-increasing merger

is therefore even more profitable than a CS-neutral one.

Summing up:

Proposition 4. For a merger among the firms in M, there exists a unique cutoff type
󰁥TM >

󰁓
f∈M T f such that the merger is CS-neutral if TM = 󰁥TM , CS-decreasing if TM < 󰁥TM ,

and CS-increasing if TM > 󰁥TM . Moreover, merger M is privately profitable whenever it is

CS-nondecreasing.

Next, we turn to the comparative statics of the cutoff type:

Proposition 5. Consider a merger M among the firms in M, and let H∗ be the pre-merger

level of the aggregator. The post-merger cutoff type 󰁥TM is locally strictly decreasing in H∗ if

ζ(H∗) > 0, and locally strictly increasing if the inequality is reversed.

Proof. Totally differentiating equation (14) yields:

S(H∗, 󰁥TM)

∂T
d󰁥TM =

󰀥
−
S(H∗, 󰁥TM)

∂H
+

󰁛

f∈M

∂S(H∗, T f )

∂H

󰀦
dH∗

=

󰀥
−S(H∗, 󰁥TM)

∂ log S(H∗, 󰁥TM)

∂H
+

󰁛

f∈M

S(H∗, T f )
∂ log S(H∗, T f )

∂H

󰀦
dH∗

=
󰁛

f∈M

S(H∗, T f )

󰀥
∂ log S(H∗, T f )

∂H
−

∂ log S(H∗, 󰁥TM)

∂H

󰀦
dH∗,

where the last line follows by the definition of 󰁥TM . Since T f < 󰁥TM for every f , Lemma 4 in

Appendix A implies that the term inside square brackets on the last line has the same sign

as −ζ(H∗).
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Thus, if prices are local strategic complements, then the synergies required to make a

merger CS-nondecreasing are smaller the more competitive is the market pre-merger. If

instead prices are local strategic substitutes, then we have the surprising result that an

antitrust authority with a consumer surplus standard should require larger synergies to

approve a merger that takes place in a more competitive industry.

To understand the intuition, consider a merger between two identical single-product

firms. Let c denote the merger partners’ constant unit cost of production, p∗ their pre-

merger equilibrium price, and d the diversion ratio between the two products (evaluated at

pre-merger equilibrium prices). Suppose that the merger-induced synergies only materialize

through a symmetric reduction in the unit cost of production. As shown in Werden (1996),

the marginal cost reduction that would make this merger CS-neutral satisfies

c− ĉ = (p∗ − c)
d

1− d
.

Intuitively, the merged firm has more of an incentive to raise the price of one its products if

most consumers lost in the process will end up purchasing its other product (high d) and/or

if the margin on that other product is high (high p∗ − c)—larger synergies will then be

required to make the merger CS-neutral. The question is therefore how an increase in the

intensity of competition affects the pre-merger margin and diversion ratio.

By Lemma 2, the pre-merger margin is locally decreasing (resp. increasing) in H∗ if

ζ(H∗) > 0 (resp. ζ(H∗) < 0). As for the diversion ratio, straightforward calculations show

that, in this symmetric setting,

d =
α󰂃(H∗)s∗

1− α󰂃(H∗)s∗
= µ∗ − 1,

where s∗ and µ∗ denote each merger partner’s market share and ι-markup, respectively, and

we have used equation (6) to obtain the second equality. Using again Lemma 2, we obtain

that the diversion ratio is locally decreasing in H∗ if ζ(H∗) > 0 and locally increasing if

ζ(H∗) < 0. Hence, the derivative of c− ĉ with respect to H∗ has the same sign as −ζ(H∗).

Proposition 5 generalizes this result to mergers between arbitrary sets of firms and arbitrary

forms of merger-induced synergies.

4.2 Dynamic Analysis

If merger opportunities are not isolated events, the static analysis undertaken in the previous

subsection may be inappropriate: Merger approval decisions in the current period may affect

both the consumer-surplus effects of future mergers (and thus whether those mergers will be

approved) and their profitability (and thus whether those mergers will be proposed). This

raises the question whether a static merger policy, whereby a merger receives approval if

16



and only if it is CS-nondecreasing given the current market structure, may be dynamically

sub-optimal.

We study this question in the dynamic stochastic framework laid out in Section 3.2 of

Nocke and Schutz (2019). (See Nocke and Whinston (2010) for the Cournot version of that

framework.) We now provide a brief, informal description of the framework, and refer the

reader to Nocke and Schutz (2019) for details.

Time is discrete and runs for a finite number of periods, and the initial state of the

industry is as described in Section 2. The strategic players are the firms, which maximize the

expected present discounted value of profits, and the antitrust authority, which maximizes

the expected present discounted value of consumer surplus. There is a collection of potential

mergers, each corresponding to a set of merger partners. Importantly, these mergers are

disjoint, i.e., each firm can be part of at most one potential merger. In every period, one

or several potential mergers can become feasible with some probability, in which case the

types of the merged firms are drawn from some probability distributions. We assume that a

merger that has become feasible but has not yet been consummated remains feasible, with

the same merged firm’s type, in all subsequent periods.

Within each period, there are three stages. In the first stage, mergers that have become

feasible but have not yet been consummated can be proposed to the antitrust authority—we

assume that a merger is proposed if and only if it is in the merger partners’ joint interest.

In the second stage, the antitrust authority decides which mergers to approve. In the third

stage, firms compete in prices given the current market structure. All of those decisions are

made under complete information. The equilibrium concept is subgame-perfect equilibrium.

We now show that, under the assumption that prices are global strategic complements

(ζ > 0), equilibrium behavior is surprisingly simple. Let the myopically CS-maximizing

merger policy be the approval rule that, in each period, maximizes consumer surplus in that

period, given current market structure and the set of proposed mergers. We have:

Proposition 6. Assume that ζ(H) > 0 for every H. There exists a subgame-perfect equi-

librium in which the antitrust authority adopts the myopically CS-maximizing merger policy

and firms propose all feasible mergers in each period after any history. The resulting outcome

maximizes the present discounted value of consumer surplus, no matter what the realized se-

quence of feasible mergers. Moreover, every subgame-perfect equilibrium results in the same

optimal level of consumer surplus in each period.

Proof. Given Propositions 4 and 5, the analysis in Section VI in the Online Appendix to

Nocke and Schutz (2019) readily extends to this setting.

As in Nocke and Whinston (2010) and Nocke and Schutz (2019), the key insight under-

lying this result is the sign-preserving complementarity in the consumer surplus effects of
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mergers. Consider two disjoint mergers M1 and M2 and suppose that, given the current

market structure, each merger is CS-nondecreasing in isolation. Assuming ζ > 0, Proposi-

tion 5 implies that merger Mi remains CS-nondecreasing conditional on merger Mj taking

place, since implementing merger Mj weakly raises H∗ and thus weakly reduces the cutoff

type for merger Mi. The same argument implies that if M1 and M2 are both CS-decreasing

in isolation, then each remains CS-decreasing conditional on the other taking place.

By contrast, if ζ(H) < 0 for some H, then the sign-preserving complementarity property

no longer holds in general, and a counterexample can be constructed in which the myopically

CS-maximizing merger policy is not dynamically optimal. Suppose indeed that ζ(Ĥ) < 0 for

some Ĥ. Let F be a finite set containing at least five elements, and fix an arbitrary vector

of market shares (sf )f∈F ∈ (0, 1)F such that
󰁓

f∈F sf = 1. By Lemmas 2 and 3, for every

f ∈ F , there exists a unique T f > 0 such that S(Ĥ, T f ) = sf . Since the shares sf add up

to one, equilibrium condition (13) holds for the vector of types (T f )f∈F and the aggregator

level Ĥ, and so Ĥ is indeed the equilibrium aggregator level when the vector of types is

(T f )f∈F .

Next, consider two disjoint mergers M1 and M2, with merger partners M1 and M2, re-

spectively, such that M1 ∪M2 ⊊ F . Choose TM1 > 󰁥TM1(Ĥ) such that ζ(H) < 0 for every

H ∈ [Ĥ,H1], where H1 > Ĥ is the equilibrium aggregator level after mergerM1 has been im-

plemented with type TM1 . Note that such a TM1 exists since ζ is continuous, the equilibrium

aggregator level is continuous in the firms’ types, and the post-merger equilibrium aggregator

level strictly exceeds Ĥ whenever the merged firm’s type is greater than 󰁥TM1(Ĥ) by Propo-

sition 4. Next, consider merger M2. By Proposition 5, we have that 󰁥TM2(H1) > 󰁥TM2(Ĥ).

We can thus choose a TM2 ∈
󰀓
󰁥TM2(Ĥ), 󰁥TM2(H1)

󰀔
such that H2 ∈ (Ĥ,H1), where H2 is the

equilibrium aggregator level after merger M2 has been implemented with type TM2 . Again,

the continuity of the equilibrium aggregator level in types and Proposition 4 ensure that

such a TM2 exists. It is clear that the sign-preserving complementarity property does not

hold for mergers M1 and M2: Although each of those mergers is CS-increasing in isolation,

merger M2 is by construction CS-decreasing conditional on merger M1 taking place.

Moreover, we also have that H1 > H12, where H12 is the equilibrium aggregator level

after both M1 and M2 have been implemented. Hence, if M1 and M2 are both proposed to

the antitrust authority, then only M1 will be approved. Let us now embed those mergers

into the dynamic framework described at the beginning of this subsection. Suppose that at

time t = 1, merger M2, and only this merger, becomes feasible, with probability 1 and type

TM2 as defined above. At time t = 2, merger M1, and only this merger, becomes feasible

with probability 1 and type TM1 . No further merger becomes feasible thereafter. Assume

that the discount factor is sufficiently close to 1 and that there are sufficiently many periods,

so that the consumer surplus level from period t = 3 onward dwarfs that in periods 1 and
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2. To focus on the antitrust authority’s behavior, assume also that mergers M1 and M2 are

always proposed when feasible. Then, since H1 > max(Ĥ,H2, H12), the antitrust authority

optimally blocks merger M2 in period 1 and approves M1 in period 2 (and keeps blocking

M2). Instead, the myopically CS-maximizing merger policy would approve M2 in period 1,

and approve M1 in period 2 if and only if H12 ≥ H2. Thus, the myopically CS-maximizing

merger policy is strictly sub-optimal.

5 Aggregate Surplus and External Effects of Mergers

Although most antitrust authorities around the world have adopted (something close to) a

consumer-surplus standard, it seems worthwhile to study approval standards that put some

weight on firms’ profits. We analyze the aggregate-surplus effects of mergers in Section 5.1

and their external effects in Section 5.2.

5.1 Aggregate Surplus Effects

In this subsection, we assume that at least one of the conditions of Proposition 3 is satisfied,

so that equilibrium aggregate surplus is a strictly increasing function of the firms’ types.

Consider a merger M between the firms in M ⊊ F , and let TM be the merged firm’s

type. If the merger is CS-neutral (i.e., TM = 󰁥TM), then it is AS-increasing since it raises

the profits of the merger partners (Proposition 4) while leaving consumer surplus and the

outsiders’ profits unchanged. If, instead, TM is equal to zero, then the merger is equivalent to

setting the types of all merger partners equal to zero, which must reduce aggregate surplus

by Proposition 3. By continuity of equilibrium aggregate surplus in types, there exists a

cutoff 󰁨TM ∈ (0, 󰁥TM) such that the merger is AS-neutral if TM = 󰁨TM . Proposition 3 implies

that the merger is AS-increasing if TM > 󰁨TM and AS-decreasing if the inequality is reversed.

Summing up:

Proposition 7. Suppose that at least one of the conditions of Proposition 3 holds. For a

merger among the firms in M, there exists a unique 󰁨TM < 󰁥TM such that the merger is

AS-neutral if TM = 󰁨TM , AS-decreasing if TM < 󰁨TM , and AS-increasing if TM > 󰁨TM .

As discussed in Nocke and Schutz (2019), there is no counterpart to this result in Farrell

and Shapiro (1990)’s classical analysis. The reason is that in the homogeneous-goods Cournot

model, equilibrium aggregate surplus is never globally monotonic in the firms’ marginal costs

(Lahiri and Ono, 1988; Zhao, 2001).

The fact that 󰁨TM < 󰁥TM means that for a merger to be AS-increasing requires fewer

synergies than for it to be CS-increasing. In fact, no synergies may be required at all—we
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refer the reader to Section 4.1 in Nocke and Schutz (2019) for simple examples where 󰁨TM is

greater or lower than
󰁓

f∈F T f .

5.2 External Effects

Consider a merger M among the firms in M, and let O = F \M be the set of non-merging

firms. The merger’s external effect is defined as its impact on the sum of consumer surplus

and the outsiders’ profits. One reason for studying external effects is that, to the extent

that a merger will be proposed only if it is in the merger partners’ joint interest to do so, a

positive external effect is a sufficient condition for a positive impact on aggregate surplus.

Define

E(H) = Ψ(H) +
󰁛

f∈O

π(H, T f ).

Letting H∗ and H
∗
denote the pre- and post-merger equilibrium value of the aggregator, the

merger’s external effect is thus

∆E = E(H
∗
)− E(H∗) =

󰁝 H
∗

H∗

E ′(H)dH.

Thus, E ′(H)dH can be viewed as the external effect of an infinitesimal merger. In the

following, we focus on CS-decreasing mergers (dH < 0, H
∗
< H∗) to fix ideas, and let

η(H) ≡ −E ′(H)/Ψ′(H). An infinitesimal CS-decreasing merger has a positive external effect

if and only if η(H) > 0. In Appendix C, we show that

η(H) = −1 +
󰁛

g∈O

φ(sg, 󰂃(H),α) + (1− ζ(H))
󰁛

g∈O

χ(sg, 󰂃(H),α), (15)

where sg = S(H, T g),

φ(s, 󰂃,α) ≡
αs

1− α󰂃s

󰀗
1− 󰂃s

1− 󰂃s+ α(󰂃s)2
− (1− 󰂃)

󰀘
,

and χ(s, 󰂃,α) ≡
(α󰂃s)2s

(1− α󰂃s)(1− 󰂃s+ α(󰂃s)2)
.

The two sums on the right-hand side of equation (15) represent the increase in the

outsiders’ profits triggered by the infinitesimal decrease in H. The −1 term represents the

decrease in consumer surplus. The external effect of the merger is positive if and only if the

former outweighs the latter.

We now argue that, under certain conditions, an infinitesimal CS-decreasing merger is

more likely to have a positive external effect if the outsiders’ market shares are larger or

more concentrated. We formalize the notions of “larger” and “more concentrated” market

shares as in Nocke and Schutz (2019). A pre-merger industry structure among outsiders is
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a vector (sf )f∈O, where O is a finite set, sf ∈ (0, 1) for every f ∈ O, and
󰁓

f∈O sf < 1.

Let s = (sf )f∈O and s′ = (s′f )f∈O′ be two such outsider industry structures. Outsiders have

larger market shares under s than under s′, denoted s ≥1 s′, if there exists a one-to-one

mapping ϑ : O′ −→ O such that sϑ(f) ≥ s′f for every f ∈ O′. Outsiders’ market shares

are more concentrated under outsider industry structure s than under s′, denoted s ≥2 s
′, if

s and s′ have the same length and the distribution of s is a mean-preserving spread of the

distribution of s′ (Rothschild and Stiglitz, 1970).

Exploiting the convexity and monotonicity properties of the functions φ(·, 󰂃,α) and

χ(·, 󰂃,α), we prove the following proposition:

Proposition 8. Consider two infinitesimal CS-decreasing mergers, M and M ′, with pre-

merger industry structures s = (sf )f∈O and s′ = (s′f )f∈O′, and pre-merger aggregators H

and H ′. Suppose that 󰂃(H) = 󰂃(H ′), ζ(H) = ζ(H ′), and at least one of the following

conditions holds:

(i) s ≥1 s
′ and sf ≤ 3/5 for every f ∈ O.

