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Abstract

Empirical evidence suggests that individuals often evaluate options relative to a reference point, espe-

cially seeking to avoid losses. We undertake the first welfare analysis under reference-dependent prefer-

ences. We characterize the welfare impact of changes in reference points and prices, decomposing these into

direct and behavioral effects. The sign of direct and behavioral effects depends on the form of reference-

dependent payoffs; which of these effects matter for welfare depends on whether reference dependence

reflects a bias or a normative preference. We derive sufficient statistics formulas quantifying the social wel-

fare effects of changes in reference points and prices in terms of estimable reduced-form parameters and

normative judgments. We illustrate these findings with an empirical application to reference dependence

exhibited in German workers’ retirement decisions. We find positive social welfare effects of increasing the

Normal Retirement Age, but ambiguous effects of financial incentives to postpone retirement.
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1 Introduction

Reference-dependent preferences are a cornerstone of behavioral economics.1 In a vast array of settings,

decision-makers appear to evaluate options relative to a reference point, and they evaluate losses relative to

the reference point more strongly than equivalent gains - loss aversion. Early evidence of such behavior came

from classic laboratory experiments by Kahneman and Tversky (1979). Since then, the experiments have

been replicated and extended in many ways, in parallel with a rich theoretical literature seeking to model

reference dependence (see O’Donoghue and Sprenger, 2018, for a review). Empirical evidence of reference

dependence has been found in experiments around the world (Ruggeri et al., 2020), and a wide range of

field settings including the daily labor supply of taxi drivers (Camerer et al., 1997; Crawford and Meng,

2011; Thakral and Tô, 2021) and bicycle messengers (Fehr and Goette, 2007), job search (DellaVigna et al.,

2017), behavioral responses to taxation (Homonoff, 2018; Rees-Jones, 2018), housing transactions (Andersen

et al., 2022), and the timing of retirement (Seibold, 2021).

As policymakers take notice of mounting evidence of the importance of reference-dependent prefer-

ences, difficult questions loom large. How should we evaluate welfare in the presence of reference depen-

dence? What are the policy implications of all the evidence that reference dependence matters? The vast

literature on reference dependence has so far refrained from conducting welfare analysis, mainly because

of two fundamental challenges. The first challenge is that it is unclear whether reference dependence rep-

resents a bias on the part of decision-makers or non-standard but normative preferences. This challenge

is widely recognized in prior literature but remains unresolved (see the discussion in O’Donoghue and

Sprenger, 2018). A second challenge is that many different formulations of reference-dependent payoffs

have been proposed. Particular functional forms are often adopted with the aim of tractability or in order to

rationalize empirical patterns, but the varying implications of payoff formulations for welfare have received

little attention.

This paper undertakes the first analysis of the welfare economics of reference dependence. We address

the first challenge by parameterizing a normative judgment about whether reference dependence reflects a

bias or a normative preference, and then mapping this judgment to welfare (Goldin and Reck, 2022). We

address the second challenge by analyzing welfare under minimal assumptions that encompass virtually

all formulations of reference-dependent payoffs consistent with the empirical evidence base or considered

in prior literature. Following this approach, we characterize the welfare impact of changes in the reference

point and of changes in prices (or taxes), in terms of empirically identifiable parameters and normative

judgments. We illustrate our findings in the retirement setting of Seibold (2021), where statutory retirement

ages set by public policy influence individuals’ reference points and implicit prices are given by financial

retirement incentives.

Our theoretical analysis begins with a general characterization of welfare under minimal assumptions

about reference-dependent payoffs. We consider a deterministic setting in which an individual receives

reference-dependent utility from gains or losses of their consumption relative to a reference point, as in

Tversky and Kahneman (1991). We follow the literature and assume that reference-dependent payoffs are

kinked at the reference point, which captures the key empirical patterns typically associated with reference

dependence. This property is usually interpreted as loss aversion, but there could be other motives rational-

izing such a kink in preferences. This general framework allows us to characterize the first-order welfare

effects of policies in terms of direct and behavioral effects. We show that which of these effects matter for

1For instance, DellaVigna (2018, p. 699) describes the theory of reference-dependent preferences as “perhaps the most influential
model in behavioral economics.”
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welfare depends on the normative judgment about reference dependence.

We first analyze the welfare effects of policies that influence the reference point. Examples of such poli-

cies include governments setting a "Normal Retirement Age" (Seibold, 2021), or income tax withholding

rules creating a reference point when filing a tax return (Rees-Jones, 2018). We find that if reference depen-

dence reflects a normative preference, only a direct welfare effect arises as a result of changing the reference

point. Intuitively, the individual’s reference-dependent payoff is modified directly when comparing their

outcome to a different reference point. Any changes in behavior do not entail first-order welfare effects

due to the envelope theorem in this case. If reference dependence reflects a bias, on the other hand, there

is no direct effect because reference-dependent payoffs do not enter welfare. However, the envelope theo-

rem fails as reference dependence entails an internality (Mullainathan et al., 2012), resulting in a first-order

behavioral welfare effect. We then show that under modest additional conditions – in particular, we rule

out “diminishing sensitivity”2 – direct and behavioral welfare effects of changing the reference point are

same-signed. This implies, perhaps surprisingly, that normative ambiguity over whether reference depen-

dence should enter welfare calculations is inconsequential for the sign of the welfare effect of changing the

reference point. Instead, only the form of reference-dependent payoffs matters for the sign of welfare effects.

Empirical evidence suggests that reference dependence also affects behavioral responses to price instru-

ments, e.g. commodity taxes (Homonoff, 2018). Motivated by such evidence, we analyze the welfare effects

of a price change. Changing prices also has first-order direct and behavioral effects. Just as in standard

models, a price increase has a negative direct welfare effect (regardless of normative judgments). And as

before, when reference dependence is judged to be normative, the change in behavior has no first-order

welfare implications. When reference dependence is a bias, however, the change in consumption caused by

a price change has a first-order behavioral welfare effect. We show that the overall welfare effect of price

changes generally depends both on normative judgments and the form of reference-dependent payoffs.

Next, we examine which features of the reference-dependent payoff formulation matter for welfare. We

show in general terms that the nature of the discrepancy between reference-dependent demand and intrinsic

demand – demand that would materialize in the absence of reference dependent concerns – is key for welfare.

For instance, if reference dependence increases demand for the good, both direct and behavioral welfare

effects of a higher reference point will be negative. The opposite is true if reference dependence decreases

demand: direct and behavioral effects are then positive. This characterization allows us to understand what

structure a given payoff formulation imposes on welfare, an understanding we can then apply to the wide

variety of payoff formulations proposed in the literature.

First, we consider simple loss aversion models, where the main feature of reference dependence is loss

aversion over a single good. Due to its simplicity and because it is able to capture key empirical patterns

like bunching at a reference point or non-standard responses to price variation, this type of formulation is

commonly used in applications (e.g. DellaVigna et al., 2017; Rees-Jones, 2018; Thakral and Tô, 2021; Seibold,

2021). We find that under simple loss aversion, decreasing the reference point has a positive direct welfare

effect because this shrinks utility losses, and a positive behavioral welfare effect through mitigating over-

consumption of the good. Our analysis hence reveals that adopting simple loss aversion models imposes

significant ex-ante structure on welfare, where lower reference points are always preferred.

Some of the theoretical literature on reference dependence postulates more sophisticated formulations

of reference-dependent payoffs, which are less restrictive in terms of welfare. A key example is allowing for

2Diminishing sensitivity is a feature of reference dependence typically considered in probabilistic settings, which introduces a spe-
cific curvature into reference-dependent payoffs. This can modify welfare effects far away from the reference point. See the discusion
in Section 2.1 and Appendix B.5.
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reference dependence over multiple goods. Since reference-dependent losses over one good can correspond

to gains over another good, such an extension can change the sign of welfare effects. For instance, in labor

supply contexts, reference dependence could be present over both consumption and leisure/labor supply

(Crawford and Meng, 2011; Behaghel and Blau, 2012). We propose a flexible reduced form of reference-

dependent payoffs that encompasses the key properties of a wide range of formulations in a parsimonious

way, while imposing little ex-ante structure on welfare. The flexible reduced form features one parame-

ter governing the size of kink in preferences typically attributed to loss aversion, and a second parameter

governing the direction in which reference dependence modifies demand for the good. The additional

parameter captures the degree of deviation from simple loss aversion in a reduced-form way, subsuming

reference dependence over another good and any other reason why reference dependence modifies payoffs

over gains.

Using our flexible reduced form, we derive novel sufficient statistics formulas for the social welfare

effects of changes in reference points and prices. To quantify the first-order welfare effect of changing ref-

erence points, the key sufficient statistics are simply the two reference dependence parameters capturing

the strength of loss aversion and the direction of reference dependence, given a normative judgment over

reference dependence. For the welfare effects of price changes, an estimate of the price elasticity of demand

for the good is additionally required. Since these parameters can be estimated across many settings in the

literature, our sufficient statistics approach to reference dependence will be widely applicable.

We illustrate these theoretical results with an empirical application to old-age pension policy, building

on Seibold (2021). The retirement setting has two important advantages for our purposes. First, common

policies in this context correspond closely to the types of interventions we analyze theoretically. On the one

hand, pension systems typically feature a Normal Retirement Age (NRA), which is presented as a “normal”

time to retire and serves as a reference point for retirement decisions. Figure 1 shows that the empirical

retirement age distribution exhibits strong bunching precisely at the NRA. As Seibold (2021) shows, this

bunching cannot be explained by financial retirement incentives but is well in line with a model of reference

dependence over the retirement age/leisure. Note that the figure also suggests a substantial drop in the

retirement age distribution above the NRA, which is informative about the direction of reference depen-

dence. Separately, pension systems provide financial retirement incentives which determine the marginal

return to working longer (the implicit price of leisure). The second advantage of the empirical setting is

that the relevant parameters governing individual behavior and welfare can be transparently estimated. In

particular, we use high-quality administrative data on German retirees and exploit the bunching strategy of

Seibold (2021) in order to estimate the responsiveness of retirement decisions to financial incentives and to

the NRA as a reference point.

Our empirical application yields novel insights into the welfare effects of pension reforms in the presence

of reference dependence. We quantify these welfare effects using (i) individual-level simulations of a model

of retirement behavior and (ii) our sufficient statistics formulas. We focus on two types of pension reforms

often discussed as policy options to induce workers to postpone retirement. The first reform is an increase

in the NRA by one year. This reform increases the reference age of retirement, or equivalently lowers the

reference point in terms of leisure, the corresponding good. In a simple loss aversion model consistent

with empirically observed bunching, we find that such a reform always improves welfare. If reference

dependence is judged as a bias, a lower reference point in terms of lifetime leisure counteracts some of the

initial sub-optimal early retirement, bringing individuals closer to their optimal retirement age. If reference

dependence is judged to be normative, a lower reference point yields direct welfare gains, as individuals
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FIGURE 1: BUNCHING AT THE NORMAL RETIREMENT AGE
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Notes: The figure shows the pooled distribution of retirement (job exit) ages around the Normal Retirement Age (NRA) among German
workers born in 1946. The dashed vertical line demarcates the location of the NRA. The black connected dots show the actual distri-
bution, while the red line shows the counterfactual density estimated as a seventh-order polynomial excluding the bunching region.
The counterfactual density also allows for round-number bunching and features an upward correction to the right of the NRA, where
a shift of the retirement age distribution occurs (see Section 4). The parameter b denotes the excess mass at the NRA with its standard
error shown in parantheses.

compare their lifetime leisure more favorably to the higher NRA.

The second reform we consider is an increase in the Delayed Retirement Credit (DRC), that is higher

actuarial pension adjustment for working beyond the NRA. A higher DRC increases the marginal return to

working, implying a higher implicit price of leisure. We find that the welfare effects of such a subsidy for

later retirement strongly depend on normative judgments, even within a simple loss aversion model. On

the one hand, a higher DRC can improve welfare when reference dependence is judged as a bias, because

incentivizing workers to retire later mitigates sub-optimal early retirement. Optimal corrective subsidies for

later retirement would be large in this case. If reference dependence is judged as normative, on the other

hand, the welfare effects of the DRC are much more muted. Moderate actuarial adjustment can help correct

fiscal externalities in the pension system, while an overly large DRC would distort retirement behavior,

worsen the fiscal balance of the pension system and ultimately lower welfare.

Our empirical application illustrates that adopting commonly used models of reference dependence can

lead to extreme policy implications. In particular, taking our results at face value would imply that the

NRA should be set as high as possible. However, there are several factors that can limit such extreme

policy recommendations. Most directly in line with our theory, we show that extreme reference points are

not necessarily optimal when allowing for the more general structure of reference dependence represented

by our flexible reduced-form formulation. For instance, in the retirement context there could be reference

dependence over consumption in addition to reference dependence over leisure (Crawford and Meng, 2011;

Behaghel and Blau, 2012). Such a two-dimensional framework is one of the canonical cases where our

theory shows that the sign of key welfare effects can change. When we allow for two-dimensional reference

dependence in the empirical application, we find that it remains locally optimal to increase the NRA under
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our preferred parameter estimates. However, if consumption reference dependence was sufficiently strong,

the welfare effects of increasing the NRA would turn negative at some point. In addition, we discuss how

two further considerations may prevent governments from increasing the NRA to extremely high levels,

even without deviating from simple loss aversion. First, pension reforms implemented in practice often

combine NRA increases with benefit cuts because of a linkage between the NRA and a "full" pension benefit

level. We show that such a reform can reduce private welfare for the average worker, even when the overall

social welfare effect of the pension reform is strongly positive. This can make NRA increases unpopular

and difficult to implement. Second, if governments were to try and set an extremely high NRA, issues of

credibility may arise, and in turn only modest, gradual NRA increases may retain the effectiveness of such

reforms.

This paper contributes to the literature on behavioral welfare economics, reviewed by Bernheim and

Taubinsky (2018). To our knowledge, we provide the first welfare analysis under reference-dependent pref-

erences, one of the most prominent models in behavioral economics. Our characterization of welfare effects

in terms of direct and behavioral effects and sufficient statistics is closely related to existing work studying

welfare in the presence of other behavioral biases (e.g. Chetty et al., 2009; Mullainathan et al., 2012; Allcott

and Taubinsky, 2015; Allcott et al., 2019; List et al., 2023). In contrast to most of the literature, we allow for

normative ambiguity. This is crucial to making progress in settings like reference dependence, where such

ambiguity has been recognized as a key obstacle to welfare analysis. Our notion of normative ambiguity

builds on foundational work on behavioral revealed preferences by Bernheim and Rangel (2009), and on

Goldin and Reck (2022), who use a similar approach to examine the welfare economics of default options.

We connect behavioral welfare economics with the rich literature on reference dependence itself, re-

viewed by O’Donoghue and Sprenger (2018). Seminal theoretical contributions on modeling reference-

dependent preferences include Kahneman and Tversky (1979), Tversky and Kahneman (1991) and Kőszegi

and Rabin (2006). A large number of studies document the empirical relevance of reference dependence

for individual decision-making. Most closely related to our empirical application is the evidence from field

settings described above (e.g. Camerer et al., 1997; DellaVigna et al., 2017; Homonoff, 2018; Rees-Jones,

2018). Existing work on reference dependence largely focuses on positive analysis of behavior and has so

far refrained from formal welfare analysis. The main contribution of our paper is to provide this welfare

analysis. Our results can be used to derive novel policy implications for the wide range of contexts where

reference-dependent preferences have been shown to matter.

Our empirical application relates to a recent literature on retirement behavior, which documents the

reference point character of statutory retirement ages (Behaghel and Blau, 2012; Seibold, 2021; Lalive et al.,

2022; Gruber et al., 2022) and responses to financial retirement incentives (e.g. Brown, 2013; Manoli and

Weber, 2016; Gelber et al., 2020; Duggan et al., 2023). Applying our theoretical findings to the retirement

context complements recent approaches to the welfare effects of pension reforms (Haller, 2022; Kolsrud

et al., 2023). In particular, we consider how incorporating reference dependence, which is important in

explaining real-world retirement behavior, shapes these welfare effects.

The remainder of this paper proceeds as follows. Section 2 introduces the model and characterizes indi-

vidual welfare, Section 3 turns to the sufficient statistics for social welfare, Section 4 presents the empirical

application to retirement behavior, and Section 5 concludes.
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2 Individual Welfare, Reference Points, and Prices

In this section, we characterize the individual welfare effects of changes in reference points and of price

changes. We show how these generally depend on two key factors: the form of reference-dependent payoffs,

and whether reference-dependent payoffs are judged to be normative or behavioral. We then examine

which properties of reference-dependent payoffs are sufficient to pin down first-order welfare effects, and

we consider how these are shaped by various functional form restrictions from prior literature.

2.1 Setup

Behavior. Our goal is to understand the welfare of an individual with reference-dependent preferences.

The individual chooses a good x ∈ R and a background good y ∈ R subject to a linear budget constraint

with income z. The exogenous price of x is p, and the price of good y is normalized to 1. The individual max-

imizes a utility function U (x, y), consisting of quasi-linear utility over x and y plus a reference-dependent

payoff from consuming x with an exogenous reference point r ∈ R.

max
x,y

U (x, y, r) = u(x) + y + v(x, r)

subject to px+ y = z.

(1)

We label U (x, y) decision utility because it generates behavior; this may be distinct from normative utility

or welfare (Kahneman et al., 1997; Bernheim and Taubinsky, 2018). Following prior work on reference

dependence, we call u(x) + y intrinsic utility: utility conferred by a consumption bundle separately from

any reference-dependent payoffs. Intrinsic utility represents the choices the individual would make in a

counterfactual and potentially unobserved frame where reference-dependent payoffs are not present. We

assume an interior solution, and that u′ > 0 and u′′ < 0 everywhere.

One key difficulty our analysis faces is that the literature has proposed many different functional forms

of reference-dependent payoffs v(x, r). The formulation of payoffs often prioritizes explaining particu-

lar moments of observed behavior, while maintaining tractability (see O’Donoghue and Sprenger, 2018).

However, the welfare consequences of different formulations of reference dependence have not yet been

systematically explored. In order to do this, we begin by putting minimal structure on reference-dependent

payoffs. We then characterize the features of v(x, r) that shape key welfare effects.

Assumption 1. There are two real functions µ and ν such that

v(x, r) = ν(µ(x)− µ(r)), and (2)

1. (Differentiability) µ(z) is everywhere differentiable with µ′ > 0; ν(z) is everywhere continuous, and everywhere

differentiable except at z = 0,

2. (Gain-Loss Utility) ν(0) = 0,

3. (Loss Aversion) The left and right derivatives of ν(z) at z = 0 exist, with ν′
−
(0) > ν′+(0).

Assumption 2.

1. (Sub-Domain Monotonicity) ν(z) is monotone over the domain (−∞, 0) and over the domain (0,∞).
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2. (No Diminishing Sensitivity) ν′′(z) = 0 for any z 6= 0.

Assumption 1 encompasses the key features held in common by virtually all formulations of reference-

dependent payoffs considered in the literature. The individual evaluates an amount of good x according

to the gain or loss relative to the reference point r. The function µ governs the units of gains and losses.

Prior work considers either gain-loss utility over amounts of the good (µ(z) = z) (Tversky and Kahneman,

1991), or gain-loss utility over utils (µ(z) = u(z)) (Kőszegi and Rabin, 2006). The function ν determines

how much the size of the gain or loss affects the individual’s willingness to pay for good x. Assumption 1.2

requires that the reference-dependent payoff is zero when there is no gain or loss. Assumption 1.3 captures

the empirical phenomenon of loss aversion: around the reference point, willingness to pay for x is higher in

the loss domain (x < r) than in the gain domain (x > r). This implies a kink in the utility function, i.e. a

discontinuous change in marginal utility, at x = r.3

Assumption 2 puts additional structure on reference-dependent payoffs, which is not necessary for our

general characterization of welfare effects but will help us sign key welfare effects later on. Prior literature

typically assumes that payoffs are monotonic over gains and losses globally and that individuals prefer to

increase gains and shrink losses (i.e. ν′ ≥ 0 everywhere). We are slightly more flexible and require in As-

sumption 2.1 that payoffs are monotonic in the gain and loss domain separately; i.e. ν′ is not necessarily

same-signed for z > 0 and z < 0. This allows us to nest a wider class of potential payoff formulations

consistent with behavioral data, including multi-dimensional reference dependence. In Assumption 2.2, we

follow much of the literature on reference dependence in deterministic environments and rule out “dimin-

ishing sensitivity,” which would require ν(z)′′ < 0 for z > 0 and ν′′(z) > 0 for z < 0. Diminishing sensitivity

is sometimes considered in work on choice under uncertainty, but there is little empirical support for it in

the deterministic case (see O’Donoghue and Sprenger, 2018). Nevertheless, we characterize individual wel-

fare under diminishing sensitivity in Appendix B.5. Introducing diminishing sensitivity has no first-order

impact on welfare when individuals choose options near the reference point, while it can modify welfare

effects under more extreme gains or losses.

Welfare. Another key challenge for welfare analysis is, as O’Donoghue and Sprenger (2018) put it, “the

question whether gain-loss utility should be given normative weight.” We view the answer to this question

as a normative judgment the social planner has to make about whether to respect reference-dependent

payoffs or regard reference dependence as a bias. In particular, we parameterize the planner’s judgment by

π ∈ {0, 1}, and express normative utility as

U∗(x, y) = u(x) + y + πv(x, r). (3)

We denote indirect utility at a given price and reference point by w(p, r) ≡ U∗(x(p, r), y(p, r)).

How does our welfare approach relate to revealed preferences? If π = 1, reference dependence is judged

to be normative, U = U∗, and the individual’s revealed preferences correspond to welfare. If instead π = 0,

reference dependence is judged as a bias, and equation (3) defines a utility function that represents the

choices the individual should make in order to maximize welfare. In this case, normative utility function

3One alternative type of reference dependence we do not consider here is a utility notch (a discontinuity in the level of utility) rather
than a utility kink (a discontinuity in marginal utility) at the reference point (see e.g. Allen et al., 2017). The kink formulation is by far
the most commonly adopted one in the literature, and it is better in line with much of the existing empirical evidence. For instance,
the retirement age distribution shown in Figure 1 does not exhibit any "missing mass" around the NRA, as would be predicted under
a utility notch (see the discussion in Seibold, 2021).
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equals intrinsic utility without including reference-dependent payoffs.4 As welfare under quasi-linearity

is money metric by construction, we can directly compare individual welfare under π = 1, welfare under

π = 0, and intrinsic utility. A key statistic for welfare effects will be intrinsic willingness to pay, which simply

equals u′(x) in our framework.

This welfare approach to reference dependence is closely related to adaptations of revealed preference

analysis in other behavioral settings where individual choices do not necessarily reveal normative prefer-

ences (e.g. Chetty et al., 2009; Allcott and Taubinsky, 2015; Allcott et al., 2019; Goldin and Reck, 2020). Our

notion of welfare with normative ambiguity encoded in π is most similar to Bernheim et al. (2015) and

Goldin and Reck (2022) who allow for ambiguity about whether default effects reflect biases or normative

preferences. We discuss the relationship of our analysis to the foundational work on revealed preference

analysis with behavioral frictions by Bernheim and Rangel (2009) in Appendix D.

2.2 Main Individual Welfare Effects

2.2.1 Welfare Effects of Changing Reference Points

Can Policy Influence Reference Points? We begin by studying the welfare effect of a change in the ref-

erence point. Our motivation stems from mounting empirical evidence that reference points can be influ-

enced by policy across a number of contexts. Later on, our empirical application builds on Seibold (2021)

who shows that reference dependence explains why many individuals retire precisely at statutory retirement

ages even in the absence of financial incentives to do so. Moreover, Seibold (2021) documents that reforms

to statutory retirement ages have strong behavioral effects, shifting the bunching mass in the retirement

age distribution toward the new statutory age, which suggests that such reforms shift individual reference

points. Another key example is Rees-Jones (2018), who finds that the distribution of tax liabilities due at

the time of tax filing exhibits sharp bunching at zero and missing density above zero. This suggests that

income tax withholding creates an arbitrary reference point at zero tax due, with associated loss aversion

over the tax liability at the time of filing. Moreover, evidence from laboratory experiments suggests that ex-

perimental treatments can shift reference points: for instance, a prominent experiment by Kahneman et al.

(1990) shows that individuals’ valuation of a good (a coffee mug) depends on whether subjects are told they

already own the mug at the start of the experiment. This "endowment effect" suggests that the treatment

changes the reference point toward a consumption bundle including the mug.5

Given all the evidence that reference points are influenced by policy, we argue that characterizing the

welfare effects of changing reference points is valuable. Naturally, real-world policy changes might affect

more than just r. For example, reforms that shift the Normal Retirement Age (NRA) typically change both

reference points and, via an institutional linkage between the NRA and pension benefit schedules, individ-

ual budget constraints. For any policy P that affects a reference point r(P ), we can express the welfare

effect of this policy as dW
dP = ∂W

∂P + ∂W
∂r

∂r
∂P . Our theory characterizes the welfare effect of the change in

reference point itself, that is ∂W
∂r . Because other potential effects on welfare contained in ∂W

∂P will depend

on the specific policy under consideration, our view is that they are best dealt with in applications. For

instance, in our empirical application we are able to quantify the total welfare effects of real-world pension

reforms including the linkage to benefits described above. Similarly, while empirical evidence shows that

4Note that when x = r, normative utility and decision utility coincide for any π. This is a consequence of Assumption 1.2, which
together with equation (3) rules out any other behavioral biases.

5There are two potential reasons why willingness to accept may be greater than willingness to pay in such contexts: loss aversion
over goods like the mug, and loss aversion over money. We discuss this further in Section 2.3. See O’Donoghue and Sprenger (2018)
for a more detailed summary of the experimental literature on reference dependence.
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reference points can be influenced by policy, there is little existing guidance on the magnitude of ∂r
∂P , which

will likely vary across applications. Thus, our theoretical approach does not rely on any specific magnitude

of this term, and it can be applied to any environment where there is a policy that affects reference points

by some amount.

