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Abstract

This paper offers a model of vertical product differentiation in derivatives markets. Two

dealers that choose their risk profile offer insurance to clients who differ in risk aversion.

For given risk profiles, a unique price equilibrium exists in which the dealer with the lower

risk profile has larger profits. Under plausible conditions, market discipline in the choice

of risk profiles emerges: the first mover chooses a low risk profile, and the second mover

follows at an optimal distance. The result serves as a reference point when considering the

effects of introducing a central counterparty (CCP) that removes the quality dimension of

competition.

JEL Classification Numbers: G12, G23, G28, L13, L15

Keywords: OTC Markets, Derivatives, Central Clearing, Imperfect Competition, Vertical

Product Differentiation

∗University of Bonn. E-mail: christina-brinkmann@uni-bonn.de. I thank two anonymous referees, Jo Braith-
waite, Dominik Damast, Hendrik Hakenes, Tobias Herbst, Eugen Kovac, Christian Kubitza, Stephan Lauermann,
David Murphy, Martin Peitz, Farzad Saidi, Martin Schmalz and Haoxiang Zhu for helpful comments and dis-
cussions, as well as participants of the Finance Seminar at the University of Bonn, the 14th RGS Doctoral
Conference in Economics and the 8th CRC TR 224 Workshop for Young Researchers. I gratefully acknowledge
financial support from ECONtribute, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC 2126/1– 390838866. Support by the German Research
Foundation (DFG) through CRC TR 224 (Project C03) is gratefully acknowledged. This work was supported by
a fellowship of the German Academic Exchange Service (DAAD).

mailto:christina-brinkmann@uni-bonn.de


1 Introduction

Markets for risk transfer play a key role in the economy. They have been characterized by a

hub-and-spoke structure with large banks at the core and numerous heterogeneous clients in the

periphery (Abad et al., 2016; Hau et al., 2021). Since the financial crisis exposed the weaknesses

of opaque and highly interconnected derivatives markets, there have been substantial changes

in the market structure. Most notably, introducing a central node for clearing in derivatives

markets – a central counterparty (CCP) – has gained importance.1 Membership in CCPs is

selective and typically only a few large banks are members. Most market participants instead

access clearing as clients of members, which retains the hub-and-spoke structure and high level

of concentration in centrally-cleared markets. On the one hand, a CCP can support financial

stability through enforced margining (Biais et al., 2016), netting (Duffie and Zhu, 2011) as well

as transparency for better regulatory oversight. At the same time, it changes the structure

at the core of a highly concentrated market, and our understanding of how competition works

therein – even before the push towards central clearing – is limited. In this paper, I study the

mechanics of oligopolistic competition in risk transfer markets, and to that end present a model

of differentiation in risk profiles.

The model naturally maps key features of risk transfer markets. In the model, two dealers that

choose their risk profile (i.e., their own default probability) sell insurance to clients who wish

to hedge against a common macro risk. Clients are differentiated in their level of risk aversion.

Competition occurs in two stages: dealers sequentially choose their publicly observable risk

profile before they engage in simultaneous price competition. This setup reflects three key

characteristics of the market: Firstly, there is a hub-and-spoke structure with numerous clients

that differ in their risk aversion and seek insurance from a small set of dealers. Secondly,

risk aversion is the key driving force. Thirdly, there is competition between few risk-neutral

dealers, and as part of the competition they choose how much effort to exert to ensure their

solvency (e.g., setting aside capital or having balanced books). That is, they choose their risk

profile, consistent with observed heterogeneity in credit default swaps (CDS) premia. Figure

1, for example, shows for eleven large dealers at the end of 2008 Q1 the heterogeneity in CDS

premia.2 The resulting model resembles models of vertical product differentiation with risk

profiles akin to (inverse) qualities.

The key insight of the analysis is that when protection traded in risk transfer markets is seen

as a good that can be differentiated in the price and the risk profile of its seller, competition in

these two dimensions gives rise to a market discipline in the choice of risk profiles. This serves

as a benchmark when conceptualizing the introduction of a CCP. When dealers are members of

1 A CCP replaces a contract between two market participants with two contracts that each have the CCP on
one end. It thereby insulates the contracting parties from the risk that the counterparty defaults.

2 Following Duffie and Zhu (2011), participants of the ICE Trust for which data is available are considered
(https://www.theice.com/publicdocs/globalmarketfacts/docs/factsheets/ICE_CDS_Fact_Sheet.pdf).
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Figure 1: Heterogeneity in CDS premia. Source: Capital IQ, Fixed Income CDS, 5y senior.

a CCP, from the perspective of the client both offer the same probability of contract continuity.

This is due to porting, that is, in case one member defaults, the portfolios of the clients of the

defaulted member get ported to another solvent member (Braithwaite and Murphy, 2020). From

the perspective of the client, there is thus no difference in risk profiles between dealers anymore

and the market force disciplining the choice of risk profiles is absent. CCPs set membership

criteria and mandate standards in risk profiles, however. The benchmark analyzed in this paper

suggests that the risk profile thresholds mandated by CCPs should be as least as low as the risk

profiles that arise endogenously from market discipline in the absence of a CCP.

The main results of the model are as follows. Firstly, in equilibrium dealers differentiate in

terms of risk profile. The market is segmented with more risk-averse clients buying from the

dealer with the lower risk profile at a higher price, and dealers make positive profits. On the

contrary, if risk profiles are exogenously set to some same level, pure price competition prevails.

Secondly, the first mover is under pressure to choose a low risk profile. The mechanic behind

the result is intuitive: In equilibrium, the dealer with the lower risk profile (i.e., that offers the

product of higher quality) has a larger profit than the other dealer rendering the leadership

position in quality more attractive. The first mover wants to occupy the leadership position in

quality and faces the risk that the second mover takes over in the next period. As a result, the

first mover chooses a sufficiently high quality to exclude this possibility.

Thirdly, there is a push-and-pull effect on the second mover’s quality choice. For each pair

of risk profiles, there exists a unique price equilibrium, and price equilibria are characterized

almost fully by the difference in risk profiles. I analyze properties of subgame-perfect equilibria

in risk profiles and identify two conditions under which one can fully characterize equilibrium

risk profiles. Firstly, the profit of the second mover as a function of the second mover’s risk

profile must have a unique maximum, and, secondly, the profit of the first mover as a function

of the second mover’s risk profile needs to be increasing. If these conditions hold, for any

(low) risk profile that the first mover chooses, the second mover follows at an optimal distance.

In particular, the second mover chooses neither the same nor the maximal quality, but an

optimally-distanced one, i.e., the first mover exerts push and pull forces on the second mover’s

quality choice. While the conditions cannot hold in general, I conjecture that they hold for a
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large range of parameters, and present a numerical example in which they hold.

Fourthly, in a numerical example with plausible parameter values, I explicitly characterize the

subgame-perfect Nash equilibria. In this example, pressure on the first mover to choose a low

risk profile is so large that the chosen default probability is close to zero. The second mover

follows at a distance that is much smaller than the maximal possible differentiation.

Taken together, upward pressure in quality choice for the first mover and a push-and-pull effect

on the second mover’s quality choice can be seen as market discipline in the choice of risk

profiles. When models of vertical product differentiation are used to study consumer goods,

the notion of market discipline is not of particular interest because for consumer goods quality

does not embed an aspect of stability of the system. In the insurance and derivatives context,

however, the level of costly effort undertaken by individual market participants to ensure low

levels of own default probability is connected to financial stability. Hence, a market force that

provides an incentive to ensure low levels of counterparty risk beyond regulation is relevant for

an assessment of the market microstructure.

Relation to the Literature. The paper is related to several strands of the literature. Firstly,

an endogenously arising market discipline in quality choice is, to the best of my knowledge, new

compared to the existing literature on vertical product differentiation, pioneered by Gabszewicz

and Thisse (1979, 1980) and Shaked and Sutton (1982). In the standard model in Tirole (1988),

that closely follows Shaked and Sutton (1982), two firms compete in quality (chosen first) and

price (chosen second) for consumers that differ in their valuation of quality. The key mechanic

is that for any two pairs of quality choices, firms choose prices in such a way that the resulting

market shares remain unchanged. This eliminates a quantity effect and with only a price effect

left, firms soften price competition as much as possible by choosing maximally differentiated

qualities. In the present model, market discipline instead of maximal differentiation arises for

three reasons. Firstly, I break the symmetry between firms not by assigning roles upfront,

but by making the quality choice sequential. Then the risk of being overtaken creates upward

pressure on the first mover’s quality choice. Secondly, consumers’ utility, which captures risk

aversion, is non-linear. Thirdly, as a simplifying version of the assumption that there is no full

market coverage, prices are capped. In the appendix, I revisit the standard model and show

that removing the assumption of full market coverage and quality-invariant costs already gives

rise to push-and-pull factors as well as upward pressure in the standard model. Different from

Moorthy (1988, 1991), who lifts the same assumptions and numerically computes and compares

outcomes using quadratic costs, I use a general convex cost function and derive the push factor

directly from profit-maximizing incentives.

The second strand of the literature the paper contributes to is a growing literature on derivatives

markets and central clearing. Seminal contributions have examined netting benefits (Duffie and

Zhu, 2011), transparency (Acharya and Bisin, 2014), and the role of margins (Biais et al., 2012,
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2016). Recently, the focus has shifted towards the question of how loss-sharing mechanisms of

CCPs should optimally be designed (Cucic, 2022; Huang and Zhu, 2021; Kuong and Maurin,

2020; Wang et al., 2022), whether loss-sharing rules have heterogeneous effects across different

types of market participants (Kubitza et al., 2021) and incentives of a profit-maximizing CCP

(Huang, 2019). Carapella and Monnet (2020) study the effect of central clearing on the entry

decision of dealers in derivatives markets. The idea is that, if more dealers enter as a result

of the regulation, there is more intense competition and a resulting lower level of spreads may

alter incentives to invest in efficient technologies ex-ante. A key difference to my model is that

in Carapella and Monnet (2020) all agents are risk-neutral and the focus is on search frictions

for dealers that intermediate derivatives.

The rest of the paper is organized as follows. Section 2 introduces the model framework. Section

3 derives key results on market segmentation. Section 4 illustrates the setup. Section 5 shows

uniqueness and existence of price equilibria for any pair of quality choices. Section 6 examines

properties of subgame-perfect equilibria in quality. Section 7 presents a numerical example.

Section 8 contains a further discussion and section 9 concludes.
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2 Model

2.1 Setup

There is a continuum of protection buyers, also called clients, with a hedging need and there

are two protection sellers, also called dealers, with the capability to sell derivatives.

Timing. There are five points in time, t ∈ {0, 1, 2, 3, 4}. In the first three periods, the protection

sellers engage in competition in price and quality. Specifically, in t = 0 protection seller 1 chooses

a risk profile, i.e., own default probability b1. Upon observing protection seller 1’s risk profile,

protection seller 2 chooses own default probability b2.3 In t = 2 they simultaneously choose

fees γi, i ∈ {1, 2}, for establishing client-dealer relationships. Upon observing the protection

sellers’ choices (b1, γ1) and (b2, γ2), protection buyers decide from whom to buy in t = 3. Lastly,

protection buyers’ endowment risk materializes and payments are exchanged in t = 4.

Protection buyers/ Clients. Protection buyers face an uncertain endowment risk x̃ ∈ {θ, θ}

with θ < 0 < θ. x̃ materializes in t = 4 taking the value θ with probability p and θ with

probability (1 − p). Suppose E[x̃] = 0.4 The endowment risk is the same across all protection

buyers. Protection buyers are risk-averse with utility function ua : R → R, ua ∈ C2 that exhibits

constant absolute risk aversion (CARA). Specifically,

ua(x) =
1

a
(1 − exp(−ax)) a  0. (1)

The limit case a = 0 yields u0(x) = x, i.e., risk neutrality for all payments. An increase in a

corresponds to being more risk-averse. Protection buyers are characterized by their degree of

absolute risk aversion a and a is assumed to be uniformly distributed over the interval [a, a],

a > 0. (1) parameterizes the degree of absolute risk aversion, while satisfying the following two

desirable normalizations: for all positive a, ua(0) = 0 and u′
a(0) = 1. The second normalization

achieves that, up to a first-order approximation, for small payments the utility coincides with the

size of the payment – independent of the degree of risk aversion. This ensures that differences in

risk aversion determine different attitudes towards large negative outcomes, but are irrelevant

for very small payments.

Protection sellers/ Dealers. Protection sellers are risk-neutral and maximize profits. Protection

seller i ∈ {1, 2} defaults with probability bi in the bad endowment state θ and with probability

0 in the good endowment state θ. He faces costs c for offering the derivative. For now, the costs

do not vary with the risk profile, and let c = 0.

3 One can think of default probabilities being publicly observable via CDS premia or ratings by rating agencies.
They should be based on available information with particular emphasis on the measures an institution
undertakes to ensure its solvency such as setting aside capital, having balanced trading books, etc. Another
possibility how at least the ballpark of an institution’s default probability can be common knowledge is
through rumors in the market. For example, there were rumors on Lehman’s insolvency weeks before it
actually collapsed.

4 Otherwise E[x̃] is a certain payment and consider the random variable x̃ − E[x̃] instead of x̃.
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Derivative contract. Dealers offer to fully insure clients against their endowment risk in exchange

for a fixed payment γ. A contract (b, γ), sold by protection seller with default probability b,

is called derivative (b, γ), and a protection buyer with risk aversion parameter a derives the

following utility from it:

Ua(b, γ) := (1 − bp)ua(−γ) + bpua(θ). (2)

From the perspective of the protection buyer, the derivative contract swaps the uncertain state-

contingent endowment against a fixed payment of γ, unless the protection seller defaults which

happens with probability (bp). In this case the protection buyer is left with the original bad

endowment.

As shown in Appendix B1, full insurance is in fact the outcome of the following optimal con-

tracting problem. Suppose clients, after deciding from whom to buy, choose trade volumes, i.e.,

payments (y, z) from the protection buyer to the protection seller with 5

y due if x̃ = θ and the protection seller survives,

z due if x̃ = θ and the protection seller survives.

The payments (y, z) that maximize the expected utility of a protection buyer subject to the

profit constraint of the protection seller, are such that the risk-averse protection buyer receives

a state-independent amount, namely (−γ), unless the counterparty defaults.

Figure 2 summarizes the timing of events as described.

t = 0 t = 1 t = 2 t = 3 t = 4

- p.s. 1 chooses default
probability b1

- b1 publicly observed

- p.s. 2 chooses default
probability b2

- b2 publicly observed

- p.s. simultaneously
choose fees γ1, γ2

- p.b. decide from
whom to buy

- p.b. pick state-
contingent payents

- endowment risk
x̃ materializes

- payments exchanged

Figure 2: Timeline.

5 All payments are due in t = 4. This includes γ, which, although set ex-ante, is also exchanged in t = 4 and
hence only due if the protection seller survives. y, z < 0 indicate that funds flow in the opposite direction,
i.e. from the protection seller to the protection buyer.
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2.2 Assumptions

The setup is kept simple and general. There will be no closed-form solution and, using implicit

characterizations, one can show the economic forces at play directly. In order to focus on the

question of interest, we need a few assumptions that restrict the setup to scenarios in which

risk aversion is sufficiently relevant.

Assumption A1.

p <
1

3
.

This restricts range of probabilities for the bad endowment. One should think of the bad

endowment θ as a large negative number, and as an event that rarely occurs, hence p small.

Assumption A2.

For i ∈ {1, 2} : bi ∈ [0, bmax] with bmax ≤
1

3
.

Since this is no model of frequent defaults, bi is bounded from above by 1/2 a priori. Assumption

A2 is slightly more restrictive. In the numerical example provided in section 7 the constraint is

non-binding in equilibrium.

Assumption A3.

For i ∈ {1, 2} : γi ∈ [0, γmax] with γmax ≤
1

3
(−θ).

As a consequence of assumption A3 in combination with assumption A4, −a(θ + γi) > 2 for all

a and for all admissible fees γi ∈ [0, γmax].6 This demands that the difference between the fee

and the absolute value of the bad endowment, (γi − (−θ)), is still large enough such that risk

aversion is relevant.

Note that γmax ≤ (−θ) by construction, since otherwise the fee exceeds the bad endowment.

One can calculate the fee (γexit
a (b)) at which protection buyer with risk aversion a is indifferent

between the insurance contract offered by protection seller with risk profile b and no insurance

(see section B2 in the appendix for details). A priori, there is no market for prices exceeding

γexit
a (0), i.e., the fee above which the most risk-averse client is unwilling to buy insurance even if

offered at the highest quality. In the numerical example, this fee is lower than (−θ)/2, while the

fee at which the least risk-averse client is unwilling to buy insurance of highest quality is below

the bound provided in Assumption A3. There, the constraint is also non-binding in equilibrium.

6 Note that −a(θ + γi) > 2 ⇔ γmax < 2/(−a) − θ. The RHS holds, since by assumption A3 γmax < (−θ)/3
and 2/(a) − θ > (−θ)/3 ⇔ (−a)θ > 3, which is ensured by assumption A4.
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Assumption A4.

a(−θ) > log

[

1 − 1
8

exp(−2) − 1
8

]

≈ 4.4.