(ii) s ≥2 s
′, sf ≤ 1/5 for every f ∈ O, and s′f ≤ 1/5 for every f ∈ O′.

If merger M ′ has a positive external effect, then so does merger M .

Proof. See Appendix C.

Note that one of the assumptions of Proposition 8 is that 󰂃(H) = 󰂃(H ′) and ζ(H) = ζ(H ′).

This assumption is automatically satisfied if Ψ is the logarithm or a power function, as 󰂃

and ζ are then constant functions. If 󰂃 is strictly increasing, then the assumption reduces to

H = H ′.

To understand the intuition behind Proposition 8, let us study how an infinitesimal de-

crease in H affects an outsider’s profit fitting-in function. Combining equations (7) and (12)

with equation (10) yields

π(H, T f ) = αT fm(H, T f )υ(m(H, T f ))Ψ′(H)

and π̃(H, T f ) = α
T f

H
m(H, T f )υ(m(H, T f )),

where the function υ was defined in Section 3.1 (see equations (8) and (9)). Differentiating

the profit fitting-in function with respect to H and normalizing by the induced change in

consumer surplus, we obtain:

dπf

Ψ′(H)
= 󰂃(H)π̃f |dH|− π̃f ∂ logm(H, T f )

∂ logH

∂ log(µυ(µ))

∂ log µ

󰀏󰀏󰀏󰀏
µ=m(H,T f )

|dH|. (16)
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The positive effect of the infinitesimal CS-decreasing merger on the outsiders’ profits can

therefore be decomposed as follows. First, holding fixed the outsiders’ markups, the merger

raises the profit of each outsider f by 󰂃(H)π̃f |dH|. Intuitively, as H decreases, the merger

partners lose some consumers. A share 1−󰂃 of those consumers is drawn towards the stage-1

outside option, while the remaining share 󰂃 starts purchasing from the outsiders. Due to

the IIA property, those latter consumers are allocated to the firms in proportion to their

market shares. Hence, the “direct” effect on outsiders’ joint profit is proportional to their

joint profit per active consumer. Second, outsiders respond by increasing their markups.

As the outsiders’ aggregate profit per active consumer is increasing and convex in out-

siders’ market shares (see equation (12)), the first, direct effect is larger when those market

shares are larger or more concentrated. How the distribution of outsiders’ market shares

affects the second, indirect effect is less clear. The proposition shows that the intuition that

can be gleaned by focusing on the direct effect is valid provided the outsiders’ market shares

are not too large.

We now turn to the external effects of non-infinitesimal mergers. We begin by deriving

conditions under which any CS-decreasing merger has a negative external effect:

Proposition 9. Suppose at least one of the following holds:

(i) Ψ is the logarithm or a power function, and α and/or 󰂃 is lower than 0.8.6

(ii) Prices are always weakly strategic complements (ζ ≥ 0) and α󰂃(H) ≤ 1/2 for every H.

Then, any CS-decreasing merger has a negative external effect.

Proof. See Appendix C.

A CS-decreasing merger has a negative external effect if the loss in consumer surplus

exceeds the gain in outsiders’ profits. To understand the intuition for the sufficient condi-

tions in Proposition 9, let us thus return to equation (16), which decomposes the effect of an

infinitesimal CS-decreasing merger on outsider f ’s profit into a direct effect (firm f ’s market

share increases) and an indirect effect (firm f adjusts its markup). Under strategic comple-

mentarity, the indirect effect is negative, as ∂m/∂H < 0 and ∂(µυ(µ))/∂µ < 0.7 Moreover,

the direct effect is proportional to 󰂃(H)π̃f . It will therefore be small if 󰂃 is small (so that

many consumers are lost to the stage-1 outside option when H falls) and/or profit per active

consumer is small (so that firm f makes little profit on the additional consumers it gains).

6See Appendix C for tighter upper bounds on α and 󰂃.
7This holds since oligopolistic markups are always above those of monopolistically competitive firms (that

perceive H as fixed, and thus set an ι-markup of 1), so any further increase must reduce profit for a fixed

H. See Section 6.2 for more details on the monopolistic competition version of the model.
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A sufficient condition for the latter is that α and/or 󰂃 is small, as firms then tend to set low

ι-markups.

We close this subsection by providing a sufficient condition for a CS-decreasing merger to

have a positive external effect in the case where Ψ has constant curvature. Suppose indeed

that Ψ is the logarithm or a power function. Assume that, at the pre-merger market-share

vector,

−1 +
󰁛 αsf

1− α󰂃sf

󰀗
1− 󰂃sf

1− 󰂃sf + α(󰂃sf )2
− (1− 󰂃)

󰀘
> 0, (17)

i.e., an infinitesimal CS-decreasing merger at H∗ has a positive external effect. Then, along

the sequence of infinitesimal mergers from H∗ to H
∗
, the market shares of all outsiders

increase. Therefore, by Proposition 8 (and as long as no outsider reaches a market share

larger than 60%), the external effect of each of those infinitesimal mergers is positive. It

follows that the external effect of the merger is positive. Importantly, checking whether

condition (17) holds only requires knowledge of the outsiders’ pre-merger market shares.

6 The Herfindahl Index and the Welfare Effects of

Mergers

In this section, we show that the merger-induced, naively-computed change in the Herfindahl

index provides a suitable approximation to the market power effect of a merger, defined as

the impact that the merger would have on consumer surplus (resp. aggregate surplus) if

it involved no synergies. We provide approximation results around small market shares in

Section 6.1 and around monopolistic competition conduct in Section 6.2.

6.1 Approximation around Small Market Shares

We assume throughout this subsection that consumers have access to a stage-2 outside option,

i.e., H0 > 0. Suppose the equilibrium vector of market shares, s = (sf )f∈F , is known. As

the firms’ market shares and the market share of the outside option must add up to unity,

the equilibrium aggregator level can be written as a function of s, as

H∗(s) =
H0

1−
󰁓

f∈F sf
.

Thus, equilibrium consumer surplus can also be written as a function of s, as CS(s) =

Ψ(H∗(s)). The analysis in Section 3.1 implies that producer surplus is given by

PS(s) =
󰁛

f∈F

αsf

1− α󰂃(H∗(s))sf
H∗(s)Ψ′ (H∗(s)) .
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We also obtain aggregate surplus: AS(s) = CS(s) + PS(s).

For any vector of market shares s (between 0 and 1, adding up to strictly less than 1),

there exists a unique vector of types, T =
󰀃
T f (s)

󰀄
f∈F

such that the resulting equilibrium

market-share vector is s. Firm f ’s type, T f (s), is the unique solution of equation

sf = S
󰀃
H∗(s), T f (s)

󰀄
. (18)

(Existence and uniqueness of the solution follow immediately by Lemmas 2 and 3).

Now, consider a merger M among the firms in M ⊊ F . The set of firms post-merger is

F = O∪M . We define the market power effect of merger M as the impact it would have on

equilibrium consumer surplus (resp. aggregate surplus) if there were no synergies. Without

synergies, the post-merger vector of types is T̄ (s) = (T̄ f (s))f∈F , where T̄ f (s) = T f (s) if

f ∈ O and T̄ f (s) =
󰁓

g∈M T g(s) if f = M . This vector of types T̄ (s) gives rise to a post-

merger equilibrium—the aggregator and the market-share vector are denotedH
∗
(s) and s̄(s),

respectively.

The objects of interest are ∆CS(s) ≡ CS(s̄(s))−CS(s) and ∆AS(s) ≡ AS(s̄(s))−AS(s),

which we seek to approximate at the second order in the neighborhood of s = 0. The merger-

induced, naively computed change in the Herfindahl index is:

∆HHI(s) ≡

󰀣
󰁛

f∈M

sf

󰀤2

−
󰁛

f∈M

(sf )2 =
󰁛

f,g∈M
f ∕=g

sfsg.

We have:

Proposition 10. At the second order in the neighborhood of s = 0, the market power effect

of the merger is:8

∆CS(s) = −H0
Ψ

′(H0)α󰂃(H0)∆HHI(s) + o(󰀂s󰀂2),

∆AS(s) = −H0
Ψ

′(H0)α󰂃(H0)∆HHI(s) + o(󰀂s󰀂2).

Proof. See Appendix D.

Thus, regardless of whether the metric used is consumer surplus or aggregate surplus, the

market power effect of the merger is proportional to the merger-induced, naively-computed

change in the Herfindahl index. The proportionality coefficient is equal to market size (i.e.,

H0
Ψ

′(H0), the mass of consumers who turn down the stage-1 outside option) times the

product of the elasticity measures α and 󰂃(H0).

8o(·) is Landau’s little-o notation: f(x) = o(g(x)) in the neighborhood of x = x0 if f(x)/g(x) −→
x→x0

0.
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6.2 Approximation around Monopolistic Competition Conduct

Throughout the paper, we have assumed that each firm fully internalizes its impact on the

industry aggregator—“Bertrand-Nash” conduct. Under monopolistic competition, instead,

firms make their pricing decisions taking the aggregator as given. Given this behavioral

assumption, the first-order condition for product i sold by firm f (equation (4)) becomes

(pi − ci)
h′′
i (pi)

−h′
i(pi)

= 1.

That is, each firm sets an ι-markup of 1 on all of its products. Under GCES demand,

we obtain the familiar pricing formula (pi − ci)/pi = 1/σ; under GMNL demand, we have

pi − ci = λ. An immediate observation is that the market structure (i.e., the firm partition

F) does not affect equilibrium prices. This implies in particular that, under monopolistic

competition, a merger without synergies affects neither consumer surplus nor aggregate

surplus.

Let us now bridge the gap between monopolistic-competition and Bertrand-Nash conduct

by introducing a conduct parameter, θ ∈ [0, 1], into the oligopoly model. Specifically, we

assume that each firm believes that the impact of a small increase in pi (for every i ∈ N )

on the aggregator is θ∂H/∂pi instead of ∂H/∂pi. That is, firms internalize their impact

on the aggregator only to some extent.9 The special cases θ = 1 and θ = 0 correspond to

Bertrand-Nash and monopolistic-competition conduct, respectively.

In Appendix E.1, we show that the oligopoly model augmented with a conduct param-

eter can still be solved using an aggregative games approach and that the type-aggregation

property continues to hold, with the definition of types being independent of θ. The only

difference is that the markup equation (equation (6)) becomes

µf =
1

1− αθ󰂃(H)sf
.

That is, firms set lower markups when they do not fully internalize their impact on the

aggregator. This implies that all the fitting-in functions now depend on θ. The equilibrium

aggregator level, H∗(θ), is still pinned down by the condition that market shares add up to

unity. Applying the market-share fitting-in function gives firm f ’s equilibrium market share:

sf (θ) = S(H∗(θ), T f ; θ). Consumer surplus and aggregate surplus are then given by (see

Appendix E.1):

CS(θ) = Ψ(H∗(θ)) and AS(θ) = Ψ(H∗(θ)) +
󰁛

f∈F

αsf (θ)

1− αθ󰂃(H∗(θ))sf (θ)
H∗(θ)Ψ′(H∗(θ)).

9This way of modeling firm conduct is closely related to the classical approach with quantity setting and

homogeneous products as surveyed in Bresnahan (1989).
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Consider now a merger M between the firms in M. Suppose the merger involves no

synergies, TM =
󰁓

f∈F T f , and let CS(θ) and AS(θ) denote consumer and aggregate sur-

plus post-merger. The merger-induced, naively computed change in the Herfindahl index

is denoted ∆HHI(θ). We provide a linear approximation of the market power effect of the

merger around monopolistic competition conduct:

Proposition 11. In the neighborhood of θ = 0, the market power effect of the merger is:10

CS(θ)− CS(θ) = −α󰂃(H∗)H∗
Ψ

′(H∗)∆HHI×θ + o(θ),

AS(θ)− AS(θ) = −α󰂃(H∗)H∗
Ψ

′(H∗)∆HHI

󰀣
1− α

󰁛

f∈F

sf

󰀤
θ + o(θ).

Proof. See Appendix E.2.

Thus, the market power effect of the merger is again proportional to the merger-induced,

naively computed change in the Herfindahl index. When consumer surplus is used as measure

of market performance, the proportionality coefficient is the same as in Proposition 10 (times

the conduct parameter). When instead aggregate surplus is used, there is an additional term

in the proportionality coefficient: 1 − α
󰁓

f s
f . That term corresponds to the increase in

industry profit resulting from the merger. The reason why it is not present in Proposition 10

is that it would be third order.

7 Type Aggregation: A Complete Characterization

Two features of our class of multiproduct-firm pricing games have allowed us to provide

a rich and yet tractable merger analysis. First, the pricing game is aggregative and the

industry aggregator also pins down consumer surplus; thus, the pre- (and post-) merger

state of the industry can be summarized into a uni-dimensional sufficient statistic. Second,

the type-aggregation property holds; thus, merger-specific synergies can also be summarized

into a uni-dimensional sufficient statistic. Anderson, Erkal, and Piccinin (2020) showed that

the first property is equivalent to the indirect utility function being additively separable

across products, i.e., as in equation (1). To obtain the type aggregation property, however,

we strengthened this requirement by imposing that the hj-functions take either the GCES

or the GMNL form (Assumption 3). In this section, we show that this stronger requirement

is (almost) necessary for type aggregation.

The section is organized as follows. We begin by reviewing Nocke and Schutz (2018)’s

aggregative-games approach with arbitrary functions Ψ and hj. Building on this, we then

10The functions H∗(·), ∆HHI(·), and sf (·) are to be evaluated at either 0 or θ.
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propose several formal definitions of the type-aggregation property. Finally, we show that

all those definitions are equivalent and provide a complete characterization of the set of

h-functions satisfying type aggregation.

Review of Nocke and Schutz (2018). Let Ψ be a function satisfying Assumptions 1

and 4 and N a finite set. For every j ∈ N , let hj be a function satisfying Assumption 2.

Fix some H0 ≥ 0. The analysis in the Online Appendix to Nocke and Schutz (2018) implies

that the demand system with indirect utility function Ψ

󰁫
H0 +

󰁓
j∈N hj(pj)

󰁬
can be derived

from multistage discrete/continuous choice, as described in Section 2.1. For every j ∈ N

and pj > 0, let ιj(pj) ≡ −pjh
′′
j (pj)/h

′
j(pj) denote the curvature of hj. To ensure that the

resulting multiproduct-firm pricing game is well behaved, we assume that, for every j and

pj, ι
′
j(pj) ≥ 0 whenever ιj(pj) > 1.11

For every j, let cj > 0. Partitioning the set of product N into a set of firms F , we obtain

a multiproduct-firm pricing game with payoff functions

Π
f (p) =

󰁛

j∈f
pj<∞

(pj − cj)(−h′
j(pj))Ψ

′(H(p)) ∀p ∈ (0,∞]N , ∀f ∈ F , (19)

where H(p) ≡ H0 +
󰁓

k∈N hk(pk) and hk(∞) ≡ limp′
k
→∞ hk(p

′
k). Note that firm f can, in

principle, set infinite prices on some (or all) of its products. Equation (19) implies that firm

f makes no profit on products priced at infinity—thus, it is as if firm f were withdrawing

those products from the market.12

Having set up the oligopoly model, we can now describe how the markup and market-

share fitting-in functions of firm f are derived. With arbitrary hj-functions and potentially

infinite prices, a version of the common ι-markup property still holds; formally stating it

requires additional notation. Our assumptions on hj imply the existence of a p
j
≥ 0 such

that: For every pj > p
j
, ιj(pj) > 1 and ι′j(pj) ≥ 0; whereas ιj(pj) ≤ 1 whenever pj ≤ p

j
.13

Hence, the function

νj : pj ∈
󰀓
max(p

j
, cj),∞

󰀔
󰀁→

pj − cj
pj

ιj(pj),

11This corresponds to Assumption 1 in Nocke and Schutz (2018). When Ψ is the logarithm, it is the weakest

assumption that ensures that, in the multiproduct-firm pricing game, first-order conditions are sufficient for

optimality (see Section III in the Online Appendix to Nocke and Schutz, 2018).
12From a technical viewpoint, allowing firms to set infinite prices compactifies the action sets, thus guar-

anteeing that a firm’s profit-maximization problem has a solution. With arbitrary hj-functions, it is easy to

construct examples in which firms find it optimal to withdraw some of their products in equilibrium—see

Section 3.2 in Nocke and Schutz (2018). See also Section II.3 in the Online Appendix to Nocke and Schutz

(2018) for an in-depth discussion on infinite prices.
13See Lemma A in Nocke and Schutz (2018).
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which, to every price pj, associates the ι-markup on product j, is continuous and strictly

increasing. It therefore establishes a bijection from its domain to
󰀓
νj(max(p

j
, cj)), ιj(∞)

󰀔
,

where ιj(∞) = limpj→∞ ιj(pj). Let rj denote its inverse function. We extend the domain of

rj to
󰀓
νj(max(p

j
, cj)),∞

󰀔
by setting rj(µ) = ∞ whenever µ ≥ ιj(∞).