General Characterization: Direct and Behavioral Welfare Effects. With reference-dependent preferences,

individual choices can fall into three domains. We call the range of prices and reference points under which

x < r the loss domain L ≡ {(p, r)|x(p, r) < r}, and we similarly define the gain domain G ≡ {(p, r)|x(p, r) >

r} and the reference domain R ≡ {(p, r)|x(p, r) = r}. Note that because of the kink in decision utility

at x = r, the R domain has positive measure, which matches the stylized empirical fact of bunching at

reference points (Allen et al., 2017; Rees-Jones, 2018; Seibold, 2021).

Outside the R domain, we can apply the envelope theorem to the consumer maximization problem from

equation (1) in order to characterize the welfare effect of a change in r. This yields

(p, r) /∈ R =⇒ wr = −(1− π)vxxr︸ ︷︷ ︸
Behavioral Effect

+ πvr,︸︷︷︸
Direct Effect

(4)

where the partial derivatives vx and vr are evaluated at observed demand. For the π = 1 case (refer-

ence dependence is normative), equation (4) is the classic envelope result: the first-order welfare effect of

a change in r includes only its direct effect on utility, without regard to behavioral responses (Milgrom

and Segal, 2002). Intuitively, this direct effect arises because the reference-dependent gain or loss in v(x, r)

changes with r, holding behavior x fixed. In contrast, when π = 0 (reference dependence is a bias), there

is no direct welfare effect of r because reference-dependent payoffs do not enter welfare. However, the

envelope theorem no longer eliminates the effect of behavioral responses on welfare in this case. The be-

havioral welfare effect equals the impact of the change in r on consumption of x times the marginal in-

ternality, which is defined as the (money-metric) welfare effect a marginal change in x along the budget

constraint,
dU∗(x,z−px)

dx

∣∣∣
x=x(p,r)

(Mullainathan et al., 2012; Allcott and Taubinsky, 2015; Allcott and Kessler,

2019). In our context, the marginal internality equals −(1− π)vx, reflecting the consumption distortion due

to reference-dependent payoffs present under π = 0.

An important issue in characterizing welfare effects under reference dependence is that the above result

fails to obtain in the R domain. The problem occurs because of the non-differentiability in v at x(p, r) = r.

Using Assumption 1.2, however, we can derive a similar characterization for the R case:

vR(x, r) ≡ (1− π)U (x, z − px) + πU (r, z − pr)

By Assumption 1.2, (p, r) ∈ R =⇒ w(p, r) = vR(x(p, r), r)

(p, r) ∈ Int R =⇒ wr = (1− π)vRx xr.︸ ︷︷ ︸
Behavioral Effect

+ πvRr︸︷︷︸
Direct Effect

(5)

When we evaluate the derivatives, the expression simply becomes

(p, r) ∈ Int R =⇒ wr = u′(r)− p. (6)

One could derive equation (6) more directly based on Assumption 1.2, but equation (5) helps us to interpret

the overall effect in terms of direct versus behavioral effects. To understand this interpretation, suppose the

individual consumes at the reference point because they are trying to avoid incurring a loss. In the interior of
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the R domain, this represents a corner solution, whereby increasing r induces them to consume even more

of good x to avoid further losses. When π = 0, this occurs due to bias, and the resulting behavioral welfare

effect equals the behavioral response times the marginal internality as in equation (4). Note that in the R

domain, xr = 1 and the marginal internality is
dU∗(x,z−px)

dx

∣∣∣
x=x(p,r)

= (1 − π)[u′(r)− p] = vRx (x(p, r), r).

On the other hand, when π = 1, the welfare effect of increasing r occurs due to moving the location of a

corner solution for those optimally choosing to consume at the corner, which is a direct welfare effect (cf.

Moore, 2022).

Hence, equation (5) allows us to characterize the welfare effect of changing r analogously to equation

(4), where the direct effect matters for welfare under π = 1, while the behavioral effect matters under π = 0.

Since welfare effects are pinned down by the derivatives of v(x, r) outside the R domain, it is useful to

compare welfare effects in the R domain to these derivatives. We find that

(p, r) ∈ Int R =⇒ vx(r
−, r) < vRx (r, r) < vx(r

+, r), (7)

where vx(r+, r) = ν′+(0)µ
′(r) is the derivative as x approaches r from the right, and vx(r−, r) is the analo-

gous left derivative.

Taken together, equations (4) and (6) provide a characterization of the first-order welfare effect of a

shift in the reference point starting from any initial point.6 To quantify this welfare effect, knowledge of

the derivatives vx(x(p, r), r) and vr(x(p, r), r) and of π is sufficient outside the R domain. In the R case,

knowledge of the left and right derivatives of v(x(p, r), r) with respect to x around x(p, r) = r would

bound welfare according to (7); fully pinning down welfare in this domain requires knowledge of intrinsic

marginal utility u′(r).

The Sign of Welfare Effects. The general characterization of welfare effects above is valid under the weak

requirements of Assumption 1. Next, we study how the sign of welfare effects depends on the formulation

of reference-dependent payoffs v(x, r). Assumption 2 puts some additional structure on the derivatives of

this payoff function that helps us sign welfare effects in a straightforward way.

Lemma 1. Under Assumptions 1 and 2.1, at least one of the following must be true:

• (Everywhere Increasing) vx ≥ 0 for all x 6= r.

• (Everywhere Decreasing) vx ≤ 0 for all x 6= r.

• (Single-Peaked) vx ≥ 0 for all x < r, and vx ≤ 0 for all x > r.

In words, Assumptions 1 and 2.1 admit three possibilities for the sign of the derivative vx(x, r): reference-

dependent payoffs are either everywhere increasing in x, or everywhere decreasing, or have a maximum at

the reference point.

Proposition 1. Signing the Welfare Effects of Reference Point Variation.

Maintain Assumptions 1 and 2 and consider any (p, r) that is not on the boundary of R.

P1.1. If v is Everywhere Increasing, then wr(p, r) ≤ 0. If v is Everywhere Decreasing, then wr(p, r) ≥ 0.

6Technically, welfare effects in the boundary of the set R are not covered by this characterization. In these cases, existence of the
derivative wr is not assured without further assumptions. However, the boundary of R is measure zero and behavior and welfare are
continuous around the boundary. Thus, our main welfare results are unaffected by this limitation.
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P1.2. Let r∗ be the reference point such that u′(r∗) = p. If v is Single-Peaked, then wr(p, r) ≥ 0 when r ≤ r∗, and

wr(p, r) ≤ 0 when r ≥ r∗. Consequently, r∗ is an individually optimal reference point.

Proposition 1 contains two key results. First, the sign of the welfare effect wr depends on which of the

three cases from Lemma 1 obtains. Proposition 1.1 states that when reference-dependent payoffs increase

willingness to pay for good x everywhere, then lowering the reference point weakly increases welfare.

When the payoffs decrease the willingness to pay for x, on the other hand, a higher reference point weakly

increases welfare. As a consequence, in the Everywhere Increasing case, the lowest possible reference point

would be individually optimal; in the Everywhere Decreasing case, the highest possible reference point

would be individually optimal. In the third case, where the payoff increases willingness to pay for x in the

loss domain and decreases it in the gain domain, we find that welfare is maximized where the reference

point equals the intrinsic optimum, which we define as the optimal choice of x according to intrinsic utility.

Proofs of these and all other theoretical results are in Appendix C.

Second, Proposition 1 implies that the sign of the welfare effect wr does not depend on the judgment

about whether reference dependence is normative or a bias, i.e. the choice of π. This result is perhaps

surprising, given that the literature on reference dependence so far has considered ambiguity over π as an

important obstacle for welfare analysis. Our analysis suggests that whether a change in the reference point

increases or decreases welfare instead turns on the properties of reference-dependent payoffs, which in turn

determine which of the cases from Lemma 1 apply. Nevertheless, we note that π does affect the magnitude

of welfare effects, and it determines whether welfare effects are driven by direct or behavioral effects.7

2.2.2 Welfare Effects of Price Changes

Empirical evidence suggests that reference dependence also matters for responses to price instruments, such

as taxes (e.g. Homonoff, 2018). Under Assumption 1, we can characterize the individual welfare effect of a

marginal price change in terms of direct and behavioral effects:

wp = −x(p, r)︸ ︷︷ ︸
Direct Effect (Roy)

− (1− π)vxxp.
︸ ︷︷ ︸
Behavioral Effect

(8)

Again, this expression holds everywhere apart from the boundary of the R domain. When π = 1, equa-

tion (8) is Roy’s identity (under quasi-linearity). A price increase has a negative direct welfare effect be-

cause, holding behavior fixed, the chosen consumption bundle becomes more expensive. Unlike reference

point variation, whether a direct effect occurs does not depend on normative judgments because the direct

effect of a price change operates through intrinsic utility rather than through reference-dependent payoffs.

The behavioral welfare effect, on the other hand, only matters when π = 0. As before, the behavioral effect

equals the behavioral response times the marginal internality −(1 − π)vx.8 Equation (8) implies that the

sign of welfare effects of price change are generally ambiguous, as they depend both on the formulation of

reference-dependent payoffs and on the normative judgment about reference dependence.

Our analysis of price changes builds on prior work on welfare in the presence of internalities (Mul-

lainathan et al., 2012; Allcott and Taubinsky, 2015; Allcott et al., 2019). We apply these insights to a model of

7If Assumption 2.2 was relaxed, π would also matter for the individually optional reference point. We show this in Appendix B.5
where we allow for diminishing sensitivity.

8Note that in the R domain, xp = 0 locally, so the behavioral welfare effect equals zero. An additional technical issue is that vx
does not exist in the R domain because of non-differentiability. In order to evaluate wp in this case, we can resort to a solution similar
to equation (5), replacing vx with vRx whenever (p, r) ∈ R. As xp = 0 in any case, this issue is inconsequential for the magnitude of
welfare effects.
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reference dependence with a potential internality shaped by normative ambiguity. Our results also have im-

plications for optimal corrective taxation. Equation (8) suggests that setting a marginal tax equal to (1−π)vx

everywhere can fully correct any biases in individual decision-making. However, when π = 1 the optimal

corrective tax is zero everywhere. Thus, whether reference-dependent behavior creates scope for corrective

taxation depends critically on normative judgments.9

2.3 Reference-Dependent Payoff Formulations

Next, we analyze how the structure implied by various formulations of reference-dependent payoffs shapes

key welfare effects. We consider a wide range of formulations considered in the literature on reference

dependence, and we propose a new flexible reduced-form specification that encompasses the key properties

of earlier formulations.

Figure 2 illustrates observed demand and intrinsic demand, which are critical for our welfare analysis,

under selected formulations of reference-dependent payoffs. We provide a detailed analysis of all payoff

formulations discussed in this section in Appendix B. In particular, Appendix Tables B1 and B2 summarize

the key features for welfare, welfare effects, and individually optimal reference points for all formulations.

2.3.1 Formulations Used in Prior Literature

We begin with a payoff formulation often used in applications of reference dependence, which we call Simple

Loss Aversion:
v(x, r) = 1{x ≤ r}Λ(x− r). (9)

Under Simple Loss Aversion, the individual receives a negative payoff in the loss domain, which increases

in the size of the loss relative to r. The strength of loss aversion is governed by the parameter Λ > 0.

With this formulation, vx = 1{x < r}Λ. As Panel (a) of Figure 2 shows, observed demand coincides with

intrinsic demand in the gain domain, but exceeds intrinsic demand by Λ in the loss domain. If we regard

reference dependence as a preference (π = 1), this reflects a normative willingness to pay to avoid losses. If

reference dependence is a bias (π = 0), this reflects a marginal internality leading to over-consumption of

x. Under π = 1, decreasing the reference point would exert a positive direct effect on welfare, while under

π = 0 decreasing the reference point would mitigate over-consumption of x. With Simple Loss Aversion, the

Everywhere Increasing case from Lemma 1 obtains. Thus, regardless of the normative judgment encoded in

π, decreasing the reference point weakly increases welfare. However, the Single-Peaked Case also obtains,

implying that the intrinsic optimum r∗ is individually optimal. In fact, the individual is indifferent between

r∗ and any lower reference point, and hence the set of individually optimal reference points is (−∞, r∗].

In Panel (b) of Figure 2, we consider another commonly used formulation where, in addition to loss

aversion, the individual also receives gain utility proportional to the size of the gain relative to r, which is

governed by a parameter η (Tversky and Kahneman, 1991).10 In the case of loss aversion with gain utility,

individuals in the gain domain can also experience welfare improvements from a lower reference point

because decreasing the reference point increases their gains. Again, the Everywhere Increasing case applies,

and thus decreasing the reference point increases welfare regardless of π. Under π = 0, any reference point

low enough such that consumption falls into the gain domain is individually optimal, and under π = 1

9As an example, we derive the optimal corrective tax schedule under Simple Loss Aversion in Appendix B.1.
10Note that we slightly re-parameterize the reference-dependent payoff function for the case of loss aversion with gain utility relative

to (Tversky and Kahneman, 1991). The reparameterized version is equivalent in terms of behavior and welfare, and more easily
comparable to Simple Loss Aversion.
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the lowest possible reference point is individually optimal. Unlike Simple Loss Aversion (nested by η = 0),

with η > 0, the Single-Peaked case no longer obtains and the intrinsic optimum is a sub-optimal reference

point.

Most empirical work on reference-dependent preferences adopts one of these two formulations. In many

contexts, this is based on valid empirical or institutional considerations. For instance, our empirical appli-

cation initially adopts a Simple Loss Aversion model, which can well explain observed empirical retirement

patterns and is in line with the institutional framing of the Normal Retirement Age. However, our the-

oretical results reveal that these common formulations implicitly impose significant ex-ante structure on

the direction of key welfare effects. In particular, decreasing reference points always improves welfare.11

Our results highlight the importance of carefully considering other potential formulations which may carry

different welfare implications.

The goal of many empirical studies of reference dependence is identifying the loss aversion parameter

Λ. Panels (a) and (b) of Figure 2 confirm that Λ governs the main behavioral phenomenon often associated

with reference dependence, namely the extent to which behavior is modified in the loss versus the gain

domain. Meanwhile, the gain utility parameter η is not essential for predicting behavior and can generally

not be identified separately from the parameters of intrinsic utility without further functional form restric-

tions. This is evident from Figure 2, where observed demand has identical properties in Panels (a) and (b),

such that many combinations of η and u′(x) would be consistent with observed behavior. We prove this

behavioral isomorphism between Simple Loss Aversion and loss aversion with gain utility in Appendix B.2

(see also Barseghyan et al., 2013).

Two-Dimensional Reference Dependence. Some of the theoretical literature postulates that reference de-

pendence could be present over multiple goods (e.g. Tversky and Kahneman, 1991; Kőszegi and Rabin,

2006). In part due to difficulties of empirical identification, such multi-dimensional reference dependence is

examined less often in applications. Two notable exceptions are Crawford and Meng (2011) and Behaghel

and Blau (2012), who consider reference dependence over two goods, consumption and leisure. In an exten-

sion of our empirical application, we will allow for a similar type of two-dimensional reference dependence.

Multi-dimensional loss aversion is also considered in classic experiments, which test for differences between

willingness to accept (WTA) and willingness to pay (WTP ) for a good and the equivalent monetary gain

(EG) (Kahneman et al., 1990; Tversky and Kahneman, 1991; O’Donoghue and Sprenger, 2018). Experiments

tend to find that the difference between WTA and EG exceeds the difference between EG and WTP , which

suggests that loss aversion over goods is the dominant form of reference dependence (rather than loss aver-

sion over money).

To capture such two-dimensional reference dependence, we suppose in Panel (c) of Figure 2 that the

individual is loss averse over both x and y, and the two-dimensional reference point lies on the budget

constraint.12 In this case, the gain domain for good x corresponds to the loss domain for good y, and vice

11While welfare under reference dependence has not been explicitly analyzed in prior literature, the fact that adopting this payoff
structure induces individuals to prefer lower reference points is part of the motivation by Kőszegi and Rabin (2006) to assume that the
reference point is the expected intrinsic optimum (under rational expectations).

12Assuming that the reference point lies on the budget constraint is a useful way to discipline two-dimensional reference dependence,
and this assumption is often empirically plausible. For instance, in our empirical application the Normal Retirement Age may function
as a reference point both in terms of the retirement age and in terms of consumption. Note that this assumption is weaker than
the central assumption about the origins of reference points in Kőszegi and Rabin (2006), which requires that the reference point
equals the intrinsic optimum (i.e. r = r∗) in the deterministic case. If the two-dimensional reference point is not on the budget
constraint, this will generate policy implications similar to one-dimensional reference dependence, such as lowering reference points
in all dimensions separately. Also note that two-dimensional reference initially entails a slight abuse of our notation because we
specify reference-dependent payoffs as a function of x but not of y. This issue is resolved when we re-formulate the two-dimensional
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FIGURE 2: OBSERVED DEMAND AND INTRINSIC DEMAND FOR SELECTED PAYOFF FORMULATIONS

(a) Simple Loss Aversion (b) Loss Aversion with Gain Utility

(c) Two-Dimensional Loss Aversion (d) Gain Discounting

(e) Flexible Reduced Form

Notes: The figure illustrates observed and intrinsic demand under different formulations of reference-dependent payoffs. Each panel
shows observed demand (in black), gain domain demand (in blue), loss domain demand (in red), and intrinsic demand for the payoff
formulation indicated by the panel title. Intrinsic demand coincides with gain domain demand in Panel (a) and with loss domain
demand in Panel (d), and is shown in grey in the other panels. The vertical differences between these demand curves are key for
welfare analysis; in each panel we illustrate how these relate to parameters of the respective payoff formulation. Note that the reference
dependence parameters Λ, η, Λy , Λx, and Γ are all required to be positive.14



versa. Hence, intrinsic demand for a good lies everywhere between observed gain and loss domain demand.

This generates ambiguous welfare effects of changing the reference point, as opposite-signed direct and

behavioral effects occur above and below reference point for good x. We return to this issue below.

Loss Aversion or Gain Discounting? Finally, a more exotic possibility which would satisfy Assumptions

1 and 2, but has not yet been considered in the literature, is that individuals are not loss averse but instead

they discount gains. The literature usually assumes that the kink in revealed preferences at the reference

point (Assumption 1.3) results from excess negative payoffs over losses, but in principle such a kink could

be driven by discounting payoffs in the gain domain. As Panel (d) of Figure 2 shows, Gain Discounting can

generate observed demand curves that look indistinguishable from Simple Loss Aversion. However, Gain

Discounting features an inverse relationship between intrinsic demand and observed demand, and as a re-

sult the sign of key welfare effects would be reversed. In particular, increasing the reference point would

increase welfare. This occurs because Gain Discounting falls into the Everywhere Decreasing case from

Lemma 1. While Gain Discounting represents a valid theoretical possibility,13 the common practice of inter-

preting reference dependence in terms of loss aversion is rooted in empirical evidence on the psychological

and neurological origins of loss aversion.14

2.3.2 Flexible Reduced-Form Formulation

As the discussion above illustrates, key welfare effects depend on the formulation of reference-dependent

payoffs one adopts. We next propose a Flexible Reduced-Form specification that encompasses the key prop-

erties of prior formulations in a parsimonious way, while imposing less ex-ante structure on welfare than

formulations like Simple Loss Aversion. Introducing a new parameter β ∈ [0, 1], we specify

v(x, r) =




(1− β)Λ(x− r), x ≤ r

−βΛ(x− r), x > r.
(10)

The parameter Λ governs the size of the utility kink implied by Assumption 1.3, similar to equation (9). The

parameter β can be interpreted as capturing the extent of deviation from Simple Loss Aversion, which is

nested by β = 0. For instance, with two-dimensional reference dependence, β reflects the relative magnitude

of loss aversion over good y versus over good x with two-dimensional formulation. Moreover, β can capture

the relative importance of loss aversion versus gain discounting over x, where β = 1 corresponds to pure

gain discounting.

More generally, the Flexible Reduced-Form can be thought of as a linear approximation of any pay-

off formulation that falls into the Single-Peaked case from Lemma 1. Note that this includes formulations

formulation as a function of x only, as shown in Panel (c) of Figure 2. See Appendix B.6 for a detailed discussion of two-dimensional
reference dependence.

13Under π = 0, the discussion about loss aversion vs. Gain Discounting can be viewed as an application of the behavioral revealed
preference framework of Bernheim and Rangel (2009), where a key question is which "frame" reveals welfare-relevant choices. While
loss aversion designates observed demand in the gain domain as normative, Gain Discounting would instead designate observed
demand in the loss domain as normative.

14The psychological literature suggests that loss aversion has emotional origins (see Rick (2011) for a review). For instance, an
influential study by Kermer et al. (2006) finds that loss aversion derives from an affective forecasting error: people wrongly project
that they will experience pain if they incur a loss, so they try to avoid losses. More recent evidence suggests that the pain of incurring
losses is real rather than a forecasting error, and that emotion-regulation strategies mitigate loss aversion (Sokol-Hessner et al., 2009).
This idea is further borne out by neurological research associating activity in the amygdala with loss aversion and the incursion of
perceived losses (De Martino et al., 2010; Sokol-Hessner et al., 2013; Sokol-Hessner and Rutledge, 2019). In particular, the analysis
of the neurological responses to the incursion of perceived gains and losses in Sokol-Hessner et al. (2013, Figure 4) provides direct
evidence in favor of Loss Aversion over Gain Discounting.
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falling into more than one case, such as Simple Loss Aversion and Gain Discounting. We formalize this

approximation in Appendix B.7. Compared to other potential approximations spanning the same class of

payoff formulations, equation (10) is the most tractable as it is linear in x and r. As the length of the vertical

segment in the demand curve is pinned down by the size of the kink in v(x, r), the approximation is per-

fectly accurate close to the reference point for every formulation satisfying our assumptions. This includes

formulations with non-linearities in v(x, r), such as a utils specification for µ(z) as suggested by Kőszegi

and Rabin (2006), and diminishing sensitivity, which we analyze in detail in Appendices B.3 and B.5, re-

spectively. Further away from the reference point, the Flexible Reduced-Form remains accurate for linear

payoff formulations, but the approximation can become less acculate for non-linear formulation. Pinning

down how much non-linearities matter for extreme gains or losses would be straightforward in theory, but

quantifying these effects empirically would require stronger structural assumptions about the functional

form of payoffs.15

In summary, a wide range of reference-dependent payoff formulations proposed by prior work are ap-

proximated by equation (10). The main exception is one-dimensional loss aversion with gain utility, (Panel

(b) of Figure 2), as this formulation falls in the Everywhere Increasing but not the Single-Peaked case. We

argue that it is appropriate to abstract from this specific formulation for two reasons.16 First, as discussed

above, loss aversion with gain utility is isomorphic in terms of behavior to Simple Loss Aversion, which is

encompassed by the Flexible Reduced-Form formulation. However, the additional parameter η is difficult

to identify empirically, and there is little direct empirical support for gain utility. Second, other formulations

with gain utility can be encompassed by the Flexible Reduced-Form formulation. In particular, we show in

Appendix B.6 that two-dimensional loss aversion with gain utility falls in the Single-Peaked case, as long as

gain domain payoffs in either dimension are not too strong.

Welfare Analysis with the Flexible Reduced-Form Formulation. Panel (e) of Figure 2 depicts observed

demand and intrinsic demand under the payoff formulation from equation (10). From Proposition 1, we

know that welfare effects depend on whether the reference point is above or below an individual’s intrinsic

optimum r∗. Thus, welfare effects differ across domains, into which individuals with different intrinsic

optima sort. Figure 3 illustrates individual welfare effects of changes in the reference point and how these

can be decomposed into the direct and behavioral effects from equations (4) and (5). Figure 4 shows a

corresponding illustration for price changes and how these relate to the direct and behavioral effects from

equation (8).

In the loss domain L, welfare effects of reference points and prices resemble the intuition we discussed

above for commonly used loss aversion models. In Panel (a) of Figure 3, increasing r increases utility

losses if reference dependence is normative (π = 1), generating a negative direct welfare effect. There is a

negative internality of size −(1− β)Λ, but a behavioral welfare effect does not arise in L because there is no

behavioral response to a change in r in this case. In Panel (a) of Figure 4, a price increase always leads to a

negative direct welfare effect. Additionally, a positive behavioral welfare effect arises under π = 0 because

the individual initially over-consumes x, and increasing the price helps correct this internality. Similarly, in

Panel (c) of Figure 3, an individual in the "upper part" (where r > r∗) of the reference domain R experiences

15Our Flexible Reduced-Form formulation departs from Kőszegi and Rabin (2006) in that we do not assume that the strength of loss
aversion is the same across dimensions, which would require β = 0.5 in equation (10). Our subsequent analysis suggests that such an
assumption would place significant ex-ante structure on welfare.

16We could nest loss aversion with gain utility and other Everywhere Increasing formulations if we allowed β < 0, and we could
nest Everywhere Decreasing formulations with β > 1. Propositions 2 and 3.1 would hold for these cases, but Proposition 3.2 requires
β ∈ [0, 1].
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a negative direct welfare effect from increasing r under π = 1. If π = 0, a welfare effect of the same

magnitude arises, but this can now be interpreted as a behavioral effect (see equation (5)). In Panel (c) of

Figure 4, only a negative direct welfare effect occurs in the R domain, as a marginal price change does not

change behavior in this case.

Under Simple Loss Aversion, i.e. setting β = 0 in equation (10), these would be the only welfare effects.