Assumption A4 imposes a lower bound on the degree of risk aversion times the absolute value

of the bad endowment, a(−θ) for all a ∈ [a, a]. It demands that even for the least risk-

averse protection buyer, exp(−aθ) is so large that the utility from the bad endowment, ua(θ) =

1/a · (1 − exp(−aθ)), is large and negative. Demanding that risk aversion plays a role for

all protection buyers is a condition on both the range of a and θ. For any large θ, one can

find a small a such that assumption A4 is violated. Intuitively, for any large payment without

limitations on a, one can find protection buyers whose utility is sufficiently close to a risk-neutral

one (i.e. a close to 0) such that risk aversion barely kicks in. Assumption A4 rules out such

almost risk-neutral protection buyers – relative to the bad endowment.

Assumptions A1 - A4 are always assumed. The remaining two assumptions are needed for the

existence of protection seller 1’s reaction function and assumed from section 6 onward.

Assumption A5.

a ≤
3

2
a.

Assumption A5 restricts the heterogeneity in risk aversion among clients. The system is highly

sensitive to changes in risk aversion, so some restriction on the range of risk aversion seems

warranted.

Assumption A6.

d1Π1
(
γ

a
1 (γ∗

2(γmax)), γ∗
2(γmax)

)
≥ 0.

The functions γ
a
1 and γ∗

2 will be formally introduced later. Intuitively, assumption A6 demands

that at a point at which dealer 1 “owns” the entire market, dealer 1 has no incentive to decrease

fees. The assumption is required, because a negative market share at negative prices also leads

to positive turnover – a case certainly not of interest.
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3 Market Segmentation

Until section 6, we take dealers’ risk profiles as given and investigate Nash equilibria in prices

in t = 3. To fix roles, protection seller 1 defaults with a lower probability or, in other words,

offers the product of higher quality. That is, let ∆b := b2 − b1 > 0.

We first characterize the protection buyer who is indifferent between two derivatives (b1, γ1)

and (b2, γ2). The key idea is that the degree of risk aversion, a, translates into an “intensity in

taste for quality”. Let ~b := (b1, b2) and ~γ := (γ1, γ2) denote the pairs of risk profiles and fees.

Lemma 1 (Characterization of the Indifferent Client). For given ~γ and ~b with ∆b > 0,

a protection buyer with degree of risk aversion a is indifferent between the two contracts (b1, γ1)

and (b2, γ2) if

g(a,~γ) :=
exp(−a∆γ) − 1

exp(−a(θ + γ2)) − 1
=

p∆b

1 − b1p
=: g̃(~b). (3)

Proof. See Appendix A1.

For any two derivatives with b2 > b1, if there is a solution to (3), then γ1 > γ2.7 That is, the

protection seller that offers the product of higher quality sets the higher price.8

The following main result of this section establishes that there is at most one protection buyer,

characterized by some a∗, who is indifferent between derivatives (b1, γ1) and (b2, γ2) and seg-

ments the market.

Proposition 1 (Market Segmentation). For given ~b and ~γ, there is at most one a∗(~γ)

satisfying

g(a∗(~γ), ~γ) = g̃(~b) =
p∆b

1 − b1p
. (4)

Such an a∗(~γ) ∈ [a, a] indeed exists, if

g(a,~γ) ≤
p∆b

1 − b1p
≤ g(a,~γ). (5)

In this case, protection buyer a will choose protection seller 1 iff

a ≥ a∗(~γ). (6)

7 To see this, note that with ∆b > 0, the RHS of (3) is positive. The denominator of the LHS of (3) is positive,
which necessitates ∆γ < 0.

8 A priori, there may be protection buyers who prefer no insurance over a derivative contract (b, γ). The fee
at which a protection buyer is indifferent between (b, γ) and no insurance is increasing in the level of risk
aversion (see Appendix B2 for the derivation and discussion). In other words, for a fixed b and as the fee
increases, the protection buyer that first exits the market is the least risk-averse.
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Proof. See Appendix A2.

The idea of the proof is to show that g(a,~γ) is strictly decreasing in a, while the RHS of (4)

is fixed. Hence, there can be at most one solution, and (5) indeed guarantees existence of a

unique indifferent client.

Subsequently, protection buyers in the market segment [a∗(~γ), a] buy from protection seller 1,

while protection seller 2 receives the market share [a, a∗(~γ)], as depicted in Figure 3.

a
least risk-averse

a
most risk-averse

a∗(γ1, γ2)

clients of dealer 2
(with higher risk profile) clients of dealer 1

Figure 3: Market segmentation for two given derivatives (b1, γ1) and (b2, γ2) with b2 > b1.

Importantly, if risk profiles are fixed at some same level, pure price competition drives profits

to zero.

Corollary 1 (Zero Profits with Equal Risk Profiles). If ∆b = 0, a client can be indifferent

only if ∆γ := γ2 − γ1 = 0. That is, if the dealers’ risk profiles coincide, pure price competition

drives prices to marginal costs (which are set to zero here).

Formally, for a given vector of default probabilities, ~b, a∗ is defined via g(a∗(~b,~γ), ~γ) = g̃(~b) on

the set

G[a,a] :=
{
~γ | 0 ≤ γ2 < γ1 ≤ γmax and g(a,~γ) ≤ g̃(~b) ≤ g(a,~γ)

}
. (7)

Let G0 :=
{

0 ≤ γ2 < γ1 ≤ γmax
}
. Then protection sellers’ profits read

Π1(γ1, γ2) =







(a − a∗(γ1, γ2)) γ1 on G[a,a]

(a − a) γ1 on G0 \ G[a,a] if g̃(~b) ≤ g(a,~γ)

0 on G0 \ G[a,a] if g(a,~γ) ≤ g̃(~b)

(8)

Π2(γ1, γ2) =







(a∗(γ1, γ2) − a) γ2 on G[a,a]

0 on G0 \ G[a,a] if g̃(~b) ≤ g(a,~γ)

(a − a) γ2 on G0 \ G[a,a] if g(a,~γ) ≤ g̃(~b)

(9)

In the following we restrict attention to the set G[a,a].
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4 Illustration

In this section, we graphically illustrate the setup. In order to succinctly formulate properties

and later results, we introduce some further notation. Define

Ã : [a, a] × [0, −θ)2 → R, (a,~γ) 7→ exp(−a∆γ) (10)

and B̃i : [a, a] × [0, −θ) → R, (a, γi) 7→ exp(−a(θ + γi)) (11)

and let

A(~γ) := Ã(a∗(~γ), ~γ), and Bi(~γ) := B̃i(a
∗(~γ), γi) (12)

be the two functions, defined on [0, −θ)2, one obtains when inserting the indifferent client a∗(~γ)

into (10) and (11). Whenever clear from the context, the explicit dependence on ~γ is omitted.

Lemma 1 has characterized the indifferent client a∗(~γ) implicitly. There is a second characteri-

zation of the indifferent client, symmetric to the one in Lemma 1, and exploiting this symmetry

will be key in the sequel.

Lemma 2 (Symmetric Characterization of the Indifferent Client). The protection

buyer, a, that is indifferent between two derivatives (b1, γ1) and (b2, γ2) has a second char-

acterization

h(a,~γ) :=
1 − exp(−(−a∆γ))

exp(−a(θ + γ1)) − 1
=

p∆b

1 − b2p
. (13)

Proof. See Appendix A3.

Since the RHSs of (3) and (13) are constant, we infer that the respective LHSs, i.e.

g(a∗(~γ), ~γ) =
A(~γ) − 1

B2(~γ) − 1
and h(a∗(~γ), ~γ) =

1 − 1
A(~γ)

B1(~γ) − 1
, (14)

are constants, and call them g and h respectively. Finally, define

ξ2 := (θ + γ2), ϕ1 := ξ2B1 and τ1 := (∆γ − gϕ1) , (15)

as well as ξ1 := (θ + γ1), ϕ2 := ξ1B2, and τ2 := (∆γ − hϕ2) . (16)

The following lemma shows that both firms indeed loose market share when increasing fees.

Lemma 3 (Market Shares). The indifferent client is increasing in γ1 and decreasing in γ2,

namely

d1a∗ =
a∗

τ1
> 0 (17)
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d2a∗ =
−a∗

τ2
< 0. (18)

For the slope of a contour line {(γ1, γ2)| a∗(γ1, γ2) constant} we have

−d2a∗

d1a∗
=: α < 1. (19)

Proof. See Appendix A4.

Figure 4 visualizes the set up with the admissible fees [0, γmax] of dealer 1 and 2 on the x-

and y-axis respectively. With dealer 1 the dealer with the lower risk profile, fees lie below

0

{~γ|a∗(~γ) = a}

{~γ|a∗(~γ) = a}

γ1

γ2

γmax

γmax

γ2

γ1

Π2 = 0

Π1 = 0

Figure 4: Illustration of the set G[a,a].

the diagonal. The green line just below the diagonal depicts the pairs of fees for which the

indifferent client a∗ takes value a. We parameterize these pairs by defining for γ2 ∈ [0, γmax]

γ
a
1 (γ2) such that a∗(γ

a
1 (γ2), γ2) = a. From Lemma 3 we know that contour lines of a∗ qualita-

tively take this shape. Above this line the unsafer dealer has no market share and subsequently

no profits. Denote by γ1 and γ2 the intercepts of this line with the x- and y-axis respectively

(see Lemma 7 in the appendix for a formal definition). Ensuring that the setup is interesting,

i.e., that dealer 1 does not a priori get the entire market, requires γ2 > 0, which is exactly

assumption A4. Lemma 7 in the appendix formalizes the above.
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5 Equilibrium in Prices

For a given pair of risk profiles, this section establishes existence and uniqueness of a Nash

equilibrium in prices in t = 3. We first derive the reaction function for protection seller 2.

Proposition 2 (Dealer 2’s Reaction Function). Suppose some fixed ~b with ∆b > 0. Then,

i) for any γ1 ∈ [0, γmax], there is a unique best response in fees for dealer 2, γ∗
2(γ1). For

γ1 ∈ (γ1, γmax), γ∗
2 is in the interior of G[a,a] and uniquely characterized via d2Π2 = 0.

ii) for γ1 ∈ [γ1, γmax], γ∗
2 is a smooth function and strictly increasing in γ1.

iii) d1γ∗
2 < 1/α∗ with α∗ := α(γ1, γ∗

2(γ1)), i.e., α evaluated on dealer 2’s reaction function.

Proof. See Appendix A6.

The strategy of the proof is standard: One shows d2
2Π2 < 0 and existence follows, since profits

are a continuous function that are zero at the boundaries of the interval.

For the other protection seller, existence of a reaction function is not straight-forward, since

protection seller 1’s profit function is not necessarily concave. In fact, parameter restrictions

ensuring concavity are not compatible with the existing set of assumptions that require risk

aversion to have enough bite. Without concavity of dealer 1’s profit function, points that

satisfy the first-order condition need not correspond to best responses.

Instead, we prove an auxiliary lemma (Lemma 4 in the appendix) for a smooth real-valued

function f on some interval [a, b] with df(a) > 0: If there exists a point in the interval below

which local extrema may only be local mimina and above which local extrema may only be local

maxima, then f has a global maximum. Assumptions A5 and A6 ensure that we can use this

lemma to obtain dealer 1’s best responses for the relevant interval, that is, for γ2 ∈ [0, γ∗
2(γmax)].

Proposition 3 (Dealer 1’s Reaction Function). Suppose assumptions A1 - A6. Suppose

some fixed ~b with ∆b > 0. Then,

i) for any γ2 ∈ [0, γ∗
2(γmax)], there is a unique best response in fees for dealer 1, γ⊗

1 (γ2). γ⊗
1

is uniquely characterized via

d1Π1(γ⊗
1 (γ2), γ2) = 0 or

(
γ⊗

1 (γ2) = γmaxand ∀µ ≥ γ
a
1 (γ2) : d1Π1(µ, γ2) > 0

)
.

ii) γ⊗
1 is a continuous function, smooth except at finitely many points. These exception points

are well-behaved (see appendix for details).

iii) d2γ⊗
1 < α⊗ with α⊗ := α(γ⊗

1 (γ2), γ2), i.e., α evaluated on dealer 1’s reaction function.

13



Proof. See Appendix A7.

Proposition 4 (Existence and Uniqueness). Suppose assumptions A1 - A6. Suppose some

fixed ~b with ∆b > 0. Then there exists a unique Nash equilibrium in prices.

Proof. See Appendix A11.

The intuition of the proof is as follows: Since dealer 2’s reaction function, γ∗
2(γ1), is strictly

increasing, there exists an inverse function, γ∗−1
1 (γ2). Since γ∗−1

1 (0) = γa
1 (0) and γ∗−1

1 (γmax) =

γmax, dealer 1’s reaction function and the inverse reaction function of dealer 2 must cross (see

Figure 5). Formally, we apply Brouwer’s Fixed Point Theorem for existence. From the bounds

on d2γ⊗
1 and d1γ∗

2 in Propositions 3 and 2, respectively, it follows that there can be at most one

intersection.

0

{~γ|a∗(~γ) = a}

{~γ|a∗(~γ) = a}

γ1

γ2

γmax

γmax

γ2

γ1

Π2 = 0

Π1 = 0

γ∗
2 (γ1)

γ∗
1 (γ2)

γ∗
2(γmax)

Figure 5: Price equilibrium

For quality choices ~b = (b1, b2), let ~γ�(~b) be the corresponding price equilibrium. As shown

in Proposition 4, the price equilibrium exists and is unique, hence ~γ�(~b) is well-defined. In

Appendix B4, we show that price equilibria are smooth functions in qualities. For a function

f(~b,~γ) define

f�(~b) := f
(

~γ�(~b),~b
)

. (20)
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6 Quality Choices

From now on we impose assumptions A1 - A6 to ensure existence of a unique price equilibrium

for every pair of qualities ~b = (b1, b2). We start the analysis of subgame-perfect equilibria in

qualities by noting two key properties. Firstly, the dealer with the lower risk profile has larger

profits.

Proposition 5 (Lower Risk Profile More Attractive). At any Nash equilibrium in prices,

i) the dealer with the lower risk profile (quality-leader) has larger profits, Π1 > Π2,

ii) the dealer with the lower risk profile has a larger market share, (a − a∗) > (a∗ − a).

Proof. See Appendix A12.

Secondly, the difference in qualities matters for the price equilibrium.

Proposition 6 (Difference in Qualities Matters). Start

i) Risk profiles (b0
1, b0

2) and (b1, b2) with g̃(b1, b2) = g̃(b0
1, b0

2) lead to the same price equilibrium.

ii) On the set of risk profiles {b ∈ [0, bmax]2|b1 < b2}, price equilibria (and subsequently profits)

are constant on straight lines with slope (1 − g̃).

Proof. See Appendix A13.

b1

b2

bmax

bmax
0

b0
1

b0
2

b̂0
2

{(b1, b2)|g̃(b1, b2) = g̃(b0
1, b0

2)}

{(b1, b2)|g̃(b1, b2) = g̃(b0
1, b̂0

2)}

Figure 6: Risk profiles that lead to the same price equilibrium lie on straight lines
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Figure 6 visualizes the result with risk profiles of dealer 1 and 2 on the x- and y-axis respectively.

Since dealer 1 is the one with the lower risk profile, default probabilities lie above the diagonal.

For (b0
1, b0

2) (or (b0
1, b̂0

2)) the upper (or lower) blue line depicts all pairs of risk profiles that lead

to the same value of g̃ and subsequently the same price equilibrium.

Proposition 7 (Upward Pressure in Qualities for First Mover). Let (b∗
1, b∗

2) be a subgame-

perfect Nash equilibrium in qualities.

i) Then,

b∗
1 <

(
8

15

)

bmax. (21)

ii) Suppose the following two conditions hold

Π�

2 (0, b2) as a function of b2 has a unique maximum smaller than bmax, (N1)

Π�

1 (0, b2) as a function of b2 is increasing in b2. (N2)

Let Π�,g̃∗

2 be the unique maximum of Π�
2 (0, b2) as a function of b2. Then,

b∗
1 < b̄1 for any b̄1 such that for some g̃′, Π�,g̃′

1 (0, b̄1) = Π�,g̃∗

2 . (22)

Proof. See Appendix A14.

The intuition is as follows: Consider a Nash equilibrium in qualities, b1 < b2. Then it must

not be profitable for the second mover (protection seller 2) to take over the lead position in

qualities. Proposition 6 characterizes the quality choices that lead to the same price equilibrium

as straight lines. Thus, a profitable deviation of the second mover is to choose a quality which

leads to the same price equilibrium, but with reversed roles. (21) rules out this profitable

deviation. (22) tightens the bound if conditions (N1) and (N2) hold.

We now turn to the second mover.