If the vector of prices (pj)j∈f is optimal for firm f (given the prices set by its rivals),

then it satisfies the common ι-markup property. That is, there exists an ι-markup µf ∈

(1,maxk∈f ιk(∞)) such that pj = rj(µ
f ) for every j ∈ f ; moreover, µf satisfies

µf = 1 +
󰂃(H(p))

H(p)
µf

󰁛

j∈f

γj(pj),

where γj ≡ (h′
j)

2/h′′
j .

14,15

For a given H, the value of firm f ’s markup fitting-in function, mf (H), is therefore the

unique solution in µf of the following equation:16

µf = 1 +
󰂃(H)

H
µf

󰁛

j∈f

γj(rj(µ
f )). (20)

Firm f ’s market-share fitting-in function is defined as follows:

Sf (H) =
1

H

󰁛

j∈f

hj(rj(m
f (H))), (21)

where “market share” should be understood as choice probability in the discrete/continuous

choice micro-foundation. We also obtain firm f ’s profit fitting-in function:

πf (H) = HΨ
′(H)

1

H

󰁛

j∈f
pj<∞

(pj − cj)(−h′
j(pj))

= HΨ
′(H)

1

H

󰁛

j∈f
pj<∞

pj − cj
pj

pjh
′′
j (pj)

−h′
j(pj)

h′
j(pj)

2

h′′
j (pj)

=
HΨ

′(H)

󰂃(H)

󰂃(H)

H
µf

󰁛

j∈f

γj(pj)

14See Lemma XIX in the Online Appendix to Nocke and Schutz (2018).
15If product j has an infinite price, we have γj(∞) = limpj→∞ γj(pj) = 0; see Lemma A in Nocke and

Schutz (2018).
16To see why the solution exists and is unique, note that the equation can be rewritten as

µf − 1

µf
=

󰂃(H)

H

󰁛

j∈f

γj(rj(µ
f )).

As µf increases from 1 to ∞, the left-hand side increases from 0 to 1, whereas the right-hand side decreases

from something strictly positive to 0; see Lemmas A and E in Nocke and Schutz (2018).
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=
HΨ

′(H)

󰂃(H)

󰀃
mf (H)− 1

󰀄
, (22)

where we have used the common ι-markup property to obtain the third line and equation (20)

to obtain the fourth line.

The equilibrium aggregator level is then pinned down by the condition that market shares

add up to unity:17

H0

H
+
󰁛

f∈F

Sf (H) = 1.

Type aggregation: Formal definition(s) and complete characterization. Let H

be a set of smooth functions from R++ to R++ satisfying Assumption 2. We impose the

following additional requirements on H. First, H permits arbitrary quality shifters; that

is, for every h ∈ H and a > 0, we have ah ∈ H. Second, for every h ∈ H and p > 0,

d (ι[h](p)) /dp ≥ 0 whenever ι[h](p) > 1, where ι[h](p) ≡ ph′′(p)/(−h′(p)) is the curvature

of h. The first requirement seems desirable for a merger analysis, as mergers can lead to

quality improvements (or deterioration). We already discussed the second requirement.

A multiproduct-firm is a tuple ((hj)j∈f , (cj)j∈f ), where f is a finite set, and hj ∈ H

and cj ∈ R++ for every j ∈ f . Let Ω(H) be the set of all such tuples. For every ω =

((hj)j∈f , (cj)j∈f ) ∈ Ω(H), we let firm ω’s markup and market-share fitting-in functions,

m[ω](·) and S[ω](·), be as defined in equations (20) and (21). (This definition is unambiguous

since neither equation (20) nor equation (21) depends on the characteristics of the other firms

in the multiproduct-firm pricing game under consideration.)

We are now in a position to propose several formal definitions for the concept of type

aggregation. In a nutshell, the set H satisfies type aggregation if: (a) There exists a real-

valued mapping that assigns a type to each firm ω ∈ Ω(H), such that two firms that have the

same type have the same markup and market-share fitting-in functions;18 and (b) the type

mapping is economically meaningful. Note that, for our merger analysis, requirement (b)

is essential, as we need the post-merger type to provide information as to whether merger-

specific synergies are involved, and, if so, how strong those synergies are.19 We propose three

versions of requirement (b).

17Under an additional technical assumption, Nocke and Schutz (2018) show that this equation has a

unique solution and, in the firm’s profit maximization problem, first-order conditions are necessary and

sufficient for global optimality. Hence, the multiproduct-firm pricing game has a unique equilibrium. See

Assumption iii-(g), Lemmas XXI and XXIV, and Theorem III in the Online Appendix to Nocke and Schutz

(2018).
18Equation (22) implies that two such firms also have the same profit fitting-in function.
19Without requirement (b), the question of whether H satisfies type aggregation boils down to whether

Ω(H) can be indexed by the reals, i.e., whether there is an injection from Ω(H) to R. A sufficient condition

for this is that H has the cardinality of the continuum—see Appendix F.1 for details.
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In Section 3.1, we defined firm f ’s type as T f =
󰁓

j∈f hj(cj). Thus, in the discrete/continuous

choice micro-foundation, log T f corresponds to the consumer surplus (per stage-2 consumer)

that firm f would deliver if there were no other products and firm f were pricing all of its

products at marginal cost. This motivates the concept of surplus-based type aggregation:

Definition 1. The set H satisfies surplus-based type-aggregation if there exist two functions

m : R2
++ −→ (1,∞) and S : R2

++ −→ R++ such that for every ω = ((hj)j∈f , (cj)j∈f ) ∈ Ω(H),

m[ω](·) = m(·, τ(ω)) and S[ω](·) = S(·, τ(ω)), where

τ ((hj)j∈f , (cj)j∈f ) ≡
󰁛

j∈f

hj(cj). (23)

When studying the properties of fitting-in functions in Section 3.2, we found that a firm

that has a higher type systematically commands a higher market share. This motivates the

concept of monotonic type aggregation:

Definition 2. The set H satisfies monotonic type aggregation if there exist a function

τ : Ω(H) −→ R with range T and two functions m : R++×T −→ (1,∞) and S : R++×T −→

R++ such that:

(a) For every ω ∈ Ω(H), m[ω](·) = m(·, τ(ω)) and S[ω](·) = S(·, τ(ω));

(b) for every H > 0, S(H, T ) is strictly increasing in T .

Finally, observe that the type mapping defined in Section 3.1 is continuous in cost and

quality shifters. This motivates the concept of continuous type aggregation:

Definition 3. The set H satisfies continuous type aggregation if there exist a function

τ : Ω(H) −→ R with range T and two functions m : R++×T −→ (1,∞) and S : R++×T −→

R++ such that:

(a) For every ω ∈ Ω(H), m[ω](·) = m(·, τ(ω)) and S[ω](·) = S(·, τ(ω));

(b) for every n ∈ N \ {0} and (hj)1≤j≤n ∈ Hn, the mapping

(aj, cj)1≤j≤n ∈ R
2n
++ 󰀁→ τ ((ajhj)1≤j≤n, (cj)1≤j≤n)

is continuous.

The following proposition provides a complete characterization of the sets H satisfying

type aggregation:

Proposition 12. Let H be a set of functions satisfying the assumptions made at the begin-

ning of this section. The following statements are equivalent:
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(i) H satisfies surplus-based type-aggregation.

(ii) H satisfies monotonic type-aggregation.

(iii) H satisfies continuous type-aggregation.

(iv) One of the following assertions holds true:

(1) There exists σ > 1 such that for every h ∈ H, there exist a > 0 and β ≥ 0 such

that h(p) = a(p+ β)1−σ for every p > β/(σ − 1).20

(2) For every h ∈ H, there exist a ∈ R and λ > 0 such that h(p) = e
a−p

λ for every

p > λ.21

Proof. See Appendix F.2.

Thus, our three notions of type aggregation are equivalent. Moreover, the set H satisfies

type aggregation if and only if either (1) all of its elements are power functions with a

common exponent 1− σ, or (2) all of its elements are exponential functions.

The demand systems characterized in part (iv) of the proposition are slightly more general

than those considered in the previous sections in that, in case (1) the parameter β can be

strictly positive and vary across products, and in case (2) the price sensitivity parameter λ

can vary across products. However, once types have been defined using equation (23), it is

straightforward to show that a firm’s markup and market-share fitting-in functions continue

to be pinned down by equations (6) and (10) (see Appendix F.2). This implies that all the

results of the paper continue to hold with those slightly more general demand systems. Note

however that, if βj ∕= 0 for some product j (resp. λj varies across products), then market

shares can no longer be interpreted as revenue shares (resp. output shares).

We close this section by discussing the key steps of the proof of Proposition 12. Showing

that (iv) implies surplus-based, monotonic, and continuous type aggregation is straightfor-

ward. Moreover, it is clear that surplus-based type aggregation implies continuous type

aggregation, as the type mapping in Definition 1 satisfies the continuity requirement of Def-

inition 3. Similarly, we show that monotonic type aggregation also implies continuous type

aggregation. Intuitively, if H satisfies monotonic type aggregation with some type mapping

τ , then due to condition (b) in Definition 2 it also satisfies monotonic type aggregation with

20Note that, whenever β is strictly positive, the proposition does not pin down h on (0,β/(σ−1)). However,

such prices are irrelevant for the following reason. Routine calculations show that ι[h](p) = σp/(p + β) for

every p > β/(σ − 1). By continuity of ι[h](·), and since ι[h]′(p) ≥ 0 whenever ι[h](p) > 1, it follows that

ι[h](p) ≤ 1 for every p in (0,β/(σ − 1)). Thus, for any c > 0, if the firm were pricing the product at

p ∈ (0,β/(σ− 1)), then the ι-markup on the product, (p− c)/pι[h](p), would be strictly less than 1. Yet, we

see from equation (20) that a firm’s optimal choice of ι-markup necessarily exceeds unity.
21See footnote 20: Prices below λ are irrelevant, as they give rise to ι-markups that are less than 1.
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type mapping τ̂(ω) = S[ω](1); and that latter type mapping is easily shown to satisfy the

continuity requirement of Definition 3.

The proof that (iii) implies (iv) is more involved. The first step is to show that, if

H satisfies continuous type aggregation, then, for every h ∈ H, the function hh′′/(h′)2 is

constant (see Lemma 21 in the Appendix). We do so by contradiction: If this condition is

violated for some h, then we can apply the implicit-function theorem and the inverse-function

theorem to equations (20) and (21) to establish the existence of an open set B ⊆ R
2
++ such

that the mapping (a, c) ∈ B 󰀁→ τ(ah, c) ∈ R is one-to-one. However, that mapping must also

be continuous by Definition 3. Since there is no continuous injection from an open subset of

R
2 to R (see footnote 24 in the Appendix), we have a contradiction.

The next step is to show that the constant hh′′/(h′)2 is the same for all h ∈ H (see

Lemma 22 in the Appendix). The proof is again by contradiction: If h1h
′′
1/(h

′
1)

2 ∕= h2h
′′
2/(h

′
2)

2

for some h1, h2 ∈ H, then we can again apply the implicit-function theorem and the inverse-

function theorem to equations (20) and (21) to establish the existence of an open setB ⊆ R
2
++

such that the mapping (c1, c2) ∈ B 󰀁→ τ((h1, h2), (c1, c2)) ∈ R is one-to-one. Since that

mapping is also continuous, we obtain the same contradiction as in the previous paragraph.

This establishes the existence of a scalar ρ such that h(p)h′′(p)/h′(p)2 = ρ for every h ∈ H

and p. Integrating this differential equation (see Lemma 20), we obtain that H must be as

described in assertion (iv) of Proposition 12.

8 Conclusion

We have developed a framework of multiproduct-firm oligopoly that is amenable for studying

the unilateral price effects of horizontal mergers. The framework allows for arbitrary firm

and product heterogeneity and is based on the largest class of demand systems giving rise

to the type aggregation property. Through the local behavior of the curvature of indirect

utility, the GCES/GMNL class of demand systems allows prices, locally, to be strategic

complements or substitutes.

The type aggregation property proves useful for merger analysis, as it permits rich forms

of merger-induced synergies—not only through changes in the marginal costs of pre-existing

products but also through quality improvements and changes in the set of products. We have

derived results on the static and dynamic consumer surplus effects of mergers, the aggregate

surplus and external effects of mergers, and on the relationship between the market power ef-

fect of a merger and the merger-induced change in the Herfindahl index. Importantly, several

results hinge critically on whether prices are (local) strategic complements or substitutes.

For instance, a competition authority with a consumer surplus standard should, surprisingly,

require larger synergies for approving a merger in a more competitive industry—if prices are
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strategic substitutes. This highlights the value of a general framework that flexibly allows

for different types of strategic interaction.
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Appendix

A Technical Results on Fitting-in Functions

In this section, we derives formulas for the partial derivatives of fitting-in functions, prove

Lemma 2, and derive two additional intermediate results.

Totally differentiating equations (6) and (10) yields (firm superscript dropped to ease

notation):

d log µ = αµ [󰂃′(H)sdH + 󰂃(H)ds] = αµ󰂃s

󰀕
󰂃′

󰂃
dH +

ds

s

󰀖
= (µ− 1)

󰀕
󰂃′

󰂃
dH + d log s

󰀖

and

d log s = d log(T/H) +
µυ′(µ)

υ(µ)
d log µ = d log(T/H)−

αµ

1− (1− α)µ
d log µ.

Rewriting this in matrix form as

󰀣
1 −(µ− 1)
αµ

1−(1−α)µ
1

󰀤󰀣
d log µ

d log s

󰀤
=

󰀣
(µ− 1)(1− ζ(H))d logH

d log(T/H)

󰀤
,

and applying Cramer’s formula yields:

󰀣
d log µ

d log s

󰀤
=

1

1 + αµ(µ−1)
1−(1−α)µ

󰀣
1 (µ− 1)

− αµ
1−(1−α)µ

1

󰀤󰀣
(µ− 1)(1− ζ(H))d logH

d log(T/H)

󰀤

=
1

1 + αµ(µ−1)
1−(1−α)µ

󰀣
(µ− 1) [−ζ(H)d logH + d log T ]

−
󰁫

αµ(µ−1)
1−(1−α)µ

(1− ζ(H)) + 1
󰁬
d logH + d log T

󰀤
.