Thus, decreasing reference points robustly improves welfare under Simple Loss Aversion, and depending

on π, this is driven by direct or behavioral welfare effects. The welfare effect of a price change is ambiguous,

though, as direct and behavioral welfare effects go in opposite directions. Compared to Simple Loss Aver-

sion, allowing for a more flexible structure of reference dependence with β > 0 in equation (10) modifies

these results. In particular, opposite-signed direct and behavioral effects occur in the gain domain G. In

Panel (b) of Figure 3, a positive direct welfare effect arises from increasing the reference point under π = 1,

and in Panel (d) a positive direct or behavioral welfare effect arises in the "lower part" (where r < r∗) of

the R domain. There is a positive marginal internality of size βΛ > 0 in G, and thus increasing the price

generates a negative behavioral welfare effect in Panel (b) of Figure 4. Hence, under the Flexible Reduced-

Form formulation, the sign of the total welfare effect of changing the reference point depends on β. The

sign remains robust to the choice of π, though, as Proposition 1 shows is generally true. The welfare effect

of price changes depends both on β and π under the Flexible Reduced-Form formulation.

3 Social Welfare

In many real-world contexts, the planner is constrained to set a uniform policy across all individuals. This

is true for both reference points and price-based policies. For instance, in our empirical application the

government has to set a Normal Retirement Age and financial retirement incentives applying to all workers.

Without this constraint and if each individual’s preferences were known, the planner could set individually

optimal reference points and prices such that a first-best solution is attained. In this section, we confront the

second-best problem and analyze the social welfare effects of changing reference points and prices faced by

heterogeneous individuals.17 We derive sufficient statistics formulas that express welfare effects in terms of

estimable quantities.

3.1 Setup

We consider a population of individuals of measure one. Individual behavior and welfare are characterized

as above by equations (1) and (3), and we adopt the Flexible Reduced-Form of reference-dependent payoffs

from equation (10). To capture heterogeneity, we suppose that each individual is characterized by preference

parameters i = (θi, Λi,βi), where the vector θi captures heterogeneity in the parameters of intrinsic utility.

We write ui(x) ≡ u(x, θi) and we use similar notation for other individual-specific functions. We specify

Utilitarian social welfare as

W (p, r) ≡
∫

i
w(p, r; θi, Λi,βi)dFi(i) ≡ E[wi(p, r)]. (11)

17A similar logic is encountered in other settings where the government has to set uniform policies for behavioral agents, such as
optimal sin taxes (Allcott and Taubinsky, 2015) or optimal default options (Goldin and Reck, 2022).
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FIGURE 3: WELFARE EFFECTS OF CHANGING THE REFERENCE POINT

(a) Loss Domain (L) (b) Gain Domain (G)

(c) Reference Domain (R), r > r∗ (d) Reference Domain (R), r < r∗

Notes: The figure illustrates the welfare effects of changing the reference point under the Flexible Reduced-Form specification from
equation (10), for individuals in the loss domain (Panel a), the gain domain (Panel b), and the reference domain (Panels c and d). For
the reference domain, Panels (c) and (d) consider the two cases where the reference point is either below or above intrinsic optimum
r∗. Each panel plots observed demand (in black) and gain domain demand (blue), loss domain demand (red), and intrinsic demand
(grey). Red shaded areas denote welfare losses and blue shaded areas denote welfare gains. The legend of each panel provides further
interpretation of the main welfare effects.
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FIGURE 4: WELFARE EFFECTS OF CHANGING PRICES

(a) Loss Domain (L) (b) Gain Domain (G)

(c) Reference Domain (R)

Notes: The figure illustrates the welfare effects of changing the prices under the Flexible Reduced-Form specification from equation (10),
for individuals in the loss domain (Panel a), the gain domain (Panel b), and the reference domain (Panel c). Each panel plots observed
demand (in black) and gain domain demand (blue), loss domain demand (red), and intrinsic demand (grey). Red shaded areas denote
welfare losses and blue shaded areas denote welfare gains. The legend of each panel provides further interpretation of the main welfare
effects.
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Using Utilitarian social welfare implies that we abstract from distributional concerns, which we defer to

future work.18 Henceforth we use the expectations operator for integrals like equation (11). It is also useful

to introduce notation for the set of individuals in the three domains, which we call the L, G and R groups.

We let L(p, r) ≡ {i|xi(p, r) < r} and define G(p, r) and R(p, r) analogously.19 To economize on notation,

we mostly suppress the (p, r) inputs.

3.2 Main Social Welfare Effects

Building on our characterization of individual welfare in the G, L, and R domains from the previous section,

we can express social welfare by aggregating welfare across the G, L, and R groups. Because individual

welfare evolves continuously at the boundary of the three domains, any effects that arise when an individual

transitions from one group to another are second-order (a marginal change in welfare for a marginal group

of individuals). We provide the following sufficient statistics characterizations of the welfare effects of

changes in reference points and prices:

Proposition 2. Sufficient Statistics Characterizations

P2.1. Up to a first-order approximation, the social welfare effect of a change in the reference point ∆r is

∆W ≈ ∆rπ {E[βiΛi | i ∈ G]P [i ∈ G]−E[(1− βi)Λi | i ∈ L]P [i ∈ L]}

− ∆rE
[
u′i(r)− p

∣∣ i ∈ R
]
P [i ∈ R]. (12)

P2.2. If the distribution of u′i(r)− p is independent of (βi, Λi) and locally uniform for i ∈ R(p, r), the social welfare

effect of ∆r can be further approximated as

∆W ≈ ∆rπ {E[βiΛi | i ∈ G]P [i ∈ G]−E[(1− βi)Λi | i ∈ L]P [i ∈ L]}

+ ∆rE

[
Λi

(
βi −

1

2

) ∣∣∣∣ i ∈ R

]
P [i ∈ R]. (13)

P2.3. Up to a first-order approximation, the social welfare effect of a change in price ∆p is

∆W ≈ ∆p(1− π)
{
E
[
βiΛixp,i

∣∣ i ∈ G
]
P [i ∈ G]−E

[
(1− βi)Λixp,i

∣∣ i ∈ L
]
P [i ∈ L]

}

− ∆pE[xi(p, r)] (14)

= ∆p(1− π)

{
E

[
βiΛiεi

xi

p

∣∣∣∣ i ∈ G

]
P [i ∈ G]−E

[
(1− βi)Λiεi

xi

p

∣∣∣∣ i ∈ L

]
P [i ∈ L]

}

− ∆pE[xi], (15)

where εi is the price elasticity of demand for good x.

Proposition 2.1 characterizes the first-order social welfare effect of a change in r under arbitrary hetero-

geneity in preference parameters. Equation (12) shows how normative ambiguity and payoff formulation

matter for social welfare in the second-best scenario. The first two terms of the equation correspond to di-

rect welfare effects arising for the L and G groups under π = 1. These effects depend on π, Λ, β and the

proportions of individuals in the L and G groups, P [i ∈ L] and P [i ∈ G]. The last term captures the welfare

18For instance, one could straightforwardly incorporate distributional concerns by introducing social welfare weights (Saez and
Stantcheva, 2016), as in Allcott et al. (2019) and Kolsrud et al. (2023).

19To be clear, the L domain is a set of prices and reference points at which an individual chooses x(p, r) < r. With individual
heterogeneity this domain is individual-specific. The L group is the set of individuals choosing x(p, r) < r at a given price and
reference point.
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effect for the R group, whose magnitude is independent of π. This term is more difficult to characterize

because u′i(r) is generally unobserved. Thus, proposition 2.2 provides a further approximation assuming

a locally uniform distribution of intrinsic willingness to pay across individuals in the R group.20 In this

case, the mean of u′i(r)− p in the R group falls halfway between the bounds from equation (7), that is at

Λi(βi −
1
2
). With this approximation, π, Λ, β, P [i ∈ L], and P [i ∈ G] are the sufficient statistics for the total

social welfare effect of changing the reference point. Setting equation (13) equal to zero yields a first-order

condition for a second-best optimal r.

In the case of Simple Loss Aversion, which is commonly adopted in applications, the welfare effect of

changing the reference point is unambiguously signed. Setting β = 0 in equation (13), we find ∆W/∆r ≥ 0,

and the inequality is strict as long as there are some individuals in the L or R group. In fact, lowering the

reference point generates a Pareto improvement under Simple Loss Aversion, and the planner could achieve

the first-best outcome by setting r ≤ mini r
∗

i .

Proposition 2.3 provides a sufficient statistics characterization of the social welfare effects of a price

change. Compared to equation (14), equation (15) re-casts these effects in terms of the price elasticity of

demand for x. The first two terms capture behavioral welfare effects due to internalities materializing in

the π = 0 case. Behavioral effects carry opposite signs for the L and G groups, as individuals in L tend

to over-consume x while those in G tend to under-consume x. The last term of the equation captures the

negative direct welfare effect of a price change experienced by all individuals regardless of π.

In sum, these sufficient statistics formulas capture the welfare effect of reference points and prices in

terms of estimable objects. The reference dependence parameter Λ is the main estimation target of much

of the empirical literature on reference dependence, and demand elasticities ε are commonly estimated.

Moreover, the relative sizes of the L, G and R groups can simply be measured in cross-sectional data on

individual outcomes. For the parameter β, there are two possible ways forward. First, one could impose a

particular value, for instance if Simple Loss Aversion is the most plausible model of reference dependence

in a setting, this would imply β = 0. Second, one could try to empirically identify β. In Section 3.3, we show

that bunching methods can be used for this purpose. Finally, the parameter π of course remains a normative

judgment.

Externalities. In some settings, including our empirical application, a fiscal or another externality is present

and should be incorporated into welfare calculations. For a linear externality valued at α on the margin, the

welfare effect of a change in the reference point or a price change is simply the relevant effect from Proposi-

tion 2 plus αE[∆xi], that is the marginal externality times the change in demand for good x resulting from

the change in r or p. We illustrate the derivation of sufficient statistics formulas with a fiscal externality in

Appendix C.

3.3 Bunching at the Reference Point and Sufficient Statistics for Welfare

Our results above demonstrate that the reference dependence parameters Λ and β are key sufficient statis-

tics for welfare analysis. We next examine how bunching designs, which are commonly used in empirical

studies of reference dependence, can identify these parameters.

20Similar local uniformity assumptions are commonly adopted in bunching estimation (Kleven, 2016). This is closely related to our
approximation because the R group correspond to the set of bunchers at the reference point, and empirical identification of reference
dependence parameters often relies on bunching methods.
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Proposition 3. Identification from Bunching. Define a random variable ∆i = u′i(r)− p and denote its density

and cumulative distribution by f∆ and F∆. Assume that ∆, Λ and β are mutually independent.

P3.1. Excess bunching at xi = r is characterized approximately by

P [i ∈ R]

f∆(0)
≈ E[Λi] (16)

P3.2. The share of bunching that comes from the right – defined as the share of individuals who would choose to

consume more than r in the absence of reference-dependent payoffs – is approximately

P [r∗i > r|i ∈ R] ≈ E[βi] (17)

These approximations are based on a first-order Taylor approximation of F∆ around ∆ = 0; they are exact when f∆ is

locally uniform for i ∈ R(p, r).

Proposition 3.1 extends the well-known result that the size of the kink in preferences due to reference

dependence, given by Λ in our notation, can be identified from observed bunching at the reference point.

This insight is exploited by a number of empirical studies quantifying simple loss aversion models, in-

cluding Allen et al. (2017), Rees-Jones (2018) and Seibold (2021). Proposition 3.1 extends the result to all

reference-dependent payoff formulations encompassed by our Flexible Reduced-Form formulation. Note

that we characterize bunching in terms of willingness to pay for good x, whereby the density of intrinsic

willingness to pay plays the role of the counterfactual distribution. Intuitively, f∆(0) reflects how many in-

dividuals would choose x = r in the absence of reference-dependent payoffs, and relating the actual share

of individuals at the reference point to this counterfactual yields our measure of excess bunching. This result

can then be mapped onto bunching in terms of observed choices x, which can be readily estimated using

standard bunching methods, as we demonstrate in our empirical application.21

Proposition 3.2 is a novel result for the literature on reference dependence. The proposition states that the

direction of bunching pins down the parameter β, the other key sufficient statistic for welfare. In equation

(17), the right bunching share corresponds to the fraction of individuals whose intrinsic optimum exceeds

the reference point (r∗i > r). The right bunching share thus carries information about the direction in which

reference dependence modifies behavior relative to intrinsic utility. For instance, if we interpret β as the

relative strength of loss aversion over good y as opposed to good x, then the right bunching share identifies

the relative strength of loss aversion in either dimension. Note that empirically, the right bunching share

is more challenging to identify than the amount of bunching at a reference point itself. As we show in the

empirical application, identifying β is possible under some additional assumptions about the counterfactual

distribution of choices, but such assumptions might be subject to well-known critiques of bunching methods

(Blomquist et al., 2021).22

21 Note that when bunching is defined in terms of x, the curvature of u(x) additionally matters. We can show that for a sufficiently
small and homogenous Λ and a homogenous price elasticity ε, excess bunching in the distribution of x is approximately

P [i ∈ R]

fr∗ (r)
≈ ε

Λ

p
,

where fr∗ is the distribution of intrinsic optima. Thus, given an estimate of ε, observed bunching in x can identify Λ as a fraction of
the price. This result is closely related to how we estimate reference dependence in retirement behavior based on observed bunching
of retirement ages in Section 4.2.

22There are potential alternative approaches to identifying β. For example, one could try to directly measure individual choices in
the absence of reference dependent payoffs using methods developed by the literature on behavioral welfare economics (Chetty, 2009;
Allcott and Taubinsky, 2015; Allcott et al., 2019; Goldin and Reck, 2020). The approach we propose here is simple and closely related
to bunching methods commonly used to analyze reference dependence in field settings. We also note that the simplicity of equations
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4 Empirical Application: Reference Dependence in Retirement Behav-

ior

In this section, we present an empirical application of our theoretical results. Retirement behavior is one of

the most important contexts in which reference-dependent preferences have recently been documented. Our

empirical setting is that of Seibold (2021), who finds large bunching in the retirement distribution around

statutory retirement ages in Germany and argues that this phenomenon can be explained by workers perceiv-

ing those ages as reference points. In this context, our goal is to characterize the welfare effects of reforms

to the Normal Retirement Age, and reforms to financial incentives for delayed retirement. Such pension

reforms are often debated in practice and they are closely related to our theoretical results. After describing

the setting and mapping it into our theory, we present welfare results based on model simulations, and a

complementary set of results based on sufficient statistics.

4.1 Institutional Setting and Data

Germany has a pay-as-you-go pension system sharing many of its key characteristics with public pension

systems in other developed countries. The vast majority of German workers are covered by public pensions,

as enrollment is mandatory for most employees. Pension contributions are levied as a payroll tax on gross

earnings. Benefits are defined according to a pension formula based on a worker’s lifetime contribution his-

tory. Pension benefits are roughly proportional to lifetime income and there is relatively little redistribution.

The average net replacement rate is 53% (OECD, 2021), and public pensions are the main source of income

for most recipients.

The first key policy dimension for our purposes is given by statutory retirement ages. These are saliently

presented age thresholds used as reference points in the framing of retirement and benefit rules. Most im-

portantly, the Normal Retirement Age (NRA) is presented to workers as a “normal” age or time to retire in

information material, pension statement letters, and other official government communication. This fram-

ing translates into a general perception of the NRA as the reference age of retirement: for instance, a pension

reform that will increase the NRA to 67 is commonly known as “retirement at 67” in Germany.

The NRA is the most salient and latest statutory retirement age, but there are others in the system. In

addition to the NRA, there is a Full Retirement Age (FRA) from which a “full” pension is available. For

most workers in our analysis sample, the Normal and Full Retirement Ages coincide, but they can differ

for some. Thirdly, the pension system has an Early Retirement Age (ERA), the earliest age from which a

pension can be claimed, which we do not analyze directly. Overall, statutory retirement ages induce strong

retirement responses. Seibold (2021) documents that 29% of workers retire exactly in the month when they

reach a statutory retirement age. As we highlighted before, Figure 1 shows such sharp bunching for the case

of the NRA in our sample.

The second key policy dimension is financial retirement incentives. As in many other pension systems,

pension benefits are actuarially adjusted as a function of an individual’s retirement age. Hence, when a

worker chooses to retire later, there is an explicit upward adjustment of pension benefits on top of the

increase in their baseline pension due to additional contributions. In Germany, actuarial adjustment is

relatively low, however. Pensions increase by 3.6% per year of later retirement below the FRA, and there is

(16) and (17) comes at the cost of an independence assumption about preference parameters, which could be relaxed using tools from
this literature.
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no explicit adjustment between the FRA and the NRA, should they differ for a worker. The largest actuarial

adjustment occurs above the NRA, where a Delayed Retirement Credit (DRC) of 6% per year applies.

Two important features of these pension adjustment rules are worth noting here. First, benefit adjust-

ment is generally less than actuarially fair. For instance, Börsch-Supan and Wilke (2004) calculate that pen-

sion adjustment around age 65 would have to be between 7% and 8% per year in order to be actuarially

fair. Thus, there is a fiscal externality when workers change their retirement decision, whereby later re-

tirement entails a fiscal benefit to the pension system not internalized by workers. Second, the German

pension adjustment schedule creates a non-convex kink - an increase in the marginal return to work - at the

NRA. Notably, a similar kink is present in U.S. Social Security, which also features higher marginal pension

adjustment above the NRA due to the DRC.

In the empirical analysis, we use the data set of Seibold (2021), which is based on administrative data

covering the universe of German retirees who claim a public pension between 1992 and 2014 provided by

the German State Pension Fund (Forschungsdatenzentrum der Rentenversicherung (FDZ-RV), 2015). We

apply the same sample restrictions as Seibold (2021) and additionally restrict the sample to birth cohort

1946. The main reason to focus on one birth cohort is to simplify the analysis, as different cohorts face

different statutory retirement ages and benefit schedules due to various cohort-based pension reforms. We

use the full data for bunching estimation, while simulations are conducted on a 1% sample to facilitate

computation.

4.2 Model and Parameter Estimation

From our theoretical results, we know that the main determinants of welfare are the strength of loss aversion

(Λ) and the direction of loss aversion (β), together with the behavioral response to price changes, and the

relative number of individuals in the three groups (G,R,L). In the empirical application, we capture these

components parsimoniously in a static model of retirement behavior with reference dependence. As we

discuss above, a key challenge lies in identifying the parameter β. We follow two approaches to deal with

this. First, we adopt a Simple Loss Aversion model that assumes β = 0, similar to Seibold (2021). This initial

assumption is motivated by the empirical bunching patterns around the NRA from Figure 1. In particular,

the clearly visible drop in the density above the NRA suggests that much (if not all) of the bunching comes

from above, which is consistent with a model of loss aversion over leisure (see Section 4.6.1 for a detailed

discussion). Such a Simple Loss Aversion model is closely in line with most applied work on reference

dependence, and helps us build intuition about the mapping between theory and empirics. Of course, the

potential downside of the simple model is the ex-ante structure it implies for some welfare results. As a

second approach, we thus allow for a more flexible structure of reference dependence later on, where we

empirically estimate β and examine the robustness of key welfare effects.

We begin by adopting a Simple Loss Aversion model. Preferences of a reference-dependent agent are

given by23

Ui(C,R) = C −
ni

1 + 1
ε

(
R

ni

)1+ 1

ε

−





0 R < R̂

Λ̃(R− R̂) R ≥ R̂
(18)

where C is lifetime consumption and R is the worker’s retirement age relative to a career starting age

23The simple model we consider here can be interpreted as a reduced form of a more general model of dynamic labor supply. The
static version is sufficient to explain the key empirically observed retirement patterns (see e.g. Burtless, 1986; Brown, 2013; Manoli and
Weber, 2016) and provides a convenient way to model reference dependence in retirement behavior. Similarly, assuming that utility is
quasi-linear in consumption and iso-elastic in labor supply is convenient for the bunching strategy described below, and, though not
strictly necessary, it matches our theoretical setup from Section 2.1.
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normalized to 0. The parameter Λ̃ captures the strength of loss aversion. The heterogeneous parameter ni

reflects earnings ability at old age, where low ability increases disutility from postponing retirement; for our

purposes the distribution of ni will determine whether an individual is in the G,R, or L group under any

given policy. The parameter ε is the elasticity of the retirement age with respect to the implicit net-of-tax

rate, which is the relevant elasticity to price changes for our context.

Equation (18) yields a model of loss aversion over lifetime leisure. Intuitively, marginal disutility from

increasing labor supply beyond the retirement reference point R̂ is greater than marginal disutility from

approaching R̂ from the left, and the parameter Λ̃ determines the size of this kink in the utility function.

Such reference dependence in terms of the retirement age can be interpreted as loss aversion over leisure,

where workers perceive postponing retirement as a loss relative to a normal time to retire. Alternatively,

reference dependence could also be present over consumption, the other good in equation (18) (see e.g.

Behaghel and Blau, 2012). In Section 4.6, we allow for more flexible reference dependence along these lines.

Workers face a lifetime budget constraint that expresses consumption C as a function of R:

C(R) =
R−1

∑
t=0

δtwt(1− τ̃t) +
T

∑
t=R

δtB(R), (19)

where w is the gross wage per period, τ̃ is the payroll tax/pension contribution rate, T is the time of death,

and δ is the discount factor.24 The slope of the budget constraint, that is the marginal gain in lifetime

consumption possibilities C from delaying retirement by one period, defines the implicit net wage wnet =

dC/dR. Expressing the consumption gain as a fraction of the gross wage, the implicit net-of-tax rate is 1− τ =

wnet/w.

Bunching methods can be used to transparently identify key parameters of this model.25 In line with

Proposition 3, the model predicts bunching at the NRA when it serves as a reference point. As Seibold

(2021) shows, one can identify a marginal bunching individual, whose indifference curve would be tangent

to the budget line at some retirement age R∗ without reference dependence, and who is tangent exactly at

R̂ with reference dependence. All workers initially located between R̂ and R∗ bunch at the reference point,

while all individuals initially to the right of R∗ retire earlier but stay above the reference point. Individuals

to the left of the reference point leave their retirement age unchanged. Hence, the bunching mass B at a

retirement age reference point is given by

B =
∫ R∗

R̂
h0(R)dR ≈ h0(R̂)(R∗ − R̂)

where h0(R̂) is the height of the counterfactual retirement density at R̂. Based on the tangency conditions

of the marginal bunching individual, the excess mass b = B/h0(R̂) at a statutory retirement age can be

expressed as
b

R̂
=

(
1− τ

1− τ − ∆τ − Λ

)ε

− 1, (20)

where Λ = Λ̃/w is the reference dependence parameter normalized by the wage per period and ∆τ is the

size of the budget constraint kink that may be present at the threshold. Note that equation (20) is closely

related to the general bunching approximation from equation (16).26

24For simplicity, we abstract from the fact that pension benefits can only be claimed from the Early Retirement Age (ERA) onward if
the worker retires before the ERA.

25See Kleven (2016) for a general overview of bunching methods.
26In the absence of a kink at the threshold, we could directly approximate equation (20) via equation (16) (see Appendix E.2). Also

note that we assume that Λ and ε are homogeneous across individuals for simplicity. We scale Λ by the wage, which corresponds to
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We use the identification strategy of Seibold (2021) in order to estimate Λ and ε. In particular, we lever-

age the fact that bunching is observed at the NRA, but also at some standard, “pure” financial incentive

discontinuities, i.e. budget constraint kinks or notches without the presence of a statutory age. Indexing

these various thresholds by j, bunching can be written as

bj

R̂j

=

(
1− τj

1− τj − ∆τj − Λ ·Dj

)ε

− 1 + ξj (21)

where Dj is an indicator for the NRA and ξj is an error term.27

Figure 1 shows the empirical retirement age distribution around the NRA among birth cohort 1946.

There is sharp, large bunching at age 65, the location of the NRA. The presence of bunching is in line

with the NRA serving as a reference point for retirement. While sizable bunching at the NRA has been

documented across a number of countries, it is particularly striking in the German case because there is a

non-convex kink at the NRA, providing a negative incentive to retire exactly at this age. The figure also

shows a counterfactual density fitted as a polynomial to the empirical distribution, excluding the bunching

region. Expressing the bunching mass relative to the counterfactual, the overall excess mass at the NRA is

around 31, implying that workers are roughly thirty times more likely to retire exactly in the month of the

NRA than we would expect from the smooth counterfactual distribution.

Appendix Table A1 shows these bunching estimates and resulting parameter estimates. In Panel A,

the average excess mass at the NRA is 31.3, although there is a negative local financial incentive to retire

corresponding to a kink size of –0.28. At other, pure financial incentive discontinuities faced by the same

workers, the average excess mass of 6.73 is smaller, although these entail sizable financial incentives to retire

with an average kink size of 0.47. The bunching observations can be used to estimate equation (21), yielding

the estimates of Λ = 0.46 and ε = 0.06 shown in Panel B of the table. These parameter estimates for birth

cohort 1946 are similar to the estimates reported in Seibold (2021) for a broader range of cohorts.

4.3 Conceptualizing Pension Reforms

In the light of demographic change and resulting fiscal challenges for pension systems, two types of pension

reforms are often considered in order to induce workers to postpone retirement. A first common policy is

an increase in the Normal Retirement Age (or similar statutory retirement ages). For example, the NRA will

be increased to age 67 in the U.S. by 2027, to 67 in Germany by 2031, and to 68 in the U.K. by 2046. This type

of reform entails large effects on retirement behavior (Mastrobuoni, 2009; Staubli and Zweimüller, 2013;

Cribb et al., 2016), which is largely driven by shifting individuals’ reference points to a higher retirement

age (Behaghel and Blau, 2012; Seibold, 2021; Lalive et al., 2022).

Two important aspects are worth noting about NRA reforms. First, while an increase in the NRA sets

the reference point at a higher retirement age, such a reform corresponds to decreasing the reference point

in terms of lifetime leisure in the model from Section 4.2. Thus, we should conceptually think of a reform

that increases the NRA as one that lowers the reference point for leisure in the sense of Propositions 1 and 2.