Proposition 8 (Push-and-Pull Effect for Second Mover). Suppose conditions (N1) and

(N2) hold. Let Π�,g̃∗

2 be the unique maximum of Π�
2 (0, b2), assumed at b̃2. Let b̄1 be the minimum

of all b̄1 defined as in Proposition 7. Then the subgame-perfect quality equilibria are all pairs

(b∗
1, b∗

2) such that

b∗
1 ∈ [0, b̄1] (23)

b∗
2 = (1 − g̃(0, b̃2))b∗

1 + g̃(0, b̃2)/p. (24)

The first mover’s choice of risk profile thus exerts a push-and-pull effect on the second mover’s

16



choice of risk profile.

Proof. Direct consequence of Propositions 6 and 7.

The intuition of the push-and-pull effect on the second mover is illustrated in Figure 7. The blue

line depicts g̃ such that the second mover’s profit is maximized (ensured by condition (N1)).

The first mover needs to choose b1 in the marked interval, since otherwise he risks loosing the

leadership position in qualities. For any risk profile b1 < b̄1 chosen by dealer 1, dealer 2’s choice

is pinned down by the blue line, i.e., the second mover follows at an optimal distance.

b1

b2

bmax

bmax
0

g̃∗

g̃′

b̄1

possible b∗
1

range of b∗
2

Figure 7: Equilibrium risk profiles

While conditions (N1) and (N2) cannot hold in general, e.g., picking bmax sufficiently small may

violate (N1), I conjecture that they do for a wide range of parameters. They hold in a numerical

example for plausible parameter values as shown in the following section.

17



7 Numerical Example

Parameter Values. Consider the model for a specific set of parameters, namely

θ = −100 · 106 (25)

p = 0.03 (26)

a(−θ) = 4.5 (27)

a =
3

2
a (28)

γmax = 33 · 106 (29)

bmax =
1

3
(30)

(25) and (26) correspond to a scenario with a large rare loss, e.g., a 100 million loss from a

sudden movement in exchange rates that occurs every 33 years on average. (27), (28), (29) and

(30) are chosen in the simplest way such that assumptions A4, A5, A3 and A2, respectively, are

satisfied.

Based on Proposition 6, we first consider b1 = 0.

Solving for the price equilibrium for (0, b2) for some fixed b2. For (0, b2), we numerically solve

for the indifferent client as a function of fees (γ1, γ2). For b2 = 0.15, Figure 8 shows the resulting

profit functions for both protection sellers.
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Figure 8: Profit functions of protection seller 1 (LHS) and 2 (RHS) for b2 = 0.15

Equilibrium profits for (0, b2) as a function of b2. We then solve for price equilibria (and

subsequently profits) for a range of b2. Figure 9 shows the resulting equilibrium profits for both

protection sellers as a function of b2.

In particular, protection seller 2’s profit as a function of b2 has a unique interior maximum,
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Figure 9: Equilibrium profits of protection seller 1 (LHS) and 2 (RHS) as a function of b2.

while protection seller 1’s profit as a function of b2 is increasing. That is, conditions (N1) and

(N2) hold.

Equilibrium qualities. We then calculate b̄1 ≈ 0.0023, hence the resulting quality equilibria are

b∗
1 ∈ [0, 0.0023] (31)

b∗
2 = 0.9972 b∗

1 + 0.0937 (32)

Fees set in (any) equilibrium are depicted in Figure 10.
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Figure 10: Equilibrium fees.

19



8 Discussion

Relation to Existing Models of Vertical Product Differentiation. The structure of

the present model resembles models of vertical product differentiation with risk profiles akin to

(inverse) qualities. In the standard model in Tirole (1988), maximal differentiation in qualities

emerges. This section discusses differences between the models and results.

In the standard model in Tirole (1988), that closely follows Shaked and Sutton (1982), two

firms compete in quality (chosen first) and price (chosen second) for consumers that differ in

their valuation of quality. The key mechanic is that for any two pairs of quality choices, firms

choose prices in such a way that the resulting market shares remain unchanged. This eliminates

a quantity effect and with only a price effect left, firms soften price competition as much as

possible by choosing maximally differentiated qualities. The result of maximal differentiation

in qualities in the standard model hinges on three assumption: firstly, it is assumed that the

market is always fully covered, secondly, costs are quality-invariant and, thirdly, consumers’

utility is linear.

In my model, there is no maximal differentiation in qualities, but, instead, for the first mover

there is the need to choose a high quality and for the second mover there exists a push-and-pull

effect. There are three key differences between my model and the standard model. Firstly, I

break the symmetry between firms not by assigning roles upfront (as in the standard model), but

by making the quality choice sequential. This gives rise to the threat of loosing the leadership

position in quality for the first mover. Secondly, consumers’ utility, which captures risk aversion

in the present setup, is non-linear. As outlined above, in the standard model the market shares

remain invariant at price equilibria for varying quality pairs. This is no longer the case in my

model due to client’s non-linear utility. Thirdly, prices are capped.

In Online Appendix C, I revisit the standard model and show that market discipline in quality

choice also emerges in the standard model when one aligns two differences (sequential quality

choice, no full market coverage) between the models. Specifically, with sequential quality choice

and in the absence of the assumptions that the market is always fully covered and that costs are

quality-invariant, upward pressure on the first mover’s quality choice as well as a push-and-pull

factor emerge then as well.

20



9 Conclusion

In this paper, I provide a simple model of differentiation in risk profiles to better understand

competition in risk transfer markets. Two risk-neutral dealers offer insurance to a continuum

of clients that are heterogeneous in their risk aversion. Derivative contracts are differentiated

along two dimensions: the price and the default probability (risk profile) of their sellers. The

key insight from the model is that in this case, competition in these two dimensions gives rise to

market discipline in the choice of risk profiles by dealers. Such a market force that incentivizes

efforts to ensure low levels of own default probability beyond regulation is relevant for the

assessment of the market microstructure and stability of the market. The insight may serve

as a benchmark when one conceptualizes the introduction of a CCP. In a market with a CCP,

there is no difference in risk profiles across sellers from the perspective of the client, and thus

the quality dimension of the competition is absent.

While one can reasonably conceptualize a CCP in the context of the model, a CCP is not

formally introduced. Hence, many aspects of a CCP (e.g. loss sharing mechanisms, margins,

default probability of the CCP, etc) are outside of the scope of the current model. Keeping

the current framework that maps key characteristics of the market such as a two-tiered market

structure and risk aversion as key driver, while modeling a CCP in more detail is left for future

research.
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A Appendix: Proofs

A1 Proof of Lemma 1

For the indifferent protection buyer we have

Ua(b1, γ1) = Ua(b2, γ2) (A3)

⇔ (1 − b1p)ua(−γ1) + b1pua(θ) = (1 − b2p)ua(−γ2) + b2pua(θ) (A4)

⇔ ua(−γ1) − ua(−γ2) + p [b2ua(−γ2) − b1ua(−γ1)] = p∆bua(θ) (A5)

⇔ [ua(−γ1) − ua(−γ2)] (1 − b1p) = p∆b [ua(θ) − ua(−γ2)] (A6)

⇔
ua(−γ1) − ua(−γ2)

ua(θ) − ua(−γ2)
=

p∆b

1 − b1p
(A7)

⇔
exp(−a∆γ) − 1

exp(−a(θ + γ2)) − 1
=

p∆b

1 − b1p
. (A8)

�

A2 Proof of Proposition 1

ad i). The proof proceeds by showing that ∂ag < 0. Suppose this was true. Then the LHS of
(3) is monotonically decreasing, while the RHS of (3) is fixed, yielding at most one solution.

Claim. ∂ag < 0.

Proof of claim. For the derivative of the function g with respect to a we get

∂g(a)

∂a
=

−∆γ exp(−a∆γ) (exp(−a(θ + γ2)) − 1)

(exp(−a(θ + γ2)) − 1)2 (A9)

+
(exp(−a∆γ) − 1) (θ + γ2) exp(−a(θ + γ2))

(exp(−a(θ + γ2)) − 1)2

=
1

(exp(−a(θ + γ2)) − 1)2

[

exp(−a∆γ)

(

− ∆γ (exp(−a(θ + γ2)) − 1) (A10)

+(θ + γ2) exp(−a(θ + γ2))

)

− (θ + γ2) exp (−a(θ + γ2))

]

=
1

(exp(−a(θ + γ2)) − 1)2 (A11)

[

exp(−a∆γ)

(

exp (−a(θ + γ2)) (θ + γ1) + ∆γ

)

− (θ + γ2) exp(−a(θ + γ2))

]

=
exp(−a∆γ)

(exp(−a(θ + γ2)) − 1)2

︸ ︷︷ ︸

>0

(A12)

[

∆γ
︸︷︷︸

<0

+ exp (−a(θ + γ1))
︸ ︷︷ ︸

>0

(

exp(−a∆γ)(θ + γ1) − (θ + γ2)

)

︸ ︷︷ ︸

:=f(a)

]

using that

exp(−a(θ + γ2)) = exp(−a(θ + γ1)) exp(−a∆γ). (A13)
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Then

f(a) < 0 ⇒
∂g(a)

∂a
< 0. (A14)

We have

f(a) = exp(−a∆γ)(θ + γ1) − (θ + γ2) < 0 (A15)

⇔ exp(−a∆γ)(θ + γ1) < (θ + γ2) (A16)

⇔
exp(−a(θ + γ2))

exp(−a(θ + γ1))
(θ + γ1) < (θ + γ2) (A17)

⇔
exp(−a(θ + γ2))

(θ + γ2)
<

exp(−a(θ + γ1))

(θ + γ1)
. (A18)

For x < 0 the function

h(x) :=
exp(−ax)

x
(A19)

is negative and

h′(x) = h(x)

[

−a −
1

x

]

> 0 ⇔ a +
1

x
> 0 ⇔ a(−x) > 1. (A20)

For x = θ + γ this is true from assumption A3. Since θ + γ2 < θ + γ1, (A18) indeed holds and
proves the claim.

ad ii). With g(·, ~γ) strictly decreasing, existence under (5) follows immediately.

ad iii). A protection buyer with risk aversion parameter a chooses protection seller 1 if

Ua(b1, γ1) > Ua(b2, γ2) (A21)

⇔ (1 − b1p)ua(−γ1) + b1pua(θ) > (1 − b2p)ua(−γ2) + b2pua(θ) (A22)

⇔ [ua(−γ1) − ua(−γ2)] (1 − b1p) > p∆b (ua(θ) − ua(−γ2))
︸ ︷︷ ︸

<0

(A23)

⇔
ua(−γ1) − ua(−γ2)

ua(θ) − ua(−γ2)
<

p∆b

1 − b1p
(A24)

⇔ g(a) < g(a∗) (A25)

⇔ a > a∗(γ1, γ2). (A26)

�

A3 Proof of Lemma 2

The idea is to proceed analogously to the proof of Proposition 1, but add and subtract b2ua(−γ1)
instead of b1ua(−γ2). Namely, for the indifferent protection buyer we have

Ua(b1, γ1) = Ua(b2, γ2) (A27)

⇔ ua(−γ1) − ua(−γ2) + p [b2ua(−γ2) − b1ua(−γ1)] = p∆bua(θ) (A28)

⇔ [ua(−γ1) − ua(−γ2)] (1 − b2p) = p∆b [ua(θ) − ua(−γ1)] (A29)

⇔
ua(−γ1) − ua(−γ2)

ua(θ) − ua(−γ1)
=

p∆b

1 − b2p
(A30)
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⇔
1 − exp(−(−a∆γ))

exp(−a(θ + γ1)) − 1
=

p∆b

1 − b2p
. (A31)

�

A4 Proof of Lemma 3

We show three claims from which the Lemma directly follows.

Claim 1. a∗ = τ1(d1a∗) with τ1, (d1a∗) > 0.

Claim 2. a∗ = τ2(−d2a∗) with τ2, (−d2a∗) > 0.

Claim 3. (−d2a∗)/(d1a∗) =: α = (1 − gB1) = 1/(1 + hB2) = τ1/τ2 < 1.

Proof of claim 1. For the function g(a∗(~γ), ~γ), as defined in (3), we have from Proposition 1

0 = d1g = ∂1g|a=a∗ + ∂ag|a=a∗ · d1a∗ (A32)

⇔ d1a∗ =
−∂1g|a=a∗

∂ag|a=a∗

. (A33)

In the following write ∂ig shorthand for ∂ig|a=a∗ . We have

∂1g = a∗ A

B2 − 1
> 0. (A34)

and from Proposition 1 we know that ∂ag < 0. Hence, in light of (A33), we have d1a∗ > 0.

Further, note that the expression for ∂ag, derived in the proof of Proposition 1, can be written
in short-hand notation as follows

∂ag =
A

(B2 − 1)

[

− ∆γ + (θ + γ2)
(A − 1)

(B2 − 1)
︸ ︷︷ ︸

=g

B2

A
︸︷︷︸

=B1

]
(A34)

=
∂1g

a∗
[−∆γ + gϕ1] . (A35)

Inserted into (A32) this yields

0 = ∂1g +
∂1g

a∗
(−∆γ + gϕ1)d1a∗ (A36)

=
∂1g

a∗
︸︷︷︸

>0

[a∗ + (−∆γ + gϕ1)d1a∗] . (A37)

Hence

a∗ = (∆γ − gϕ1) d1a∗

︸ ︷︷ ︸

>0

, (A38)

and subsequently

τ1 = (∆γ − gϕ1) > 0. (A39)

Proof of claim 2. Analogously, for the function h(a∗(~γ), ~γ), as defined in (13), we have

0 = d2h = ∂2h|a=a∗ + ∂ah|a=a∗ · d2a∗ (A40)
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⇔ d2a∗ =
−∂2h|a=a∗

∂ah|a=a∗

. (A41)

Similar to before we write ∂ih shorthand for ∂ih|a=a∗ . Then we have

∂2h = (−a∗)
1

A(B1 − 1)
< 0, (A42)

and

∂ah = (−∆γ)
1

A(B1 − 1)
+ (θ + γ1)

(1 − 1
A)B1

(B1 − 1)2
(A43)

=
1

A(B1 − 1)2
[∆γ − ∆γB1 − (θ + γ1)B1 + (θ + γ1)AB1] (A44)

=
1

A(B1 − 1)2

︸ ︷︷ ︸

>0

[

∆γ
︸︷︷︸

<0

+ B1
︸︷︷︸

>0

(
A(θ + γ1) − (θ + γ2)

)
]

. (A45)

From the proof of Proposition 1 we know that A(θ + γ1) − (θ + γ2) is negative, hence ∂ah < 0.
Then from (A41) we get d2a∗ < 0.

For the remaining part, note that AB1 = B2 and hence (A43) can also be written as

∂ah =
1

A(B1 − 1)

[

−∆γ + (θ + γ1)AB1
(1 − 1

A)B1

(B1 − 1)

]

(A46)

=
∂ah

a∗
[∆γ − ϕ2h] . (A47)

Inserted into (A40) this yields

0 =
∂2h

a∗
︸︷︷︸

<0

[a∗ + (∆γ − ϕ2h)d2a∗] . (A48)

Hence,

a∗ = −(∆γ − ϕ2h) d2a∗

︸ ︷︷ ︸

<0

, (A49)

and subsequently

τ2 = (∆γ − ϕ2h) > 0. (A50)

Proof of claim 3. We first establish that

(1 − gB1) =
B1 − 1

B2 − 1
=

1

(1 + hB2)
. (A51)

This follows, since from the definition

1 − gB1 = 1 −
A − 1

B2 − 1

B2

A
=

B2 − A

A(B2 − 1)
=

B1 − 1

B2 − 1
(A52)

1 + hB2 = 1 +
1 − 1

A

B1 − 1
B2 =

B1 − 1 + B2 − B2
A

B1 − 1
=

B2 − 1

B1 − 1
. (A53)
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In light of (17) and (18) we have

α =
∆γ − gϕ1

∆γ − hϕ2
(A54)

=
(θ + γ2) − (θ + γ1) − gϕ1

(θ + γ2) − (θ + γ1) − hϕ2
(A55)

=
(θ + γ2)(1 − gB1) − (θ + γ1)

−(θ + γ1)(1 + hB2) + (θ + γ2)
(A56)

=
(1 − gB1)

(

(θ + γ2) − 1
(1−gB1)(θ + γ1)

)

(θ + γ2) − (1 + hB2)(θ + γ1)
(A57)

= (1 − gB1), (A58)

which concludes the proof.