We have thus obtained the partial derivatives of the markup and market-share fitting-in

functions:

∂ logm

∂ logH
= −ζ

m− 1

1 + αm(m−1)
1−(1−α)m

, (24)

∂ logm

∂ log T
=

m− 1

1 + αm(m−1)
1−(1−α)m

, (25)

∂ log S

∂ logH
= −1 +

αm(m−1)
1−(1−α)m

1 + αm(m−1)
1−(1−α)m

ζ, (26)

∂ log S

∂ log T
=

1

1 + αm(m−1)
1−(1−α)m

. (27)

For our comparative statics on aggregate surplus, our analysis of the external effects of

mergers, and our results on the Herfindahl index as a measure of the market-power effect of
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mergers, it is also useful to express the partial derivatives of S as a function of S (instead of

m). Plugging equation (6) into equations (26) and (27) yields:

∂ log S

∂ logH
= −1 +

αS

1− 󰂃S + α(󰂃S)2
󰂃ζ, (28)

∂ log S

∂ log T
=

(1− 󰂃S)(1− α󰂃S)

1− 󰂃S + α(󰂃S)2
. (29)

We can now prove Lemma 2:

Proof. The results for the partial derivatives of S and m and for ∂π/∂T follow readily from

equations (24)–(27) and (11). (Recall that ζ ≤ 1.)

Next, suppose that S(H, T ) < 1, and consider the partial derivative ∂π/∂H. Consider

a small open interval I containing H and such that S(H ′, T ) < 1 for every H ′ ∈ I. (The

continuity of S imply that I exists.) For every H ′ ∈ I, let 󰁥H(H ′) ≡ H ′ −H ′S(H ′, T ) > 0,

and note that 󰁥H has a strictly positive derivative. Consider the maximization problem

max
µ

αµTυ(µ)Ψ′
󰁫
󰁥H(H ′) + Tυ(µ)

󰁬
.

The objective function corresponds to the profit of a firm with type T when it sets an ι-

markup of µ and its rivals contribute 󰁥H(H ′) to the industry aggregator (see equations (7)

and (10)). The analysis in the Online Appendix to Nocke and Schutz (2018) implies that,

for every H ′ ∈ I, this maximization problem has a unique solution, µ = m(H ′, T ), and the

maximized value of the objective function is π(H ′, T ). It follows that

∂π(H ′, T )

∂H ′

󰀏󰀏󰀏󰀏
H′=H

=
∂

∂H ′

󰀕
max

µ
αµTυ(µ)Ψ′

󰁫
󰁥H(H ′) + Tυ(µ)

󰁬󰀖󰀏󰀏󰀏󰀏
H′=H

= αTm(H, T )υ(m(H, T )) 󰁥H ′(H)Ψ′′
󰁫
󰁥H(H) + Tυ(µ)

󰁬
< 0,

where we have used the envelope theorem.

The following technical lemmas will be useful when studying the consumer-surplus effects

of mergers:

Lemma 3. For every H, limT→0 S(H, T ) = 0 and limT→∞ S(H, T ) ≥ 1. Moreover, S(H, ·)

is strictly concave and thus strictly sub-additive.

Proof. The result that limT→0 S(H, T ) = 0 follows immediately as

S(H, T ) ≤
T

H
υ(1) −→

T→0
0.

(See equation (10).) Assume for a contradiction that l ≡ limT→∞ S(H, T ), which exists by

monotonicity, is strictly less than 1. Taking limits in equation (6), this implies that

lim
T→∞

m(H, T ) =
1

1− α󰂃(∞)l
<

1

1− α
.
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Using this to take limits in equation (10), we obtain the following contradiction:

lim
T→∞

S(H, T ) = lim
T→∞

T

H󰁿 󰁾󰁽 󰂀
=∞

lim
T→∞

υ(m(H, T ))
󰁿 󰁾󰁽 󰂀

>0

= ∞.

Next, we prove the strict concavity of S(H, ·). Using equation (27), we have that

∂S

∂T
=

S

T

1

1 + αm(m−1)
1−(1−α)m

=
1

H

υ(m)

1 + αm(m−1)
1−(1−α)m

,

where we have used equation (10) to obtain the second equality. As the right-hand side is

strictly decreasing in m (holding H fixed) and m is strictly increasing in T (see Lemma 1),

it follows that ∂S/∂T is strictly decreasing in T . Hence, S(H, ·) is strictly concave; since

S(T, 0) = 0, it is also strictly sub-additive.

Lemma 4. The partial derivative ∂2 log S/∂H∂T has the same sign as ζ(H).

Proof. This follows immediately from equation (26):

∂2 log S

∂H∂T
=

ζ(H)

H

∂

∂T

1

1 + 1−(1−α)m
αm(m−1)󰁿 󰁾󰁽 󰂀

>0

.

B Proof of Proposition 3

For every T f > 0, let H∗(T f ) (resp. W ∗(T f )) be the equilibrium aggregator level (resp.

aggregate surplus) when firm f ’s type is T f . (Since the other firms’ types are held constant,

we do not include them as arguments.) We have:

Lemma 5. The derivative W ∗′(T f ) has the same sign as

Γ̃ ≡ 1 +
α

(1− α󰂃sf )2

󰀥
1−

󰁛

g

sg

󰀦
+
󰁛

g

󰀥
αsg

1− α󰂃sg
(1− 󰂃) +

󰀕
αsg

1− α󰂃sg

󰀖2

(1− ζ)󰂃

−αsg
󰀕
1−

αsg

1− 󰂃sg + α(󰂃sg)2
󰂃ζ

󰀖󰀕
1

(1− α󰂃sg)2
−

1

(1− α󰂃sf )2

󰀖󰀘
,

where (sg)g∈F is the equilibrium market share vector and 󰂃 and ζ are evaluated at H∗(T f ).

Proof. We will prove the result by showing that W ∗′(T f ) is the product of Γ̃ and a strictly

positive term. Define

W (H, T f ) ≡ Ψ(H) +
󰁛

g∈F

π̃(H, T g)HΨ
′(H),
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and note that W ∗(T f ) = W (H∗(T f ), T f ). The object of interest is therefore

W ∗′(T f ) =
∂W

∂T f
+

d logH∗

dT f

∂W

∂ logH
. (30)

We thus require expressions for each of the three terms on the right-hand side of equa-

tion (30).

Clearly,

∂W

∂T f
=

∂π̃(H, T f )

∂T f
HΨ

′(H) =
∂S(H, T f )

∂T f

α

(1− α󰂃sf )2
HΨ

′(H). (31)

Totally differentiating equilibrium condition (13) yields:

d logH∗

dT f
=

∂S(H,T f )
∂T f

H0

H
−

󰁓
g

∂S(H,T g)
∂ logH

=
∂S(H,T f )

∂T f

1−
󰁓

g s
g −

󰁓
g s

g ∂ logS(H,T g)
∂ logH

. (32)

Moreover, as, for every g,

∂π̃(H, T g)HΨ
′(H)

∂ logH
= HΨ

′(H)

󰀗
π̃g(1− 󰂃) +H󰂃′(π̃g)2 +

∂S(H, T g)

∂ logH

α

(1− α󰂃sg)2

󰀘

= HΨ
′(H)

󰀗
π̃g(1− 󰂃) + 󰂃(1− ζ)(π̃g)2 +

∂ log S(H, T g)

∂ logH

(π̃g)2

αsg

󰀘
,

we have that

∂W

∂ logH
= HΨ

′(H)

󰀣
1 +

󰁛

g

󰀗
π̃g(1− 󰂃) + (π̃g)2󰂃(1− ζ) +

(π̃g)2

αsg
∂ log S(H, T g)

∂ logH

󰀘󰀤
. (33)

Plugging equations (31)–(33) into equation (30), we obtain:

W ∗′(T f ) = HΨ
′(H)

d logH∗

dT f

󰀣
1 +

󰁛

g

󰀗
π̃g(1− 󰂃) + (π̃g)2󰂃(1− ζ) +

(π̃g)2

αsg
∂ log S(H, T g)

∂ logH

󰀘

+
α

(1− α󰂃sf )2

󰀥
1−

󰁛

g

sg −
󰁛

g

sg
∂ log S(H, T g)

∂ logH

󰀦󰀤

= HΨ
′(H)

d logH∗

dT f

󰀣
1 +

α

(1− α󰂃sf )2

󰀥
1−

󰁛

g

sg

󰀦
+
󰁛

g

󰀅
π̃g(1− 󰂃) + (π̃g)2󰂃(1− ζ)

+αsg
∂ log S(H, T g)

∂ logH

󰀕
1

(1− α󰂃sg)2
−

1

(1− α󰂃sf )2

󰀖󰀘󰀖
.

Using equation (28), we see that the term inside parentheses is indeed equal to Γ̃, as defined

in the statement of the lemma.
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To prove the proposition, we show that, if the assumptions of Proposition 3 are satisfied,

then Γ̃ is strictly positive for any vector (sg) such that sg ∈ [0, 1] for every g and
󰁓

g s
g ≤ 1.

Note that Γ̃ > Γ, where

Γ ≡ 1 +
󰁛

g

󰀥
αsg

1− α󰂃sg
(1− 󰂃) +

󰀕
αsg

1− α󰂃sg

󰀖2

(1− ζ)󰂃

−αsg
󰀕
1−

αsg

1− 󰂃sg + α(󰂃sg)2
󰂃ζ

󰀖󰀕
1

(1− α󰂃sg)2
− 1

󰀖󰀘
.

It is thus enough to show that, under the assumptions of Proposition 3, Γ is non-negative.

Let us rewrite Γ as an affine function of (1− ζ):

Γ = κ+ (1− ζ)󰂃τ,

where

κ ≡ 1 +
󰁛

g

󰀗
αsg

1− α󰂃sg
(1− 󰂃)− αsg

󰀕
1−

α󰂃sg

1− 󰂃sg + α(󰂃sg)2

󰀖󰀕
1

(1− α󰂃sg)2
− 1

󰀖󰀘

and

τ ≡
󰁛

g

(αsg)2
󰀗

1

(1− 󰂃αsg)2
−

1

1− 󰂃sg + α(󰂃sg)2

󰀕
1

(1− 󰂃αsg)2
− 1

󰀖󰀘

=
󰁛

g

(αsg)2 (1− (1 + α)󰂃sg)

(1− α󰂃sg)(1− 󰂃sg + α(󰂃sg)2)
. (34)

Let us show that κ is strictly positive:

Lemma 6. For every α ∈ (0, 1], 󰂃 ∈ (0, 1], and for every vector of market shares (sg), κ is

strictly greater than 1− α.

Proof. Note that

κ > 1 + α
󰁛

g

󰀗
sg(1− 󰂃)− sg

󰀕
1−

α󰂃sg

1− 󰂃sg + α(󰂃sg)2

󰀖󰀕
1

(1− α󰂃sg)2
− 1

󰀖󰀘

󰁿 󰁾󰁽 󰂀
≡φ(sg ,󰂃,α)

.

It is thus enough to show that, for every α, 󰂃, and (sg),
󰁓

g φ(s
g, 󰂃,α) ≥ −1. Routine

calculations show that φ is decreasing in α. Hence, it is enough to prove the inequality for

α = 1. Let φ(s, 󰂃) ≡ φ(s, 󰂃, 1). Routine calculations show that, if 󰂃 ≤ 1/2, then φ(·, 󰂃) is

strictly concave on (0, 1); if instead 󰂃 > 1/2, then φ(·, 󰂃) is strictly concave on (0, 1/(2󰂃)).

Suppose first that 󰂃 ≤ 1/2. Since φ(0, 󰂃) = 0 and φ(·, 󰂃) is concave, φ(·, 󰂃) is sub-additive.

Thus,
󰁛

g

φ(sg, 󰂃) ≥ φ

󰀣
󰁛

g

sg, 󰂃

󰀤
≥ min{φ(0, 󰂃),φ(1, 󰂃)},
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where the second inequality follows by the concavity of φ(·, 󰂃). Clearly, φ(0, 󰂃) = 0, whereas

φ(1, 󰂃) =
1− 4󰂃+ 3󰂃2 − 󰂃3

1− 󰂃+ 󰂃2
,

which is easily shown to be greater than −1 for every 󰂃 ∈ (0, 1].

Suppose next that 󰂃 > 1/2, and let (sg) be a vector of market shares. If s̄ ≡
󰁓

g s
g ≤

1/(2󰂃), then the above sub-additivity and concavity arguments immediately imply that󰁓
g φ(s

g, 󰂃) ≥ −1. Suppose instead that s̄ > 1/(2󰂃), and assume without loss of gener-

ality that the profile of market shares s = (sg)1≤g≤N is sorted in increasing order. We argue

that there exists (s1, s2) ∈ [0, 1]2 such that s1 + s2 = s̄, s2 ≥ 1/(2󰂃), and

󰁛

g

φ(sg, 󰂃) ≥ φ(s1, 󰂃) + φ(s2, 󰂃). (35)

To this end, let us define the function ξ, which takes as argument a strictly positive vector

of market shares s′ = (s′1, . . . , s
′
k) (with k ≥ 2) adding up to s̄ and sorted in increasing order.

The function ξ is defined as follows:

• If s′2 ≥ 1/(2󰂃), then ξ(s′) = s′.

• If s′2 < 1/(2󰂃), then do the following:

– If s′1+s′2 ≤ 1/(2󰂃), then form the (k−1)-dimensional vector with first component

s′1 + s′2 and remaining components (s′i)3≤i≤k, and sort it in increasing order to

obtain ξ(s′).

– If instead s′1 + s′2 > 1/(2󰂃), then form the k-dimensional vector with first com-

ponent s′1 + s′2 − 1/(2󰂃), second component 1/(2󰂃), and remaining components

(s′i)3≤i≤k, and sort it in increasing order to obtain ξ(s′).

Clearly, ξ(s′) is a strictly positive vector of market shares adding up to s̄ and sorted in

increasing order. Moreover, the concavity and sub-additivity properties of φ imply that

󰁛

s′

φ(·, 󰂃) ≥
󰁛

ξ(s′)

φ(·, 󰂃),

where, for every market-share vector ŝ = (ŝi)1≤i≤k,

󰁛

ŝ

φ(·, 󰂃) ≡
k󰁛

i=1

φ(ŝi, 󰂃).

Define the sequence (s(n))n≥0 by induction as follows: s(0) = s; for every n ≥ 1, s(n) =

ξ(s(n−1)). The properties of ξ imply that, for every n,
󰁓

s φ(·, 󰂃) ≥
󰁓

s(n) φ(·, 󰂃). For every n,
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let Jn be the dimensionality of vector s(n) and Kn the number of components of vector s(n)

that are strictly less than 1/(2󰂃). By construction, (Jn)n≥0 and (Kn)n≥0 are non-increasing

sequences of integers. Hence, they are eventually stationary: There exists N ≥ 0 such

that JN+1 = JN and KN+1 = KN . The definition of ξ implies that ξ(s(N)) = s(N) and

s
(N)
2 ≥ 1/(2󰂃). Thus, condition (35) holds with (s1, s2) = (s

(N)
1 , s

(N)
2 ).

Routine calculations show that φ(·, 󰂃) is decreasing on (1/(2󰂃), 1). It follows that
󰁛

g

φ(sg, 󰂃) ≥ φ(s1, 󰂃) + φ(1− s1, 󰂃).

Thus, all we need to do is show that φ(s, 󰂃) + φ(1 − s, 󰂃) ≥ −1 for every s and 󰂃. Straight-

forward but tedious calculations show that this condition holds.

We are now in a position to prove Proposition 3:

Lemma 7. Under the assumptions of Proposition 3, Γ is non-negative for every vector of

market shares (sg).

Proof. If condition (i) of Proposition 3 holds, then Γ = κ, which is positive by Lemma 6.

If condition (ii) of Proposition 3 holds, then τ is strictly positive for every vector of market

shares (see equation (34)). Since 1− ζ ≥ 0 and κ > 0, this implies that Γ > 0.

Finally, suppose that condition (iii) of Proposition 3 holds. We have just shown that Γ

is positive when ζ = 1 (for any 󰂃, α, and (sg)). Since Γ is linear in ζ, all we need to do is

show that Γ is also positive when ζ = 0. At ζ = 0, we find after some algebra that

Γ = 1 +
󰁛

g

αsg(1− 󰂃− α󰂃sg)

1− α󰂃sg󰁿 󰁾󰁽 󰂀
≡φ(s,󰂃,α)

.