Second, while our theoretical analysis considered changes to reference points holding all else fixed, changes

to the NRA typically entail some change in individuals’ lifetime budget constraints, because pension benefit

schedules are linked to the NRA. In the German context, the DRC is only available from the NRA onward.

Thus, increasing the NRA also moves the non-convex kink in the budget constraint to the new NRA. More-

the price of leisure. See footnote 21 for a brief discussion of this scaling.
27The empirical specification also controls for whether the NRA coincides with the FRA.

26



over, if the NRA coincides with the FRA, the age from which the “full” pension is available moves upwards

with the reform, such that increasing the NRA effectively implies a benefit cut across the board (see e.g.

Mastrobuoni, 2009). For instance, a worker retiring at age 64 incurs a penalty of 7.2% relative to full benefits

when the NRA is 66, but only a 3.6% penalty when the NRA is 65.

The second type of policy often considered for pension reforms are changes to financial incentives. In

particular, a natural way to incentivize workers to retire later is to offer higher marginal pension benefit

increases for later retirement. This is often done by increasing the DRC, providing higher actuarial adjust-

ment to workers retiring beyond the NRA. For instance, the U.S. DRC has been gradually increased from

3% to 8% per year over the last decades (Duggan et al., 2023). Conceptually, a higher DRC creates a higher

marginal return to work, i.e. a higher price of lifetime leisure in the loss domain above the NRA. Whether inten-

tionally or not, the DRC can thus be interpreted as an implicit “corrective tax” on leisure, which incentivizes

individuals to move away from the reference point of the NRA by increasing their retirement age.

4.4 Welfare Effects of Pension Reforms: Simulation Approach

Our first empirical approach uses the model from Section 4.2 to simulate individual retirement behavior

under different policy scenarios and to calculate the welfare effects of pension reforms.

4.4.1 Simulation Methods

We simulate the welfare effects of pension reforms, building on Seibold (2021), who calculates effects of

similar reforms on behavior and fiscal balances. The first reform is an increase in the NRA from 65 to 66.

As discussed above, a change in the NRA not only shifts individuals’ retirement reference points, but also

entails pension benefit cuts for some workers because of the link between the NRA and pension benefit

calculation. We simulate two variants of the NRA reform, without and with associated benefit cuts. While

the former is useful in isolating the effect of changing reference points, the latter more accurately captures

a "realistic" pension reform. The other type of reform we consider is an increase in the DRC. In order to

anchor this change in financial incentives, we increase the credit from the current level of 6% to 10.4% per

year, which yields the same effect on the average retirement age as the first reform.

The policy simulations proceed in the following steps. First, we require a counterfactual distribution of

retirement ages – a distribution of retirement ages in the absence of reference dependence. We follow the

standard approach to obtain this counterfactual distribution and fit a polynomial to the observed distribu-

tion, excluding the bunching region around the NRA. In the absence of reference dependence, individuals

bunching at the NRA would be distributed across retirement ages above the NRA, and we simulate this

un-bunching by distributing the bunching mass across ages 65 and above.28 We then assign counterfactual

retirement ages to individuals in the data based on ranks of actually observed retirement ages.

Second, we simulate optimal retirement ages for each individual under the baseline policy environment

where the NRA is 65 and the DRC is 6% per year. Third, we simulate optimal retirement ages under each

counterfactual policy scenario. For this, we simulate individual lifetime budget constraints from equa-

tion (19) as in Seibold (2021), based on observed individual earnings and contribution histories, and choose

28The empirical retirement age distribution offers little information about the counterfactual shape of this upper tail, as few individ-
uals actually retire above the NRA in the data (see Figure 1). In the baseline simulations, we distribute the bunching mass following a
fitted Pareto distribution above age 65, corresponding to a moderately decreasing shape above the NRA. Appendix Figure A1 shows
the counterfactual density under alternative assumptions about the tail of the distribution, including a uniform and a lognormal dis-
tribution above the NRA. Reassuringly, these alternative distributional assumptions have little impact on our simulation results, as
Appendix Table A2 shows.
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the retirement age that maximizes utility from equation (18) subject to the budget constraint and the refer-

ence point given by the NRA.

Fourth, we compute the difference between each counterfactual scenario and the baseline scenario for

the following outcomes: contributions to the pension system, benefits paid to workers, and workers’ lifetime

consumption. Moreover, we calculate the effects on disutility from work and reference-dependent payoffs

given the preferences in equation (18). Based on these, we can calculate the effects of each reform on the

fiscal balance of the pension system, on the welfare of workers, and on total welfare – the sum of fiscal

effects and individual welfare effects. All effects are scaled in terms of net present value at age 65, and in

line with Utilitarian social welfare we focus on average effects.

4.4.2 Main Simulation Results

Table 1 summarizes the effects of the two simulated pension reforms.

Increasing the Normal Retirement Age. In Column (1), we consider the stylized variant of the NRA re-

form without associated benefit cuts. Shifting the NRA by one year increases average actual retirement ages

by 4.5 months. Such a reform improves the fiscal balance of the pension system, even when mechanical

benefit cuts are absent. The positive fiscal effect arises due to a combination of workers paying pension con-

tributions for a longer period and a lower net present value of benefit payments, both of which arise when

individuals work longer and postpone retirement. The magnitude of the net fiscal effect is around +e6.4k

per worker. Next, the reform affects workers’ private welfare. Lifetime consumption increases by around

+e4.2k along with later retirement. Workers incur additional disutility from work because increasing the

NRA to 66 induces them to work up to one year longer. However, the increase in consumption outweighs

extra disutility from work. This reflects the behavioral welfare effect of a change in the reference point from

equations (4) and (5). The individual is consuming too much leisure when π = 0, so decreasing the reference

point over leisure by increasing the NRA has a corrective effect on behavior. Thus, we find that worker wel-

fare improves in the case of π = 0. The effect on total welfare is given by the sum of the individual welfare

effect and the net fiscal effect. Under π = 0, we find that total welfare increases by +e7.6k per worker.

In addition, if the planner places normative weight on reference dependence (π = 1), we should also

account for changes in reference-dependent payoffs due to the lower reference point in terms of lifetime

leisure. We can conceive of the overall change in reference dependence loss disutility as the sum of two

components: a negative component of -e6.8k due to additional disutility from work, and a positive compo-

nent of +e7.9k from the decrease in the reference point itself.29 When π = 1, the first of these modifies the

behavioral welfare effect relative to the case when π = 0. The total behavioral welfare effect when π = 1

is the sum of worker consumption, disutility from work, and reference-dependent disutility from work, to-

talling -e5.6k. We observe that this behavioral welfare effect and the net fiscal effect approximately offset

one another. This cancellation is a consequence of the envelope theorem, reflecting the theoretical idea that

the change in behavior induced by a change in the reference point has no first-order consequences for wel-

fare when π = 1.30 With the behavioral effect largely eliminated under π = 1, the direct welfare effect, i.e. the

effect on reference-dependent payoffs from the change in reference point itself, becomes the primary deter-

minant of the total welfare effect. We find a total welfare gain under π = 1 of +e8.7k, which is larger than

29See Appendix E.1 for details of this decomposition of reference dependence payoffs.
30The two effects only approximately offset each other in the simulation for two reasons. First, there is a small fiscal externality

because the pension system is less than actuarially fair. Second, the NRA increase by one year is a discrete reform, such that second-
order effects can matter.
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under π = 0, as we would expect from Proposition 2.1.31 Overall, as we expect from a Simple Loss Aversion

model, increasing the NRA improves welfare regardless of π, but whether this is driven by behavioral or

direct welfare effects depends on π.

Column (2) of Table 1 shows corresponding results for the more realistic variant of this reform, where

the NRA increase entails a benefit cut for workers retiring below the NRA. Note that the benefit cut causes a

parallel downward shift of budget constraints below the NRA. Under our assumption of quasi-linear utility,

this modification does not cause any change in retirement behavior. However, the realistic scenario leads

to important differences in the distribution of welfare changes between workers and the government. Due

to the benefit cut, the net fiscal effect increases to e10.0k, and the increase in worker consumption becomes

only e0.6k. Because this small consumption gain is insufficient to compensate workers for the additional

disutility from working longer, worker welfare now decreases under both π = 0 and π = 1. However,

total welfare effects remains large and positive. This realistic scenario reveals a paradox of NRA reforms

in practice: despite large social welfare gains, the average worker’s private welfare decreases as long as

increasing the NRA is linked to pension benefit cuts.

TABLE 1: WELFARE EFFECTS OF PENSION REFORMS

(1) (2) (3)
Policy 1: Normal Retirement Age to 66 Policy 2:

Stylized scenario: Realistic scenario: Delayed Retirement
without benefit cut with benefit cut Credit to 10.44%

Contributions collected +2,359 +2,359 +2,297

Benefits paid +3,999 +7,658 –4,038

Net fiscal effect +6,358 +10,017 –1,741

Worker consumption +4,230 +571 +12,147

Disutility from work –2,950 –2,950 –2,187

Worker welfare (π = 0) +1,280 –2,379 +9,960

Ref. dep. disutility from work –6,835 –6,835 –8,743

Ref. dep. utility from ref. point +7,946 +7,946 0

Worker welfare (π = 1) +2,391 –1,268 +1,217

Total welfare (π = 0) +7,638 +7,638 +8,219

Total welfare (π = 1) +8,749 +8,749 –523

Notes: The table shows results from simulations of two pension reforms, an increase in the Normal Retirement Age from 65 to 66 and
an increase in the Delayed Retirement Credit to 10.44%. Both reforms yield the same effect on the average actual retirement age (+4.5
months). Simulations are conducted for birth cohort 1946. All effects are calculated among workers retiring at age 63 and above, and
are in Euros per worker, in terms of net present value at age 65. The signs the effects correspond to influence on welfare. Total welfare
is the sum of net fiscal effect and change in worker welfare.

Increasing the Delayed Retirement Credit. Column (3) of Table 1 shows the effects of the increase in the

DRC to 10.4%. By construction, this policy achieves a sizable increase in the average retirement age like

31Note that the quantitative similarity between total welfare under π = 0 and π = 1 in our empirical setting is not a generic feature
of the simple loss aversion model. Rather, it occurs because the number of individuals retiring exactly at the NRA (the R group) is
large. With a larger L group, the additional positive welfare effect occurring only under π = 1 could be significantly bigger.
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the NRA increase. Unlike the NRA reform, the fiscal effect of the DRC increase is negative, at –e1.7k per

worker. Workers contribute longer in this scenario, but the positive effect on contributions is more than

offset by the large increase in benefit payments.32 Due to the higher pension benefits and the additional

earnings, worker consumption increases strongly. Disutility from work becomes larger too, but less so than

under the NRA reform because workers account for their individual marginal disutility of work in deciding

how much later to retire. Thus, there is a large positive effect of around +e10.0k on worker welfare under

π = 0.

However, the sizable behavioral response leads to an increase in reference-dependent disutility from

work, reducing individual welfare by –e8.7k when this concern carries normative weight under π = 1.

This large negative effect arises because workers increase their retirement ages relative to an unchanged

reference point, pushing them further into the loss domain over leisure. Taking this additional welfare

effect into account, individual welfare increases only by +e1.2k under π = 1. Finally, the total welfare

effect is positive at +e8.2k under π = 0, as the large gain in individual welfare strongly dominates the

negative fiscal effects. However, the total welfare effect turns slightly negative under π = 1, when workers

experience large disutility from moving away from the reference point.

The large difference in welfare effects between the π = 0 and the π = 1 cases is directly related to our

theoretical results. When π = 0, there is an internality from workers consuming too much leisure out of loss

aversion. Increasing the DRC acts as a corrective tax on leisure, so this reform has a large positive behavioral

welfare effect by (partially) correcting the internality (see equation (8)). In contrast, when π = 1, the change

in worker welfare is much smaller because the internality is not present. Moreover, in this case, the basic

intuition of the envelope theorem implies that the effect on worker welfare are virtually entirely offset by

the net fiscal effect. Thus, the DRC acts as a distortionary tax on leisure under π = 1. The initial 6% credit

is relatively close to actuarial fairness, so the distortion (and the resulting negative total welfare effect) are

relatively small. However, distortions can become large when considering larger changes to the credit, as

we find in the extended simulations below.

4.4.3 Extended Simulations

We next extend the simulations to a wider range of policy reforms. This provides further insights into the

relationship between the policy simulations and our theoretical results, albeit some additional caution is

warranted in interpreting the findings because we are extrapolating further from observed data.

While Table 1 considers a specific change to the Normal Retirement Age, Panel (a) of Appendix Figure

A2 shows results for a range of simulated counterfactual NRAs between 65 and 67 in monthly increments.

The fiscal balance of the pension system increases monotonically with the NRA. Moreover, the figure con-

firms the positive welfare effects of increasing the NRA under the loss aversion over leisure. Total welfare

increases monotonically with the NRA both under π = 0 and π = 1, where the welfare increase is stronger

under π = 1.

Similarly, Panel (b) shows results for a range of simulated values of the DRC. We simulate credits be-

tween 6% and 36% per year in half-percentage point increments. The fiscal effects of increasing the DRC

tend to be large and negative, because the large increases in pension benefit payments dominate increases in

contributions received by the pension system. There is, however, a small range just above the current value

of 6% over which the net fiscal effect of increasing the credit is positive, as the pension system moves closer

32That increasing the DRC is less fiscally desirable reflects an idea from Loewenstein and O’Donoghue (2006). Policies like increasing
the NRA, which they might call a “psychic subsidy” for working, are less fiscally costly than an actual subsidy for working.
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to actuarial fairness. Relative to the status quo, any increase in the credit throughout the range we consider

we consider improves total welfare under π = 0, reflecting workers’ initial over-consumption of leisure.

Under π = 1, however, the corrective benefits of a higher credit are wiped out by reference-dependent

disutility from later retirement, so that total welfare decreases for all but small increases in the credit.

A key difference between increasing the NRA and changing the DRC is that the total welfare effects

of the latter reforms are not monotonic. In fact, the extended simulations imply an optimal level of the

DRC. The welfare-maximizing credit depends strongly on whether the planner places normative weight on

reference dependence. Under π = 0, total welfare is maximized at a very large DRC of 20.4% p.a., more than

three times its current level. This results speaks to a possible role for the DRC to correct inefficiently early

retirement under π = 0. Such a large marginal return to work, or implicit price of leisure, induces workers

to retire later and move towards their optimal retirement age. The optimal level of the DRC is much lower

under π = 1. Intuitively, there is no reason for the planner to incentivize workers to move away from the

NRA and retire later when reference dependence is not judged as a bias. The only rationale to increase the

DRC slightly above its current level is to correct the inefficiency that arises from the fiscal externality, due to

less than actuarially fair pension adjustment. Indeed, the optimal DRC of 7.8% p.a. that we find is close to

previous calculations of actuarially fair adjustment in the German context (Börsch-Supan and Wilke, 2004).

Overall, these simulations illustrate many of the key ideas from our theoretical results. Using a model of

Simple Loss Aversion over leisure, the welfare effects of changing reference points carry an unambiguous

sign. Increasing the NRA, which corresponds to lowering reference points in terms of lifetime leisure, yields

increases in total welfare regardless of the normative judgment of reference dependence. Increasing the

DRC, which corresponds to an implicit tax on leisure in the loss domain, increases total welfare only if

reference dependence is judged as a bias. However, increasing the DRC beyond its actuarially fair level

decreases welfare if reference dependence carries normative weight.

4.5 Using Sufficient Statistics to Calculate Welfare Effects of Pension Reforms

As a second empirical approach, we can use the sufficient statistics formulas from Proposition 2 to ap-

proximate the welfare effects of pension reforms. Compared to the full individual-level simulations, this

approach is substantially easier to implement. Adapting equation (13) to the retirement context, we can

express the first-order welfare effect of a small change in the Normal Retirement Age as

∆W ≈ ∆R̂ π E[Λwi| i ∈ L] P [i ∈ L]

+ ∆R̂ E

[(
Λ

2
+ τi

)
wi

∣∣∣∣ i ∈ R

]
P [i ∈ R] (22)

where, as in Section 4.2, R̂ is the retirement age reference point (given by the NRA), w is the gross wage

per period, τ is the implicit tax rate on working for an additional period, and Λ is the normalized refer-

ence dependence parameter. Building on equation (15), the welfare effect of a small change in the Delayed

Retirement Credit can be approximated as

∆W ≈

(
E

[
{−τi − (1− π)Λ}wi

∂lLi
∂[wi(1− τi)]

∆τiwi

∣∣∣∣∣ i ∈ L

]
P [i ∈ L]

)
(23)

where lL is demand for lifetime leisure in the loss domain and ∆τ is the change in the implicit tax rate

induced by the reform.
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In applying our general sufficient statistics formulas from Section 3.2 to the retirement setting, a few

aspects are worth noting. First, we have to take into account the fiscal externality of the pension system in

calculating welfare effects. The fiscal externality is captured by the the implicit tax τw, which leads to a pos-

itive effect on government revenue when policies induce workers to retire later. In Appendix C, we provide

more details of how the sufficient statistics formulas are modified in the presence of fiscal externalities.33

Second, because we estimate the reference dependence parameter scaled as a percentage of the gross wage,

it enters the formulas as Λ̃ = Λw. Third, the relevant price elasticity in equation (23) is the responsiveness of

lifetime leisure to the implicit net wage. As we have estimated the retirement age elasticity ε and l = T −R,

we can calculate this object as ∂lL

∂[w(1−τ )]
= − ∂RL

∂[w(1−τ )]
= −ε RL

w(1−τ−Λ)
. Finally, we note that τ , which we

define as the implicit tax rate on working for an additional period, enters with the opposite sign compared

to the case where the tax is levied on a consumption good.

It is straightforward to implement the sufficient statistics formulas (22) and (23) empirically. We require

values of the reference dependence parameter Λ and the price elasticity ε, which we have estimated, as well

as information on average wages and implicit tax rates, which we directly calculate from the data. Appendix

Table A3 summarizes all parameter values used as inputs into the formulas.

Table 2 shows results based on the sufficient statistics approach. For comparison, welfare effects based

on the simulation approach are displayed in the lower panel of the table as well. Column (1) shows total

welfare effects our main NRA reform, which increases the NRA by one year to 66. The sufficient statistics

approach yields a welfare effect of +e6.6k under π = 0 and +e8.7k under π = 1, which is very similar to

the effects of +e7.6k and +e8.7k, respectively, from the simulation approach. In Column (2), the sufficient

statistics formulas yield a welfare effect of +e2.9k under π = 0 and +e1.1k under π = 1 for the main DRC

reform. Compared to the simulations, we observe that the approximation under-estimates the welfare effect

under π = 0 and even exhibits the wrong sign under π = 1. Why do these discrepancies occur? In the case

of π = 0, the under-estimation can be mainly explained by the large fraction of workers initially bunching

at the NRA in our empirical setting. Indeed, a large share of the total welfare effect of increasing the DRC

under π = 0 is driven by by individuals de-bunching away from the NRA towards older retirement ages.

However, the welfare effect of de-bunching is neglected by the sufficient statistics approach because it is a

second-order effect. In the case of π = 1, on the other hand, non-linearity in the welfare effects of increasing

the DRC plays a crucial role. Starting from slightly less than actuarially fair pension adjustment, increasing

the DRC first increases welfare but quickly reaches a maximum and then begins to fall (see Section 4.4.3).

The local approximation of the sufficient statistics approach captures the initial increase in welfare, but

cannot account for a large DRC reform lowering welfare.

To shed more light on the nonlinearity issue, Column (3) of Table 2 considers an alternative financial

incentive reform featuring a smaller increase in the DRC by only half a percentage point to 6.5%. Reassur-

ingly, sufficient statistics and simulation approaches produce similar results for the small reform. The gap

between the welfare effects shrinks to +e0.32k vs. +e0.56k in the case of π = 0. Under π = 1, the sufficient

statistics approach now correctly yields a small positive effect of +e0.12k, compared to a simulated effect of

around +e0.05k.34

Compared to the simulation approach, using the sufficient statistics formulas has advantages and disad-

33In particular, the sufficient statistics formula for the welfare effects of a price change somewhat simplifies when the price change
is induced by a tax change because, as in optimal tax models, the direct revenue effect offsets the direct effect of the tax change on
individual welfare.

34Remaining discrepancies between sufficient statistics and simulated effects occur due to a non-negligible share of workers de-
bunching away from the NRA even for small reforms, and simulated effects exhibiting some non-linearity even locally around the
status quo.
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TABLE 2: WELFARE EFFECTS OF PENSION REFORMS: SUFFICIENT STATISTICS VS. SIMULATION AP-
PROACH

(1) (2) (3)

Policy 1: Normal Retirement Age Policy 2: Delayed Retirement Credit

Main reform: to 66 Main reform: Small reform:
to 10.44% to 6.48%

Sufficient Statistics Approach

Total welfare (π = 0) +6,623 +2,935 +317

Total welfare (π = 1) +8,668 +1,093 +118

Simulation Approach

Total welfare (π = 0) +7,638 +8,219 +556

Total welfare (π = 1) +8,749 –523 +45

Notes: The table compares the total welfare effects of pension reforms under the sufficient statistics approach and the simulation
approach. The first two rows show results from sufficient statistics calculations based on equations (22) and (23), and the last two rows
show simulated welfare effects described in Section 4.4. Columns (1) and (2) consider the main reforms from Table 1, namely increasing
the Normal Retirement Age from 65 to 66 and increasing the Delayed Retirement Credit (DRC) to 10.44%. Column (3) additionally
shows effects of a small change in the DRC to 6.48%. All effects are calculated among workers retiring at age 63 and above, and are in
Euros per worker, in terms of net present value at age 65.

vantages. The sufficient statistics approach is substantially easier to implement than full-fledged microsim-

ulations. Estimates of reference dependence parameters and a price elasticity are required, which can be

obtained using reduced-form methods in many settings. However, as our results illustrate, the sufficient

statistics approach does not always provide accurate approximations for larger reforms. In our empirical

application, this issue arises in particular for price changes, where a large change in the DRC beyond its

actuarially fair level can lead to the opposite-signed welfare effect compared to a small change. Naturally,

such insights are beyond the scope of the local approximation of the sufficient statistics approach.

4.6 Two-Dimensional Reference Dependence in the Empirical Application

Our empirical results so far are based on a Simple Loss Aversion model with a reference point over leisure.

Next, we allow for a more flexible structure of reference dependence. Specifically, we we consider a model

of two-dimensional reference dependence, where loss aversion can also be present over consumption in

addition to leisure. This structure captures the main type of deviation from Simple Loss Aversion discussed

in the literature. Our analysis of the Flexible Reduced-Form specification from Section 2.3 demonstrates that

two-dimensional reference dependence is one reason for the parameter β to deviate from one, but once the

restriction on β is relaxed this implicitly nests a wider range of formulations.

4.6.1 Two-Dimensional Reference Dependence and Bunching at the NRA

We specify a model with reference dependence over both leisure and consumption in Appendix E.2. Pref-

erences are identical to the initial specification in equation (18) except that (i) we add a component of utility

to capture reference-dependent payoffs over consumption, and (ii) we denote the loss aversion parameter

in the leisure dimension by Λl, and in the consumption dimension by Λc. As we show in Appendix B, this
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model is one of the formulations approximated by the Flexible Reduced Form. Intuitively, the parameter

Λ from equation (10) corresponds to the combined strength of loss aversion in the two dimensions, and β

captures the relative importance of Λc, where a larger value of β implies a stronger degree of deviation from

loss aversion of leisure only.

With this more flexible structure of reference dependence, a key empirical challenge lies in identifying

the relative importance of reference dependence in the two dimensions. Figure 5 illustrates how bunching

methods can be used for this purpose. We compare the empirical retirement age distribution around the

NRA (Panel a) to stylized predicted distributions in three cases: when reference dependence is present only

over leisure (Panel b), only over consumption (Panel c), and over both consumption and leisure (Panel d).

Under reference dependence over leisure, the model from Section 4.2 predicts a density shift toward the

NRA from above, as individuals retire earlier due to reference dependence. Under consumption reference

dependence , on the other hand, a density shift toward the NRA from below is predicted, because workers

postpone retirement in order to increase consumption toward the reference point (see Appendix E.2 for

details). Thus, a downward shift of the density should occur above the NRA under reference dependence

over leisure, whereas there should be such missing density below the NRA under consumption reference

dependence. If reference dependence is present in both dimensions, there may be no visible density shift

around the NRA, as it occurs simultaneously on both sides.

The empirical retirement age distribution exhibits a clear downward shift above the NRA, which closely

resembles the prediction under a model with loss aversion over leisure only. This is our main motivation to

initially consider a Simple Loss Aversion model for our empirical analysis. However, we cannot necessar-

ily exclude any degree of reference dependence over consumption from visual inspection of the empirical

distribution. We implement two approaches to allow for some consumption reference dependence. First,

we investigate how different assumptions about the relative importance of reference dependence in the two

dimensions affect our welfare results. In particular, we calculate a range of combinations of Λl and Λc

consistent with observed bunching. We obtain these combinations by gradually moving the assumed share

of bunching from the left between 0 and 50%. Panel (a) of Appendix Figure A3 shows estimated param-

eter combinations consistent with the observed amount of excess mass. The higher the assumed share of

bunching from the left, the larger the implied Λc, but the smaller the implied Λl.
35 The labeled dots mark

parameter combinations corresponding to selected left bunching shares.

The possible range of Λc shown in Panel (a) of the figure is still relatively wide. Thus, our second

approach is to find a preferred estimate of Λc using the information contained in the observed retirement

age distribution around the NRA. In terms of the Flexible Reduced-Form formulation, this corresponds to

identifying the parameter β. Appendix E.2.2 provides more details of the estimation procedure we employ.