�

A5 Auxiliary Properties

Proposition 9. As always, we consider the set G[a, a]. Then the following properties hold

d2
2a∗ =

(−d2a∗)

τ2

[

2 + hϕ2a∗
(
1 −

ξ2

τ2

)
]

< 0 (A59)

d1d2a∗ = (d1a∗)2 α

a∗

[

a∗ξ2
hϕ2

τ2
− 2

]

> 0 (A60)

d2
1a∗ =

[
2

a∗
− gϕ1ξ2

α

τ1

]

(A61)

d2
2Π2 = (d2a∗)

[

2 +
γ2

τ2

(
(a∗ξ1)hϕ2

τ1
− 2

)]

< 0 (A62)

d1d2Π2 = (d1a∗)

[

1 +
γ2

τ2

(
(a∗ξ2)hϕ2

τ2
− 2

)]

> 0 (A63)

d2
1Π1 = (−d1a∗)

[

2 +
γ1

τ1

(

2 −
a∗ξ2gϕ1

τ2

)]

(A64)

d1d2Π1 = (−d2a∗)

[

1 +
γ1

τ1

(

2 −
a∗ξ2hϕ2

τ2

)]

(A65)

d2
1Π1 +

1

α
d1d2Π1 < 0, hence d2

1Π1 6= 0 ∨ d1d2Π1 6= 0. (A66)

Proof. text
ad d2

2a∗. Note that

ξ1

τ1
−

ξ2

τ2
=

1

τ1
[ξ1 − αξ2]
︸ ︷︷ ︸

=−τ1

= −1 (A67)

We have,

d2
2a∗ = d2

(

−
a∗

τ2

)

(A68)

= −
d2a∗

τ2
+ a∗ 1

τ2
2

d2τ2 (A69)

= −
d2a∗

τ2
[1 + d2τ2] (A70)
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= −
d2a∗

τ2
[1 + 1 + hξ1B2(a∗ + (d2a∗)ξ2)] (A71)

= −
d2a∗

τ2

[

2 + hϕ2a∗

(

1 −
ξ1

τ2

)]

(A72)

= −
d2a∗

τ2

[

2 + hϕ2a∗ ξ1

τ1

]

(A73)

= (d2a∗)
︸ ︷︷ ︸

<0

1

τ2
2

[

−2τ2 + hϕ2(−a∗ξ1)
1

α

]

(A74)

d2
2a∗ is negative iff

−a∗ξ1 > 2
τ2

−hϕ2
︸ ︷︷ ︸

∈(0,1)

α
︸︷︷︸

<1

, (A75)

which is ensured by −aξ1 > 2 from assumption A3.

ad d1d2a∗. We have

d1ϕ2 = B2 + ξ1d1B2 (A76)

= B2 + ξ1B2(−d2a∗)ξ2 (A77)

= B2 ((1 − ξ1ξ2d1a∗) (A78)

Then

d1d2a∗ = −d1

(
a∗

τ2

)

(A79)

= −
d1a∗τ2 − a∗(−1 − hB2(1 − ξ1ξ2d1a∗)

τ2
2

(A80)

=
−d1a∗ [τ2 − a∗ξ1ξ2hB2] + a∗(1 + hB2)

τ2
2

(A81)

=
−d1a∗

τ2
2

︸ ︷︷ ︸

<0

[
τ2 − a∗ξ1ξ2hB2 + τ1(1 + hB2)

]

︸ ︷︷ ︸

=:W

(A82)

Hence, d1d2a∗ > 0 if the expression in brackets is negative. This is indeed the case, since

W = 2∆γ + hB2 [τ1 − ξ1 − a∗ξ1ξ2] − gϕ1 (A83)

= ∆γ(2 + hB2) − ξ1hB2 (1 + a∗ξ2)
︸ ︷︷ ︸

=−1+(2+a∗(θ+γ2))

−gϕ1(1 + hB2) (A84)

= hB2 [ξ1 + ∆γ] − gξ2B1(1 + hB2) − ξ1hB2(2 + a∗ξ2) + 2∆γ (A85)

= ξ2 (hB2 − gB1(1 + hB2))
︸ ︷︷ ︸

= ∆B

B1−1
− ∆B

B2−1

B1−1

B2−1
=0

−ξ1hB2(2 + a∗ξ2) + 2∆γ (A86)

= −ξ1
︸︷︷︸

>0

hB2 (2 + a∗ξ2)
︸ ︷︷ ︸

<0

+ 2∆γ
︸ ︷︷ ︸

<0

(A87)

< 0, (A88)
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which together yields

d1d2a∗ =
(d1a∗)hϕ2

τ2
2

(

a∗ξ2 + 2
τ2

(−hϕ2)

)

(A89)

=
(d1a∗)hϕ2

τ2
2

[

a∗ξ2 + 2
τ2

(−hϕ2)

]

(A90)

= (d1a∗)2 α

a∗

[

a∗ξ2
hϕ2

τ2
− 2

]

. (A91)

ad d2
1a∗. We know

d1ϕ1 = ϕ1ξ2α(d1a∗), (A92)

hence

d2
1a∗ = d1

(
a∗

τ1

)

(A93)

=
d1a∗

τ1
+ a∗d1

(
1

τ1

)

(A94)

(A92)
=

d1a∗

τ1
− a∗ 1

(τ1)2

[
− 1 + gϕ1ξ2α(d1a∗)

]
(A95)

=
d1a∗

τ1

[
2 − gϕ1ξ2α(d1a∗)

]
(A96)

= (d1a∗)
a∗

τ1

[
2

a∗
− gϕ1ξ2α

d1a∗

a∗

]

(A97)

= (d1a∗)2
[

2

a∗
− gϕ1ξ2

α

τ1

]

. (A98)

ad d2
2Π2. Using (A60) and (A59),

d2
2Π2 = 2d2a∗ + γ2d2

2a∗ (A99)

= (d2a∗)

[

2 +
γ2

τ2
2

(

(−hϕ2)a∗(τ2 − ξ2) − 2τ2

)]

< 0 (A100)

We use ξ1/τ1 − ξ2/τ2 = (−1) to simplify to

d2
2Π2 = (d2a∗)

[

2 +
γ2

τ2

(
(a∗ξ1)hϕ2

τ1
− 2

)]

. (A101)

ad d1d2Π2. Using (A60) and (A59),

d1d2Π2 = (d1a∗) + (d1d2a∗)γ2 (A102)

= (d1a∗)

[

1 +
γ2

τ2
2

(

(−a∗ξ2)(−hϕ2) − 2τ2

)

︸ ︷︷ ︸

:=E

]

> 0, (A103)

since E > 0 by assumption (A4). Again this further simplifies to

d1d2Π2 = (d1a∗)

[

1 +
γ2

τ2

(
(a∗ξ2)hϕ2

τ2
− 2

)]

. (A104)
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ad d2
1Π1. Using (A61),

d2
1Π1 = d1 [(a − a∗) − (d1a∗)γ1] (A105)

= −2(d1a∗) − γ1(d2
1a∗) (A106)

= −d1a∗

[

2 + γ1(d1a∗)

(
2

a∗
− gϕ1ξ2

α

τ1

)]

(A107)

= −d1a∗

[

2 +
γ1

τ1

(

2 −
a∗ξ2gϕ1

τ2

)]

. (A108)

ad d1d2Π1. Using (A60),

d2d1Π1 = d2 [(a − a∗) − (d1a∗)γ1] (A109)

= (−d2a∗) − γ1(d1a∗)2 α

a∗

[

a∗ξ2
hϕ2

τ2
− 2

]

(A110)

= (−d2a∗)

[

1 +
γ1

τ1

(

2 −
a∗ξ2hϕ2

τ2

)]

. (A111)

ad d2
1Π1 + 1

αd1d2Π1. Using (A60) and (A62),

d2
1Π1 +

1

α
(d1d2Π1) = (−d1a∗)

[

2 +
γ1

τ1

(

2 −
(a∗ξ2)gϕ1

τ2

)]

+ (d1a∗)

[

1 +
γ1

τ1

(

2 −
(a∗ξ2)hϕ2

τ2

)]

(A112)

= (−d1a∗) + (d1a∗)
γ1

τ1

[
(a∗ξ2)gϕ1

τ2
−

(a∗ξ2)hϕ2

τ2

]

(A113)

= (−d1a∗)
︸ ︷︷ ︸

<0

+(d1a∗)
γ1

τ1

(−a∗ξ2)

τ2
︸ ︷︷ ︸

2/τ2>0

(hϕ2 − gϕ1)
︸ ︷︷ ︸

<0

(A114)

< 0, (A115)

with (hϕ2 − gϕ1) < 0, since

gϕ1 − hϕ2 = hB2

[
gB1

hB2
︸ ︷︷ ︸

=α

ξ2 − ξ1

]

= hB2τ2 > 0 (A116)

where the last equality follows, since

τ2 − ξ2 = ∆γ − hϕ2 − (ξ1 + ∆γ) = (−ξ1)(1 + hB2) =
−ξ1

α
. (A117)

A6 Proof of Proposition 2

Auxiliary properties are proven in Appendix A5. We first prove the following central claim.
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Claim. The following notation is used: For a function f(~γ) let f∗(γ1) := f(γ1, γ∗
2(γ1)). Then,

d1γ∗
2 =

(d1d2Π2)∗

(−d2
2Π2)∗

. (A118)

Proof of claim. By definition, 0 ≡ (d2Π2)∗ and thus

0 = d1((d2Π2)∗) = (d1d2Π2)∗ + (d2
2Π2)∗d1γ∗

2 (A119)

⇔ d1γ∗
2 =

(d1d2Π2)∗

(−d2
2Π2)∗

. (A120)

ad i). From (A62) we have concavity of Π2, which ensures uniqueness of a solution. For
existence, note that γ2 7→ Π2(γ1, γ2) as continuous function on a compact interval, assumes its
maximum. But Π2(γ1, 0) = Π2(γ1, γmax) = 0, hence the maximum is assumed in the interior.

ad ii). For γ∗
2 ∈ C∞, we make use of the implicit function theorem. We know d2Π2 ∈ C∞ and

d2
2Π2 < 0. Hence, from the implicit function theorem the mapping

γ1 7→ γ∗
2(γ1) = argγ2

{d2Π2(γ1, γ2) = 0} (A121)

is smooth. Monotonicity of γ∗
2 follows from the claim together with (A63) and (A62).

ad iii). Using (A62) and (A63),

α∗d1γ∗
2 = α∗ (d1d2Π2)∗

(−d2
2Π2)∗

(A122)

= α∗

(d1a∗)

[

1 + γ2

τ2

(

(a∗ξ2)hϕ2

τ2
− 2

)]

(−d2a∗)

[

2 + γ2

τ2

(

(a∗ξ1)hϕ2

τ1
− 2

)] (A123)

=

1 + γ2

τ2

(

(a∗ξ2)hϕ2

τ2
− 2

)

2 + γ2

τ2

(

(a∗ξ1)hϕ2

τ1
− 2

) . (A124)

In the numerator
(a∗ξ2)hϕ2

τ2
− 2 = (−a∗ξ2)

(−hϕ2)

τ2
− 2 > 0, (A125)

since a∗(−ξ2) > 2 from assumption A3, and in the denominator

(a∗ξ1)hϕ2

τ1
− 2 = (a∗hϕ2)

(

1 −
ξ2

τ2

)

− 2 =
(a∗ξ2)hϕ2

τ2
− 2

︸ ︷︷ ︸

>0

+ (−hϕ2)a∗

︸ ︷︷ ︸

>0

> 0, (A126)

hence, we get α∗d1γ∗
2 < 1.

�

A7 Proof of Proposition 3

The proof proceeds by showing a basic lemma from real analysis (Lemma 4) and then proving
its applicability in the present context (Lemma 5 and Lemma 6). The lemmata are presented
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upfront and proven in the subsequent appendices.

Notation. γa
1 (γ2) is defined similar to γ

a
1 (γ2). In particular, γa

1 (γ2) is defined as a∗(γa
1 (γ2), γ2) =

a if there is a solution in G[a,a], and as γa
1 (γ2) = γmax otherwise.

Lemma 4. Let f be a smooth function on some interval [a, b] ⊂ R. If there exists a µ ∈ [a, b]
such that

∀x < µ : df(x) = 0 ⇒ d2f(x) > 0 (S1)

∀x > µ : df(x) = 0 ⇒ d2f(x) < 0 (S2)

df(a) > 0, (S3)

then f has a global maximum τ and ∀x < τ : df(x) > 0 and ∀x > τ : df(x) < 0.

Lemma 5. Consider a fixed γ2 for which

d1Π1(γ
a
1 (γ2), γ2) > 0. (T3)

If assumption A5 holds, there exists a µ ∈ [γ
a
1 (γ2), γa

1 (γ2)] such that for all γ1 ∈ [γ
a
1 (γ2), γa

1 (γ2)]

γ1 < µ ⇒
(
d1Π1 = 0 ⇒ d2

1Π1(γ1) > 0
)

(T1)

γ1 > µ ⇒
(
d1Π1 = 0 ⇒ d2

1Π1(γ1) < 0
)
. (T2)

If µ = γa
1 (γ2), then γa

1 (γ2) = γmax.

Lemma 6. Assumption A6 implies that, for all γ2 ∈ [0, γ∗
2(γmax)],

d1Π1(γ
a
1 (γ2), γ2) > 0. (A127)

ad i). Lemma 5 and Lemma 6 show that for any γ2 ∈ [0, γ∗
2(γmax)] we can make use of Lemma

4. Then we know from Lemma 4 that for all γ2 ∈ [0, γ∗
2(γmax)], a) Π1(·, γ2) has a unique global

maximum τ ∈ [γ
a
1 (γ2), γa

1 (γ2)], b) τ = argminµ{d1Π1 = 0 ∨ µ = γmax}, i.e., τ is either the
unique solution to d1Π1(τ) = 0, or τ = γmax, and, c) for all γ1 < τ : d1Π1(γ1) > 0 and for all
γ1 > τ : d1Π1(γ1) < 0.

ad ii). We consider γ⊗
1 separately on

N1 := {γ2 ∈ [0, γ∗
2(γmax)]|γ⊗

1 < γmax} (A128)

N2 := {γ2 ∈ [0, γ∗
2(γmax)]|γ⊗

1 = γmax} (A129)

and first show continuity on [0, γ∗
2(γmax)] = N1 ∪̇ N2.

On N1, we already know from (A65) that d2
1Π1 6= 0 ∨ d1d2Π1 6= 0. Hence {d1Π1 = 0} is a

smooth curve. Then we make a case distinction.

1) If d2
1Π1 6= 0, we know from the implicit function theorem that one can parameterize {d1Π1 =

0} via γ⊗
1 (γ2). In particular, such a parameterization is smooth.

2) At a point q = (γ⊗
1 (γ2), γ2) with d2

1Π1(q) = 0, we have d1d2Π1(q) 6= 0, hence one can param-
eterize {d1Π1 = 0} locally via γ⊗

2 (γ1). γ⊗
2 (γ1) has to strictly increase in some neighborhood

around q or strictly decrease in some neighborhood around q, since otherwise the inverse
couldn’t exist. Hence, γ⊗

2 is bijective on some neighborhood U of γ⊗
1 (γ2) and V of γ⊗

2 . Then
γ⊗

1 is monotone on U and continuous.
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Hence, γ⊗
1 is continuous on N1, N1 is open and γ⊗

1 is also continuous on the closure of N1,
N 1. Since the complement of N1 is N2, N2 is closed. On N2, γ⊗

1 is a constant function and
as such continuous on N2. Thus, since γ⊗

1 is continuous on N 1 and on N2, it is continuous on
[0, γ∗

2(γmax)].

It remains to show smoothness and that exception points are isolated.

Again, we consider N1 first. If d2
1Π1 6= 0, the above argument has already shown smooth-

ness. At a point q = (γ⊗
1 (γ2), γ2) with d2

1Π1(q) = 0, we have d1d2Π1(q) 6= 0, hence one can
parameterize {d1Π1 = 0} locally via γ⊗

2 (γ1). d2
1Π1(γ1, γ⊗

2 (γ1)) is an analytic function, i.e., the
Taylor expansion converges at every point with positive radius of convergence. From complex
analysis (see e.g. Theorem 4.8 in Shakarchi and Stein (2003)) we know that, if the zeros of
the function accumulate, then d2

1Π1(γ1, γ⊗
2 (γ1)) ≡ 0 on some open neighborhood U of γ1. But

this is a contradiction: Consider the image V := {(γ1, γ⊗
2 (γ1))|γ1 ∈ U} ⊂ {d1Π1 = 0}. There,

d2
1Π1 = 0 ∧ d1d2Π1 6= 0 everywhere. So the tangent to {d1Π1 = 0} may not have a component

in d2-direction. But this means that γ⊗
2 (γ1) is constant on U – a contradiction to the argument

in the proof of i). This proves the claim on N 1.

On N2, γ⊗
1 is constant and thus smooth everywhere.

In addition, exception points are well-behaved:
Claim. Let γ0

2 be a point at which γ⊗
1 is non-differentiable, i.e. d2

1Π1(γ⊗
1 (γ0

2), γ0
2) = 0. Then,

i) d2γ⊗
1 converges to minus infinity in γ0

2 .

ii) γ⊗
1 decreases in a neighborhood of γ0

2 .