Routine calculations show that φ(·, 󰂃,α) is concave and φ(0, 󰂃,α) = 0. Hence, φ(·, 󰂃,α) is

sub-additive. It follows that Γ ≥ 1 + φ(s̄, 󰂃,α), where s̄ =
󰁓

g s
g. By concavity, φ(s̄, 󰂃,α) is

minimized at either s̄ = 0 (in which case φ(s̄, 󰂃,α) = 0) or s̄ = 1, in which case

1 + φ(s̄, 󰂃,α) =
1 + α− 2α󰂃− α2󰂃

1− α󰂃
,

which is indeed non-negative given condition (iii).

C External Effects: Derivations and Proofs

We begin by deriving the formula for η(H) stated in the main text (equation (15)). Using

equation (33) (and replacing F by O), we have:

η(H) = − 1−
󰁛

g∈O

󰀗
π̃g(1− 󰂃) + (π̃g)2󰂃(1− ζ) +

(π̃g)2

αsg
∂ log S(H, T g)

∂ logH

󰀘
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= − 1−
󰁛

g∈O

󰀗
π̃g(1− 󰂃) + (π̃g)2󰂃(1− ζ) +

(π̃g)2

αsg

󰀕
−1 +

αsg

1− 󰂃sg + α(󰂃sg)2
󰂃ζ

󰀖󰀘

= − 1−
󰁛

g∈O

󰀗
π̃g(1− 󰂃)−

(π̃g)2

αsg
(1− α󰂃sg)(1− 󰂃sg)

1− 󰂃sg + α(󰂃sg)2
− 󰂃(1− ζ)(π̃g)2

󰂃sg(1− α󰂃sg)

1− 󰂃sg + α(󰂃sg)2

󰀘
.

Using the definition of π̃g and simplifying, we obtain equation (15).

We now put on record the following facts on the functions φ and χ, which appear in

equation (15):

Lemma 8. The function φ has the following properties:

(a) For every (α, 󰂃) ∈ (0, 1]2, φ(0, 󰂃,α) = 0, and φ(s, 󰂃,α) > 0 for every s > 0.

(b) There exist a cutoff 󰂃 ≃ 0.81 and a strictly decreasing function ᾱ : [󰂃, 1] −→ [α, 1] such

that the following assertions are equivalent:

(i) For every s ∈ (0, 1), φ(s, 󰂃,α) ≤ s.

(ii) Either 󰂃 ≤ 󰂃, or 󰂃 > 󰂃 and α ≤ ᾱ(󰂃).

Moreover, ᾱ(󰂃) = 1 and α = ᾱ(1) ≃ 0.82.

(c) For any (α, 󰂃) ∈ (0, 1]2, φ(·, 󰂃,α) is strictly increasing on [0, 3/5].

(d) For any (α, 󰂃) ∈ (0, 1]2, φ(·, 󰂃,α) is strictly convex on [0, 1/5].

Moreover,

(e) For every (α, 󰂃) ∈ (0, 1]2, χ(·, 󰂃,α) is strictly positive, strictly increasing, and strictly

convex on (0, 1).

Proof. The lemma is proven analytically using Mathematica. Mathematica files are available

upon request.

Armed with Lemma 8, we can prove Proposition 8:

Proof. Suppose first that condition (i) holds and merger M ′ has a positive external effect.

Then, there exists an injection ϑ : O′ −→ O such that sϑ(f) ≥ s′f for every f ∈ O′. Hence,

0 < −1 +
󰁛

f∈O′

φ(s′f , 󰂃(H ′),α) + (1− ζ(H ′))
󰁛

f∈O′

χ(s′f , 󰂃(H ′),α)

≤ −1 +
󰁛

f∈O′

φ(sϑ(f), 󰂃(H),α) + (1− ζ(H))
󰁛

f∈O′

χ(sϑ(f), 󰂃(H),α)

≤ −1 +
󰁛

f∈O

φ(sf , 󰂃(H),α) + (1− ζ(H))
󰁛

f∈O

χ(sf , 󰂃(H),α),
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where the second inequality follows by parts (c) and (e) of Lemma 8, and the third inequality

follows by injectivity of ϑ and parts (a) and (e) of Lemma 8. Hence, merger M also has a

positive external effect.

Next, suppose that condition (ii) holds and merger M ′ has a positive external effect.

Then,

0 < −1 +
󰁛

f∈O′

φ(s′f , 󰂃(H ′),α) + (1− ζ(H ′))
󰁛

f∈O′

χ(s′f , 󰂃(H ′),α)

≤ −1 +
󰁛

f∈O

φ(sf , 󰂃(H),α) + (1− ζ(H))
󰁛

f∈O

χ(sf , 󰂃(H),α),

where the second inequality follows as s is a mean-preserving spread of s′ and φ(·, 󰂃(H),α)

and χ(·, 󰂃(H),α) are convex on [0, 1/5] by parts (d) and (e) of Lemma 8. Hence, merger M

also has a positive external effect.

Finally, we prove Proposition 9:

Proof. Consider a CS-decreasing merger M with set of outsiders O and pre- and post-merger

equilibrium aggregator levels H∗ and H
∗
, respectively.

We begin by stating a weaker version of condition (i) in the proposition: Ψ is the logarithm

or a power function; and either 󰂃 ≤ 󰂃, or 󰂃 > 󰂃 and α ≤ ᾱ(󰂃) (where 󰂃 and ᾱ were defined

in Lemma 8). Note that this is indeed weaker than condition (i) since 󰂃 and ᾱ(1) = α are

both greater than 0.8 and the function ᾱ(·) is decreasing. Suppose indeed that this weaker

condition holds. For every H ∈ [H
∗
, H∗], we have

η(H) = −1 +
󰁛

f∈O

φ
󰀃
S(H, T f ), 󰂃(H),α

󰀄
since ζ = 1

≤ −1 +
󰁛

f∈O

S(H, T f ) by part (b) of Lemma 8

≤ −1 +
󰁛

f∈O

S(H
∗
, T f ) by monotonicity of S(·, T f ).

Since the outsiders’ market shares add up to less than 1 in the post-merger equilibrium, it

follows that η(H) < 0 for every H ∈ [H
∗
, H∗], and so ∆E < 0.

Next, suppose that condition (ii) holds. Let H ∈ [H
∗
, H∗] and sf ≡ S(H, T f ) for every

f ∈ O. For every outsider f , define also s̃f ≡ S(H
∗
, T f ), and note that s̃f ≥ sf since S(·, T f )

is decreasing. As ζ and χ are non-negative, we have that

η(H) ≤ −1 +
󰁛

f∈O

󰀅
φ(sf , 󰂃(H),α) + χ(sf , 󰂃(H),α)

󰀆

= −1 +
󰁛

f∈O

α󰂃(H)sf

1− α󰂃(H)sf
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≤ −1 +
󰁛

f∈O

α󰂃(H)s̃f

1− α󰂃(H)s̃f
since s̃f ≥ sf

≤ −1 +
α󰂃(H)

󰁓
f∈O s̃f

1− α󰂃(H)
󰁓

f∈O s̃f
by super-additivity of s 󰀁→

α󰂃(H)s

1− α󰂃(H)s

< −1 +
α󰂃(H)

1− α󰂃(H)
since

󰁛

f∈O

s̃f < 1

≤ 0 since α󰂃(H) ≤
1

2
.

Hence, η(H) < 0 for every H ∈ [H
∗
, H∗], and so ∆E < 0.

D Proof of Proposition 10

We prove a series of lemmas that jointly imply Proposition 10. Throughout this section,

Σ(s) ≡
󰁓

f∈F sf denotes the aggregate market share of all firms.

We begin by obtaining second-order approximations of pre-merger market-performance

measures:

Lemma 9. At the second order in the neighborhood of s = 0,

H∗(s) = H0
󰀃
1 + Σ(s) + Σ(s)2

󰀄
+ o(󰀂s󰀂2),

CS(s) = Ψ(H0) +H0
Ψ

′(H0)

󰀕
Σ(s) +

󰀗
1−

󰂃(H0)

2

󰀘
Σ(s)2

󰀖
+ o(󰀂s󰀂2),

and PS(s) = H0
Ψ

′(H0)

󰀣
αΣ(s) + α(1− 󰂃(H0))Σ(s)2 + α2󰂃(H0)

󰁛

f∈F

(sf )2

󰀤
+ o(󰀂s󰀂2).

Proof. To ease notation, let s̃ ≡ Σ(s). We have:

H∗(s) =
H0

1− s̃
= H0(1 + s̃+ s̃2) + o(s̃2) = H0(1 + s̃+ s̃2) + o(󰀂s󰀂2).

Since

Ψ(H0(1 + x)) = Ψ(H0) +Ψ
′(H0)H0x+

1

2
Ψ

′′(H0)(H0x)2 + o(x2)

= Ψ(H0) +H0
Ψ

′(H0)

󰀕
x−

󰂃(H0)

2
x2

󰀖
+ o(x2), (36)

it follows that

CS(s) = Ψ(H∗(s)) = Ψ(H0) +H0
Ψ

′(H0)

󰀕
s̃+ s̃2 −

󰂃(H0)

2
s̃2
󰀖
+ o(󰀂s󰀂2),
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as stated.

Next, we turn to profits. Clearly,

αsf

1− α󰂃(H∗(s))sf
= αsf

󰀅
1 + α󰂃(H0)sf

󰀆
+ o(󰀂s󰀂2).

Moreover, since

H∗(s)Ψ′(H∗(s)) = H0 (1 + s̃)
󰀅
Ψ

′(H0) +H0
Ψ

′′(H0)s̃
󰀆
+ o(󰀂s󰀂)

= H0
Ψ

′(H0)
󰀅
1 + (1− 󰂃(H0))s̃

󰀆
+ o(󰀂s󰀂),

we have that

PS(s) =
󰁛

f∈F

αsf
󰀅
1 + α󰂃(H0)sf

󰀆
H0

Ψ
′(H0)

󰀅
1 + (1− 󰂃(H0))s̃

󰀆
+ o(󰀂s󰀂2)

= H0
Ψ

′(H0)

󰀥
αs̃+ α(1− 󰂃(H0))s̃2 + α2󰂃(H0)

󰁛

f∈F

(sf )2

󰀦
+ o(󰀂s󰀂2).

Next, we compute the first and second partial derivatives of T f (s):

Lemma 10. The first and second partial derivatives of T f (s) at s = 0 are given by

∂T f

∂sf ′

󰀏󰀏󰀏󰀏
s=0

=

󰀻
󰀿
󰀽

H0

υ(1)
if f = f ′,

0 otherwise,

and

∂2T f

∂sf ′sf ′′

󰀏󰀏󰀏󰀏
s=0

=

󰀻
󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰀽

2 H0

υ(1)
[1 + α󰂃(H0)] if f = f ′ = f ′′,

0 if f ′, f ′′ ∕= f,

H0

υ(1)
otherwise.

Proof. Totally differentiating equation (18) yields:

dsf =
H0

󰀓
1−

󰁓
f s

g
󰀔2

∂S(H∗, T f )

∂H

󰁛

g

dsg +
∂S(H∗, T f )

∂T f
dT f

=
H∗

H0
sf

∂ log S(H∗, T f )

∂ logH∗

󰁛

g

dsg +
sf

T f

∂ log S(H∗, T f )

∂ log T f
dT f .

Hence,

∂T f

∂sf
=

1− H∗

H0 s
f ∂ logS(H∗,T f )

∂ logH∗

sf

T f

∂ logS(H∗,T f )
∂ log T f
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=
1 + H∗

H0 s
f
󰁫
1− αsf

1−󰂃sf+α(󰂃sf )2
󰂃ζ
󰁬

sf

T f

(1−󰂃sf )(1−α󰂃sf )
1−󰂃sf+α(󰂃sf )2

using equations (28) and (29)

=
T f

sf
1− 󰂃sf + α(󰂃sf )2

(1− 󰂃sf )(1− α󰂃sf )

󰀕
1 + sf

H∗

H0

󰀗
1−

αsf

1− 󰂃sf + α(󰂃sf )2
󰂃ζ

󰀘󰀖
, (37)

and, for f ′ ∕= f ,

∂T f

∂sf ′
=

H∗

H0 s
f
󰁫
1− αsf

1−󰂃sf+α(󰂃sf )2
󰂃ζ
󰁬

sf

T f

(1−󰂃sf )(1−α󰂃sf )
1−󰂃sf+α(󰂃sf )2

= T f H
∗

H0

1− 󰂃sf + α(󰂃sf )2

(1− 󰂃sf )(1− α󰂃sf )

󰀗
1−

αsf

1− 󰂃sf + α(󰂃sf )2
󰂃ζ

󰀘
. (38)

Taking limits in equation (37) and using the fact that

T f

sf
=

H∗(s)

υ(m(H∗(s), T f (s)))
−→
s→0

H0

υ(1)

yields
∂T f

∂sf

󰀏󰀏󰀏󰀏
s=0

=
H0

υ(1)
.

Taking limits in equation (38) gives

∂T f

∂sf ′

󰀏󰀏󰀏󰀏
s=0

= 0.

Next, we turn to the second partial derivatives of T f . Differentiating equation (37) at

s = 0 yields:22

∂2T f

∂(sf )2

󰀏󰀏󰀏󰀏
s=0

=
∂ T f

sf

∂sf

󰀏󰀏󰀏󰀏󰀏
s=0

× 1 +

󰀗
lim
s→0

T f

sf

󰀘
α󰂃(H0)× 1 +

󰀗
lim
s→0

T f

sf

󰀘
× 1

=
H0

υ(1)
[1 + α󰂃] + lim

s→0

1

sf

󰀕
∂T f

∂sf
−

T f

sf

󰀖

=
H0

υ(1)
[1 + α󰂃] + lim

s→0

1

sf
T f

sf

󰀕
1− 󰂃sf + α(󰂃sf )2

(1− 󰂃sf )(1− α󰂃sf )

×

󰀕
1 + sf

H∗

H0

󰀗
1−

αsf

1− 󰂃sf + α(󰂃sf )2
󰂃ζ

󰀘󰀖
− 1

󰀖
using equation (37)

=
H0

υ(1)
[1 + α󰂃] + lim

s→0

1

sf
T f

sf

󰀕
α󰂃sf

(1− 󰂃sf )(1− α󰂃sf )

22There is no need to differentiate the second fraction on the right-hand side with respect to 󰂃 because

that derivative is equal to sf (which tends to zero) times a finite number. Likewise, there is no need to

differentiate the term inside square brackets because that term is pre-multiplied by sf , which tends to zero.
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+sf
1− 󰂃sf + α(󰂃sf )2

(1− 󰂃sf )(1− α󰂃sf )

H∗

H0

󰀗
1−

αsf

1− 󰂃sf + α(󰂃sf )2
󰂃ζ

󰀘󰀖

= 2
H0

υ(1)
[1 + α󰂃] .

Differentiating equation (37) with respect to sf
′

(f ′ ∕= f) yields:

∂2T f

∂sfsf ′

󰀏󰀏󰀏󰀏
s=0

=

󰀕
lim
s→0

1

sf
∂T f

∂sf ′

󰀖
× 1 = lim

s→0

T f

sf
=

H0

υ(1)
,

where we have used equation (38) to obtain the second equality. Finally, differentiating

equation (38) with respect to sf
′′

(f ′, f ′′ ∕= f) yields:

∂2T f

∂sf ′sf ′′

󰀏󰀏󰀏󰀏
s=0

=
∂T f

∂sf ′′

󰀏󰀏󰀏󰀏
s=0

= 0.

We are now in a position to approximate the post-merger level of the aggregator:

Lemma 11. At the second order in the neighborhood of s = 0,

H
∗
(s) = H0

󰀅
1 + Σ(s) + Σ(s)2 − α󰂃(H0)∆HHI(s)

󰀆
+ o(󰀂s󰀂2).