Intuitively, the counterfactual density is assumed to be continuous around the threshold, and the relative

number of bunchers from the left and from the right are inferred from the vertical difference between the

counterfactual and the actually observed density on both sides of the threshold. In general, this approach

requires a stronger assumption about the true relative density shifts being reasonably well approximated

by locally observed relative shifts, which might be subject to critique (Blomquist et al., 2021). Panel (b) of

Appendix Figure A3 illustrates the procedure and confirms that the implied density shift is much more

substantial above than below the NRA, with a point estimate of the left bunching share of β = 13.3%. This

yields a consumption reference dependence parameter of Λc ≈ 0.67 and a leisure reference dependence

parameter of Λl ≈ 0.46.

35Note that because the main good in the retirement model is leisure, bunching from the left in the figure is analogous to bunching
from the right in the sense of Proposition 3.2.
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FIGURE 5: BUNCHING AND THE DIMENSIONS OF REFERENCE DEPENDENCE

(a) Empirical Retirement Density
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Notes: The figure compares the empirical retirement age distribution around the Normal Retirement Age to the predicted distribution
under different models of reference dependence. Panel (a) shows the empirical retirement age distribution among German workers
born in 1946 as in Figure 1. Panels (b) to (d) show stylized density graphs, illustrating the predicted shape of the density under
different reference dependence models, adapted to the shape of the empirical density. Panel (b) corresponds to reference dependence
over leisure as described in Section 4.2, Panel (c) corresponds to reference dependence over consumption as described in Appendix
E.2, and Panel (d) corresponds to reference dependence in both dimensions.
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4.6.2 Policy Simulations with Two-Dimensional Reference Dependence

In line with the two approaches laid out above, we present two sets of results on the welfare effects of pen-

sion reforms under two-dimensional reference dependence. First, Table 3 shows simulated welfare effects

of the policies considered in Columns (2) and (3) of Table 1 under our preferred two-dimensional reference

dependence parameter estimates. The NRA reform can now be interpreted as decreasing the reference point

over leisure, while simultaneously increasing the reference point over consumption. The DRC reform still

corresponds to a price change in the loss domain over leisure.

TABLE 3: WELFARE EFFECTS OF PENSION REFORMS UNDER TWO-DIMENSIONAL REFERENCE DEPEN-
DENCE

(1) (2)
Policy 1: Normal Policy 2: Delayed

Retirement Age to 66 Retirement Credit to 10.44%

Contributions collected +2,885 +2,327

Benefits paid +7,800 –4,105

Net fiscal effect +10,685 –1,778

Worker consumption +2,337 +12,308

Disutility from work –5,392 –2,258

Worker welfare (π = 0) –3,055 +10,050

Ref dep disutility from work –9,015 –8,780

Utility from retirement ref point +10,198 0

Ref dep utility from consumption –1,295 0

Disutility from consumption ref point –4,806 0

Worker welfare (π = 1) –7,972 +1,270

Total welfare (π = 0) +7,630 +8,272

Total welfare (π = 1) +2,713 –509

Notes: The table shows results from simulations of pension reforms under two-dimensional reference dependence. The two pension
reforms we consider are an increase in the Normal Retirement Age from 65 to 66 as in Column (2) of Table 1 and an increase in the
Delayed Retirement Credit to 10.44% as in Column (3) of Table 1. Simulations are conducted for birth cohort 1946. All effects are
calculated among workers retiring at age 63 and above, and are in Euros per worker, in terms of net present value at age 65. The signs
the effects correspond to influence on welfare. Total welfare is the sum of net fiscal effect and change in worker welfare.

Fiscal effects of the two reforms remain similar to the baseline simulations: The NRA increase has strong

positive fiscal effects, whereas the DRC increase worsens the fiscal balance. More generally, the effects of

the DRC increase are similar to the baseline simulations: total welfare increases strongly under π = 0 but

decreases under π = 1. This occurs because the effects of the DRC on retirement behavior are concentrated

among workers at or above the NRA, where consumption reference dependence does not affect utility or

behavior.

The magnitude of welfare effects of the NRA reform differ more substantially from the baseline simu-

lation. As before, behavioral and fiscal effects are the first-order determinants of welfare when reference

dependence is a bias (π = 0) and direct effects are the main determinant when reference dependence is

judged to be normative (π = 1). In the π = 0 case, some of the behavioral effect now comes from workers

who are retiring too late out of loss aversion over consumption, and increasing the NRA exacerbates this
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internality (while still mitigating the internality for those above the NRA who retire too early).36 Neverthe-

less, the total welfare effect under π = 0 remains quite similar. When π = 1, the main difference between

Table 3 and our baseline simulations comes from workers retiring before the NRA, i.e. in the gain domain

for leisure. There is a negative direct welfare effect for this group in the two-dimensional model, which

counteracts the positive effect on those retiring after the NRA. Intuitively, workers retiring after the NRA

face a lower reference point for lifetime leisure, increasing their utility as in Table 1, but workers retiring

before the NRA face a higher reference point for lifetime consumption, which reduces their welfare. Be-

cause many individuals retire before the NRA, this direct effect substantially reduces the total welfare effect

under π = 1. Yet, the welfare effects of increasing the NRA remain positive both under π = 0 and π = 1 in

Table 3, which reflects that loss aversion over leisure is the dominant form of loss aversion according to our

preferred estimates.

Second, we calculate welfare effects of the NRA reform for a wider range of left bunching shares, corre-

sponding to a wider range of values of Λc, in order to account for the uncertainty that remains in estimating

these parameters in Figure A3. Panel (a) of Figure 6 shows welfare effects under π = 0 and π = 1 for left

bunching shares between 0 and 50%, which we consider an upper bound given the a priori evidence from

Figure 5 that most bunching originates from the right. The dashed vertical lines mark the cases where the

left bunching share is zero (corresponding to the baseline simulation under Simple Loss Aversion), 13% (our

preferred estimate) and 50% (the upper bound). The welfare effect of the NRA reform generally decrease

with the left bunching share. Under π = 0, the effect remains positive up until a large left bunching share

of 40%.37 Under π = 1, in contrast, the effect already turns negative at a share of 18%. The faster decline of

the welfare effect with π = 1 is due to growing negative direct effects on pre-NRA retirees.38

Panel (b) of Figure 6 goes one step further and shows which value of the NRA maximizes social welfare

in the simulations. As we know from the previous results, under loss aversion over leisure only, i.e. at

a left bunching share of zero, increasing the NRA always increases welfare. However, welfare does not

monotonically increase with the NRA when we allow for some consumption reference dependence. At

our preferred left bunching share estimate of 13%, increasing the NRA from 65 remains welfare-improving

regardless of π: the optimal NRA is above 68 when π = 0 and slightly below 66 when π = 1. However,

with sufficiently large consumption reference dependence, this result can change. When the left bunching

share exceeds 44% (for π = 0) or 29% (for π = 1), it becomes optimal to decrease the NRA below 65. Yet, the

optimal NRA is only marginally below 65 for any left bunching share.

These results illustrate how the direction of loss aversion matters for the welfare effects of pension re-

forms. In our empirical setting, increasing the NRA remains welfare-improving under our preferred es-

timates of two-dimensional reference dependence parameters regardless of the value of π. However, by

how much the NRA should increase beyond 65 depends on both normative judgments and the strength

of reference dependence over consumption. Furthermore, if consumption reference dependence was much

36As we focus on the realistic NRA reform scenario, the benefit cut below the NRA exerts a mechanical negative effect on the
consumption of workers retiring before the NRA. For this reason, the behavioral component of reference-dependent payoffs over
consumption turns negative in the simulation. Under the stylized reform scenario without the benefit cut, this component would be
positive.

37Equation (13) suggests that under π = 0, exact offsetting of welfare effects for those moving closer to versus further away from their
intrinsic optimum occurs where the left bunching share is 50%, but this equation is based on an approximation assuming a uniform
distribution of intrinsic optima for individuals in the reference domain. In our simulated model, this distribution has a modestly
negative gradient over the retirement age, so we reach exact offsetting slightly before 50%.

38We suppose that all workers retiring at 63 or later use the NRA as a reference point for consumption and leisure in the two-
dimensional simulations. If some pre-NRA retirees do not use the NRA as a reference point, but some other reference point like the
Early Retirement Age, behavior and welfare would be less affected by a change in the NRA than we find in Table 3, but more closely
resemble those from Table 1. Conversely, the difference in welfare effects would be exacerbated if many workers retiring far below the
NRA use it as a reference point.
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FIGURE 6: WELFARE RESULTS BY LEFT BUNCHING SHARE

(a) Welfare Effects of Increasing the Normal Retirement Age from 65 to 66
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Notes: The figure shows welfare results as a function of the left bunching share. A higher left bunching share corresponds to stronger
consumption reference dependence, i.e. a stronger deviation from Simple Loss Aversion over leisure. Panel (a) shows the total welfare
effects of increasing the Normal Retirement Age from 65 to 66, and Panel (b) shows the welfare-maximizing Normal Retirement
Age. The results shown in both panels are based on simulations are conducted for birth cohort 1946. The effects are calculated
among workers retiring at age 63 and above, and are in Euros per worker, in terms of net present value at age 65. In each panel, the
dashed vertical lines denote selected values of the left bunching share, namely zero (no consumption reference dependence), 13% (our
preferred estimate, on which the results in Table 3 are based), and 50% (the upper bound).

38



stronger than our estimates suggest, it could even be optimal to decrease the NRA. The welfare effects of the

DRC reform are less impacted by allowing for two-dimensional reference dependence, on the other hand.

4.7 Discussion

Our baseline empirical analysis finds that pension reforms increasing the NRA always increase welfare,

while financial retirement incentives have ambiguous welfare effects. Taken at face value, this could be

interpreted as an extreme policy implication, where the NRA should be increased as much as possible. Our

theoretical analysis shows that such extreme policy recommendation can be an inherent feature of Simple

Loss Aversion models, which are often used in practice.

Several factors may temper this policy implication. First, allowing for a more flexible structure of

reference-dependent preferences can modify the welfare effects of changing reference points. In the re-

tirement context, reference dependence over consumption can lead to opposite-signed welfare effects to

reference dependence over leisure. We find that in our empirical setting, because loss aversion over leisure

appears to be the dominant form of reference dependence, and it remains welfare-improving to increase the

NRA under our preferred two-dimensional estimates. However, as the relative strength of reference depen-

dence over leisure vs. consumption could depend on how retirement and benefit rules are communicated to

workers across different pension systems, some caution may be warranted when extrapolating our results

to other settings.

Second, an important issue is how policies influencing points can be designed in practice. Our theoretical

analysis examines the effects of a change in reference point ceteris paribus, but in the retirement context,

pension reforms changing the NRA are typically linked to benefit cuts. As we discuss in Section 4.4, this

creates large mechanical transfers to the government and corresponding decreases in private welfare. This

could be an important factor behind the lack of political and popular support for increasing the NRA seen in

many countries. At the same time, our results raise questions about whether it might be possible to design

NRA increases without accompanying changes to benefit schedules.

Third, issues of credibility may arise when governments try to influence reference points by shifting

the NRA to very high levels. Empirical evidence clearly demonstrates that reforms increasing the NRA or

similar statutory retirement ages have large effects on retirement behavior over the observed range (Seibold,

2021; Lalive et al., 2022; Gruber et al., 2022). Yet, it is less clear to what extent governments can stretch these

effects. For instance, workers may not find a NRA of 80 a credible "normal" time to retire. These effectiveness

considerations may limit the scope of NRA increases, at least in the short run.

5 Conclusion

In this paper, we provide a first attempt at studying the welfare economics of reference dependence. We

characterize welfare in terms of direct and behavioral effects. For a change in the reference point, we show

that the sign of the total welfare effect is unambiguous within a formulation of reference-dependent payoffs.

For the welfare effect of a price change, both normative judgments and the payoff formulation matter. We

develop a flexible reduced-form formulation of reference-dependent payoffs, which we can use to obtain

widely applicable sufficient statistics formulas describing the welfare effects of policies.

Our empirical application highlights the real-world policy relevance of these results. Reference-dependent

behavior has been documented in a wide variety of empirical settings, raising important questions about
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optimal policy design under such preferences. In the context of retirement, we find that increasing the

Normal Retirement is welfare-improving when it serves as a reference point over lifetime leisure. When al-

lowing for a more general structure or reference dependence, this result remains valid under our preferred

estimates, but a lower NRA could be optimal under very strong consumption reference dependence. Mean-

while, the welfare effects of subsidies for later retirement are ambiguous and depend critically on normative

judgments about reference dependence.

Our analysis suggests that, besides the normative judgment about reference dependence, the form of

reference-dependent payoffs shapes key welfare effect. How exactly reference dependence modifies in-

dividual choices above and below the reference point for a given good is crucial. We argue that bunch-

ing methods are useful in addressing this question. Obtaining more evidence on the nature of reference-

dependent payoffs across the many contexts in which reference dependence has been shown to matter will

be a fruitful avenue for future research. In addition to bunching methods, one could potentially employ

alternative empirical strategies such as survey experiments, which have been used to address similar prob-

lems in other behavioral contexts (Chetty et al., 2009; Allcott and Taubinsky, 2015; Allcott et al., 2019; Allcott

and Kessler, 2019; Goldin and Reck, 2020). Beyond deterministic settings, such approaches might prove

especially useful for analyzing welfare in the case of reference dependence under uncertainty, which is the

subject of a rich literature.

More broadly, our results demonstrate that embracing normative ambiguity can provide a way forward

for some difficult problems in behavioral economics (Goldin and Reck, 2022). The question of whether

behavioral phenomena arise due to biases or non-standard normative preferences has complicated incor-

porating behavioral economics into welfare analysis in a number of domains. Incorporating normative

ambiguity can be productive because it allows us to separate questions that can be empirically analyzed,

such as the influence of a change in reference point on behavior, from normative judgments.
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FIGURE A1: COUNTERFACTUAL RETIREMENT AGE DISTRIBUTION

(a) Baseline: Pareto Tail
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(b) Alternative 1: Uniform Tail
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(c) Alternative 2: Lognormal Tail
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Notes: The figure shows counterfactual retirement distributions under different assumptions about the shape of the upper tail of the
distribution. In all panels, the counterfactual distribution up until the Normal Retirement Age (age 65) is obtained by fitting a seventh-
order polynomial to the observed retirement age distribution, allowing for round-age effects. Panel (a) shows the baseline distribution
we use in the simulations, where the upper tail is given by a fitted Pareto distribution. Panels (b) and (c) show alternative counterfactual
distributions, where the upper tail is is given by a uniform and lognormal distribution, respectively. Appendix Table A2 shows that
our simulation results are robust to the shape of the upper tail of the counterfactual distribution.
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FIGURE A2: EXTENDED POLICY SIMULATIONS

(a) Increasing the Normal Retirement Age
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(b) Increasing the Delayed Retirement Credit
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Notes: The figure shows simulated fiscal and welfare effects of pension reforms over an extended range of policies. Panel (a) shows
the effects of increasing the Normal Retirement Age to ages between 65 and 67 in monthly increments. Panel (b) shows the effects of
increasing the Delayed Retirement Credit to values between 6% and 36% per year in half-percentage point increments.Simulations are
conducted for birth cohort 1946. All effects are calculated among workers retiring at age 65 and above, and are in Euros per worker, in
terms of net present value at age 65. Total welfare is the sum of net fiscal effect and change in worker welfare.
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FIGURE A3: TWO-DIMENSIONAL REFERENCE DEPENDENCE

(a) Bunching at the NRA Identifies Combinations of Λl, Λc
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(b) Preferred Bunching Share Estimate
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Notes: Panel (a) of the figure shows a simulated range of combinations of reference dependence over leisure Λl and reference depen-
dence over consumption Λc. Parameter combinations are obtained by gradually moving the left bunching share from zero to 50%
as described in Appendix E.2. Labeled dots mark parameter combinations implied by selected left bunching shares between 0 and
50%. Panel (b) illustrates how we obtain our preferred estimate of Λc. The black connected dots show the observed retirement age
distribution around the NRA among workers born in 1946. The solid red line denotes the average empirical retirement age density on
each side of the threshold, and the dashed red line denotes the implied counterfactual density.
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TABLE A1: BUNCHING AND PARAMETER ESTIMATES

Panel A: Bunching Estimates

(1) (2) (3)

Excess mass Kink size Number of bunching
observations

Normal Retirement Age (NRA) 31.29 (6.42) -0.28 5

Pure financial incentive discontinuities 6.73 (2.09) 0.47 15

Panel B: Parameter Estimates

Reference dependence w.r.t. NRA Λ 0.461 (0.000)

Retirement age elasticity ε 0.057 (0.014)

Notes: Panel A of the table summarizes bunching estimates at the Normal Retirement Age and at pure financial incentive discontinu-
ities. The excess mass figures shown represent the average excess mass estimates at the respective type of threshold among the subset
of group-level bunching observations from Seibold (2021) applying to workers in birth cohort 1946, with standard errors in paranthe-
ses. The table also shows the average kink size at each type of threshold as well as the number of bunching observations the average
estimate is based on. Panel B presents the parameter estimates based on estimating equation (21), using the bunching observations
summarized in Panel A.
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TABLE A2: WELFARE EFFECTS OF PENSION REFORMS: ALTERNATIVE COUNTERFACTUAL DISTRIBU-
TIONS

(1) (2)
Panel A: Uniform Tail

Policy 1: Normal Policy 2: Delayed
Retirement Age to 66 Retirement Credit to 10.20%

Contributions collected +2,363 +2,278

Benefits paid +7,678 –3,879

Net fiscal effect +10,041 –1,601

Worker consumption +562 +11,937

Disutility from work –2,901 –2,094

Worker welfare (π = 0) –2,339 +9,843

Ref. dep. disutility from work –6,900 –8,670

Ref. dep. utility from ref. point +8,121 0

Worker welfare (π = 1) –1,118 +1,173

Total welfare (π = 0) +7,702 +8,242

Total welfare (π = 1) +8,923 –428

Panel B: Lognormal Tail
Policy 1: Normal Policy 2: Delayed

Retirement Age to 66 Retirement Credit to 11.28%

Contributions collected +2,261 +2,173

Benefits paid +7,531 –4,386

Net fiscal effect +9,792 –2,213

Worker consumption +376 +12,103

Disutility from work –3,198 –2,434

Worker welfare (π = 0) –2,822 +9,669

Ref. dep. disutility from work –6,027 –8,268

Ref. dep. utility from ref. point +6,859 0

Worker welfare (π = 1) –1,990 +1,401

Total welfare (π = 0) +6,970 +7,456

Total welfare (π = 1) +7,802 –811

Notes: The table shows results from pension reform simulations as in Columns (2) and (3) of Table 1 under alternative assumptions
about the upper tail of the retirement age distribution as indicated in the panel titles. Each panel considers two reforms, an increase
in the Normal Retirement Age (NRA) from 65 to 66, and an increase in the Delayed Retirement Credit yielding the same effect on
the average retirement age as the NRA reform, given the respective assumption about the retirement age distribution. Simulations are
conducted for birth cohort 1946. All effects in Euros per worker, in terms of net present value at age 65. The signs the effects correspond
to influence on welfare. Total welfare is the sum of net fiscal effect and change in worker welfare.
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TABLE A3: PARAMETERS FOR SUFFICIENT STATISTICS CALCULATIONS

Parameter Value

Loss aversion parameter Λ 0.461

Average monthly wage E(wi) 2,400.639

Average implicit tax rate (worker) 0.178

Employer contribution rate 0.095

Total fiscal externality E(τi) 0.273

Fraction in L group P (i ∈ L) 0.154

Fraction in R group P (i ∈ R) 0.456

Leisure demand responsiveness E
[

∂lLi
∂[wi(1−τi)]

]

-0.017

Average change in implicit tax rate E(∆τi) (main DRC reform) -0.264

Average change in implicit tax rate E(∆τi) (small DRC reform) -0.029

Notes: The table shows the parameter values entering the sufficient statistics calculations in Section 4.5.
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B Detailed Analysis of Reference-Dependent Payoff Formulations

In this Appendix, we examine how the welfare effects of changing reference points and prices are shaped

by the form of reference-dependent payoffs. In particular, we apply our general characterization of these

welfare effects from Proposition 1 and equations (4), (5), and (8) to an exhaustive list of payoff formulations.

Tables B1 and B2 provide an overview of payoff formulations and summarize key results.

This Appendix is structured as follows: Sections B.1 and B.2 analyze the most commonly used formu-

lations of reference-dependent payoffs, namely Simple Loss Aversion and Loss Aversion with Gain Utility.

Section B.3 considers Kőszegi and Rabin (2006)-type reference dependence over utils. Section B.4 examines

an alternative type of reference dependence we label Gain Discounting. Section B.5 investigates the impact

of incorporating Diminishing Sensitivity on key results. Section B.6 analyzes two-dimensional reference de-

pendence. Finally, Section B.7 demonstrates how our Flexible Reduced-Form specification can approximate

a broad set of reference-dependent payoff formulations.
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TABLE B1: REFERENCE-DEPENDENT PAYOFF FORMULATIONS

(1) (2) (3)

Description Reference-Dependent Payoff Assumptions Lemma 1 Case
A1 & A2

Simple Loss Aversion 1{x < r}Λ(x− r) Yes everywhere increasing
+ single-peaked

Loss Aversion with Gain Utility (η + 1{x < r}Λ)(x− r) Yes everywhere increasing

Utils Formulation (Köszegi-Rabin) (η + 1{x < r}Λ)(u(x)− u(r)) Yes everywhere increasing

Gain Discounting 1{x > r}Γ(x− r) Yes everywhere decreasing
+ single-peaked

Simple Loss Aversion with Diminishing Sensitivity −α−1(1{x < r}Λ)(r− x)α 2.2 Fails N/A

Loss Aversion with Gain Utility & Diminishing Sensitivity α−1(η)(x− r)α, if x ≥ r 2.2 Fails N/A
−α−1(η + Λ)(r− x)α, if x < r

Two-Dimensional Loss Aversion, 1{x < rx}Λx(x− rx) Yes single-peaked
(rx, ry) on budget constraint +1{y < ry}Λy(y− ry)

Two-Dimensional Loss Aversion with Gain Utility, (ηx + 1{x < rx}Λx)(x− rx)+ Yes depends on
(rx, ry) on budget constraint (ηy + 1{y < ry}Λy)(y− ry) parameters

Two-Dimensional Loss Aversion, any (rx, ry) 1{x < rx}Λx(x− rx) 1.2 Fails N/A
+1{y < ry}Λy(y− ry)

Notes: The table summarizes the formulations of reference-dependent payoffs considered in the appendix. Column (1) shows the functional form of reference-dependent
payoffs for each formulation. Columns (2) and (3) describe the features of each formulation that pin down the sign of key welfare effects: whether the formulation satisfies
Assumptions 1 and 2, and the which of the three cases from Lemma 1 obtains.
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TABLE B2: PAYOFF FORMULATIONS AND THE WELFARE EFFECT OF CHANGING REFERENCE POINTS

(1) (2) (3) (4)

Welfare Effect wr(p, r) by Domain

Description Gain Domain Reference Loss Domain Individually Optimal
(x > r) Domain (x = r) (x < r) Reference Points

Simple Loss Aversion 0 u′(r)− p −πΛ (−∞, r∗]

Loss Aversion with Gain Utility −πη u′(r)− p −π(η + Λ) π = 0 : (−∞, r̃]
π = 1 : −∞

Utils Formulation (Köszegi-Rabin) −πηu′(r) u′(r)− p −π(η + Λ)u′(r) π = 0 : (−∞, r̃]
π = 1 : −∞

Gain Discounting πΓ u′(r)− p 0 [r∗,∞)

Simple Loss Aversion with Diminishing Sensitivity 0 u′(r)− p −πΛ(r− x)α−1 π = 0: (−∞, r∗),+∞
+(1− π)Λ(r− x)α−1xr π = 1: (−∞, r∗)

Loss Aversion with Gain Utility −πη(x− r)α−1 u′(r)− p −π(η + Λ)(r− x)α−1 π = 0: −∞,+∞
& Diminishing Sensitivity +(1− π)η(x− r)α−1xr +(1− π)(η + Λ)(r− x)α−1xr π = 1 : −∞

Two-Dimensional Loss Aversion, πΛyp u′(r)− p −πΛx rx = r∗x
(rx, ry) on budget constraint ry = r∗y

Two-Dimensional Loss Aversion with Gain Utility, π(ηyp− ηx + Λyp) u′(r)− p π(pηy − ηx − Λx) See Appendix
(rx, ry) on budget constraint B.6.2

Two-Dimensional Loss Aversion, any (rx, ry) 0 u′(r)− p −πΛx rx ∈ (−∞, r∗x]
−1{y < ry}πpΛy ry ∈ (−∞, r∗y ]

Notes: The table evaluates welfare effects of changes in the reference point and describes individually optimal reference points for the payoff formulations from Table B1. Columns (1) to
(3) evaluates the marginal welfare effect of changing the reference point wr(p, r) in the Gain, Reference, and Loss Domains. Note that for specifications with diminishing sensitivity, we do
not express the behavioral response xr in terms of primitives in the table due to space constraints. See Appendix B.5 for details. Column (4) shows the set of individually optimal reference
points under each formulation, where r∗ is the intrinsic optimum characterized by u′(r∗) = p (u′(r∗x) = p; r∗y = z − pr∗x in the two-dimensional case), and r̃ is the reference point at the
boundary between the gain and reference domain. Under two-dimensional loss aversion with gain utility and a reference point on the budget constraint, any of the cases from Lemma 1
could apply (see Table B1), and due to space constraints we defer the characterization of optimal reference points in this case to Appendix B.6.2.
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B.1 Simple Loss Aversion

We begin with the formulation we refer to as Simple Loss Aversion in the main text. Reference-dependent

payoffs v(x, r) are given by
v(x, r) = 1{x ≤ r}Λ(x− r). (24)

Thus, reference dependence makes the individual averse to losses over good x; the strength of this motive

is governed by Λ. With this formulation, vx = Λ1{x < r}. This is weakly positive everywhere, so we

are in the Everywhere Increasing case from Lemma 1. Since vx is also weakly positive in the loss domain

and weakly negative in the gain domain, the Single-Peaked case also obtains. Hence, both Propositions 1.1

and 1.2 apply. The welfare effects of increasing r are weakly negative everywhere, but they are zero in the

gain domain, so the set of individually optimal reference points is (−∞, r∗]. These results essentially follow

from Proposition 1, given the properties of Simple Loss Aversion. Nevertheless, we work through a char-

acterization of behavior and welfare in more detail. Unlike the main text, we will allow for heterogeneity

across individuals indexed by i from the outset.