Proof of claim.
Consider a point q = (γ⊗

1 (γ0
2), γ0

2) with d2
1Π1(q) = 0, and a locally inverse function γ⊗

2 of the pa-
rameterization γ⊗

1 in a neighborhood V . Since d1Π1(q) = 0, d1γ⊗
2 (γ⊗

1 ) = 0 and limγ1→γ⊗

1
d1γ⊗

2 (γ1) =

0. From monotonicity of γ⊗
2 (γ1), either for all γ0

2 6= γ2 ∈ V , d1γ⊗
2 > 0 or for all γ0

2 6= γ2 ∈ V ,
d1γ⊗

2 < 0. Since d2γ⊗
1 = 1/d1γ⊗

2 , either limγ2→γ⊗

2
d2γ⊗

1 = ∞ or limγ2→γ⊗

2
d2γ⊗

1 = −∞, but the

second case is ruled out by the part iii).

ad iii). d2γ⊗
1 is only defined for γ⊗

1 < γmax and d2
1Π1 6= 0. Hence, let γ⊗

1 < γmax and d2
1Π1 6= 0.

We first prove a preliminary claim.

Claim. Consider a continuously differentiable function f : R2 → R and vectors (1, a) and (1, b)
with 0 < a < b ∈ R. Consider a point p ∈ R2 with Df(p) 6= 0. If in p the directional derivatives
D(1,a)f and D(1,b)f have the same sign, then all directional derivatives D(1,x)f with a ≤ x ≤ b
have the same sign in p. If in p one of the directional derivatives, D(1,a)f, D(1,b)f , is equal and
the other unequal to zero, then for all x ∈ (a, b) D(1,x)f 6= 0 and has the same sign.

Proof of claim. We have Df(p) 6= 0, hence the gradient grad(f) = (d1f, d2f) does not vanish
at p. Hence,

D(1,x)f = 〈(1, x), grad(f)〉 = d1f + x d2f (A130)

is a linear function in x. Subsequently, if d1f + x d2f (as a function in x) has the same sign for
x = a and x = b, it has the same sign for all x ∈ (a, b). This also holds in case one of the two
directional derivatives D(1,a)f, D(1,b)f are zero. This proves the claim.

d2γ⊗
1 is defined by D(d2γ⊗

1 ,1)(d1Π1) = 0. Thus, it is to show that for κ > α, D(κ,1)(d1Π1) 6= 0.
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Since D(κ,1)f = κD(1,1/κ)f , this is equivalent to showing that for 1/κ ∈ (0, 1/α), D(1,1/κ)(d1Π1) 6=
0. With the above claim it thus remains to show that

d2
1Π⊗

1 = D(1,0)(d1Π1) ≤ 0 (A131)

and D(1,1/α)(d1Π1) < 0. (A132)

(A132) holds, since D(1,1/α)(d1Π1) = d2
1Π1 + 1

α(d1d2Π1) < 0 from (A65). (A131) holds since

γ⊗
1 (γ2) is a local minimum.

�

A8 Proof of Lemma 4

Condition (S1) requires that for x < µ, f only has local minima. Condition (S2), on the other
hand, requires that for x > µ, f only has local maxima. Hence, f is increasing on the interval
[a, µ], since otherwise from condition (S3) there was a local maxima below µ. On the interval
[b, µ] there can be at most one local maximum τ , since otherwise there would be another local
minima in between - contradiction.

Subsequently, f is increasing on [a, µ] and decreasing on [µ, b]. Hence, τ is a global maximum
and from monotonicity we have ∀x < τ : df(x) ≥ 0 and ∀x > τ : df(x) ≤ 0. But df(x) must
not be zero for x 6= τ , since otherwise from (S1) and (S2) at that point there would be another
local extremum, which would entail another extremum in between - contradiction.

�

A9 Proof of Lemma 5

If d1Π1 = 0,

d2
1Π1 ≥ 0 (A133)

⇔ −(2d1a∗ + γ1d2
1a∗) ≥ 0 (A134)

⇔ 2d1a∗ ≤ −γ1(d1a∗)2
[

2

a∗
− gϕ1

ξ2α

τ1

]

(A135)

d1Π1=0
⇔ 2 ≤ −γ1

(a − a∗)

γ1

[
2

a∗
− gϕ1

ξ2α

τ1

]

(A136)

⇔ 2a∗ ≤ (a − a∗)

[

− 2 + gϕ1ξ2 a∗ α

τ1
︸ ︷︷ ︸

=(−d2a∗)

]

(A137)

⇔ 2a ≤ (a − a∗)gϕ1ξ2(−d2a∗), (A138)

where we used d1Π1 = 0 ⇔ d1a∗ = (a−a∗)
γ1

as well as (A61).

Define the RHS of (A138) as

R(γ1, γ2) := (a − a∗)gϕ1ξ2(−d2a∗). (A139)

Claim. It suffices to show d1R < 0.
Proof of claim. If d1R < 0, there can be at most one µ with 2a = R(µ, γ2) and for this µ (T1)
and (T2) hold. In case there is no µ with 2a = R(µ, γ2), we distinguish the following cases:
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1) If there is an interior local maximum, at this interior local maximum we must have d1Π2
1 < 0.

Hence 2a > R on the entire interval and µ = γ
a
1 (γ2) satisfies the condition.

2) If there is no interior local maximum, Π1 increases on the entire interval by Assumption
A6 and Lemma 6, and µ = γmax satisfies the condition. In that case also γa

1 (γ2) = γmax,
because otherwise Π1(γa

1 (γ2), γ2) = 0 would contradict monotonicity of Π1.

3) By Assumption A6 and Lemma 6 there can be no interior local minima.

Claim. d1R < 0.
Proof of claim. Using (A64) in Proposition 3,

d1R = (−d1a∗)
R

(a − a∗)
+ d1ϕ1

R

ϕ1
− (d1d2a∗)

R

(−d2a∗)
(A140)

= R(d1a∗) ·

[

−
1

(a − a∗)
+ αξ2 −

1

α

(d1d2a∗)

(d1a∗)2

]

(A141)

= R(d1a∗) ·

[

−
1

(a − a∗)
+ αξ2 −

1

α

α

a∗

(

a∗ξ2
hϕ2

τ2
− 2

)]

(A142)

= R(d1a∗)
︸ ︷︷ ︸

>0

·

[

−
1

(a − a∗)
+

2

a∗
− ξ2(α +

hϕ2

τ2
)

]

(A143)

Subsequently

d1R < 0 ⇔
2a − 3a∗

(a − a∗)a∗
< ξ2

(

α +
hϕ2

τ2

)

(A144)

⇔
2a − 3a∗

(a − a∗)
︸ ︷︷ ︸

<2

< a∗ξ2
︸︷︷︸

<(−2)

(

α
︸︷︷︸

∈(0,1)

+
hϕ2

τ2
︸︷︷︸

<(−1)

)

. (A145)

Assumption A5 ensures that the LHS of (A145) is negative, and, thus, under assumption A5
(A145) holds.

�

A10 Proof of Lemma 6

From assumption A6 we have d1Π1(γ
a
1 (γ2), γ2) > 0 for γ2 = γ∗

2(γmax). From (A65), we know

D(1,1/α)(d1Π1) = d2
1Π1 +

1

α
(d1d2Π1) < 0. (A146)

Hence, d1Π1(γ
a
1 (γ2), γ2) increases along {a∗ = a} as γ2 decreases, and, thus, d1Π1(γ

a
1 (γ2), γ2) >

0 for all γ2 ∈ [0, γ∗
2(γmax)].

�

A11 Proof of Proposition 4

ad Existence. We consider dealer 2’s reaction functions

γ∗
2 : [γ

a
1 (0), γmax] → [0, γ∗

2(γmax)] (A147)

γ1 7→ γ∗
2(γ1) (A148)

XIII



and dealer 1

γ⊗
1 : [0, γ∗

2(γmax)] → [γ
a
1 (0), γmax] (A149)

γ2 7→ γ⊗
1 (γ2) (A150)

From Propositions 3 and 2 we know that γ∗
2 and γ⊗

1 are continuous functions. Subsequently,

(γ∗
2 ◦ γ⊗

1 ) : [0, γ∗
2(γmax)] → [0, γ∗

2(γmax)] (A151)

is a continuous self-mapping on a nonempty, compact and convex set and, hence, by Brouwer’s
fixed point theorem (rf Mas-Colell et al. (1995, p. 952)) there exists a fixed point. By construc-
tion a fixed point either satisfies both FOCs or lies at the boundary.

ad Uniqueness. Since dealer 2’s reaction function γ∗
2 is strictly increasing, there exists an inverse

function, denoted by γ∗−1
1 . From part iii) of Proposition 3 we have for dealer 2’s reaction function

d1γ∗
2 < 1/α∗, hence, for its inverse function

d2γ∗−1
1 > α∗. (A152)

At the same time, we know from Proposition 2 that for dealer 1’s reaction function

d2γ⊗
1 < α⊗. (A153)

Consider the mapping

γ2 7→ γ∗−1
1 (γ2) 7→ a∗(γ∗−1

1 (γ2), γ2). (A154)

Then a∗(γ∗−1
1 (·), ·) as a function of γ2 is increasing in γ2, since

0 < d2a∗(γ∗−1
1 (γ2), γ2) = (d1a∗)(d2γ∗

1) + d2a∗ ⇔ d2(γ∗
1) >

(−d2a∗)

(d1a∗)
= α, (A155)

⇔
1

d1(γ∗
2)

> α, (A156)

which holds by Proposition 2 part iii).

Likewise, one can consider the analogous mapping using dealer 1’s reaction function

γ2 7→ γ⊗
1 (γ2) 7→ a∗(γ⊗

1 (γ2), γ2). (A157)

Then a∗(γ⊗
1 (·), ·) as a function of γ2 is decreasing in γ2, since

0 > d2a∗(γ⊗
1 (γ2), γ2) = (d1a∗)(d2γ⊗

1 ) + d2a∗ ⇔ d2(γ⊗
1 ) <

(−d2a∗)

(d1a∗)
= α, (A158)

which holds by Proposition 3 part iii).

Since a∗ values at a point must coincide at a point at which the two function intersect, there
can be at most one intersection.

�
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A12 Proof of Proposition 5

First, at a Nash equilibrium ~γ one has d1Π1(~γ) ≥ 0 = d2Π2(~γ) with d1Π1(~γ) > 0 only if
γ1 = γmax. Note furthermore that

d1Π1 ≥ 0 ⇔ (a − a∗) − γ1d1a∗ ≥ 0 (A159)

d2Π2 = 0 ⇔ (a∗ − a) + γ2d2a∗ = 0. (A160)

Using Lemma 3 part iii), it thus follows that at a point ~γ with d1Π1(~γ) ≥ 0 = d2Π2(~γ) we have

1 > α =
−d2a∗

d1a∗
≥

−d2a∗

(a − a∗)
γ1 =

(a∗ − a)

(a − a∗)

γ1

γ2
=

Π2

Π1

γ2
1

γ2
2

>
Π2

Π1
, (A161)

where the last inequality follows since ∆γ < 0 ⇔ γ1/γ2 > 1. Hence, (A161) yields (a∗ − a) <
(a − a∗) and Π2 < Π1.

�

A13 Proof of Proposition 6

The optimization problem for a given vector of default probabilities ~b0 depends only on g̃(~b0) =
p(b0

2 −b0
1)/(1−b0

1p). Hence, vectors of default probabilities with the same g̃ yield the same Nash
equilibria.

Claim. For a given pair of default probabilities (b0
1, b0

2) = ~b0 with g̃(~b0), the set of default
probabilities ~b with the same g̃ is

{(

b0
1 − α, b0

2 − (1 − g̃(b0
1, b0

2))α
) ∣
∣α ∈

[

b0
1 −

1

3
, b0

1

]}

. (A162)

Proof of claim. We have

∂b2 g̃
∣
∣
~b0 =

p

1 − b0
1p

(A163)

∂b1 g̃

∣
∣
∣
∣
~b0

=
−p(1 − b0

1p) + p(b0
2 − b0

1)p

(1 − b0
1p)2

(A164)

= −p
(1 − b0

2p)

(1 − b0
1p)2

(A165)

= −
p

(1 − b0
1p)

[
1 −

p∆b

(1 − b0
1p)

︸ ︷︷ ︸

=g̃(~b0)

]
(A166)

−
∂b1 g̃

∂b2 g̃

∣
∣
∣
∣
~b0

= (1 − g̃(~b0)) ∈ (0, 1) (A167)

Hence, from the implicit function theorem we know that sets {~γ|g̃(~γ) = c} are submanifolds
that have (for a given c) the same slope (1 − g̃) at each point. Hence they are straight lines.

�

A14 Proof of Proposition 7

ad i). Suppose b0
1 < b0

2 is a subgame-perfect Nash equilibrium in qualities. In that case one must
not be able to find a profitable deviation for the unsafer dealer, that is, no b1

2 with b1
2 < b0

1 < b0
2
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such that the profit when taking the lead position in quality, exceeds the profit when choosing
the optimal quality as unsafer dealer, i.e. no b1

2 with Π1(b1
2, b0

1) > Π2(b0
1, b0

2). From Proposition
6 we know that pairs of default probabilities (b1, b2) with

(b1, b2) = (b0
1 − z, b0

2 − (1 − g̃(b0
1, b0

2))z), (A168)

z ∈ [b0
1− 1

3 , b0
1], lead to the same Nash equilibria in prices. Hence, if the unsafer dealer, protection

seller 2, has the option to choose a quality b1
2 < b0

1 with

(b1
2, b0

1) =

(
1

(1 − g̃)

[

(1 − g̃)b0
1 − (b0

2 − b0
1)
]

, b0
1

)

(A169)

it leads to the same Nash equilibrium in prices, but with reversed roles. By Proposition 5,
we know that the protection seller 2 has a larger profit than before, hence, this is a profitable
deviation. This deviation is infeasible if

b0
2 − b0

1 > (1 − g̃(b0
1, b0

2))b0
1 (A170)

⇔ b0
2 > (2 − g̃(b0

1, b0
2))b0

1 (A171)

⇔ b0
1 <

1

(2 − g̃)
︸ ︷︷ ︸

<2−1/8 from Lemma 7

b0
2

︸︷︷︸

<bmax

. (A172)

ad ii). Suppose g̃∗ is the g̃ that maximizes protection seller 2’s profit. It is well-defined from

condition (N1). Call this maximum Π�,g̃∗

2 .

Then similar to part i), dealer 1 must choose b1 in such a way that it is not profitable for dealer

2 to take over the leadership position in quality. This is the case if Π�,g̃∗

2 exceeds any profit
dealer 2 can capture as quality-leader. Since from condition (N2), the profit of the quality-
leader is increasing in the lower quality, this is true for b1 below b̄1 with b̄1 such that for some

g̃′ Π�,g̃′

1 (0, b̄1) = Π�,g̃∗

2 .

�
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B Appendix: Additional Results

B1 Optimal Choice of State-Contingent Payments

This section shows that the derivative (b, γ) is the outcome of the optimal contracting problem
described in the text. Consider a protection buyer who is deciding whether to buy a deriva-
tive (b, γ). Upon entering the derivative contract, the client agrees to pay a fixed rate γ for
establishing the client-dealer relationship, before the volume of the derivative is determined
endogenously and the dealer offers the actuarially fair price. In particular, the protection buyer
chooses payments (y, z) to maximize expected utility

(1 − p)u
(
θ − y

)
+ p(1 − b)u

(
θ − z

)
+ bpu(θ) (B3)

subject to the constraint

(1 − p)y + p(1 − b)z −

[

γ −
bpθ

(1 − bp)

]

(1 − bp) ≥ 0 (B4)

⇔ (1 − p)y + p(1 − b)z ≥ γ(1 − bp) − bpθ. (B5)

(B4) and (B5) offer two views on the constraint. (B5) demands that the expected cash flows
to the protection seller (LHS) must be at least as high as the expected fee already agreed upon
minus the expected endowment if the protection seller survives. To see the latter part note that

E [x̃|dealer survives] P [dealer survives] = (1 − p)θ + p(1 − b)θ
E[x̃]=0

= −bpθ (B6)

⇔ E [x̃|dealer survives] =
−bpθ

(1 − bp)
> 0. (B7)

The risk-averse protection buyer passes the risky endowment to the protection seller unless the
protection seller defaults.

(B4) offers an alternative explanation. Let γnom be the expression in brackets, i.e.

γnom := γ −
bpθ

(1 − bp)
. (B8)

Then the third term on the LHS of (B4) is the “nominal” fee per client-dealer relationship,
γnom, times the survival probability of the protection seller, since only in that case the pay-
ment is actually exchanged. It is subtracted because this fee for establishing the client-dealer
relationship has already been agreed upon, so the dealer already “mentally set it aside” and
subsequently wants to break even in t = 3. Compared to γ, from the definition we have
γ = γnom + bpθ/(1 − bp) < γnom. In view of (B7) the adjustment term, bpθ/(1 − bp), is pre-
cisely the expected endowment conditional on the survival of the protection seller. Since it is
positive, the protection buyer claims this extra revenue for himself, rendering γ the “true” fees
for the protection seller. In the formulation of the protection seller’s constraint in (B4) one
assumes that the protection seller chooses “true” fees γ instead of “nominal” ones γnom. This
reparametrization will make subsequent calculations tractable as we will see, while simplifying
the intuition.