Proof. The post-merger equilibrium aggregator level H
∗
(s) is pinned down by the following

condition:
H0

H
∗
(s)

+
󰁛

g∈F

S
󰀓
H

∗
(s), T̄ g(s)

󰀔
= 1. (39)

Differentiating this with respect to sf yields
󰀵
󰀷−H0

H
∗ +

󰁛

g∈F

s̄g
∂ log S(H

∗
, T̄ g)

∂ logH

󰀶
󰀸 ∂ logH

∗

∂sf
+

󰀵
󰀷󰁛

g∈F

∂T̄ g

∂sf
s̄g

T̄ g

∂ log S(H
∗
, T̄ g)

∂ log T g

󰀶
󰀸 = 0.

Using equation (39) to eliminate H0 yields:
󰀵
󰀷−1 +

󰁛

g∈F

s̄g

󰀣
1 +

∂ log S(H
∗
, T̄ g)

∂ logH

󰀤󰀶
󰀸 ∂ logH

∗

∂sf
+

󰀵
󰀷󰁛

g∈F

∂T̄ g

∂sf
s̄g

T̄ g

∂ log S(H
∗
, T̄ g)

∂ log T g

󰀶
󰀸 = 0.

Combining this with equations (28) and (29), we obtain:

∂H
∗

∂sf
= H

∗

󰁓
g∈F

s̄g

T̄ g

(1−󰂃(H
∗
)s̄g)(1−α󰂃(H

∗
)s̄g)

1−󰂃(H
∗
)s̄g+α(󰂃(H

∗
)s̄g)2

∂T̄ g

∂sf

1− ζ(H
∗
)
󰁓

g∈F
α󰂃(H

∗
)(s̄g)2

1−󰂃(H
∗
)s̄g+α(󰂃(H

∗
)s̄g)2

. (40)

The denominator clearly tends to 1 as s tends to 0. Moreover, by Lemma 10, as s tends

to zero each term indexed by g in the numerator tends to 0 if either f /∈ M and g ∕= f or

f ∈ M and g ∕= M ; otherwise, that term tends to

lim
s→0

s̄g

T̄ g

∂T̄ g

∂sf
= lim

s→0

υ(m(H
∗
, T̄ g))

H
∗

∂T̄ g

∂sf
= 1.
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It follows that
∂H

∗

∂sf

󰀏󰀏󰀏󰀏󰀏
s=0

= H0.

Next, we differentiate equation (40) with respect to sf
′

(where f ′ may or may not be equal

to f) and take the limit as s tends to zero. Note that the derivative of the denominator

tends to zero, so we can ignore that term. Moreover, when differentiating the numerator, we

can ignore the terms coming from the derivative of 󰂃 as all those terms will be pre-multiplied

by s̄g, which tends to zero. We have:

∂2H
∗

∂sf∂sf ′

󰀏󰀏󰀏󰀏󰀏
s=0

= H0 +H0
󰁛

g∈F

󰀗
∂s̄g/T̄ g

∂sf ′

󰀏󰀏󰀏󰀏
s=0

∂T̄ g

∂sf

󰀏󰀏󰀏󰀏
s=0

−
υ(1)

H0
α󰂃(H0)

∂s̄g

∂sf ′

󰀏󰀏󰀏󰀏
s=0

∂T̄ g

∂sf

󰀏󰀏󰀏󰀏
s=0

+
υ(1)

H0

∂2T̄ g

∂sf∂sf ′

󰀏󰀏󰀏󰀏
s=0

󰀘
(41)

Thus, we require ∂s̄g

∂sf
′

󰀏󰀏󰀏
s=0

and ∂s̄g/T̄ g

∂sf
′

󰀏󰀏󰀏
s=0

. Since s̄g = S(H
∗
, T̄ g), we have:

∂s̄g

∂sf ′
=

∂H
∗

∂sf ′

s̄g

H
∗

∂ log S(H
∗
, T̄ g)

∂ logH
+

∂T̄ g

∂sf ′

s̄g

T̄ g

∂ log S(H
∗
, T̄ g)

∂ log T g
(42)

−→
s→0

0 +
∂T̄ g

∂sf ′

󰀏󰀏󰀏󰀏
s=0

×
υ(1)

H0
× 1

=

󰀻
󰀿
󰀽
0 if either f ′ /∈ M and g ∕= f ′ or f ′ ∈ M and g ∕= M

1 otherwise.

Moreover,

∂s̄g/T̄ g

∂sf ′

󰀏󰀏󰀏󰀏
s=0

=
s̄g

T̄ g

∂ log s̄g/T̄ g

∂sf ′

󰀏󰀏󰀏󰀏
s=0

=
υ(1)

H0

󰀗
∂ log s̄g

∂sf ′
−

∂ log T̄ g

∂sf ′

󰀘󰀏󰀏󰀏󰀏
s=0

=
υ(1)

H0

󰀥
∂H

∗

∂sf ′

1

H
∗

∂ log S(H
∗
, T̄ g)

∂ logH
+

∂ log T̄ g

∂sf ′

󰀣
∂ log S(H

∗
, T̄ g)

∂ log T g
− 1

󰀤󰀦󰀏󰀏󰀏󰀏󰀏
s=0

=
υ(1)

H0

󰀵
󰀷−1 +

∂T̄ g

∂sf ′

1

T̄ g

󰀳
󰁃

󰀓
1− 󰂃(H

∗
)s̄g

󰀔󰀓
1− α󰂃(H

∗
)s̄g

󰀔

1− 󰂃(H
∗
)s̄g + α(󰂃(H

∗
)s̄g)2

− 1

󰀴
󰁄
󰀶
󰀸
󰀏󰀏󰀏󰀏󰀏󰀏
s=0

=
υ(1)

H0

󰀥
−1−

∂T̄ g

∂sf ′

s̄g

T̄ g

α󰂃(H
∗
)

1− 󰂃(H
∗
)s̄g + α(󰂃(H

∗
)s̄g)2

󰀦󰀏󰀏󰀏󰀏󰀏
s=0

= −
υ(1)

H0

󰀗
1 + α󰂃(H0)

υ(1)

H0

∂T̄ g

∂sf ′

󰀏󰀏󰀏󰀏
s=0

󰀘

= −
υ(1)

H0
×

󰀻
󰀿
󰀽
1 if either f ′ /∈ M and g ∕= f ′ or f ′ ∈ M and g ∕= M

1 + α󰂃(H0) otherwise.
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Combining these results and Lemma 10, we can now evaluate equation (41). Suppose

first that f, f ′ ∈ O. If f ′ ∕= f , then only the terms g = f and g = f ′ on the right-hand side

of equation (41) can be different from zero:

∂2H
∗

∂sf∂sf ′

󰀏󰀏󰀏󰀏󰀏
s=0

= H0 (1 + [−1 + 0 + 1] + [0 + 0 + 1]) = 2H0.

If instead f ′ = f , then only the term g = f can be different from zero:

∂2H
∗

∂sf∂sf ′

󰀏󰀏󰀏󰀏󰀏
s=0

= H0
󰀃
1 +

󰀅
−(1 + α󰂃(H0))− α󰂃(H0) + 2(1 + α󰂃(H0))

󰀆󰀄
= 2H0.

Next, suppose that one firm in (f, f ′) belongs to M while the other one belongs to O;

to fix ideas, suppose f ∈ M and f ′ ∈ O. Then, only the terms g = M and g = f ′ can be

different from zero:

∂2H
∗

∂sf∂sf ′

󰀏󰀏󰀏󰀏󰀏
s=0

= H0 (1 + [−1 + 0 + 1] + [0 + 0 + 1]) = 2H0.

Finally, suppose that f, f ′ ∈ M, so that only the term g = M in the sum on the right-

hand side of equation (41) can be different from zero. If f ′ ∕= f , we have:

∂2H
∗

∂sf∂sf ′

󰀏󰀏󰀏󰀏󰀏
s=0

= H0
󰀃
1 +

󰀅
−(1 + α󰂃(H0))− α󰂃(H0) + 2

󰀆󰀄
= 2H0(1− α󰂃(H0)).

If instead f = f ′, then:

∂2H
∗

∂sf∂sf ′

󰀏󰀏󰀏󰀏󰀏
s=0

= H0
󰀃
1 +

󰀅
−(1 + α󰂃(H0))− α󰂃(H0) + 2(1 + α󰂃(H0))

󰀆󰀄
= 2H0.

The Taylor theorem implies that

H
∗
(s) = H0

󰀵
󰀹󰀹󰀷1 +

󰁛

f∈F

sf +
1

2

󰀳
󰁅󰁅󰁃2

󰁛

f,g∈F

sfsg − 2α󰂃(H0)
󰁛

f,g∈M
f ∕=g

sfsg

󰀴
󰁆󰁆󰁄

󰀶
󰀺󰀺󰀸+ o(󰀂s󰀂2)

= H0
󰀅
1 + Σ(s) + Σ(s)2 − α󰂃(H0)∆HHI(s)

󰀆
+ o(󰀂s󰀂2).

Combining Lemmas 9 and 11, we obtain the merger-induced distortion to consumer

surplus, which proves the first part of Proposition 10:

Lemma 12. At the second order in the neighborhood of s = 0,

∆CS(s) = −H0
Ψ

′(H0)α󰂃(H0)∆HHI(s) + o(󰀂s󰀂2).
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Proof. Combining equation (36) and Lemma 11 yields

CS(s̄(s)) = Ψ(H
∗
(s))

= Ψ(H0) +H0
Ψ

′(H0)

󰀗
Σ(s) + Σ(s)2 − α󰂃(H0)∆HHI(s)−

󰂃(H0)

2
Σ(s)2

󰀘
+ o(󰀂s󰀂2)

= CS(s)−H0
Ψ

′(H0)α󰂃(H0)∆HHI(s) + o(󰀂s󰀂2),

where the last line follows by Lemma 9.

The next step is to approximate post-merger market shares:

Lemma 13. At the second order in the neighborhood of s = 0,

s̄f = sf + o(󰀂s󰀂2) ∀f ∈ O

and s̄M =
󰁛

f∈M

sf − α󰂃(H0)∆HHI(s) + o(󰀂s󰀂2).

Proof. We already showed in the proof of Lemma 11 that

∂s̄g

∂sf

󰀏󰀏󰀏󰀏
s=0

=

󰀻
󰀿
󰀽
0 if either f /∈ M and g ∕= f or f ∈ M and g ∕= M

1 otherwise.

Plugging equations (28) and (29) into equation (42) yields:

∂s̄g

∂sf
=

∂H
∗

∂sf
s̄g

H
∗

󰀗
−1 +

αs̄g

1− 󰂃(H
∗
)s̄g + α(󰂃(H

∗
)s̄g)2

󰂃(H
∗
)ζ(H

∗
)

󰀘

+
∂T̄ g

∂sf
s̄g

T̄ g

(1− 󰂃(H
∗
)s̄g)(1− α󰂃(H

∗
)s̄g)

1− 󰂃(H
∗
)s̄g + α(󰂃(H

∗
)s̄g)2

.

Differentiating this with respect to sf
′

and taking the limit as s tends to zero yields

∂2s̄g

∂sf∂sf ′

󰀏󰀏󰀏󰀏
s=0

= −
∂s̄g

∂sf ′
+

∂2T̄ g

∂sf∂sf ′

υ(1)

H0
+

∂T̄ g

∂sf

󰀗
∂s̄g/T̄ g

∂sf ′
−

υ(1)

H0
α󰂃(H0)

󰀘
, (43)

where all the derivatives on the right hand-side should be understood as being evaluated at

s = 0. Recall from the proof of Lemma (42) that

∂s̄g/T̄ g

∂sf ′

󰀏󰀏󰀏󰀏
s=0

= −
υ(1)

H0
×

󰀻
󰀿
󰀽
1 if either f ′ /∈ M and g ∕= f ′ or f ′ ∈ M and g ∕= M

1 + α󰂃(H0) otherwise.

Suppose first that g ∈ O. If f ∕= g and f ′ ∕= g, then all the terms on the right-hand side

of equation (43) are equal to zero by lemma 10, and so

∂2s̄g

∂sf∂sf ′

󰀏󰀏󰀏󰀏
s=0

= 0.
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If f ′ = g and f ∕= g, then
∂2s̄g

∂sf∂sg

󰀏󰀏󰀏󰀏
s=0

= −1 + 1 + 0 = 0.

Finally, if f ′ = f = g, then

∂2s̄g

∂(sg)2

󰀏󰀏󰀏󰀏
s=0

= −1 + 2(1 + α󰂃(H0)) +
󰀅
−(1 + α󰂃(H0))− α󰂃(H0)

󰀆
= 0.

Hence, if g ∈ O, then s̄g = sg + o(󰀂s󰀂2) by the Taylor theorem.

Suppose instead that g = M . If neither f nor f ′ belongs to M, then we again have that

all the terms on the right-hand side of equation (43) are equal to zero, and so

∂2s̄g

∂sf∂sf ′

󰀏󰀏󰀏󰀏
s=0

= 0.

If f ′ ∈ M but f /∈ M, then

∂2s̄g

∂sf∂sf ′

󰀏󰀏󰀏󰀏
s=0

= −1 + 1 + 0 = 0.

Next, assume that f and f ′ both belong to M. If f ∕= f ′, then

∂2s̄g

∂sf∂sf ′

󰀏󰀏󰀏󰀏
s=0

= −1 + 2 +
󰀅
−(1 + α󰂃(H0))− α󰂃(H0)

󰀆
= −2α󰂃(H0).

Finally, if f = f ′, then we have again

∂2s̄g

∂(sf )2

󰀏󰀏󰀏󰀏
s=0

= −1 + 2(1 + α󰂃(H0)) +
󰀅
−(1 + α󰂃(H0))− α󰂃(H0)

󰀆
= 0.

Thus, by the Taylor theorem,

s̄M =
󰁛

f∈M

sf −
1

2
α󰂃(H0)

󰁛

f,f ′∈M
f ∕=f ′

2sfsf
′

+ o(󰀂s󰀂2) =
󰁛

f∈M

sf − α󰂃(H0)∆HHI(s) + o(󰀂s󰀂2).

Combining the above lemma with Lemma 12, we can prove the second part of Proposi-

tion 10:

Lemma 14. At the second order in the neighborhood of s = 0,

∆AS(s) = −H0
Ψ

′(H0)α󰂃(H0)∆HHI(s) + o(󰀂s󰀂2).

Proof. All that is left to do is approximate post-merger profits. For every f ∈ O, we have

that
αs̄f

1− α󰂃(H
∗
)s̄f

= αsf
󰀅
1 + α󰂃(H0)sf

󰀆
+ o(󰀂s󰀂2)
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by Lemma 13. (Note that we can simply take the order-zero approximation of 󰂃(H
∗
) since

that term is pre-multiplied by (sf )2.) Moreover, using again Lemma 13, we have that

αs̄M

1− α󰂃(H
∗
)s̄M

= α

󰀥
󰁛

g∈M

sg − α󰂃(H0)∆HHI(s)

󰀦󰀥
1 + α󰂃(H0)

󰁛

g∈M

sg

󰀦
+ o(󰀂s󰀂2)

= α
󰁛

g∈M

sg − α2󰂃(H0)∆HHI(s) + α2󰂃(H0)

󰀥
󰁛

g∈M

sg

󰀦2

+ o(󰀂s󰀂2)

=
󰁛

g∈M

αsg
󰀅
1 + α󰂃(H0)sg

󰀆
+ o(󰀂s󰀂2).

Hence,
󰁛

f∈F

αs̄f

1− α󰂃(H
∗
)s̄f

= α
󰁛

f∈F

sf + α2󰂃(H0)
󰁛

f∈F

(sf )2 + o(󰀂s󰀂2).