Demand. We begin by describing demand xi(p, r) under Simple Loss Aversion. We first characterize

potentially optimal choices in the gain domain (xGi ) and in the loss domain (xLi ) as follows:

u′i(x
G
i (p)) = p, (25)

u′i(x
L
i (p)) + Λi = p. (26)

Because u′′i < 0 and Λi > 0, xGi (p) < xLi (p), i.e. loss aversion increases demand in the loss domain relative

to demand in the gain domain. Demand of a given individual is

xi(p, r) =



















xGi (p), if xGi (p) > r (G)

xLi (p), if xLi (p) < r (L)

r, otherwise. (R)

(27)

Thus, at any given price and reference point, there are three groups of individuals, namely those whose

demand is in the gain domain (G), in the loss domain (L), or at the reference point (R):

G(p, r) ≡ {i|xGi (p) > r} = {i|u′i(r) > p}

L(p, r) ≡ {i|xLi (p) < r} = {i|u′i(r) + Λi < p}

R(p, r) ≡ {i|xGi (p) ≤ r ≤ xLi (p)} = {i|u′i(r) < p < u′i(r) + Λi}.

The Marginal Internality. As we discuss in Section 2.2, a key statistic for welfare is the marginal inter-

nality, which is defined as the money metric welfare effect of a marginal change in x along the budget

constraint, mi(p, r;π) ≡
dU∗

i (x,zi−px)
dx

∣

∣

∣

x=xi(p,r)
. Using the first-order conditions in equations (25) and (26)

and the behavioral characterization in (27), it is straightforward to derive the following:

• If xi(p, r) > r, mi(p, r;π) = 0.

• If xi(p, r) < r, mi(p, r;π) = −(1− π)Λi

• If xi(p, r) = r,

– mi(p, r;π) is undefined when π = 1.
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– mi(p, r;π) = u′i(r)− p when π = 0, with −Λi ≤ mi ≤ 0

When the planner judges that observed demand is welfare-maximizing (π = 1), there is no marginal

internality as a consequence of the envelope theorem. The marginal internality is undefined when x = r

in this case because of the kink in utility at x = r, but it remains the case that no deviation from observed

behavior would improve welfare. When π = 0, in contrast, individuals with xi ≤ r are over-consuming

good x out of loss aversion, so the marginal internality is negative.

Main Welfare Effects. Panel (a) of Figure 2 describes observed demand and intrinsic demand u′(x) under

Simple Loss Aversion. Under π = 0 the marginal internality is the vertical distance between marginal utility

and the price at observed demand. The first row of Table B2 shows the welfare effects of changing reference

points, which follow directly from equations (4) and (6). One can also derive them from first principles

using the same set of steps used in equations (4) to (6). The welfare effects of price changes follow from

equation (8):
wi,p = −xi − (1− π)1{xi < r}Λxi,p (28)

Figure B1 provides a detailed illustration of the welfare effects of changes in references points and prices

under Simple Loss Aversion, building on Panel (a) of Figure 2. In this model, individuals generally prefer

lower reference points because they shrink losses. In the loss domain, changing r has no effect on behavior

but there is a direct welfare effect that matters under π = 1: increasing r increases the individual’s reference-

dependent losses. When π = 0, increasing r worsens over-consumption of good x out of loss aversion,

generating a negative behavioral welfare effect. The behavioral effect only materializes in the reference

domain. Elsewhere, changing r does not affect behavior. When r ≤ r∗ at price p, all direct and behavioral

effects are zero in this model, so any reference point at or below r∗ is individually optimal. In summary,

lowering reference points robustly increases welfare regardless under Simple Loss Aversion.

Figure B2 illustrates the welfare effects of price changes. When π = 0, over-consumption of good x

generates a negative internality in the loss domain, and because increasing the price decreases consumption

of good x, we obtain a positive behavioral welfare effect. In addition, there is always a standard negative

direct welfare effect. Note that in the R domain, demand is locally inelastic, so we find only a direct effect.

Optimal Corrective Taxes. The corrective tax schedule for good x that maximizes social welfare for a given

a reference point r is characterized by

T (x, p, r) =







0 x ≥ r

t∗(p, r)(x− r) x < r;
(29)

t∗(p, r) = (1− π)
E
[

Λi
∂xL

i
∂p

∣

∣

∣
i ∈ L(p+ t∗(p, r), r)

]

E
[
∂xL

i
∂p

∣∣∣ i ∈ L(p+ t∗(p, r), r)
] . (30)

When reference dependence carries full normative weight (π = 1), there is no scope for corrective tax-

ation, as individuals are making optimal choices in this case. When reference dependence is judged as a

bias (π = 0), on the other hand, it is efficient to tax losses, i.e. to tax consumption of x in the loss domain,

because the tax should be set proportionally to marginal internalities (Mullainathan et al., 2012; Allcott and

Taubinsky, 2015).Equation (30) quantifies the optimal corrective tax in the loss domain. The expression cor-

responds to what Allcott and Taubinsky (2015) call the average marginal bias. When the strength of reference
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FIGURE B1: WELFARE EFFECTS OF CHANGING THE REFERENCE POINT UNDER SIMPLE LOSS AVERSION

(a) Gain domain (GG) (b) Loss domain (LL)

(c) Marginal Gain (GR) (d) Marginal Loss (RL)

(e) Reference domain (RR)

Notes: The figure illustrates the welfare effects of changing the reference point under Simple Loss Aversion, in the domains indicated
by the panel titles. We denote observed demand in black and gain and loss domain demand in blue and red, respectively, as in Panel
(a) of Figure 2. All welfare changes are losses given by the areas shaded in red, reflecting the result that increasing the reference
point unambiguously decreases welfare. Welfare losses due to direct effects are depicted in light red shaded areas, while losses due to
behavioral effects are shaded with diagonal hatching. In panel (e), the change in welfare in the RR case is the same regardless of π,
but whether the depicted welfare loss represents a behavioral welfare effect or a direct welfare effect depends on π, so we use dark red
shading. The legend of each panel provides further interpretation of the main welfare effects.
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FIGURE B2: WELFARE EFFECTS OF CHANGING PRICES UNDER SIMPLE LOSS AVERSION

(a) Gain domain (GG) (b) Loss domain (LL)

(c) Marginal Gain domain (GR) (d) Marginal Loss domain (RL)

(e) Reference domain (RR)

Notes: The figure illustrates the welfare effects changing prices under Simple Loss Aversion, in the domains indicated by the panel
titles. We denote observed demand in black and gain and loss domain demand in blue and red, respectively, as in Panel (a) of Figure 2.
Red shaded areas denote welfare losses and blue shaded areas denote welfare gains. The legend of each panel provides further
interpretation of the main welfare effects.
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dependence and the demand response to a price change are independent, the optimal corrective tax simpli-

fies to the average value of Λi among individuals in the loss domain. Otherwise, the covariance between

Λi and the demand response has to be taken into account.39

B.2 Loss Aversion with Gain Utility

The Simple Loss Aversion formulation is based on the model of reference dependence in riskless choice

by Tversky and Kahneman (1991), but their specification incorporates an additional feature: a reference-

dependent payoff over gains. In the case of Loss Aversion with Gain Utility, reference-dependent payoffs

are given by

vi(x, r) =




ηi(x− r) x > r

ηiλi(x− r) x ≤ r,
(31)

The parameter ηi can be interpreted as governing the overall importance of reference dependence, while λi

governs the strength of loss aversion. Incorporating ηi makes the individual consume more x by virtue of

comparing their consumption to the reference point both in the gain and the loss domain.

Behavioral Isomorphism to Simple Loss Aversion. A key reason why we mainly discuss Simple Loss

Aversion as an example of simple models of reference dependence is that Loss Aversion with Gain Utility

is behaviorally behaviorally indistinguishable from Simple Loss Aversion. We establish this result formally

here.

Consider a demand function x(p, r, z), which describes the choice of x the consumer makes for any

(p, r, z). Note that we drop i subscripts and focus on one individual. We say x(p, r, z) is rationalizable by a

model if there are utility functions and parameters such that the optimization problem the model describes

generates the observed behavior for any (p, r, z). That is, x(p, r, z) is rationalizable by Simple Loss Aversion

if and only if there is a utility function u(x) with u′ > 0,u′′ < 0 and a parameter Λ > 0 such that for any

(p, r, z) the solution to the consumer decision problem from equation (1) is x(p, r, z). On the other hand,

x(p, r, z) is rationalizable by Loss Aversion with Gain Utility under analogous conditions, using ũ to denote

utility over good x with this model when we compare across formulations.

We need one modest technical assumption for our result to obtain, which is that the domain of good x is

compact. For Simple Loss Aversion, this ensures that u′(x) has a strictly positive minimum for all values of

x, which we denote ε ≡ min u′(x). The assumption ensures ε > 0 exists.

Proposition 4. Behavioral Equivalence of Simple Loss Aversion and Loss Aversion with Gain Utility. A

demand function x(p, r, z) is rationalizable by Simple Loss Aversion if and only if it is rationalizable by Loss Aversion

with Gain Utility.

Corollary 4.1. The Isomorphism. If x(p, r, z) is rationalizable by Simple Loss Aversion with utility u(x) and

parameter Λ and rationalizable by Loss Aversion with Gain Utility with ũ(x) and parameters η, λ, then we must have

u(x) = ũ(x) + ηx. (32)

39To see how the covariance matters, we can re-write equation (30) as

t∗(p, r) = (1 − π)




E [Λi| i ∈ L(p+ t∗(p, r), r)] +

Cov

[
Λi,

∂xL

i

∂p

∣∣∣∣ i ∈ L

]

E

[
∂xL

i

∂p

∣∣∣∣ i ∈ L

]





.
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Λ = η(λ− 1). (33)

Proof. First suppose that xi(p, r, z) is rationalizable by Simple Loss Aversion with some utility function u(x)

and parameter Λ.

Set any η such that 0 < η < ε.40 Specify ũ according to equation (32), i.e. ũ = u(x) − ηx. Specify λi

according to equation (33), i.e. λi =
Λi+ηi
ηi

.

Because u′ > η for any x by construction, we know that ũ′ = u′ − η >= u′ − ε > 0, and u′′ < 0 =⇒

ũ′′i < 0. Further, by construction η > 0 and λ > 1. With the necessary restrictions satisfied, we only need

to show that with these specifications, the optimization problem under Simple Loss Aversion is equivalent

to the optimization problem under Loss Aversion with Gain Utility. As we have guaranteed equations (32)

and (33) hold, we can re-express decision utility under Simple Loss Aversion as:

U (x) = ũ(x) + ηx+ z − px+ 1{x < r}η(λ− 1)(x− r), (34)

Next note that as it has no effect on the optimal x, we may freely eliminate −ηr from the maximand. Doing

so and re-arranging yields the objective under Loss Aversion with Gain Utility.

For the converse, suppose that x(p, r, z) is rationalizable by Loss Aversion with Gain Utility with utility

function ũ(x) and parameters η > 0, and λ > 1. Specify u(x) using equation (32) and set Λ using (33).

Checking the restrictions, we know that ũ′ > 0 and η > 0, implying that u′ = ũ′ + η > 0, and u′′ = ũ′′ < 0.

And we know that Λ > 0 by η > 0 and λ > 1. We can re-express the optimization problem in Loss Aversion

with Gain Utility as
U (x) = ũ(x) + ηx+ z − px+ 1x > rη(λ− 1)(x− r)− ηr. (35)

The last term has no bearing on the optimum so we can eliminate it. Applying our constructed ui(x) and

Λi then yields the objective under Simple Loss Aversion.

Reparameterization. Before we characterize demand and welfare under Loss Aversion with Gain Utility,

we note that we can re-parameterize the payoff function from equation (31) as follows:

Ũi(x, y) = ũi(x) + y + ṽi(x|r), (36)

ṽi(x|r) =




ηi(x− r), x > r

[ηi + Λi](x− r), x < r,
(37)

The reparameterized version of the model is fully equivalent both in terms of behavior and welfare to the

original Tversky and Kahneman (1991) formulation from equation (31), but slightly more convenient to

work with below. As such, it is of course still behaviorally isomorphic to Simple Loss Aversion.

Demand. Panel (b) of Figure 2 illustrates demand in the reparameterized Loss Aversion with Gain Utility

model. Given the behavioral equivalence result above, it is not surprising that the same basic character-

ization of demand arises. Due to the different parametric structure, first-order conditions are modified,

though:
u′(xGi (p)) + ηi = p, (38)

u′(xLi (p)) + (ηi + Λi) = p. (39)

40The fact that an arbitrary η can be chosen in this step is directly related to the fact that η is typically unidentified from observations
of observed demand.

60



Again, because u′′i < 0 and ηi + Λi > ηi, x
G
i (p) < xLi (p), i.e. loss aversion increases demand in the loss

domain relative to demand in the gain domain. An analogue to equation (27) obtains but with the modified

gain- and loss-domain demand curves from equations (38) and (39).

Welfare. Note that vx = η in the gain domain and vx = η + Λ in the loss domain. Both of these ef-

fects are positive, so we are in the Everywhere Increasing case from Lemma 1; unlike Simple Loss Aversion

the Single-Peaked case does not apply, though. Proposition 1.1 then implies that decreasing r is welfare-

improving, and when π = 1 the inequality is strict: increasing r has the direct effect of making reference-

dependent losses larger and gains smaller, and this has a non-zero effect in all domains. Regarding be-

havioral welfare effects, when π = 0, we also find negative internalities in both the gain and loss domain.

However, decreasing r outside the reference domain has no effect on behavior and thus no effect on wel-

fare under π = 0. Letting r̃ denote the lowest possible reference point in the reference domain, which is

characterized by u′i(r̃) + η = p, we have that any r ∈ (−∞, r̃] is individually optimal.

Figures B3 and B4 unpack the welfare effects of changing reference points and prices under Loss Aver-

sion with Gain Utility. Comparing Figures B3 and B1, and the analytic expressions in Table B2, we observe

that our main welfare results are qualitatively similar under Loss Aversion with Gain Utility and Simple

Loss Aversion. The sign of key welfare effects remains the same, and if anything, magnitudes become larger

under Loss Aversion with Gain Utility. Under π = 0, welfare effects are exacerbated because negative inter-

nalities from over-consumption of x are larger in the loss and reference domain and additionally present in

the gain domain. Under π = 1, negative direct effects of increasing r are also larger in the loss and reference

domains and additionally present in the gain domain.

B.3 Reference Dependence over Utils

Kőszegi and Rabin (2006) introduce a different formulation of reference-dependent payoffs where individ-

uals compare utility from their consumption of x to utility at the reference point, rather than comparing the

amount of x directly to r. This modification is in part motivated by the fact that the scaling of reference de-

pendence parameters such as Λ otherwise depends on the units of x, which can make comparisons of these

parameters across dimensions of the menu space less intuitive. In terms of equation (2), a Köszegi-Rabin

type formulation thus implies µ(z) = u(z) instead of µ(z) = z as we consider so far (ν remains the same).

Setup. With reference dependence over utils, payoffs vi(x, r) are

vi(x, r) =




ηi[ui(x)− ui(r)] x ≥ r

(ηi + Λi)[ui(x)− ui(r)] x < r
(40)

Note that we adopt a structure analogous to Loss Aversion with Gain Utility here, which is in line with

Kőszegi and Rabin (2006). Alternatively, a version of Simple Loss Aversion over utils would also be straight-

forward to analyze.

Demand. We obtain a characterization of demand similar to Section B.2. The first-order conditions are

u′i(x
G
i (p))(1 + ηi) = p, (41)

u′i(x
L
i (p))(1 + ηi + Λi) = p. (42)
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FIGURE B3: WELFARE EFFECTS OF CHANGING THE REFERENCE POINT UNDER LOSS AVERSION WITH

GAIN UTILITY

(a) Gain domain (G) (b) Loss domain (L)

(c) Reference domain (R)

Notes: The figure illustrates the welfare effects of changing the reference point under Loss Aversion with Gain Utility, in the domains
indicated by the panel titles. We denote observed demand in black, intrinsic demand in grey, and gain and loss domain demand in
blue and red, respectively, as in Panel (b) of Figure 2. Red shaded areas denote welfare losses. The legend of each panel provides
further interpretation of the main welfare effects.
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FIGURE B4: WELFARE EFFECTS OF PRICE CHANGES UNDER LOSS AVERSION WITH GAIN UTILITY

(a) Gain domain (G) (b) Loss domain (L)

(c) Reference point (R)

Notes: The figure illustrates the welfare effects of changing prices under Loss Aversion with Gain Utility, in the domains indicated by
the panel titles. We denote observed demand in black, intrinsic demand in grey, and gain and loss domain demand in blue and red,
respectively, as in Panel (b) of Figure 2. Red shaded areas denote welfare losses and blue shaded areas denote welfare gains. The
legend of each panel provides further interpretation of the main welfare effects.
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Demand of a given individual once again falls into one of the three domains from equation (27), where the

gain- and loss-domain demand curves are pinned down by equations (41) and (42). As Table B2 shows,

the key properties of this formulation are very similar to Loss Aversion with Gain Utility, and the welfare

effects of changing reference points and prices are qualitatively the same. Quantitative magnitudes can

differ because unlike before, observed demand in the gain and loss domains and intrinsic demand are not

parallel any more. They are locally parallel around the reference point, which reflects the approximation

result from Proposition 2 of Kőszegi and Rabin (2006). These nonlinearities matter mainly for the direct

welfare effects of changing reference points (i.e. when π = 1) for individuals far away from the reference

point. Behavioral effects, which occur around the reference point, are less affected. Since welfare effects are

similar to Figure 2b, we do not include a separate graphical illustration of reference dependence over utils.

B.4 Gain Discounting

The literature on reference-dependent preferences typically interprets empirical patterns such as bunching

at the reference point to loss aversion, which modifies payoffs over consumption of x in the gain domain.

Accordingly, the formulations of reference-dependent payoffs we considered so far fall in the Everywhere

Increasing case from Lemma 1. However, in principle, these behavioral patterns could also be explained by

an opposite-signed modification of payoffs over consumption in the gain domain. In other words, rather

than consuming more of good x in the loss domain in order to reduce losses, individuals could be consum-

ing less of good x in the gain domain because they discount gains. In this section, we lay out a possible

formulation along these lines, which we call Gain Discounting.

v(x, r) =




−Γ(x− r), x ≥ r

0, x < r.
(43)

where the parameter Γ governs the strength of gain discounting similarly to Λ in the Simple Loss Aversion

model. It is straightforward to verify that this payoff formulation satisfies Assumption 1 and 2. As before,

the case-wise characterization of behavior in Equation (27) obtains. The first-order conditions in the gain

and loss domains are given by

u′i(x
G
i (p))− Γ = p, (44)

u′i(x
L
i (p)) = p. (45)

Comparing first-order conditions suggests that Gain Discounting model is behaviorally indistinguishable

from Simple Loss Aversion. The formal proof is very similar to the one in Section B.3.

Observed demand and intrinsic demand under Gain Discounting are illustrated in Panel (d) of Figure 2.

Perhaps unsurprisingly, adopting this formulation reverses the signs of all key welfare effects: we find

positive direct welfare effects of increasing r when π = 1 and positive behavioral welfare effects when

π = 0. These effects now appear in the gain domain rather than the loss domain. Positive behavioral effects

are driven by a positive marginal internality (1−π)Γ in the gain domain, which reflects under-consumption

of x due to gain discounting.

Proposition 1.1 can be applied to Gain Discounting. But because the Everywhere Decreasing case from

Lemma 1 obtains, the Proposition now implies that increasing r improves welfare. Table B2 reports the

welfare effects of changes in r in detail and shows that any r ≥ r∗ is individually optimal. The welfare
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effects of price change is given by

wi,p = −xi + 1{xi > r}(1− π)Γxp. (46)

Again the sign of the behavioral welfare effect is reversed in equation (46), such that a price increase now

lowers welfare.

The discussion about loss aversion vs. gain discounting is closely related to the framework by Bernheim

(2009). In particular, one could view observed demand in the gain domain vs. the loss domain as demand

under two different "frames". Thus, one could consider Simple Loss Aversion and Gain Discounting as

two potential forms of preferences over x, where either demand in the gain domain or demand in the loss

domain is judged to be normative. However, in terms of our framework, such an interpretation would

impose π = 0 ex-ante. We provide a detailed discussion of our work and Bernheim (2009) in Appendix D.

B.5 Incorporating Diminishing Sensitivity

Assumption 2.2 rules out diminishing sensitivity in our main analysis. This is motivated by the fact that

empirical support for diminishing sensitivity in deterministic environments is limited (O’Donoghue and

Sprenger, 2018). In this section, we describe how relaxing this assumption changes our welfare effects.

Proposition 1 does not apply in this case, as the sign of direct and behavioral welfare effects can differ. Nev-

ertheless, we can use similar steps to characterize welfare, and the characterization of optimal policy turns

out not to be very different from other formulations. We specify the following formulation of reference-

dependent payoffs:

v(x, r) =





1
αη(x− r)α x ≥ r

− 1
α (η + Λ)(r− x)α x < r

(47)

This specification adds diminishing sensitivity to the Loss Aversion with Gain Utility formulation from

equation (31), whereby the previous formulation without diminishing sensitivity would be nested by α = 1.

In the following, we instead consider α ∈ (0, 1). Compared to prior literature, we scale reference-dependent

payoffs by 1/α, which does not matter for behavior and welfare and allows us to maintain the same inter-

pretation of the Λ and η parameters as in the other formulations. Equation (47) has the key properties by

which diminishing sensitivity is typically defined: ν′ > 0 everywhere, ν′′ > 0 when x < r and ν′′ < 0 when

x > r. As an alternative formulation, we could consider a variant of Simple Loss Aversion with diminishing

sensitivity at the end of this section.

With this formulation, we continue to have case-wise demand in the gain, loss and reference domains.

However, demand in the gain and loss domains now depends on both the price and the reference point.

The first-order conditions are
u′(xG(p, r)) + η(xG(p, r)− r)α−1 = p (48)

u′(xL(p, r)) + (η + Λ)(r− xL(p, r))α−1 = p (49)

In previous formulations, there were no behavioral responses to a marginal change in the reference point

in the gain and loss domains (xGr = xLr = 0), but with diminishing sensitivity there are such behavioral

responses. Differentiating the first-order conditions with respect to r, we find

xGr = −η(1−α)(xG−r)α−2

u′′(xG)−η(1−α)(xG−r)α−2
=

ν′′

u′′ + ν′′
(50)

xLr = η(1−α)(r−xL)α−2

u′′(xG)+η(1−α)(r−xL)α−2
=

ν′′

u′′ + ν′′
, (51)
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Inspecting these, we find that xGr > 0 everywhere in the gain domain. However, the sign of xLr is ambiguous

in the loss domain, where xLr > 0 for x close to the reference point but xLr < 0 far from to r. Under a single-

crossing condition (which is true with an isoelastic u, for instance), there are four relevant cases to consider.

Ordered from the those obtaining at the lowest to highest r, these are:

1. The Gain domain (G), where xr > 0

2. The Reference Domain (R), where xr = 1 > 0

3. The low-reference point portion of the loss domain (L+), where xr > 0

4. The high-reference point portion of the loss domain (L−), where xr < 0 .

Proposition 1 would hold in the first three cases, but fails due to the fourth case. To understand how

this matters for welfare, we return to the direct vs. behavioral effects characterization from equation (4),

whose derivation does not require diminishing sensitivity. Note that for all the formulations we consider,

including with diminishing sensitivity, vx and vr are opposite-signed. Provided xr ≥ 0 everywhere, which

is true in all formulations satisfying Assumption 1 and 2, direct and behavioral welfare effects are ensured

to be (weakly) same-signed, such that the sign of the total welfare effect does not depend on π. If xr < 0

somewhere, however, the sign of the behavioral welfare effect changes, and thus the sign of the welfare

effect can depend on π, unlike in Proposition 1. We therefore obtain the following characterization of the

sign of the welfare effect of changing r:

• Under π = 1, wr < 0 everywhere.

• Under π = 0,

1. In G, R, and L+, wr < 0.

2. In L−, wr > 0.

Hence, the welfare effects of increasing the reference point are generally negative as in formulations without

sensitivity, but the sign changes for the case of the high-reference point part of the loss domain under π = 0.

Building on this, the individually optimal reference point is the lowest possible one under π = 1. Under

π = 0, there are two individually optimal reference points: the lowest and the highest possible reference

point. To see why, note that the second term in equation (48) converges to zero both as r → −∞ and as

r → ∞. Consequently, behavior converges to the intrinsic optimum for either of these extreme reference

points:
lim

r→−∞
xG(p, r) = lim

r→∞
xL(p, r) = r∗

Intuitively, as r grows to either extreme, the individual stops chasing gains or avoiding losses because

they are so far from the reference point that a marginally larger gain or loss does not matter much to them.