Proposition 10. For a given (b, γ), the protection buyer optimally chooses

y∗(b, γ) = γ +
p(1 − b)θ − pθ

(1 − bp)
(B9)
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z∗(b, γ) = γ −
(1 − p)

(1 − bp)
θ −

b(1 − bp) − (1 − p)

(1 − b)(1 − bp)
θ. (B10)

Let r∗(b, γ) be the payoff a protection buyer is left with in an optimal derivative contract unless
the counterparty defaults (residual endowment), i.e. r∗(b, γ) := θ−y∗(b, γ) = θ+z∗(b, γ). Then,
as one would expect from risk aversion, r∗(b, γ) does not depend on the endowment state, namely

r∗(b, γ) = −γ. (B11)

Intuition. Let us rewrite the constraint (B4) under equality,

(1 − p)y + p(1 − b)z = γnom(1 − bp) (B12)

⇔ (1 − p)(y − γnom) + p(1 − b)(z − γnom) = 0. (B13)

The risk-averse protection buyer chooses payments (y, z) to equalize his outcome across states,
i.e. payments (y, z) such that

θ − y = θ − z (B14)

⇔ y = θ + k and z = θ + k for some k ∈ R. (B15)

Then the derivative contract can be interpreted as follows: the protection seller offsets the
endowment for the protection buyer in each state in exchange for a fixed payment k, leaving the
protection buyer with (−k) unless the protection seller defaults. In other words, −k = θ − y =
θ − z is the residual endowment of the protection buyer. Plugging (B15) into (B13) yields

(1 − p)(θ + k − γnom) + p(1 − b)(θ + k − γnom) = 0 (B16)

⇔
[

(1 − p)θ + p(1 − b)θ
]

︸ ︷︷ ︸

=−bpθ

+(1 − bp)(k − γnom) = 0 (B17)

⇔ k = γnom +
bpθ

(1 − bp)
. (B18)

Hence, −k > −γnom, i.e. the protection buyer pays less than the nominal profit per contract. As
explained above, this is because the expected endowment conditional on the protection seller’s
survival is positive and the protection buyer claims this extra revenue for himself, rendering the
“true” profits k = γ = γnom + bpθ/(1 − bp).

Proof. The protection buyer solves the following optimization problem

max
y,z

{

(1 − p)u(θ − y) + p(1 − b)u(θ − z) + bpu(θ)

∣
∣
∣
∣(1 − p)y + p(1 − b)z = γ(1 − bp) − bpθ

}

(B19)

which is equivalent to the unconstrained problem

max
y

{

(1 − p)u(θ − y) + p(1 − b)u

(

θ −
(1 − bp)

p(1 − b)
γ +

b

(1 − b)
θ +

(1 − p)

p(1 − b)
y

)

+ bpu(θ)

}

.

With ∆θ := θ − θ, the resulting first-order condition reads

0 = −(1 − p)u′(θ − y) + p(1 − b)u′

(

θ −
(1 − bp)

p(1 − b)
γ +

b

(1 − b)
θ +

(1 − p)

p(1 − b)
y

)
(1 − p)

p(1 − b)
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⇔ u′(θ − y) = u′

(

θ −
(1 − bp)

p(1 − b)
γ +

b

(1 − b)
θ +

(1 − p)

p(1 − b)
y

)

⇔ ∆θ − y

[

1 +
(1 − p)

p(1 − b)

]

= −γ
(1 − bp)

p(1 − b)
+

b

(1 − b)
θ

⇔ y
(1 − bp)

p(1 − b)
= ∆θ + γ

(1 − bp)

p(1 − b)
−

bp

p(1 − b)
θ

⇔ y =
p(1 − b)

(1 − bp)
∆θ + γ −

bp

(1 − bp)
θ

⇔ y = γ +
p(1 − b)(θ − θ) − bpθ

(1 − bp)
(B20)

⇔ y∗(b, γ) = γ +
p(1 − b)θ − pθ

(1 − bp)
. (B21)

With (B21) plugged into

z∗(b, γ) =
1 − bp

p(1 − b)
γ −

pb

p(1 − b)
θ −

(1 − p)

p(1 − b)
y∗(b, γ) (B22)

from the constraint in (B19), some simple rearranging yields the formula for z∗(b, γ). Using
(B20) we confirm that

θ − y∗(b, γ) = −γ +
θ − bpθ −

[

p(1 − b)(θ − θ) − bpθ
]

(1 − bp)
(B23)

= −γ +
(1 − p)θ + pθ

(1 − bp)
(B24)

E[x̃]=0
= −γ (B25)

as well as

θ − z∗(b, γ) = θ −

(

γ −
(1 − p)

(1 − bp)
θ −

b(1 − bp) − (1 − p)

(1 − b)(1 − bp)
θ

)

(B26)

= −γ +
pθ + (1 − p)θ

(1 − bp)
(B27)

E[x̃]=0
= −γ. (B28)

�

B2 Market Coverage

A derivative contract (b, γ) is called feasible for a if protection buyer a prefers the contract to
none. This translates into the following condition

pua(θ) + (1 − p)ua(θ) ≤ (1 − bp)ua(−γ) + bpua(θ) (B29)

⇔ bp [ua(−γ) − ua(θ)] + ua(θ) − ua(−γ) ≤ p
[

ua(θ) − ua(−γ) + ua(−γ) − ua(θ)
]

(B30)

⇔ (1 − p)
[

ua(θ) − ua(−γ)
]

≤ p(1 − b) [ua(−γ) − ua(θ)] (B31)

(B31) admits an intuitive interpretation: Protection buyer a prefers the contract to no insurance,
if the expected utility gain from avoiding the bad endowment in case the seller does not default
(RHS) outweighs the expected utility loss from the fee if the good endowment materializes
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(LHS).9

The following proposition characterizes the protection buyer that is indifferent between deriva-
tive contract (b, γ) and no insurance.

Proposition 11. Protection buyer a is indifferent between (b, γ) and no insurance, if

γ = γexit
a (b) := (−θ) −

1

a
ln

(

K(b) + 1

K(b) + exp(−a(θ − θ))

)

(B32)

with K(b) = (1 − b)p/(1 − p). γexit
a (b) is strictly increasing in a and decreasing in b.

Proof. In light of (B31), a protection buyer a is indifferent between buying contract (b, γ) and
no insurance, if

ua(θ) − ua(−γ)

ua(−γ) − ua(θ)
=

p

1 − p
(1 − b) (B33)

⇔
exp(−aθ) − exp(aγ)

exp(aγ) − exp(−aθ)
= K(b) (B34)

⇔
exp(−a(θ + γ)) − 1

1 − exp(−a(θ + γ))
= K(b) (B35)

⇔
exp(−a∆θ) exp(−a(θ + γ)) − 1

1 − exp(−a(θ + γ))
= K(b) (B36)

⇔ exp(−a(θ + γ)) =
K(b) + 1

K(b) + exp(−a∆θ)
(B37)

⇔ γ = γexit
a (b) := (−θ) −

1

a
ln

(
K(b) + 1

K(b) + exp(−a∆θ)

)

, (B38)

with K(b) := (1 − b)p/(1 − p) and ∆θ := (θ − θ).

ad γexit
a (b) increasing in a. We have

∂γexit
a

∂a
=

1

a

[
1

a
log

(
K(b) + 1

K(b) + exp(−a∆θ)

)

−
exp(−a∆θ)

K(b) + exp(−a∆θ)
∆θ

]

. (B39)

With

y :=
1 − exp(−a∆θ)

K(b) + exp(−a∆θ)
(B40)

this reads

∂γexit
a

∂a
=

1

a

[
1

a
ln(1 + y) +

(

y −
1

K(b) + exp(−a∆θ)

)

∆θ

]

(B41)

=
1

a

[
1

a
y

(
log(1 + y)

y
+ a∆θ

)

−
1

K(b) + exp(−a∆θ)
∆θ

]

(B42)

=

(
1

a

)2 1

K(b) + exp(−a∆θ)

[

(1 − exp(−a∆θ))

(
log(1 + y)

y
+ a∆θ

)

− a∆θ

]

(B43)

9 Note that from (B31) we also know that for any feasible contract (θ + γ) < 0. (Since −γ < 0 < θ, the LHS
of (B31) is positive, hence, the RHS needs to be positive as well.) Indeed, we already restricted attention to
γ < (−θ) by assumption A3.
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=

(
1

a

)2 1

K(b) + exp(−a∆θ)

[

(1 − exp(−a∆θ))
log(1 + y)

y
− exp(−a∆θ)a∆θ

]

(B44)

With x := a∆θ this expression is positive if and only if

exp(x) − 1

x
>

y

log(1 + y)
(B45)

⇔ log(1 + y) > y
x

exp(x) − 1
(B46)

⇔ log

(
K(b) + 1

K(b) + exp(−x)

)

>
x

exp(x)

1

K(b) + exp(−x)
. (B47)

For x = 0 the LHS and RHS are 0. For x > 0 the derivative w.r.t. x of the LHS reads

∂LHS

∂x
=

exp(−x)

K(b) + exp(−x))
, (B48)

while the derivative of the RHS reads

∂RHS

∂x
=

exp(−x)

K(b) + exp(−x)

[

(1 − x) +
1

K(b) + exp(−x)

x

exp(x)

]

︸ ︷︷ ︸

<1

. (B49)

To see why the expression in brackets is smaller one, note that

(1 − x) +
1

K(b) + exp(−x)

x

exp(x)
< 1 ⇔

1

K(b) + exp(−x)
< exp(x) ⇔ 0 < K(b) exp(x),

which always holds and proves the claim.

ad γexit
a (b) increasing in b. Follows directly, since

∂γexit
a

∂K(b)
=

1 − exp(−a∆θ)

(1 + K(b))(K(b) + exp(−a∆θ))
> 0 (B50)

and ∂bK(b) < 0. (B51)

The result is intuitive: the fee at which a protection buyer is indifferent between the contract
and no insurance is higher the more risk-averse he is. The next corollary follows as a direct
consequence.

Corollary 2. i) For fixed default probability bi, a derivative contract (bi, γi) is feasible for
protection buyer a if γi < γexit

a (bi).

ii) Let aexit(bi, γi) be the protection buyer that is indifferent between contract (bi, γi) and no
insurance. For γi outside of [γexit

a (bi), γexit
a (bi)], aexit lies outside of the interval [a, a] and

is set to the respective boundary. Then protection buyers with a < aexit(bi, γi) prefer no
insurance.

iii) If the fee set by the unsafer dealer, γ2, is smaller than γexit
a (b2), then aexit < a and there

is full market coverage.
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In the analysis, I restrict attention to the case in which the market is fully covered.10

B3 Formal Results on the Illustration

Lemma 7. i) For γ2 ∈ [0, γmax] define

γ
a
1 (γ2) such that a∗(γ

a
1 (γ2), γ2) = a (B52)

γa
1 (γ2) such that a∗(γa

1 (γ2), γ2) = a. (B53)

Then γ
a
1 < γa

1 and

γ
a
1 ≤ γmax ⇔ γ2 ≤ γ2 (B54)

with γ2 := argγ{a∗(γmax, γ) = a} = (−θ) −
1

a
log

[

1 − g̃(~b)

exp(−2) − g̃(~b)

]

. (B55)

ii) Analogously, for γ1 ∈ [0, γmax] define

γ
a
2 (γ1) such that a∗(γ1, γ

a
2 (γ1)) = a (B56)

γa
2 (γ1) such that a∗(γ1, γa

2 (γ1)) = a (B57)

Then γ
a
2 > γa

2 and

γ
a
2 ≥ 0 ⇔ γ1 ≥ γ1 (B58)

with γ1 := argγ{a∗(γ, 0) = a} =
1

a
log

[

1 + g̃(~b) (exp(a(−θ)) − 1)
]

. (B59)

iii) As one would expect from the picture γ2 ≤ γ2 iff γ1 ≥ γ1.

iv) Protection seller 1 gets the entire market if

γ2 ≤ 0 ⇔ a(−θ) ≤ log

[

1 − g̃(~b)

exp(−2) − g̃(~b)

]

. (B60)

With g̃(~b) < 1/8 from assumption A1 and A2,

a(−θ) > log

[

1 − 1
8

exp(−2) − 1
8

]

≈ 4.4, (B61)

ensures that the setup is interesting. This is exactly assumption A4.

Proof. ad i). First of all, we show that for a fixed γ2 ∈ [0, γmax] such γ
a
1 (γ2), γa

1 (γ2) indeed
exist. Whenever clear form the context we suppress the dependence on γ2. Note that for
a ∈ [a, a] g(a, γ2, γ2) = 0, while limγ→∞ g(a, γ, γ2) = limγ→∞

1
c1

(exp(aγ)c2 − 1) = ∞ with

10 Later we will introduce γ∗
2 (γmax), that is, dealer 2’s best response to the largest possible fee set by dealer

1. Dealer 2’s reaction function is increasing. Hence γ∗
2 (γmax) is the largest fee possibly set by protection

seller in equilibrium, and if γ∗
2 (γmax) ≤ γexit

a (b2) there is full market coverage anyways. Otherwise, dealer 2’s

reaction function remains unaltered until γexit
a (b2). Above that point, dealer 2 potentially looses market share

“from below” when increasing fees, which may induce him to set fees as best responses. Hence, we expect the
reaction function to change above γexit

a (b2), but it should leave the core of the analysis unchanged.
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c1 := exp(−a(θ + γ2)) and c2 := exp(−aγ2) independent of γ. Hence, from continuity such
γ

a
1 , γa

1 exist and, since ∂1g > 0, they are also unique.

Claim. γ
a
1 < γa

1

Proof of claim. Since ∂ag < 0 we have g̃(~b) = g(a, γa
1 , γ2) = g(a, γ

a
1 , γ2) > g(a, γ

a
1 , γ2). With

∂1g > 0 this implies γ
a
1 < γa

1 .

For the last part of the statement we have

γ
a
1 ≤ γmax (B62)

⇔ g(a, γmax, γ2) ≥ g̃(~b) (B63)

exp(−a(θ + γ2)) exp(−2) − 1

exp(−a(θ + γ2)) − 1
≥ g̃(~b) (B64)

exp(−a(θ + γ2))
(

exp(−2) − g̃(~b)
)

≥ 1 − g̃(~b) (B65)

−a(θ + γ2) ≥ log

[

1 − g̃(~b)

exp(−2) − g̃(~b)

]

(B66)

γ2 ≤ (−θ) −
1

a
log

[

1 − g̃(~b)

exp(−2) − g̃(~b)

]

. (B67)

Note that we use g̃(~b) < exp(−2) here, which is ensured by assumptions A1 and A2.

ad ii). The argument for existence is analogous to before, so is the argument for γ
a
2 > γa

2 except
that now ∂2g < 0. For the last part we have

γ
a
2 ≥ 0 (B68)

⇔ g(a, γ1, 0) ≥ g̃(~b) (B69)

⇔
exp(aγ1) − 1

exp(a(−θ)) − 1
≥ g̃(~b) (B70)

⇔ exp(aγ1) ≥ 1 + g̃(~b) (exp(a(−θ)) − 1) (B71)

⇔ γ1 ≥ γ1 =:
1

a
log

[

1 + g̃(~b) (exp(a(−θ) − 1)
]

. (B72)

ad iii). We have

γ2 ≥ 0 (B73)

⇔ (−θ) −
1

a
log

[

1 − g̃(~b)

exp(−2) − g̃(~b)

]

≥ 0 (B74)

⇔ log

[

1 − g̃(~b)

exp(−2) − g̃(~b)

]

≤ a(−θ). (B75)

At the same time

γ1 ≤ γmax (B76)

⇔ 2 + log
[

1 + g̃(~b) (exp(a(−θ)) − 1)
]

≤ a(−θ) (B77)

⇔ log
[

exp(2)
(

1 + g̃(~b) (exp(a(−θ)) − 1)
)]

≤ a(−θ) (B78)
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⇔ exp(2)
(

1 + g̃(~b) (exp(a(−θ)) − 1)
)

≤ exp(a(−θ)) (B79)

⇔ exp(2)
(

1 − g̃(~b)
)

≤ exp(a(−θ))
(

1 − exp(2)g̃(~b)
)

(B80)

⇔
1 − g̃(~b)

exp(−2) − g̃(~b)
≤ exp(a(−θ)) (B81)

⇔ γ2 ≥ 0. (B82)

ad iv). Since the LHS of (B75) is increasing in g̃(~b) and under Assumption A2 g̃(~b) < 1/8,

a(−θ) > log

[

1 − 1
8

exp(−2) − 1
8

]

≈ 4.4 (B83)

ensures γ2 ≥ 0 for all admissible parameters and hence renders the setup interesting.

B4 Price Equilibria are Smooth Functions of Qualities

Proposition 12 (Price Equilibrium Smooth Function in Qualities). Without loss of
generality let b1 = 0. Let

D1 :=
{

b2

∣
∣γ�

1 (b2) � γmax
}

(B84)

be the set of b2 that lead to price equilibria in the interior. Let

D2 :=
{

b2

∣
∣γ�

1 (b2) = γmax, (d1Π1)�  0
}

(B85)

be the set of b2 that lead to price equilibria in which protection seller 1 chooses the highest
admissible price. The price equilibrium ~γ�(~b) as a function of quality choices ~b is a smooth
function on D1 and D2.