Since, by Lemma 11,

H
∗
(s)Ψ′(H

∗
(s)) = H0

Ψ
′(H0)

󰀥
1 + (1− 󰂃(H0))

󰁛

f∈F

sf

󰀦
+ o(󰀂s󰀂),

we have that

PS(s̄(s)) = H0
Ψ

′(H0)
󰀅
1 + (1− 󰂃(H0))Σ(s)

󰀆
󰀥
αΣ(s) + α2󰂃(H0)

󰁛

f∈F

(sf )2

󰀦
+ o(󰀂s󰀂2)

= H0
Ψ

′(H0)

󰀥
α
󰁛

f∈F

sf + α(1− 󰂃(H0))Σ(s)2 + α2󰂃(H0)
󰁛

f∈F

(sf )2

󰀦
+ o(󰀂s󰀂2)

= PS(s) + o(󰀂s󰀂2),

where the last line follows by Lemma 9. Hence, ∆AS(s) = ∆CS(s) + o(󰀂s󰀂2).

E Conduct Approximation

E.1 Conduct in the Oligopoly Model

In this subsection, we provide more details on our treatment of firm conduct. Consider a

multiproduct-firm pricing game, as defined in Section 2, and let θ ∈ [0, 1] be a conduct

parameter, as introduced in Section 6.2. The first-order condition for product i sold by firm

f is given by:

−h′
i(pi)Ψ

′(H)

󰀥
1− (pi − ci)

h′′
i (pi)

−h′
i(pi)

− θ
Ψ

′′(H)

Ψ′(H)

󰁛

j∈f

(pj − cj)(−h′
j(pj))

󰀦
= 0,
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which simplifies to

(pi − ci)
h′′
i (pi)

−h′
i(pi)

= 1 + θ󰂃(H)
1

H

󰁛

j∈f

(pj − cj)(−h′
j(pj)). (44)

Hence, the common ι-markup property continues to hold—let µf denotes firm f ’s ι-markup.

It follows that equation (5) still holds, so that equation (44) simplifies to:

µf =
1

1− αθ󰂃(H)sf
. (45)

Moreover, as equations (7)–(10) only relied on the common ι-markup property, those

equations continue to hold. That is, firm f ’s profit can still be written as Πf = αµfsfHΨ
′(H)

and we still have that

sf =
T f

H
υ(µf ), (46)

where the expression for firm f ’s type (T f ) and the function υ are as in Section 3.1.

The system of equations (45) and (46) has a unique solution in (µf , sf ), which defines the

markup and market-share fitting-in functions: m(H, T f ; θ) and S(H, T f ; θ). It is straight-

forward to show that S is strictly decreasing in H, and that S is close to 1 or greater than

1 when H is close to zero, and close to 0 when H tends to infinity. The profit fitting-in

function is

π(H, T f ; θ) = αm(H, T f ; θ)S(H, T f ; θ)HΨ
′(H) =

αS(H, T f ; θ)

1− αθ󰂃(H)S(H, T f ; θ)
HΨ

′(H).

The equilibrium condition is still that market shares add up to unity:

H0

H
+
󰁛

f∈F

S
󰀃
H, T f ; θ

󰀄
= 1. (47)

The properties of S imply that this equation has a unique solution, H∗(θ).

E.2 Proof of Proposition 11

In this subsection, we prove a series of lemmas that jointly imply Proposition 11. We begin

by computing the partial derivatives of S with respect to H and θ at θ = 0:

Lemma 15. We have:

∂S

∂H

󰀏󰀏󰀏󰀏
(H,T ;0)

= −
S(H, T ; 0)

H

∂S

∂θ

󰀏󰀏󰀏󰀏
(H,T ;0)

= −α󰂃(H)S(H, T ; 0)2.
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Proof. Combining equations (45) and (46) and dropping the firm superscript to ease notation

yields:

s =
T

H
υ

󰀕
1

1− αθ󰂃(H)s

󰀖
.

Differentiating this expression with respect to s, H, and θ at θ = 0, we obtain:

ds = −
T

H2
υ(1)dH +

T

H
α󰂃(H)sυ′(1)dθ

= −
s

H
dH + α󰂃(H)s2

υ′(1)

υ(1)
dθ = −

s

H
dH − α󰂃(H)s2dθ.

Next, let us fix a profile of types (T f )f∈F and a value of the stage-2 outside option

H0 ≥ 0. Let HHI(θ) =
󰁓

f∈F sf (θ)2 be the equilibrium Herfindahl index when the conduct

parameter is θ. We now compute the derivative of the equilibrium aggregator level, H∗(θ),

with respect to θ at θ = 0:

Lemma 16. We have:

dH∗

dθ

󰀏󰀏󰀏󰀏
θ=0

= −α󰂃(H∗(0))HHI(0)H∗(0).

Hence, in the neighborhood of θ = 0,

CS(θ) = CS(0)− α󰂃(H∗)H∗
Ψ

′(H∗)HHI θ + o(θ),

where the functions H∗(·) and HHI(·) are evaluated at either 0 or θ.

Proof. Totally differentiating equilibrium condition (47), we obtain:

dH∗

H∗

󰀣
−
H0

H∗
+
󰁛

f∈F

H∗∂S(H
∗, T f ; θ)

∂H

󰀤
+ dθ

󰁛

f∈F

∂S(H∗, T f ; θ)

∂θ
= 0.

Evaluating this at θ = 0 and using Lemma 15 and the equilibrium condition yields:

−
dH∗

H∗(0)
− dθ

󰁛

f∈F

α󰂃(H∗(0))sf (0)2 = 0,

which proves the first part of the lemma.

The second part of the lemma follows by Taylor’s theorem:

CS(θ) = Ψ(H∗(0)) +H∗′(0)Ψ′(H∗(0))θ + o(θ)

= CS(0)− α󰂃(H∗(0))H∗(0)Ψ′(H∗(0))HHI(0)θ + o(θ)

= CS(0)− α󰂃(H∗(θ))H∗(θ)Ψ′(H∗(θ)) HHI(θ)θ + o(θ),

where the third line follows as

󰂃(H∗(θ))H∗(θ)Ψ′(H∗(θ)) HHI(θ) = 󰂃(H∗(0))H∗(0)Ψ′(H∗(0))HHI(0) + o(1).
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Let PS(θ) be equilibrium industry profit when the conduct parameter is θ. We have:

Lemma 17.

PS′(0) = α2H∗
Ψ

′(H∗)󰂃(H∗)2 HHI
󰁛

f∈F

sf ,

where the functions H∗(·), HHI(·), and sf (·) are evaluated at 0.

Proof. Let

πf (θ) =
αsf (θ)

1− αθ󰂃(H∗(θ))sf (θ)
H∗

Ψ
′(H∗(θ))

denote firm f ’s equilibrium profit. We have that

sf ′(0) = H∗′(0)
∂S

∂H

󰀏󰀏󰀏󰀏
(H∗(0),T f ;0)

+
∂S

∂θ

󰀏󰀏󰀏󰀏
(H∗(0),T f ;0)

= α󰂃(H∗(0))
󰀅
HHI(0)sf (0)− sf (0)2

󰀆
,

where we have used Lemmas 15 and 16. It follows that

πf ′(0) =
󰀅
αsf ′ + α2󰂃(H∗)(sf )2

󰀆
H∗

Ψ
′(H∗) + αsfH∗′

Ψ
′(H∗) [1− 󰂃(H∗)]

= α2H∗
Ψ

′(H∗)󰂃(H∗)2 HHI sf ,

where all the functions are evaluated at θ = 0. Adding up over all firms proves the lemma.

Combining Lemmas 16 and 17 yields:

Lemma 18. In the neighborhood of θ = 0,

AS(θ) = AS(0)− α󰂃(H∗)H∗
Ψ

′(H∗)HHI

󰀥
1− α󰂃(H∗)

󰁛

f∈F

sf

󰀦
θ + o(θ),

where the functions H∗(·), HHI(·), and sf (·) are evaluated at either 0 or θ.

We are now in a position to prove Proposition 11:

Proof. Consider a merger M between the firms in M, and suppose the merger involves no

synergies. For every θ, let CS(θ), AS(θ), H∗(θ), HHI(θ), and sf (θ) denote the pre-merger

equilibrium values of consumer surplus, aggregate surplus, the aggregator, the Herfindahl

index, and firm f ’s market share, respectively. We use the same notation with an upper

bar to denote the post-merger values of those quantities. The discussion at the beginning of

Section 6.2 implies that, under monopolistic competition (θ = 0), CS(0) = CS(0), AS(0) =

AS(0), H∗(0) = H
∗
(0), and sf (0) = sf (0) for every f ∈ F \ M. Moreover, sM(0) =󰁓

f∈M sf (0) and

HHI(0)− HHI(0) =
󰁛

f∈(F\M)∪M

sf (0)2 −
󰁛

f∈F

sf (0)2
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=

󰀣
󰁛

f∈M

sf (0)

󰀤2

−
󰁛

f∈M

sf (0)2

= ∆HHI(0).

Thus, at θ = 0, the merger-induced, naively computed change in the Herfindahl index

coincides with the actual change in the Herfindahl index.

By Lemma 16, we have that

CS(θ)− CS(θ) = α
󰁫
󰂃(H∗(0))H∗(0)Ψ′(H∗(0))HHI(0)− 󰂃(H

∗
(0))H

∗
(0)Ψ′(H

∗
(0))HHI(0)

󰁬
θ + o(θ)

= α󰂃(H∗(0))H∗(0)Ψ′(H∗(0))
󰀅
HHI(0)− HHI(0)

󰀆
θ + o(θ)

= −α󰂃(H∗(0))H∗(0)Ψ′(H∗(0))∆HHI(0)θ + o(θ).

Note that the coefficient on θ can be replaced by −α󰂃(H∗(θ))H∗(θ)Ψ′(H∗(θ))∆HHI(θ) since

all the functions involved are continuous.

Similarly, applying Lemma 18 to AS(θ)−AS(θ), we obtain the second part of the propo-

sition.

F Technical Results on Type Aggregation

F.1 Type Indexation

In the main text, we proposed three definitions of the concept of type aggregation (Def-

initions 1–3). In a nutshell, H satisfies type aggregation if: (a) There exists a mapping

τ : Ω(H) −→ R such that firms ω and ω′ have the same markup and market-share fitting-in

functions if and only if τ(ω) = τ(ω′); and (b) the mapping τ is economically meaningful. In

the following, we drop requirement (b) and say that H satisfies type indexation if require-

ment (a) holds. We now argue that a sufficient condition for type indexation is that H has

the cardinality of the continuum.

Suppose indeed that there exists a bijection H : x ∈ R 󰀁→ H[x] ∈ H. The set of

multiproduct firms can be written as Ω(H) =
󰁖

n≥1 Ωn(H), where

Ωn(H) = {((hj)1≤j≤n, (cj)1≤j≤n) : ∀j, hj ∈ H and cj > 0}

= {((H[xj])1≤j≤n, (cj)1≤j≤n) : ∀j, xj ∈ R and cj ∈ R++} .

Thus, with a slight abuse of notation we can write Ωn(H) = R
n×R

n
++ and Ω(H) =

󰁖
n≥1 R

n×

R
n
++.
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For every n ≥ 1, let τ̃n be an injection from R
n × R

n
++ to the interval (n − 1, n).23 For

every ω ∈ Ω(H), let τ̃(ω) ≡ τ̃n(ω)(ω), where n(ω) is the number of products that firm ω owns

(i.e., ω ∈ Ωn(ω)(H)). Then, τ̃ is an injection from Ω(H) to R++.

Next, define the equivalence relation ∼ as follows: For every ω,ω′ ∈ Ω(H), ω ∼ ω′ if

and only if m[ω] = m[ω′] and S[ω] = S[ω′]. For every y in the quotient set Ω(H)/ ∼,

let φ(y) ∈ Ω(H) be a representative of the equivalence class y. Finally, define τ : ω ∈

Ω(H) 󰀁→ τ̃(φ(e(ω))) ∈ R++, where e(ω) denotes the equivalence class of ω. Since τ̃ and φ are

injective, we have that τ(ω) = τ(ω′) is equivalent to e(ω) = e(ω′), which is in turn equivalent

to m[ω] = m[ω′] and S[ω] = S[ω′]. It follows that Ω(H) satisfies type indexation (with type

mapping τ).

F.2 Proof of Proposition 12

It is clear that (i) implies (iii), i.e., surplus-based type aggregation implies continuous type

aggregation, as the type mapping in Definition 1 (see equation (23)) obviously satisfies the

continuity requirement of Definition 3. Next, let us verify that (iv) implies (i) and (ii):

Proof. Suppose first that part (1) of assertion (iv) holds for some σ > 1, and let the type map-

ping τ be as defined in equation (23). Consider a multiproduct firm ω = ((hj)j∈f , (cj)j∈f ) ∈

Ω(H). Then, there exist (aj)j∈f ∈ R
f
++ and (βj) ∈ R

f
+ such that for every j ∈ f and

pj > βj/(σ− 1), hj(pj) = aj(pj +βj)
1−σ. Routine calculations show that (using the notation

of Section 7):

ιj(pj) = σ
pj

pj + βj

∀pj >
βj

σ − 1
,

p
j
=

βj

σ − 1
,

γj(pj) =
σ − 1

σ
hj(pj) ∀pj >

βj

σ − 1
, (48)

and νj(pj) = σ
pj − cj
pj + βj

∀pj > max
󰀓
p
j
, cj

󰀔
. (49)

Plugging equation (48) into equation (20), using equation (21), and rearranging terms, we

obtain

m[ω](H) =
1

1− α󰂃(H)S[ω](H)
,

23The classic example of an injection from (0, 1)2 to (0, 1) is the function χ, which, to every x

and y with decimal expansions x =
󰁓

∞

k=1
xk10

−k and y =
󰁓

∞

k=1
yk10

−k, associates χ(x, y) =
󰁓

∞

k=0

󰀃

xk10
−1 + yk10

−2
󰀄

10−2k. Using the same approach, one can construct an injection from (0, 1)n to

(0, 1) for any n. Since the interval (0, 1) can be put in bijection with any non-degenerate interval, one can

then construct an injection from R
n × R

n
++ to (n− 1, n) for any n.
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where α ≡ (σ − 1)/σ.

Inverting equation (49), we obtain rj(µ) = (σcj + µβj)/(σ − µ) for every µ ∈ (1, σ).

Plugging this into equation (21) yields:

S[ω](H) =
1

H

󰁛

j∈f

aj

󰀕
βj +

σcj +m[ω](H)βj

σ −m[ω](H)

󰀖1−σ

=
1

H

󰀕
1−

m[ω](H)

σ

󰀖σ−1 󰁛

j∈f

(cj + βj)
1−σ

=
τ(ω)

H
(1− (1− α)m[ω](H))

α

1−α .

Hence, (m[ω](H), S[ω](H)) is the unique solution (in (µf , sf )) of the system of equations (6)

and (10) (with T f replaced by τ(ω)). It follows that H satisfies surplus-based type ag-

gregation. Moreover, part (i) of Lemma 2 implies that H also satisfies monotonic type

aggregation.

Next, suppose that part (2) of assertion (iv) holds, and let the type mapping τ be as

defined in equation (23). Consider a multiproduct firm ω = ((hj)j∈f , (cj)j∈f ) ∈ Ω(H).

Then, there exist (aj)j∈f ∈ R
f and (λj) ∈ R

f
++ such that for every j ∈ f and pj > λj,

hj(pj) = exp
aj−pj
λj

. Routine calculations show that

ιj(pj) =
pj
λj

∀pj > λj,

p
j
= λj,

γj(pj) = hj(pj) ∀pj > λj, (50)

and νj(pj) =
pj − cj
λj

∀pj > max
󰀓
p
j
, cj

󰀔
. (51)

Plugging equation (50) into equation (20), using equation (21), and rearranging terms, we

obtain

m[ω](H) =
1

1− 󰂃(H)S[ω](H)
.

Inverting equation (51), we obtain rj(µ) = λjµ + cj for every µ ∈ (1,∞). Plugging this

into equation (21) yields:

S[ω](H) =
1

H

󰁛

j∈f

e
aj−cj

λj e−m[ω](H) =
τ(ω)

H
e−m[ω](H) .