Behavior thus converges to the intrinsic optimum, as if individuals did not care about reference dependence,

and of course the intrinsic optimum is the optimal choice under π = 0. It is important to note that the lowest

possible reference point is a robust choice in the sense that it is optimal regardless of π. However, the highest

possible reference point is optimal only under π = 0, while it minimizes welfare under π = 1.41

41There is an interesting analogy to the welfare effects of default options in Goldin and Reck (2022). In the context of defaults,
"penalty defaults" that promote active choices maximize welfare under π = 0 but minimize welfare under π = 1.
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Simple Loss Aversion with Diminishing Sensitivity. As an alternative formulation, we consider a variant

of Simple Loss Aversion with diminishing sensitivity. This can be done by simply setting η = 0 in equation

(47). The modifies the welfare effects of changing the reference point as follows:

• Under π = 1, wr = 0 for (p, r) ∈ G and wr < 0 everywhere else.

1. In G, wr = 0.

2. Everywhere else, wr < 0.

• Under π = 0,

1. In G, wr = 0.

2. In R, wr < 0.

3. In L+, wr < 0.

4. In L−, wr > 0.

The welfare effect of increasing r is weakly positive everywhere except in the high-reference point part of

the loss domain under π = 0. Thus, the individually optimal reference point is (−∞, r∗] under π = 1.

Under π = 0, any reference point in (−∞, r∗] remains optimal, but another optimum is given by r → ∞. As

above, this implies that welfare effects can deviate from Simple Loss Aversion far away from the reference

point.

B.6 Two-Dimensional Reference Dependence

Some of the theoretical literature on reference dependence, including Tversky and Kahneman (1991) and

Kőszegi and Rabin (2006), considers that reference dependence in more than one dimension. In this section,

we examine formulations of reference-dependent payoffs over both good x and y.

B.6.1 Two-Dimensional Loss Aversion

Setup. Following prior literature, we assume that payoffs are additively separable across dimensions. We

also assume that the formulation of payoffs is the same in each dimension but parameter values may differ.

With two-dimensional payoffs, the reference point is two-dimensional: r = (rx, ry). We begin by consid-

ering Simple Loss Averse in each dimension; we incorporate gain utility later on. We specify reference-

dependent payoffs as

v(x, y, r) = 1{x < rx}Λx(x− rx) + 1{y < ry}Λy(y− ry)

It is useful to re-express reference-dependent payoffs as a function of x only. To do this, let r′x = (z − ry)/p.

Using the individual’s budget constraint, we can express v as a function of x and the two reference points

rx and r′x.
v(x, r) = 1{x < rx}Λx(x− rx)− 1{x > r′x}Λyp(x− r′x). (52)

Viewed in this reduced form, two-dimensional loss aversion resembles a combination of loss aversion over

x with reference point rx and gain discounting over x with reference point r′x. This insight helps us charac-

terize welfare in the two-dimensional model, and to map two-dimensional reference dependence into our

Flexible Reduced-Form model in the next section.
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We will consider two types of variation in the two-dimensional reference point: changing rx or ry hold-

ing the other fixed, or varying both along the individual budget constraint. The latter is our focus in the

main text, and in particular in the empirical application where the Normal Retirement Age can serve as a

reference point in terms of leisure and consumption that lies on the budget constraint. If (rx, ry) is on the

budget constraint, rx = r′x and the loss domain for good y coincides completely with the gain domain for

good x.

Behavior. In the case where the reference point falls on the budget constraint, there are three cases like in

equation (27), with the following first-order conditions describing demand in the G and L domains:

u′(xG(p))

1 + Γ
= p, (53)

u′(xL(p)) + Λ = p (54)

Panel (c) of Figure 2 depicts observed and intrinsic demand in this model. Note that the graph becomes

identical to Simple Loss Aversion when Λy = 0 and very similar to Gain Discounting when Λx = 0.

If the reference point falls in the interior of the budget constraint (implying rx′ > rx), the individual’s

optimal choice will avoid any reference-dependent losses and we have simply u′(xi(p, r)) = p at the opti-

mum.

If the reference point instead falls outside the budget constraint (implying rx′ < rx), we have five behav-

ioral cases instead of the three from equation (27). There are two reference domains: one where x = rx, and

one where y = ry ⇐⇒ x = r′x. Then there are three first-order conditions describing demand in the gain

and loss domains over x and y:

u′(xLG) + Λx = p (LxGy)

u′(xLL) + Λx

1 + Λy
= p (LxLy)

u′(xGL)

1 + Λy
= p (GxLy)

We have xGL < xLL < xLG. In total, the five cases for behavior are as follows:

x(p, r) =





xGL, xGL < rx′

r′x, xGL < r′x < xLL

xLL, rx < xLL < r′x

rx, xLL < rx < xLG

xLG, xLG > rx

(55)

Welfare. Table B2 summarizes welfare effects of two types of variation in (rx, ry): a change in (rx, ry)

along the budget constraint, and a change in rx holding ry fixed. In the first scenario, the Single-Peaked

case from Lemma 1 obtains. Proposition 1.2 then implies that the unique optimal reference point is (r∗x, r∗y).

With two-dimensional reference dependence, (r∗x, r∗y) is defined such that u′(r∗x) = p and r∗y = z − pr∗x.

Marginal internalities are positive in the gain domain and negative in the loss domain:

• If x(p, r) > r, m(p, r;π) = (1− π)Λyp
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• If x(p, r) < r, m(p, r;π) = −(1− π)Λx

• If x(p, r) = r,

– m(p, r;π) is undefined when π = 1.

– m(p, r; pi) = u′(r)− p when π = 0, with −Λx ≤ m ≤ Λyp

Intuitively, when π = 0, the individual under-consumes x when x > r in order to reduce reference-

dependent losses over y, and over-consumes x when x < r to reduce losses over x.

Figure B5 illustrates the individual welfare effects of variation in the reference point, and Figure B6

illustrates price changes. Increasing the reference point generates direct positive welfare effects in the gain

domain and direct negative impacts in the loss domain under π = 1. Behavioral welfare effects under π = 0

are concentrated in the reference domain and the sign of these effects turns on the location of the reference

point relative to the individual’s intrinsic optimum (similar to Figure 3 in the main text). The welfare effect

of price changes combines the standard direct effect with behavioral effects depending on the sign of the

marginal internality in each domain.

In the second scenario where rx changes ceteris paribus, the characterization of welfare is similar to Simple

Loss Aversion. However, Assumption 1.2 fails: if r < ry , it is not the case that v = 0 when x = rx.

Consequently, we cannot apply Proposition 1.1. In most cases, we find that lowering reference points is

weakly welfare improving, but when π = 0, there is one case where wrx > 0 because increasing rx mitigates

over-consumption of x out of loss aversion over good y. This issue occurs when π = 0 in the fourth case

from equation (55) (i.e. x = rx) and the reference point lies outside the budget constraint in the subdomain

where u′(x) > p. If Λx ≤ Λyp, the condition u′(x) > p is met whenever x = rx; otherwise, the condition

is met for sufficiently low prices. In this case, there is a positive internality from consuming more x due to

loss aversion over good y, so decreasing the reference point for x does not improve welfare. Note that in

whenever wrx > 0, it is alternatively possible to increase welfare by decreasing ry because the individual

is incurring losses over good y. The individually optimal reference points are then the ones at which the

individual avoids all losses: any (rx, ry) ≤ (r∗x, r∗y) is individually optimal.

B.6.2 Two-Dimensionsal Loss Aversion with Gain Utility

Next, we incorporate gain utility into two-dimensional reference dependence. We consider the following

payoff formulation:

v(x, y, r) =




ηx(x− rx) + (ηy + Λy)(y− ry), x ≥ r

(ηx + Λx)(x− rx) + ηy(y− ry) x < r.
(56)

We focus on the first scenario from above, where the reference point is changed along the budget constraint

(rx′ = z − pry = rx). We can express v as a function of x and the reference point for x:

v(x, r) =




ηx(x− rx) + p(ηy + Λy)(rx − x), x ≥ r

(ηx + Λx)(x− rx) + pηy(rx − x) x < r.
(57)

Note that this formulation satisfies Assumptions 1 and 2, so we can apply Proposition 1. However, which

case from Lemma 1 applies depends on parameter values. Differentiating v yields

vx =




ηx − pηy − pΛy x ≥ r

ηx − pηy + Λx x < r.
(58)
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FIGURE B5: WELFARE EFFECTS OF CHANGING THE REFERENCE POINT UNDER TWO-DIMENSIONAL

REFERENCE DEPENDENCE

(a) Gain domain (G) (b) Loss domain (L)

(c) Reference domain (R), gain case (d) Reference domain (R), loss case

Notes: The figure illustrates the welfare effects of changing the reference point along the budget constraint under two-dimensional
reference dependence. Effects are shown in gain domain (Panel a), the loss domain (Panel b) and the reference domain (Panels c and
d). For the latter, we show effects separately for individuals experiencing a marginal gain and loss. We denote observed demand in
black, intrinsic demand in grey, and gain and loss domain demand in blue and red, respectively, as in Panel (c) of Figure 2. Red shaded
areas denote welfare losses and blue shaded areas denote welfare gains. The legend of each panel provides further interpretation of
the main welfare effects. Note that because the size of the direct effect on the G group depends on the price, so it is depicted slightly
differently from Figure 3.
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FIGURE B6: WELFARE EFFECTS OF PRICE CHANGES UNDER TWO-DIMENSIONAL REFERENCE DEPEN-
DENCE

(a) Gain domain (G) (b) Loss domain (L)

(c) Reference domain (R)

Notes: The figure illustrates the welfare effects of changing prices along the budget constraint under two-dimensional reference de-
pendence. Effects are shown in gain domain (Panel a), the loss domain (Panel b) and the reference domain (Panel c). We denote
observed demand in black, intrinsic demand in grey, and gain and loss domain demand in blue and red, respectively, as in Panel (c)
of Figure 2. Red shaded areas denote welfare losses and blue shaded areas denote welfare gains. The legend of each panel provides
further interpretation of the main welfare effects.
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We can sign the derivative in order to find which case of Lemma 1 obtains.42

1. Loss aversion dominates: If ηx < pηy + pΛy and ηx + Λx > pηy , we are in the Single-Peaked case.

2. ηx dominates: If ηx > pηy + pΛy , we are in the Everywhere Increasing case.

3. ηy dominates: If ηx + Λx < pηy , we are in the Everywhere Decreasing case.

These three cases are intuitive. When the value of a marginal gain is similar in both dimensions, ηx ≈ pηy ,

the model becomes equivalent to Simple Loss Aversion in two dimensions, which is in the Singled-Peaked

case. With this restriction, equation (56) reduces to equation (52). In fact, we note that the restriction on

the magnitude of payoff parameters across different dimensions proposed by Kőszegi and Rabin (2006)

effectively imposes ηx = pηy . As the inequalities above are strict, we find that the unique optimal reference

point is the intrinsic optimum in this case, just as under Simple Loss Aversion in two dimensions.

The other two cases are those where the value of a marginal gain in one of the dimensions, ηx or pηy , is

very large. When ηx dominates, the individual consumes more x in the gain domain over x than intrinsic

utility would imply because they chase gains over x. This lifts the gain domain demand curve above intrin-

sic demand u′(x), different from Figures B5 and B6. The individual optimum tends toward extremes in this

case. When π = 1, decreasing the reference point strictly improves welfare and the individual optimum is

the lowest possible reference point. When π = 0, the individual optimum is any reference point that puts

the individual in the gain domain for good x. Denoting the reference point at the boundary between the

gain and the reference domain r̃ as before, lowering the reference point beyond r̃ has no effects on behavior

or welfare.

Analogously, when ηy is very strong, the individual chases gains over good y in the loss domain for

good x. In this case the individually optimal reference point tends toward the opposite extreme, namely

high reference points. Under π = 1, increasing the reference point always improves welfare, while under

π = 0, increasing the reference point improves welfare up to the boundary between the loss and reference

domains.

B.7 Our Flexible Reduced-Form Formulation as an Approximation

In this section, we formalize how our Flexible Reduced-Form specification is an approximation of any pay-

off formulation satisfying Assumptions 1 and 2. This also clarifies what can be empirically identified in

situations where the true formulation is one of of those approximated by the Flexible Reduced Form.

The Flexible Reduced Form from equation (10) is given by

v(x, r) =




(1− β)Λ(x− r) x ≤ r

−βΛ(x− r) x > r.

where Λ > 0 and β ∈ [0, 1]

In the following, we show that (i) any formulation satisfying Assumptions 1 and 2 admits a first-order

approximation via equation (10) with Λ > 0 equal to the size of the kink in preferences and β ∈ R, and (ii)

if in addition the formulation falls in the Singe-Peaked case from Lemma 1, then β ∈ [0, 1].

42That the weight of reference dependence parameters in these expressions depends on the price is due the fact that we specify
reference dependence over the amount of the good. If instead we use a utils formulation or scale parameters by the price, this issue
does not arise.

72



Suppose v(x, r) = ν(µ(x)− µ(r)) satisfies Assumptions 1 and 2. The result we aim for follows from a

first-order Taylor approximation of v(x, r) about some point (r0, r0). However, the non-differentiability in

v at points where x = r necessitates using different Taylor approximations above and below x = r. Using

Assumption 1.1, 1.2 and 1.3, we can approximate reference-dependent payoffs in both domains:

v(x, r) ≈





v(r0, r0) + ν′−(0)µ
′(r0)(x− r0)− ν′−(0)µ

′(r0)(r− r0) x < r0

v(r0, r0) + ν′+(0)µ
′(r0)(x− r0)− ν′+(0)µ

′(r0)(r− r0) x > r0

0 x = r0

≡ v̂(x, r)

By Assumption 1.2, v(r0, r0) = 0. Simplifying, we have

v̂(x, r) =




ν′−(0)µ

′(r0)(x− r) x ≤ r0

ν′+(0)µ
′(r0)(x− r) x > r0

(59)

Let Λ = ν′−(0)µ
′(r0) − ν′+(0)µ

′(r0). Note that this is the implied size of the kink in preferences around

x = r0 above. And let β = −ν′+(0)µ
′(r0)/Λ. Note that 1 − β = ν′−(0)µ

′(r0)/Λ. Then the approximate

formulation (59) becomes equation (10). All that remains to check are the parametric restrictions. We have

Λ > 0 by Assumption 1.3. The parameter β then turns on which of the cases from Lemma 1 obtains:

• v(x, r) is Single-Peaked if and if only β ∈ [0, 1].

• v(x, r) is Everywhere Increasing (vx > 0 everywhere) if and if only β < 0.

• v(x, r) is Everywhere Decreasing (vx < 0 everywhere) if and if only β > 1.

Note that we have not relied on ruling out diminishing sensitivity here (Assumption 2), although we use

sub-Assumption 2.1 in order to invoke the cases from Lemma 1. Because it is a first-order approximation,

equation (59) has a second derivative of zero and thereby satisfies Assumption 2 automatically.

When we estimate Λ and β empirically, we should think of r0 as the status quo reference point. For

instance, this would be the pre-reform Normal Retirement Age in our empirical application. Welfare effects

of changes in prices and reference points for individuals choosing options near the status quo are then well-

approximated according to the logic of a first-order Taylor approximation, while welfare effects for those

further away may be subject to larger approximation errors. This has some noteworthy implications for

quantitative evaluations of changes in r. Namely, because behavioral welfare effects of variation in r are

concentrated near the reference point, these are insensitive to potential approximation errors. The same

cannot be said for direct welfare effects of changing r, as these occur further away as well.
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C Proofs

This section presents proofs of all propositions and a few notes on the theory.

Lemma 1. Under Assumptions 1 and 2.1, at least one of the following must be true:

• (Everywhere Increasing) vx ≥ 0 for all x 6= r.

• (Everywhere Decreasing) vx ≤ 0 for all x 6= r.

• (Single-Peaked) vx ≥ 0 for all x < r, and vx ≤ 0 for all x > r.

Proof. Under our domain-specific monotonicity assumption, Ass. 2.1, there are four possibilities: vx may be

positive or negative for all x > r, and it may be positive or negative for all x < r. vx being positive over

gains and negative over losses would violate the direction of the kink in preferences under loss aversion

(Assumption 1.3), as we approach the point where x = r from the right or left. At least one of the other

three cases must therefore obtain.

Proposition 1. Signing the Welfare Effects of Reference Point Variation. Maintain Assumptions 1 and 2 and

consider any (p, r) that is not on the boundary of R.

P1.1. If v is Everywhere Increasing, then wr(p, r) ≤ 0. If v is Everywhere Decreasing, then wr(p, r) ≥ 0.

P1.2. Let r∗ be the reference point such that u′(r∗) = p. If v is Single-Peaked, then wr(p, r) ≥ 0 when r ≤ r∗, and

wr(p, r) ≤ 0 when r ≥ r∗. Consequently, r∗ is an individually optimal reference point.

Proof. Most of the key steps in Proposition 1 are covered in the main text.

The derivative we wish to characterize is expressed in equation (4) for the G and L domains, while

equation (6) covers the R domain.

Generically there are two candidates for optima in the interior of the G and L domain:

u′(xL) + ν′µ′(xL) = p; xL < r (60)

u′(xG) + ν′µ′(xG) = p; xG > r

We can derive (4) using these first-order conditions. Outside the R domain,

wr = (u′(x)− p+ πvx)xr + πvr.

The first order condition implies u′(x)− p = −vx, so from the envelope condition we have

wr = −(1− π)vxxr + πvr.

Substituting for vx and vr using equation (2) (as in equation (60)), we have

wr = −ν′µ′(1− π)xr − πν′µ′(r).

Note that we have not relied on Assumption 2.2 yet. As noted in the main text, equation (4) can be

derived without this assumption. If we differentiate the first-order condition above and apply Assumption

2.2, we find xr = 0 in the G and L domains. The above expression simplifies to wr = −πν′µ′(r). Note that

µ′ > 0 everywhere by Assumption 1.1. Thus if vx ≥ 0 ⇐⇒ ν′ ≥ 0 everywhere (the Everywhere Increasing

case), wr ≤ 0 everywhere. If vx ≤ 0, ν′ ≤ 0 and wr ≥ 0. In the Single-Peaked case, ν′ ≥ 0 and wr ≤ 0 in the

74



loss domain, while in the gain domain vx ≤ 0 and wr ≥ 0. This establishes the result for the gain and loss

domains.

Finally we establish the result for the R domain. Recall that under Assumption 3, there is a range of

values for r where xG < r < xL and x(p, r) = r, which defines the R domain. From Assumption 1.3, the

fact that u′′ < 0, and the first-order conditions (60) we have

xG < r < xL =⇒ −ν′(µ(xL)− r)µ′(xL) < u′(r)− p < −ν′(µ(xG)− r)µ′(xG).

A version of this expression appears as equation (7) in the main text. In the everywhere increasing case,

u′(r)− p is bounded by two (weakly) negative quantities so it must be (weakly) negative. Likewise in the

everywhere decreasing case, u′(r)− p must be weakly positive. This completes the proof of Proposition 1.1.

In the Single-Peaked case, u′(r)− p is bounded between a weakly positive and a weakly negative quan-

tity, so by u′′ < 0 there must be some r∗ with (r∗, p) ∈ R and u′(r) − p = 0. We call this the intrinsic

optimum in the main text. Obviously, u′(r) − p > 0 for r < r∗ and the opposite is true for r > r∗. This

completes the proof for the R case.

Remark on the Derivation of Equation (8). We note that the expression for the welfare effects of price

changes in equation (8) can be derived following identical steps to the derivation of the generic expressions

for wr in the previous proof.

Proposition 2. Sufficient Statistics Characterizations

P2.1. Up to a first-order approximation, the social welfare effect of a change in the reference point ∆r is

∆W ≈ ∆rπ {E[βiΛi | i ∈ G]P [i ∈ G]−E[(1− βi)Λi | i ∈ L]P [i ∈ L]}

− ∆rE
[
u′i(r)− p

∣∣ i ∈ R
]
P [i ∈ R].

P2.2. If the distribution of u′i(r)− p is independent of (βi, Λi) and locally uniform for i ∈ R(p, r), the social welfare

effect of ∆r can be further approximated as

∆W ≈ ∆rπ {E[βiΛi | i ∈ G]P [i ∈ G]−E[(1− βi)Λi | i ∈ L]P [i ∈ L]}

+ ∆rE

[
Λi

(
βi −

1

2

) ∣∣∣∣ i ∈ R

]
P [i ∈ R].

P2.3. Up to a first-order approximation, the social welfare effect of a change in price ∆p is

∆W ≈ ∆p(1− π)
{
E
[
βiΛixp,i

∣∣ i ∈ G
]
P [i ∈ G]−E

[
(1− βi)Λixp,i

∣∣ i ∈ L
]
P [i ∈ L]

}

− ∆pE[xi(p, r)]

= ∆p(1− π)

{
E

[
βiΛiεi

xi

p

∣∣∣∣ i ∈ G

]
P [i ∈ G]−E

[
(1− βi)Λiεi

xi

p

∣∣∣∣ i ∈ L

]
P [i ∈ L]

}

− ∆pE[xi],

where εi is the price elasticity of demand for good x.

Proof. Proof of 2.1. There are two main steps in this proof. The first step is to derive the individual welfare

effect under the Flexible Reduced-Form specification (10) in each of the three domains. The second step is

to show that welfare effects at the boundary of these cases are irrelevant for the first-order welfare effect, so

that the social welfare effect is a simple aggregation of the welfare effects in the three domains.
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To do this, we need only evaluate the derivatives in equation (4). As noted in the previous proof, we

have xi,r = 0 for i ∈ G,L because equation (10) satisfies Assumption 2.2. For these cases therefore we have

i ∈ G(p, r) =⇒ wr,i = πβiΛi

i ∈ L(p, r) =⇒ wr,i = −π(1− βi)Λi

while for the R case, we already have the welfare effect from equation (6), which uses that ν(0) = 0 under

Assumption 1.2:
i ∈ R(p, r) =⇒ wr,i = u′i(r)− p.

Now we prove that the social welfare effect of a change in r is simply the aggregation of the welfare

effects for individuals in the three cases. As the three groups cover the full population, we can decompose

social welfare as follows:

W (p, r) =
∫

i∈G(p,r)
wi(p, r)dF (i) +

∫

i∈R(p,r)
wi(p, r)dF (i) +

∫

i∈L(p,r)
wi(p, r)dF (i).

Because wi(p, r) and behavior are everywhere continuous and differentiable almost everywhere, the result

then follows immediately from applying the generalization of Leibniz integral rule for measure spaces,

which implies

Wr(p, r) =
∫

i∈G(p,r)
wr,i(p, r)dF (i) +

∫

i∈R(p,r)
wr,i(p, r)dF (i) +

∫

i∈L(p,r)
wr,i(p, r)dF (i).

Intuitively, at the two boundaries between G and R and between R and L, we have a marginal change in

welfare for a marginal group, so the effect is of second order. Using the expressions derived above for wr,i

and restating the integrals in terms of conditional expectations, we arrive at the desired result.

Because some readers may be unfamiliar with more general versions of Leibniz integral rules, we also

provide a less abstract argument under the assumption that there is a single dimension of heterogeneity θi,

and Λi and βi are both homogeneous. By definition u′i(r) = ur(r, θi), so supposing without loss of further

generality (beyond the one-dimensional types assumption) that a higher θ corresponds to a higher level

of marginal utility, for any (p, r) there are cutoffs θL and θG such that ur(r, θL(r)) + (1 − β)Λ = p, and

ur(r, θL)− βΛ = p. We find θL < θG due to diminishing marginal utility. These cutoffs depend on (p, r) so

we express them as θL(p, r) and θG(p, r).

With this restriction on individual heterogeneity we can re-write the previous expression as

W (p, r) =
∫ ∞

θG(p,r)
w(p, r, θ)dFθ(θ) +

∫ θG(p,r)

θL(p,r)
w(p, r, θ)dFθ(θ) +

∫ θL(p,r)

−∞
w(p, r, θ)dFθ(θ)

Differentiating with respect to r and applying the one-dimensional Leibniz rule for integrals, we find

W (p, r) =
∫ ∞

θG(p,r)
wr(p, r, θ)dFθ(θ)− θGr w(p, r, θG)fθ(θ

G)

+
∫ θG(p,r)

θL(p,r)
wr(p, r, θ)dFθ(θ) + θGr w(p, r, θG)fθ(θ

G)− θLr w(p, r, θL)fθ(θ
L)

+
∫ θL(p,r)

−∞
wr(p, r, θ)dFθ(θ) + θLr w(p, r, θL)fθ(θ

L)

The boundary terms all cancel and the resulting expression is the desired result. This illustrates more con-

cretely that the boundary cases are second order when evaluating welfare effects if welfare and behavior
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evolve continuously at the boundary. For the proofs of the remaining parts of proposition 2, we take for

granted that the boundary cases are second order.

Proof of 2.2 Once we have established the previous result, all we need to do is show how the term for the R

group simplifies under the assumption that ∆i = u′i(r)− p is uniform conditional on i ∈ R. Without loss of

generality we can write the welfare effect in the R group as:

∫

i∈R(p,r)
wr,i(p, r)dF (i) =

∫

Λ

∫

β

∫ βΛ

∆=−(1−β)Λ
∆f(∆|β, Λ)d∆dFβ,Λ(β, Λ)

Now we apply the uniformity assumption, that is f(∆|β, Λ) is constant in the R domain. Under our condi-

tional independence assumption the constant does not depend on β, Λ. Denoting the constant C, the above

expression becomes
∫

i∈R(p,r)
wr,i(p, r)dF (i) =

∫

Λ

∫

β
C
−(1− β)Λ + βΛ

2
dFβ,Λ(β, Λ)

Noting that
−(1−β)Λ+βΛ

2
= Λ(β − 1

2
) and that this expression represents a conditional expectation for i ∈ R

multiplied by P [i ∈ R], we arrive at the desired result.