Proof. Let

M := {(b2, ~γ)|b2 ∈ (0, bmax], 0 ≤ γ2 < γ1 ≤ γmax} (B86)

and

L1 := {d2Π2 = 0} ∩ {d1Π1 = 0} ⊂ M (B87)

L2 := {d2Π2 = 0} ∩ {γ1 = γmax} ⊂ M. (B88)

Then we know that price equilibria are a subset of L := L1 ∪ L2, and, that L1 consists of price
equilibria.

Claim 1. L1 is a smooth submanifold of M and ~γ� is smooth on D1.
Proof of claim 1. L1 is the intersection of nullsets of smooth functions

~f :=

(

d2Π2

d1Π1

)

. (B89)

The intersection of two nullsets {~f = 0} is smooth if rank(Df) = 2. If d2
1Π1 6= 0,

det(D~γf) = det

(

d1d2Π2 d2
2Π2

d2
1Π1 d2d1Π1

)

(B90)
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= −(d2
2Π2)(d2

1Π1)

[

1 −
(d1d2Π2)

(d2
2Π2)

(d2d1Π1)

(d2
1Π1)

]

(B91)

= −(d2
2Π2)(d2

1Π1)

[

1 − (d2γ⊗
1 )

︸ ︷︷ ︸

<1/α

(d1γ∗
2)

︸ ︷︷ ︸

<α

]

(B92)

6= 0. (B93)

If d2
1Π1 = 0, then d1d2Π1 6= 0, and thus

det(D~γf) = (d1d2Π2)(d2d1Π1) 6= 0. (B94)

As shown in Proposition 4, for any ~b there is exactly one price equilibrium ~γ�(~b) such that
(~b,~γ�(~b)) ∈ L. This defines a function

~γ� : (0, bmax) → L (B95)

b2 7→ ~γ�(0, b2)) (B96)

with ~γ� : Di → Li for i ∈ {1, 2}. Hence, from the Implicit Function Theorem, ~γ�|D1 is the
smooth parameterization of the submanifold L1.

Claim 2. L2 is a smooth submanifold of M and ~γ� is smooth on D2.
Proof of claim 2. The proof proceeds analogously, but now L2 is the intersection of nullsets of

~g :=

(

d2Π2

γ1 − γmax

)

, (B97)

with

det(D~γg) = det

(

d1d2Π2 1
d2

2Π2 0

)

= d2
2Π2 < 0. (B98)
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C Online Appendix: Standard Model of Vertical Product Dif-

ferentiation Revisited

This section clarifies which assumption in the standard model of vertical product differentiation

need to be relaxed to yield endogenous market discipline. I revisit the standard model (see

e.g. Tirole (1988, section 7.5.1)) and lift the assumptions of full market coverage and quality-

invariant costs. The section then shows a refined principle of product differentiation and in how

far upward pressure on qualities emerges.

C1 Setup

Agents. There are two firms that produce the same good, but of different qualities si, i ∈ 1, 2

taken from some interval [s, s], s ≥ 0. There is a continuum of consumers who each demand one

unit of the good. Consumers differ in their preference for quality captured by a taste parameter

θ. Specifically, a consumer with taste parameter θ derives linear utility U(p, s) = θs − p from a

good of quality s sold at price p. The taste parameter is assumed to be uniformly distributed

over some interval [θ, θ], θ ≥ 0.

Timing. There are three points in time, t ∈ {0, 1, 2}. At date 0, firms simultaneously choose

qualities si. In t = 1, firms simultaneously choose prices pi upon the publicly observed quality

decisions in the previous period. Lastly, consumers decide from whom to buy in t = 2. Figure

11 summarizes the simple timing of events.

t = 0

Firms simultaneously
choose qualities

Quality decisions
publicly observed

t = 1

Firms simultaneously
choose prices

t = 2

Consumers decide
from whom to buy

Figure 11: Timeline

If the firms choose the same level of quality, their products can potentially only differ in the price.

Since consumers prefer a lower price, competition solely in prices drives the profit margins (or

markups) to zero. In order to soften price competition, firms have an incentive to differentiate

their products in quality. Since firms are ex-ante symmetric and do not choose the same qualities

in equilibrium, if (s∗
1, s∗

2) is an equilibrium in qualities, so is (s∗
2, s∗

1). Without loss of generality

we assume that firm 1 is the low-quality firm while firm 2 is the high-quality firm, that is,

suppose ∆s := s2 − s1 > 0.11 I am interested in subgame-perfect Nash equilibria.

11 In the presence of multiple equilibria, a coordination issue emerges and one needs to break the symmetry
between the two firms somehow. Here, the symmetry is broken by assigning the role of quality-leader ex-ante.
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C2 Maximal Differentiation under Full Market Coverage and Constant Costs

We briefly review the driving forces at play under the standard assumptions.12 The standard

model assumes that per-unit costs c are the same for all qualities. Additionally the following

restrictions on parameters are imposed:

θ = θ + 1 (C0)

θ > 2θ (A1)

c +
1

3
(s − s)(θ − 2θ) ≤ θs. (A2)

Since (C0) and (A1) together imply θ ∈ [0, 1), they can be understood as demanding that,

relative to θ, there is sufficient consumer heterogeneity. As will become clear from the prices

derived below, the LHS of (A2) is the highest price the low-quality firm might set in equilibrium.

The RHS is the lowest possible valuation a consumer can have for the low-quality product.

Hence, (A2) ensures that all consumers buy the good (full market coverage).

The standard result states that given quality choices s1 < s2 made in t = 0, the prices

p1(s1, s2) = c +
1

3
∆s(θ − 2θ) and p2(s1, s2) = c +

1

3
∆s(2θ − θ) (C3)

form a Nash equilibrium in t = 1. In t = 0, there are two pure-strategy Nash equilibria in the

choice of qualities and both exhibit maximal product differentiation. Specifically, for s1 < s2,

firm 1 chooses the lowest possible quality s and firm 2 chooses the highest possible quality s.

Reversing the role of the two firms yields the other equilibrium.

The intuition of the result is as follows: In t = 1, when qualities s1 < s2 are already chosen, the

consumer who is indifferent between the two firms is characterized by a taste parameter θ̂ such

that θ̂s1 − p1 = θ̂s2 − p2, hence θ̂ = (p2 − p1)/∆s. Firm 1 receives the consumers with θ below

the threshold θ̂, while firm 2 receives those with θ > θ̂. Firm’s profits Π1 and Π2 take the form

Π1(p1, p2) = (p1 − c)
︸ ︷︷ ︸

profit margin

·

[
(p2 − p1)

∆s
− θ

]

︸ ︷︷ ︸

market share

, Π2(p1, p2) = (p2 − c) ·

[

θ −
(p2 − p1)

∆s

]

. (C4)

In t = 1, each firm chooses a price, taking the price of the other firm as given, in order

to maximize profits. In t = 0, each firm takes into account the Nash equilibrium in prices

in the next period, which gives rise to profits as a function of quality choices, specifically

Π1(s1, s2) = 1
9∆s(θ − 2θ)2 and Π2(s1, s2) = 1

9∆s(2θ − θ)2. As profits are increasing in the

quality differential, firm 1 chooses the lowest possible quality, while firm 2 chooses the highest

possible quality. Note that as a direct consequence the quality-leader enjoys the larger profits

- an important observation for later.

12 as in section 7.5.1 in Tirole (1988)
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The driving forces behind the result of maximal product differentiation are twofold. Firstly,

assumption (A2) ensures that the entire market is always covered. Whatever quality choices

firms make in t = 0 under (A2), they will always be able to optimally respond with their price

choices in such a way that the indifferent consumer is left unchanged.13 This implies that the

quantity effect cancels out and only the margin effect is left. For firm 1, for example, we have

∂Π1(s1)

∂s1
=

∂(p1(s1) − c)

∂s1
︸ ︷︷ ︸

margin effect

[θ̂(s1) − θ]
︸ ︷︷ ︸

>0

+(p1(s1) − c)
∂[θ̂(s1) − θ]

∂s1
︸ ︷︷ ︸

=0, quantity effect

. (C5)

Since prices positively depend on the amount of product differentiation, both firms have an

incentive to implement maximal product differentiation. Crucial for this result is that there

is no upper limit on the price. For both firms it is optimal to increase prices in response to

more product differentiation, keeping the indifferent consumer and as a result the market shares

constant. Especially for the high-quality firm which charges the higher price, this means that

potentially very large (also relative to costs) prices are set without the risk of loosing customers.

Secondly, higher quality is not associated with higher costs.

C3 No Full Market Coverage and Costs Varying with Quality

Let’s consider the following generalized setup. Suppose costs are increasing in quality, that is,

suppose there is a smooth “cost” function c : R+ → R+ with c′ ≥ 0 and c′′ ≥ 0 where the

argument is thought of as quality. A firm incurs higher costs when choosing a higher quality,

and, at a higher level of quality, increasing quality even further is even more costly.

We lift the assumption that the entire market is covered, i.e. we do not assume (C0), (A1) and

(A2) anymore. In the absence of (A2), the symmetry between the two firms vanishes, since firm

1 needs to take into account that at too unfavorable quality and price choices, some consumers

might not buy at all. Specifically, a consumer θ0 is indifferent between not buying at all and

buying from the low-quality firm if p1 = θ0s1. Firm 1 faces only the market segment from θ0

upwards, which alters its optimization problem to

max
p1

{

(p1 − c(s1))

[
(p2 − p1)

∆s
− max

{

θ,
p1

s1

}]}

. (C6)

In order to avoid cumbersome case distinctions that do not seem to carry further intuition, we

ensure that p1/s1 ≥ θ by assuming θ = 0.

Attention is restricted to pairs of qualities (s1, s2) that satisfy the following assumptions.

Assumption C1. c(s1)/s1 < θ/2

13 Formally, this can be seen when we insert equilibrium prices into the formula for the indifferent consumer
and obtain θ̂(s1, s2) = 1

3
(θ + θ), independent of s1, s2.
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Assumption C2. c(s2)/s2 < 2θ

Assumption C3.

∆c

∆s
:=

c(s2) − c(s1)

∆s
∈

(

2
c(s1)

s1
− θ, 2θ −

c(s2)

s2

)

(C7)

Assumption C3 ensures that the markups of both firms are positive. In particular, as will

become clear from the equilibrium prices derived below, firm 1’s markup will be positive if

and only if ∆c/∆s > 2c(s1)/s1 − θ, while firms 2’s markup will be positive if and only if

∆c/∆s < 2θ − c(s2)/s2. Assumption C3 is a condition on the difference in costs relative to

the difference in quality chosen by the two firms. It means that some combinations of (s1, s2)

kick one firm out of the market, which makes it plausible how a firm may exert a “pull effect”

on the quality decisions of the other firm, as shown below. Assumptions C1 and C2 mandate

that the upper and lower boundary of the admissible interval in assumption C3 are positive

and negative, respectively. Since ∆c/∆s is positive, assumption C2 is a necessary condition,

while assumption C1 is only a sufficient condition for positive profit margins of firm 2 and 1

respectively.14 15 Assumptions C1 - C3 can be ensured by a large enough θ, hence sufficient

consumer heterogeneity.

Refined Principle of Product Differentiation

The Nash equilibrium in prices takes the following form.

Proposition 13. Given quality choices (s1, s2) that satisfy assumptions C1 - C3, the following

is a Nash equilibrium in prices in t = 1:

p1(s1, s2) =
s1

3s2 + ∆s

[

c(s2) + 2
s2

s1
c(s1) + θ∆s

]

(C8)

= c(s1) +
s1

3s2 + ∆s

[

∆c + ∆s

(

−2
c(s1)

s1
+ θ

)]

(C9)

p2(s1, s2) =
s2

3s2 + ∆s

[

2c(s2) + c(s1) + 2θ∆s
]

(C10)

= c(s2) +
s2

3s2 + ∆s

[

−∆c + ∆s

(

−
c(s2)

s2
+ 2θ

)]

(C11)

Proof. The idea of the proof is analogous to the proof of the standard result presented above

in the text. The details are presented in online appendix C5.

As before, we are interested in whether the quality-leader has higher profits than the low-quality

14 If c(0) is normalized to zero, the function x 7→ c(x)/x is increasing for positive x, since for x > 0 we have
∂

∂x

(
c(x)

x

)
= 1

x

[

c′(x) − c(x)−c(0)
(x−0)

]

≥ 0 from convexity. But we do not make this assumption here in general as

it would rule out fixed costs.
15 Constant costs imply ∆c/∆s = 0, hence, satisfy assumption C3 under assumptions C1 and C2.
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firm. The following corollary shows that this is the case as long as ∆c/∆s lies closer to the

lower than to the upper boundary of the admissible interval.

Corollary 3. i) Firm 2 enjoys larger profit margins than firm 1, i.e. p1 − c(s1) < p2 − c(s2)

if and only if

s1

[
∆c

∆s
−

(

2
c(s1)

s1
− θ

)]

< s2

[(

2θ −
c(s2)

s2

)

−
∆c

∆s

]

.

ii) Firm 2 enjoys larger market shares than firm 1, i.e. θ̂ − θ0 < θ − θ̂ if and only if

[
∆c

∆s
−

(

2
c(s1)

s1
− θ

)]

<

[(

2θ −
c(s2)

s2

)

−
∆c

∆s

]

. (B4)

iii) If firm 2 has the higher market share, i.e. if (B4) is satisfied, it also has the higher profit

margin and, as a result, higher profits.

Proof. Follows directly from plugging in the respective formulas.

When both firms anticipate the equilibrium in prices for given quality choices, one can express

profits as a function of quality choices:

Π1(s1, s2) = ∆s
s2

s1

[
s1

3s2 + ∆s

(
c(s2) − c(s1)

∆s
−

(

2
c(s1)

s1
− θ

))]2

(C12)

Π2(s1, s2) = ∆s

[
s2

3s2 + ∆s

(

2θ −
c(s2)

s2
−

c(s2) − c(s1)

∆s

)]2

. (C13)

In the original setup, profits were increasing in the quality differential. Here, in (C12) as well

as in (C13), the first factor increases as products become more differentiated, but the effect

on the expressions in brackets is unclear. Hence, an interior Nash equilibrium in qualities may

be possible. Specifying conditions on the functional form of c(·) that ensure existence of an

interior Nash equilibrium does not promise interesting economic results because of lenghty and

tedious expressions, and I do not have a general existence proof. The following result, however,

derives properties of a Nash equilibrium in qualities and shows a refined principle of product

differentiation.

Proposition 14. a) At any point (s1, s2) that satisfies assumption C1 - C3

ii) if marginal costs for extra quality are small for firm 1, firm 1 wants to increase quality.

Specifically,

c′(s1) < 2
c(s1)

s1
− θ ⇒

∂Π1(s1, s2)

∂s1
> 0. (C14)
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iiii) For firm 2, if marginal costs for extra quality are large, decreasing quality increases

profits. Specifically,

2θ −
c(s2)

s2
< c′(s2) ⇒

∂Π2(s1, s2)

∂s2
< 0. (C15)

b) For a sequence of (s1, s2) where each pair of qualities satisfies assumptions C1 - C3 and stays

distinct while converging to some s0, i.e. ∆s going to zero, we have

lim
s1,s2→s0

∂Π1(s1, s2)

∂s1
= −

1

9

(

c′(s0) − 2
c(s0)

s0
+ θ

)2

≤ 0, (C16)

lim
s1,s2→s0

∂Π2(s1, s2)

∂s2
=

1

9

(

2θ −
c(s0)

s0
− c′(s0)

)2

≥ 0. (C17)

Proof. See online appendix C6.

The following observation follows. The threshold c(s1)/s1 − θ in (C14) indeed also depends on

s1. It can be meaningfully interpreted, since by assumption C3, ∆c/∆s needs to lie above this

threshold. Analogously for the threshold in (C15).

Proposition 4 part b) shows that, if qualities are very close together, i.e. when ∆s is small,

firms want to differentiate qualities. In other words, the same effect as in the original model

prevails, but now it is only an “infinitesimal” effect as it holds for small differences in quality.

At the same time, Proposition 4 part a) demonstrates that high or low marginal costs for firm 2

or 1, respectively, can be the driver behind a tendency to move qualities closer together. From

Proposition 4 part aii) the quality-leader wants to provide only as much quality as “necessary”,

while from part ai) the low-quality firm provides “as much quality as feasible” with respect

to the increasing marginal costs of quality. Together the forces from part a) and b) act like

pull and push factors keeping the qualities of the two firms somewhat close together, but never

equal, as illustrated in Figure 12.