Hence, (m[ω](H), S[ω](H)) is the unique solution (in (µf , sf )) of the system of equations (6)

and (10) (with α = 1 and T f replaced by τ(ω)). It follows that H satisfies surplus-based

type aggregation. Moreover, part (i) of Lemma 2 implies that H also satisfies monotonic

type aggregation.
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Next, we introduce new notation. For every h ∈ H and p > 0, let ι[h](p) ≡ −ph′′(p)/h′(p)

and γ[h](p) ≡ (h′(p))2/h′′(p). For every c > 0, let r[h, c](·) be the inverse function of

ν[h, c] : p ∈
󰀃
max(c, p[h]),∞

󰀄
󰀁→

p− c

p
ι[h](p) ∈

󰀃
ν[h, c]

󰀃
max(c, p[h])

󰀄
, ι[h](∞)

󰀄
,

where p[h] ≡ inf {p > 0 : ι[h](p) > 1}. We extend the domain of r[h, c] to
󰀃
ν[h, c]

󰀃
max(c, p[h])

󰀄
,∞

󰀄

by setting r[h, c](µ) = ∞ for every µ ≥ ι[h](∞). An immediate observation, which will be

very useful in many of the proofs below, is that, for every a > 0, c > 0, and h ∈ H,

ι[ah] = ι[h], γ[ah] = aγ[h], and r[ah, c] = r[h, c].

Let us show that (ii) implies (iii):

Lemma 19. If H satisfies monotonic type aggregation, then H satisfies continuous type

aggregation.

Proof. SupposeH satisfies monotonic type aggregation, and let τ(ω), S(·, τ(ω)), andm(·, τ(ω))

be as in Definition 2. For every ω ∈ Ω(H), define τ̂(ω) ≡ S[ω](1), and let T̂ be the range of

τ̂ . Requirement (b) of Definition 2 implies that, for every ω,ω′ ∈ Ω(H), τ̂(ω) = τ̂(ω′) if and

only if τ(ω) = τ(ω′). For every t ∈ T̂ , we can thus define m̂(·, t) and Ŝ(·, t) by picking an

arbitrary ω such that τ̂(ω) = t and setting m̂(·, t) ≡ m(·, τ(ω)) and Ŝ(·, t) ≡ S(·, τ(ω)). The

triple (τ̂ , m̂, Ŝ) then satisfies requirement (a) of Definition 3.

Next, let us show that τ̂ satisfies the continuity requirement of Definition 3. Fix some

finite set f and some (hj)j∈f in Hf . For every (a, c) = ((aj)j∈f , (cj)j∈f ) ∈ R
f
++ × R

f
++, let

ω(a, c) = ((ajhj)j∈f , (cj)j∈f ) ∈ Ω(H). For every (a, c), m[ω(a, c)](1) is the unique solution in

µ of equation

µ = 1 + 󰂃(1)µ
󰁛

j∈f

γ[ajhj] (r[ajhj, cj](µ)) ,

which can be rewritten as

µ = 1 + 󰂃(1)µ
󰁛

j∈f

ajγ[hj] (r[hj, cj](µ)) .

As all the functions on the right-hand side are continuous (see Lemma E in Nocke and

Schutz, 2018), standard arguments imply that m[ω(a, c)](1) is continuous. It follows that

τ̂(ω(a, c)) = S[ω(a, c)](1) =
󰁛

j∈f

ajhj (r[hj, cj] (m[ω(a, c)](1)))

is continuous in (a, c).

We now turn our attention to the more challenging part of the proof, i.e., showing that

(iii) implies (iv). The following lemma reformulates assertion (iv):
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Lemma 20. The following statements are equivalent:

(i) Assertion (iv) in Proposition 12 holds.

(ii) There exists ρ ≥ 1 such that, for every h ∈ H and p > p[h], h(p)h′′(p)/h′(p)2 = ρ.

Proof. It is straightforward to check that (i) implies (ii) (with ρ = σ/(σ− 1) in case (1) and

ρ = 1 in case (2)). Conversely, suppose that (ii) holds for some ρ ≥ 1, and let h ∈ H. Then,

on (p[h],∞), we have
h′′

h′
= ρ

h′

h
.

Integrating yields:

log(−h′) = ρ log h+K,

where K is a constant of integration. Taking exponentials yields −h′ = eK hρ, i.e., −h′/hρ =

eK . If ρ = 1, then this implies that log h(p) = − eK p + L for some constant of integration

L, and thus

h(p) = exp
󰀃
L− eK p

󰀄
≡ exp

a− p

λ

for every p > p[h]. It follows that ι[h](p) = p/λ for every p > p[h], and so p[h] = λ. Hence,

h(p) = exp a−p
λ

for every p > λ, as stated.

If, instead, ρ > 1, then we obtain

−
1

1− ρ
h1−ρ(p) = eK p+ L, i.e., h1−ρ(p) = (ρ− 1) eK p+ L′.

Taking exponent 1/(1− ρ) in the above equation and setting σ = ρ/(ρ− 1), we obtain that

h(p) =
󰀅
(ρ− 1) eK

󰀆1−σ

󰁿 󰁾󰁽 󰂀
≡a

󰀵
󰀹󰀹󰀹󰀷p+

L′

(ρ− 1) eK󰁿 󰁾󰁽 󰂀
≡β

󰀶
󰀺󰀺󰀺󰀸

1−σ

for every p > p[h]. Moreover, as ι[h](p) = σp/(p+ β) and ι[h](·) must be non-decreasing on

(p[h],∞), β must be non-negative. Moreover, p[h] = β/(σ − 1). Hence, h(p) = a(p + β)1−σ

for every p > β/(σ − 1), as stated.

Thus, we need to show that continuous type aggregation implies assertion (ii) in Lemma 20.

We do so in two steps:

Lemma 21. If H satisfies continuous type aggregation, then for every h ∈ H, hh′′/(h′)2 is

constant on (p[h],∞).
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Proof. Assume for a contradiction that H satisfies continuous type aggregation and there

exists h ∈ H such that hh′′/(h′)2 = h/γ[h] is not constant on (p[h],∞). To ease notation,

let ι ≡ ι[h], p ≡ p[h], γ ≡ γ[h], and r(·, c) ≡ r[h, c](·).

As h/γ is non-constant, there exists p0 > p such that d
dp

h(p)
γ(p)

󰀏󰀏󰀏
p0

∕= 0. Choose µ0 ∈

(1, ι(∞)) and c0 > 0 such that r(µ0, c0) = p0; such a pair (µ0, c0) exists since r(µ, c) is

continuous and limc→0 r(1, c) = p < p0 < limc→∞ r(1, c) = ∞. Next, let a0 be such that

µ0 = 1 + 󰂃(1)µ0a0γ(p0). Finally, let s0 ≡ a0h(p0).

For every (a, c) ∈ R
2
++, let m̃(a, c) be the unique solution in µ of equation

1 =
1

µ
+ 󰂃(1)aγ (r(µ, c)) . (52)

Define also S̃(a, c) ≡ ah (r(m̃(a, c), c)) and ξ(a, c) ≡
󰀓
m̃(a, c), S̃(a, c)

󰀔
. Clearly, ξ(a0, c0) =

(µ0, s0) and ξ(a, c) = (m[(ah, c)](1), S[(ah, c)](1)) for every (a, c).

Note that: The right-hand side of equation (52) is continuously differentiable in (µ, a, c);

the partial derivative with respect to µ is equal to − 1
µ2 +a󰂃(1) ∂r

∂µ
γ′(r(µ, c)), which is different

from zero since γ′ < 0 and ∂r/∂µ > 0 by Lemmas A and E in Nocke and Schutz (2018);

the partial derivative with respect to c is also different from 0 (see again Lemmas A and E

in Nocke and Schutz, 2018). The implicit function theorem implies that m̃ is continuously

differentiable and ∂m̃(a, c)/∂c is different from 0 for every (a, c). Moreover,

∂m̃

∂a
=

γ

aγ′∂r/∂c

∂m̃

∂c
,

where γ and γ′ are evaluated at r(m̃(a, c), c) and ∂r/∂c is evaluated at (m̃(a, c), c). As m̃ is

continuously differentiable, so are S̃ and ξ.

Let us now show that the Jacobian matrix of ξ at (a0, c0) is non-singular. Differentiating

S̃(a, c) yields
∂S

∂a
= h+ ah′ ∂r

∂µ

∂m̃

∂a
and

∂S

∂c
= ah′

󰀗
∂r

∂µ

∂m̃

∂c
+

∂r

∂c

󰀘
,

where h and h′ are evaluated at r(m̃(a, c), c) and the partial derivatives of r are evaluated

at (m̃(a, c), c). The Jacobian determinant of ξ is

∂m̃

∂a

∂S̃

∂c
−

∂S̃

∂a

∂m̃

∂c
=

∂m̃

∂a
ah′

󰀗
∂r

∂µ

∂m̃

∂c
+

∂r

∂c

󰀘
−

∂m̃

∂c

󰀗
h+ ah′ ∂r

∂µ

∂m̃

∂a

󰀘

=
∂m̃

∂a
ah′∂r

∂c
−

∂m̃

∂c
h

=
∂m̃

∂c

󰀗
h′ γ

γ′
− h

󰀘
,

where h and γ and their derivatives are evaluated at r(m̃(a, c), c). Since ∂m̃/∂c ∕= 0, the

Jacobian of ξ is non-singular at (a, c) if and only if the term inside square brackets is different
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from zero, which is equivalent to (h(p)/γ(p))′ being different from zero at p = r(m̃(a, c), c).

At (a0, c0), r(m̃(a0, c0), c0) = p0, and so the derivative is indeed different from zero.

Thus, ξ is continuously differentiable and it has a non-singular Jacobian matrix at (a0, c0).

The inverse function theorem implies the existence of an open ball B ⊂ R
2
++ containing

(a0, c0) such that the restriction of ξ to B is one-to-one. Hence, for every (a, c) and (a′, c′)

in B such that (a, c) ∕= (a′, c′), we have ξ(a, c) ∕= ξ(a′, c′). This means that, for every such

(a, c) and (a′, c′), m[(ah, c)](1) ∕= m[(a′h, c′)](1) and/or S[(ah, c)](1) ∕= S[(a′h, c′)](1), and

thus τ((ah, c)) ∕= τ((a′h, c′)). It follows that the function τ̃ : (a, c) ∈ B 󰀁→ τ((ah, c)) ∈ R

is one-to-one. Moreover, τ̃ is continuous since H satisfies continuous type aggregation. We

have thus found a continuous injection from an open subset of R2 to R. As is well known,

such a function does not exist; we therefore have a contradiction.24

Lemma 22. If H satisfies continuous type aggregation, then there exists ρ ≥ 1 such that,

for every h ∈ H and p > p[h], h(p)h′′(p)/h′(p)2 = ρ.

Proof. Suppose thatH satisfies continuous type aggregation. By Lemma 21, for every h ∈ H,

there exists a scalar ρ[h] such that h(p)h′′(p)/h′(p)2 = ρ[h] for every p > p[h]. Moreover,

by log-convexity, ρ[h] ≥ 1 for every h ∈ H. Assume for a contradiction that there exist

h1, h2 ∈ H such that ρ[h1] ∕= ρ[h2]. To ease notation, let ιi ≡ ι[hi], pi ≡ p[hi], ρi ≡ ρ[hi],

γi ≡ γ[hi], and ri(·, c) ≡ r[hi, c](·) for i = 1, 2. Note that hi(pi) = ρiγi(pi) for every pi > p
i

(i = 1, 2).

Let µ0 ∈ (1,min(ι1(∞), ι2(∞))) and c0 = (c01, c
0
2) ∈ R

2
++. Let a > 0 be such that

µ0 = 1 + a󰂃(1)µ0
󰀅
γ1(r1(µ

0, c01)) + γ2(r2(µ
0, c02))

󰀆
.

For every c = (c1, c2) ∈ R
2
++, let m̃(c) be the unique solution in µ of equation

1 =
1

µ
+ a󰂃(1) [γ1(r1(µ, c1)) + γ2(r2(µ, c2))] . (53)

Clearly, m̃(c0) = µ0, and so ri(m̃(c0), ci) < ∞ for i = 1, 2. Define also

S̃(c) ≡ a [h1(r1(m̃(c), c1)) + h2(r2(m̃(c), c2))]

and ξ(c) ≡ (m̃(c), S̃(c)). Note that

m̃(c) = m[(ah1, ah2), (c1, c2)](1) and S̃(c) = S[(ah1, ah2), (c1, c2)](1).

24The reason why such a function does not exist is the following. As τ̃ is continuous and B is connected,

τ̃(B) is a connected subset of R; it is therefore an interval. Let t be a point in the interior of that interval, and

let (â, ĉ) be the unique element of B such that τ̃(â, ĉ) = t; (â, ĉ) is indeed unique, as τ̃ is one-to-one. Then,

despite τ̃ being continuous and B \ {(â, ĉ)} being connected, τ̃(B \ {(â, ĉ)}) = τ̃(B) \ {t} is not connected,

a contradiction.
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Applying the implicit function theorem to equation (53), we obtain that m̃ is continuously

differentiable in a neighborhood of c0 and that its partial derivatives are different from zero.

(The argument is the same as in the proof of lemma 21.) Moreover,

∂m̃

∂c2
=

γ′
2
∂r2
∂c2

γ′
1
∂r1
∂c1

∂m̃

∂c1
, (54)

where γi is evaluated at ri(m̃(c), ci) and ∂ri/∂ci is evaluated at (m̃(c), ci), i = 1, 2. Since m̃

is C1, so are S̃ and ξ. The partial derivative of S̃ with respect to ci is:

∂S̃

∂ci
= a

󰀥
h′
i

∂ri
∂ci

+
∂m̃

∂ci

2󰁛

j=1

h′
j

∂rj
∂µ

󰀦
,

where h′
k is evaluated at rk(m̃(c), ck) and the partial derivatives of rk are evaluated at

(m̃(c), ck).

Let us now show that the Jacobian matrix of ξ is non-singular at c0. The Jacobian

determinant is:

∂m̃

∂c1

∂S̃

∂c2
−

∂m̃

∂c2

∂S̃

∂c1
= a

∂m̃

∂c1

󰀥
h′
2

∂r2
∂c2

+
∂m̃

∂c2

2󰁛

j=1

h′
j

∂rj
∂µ

󰀦
− a

∂m̃

∂c2

󰀥
h′
1

∂r1
∂c1

+
∂m̃

∂c1

2󰁛

j=1

h′
j

∂rj
∂µ

󰀦

= a

󰀗
∂m̃

∂c1
h′
2

∂r2
∂c2

−
∂m̃

∂c2
h′
1

∂r1
∂c1

󰀘

= a
∂m̃

∂c1

∂r2
∂c2

γ′
2

󰀗
h′
2

γ′
2

−
h′
1

γ′
1

󰀘
using equation (54)

= a
∂m̃

∂c1

∂r2
∂c2

γ′
2(ρ2 − ρ1) ∕= 0.

We can conclude as in the proof of Lemma 22. As the C1 function ξ has a non-singular Ja-

cobian matrix at c0, the inverse function theorem implies that it is locally one-to-one. Hence,

there is an open ball B containing c0 such that, for every c, c′ ∈ B such that c ∕= c′, we have

that m[(ah1, ah2), (c1, c2)](1) ∕= m[(ah1, ah2), (c
′
1, c

′
2)](1) and/or S[(ah1, ah2), (c1, c2)](1) ∕=

S[(ah1, ah2), (c
′
1, c

′
2)](1). It follows that the function τ̃ : c ∈ B 󰀁→ τ ((ah1, ah2), (c1, c2)) ∈ R,

which is continuous since H satisfies continuous type aggregation, is one-to-one. Since there

is no continuous injection from an open subset of R2 to R (see footnote 24), we have a

contradiction.

Combining Lemmas 20 and 22, we obtain that (iii) implies (iv), which concludes the

proof of the proposition.
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