Proof of 2.3 By the same argument as above, we have:

Wp(p, r) =
∫

i∈G(p,r)
wp,idF (i) +

∫

i∈R(p,r)
wp,idF (i) +

∫

i∈L(p,r)
wp,idF (i)

Evaluating the derivatives for the individual welfare effect of a price change in equation (8) under formula-

tion (10), we find:

i ∈ G(p, r) =⇒ wr,i = −xi(p, r)− πβiΛixp,i

i ∈ L(p, r) =⇒ wr,i = −xi(p, r) + π(1− βi)Λixp,i

i ∈ R(p, r) =⇒ wr,i = −xi(p, r)

For the R case, we are using the fact that welfare equals wi(p, r) = ui(r)− pr locally to arrive at the above

(note also xp,i = 0 locally). Substituting in these expressions and simplifying yields the desired result. For

the re-statement in terms of elasticities, we use the definition of the price elasticity: εp,i = xp,i
p

xi(p,r)
.

Proposition 3. Identification from Bunching. Define a random variable ∆i = u′i(r)− p and denote its density

and cumulative distribution by f∆ and F∆. Assume that ∆, Λ and β are mutually independent.

P3.1. Excess bunching at xi = r is characterized approximately by

P [i ∈ R]

f∆(0)
≈ E[Λi]

P3.2. The share of bunching that comes from the right – defined as the share of individuals who would choose to

consume more than r in the absence of reference-dependent payoffs – is approximately

P [r∗i > r|i ∈ R] ≈ E[βi]

These approximations are based on a first-order Taylor approximation of F∆ around ∆ = 0; they are exact when f∆ is

locally uniform for i ∈ R(p, r).
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Proof. We begin by building on the characterization of the composition of the three groups in terms of β, Λ,

and ∆.

P [i ∈ G] = Pr(∆ > βΛ) =
∫

(β,Λ)
1− F∆(βΛ|β, Λ)dFβ,Λ(β, Λ)

P [i ∈ L] = Pr(∆ < −(1− β)Λ) =
∫

(β,Λ)
F∆(−(1− β)Λ|β, Λ)dFβ,Λ(β, Λ)

P [i ∈ R] = Pr(−(1− β)Λ < δ < βΛ) =
∫

(β,Λ)
F∆(βΛ|β, Λ)− F∆(−(1− β)Λ|β, Λ)

By the independence assumption, F∆(∆|β, Λ) = F∆(∆). Then, using a first-order Taylor Approximation of

F (∆) around ∆ = 0, we have

Pr[i ∈ G] ≈
∫

β,Λ
[1− F∆(0)− f∆(0)βΛ] dFβ,Λ(β, Λ)

Pr[i ∈ L] ≈
∫

β,Λ
[F∆(0) + f∆(0)(−(1− β)Λ)] dFβ,Λ(β, Λ)

Pr[i ∈ R] ≈
∫

β,Λ
[f∆(0)(βΛ −−(1− β)Λ)] dFβ,Λ(β, Λ) =

∫

β,Λ
[f∆(0)Λ] dFβ,Λ(β, Λ)

Note that these approximations are accurate when f ′∆(∆) = 0, i.e. when the distribution of ∆ is uniform

over the relevant domain. The above expressions simplify to

Pr[i ∈ G] ≈ 1− F∆(0)− f∆(0)E[βiΛi]

Pr[i ∈ L] ≈ F∆(0)− f∆(0)E[(1− βi)Λi]

Pr[i ∈ R] ≈ f∆(0)E[Λi]

Now excess bunching at the reference point, defined as the probability i ∈ R scaled by the probability that

r∗i = r ⇐⇒ ∆ = 0, is given by
Pr[i ∈ R]

f∆(0)
≈ E[Λi].

Similarly to the characterization of Pr[i ∈ R] above, the fraction of the full population who bunch from the

right, i.e. those i ∈ R(p, r) for whom r∗i > r ⇐⇒ ∆ > 0, is

P [r∗i > r & i ∈ R] =
∫

β,Λ
[f∆(0)(βΛ − 0)] dFβ,Λ(β, Λ) ≈ f∆(0)E[βiΛi].

Using the assumption that Λ and β are independent, we combine the previous two expressions to obtain

the probability of bunching from the right conditional on i ∈ R, P [r∗i > r|i ∈ R] = P [∆i > 0|i ∈ R]:

P [r∗i > r|i ∈ R] =
P [r∗i > r & i ∈ R]

P [i ∈ R]
≈ E[βi].

Welfare Effects with Fiscal Externalities.

Here we derive our main welfare effects in the presence of fiscal externalities. Doing so helps us understand

the fiscal externality component of welfare effects in our empirical application. Our aim is to understand

how incorporating fiscal externalities modifies equations (13) and (15) from the main text. Here we focus on

the case of Simple Loss Aversion, i.e. we set β = 0. Relaxing this restriction would be straightforward, but

we rely on this simplification because we only use the restricted version of the sufficient statistics formulas
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in the empirical application.

With a fiscal externality, we can characterize efficiency using

∆W = ∆W ind + ∆G

where ∆W ind is the change in utilitarian social welfare approximated by the above results, ∆G is the change

in government revenues. Note that because we focus on efficiency, we implicitly set the marginal cost of

public funds equal to 1 here.

Suppose that good x is taxed at some linear rate t. Then ∆G = ∆E[t · xi]. For a change that leaves tax

incentives fixed, such as a ceteris paribus change in the reference point, ∆G = E[t∆xi], and if the tax rate is

fixed across individuals, we can express this as ∆G = tE[∆xi].

Assuming such a uniform tax rate and considering a cetris paribus change in the tax rate, we have

E[∆xi] ≈ ∆rP (i ∈ R), because individuals in the the G and L groups do not change behavior, the marginal

gain and marginal loss cases are second order, and ∆xi = ∆r for i ∈ RR.

∆W ≈− ∆rπE[Λi | i ∈ L(p, r0)]P [i ∈ L(p, r0)]

− ∆rE

[
Λi

2
| i ∈ R(p, r0)

]
P [i ∈ R(p, r0)] + t∆rP [i ∈ R(p, r0)]

Simplifying

∆W ≈− ∆rπE[Λi | i ∈ L(p, r0)]P [i ∈ L(p, r0)]

+ ∆rE

[
−

Λi

2
+ t | i ∈ R(p, r0)

]
P [i ∈ R(p, r0)]

With individual-specific marginal tax rates on good x, we would rather have

∆W ≈− ∆rπE[Λi | i ∈ L(p, r0)]P [i ∈ L(p, r0)]

+ ∆rE

[
−

Λi

2
+ ti | i ∈ R(p, r0)

]
P [i ∈ R(p, r0)]

∆W ≈− ∆rπE[Λi | i ∈ L(p, r0)]P [i ∈ L(p, r0)]

+ ∆r

{
−E

[
Λi

2
| i ∈ R(p, r0)

]
+E[ti | i ∈ R(p, r0)]

}
P [i ∈ R(p, r0)]

For a reform that changes tax rates ceteris paribus (i.e. keeping r and other components of prices fixed), we

have direct and behavioral revenue effects:

∆G ≈ E[t∆xi + xi∆t] = tE[∆xi] +E[xi]∆t

= tE

[
∂xi

∂p

]
∆t+E[xi]∆t

= tE

[
ε

xi

p+ t

]
∆t+E[xi]∆t

For a change in prices operating through a change in tax rates, the individual welfare effect ∆W ind is

given by equation (14) with ∆p = ∆t.
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Putting these together:

∆W ≈

(
−(1− π)E

[
Λi

∂xLi
∂p

∣∣∣∣∣ i ∈ L

]
P [i ∈ L]−E[xi(p0, r)]

)
∆t+ tE

[
∂xi

∂p

]
∆t+E[xi]∆t,

Noting that the direct revenue effect and the direct individual welfare effect offset one another perfectly,

this simplifies to

∆W ≈

(
−(1− π)E

[
Λi

∂xLi
∂p

∣∣∣∣∣ i ∈ L

]
P [i ∈ L]

)
∆t+ tE

[
∂xi

∂p

]
∆t,

To characterize the new term further, note that obviously,

∂xi

∂p
=





∂xG
i

∂p , i ∈ G

∂xL
i

∂p , i ∈ L

0, i ∈ R.

We could also express these terms as elasticities, as in equation (15).
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D Relationship to Bernheim and Rangel (2009)

Bernheim and Rangel (2009) propose a general framework for decision-theoretic behavioral welfare eco-

nomics. This appendix describes in detail the relationship between our analysis and this framework. We

focus on mapping our Flexible Reduced-Form specification from equation (10) into the Bernheim-Rangel

framework; a similar line of reasoning can be applied to other formulations.

The first step in applying this framework is to conceive of an observed choice in terms of a menu and

an ancillary condition, or frame (denoted by f ) – see also Bernheim and Taubinsky (2018). In describing this

process, Bernheim and Taubinsky (2018) describe frames as those aspects of the choice situation that “have

no direct bearing on well-being, but that instead impact biases.”

What are the frames in our context? An initial guess might be that the reference point itself is a frame, but

based on the definition above, this is not appropriate. We show that a change in the reference point can have

a direct welfare effect, e.g. by modifying the incurred losses of individuals in the loss domain. Whether this

direct effect should carry normative weight is a question of central importance, but this question belongs

to a later step of the analysis, not the definition of a frame. Similarly, our theory implies that individuals

should have a willingness to pay to change the reference point, suggesting that it has a direct bearing on

well-being. Thus, we do not conceive of the reference point as a frame in the. A similar justification is used

by Bernheim et al. (2015) in their application of this framework to the welfare economics of default options,

to justify the treatment of the default as a component of the menu rather than a frame.

Nevertheless, there is a formal sense in which our results can be interpreted within the Bernheim-Rangel

framework, which we now describe. First, we suppose that what we call observed demand in our analysis

comes from choices under a single frame f1. This frame is analogous to what Bernheim et al. (2015) refer to

as a “naturally occurring frame.” Under the frame f1, the individual reveals preferences consistent with the

utility function in equation (1), which we re-write here:

U (x, y, r, f1) = u(x) + y + v(x, r), (61)

where v takes the form described in equation (10), or some other formulation from Appendix B.

In order to map our analysis into the Bernheim-Rangel framework, we need to consider a hypothetical

choice situation in which reference dependence is eliminated in order to capture normative choices in the

π = 0 case. If we wish to consider the possibility that reference dependence may be a bias, what preferences

would be revealed by choices in an unbiased state? We represent choices made in a state without reference

dependence via a frame f0. Choices under f0 maximize

U (x, y, r, f0) = u(x) + y. (62)

Choices under f0 would of course be difficult to directly observe in empirical data, but the application

of the Bernheim-Rangel framework does not require that all relevant parts of the choice correspondence

are empirically observable. Choices under f0 could potentially be observed by eliminating the effect of

the reference point through some experimental intervention; we infer information about choices under f0

implicitly using bunching methods in Proposition 3. Alternatively, under the restriction β = 0, U under

the two frames coincide in the gain domain, so we could identify U under f0 by observing choices under

an extremely low reference point in f1. Similarly under β = 1 we could identify U under f0 by observing

demand in the loss domain.
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Note that setting f1 = 1 and f0 = 0, we can represent choices in either frame f ∈ {0, 1} by:

u(x, y, r, f) = u(x) + y + f · v(x, r), (63)

In this notation, the frame f plays a similar role to π, but here we conceive of the two different frames purely

in terms of choices in different situations, without a normative judgment.

The second step in applying the framework is to designate a subset of choice situations as the welfare-

relevant domain, i.e. situations from which we wish to take normative inference. There are three intuitive

possibilities for the welfare relevant domain, each of which reflects a normative judgment:

• (J1) include only choices under the naturally occurring frame (f = 1),

• (J2) include only choices under the no-reference-dependence frame (f = 0), or

• (J3) include choices under both frames.

The third step of the analysis is then to consider what revealed preferences are consistently expressed for

choices within the welfare-relevant domain. If a is chosen when b is available for some situation in the

welfare-relevant domain, and b is never chosen when a is available for other such situations, then we con-

clude that a is preferred to b.

If we interpret our results within the Bernheim-Rangel framework, our goal and contribution is mainly

to show how the these alternative judgments about the welfare-relevant domain influence welfare and op-

timal policy considerations. Under (J1) or (J2), there is a single utility function (either equation (61) or equa-

tion (62)) that ranks all options in the menu space (i.e. all combinations of (x, y, r)). Under (J3), however,

we obtain only an incomplete ranking. Our results map into the Bernheim-Rangel framework as follows:

• (J1) Restricting the welfare-relevant domain to choices under f = 1 is equivalent to judging π = 1

• (J2) Restricting the welfare-relevant domain to choices under f = 0 is equivalent to judging π = 0.

• (J3) Including both f = 0 and f = 1 in the welfare relevant domain is equivalent to only taking welfare

inference from welfare comparisons where some option (x0, y0, r0) is preferred to some other option

(x1, y1, r1) for any π ∈ {0, 1}.

Proposition 1 shows that we can characterize the sign of the welfare effects of changes in r without ref-

erence to π. This means that under the restriction on payoff formulations in Assumption 1 and 2, we always

obtain robust over variation in r that are independent of π. Through the lens of the Bernheim-Rangel frame-

work, this suggests that even if we include choices under both f1 and f0 in the welfare relevant domain (J3)

and use the revealed preference criterion proposed by Bernheim and Rangel, we would conclude that indi-

viduals prefer either higher or lower reference points according to the conditions laid out in Proposition 1.

Alternative Approach Under π = 0. Suppose, contrary to our preferred line of reasoning above, that we

wish to conceive of the reference point as a frame. In this case, we could actually think of demand in the

gain domain and demand in the loss domain as demand under two different frames. Note that under π = 0,

with equation (10) we nest the case where demand in the gain domain is normative by β = 0, as in this case

we have v(p, r) = 0 for (p, r) ∈ G. Similarly, demand in the loss domain is normative when β = 1. Thus, we

could think of the parameter β as capturing normative ambiguity over whether gain or loss domain demand

are normative, provided we are willing to also assume that reference-dependent payoffs generally are not
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normative (π = 0). Note also that this approach requires that we rule out diminishing sensitivity; otherwise,

decisions under every possible reference point leads to distinct revealed preferences, so we would need a

distinct frame for each. There are some similarities of this approach to the anchoring model of default effects

in Bernheim et al. (2015).
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E Empirical Application

E.1 Decomposing Reference Dependence Payoffs

Besides fiscal effects and effects on standard utility components, we calculate the effects of policies on ref-

erence dependence payoffs in the simulations. In the model from from equation (18), an individual’s total

reference dependence payoffs are given by

v(R|R̂) = −





0 R < R̂

Λ̃(R− R̂) R ≥ R̂,

where R is the individual’s retirement age and R̂ is the reference point given by the Normal Retirement Age.

We further decompose reference dependence payoffs into additional disutility from work due to reference

dependence and direct utility from the reference point. The first component, reference dependence disutility

from work, is

vb(R|R̂) = −





Λ̃R̂0 R < R̂

Λ̃R R ≥ R̂,

The second component, reference dependence utility from the reference point itself, is

vd(R|R̂) = −





Λ̃(−R̂0) R < R̂

Λ̃(−R̂) R ≥ R̂,

Note that we introduce a “base age” R̂0 given by the pre-reform NRA in the case R < R̂. This choice is

inconsequential for overall welfare effects, because vb + vd = v for any base age. However, anchoring vb

and vd at the initial reference point R̂0 allows to avoid introducing a jump discontinuity in vb and vb at

R = R̂, which would complicate the calculation of direct versus behavioral welfare effects for individuals

moving between gain and loss domains relative to R̂.

E.2 Two-Dimensional Reference Dependence in the Empirical Application

E.2.1 Two-Dimensional Model

In our empirical application, besides reference dependence over leisure, there could also be reference de-

pendence in the consumption dimension. We can modify the preferences from equation (18) to include

consumption reference dependence:

U = C −
n

1 + 1
ε

(
R

n
)1+ 1

ε −





0 R < R̂

Λ̃l(R− R̂) R ≥ R̂,
−





Λc(Ĉ −C) C < Ĉ

0 C ≥ Ĉ,
(64)

where Ĉ = C(R̂) is the consumption reference point, which is assumed to correspond to the consumption

level at the NRA. Thus, the two-dimensional reference point lies on the budget constraint. The parameter Λl

captures the strength of reference dependence over leisure and Λc captures the strength of reference depen-

dence in the consumption dimension.43 Such loss aversion in consumption may arise for instance because

"full" pension benefits become available at the NRA, and individuals perceive the associated consumption

43Λc implies additional marginal utility from consumption in the loss domain below Ĉ. For instance, Λc = 0.5 corresponds to 50%
higher marginal utility from consumption in the loss domain than in the gain domain.
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level as a reference point (Behaghel and Blau 2012).44

As in the one-dimensional case, the two-dimensional model predicts bunching at the NRA. However, a

crucial difference between the two models lies in the direction of predicted bunching. While reference de-

pendence over leisure induces workers to retire earlier in order to enjoy more leisure, reference dependence

over consumption induces individuals to postpone retirement and increase consumption. This occurs be-

cause the consumption loss domain is the range of consumption levels and associated retirement ages below

the NRA, whereas the loss domain over leisure is above the NRA. Thus, reference dependence over leisure

leads to bunching from above, but reference dependence over consumption leads to bunching from below. Fig-

ure 5 illustrates the predicted effect of the two dimensions of reference dependence on the retirement age

distribution. Reference dependence over leisure implies a shift in the distribution toward the NRA from

above, while reference dependence over consumption leads to a shift in the distribution toward the NRA

from below. A combination of the two would imply a shift towards the reference points from both sides.

As we argue in Section 4.6.1, the empirically observed retirement age distribution around the NRA suggests

that reference dependence over leisure dominates reference dependence over consumption.

The marginal bunching individual from above can be characterized as in Section 4.2. The upper marginal

buncher’s indifference curve would be tangent to the budget line at some retirement age R∗
+ without ref-

erence dependence, and another indifference curve is tangent exactly at R̂ with reference dependence. All

workers initially located between R̂ and R∗
+ bunch at the reference point from above, while all individuals

initially to the right of R∗
+ decrease their retirement age but stay above the reference point. The two tangency

conditions for the upper marginal buncher imply R∗
+ = n∗+[w(1 − τ )]ε and R̂ = n∗+[w(1 − τ − ∆τ − Λl)]

ε,

where n∗+ denotes her ability level and Λl = Λ̃l/w is the reference dependence parameter normalized by

the wage per period. Hence,
R∗
+

R̂
=

(
1− τ

1− τ − ∆τ − Λl

)ε

Similarly, a marginal bunching individual from below can be identified. The lower marginal buncher’s

indifference curve would be tangent to the budget line at R∗
− without reference dependence, and tangency

occurs exactly at R̂ with reference dependence. All workers initially located between R∗
− and R̂ bunch at

the reference point from below, while all individuals initially to the left R∗
− retire later but stay below the

reference point. The two tangency conditions of the lower marginal buncher are R∗ = n∗−[w(1 − τ )]ε and

R̂ = n∗−[(1 + Λc)w(1− τ )]ε, where n∗− denotes her ability level. Hence,

R∗
−

R̂
=

(
1

1 + Λc

)ε

The total excess mass b = B/h0(R̂) is

b

R̂
=

[(
1− τ

1− τ − ∆τ − Λl

)ε

− 1

]
+

[
1−

(
1

1 + Λc

)ε]
(65)

Hence, bunching has two components. The first term in equation (65) captures bunching from the right

(from above) due to the retirement age/leisure reference point in combination with a potential budget set

kink present at the threshold. The second term in the equation captures bunching from the left (from below)

due to the consumption reference point.

44Whether "full" pension benefits become available at the NRA depends on the specifics of the pension system. In the German
setting, full benefits become available at the Full Retirement Age, which is in principle distinct from the NRA. However, for most
workers among birth cohort 1946 on whom we focus in the simulations, the NRA and FRA coincide and thus full benefits become
available at the NRA.
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Equation (65) yields the exact amount of bunching under the utility funciton we assume. Taking a first-

order Taylor approximation about the point (Λl, Λc) = (0, 0) under ∆t = 0, we obtain the following ap-

proximation of the excess mass at a two-dimensional reference point without a local financial incentive

kink: b

R̂
≈ ε(Λl + Λc), (66)

This expression is closely related to our first bunching identification result from Proposition 3.1. Observed

bunching at the reference point identifies the combined strength of loss aversion over leisure and consump-

tion, (Λl + Λc), given an elasticity estimate. Separately identifying (Λl and Λc) will require information

about whether bunching comes from the left or from the right, as we show in general in Proposition 3.2 and

specifically for the retirement model below.

E.2.2 Parameter Estimation and Simulations

Analogously to equation (20), bunching observed at a threshold j, which may be the Normal Retirement

Age or a pure financial incentive discontinuity, can be written as

bj

R̂j

=

[(
1− τj

1− τj − ∆τj − Λl ·Dj

)ε

− 1

]
+

[
1−

(
1

1 + Λc ·Dj

)ε]
+ ξj (67)

where Dj is an indicator for the Normal Retirement Age and ξj is an error term. As discussed above, a key

issue with the estimation is that Λl and Λc cannot be separately identified based solely on equation (67).

Intuitively, both retirement age and consumption reference points lead to sharp bunching at the threshold

R̂ such that a given amount of excess mass could be rationalized by a range of combinations of Λl and Λc.

In order to make progress, it is useful to write the two components of excess mass separately. Bunching

from the right is
b+j

R̂j

=

[(
1− τj

1− τj − ∆τj − Λl ·Dj

)ε

− 1

]
+ ξ+j (68)

and bunching from the left is
b−j

R̂j

=

[
1−

(
1

1 + Λc ·Dj

)ε]
+ ξ−j (69)

where bj = b+j + b−j . Denoting βj = b−j /bj the share of excess mass originating from the left, this share

ranges between zero and maximum of β̂j . The maximum left bunching share β̂j is given by one minus the

fraction of bunching that would persist if workers only bunch due to the budget constraint kink.

We follow two approaches in order to obtain joint estimates of Λl and Λc. First, we can simulate the full

range of possible combinations of the two parameters by gradually moving the share of left bunching at the

NRA from zero to its maximum and estimating equations (68) and (69) using the implied values of b+j and

b−j . Panel (a) of Appendix Figure A3 shows resulting parameter combinations. The negative slope of the

relationship illustrates the intuition that the two types of reference dependence are substitutes in terms of

rationalizing observed excess mass. The labeled dots in in the figure mark a range of implied left bunching

shares between 0 and 50%. These results allow us to simulate the welfare effects of pension reforms as a

function of the relative strength of consumption reference dependence, which are shown in Figure 6.

As a second approach, we aim at obtaining a set of preferred "point" estimates of Λl and Λc. For this, an

empirical estimate of β is needed. We argue that the empirical retirement age distribution around the NRA

is informative of the relative magnitude of bunching from the two sides, and can be used for this purpose

under some additional assumptions. In particular, bunching shares from both sides can be computed based

on estimates of the corresponding density shifts. Intuitively, we assume the counterfactual density to be
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continuous around the NRA, and infer the relative number of bunchers from the left and from the right

from the vertical difference between the counterfactual density and the actually observed density on both

sides of the threshold. This estimation requires a stronger assumption about the true relative density shifts

being reasonably well approximated by locally observed relative shifts.

We begin with the observation that bunching at the threshold must equal the total missing density from

both sides:
B =

∫ R̂

Rmin

(h0(R)− h(R)) dR+
∫ Rmax

R̂
(h0(R)− h(R)) dR

where Rmin and Rmax are the minimum and maximum counterfactual retirement ages from which individ-

uals bunch at the NRA.

Measuring the true density shift over the full support is impossible in practice for two reasons. First,

the shift h0(R)− h(R) may vary across R in an unknown way so that h0(R) cannot be measured for all R

based on the observed density. Second, the full support of the counterfactual density may not be observed.

Even if the full support of the actual density could be observed, this does not necessarily correspond to

the counterfactual support because some counterfactual density is predicted to “disappear” at the bounds

because all individuals shift out a certain range.45

One solution to this problem is to approximate the true density shift by a constant shift over a certain

range on each side. Denote by h+ and h− the observed density immediately to the right and left, respec-

tively, of the threshold R̂. Furthermore, denote by h0
+ and h0

− the corresponding counterfactual density in

the absence of the threshold. The approximation is

B ≈
(
h0
− − h−

)
(R̂−R−) +

(
h0
+ − h+

)
(R+ − R̂)

where a constant density shift observed immediately to the left of the threshold over a range [R−, R̂] ap-

proximates for the true shift on the left and a constant shift observed immediately to the right of R̂ over

[R̂,R+] approximates for the shift on the right.

Assume also that the counterfactual density is continuous at R̂ such that h0
+ = h0

− = h0. Then h0 can be

recovered as
h0 ≈

B + (R̂−R−)h− + (R+ − R̂)h+
R+ −R−

From this, the implied bunching shares from both sides can be computed as B− = (h0 − h−)(R̂−R−) and

B+ = (h0 − h+)(R+ − R̂) because bunching from either side must be equal to the total density shift on that

side.

Panel (b) of Appendix Figure A3 illustrates this procedure. The solid red line shows the average empiri-

cal retirement density on both sides in a window of +/-2 years around the NRA, h+ and h−. The dashed red

line shows the implied counterfactual density h0 calculated as described above. The figure shows that the

difference between the observed density and the counterfactual density is much larger on the right, indi-

cating that most "missing density" is on this side, and thus most bunching appears to originate from above.

We obtain an estimate of β = 0.133. Thus, the estimated share of bunching from the left due to reference de-

pendence over consumption is 13.3% and the share of bunching from the right due to reference dependence

over leisure is 86.7% . Finally, the parameters Λc and Λl can be estimated by plugging the bunching shares

into equations (68) and (69). We obtain estimates of Λc = 0.672 and Λl = 0.457. The simulations shown in

Table 3 are conducted based on these parameter estimates.

45Besides, although theory predicts individuals responding to the threshold along the entire density in principle, it is unclear in
practice whether those far from the threshold respond in the same way as those closer.
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