��������
�	
��

��������
�	
��

�������
�����

�������
�����

�������������������� 

�������������������� 

��������
�	
��

��������
�	
��

�������
�����

�������
�����

�������������������� 

�������������������� 

Figure 12: Without full market coverage and without quality-invariant costs there are push and
pull factors keeping the quality choices somewhat close, but never equal.
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C4 Upward Pressure on Qualities

Two questions arise naturally. Firstly, since the low-quality firm now experiences competition

from above (the high-quality firm) and below (the option not to buy), does that exert a pull

effect on the quality choice of firm 1? Secondly, when the leadership position in quality is the

more attractive one, can the threat to be overtaken by the other firm induce the quality-leader

to set high qualities whatsoever? The interplay of these forces would produce upward pressure

on qualities.

The following proposition and subsequent discussion clarifies in how far there may be a pull

effect on the quality choice of the low-quality firm.

Proposition 15. At any point (s1, s2) that satisfies assumptions C1 - C3, if

K := θ (s2 − 2s1)
︸ ︷︷ ︸

=:A

+

(

2s2 − ∆s
s1

s2

)

︸ ︷︷ ︸

>0

[
c(s1)

s1
− c′(s1)

]

︸ ︷︷ ︸

=:B

+ ∆s
s1

s2
︸ ︷︷ ︸

>0

[
∆c

∆s
− c′(s1)

]

︸ ︷︷ ︸

=:C

+ 2∆s
︸︷︷︸

>0

(
−c′(s1)

)

︸ ︷︷ ︸

=:D

is non-negative, then ∂Π1/∂s1 > 0 and subsequently the point can not be an equilibrium.

Proof. See online appendix C7.

We discuss the consequences for the special case of constant costs c ∈ R+, quadratic costs and

the general case. For constant costs, K reduces to θ(s2 − 2s1) + (2s2 − (∆s)s1/s2) c/s1. For

s2 ≥ 2s1 this expression is positive, subsequently the point can not be an equilibrium. This

admits the following interpretation: In order for an equilibrium to exist, the low-quality firm

needs to choose s1 sufficiently close to the quality of firm 2, i.e. larger than 0.5 s2 (pull effect).16

For quadratic costs, which play a prominent role in the literature on the subject, say c(s) = τs2,

K reduces to K = θ(s2−2s1)−τs1 (5s2 − 3s1)
︸ ︷︷ ︸

>0

. So K ≥ 0 requires (s2−2s1) > 0 and is fulfilled if

0 ≤ τ < θ(s2 −2s1)/(5s2 −3s1). This again has an intuitive interpretation when we think of the

costs c(s) = τs2 as a quadratic “error term” to zero costs with “intensity” τ . A non-negative K

requires that the condition s2 ≥ 2s1, which precludes an equilibrium for zero costs, still suffices

to preclude existence for quadratic costs provided the “intensity” τ of the “error term” is below

some threshold.

For the general case, K consists of “drivers” A, B, C and D, as defined above, with positive

weights. For a fixed s2, each driver is monotone in s1 and the level of s1 determines whether

the corresponding driver increases or decreases K, i.e. whether it exerts upward pressure or

16 In the case of constant costs, one can easily show that firm 2 chooses the maximal quality. This is intuitive,
as higher quality is not associated with higher costs in this case. The simplification of constant costs helps
show the key idea of a “pull” effect exerted on the low-quality firm most clearly, but it also eliminates the
force that previously counteracted the quality-leader’s incentive to choose the extreme quality.
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not. Specifically, A is positive iff s1 < 1/2 s2, B is positive iff s1 is smaller than s0 with s0 such

that c′(s0) = c(s0)/s0, C is positive for s1 6= s2 and D is always negative.

That the quality-leader exerts a “pull effect” on the low-quality firm upwards rather than the

other way around is intuitive also from a different point of view. Already in the original

model the quality-leader enjoys greater profits. Albeit the fact that the low-quality firm will

subsequently choose the lowest quality there, this indicates that there is room for a race for

the “pole position in quality”, as also noted in Tirole (1988, p. 297). Corollary 3 shows that

this result persists in the generalized setup under the condition that the relation ∆c/∆s may

not be too large. Specifically, if ∆c/∆s lies closer to the lower than to the upper boundary of

the admissible interval, the lead position in quality is the more attractive one and the quality-

leader will try to keep this “pole position”. It seems plausible that the quality-leader is aware

of the risk of being overtaken by the other firm at too low quality choices. Then the risk of

being overtaken may exert upward pressure on the quality choices when moving qualities closer

together. This is shown formally in the sequel.

To capture this, suppose we break the symmetry between the two firms not, as done so far,

by assigning the roles of quality-leader and quality-follower ex-ante, but instead by making the

quality choice sequential. We call the new setup sequential game without assigned roles and

assume firm 2 has a first mover advantage in the choice of quality. Specifically, we introduce an

additional time period t = (−1) in which firm 2 chooses its quality, while firm 1, upon observing

firm 2’s decision, continues to choose its quality in t = 0. The rest remains as before.

In t = 0, firm 1 can either “adapt” by actually becoming the quality-follower or overtake firm

2’s leadership position by choosing a higher quality. We ensure assumptions C1 - C3 and (B4)

for all quality pairs by assuming that for all s in [s, s]

c(s)

s
<

θ

2
(B1’)

c′(s) ∈

(

2 sup
t

c(t)

t
− θ, 2θ − inf

t

c(t)

t

)

(B3’)

θ − 2 inf
t

c(t)

t
+ c′(s) < 2θ − sup

t

c(t)

t
− c′(s). (B4’)

(B1’) - (B4’) relate marginal costs of a further quality improvement to θ, the marginal willingness

to pay of the most quality-sensitive consumer for a quality improvement. Note that with

c(s2) − c(s1) =
∫ s2

s1
c′(t)dt, (B3’) yields assumption C3 for all s ∈ [s, s], while (B4’) ensures

condition (B4) for all qualities. Conditions (B1’), (B3’) and (B4’) can be ensured if θ is large

enough.17

17 In the same spirit as in the original model, this can be interpreted as a condition on sufficient consumer
heterogeneity, and thereby neatly connects to the set of assumptions made in the original model. There,
(C0) and (A1) demand sufficient consumer heterogeneity while (A2) demands full market coverage; here, only
sufficient consumer heterogeneity is needed.
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Hence, the quality-leader always enjoys larger profits, which enables us to derive the following

proposition.

Proposition 16. A necessary condition for some (s1, s2) to be a subgame-perfect Nash equilib-

rium in the sequential game without assigned roles, is that

s2 >
4

5
s. (C18)

Proof. As before, the main idea is presented below in the text, while some calculations are

relegated to online appendix C8.

The intuition of the result is as follows: Suppose s1 < s2 is a Nash equilibrium in the sequential

game without assigned roles. In that case one must not be able to find a profitable deviation for

the quality-follower, that is, no s3 with s2 < s3 ≤ s such that the profit when taking the lead

position in quality, exceeds the profit when choosing the optimal quality as quality-follower,

that is no s3 Π2(s2, s3) > Π1(s1, s2). As shown in the appendix, s3 = (s2
2 + s1s2 − s2

1)/s2 is such

an profitable deviation, which is infeasible if (4/5)s < s2.

Proposition 16 shows that in the sequential game without assigned roles, a necessary condition

for a Nash equilibrium to exist is that the quality-leader chooses a quality at least as high as

80% of the maximal quality, as illustrated in Figure 13. In other words, the threat of being

overtaken and loosing the leadership position in quality induces the first mover to pick a high

quality even in an environment where costs are increasing and convex in the level of quality.
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Figure 13: The first mover wants to keep the leadership position in quality, exerting upward
pressure on the qualities.

The interplay between a pull effect on the quality choice of the low-quality firm and pressure

on the high-quality firm not to leave too much room quality-wise above, gives rise to upward

pressure on the quality choices.

C5 Proof of Proposition 13

The full maximization problem reads

max
p1

Π1(p1, p2) = max
p1

{

(p1 − c(s1))

[
(p2 − p1)

∆s
−

p1

s1

]}

(C19)
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max
p2

Π2(p1, p2) = max
p2

{

(p2 − c(s2))

[

θ −
(p2 − p1)

∆s

]}

, (C20)

with the additional conditions

(p1 − c(s1)) ≥ 0 positive profit margin of firm 1 (Bi)

(p2 − c(s2)) ≥ 0 positive profit margin of firm 2 (Bii)

p2 − p1

∆s
≥

p1

s1
positive market share of firm 1 (Biii)

θ ≥
p2 − p1

∆s
positive market share of firm 2 (Biv)

p1

s1
≥ θ firm 1’s market share takes the form

(p2 − p1)

∆s
−

p1

s1
(Bv)

p2 − p1

∆s
≥

p2

s2
firm 2’s market share takes the form θ −

(p2 − p1)

∆s
. (Bvi)

I first solve the unconstrained maximization problem and then verify that the (unique) solution
satisfies (Bi) - (Bvi). Solving the reaction functions

p1 = R1(p2) :=
1

2

[

p2
s1

s2
+ c(s1)

]

(C21)

p2 = R2(p1) :=
1

2

[

p1 + c(s2) + θ∆s
]

(C22)

yields the formula for the prices.

It remains to check whether conditions (Bi) - (Bvi) hold. (Bi) and (Bii) are ensured by (C3) as
argued in the text. Since plugging in the respective formulas directly yields

θ̂ − θ0 =
s2

(3s2 + ∆s)

[
∆c

∆s
−

(

2
c(s1)

s1
− θ

)]

(C23)

θ − θ̂ =
s2

(3s2 + ∆s)

[(

2θ −
c(s2)

s2

)

−
∆c

∆s

]

, (C24)

(C3) ensures (Biii) and (Biv). (Bv) follows directly from the assumption θ = 0, since prices are
positive. It remains to show (Bvi), which is a little more cumbersome. As a first step note that
(Bvi) follows if we know that

p2

p1
≥

s2

s1
, (C25)

since then

p2s1 ≥ p1s2 (C26)

⇔ p2s1 − p2s2 + p2s2 ≥ p1s2 (C27)

⇔ −p2∆s + s2∆p ≥ 0 (C28)

⇔
∆p

∆s
≥

p2

s2
. (C29)

It remains to show that (C25) holds. To that end we have

p2

p1
≥

s2

s1
(C30)

X



⇔

s2
3s2+∆s

[

2c(s2) + c(s1) + 2θ∆s
]

s1
3s2+∆s

[

c(s2) + 2 s2
s1

c(s1) + θ∆s
] ≥

s2

s1
(C31)

⇔
2c(s2) + c(s1) + 2θ∆s

c(s2) + 2 s2
s1

c(s1) + θ∆s
≥ 1 (C32)

⇔ c(s2) + c(s1)

(

1 − 2
s2

s1

)

︸ ︷︷ ︸

=−
(s2+∆s)

s1

+θ∆s ≥ 0 (C33)

⇔ c(s2) −
s2

s1
c(s1) +

c(s1)

s1
(−∆s + 2∆s) + ∆s

[

θ − 2
c(s1)

s1

]

≥ 0 (C34)

⇔
∆c

∆s
≥ 2

c(s1)

s1
− θ, (C35)

which is ensured by (C3).

�

C6 Proof of Proposition 14

Part a) follows immediately, if we know the following expressions for the derivatives of the
profits. With α and β the expressions inside the squared brackets in (C12) and (C13), namely

α(s1, s2) :=
s1

3s2 + ∆s

(
∆c

∆s
−

(

2
c(s1)

s1
− θ

))

(C36)

β(s1, s2) :=
s2

3s2 + ∆s

(

2θ −
c(s2)

s2
−

∆c

∆s

)

. (C37)

we claim that

∂Π1(s1, s2)

∂s1
= −

s2
2

s2
1

α2 + 2α
s2

s1
∆s

∂α(s1, s2)

∂s1
(C38)

=
s2

s1

α

(3s2 + ∆s)2

︸ ︷︷ ︸

>0

[

(2∆s(3s2 + ∆s) + 3s1s2)

(
∆c

∆s
− c′(s1)

)

︸ ︷︷ ︸

≥0 from convexity

(C39)

+s2(3s2 + ∆s)

(

2
c(s1)

s1
− θ − c′(s1)

)

+ 4s2∆s

(

2θ −
c(s2)

s2
− c′(s1)

)

︸ ︷︷ ︸

>0 from (C3)

]

,

∂Π2(s1, s2)

∂s2
= β2 + 2β∆s

∂β(s1, s2)

∂s2
(C40)

=
β

(3s2 + ∆s)2

︸ ︷︷ ︸

>0

[

(3s2 + ∆s)(s2 + 2∆s)

(
∆c

∆s
− c′(s2)

)

︸ ︷︷ ︸

≤0 from convexity

(C41)

+4s1∆s

(

2
c(s1)

s1
− θ −

∆c

∆s

)

︸ ︷︷ ︸

<0 from (C3)

+(3s2 + ∆s)s2

(

2θ −
c(s2)

s2
− c′(s2)

)]

.

To show this, note that for firm 1 the derivative can be written as follows

∂Π1(s1, s2)

∂s1
= −

s2
2

s2
1

α2 + 2α
s2

s1
∆s

∂α(s1, s2)

∂s1
(C42)
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Def α
=

s2

s1

α

(3s2 + ∆s)2

[

−
s2

s1
(3s2 + ∆s)s1

(
∆c

∆s
−

(

2
c(s1)

s1
− θ

))

+2∆s
∂α(s1, s2)

∂s1
(3s2 + ∆s)2

]

. (C43)

For the derivative of α(s1, s2) w.r.t. s1 it proves helpful to use two versions of the formula for
α when applying the product rule, namely

α(s1, s2) :=
1

3s2 + ∆s

(

s1
∆c

∆s
−
(

2c(s1) − s1θ
))

(C44)

=
1

3s2 + ∆s

(
s1

∆s
c(s2) −

s2 + ∆s

∆s
c(s1) + s1θ

)

. (C45)

Then

∂α(s1, s2)

∂s1
(3s2 + ∆s)2 =

[

θ +
s2

(∆s)2
c(s2) −

s2

(∆s)2
c(s1) −

s2 + ∆s

∆s
c′(s1)

]

(3s2 + ∆s)

+s1θ − 2c(s1) + s1
∆c

∆s

= 4θs2 − 2c(s1) +
(s2 + ∆s)(3s2 + ∆s)

∆s

[
∆c

∆s
− c′(s1)

]

−(3s2 + ∆s)
∆c

∆s
+ s1

∆c

∆s

=
(s2 + ∆s)(3s2 + ∆s)

∆s

[
∆c

∆s
− c′(s1)

]

+ [−(3s2 + ∆s) + s1 + 2∆s]
︸ ︷︷ ︸

=−2s2

∆c

∆s
+ 2s2

(

2θ −
c(s2)

s2

)

=
(s2 + ∆s)(3s2 + ∆s)

∆s

[
∆c

∆s
− c′(s1)

]

+ 2s2

[

2θ −
c(s2)

s2
−

∆c

∆s

]

.

Hence together with (C43)

∂Π1(s1, s2)

∂s1
=

s2

s1

α

(3s2 + ∆s)2

[

s2(3s2 + ∆s)

(

2
c(s1)

s1
− θ −

∆c

∆s

)

(C46)

+2(s2 + ∆s)(3s2 + ∆s)

(
∆c

∆s
− c′(s1)

)

+(2∆s)2s2

(

2θ −
c(s2)

s2
−

∆c

∆s

)]

=
s2

s1

α

(3s2 + ∆s)2

[

s2∆s

(

2
c(s1)

s1
− θ

)

+ s2∆s

(

2θ −
c(s2)

s2

)

(C47)

−s2(3s2 + ∆s)
∆c

∆s
+ 2s2

[

3s2

(

2
c(s1)

s1
− θ

)

+ 3∆s

(

2θ −
c(s2)

s2

)]

−4s2∆s
∆c

∆s
− 2(s2 + ∆s)(3s2 + ∆s)c′(s1)

+2s2(3s2 + ∆s)
∆c

∆s
+ 2∆s(3s2 + ∆s)

∆c

∆s

]

=
s2

s1

α

(3s2 + ∆s)2

[

2∆s(3s2 + ∆s)

(
∆c

∆s
− c′(s1)

)

(C48)

−2s2(3s2 + ∆s)c′(s1) + s2(3s2 + ∆s)

(

2
c(s1)

s1
− θ

)
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+s2 (3∆s + ∆s)

(

2θ −
c(s2)

s2

)

− 4s2∆s
∆c

∆s
+ s2(3s2 + ∆s)

∆c

∆s

]

=
s2

s1

α

(3s2 + ∆s)2

[

2∆s(3s2 + ∆s)

(
∆c

∆s
− c′(s1)

)

(C49)

+s2(3s2 + ∆s)

(

2
c(s1)

s1
− θ − c′(s1)

)

+s2(3s2 + ∆s)

(

2θ −
c(s2)

s2
− c′(s1)

)

+ (4s2∆s − s2(3s2 + ∆s)
︸ ︷︷ ︸

=−3s1s2

(

2θ −
c(s2)

s2
−

∆c

∆s

)]

=
s2

s1

α

(3s2 + ∆s)2

[

2∆s(3s2 + ∆s)

(
∆c

∆s
− c′(s1)

)

(C50)

+s2(3s2 + ∆s)

(

2
c(s1)

s1
− θ − c′(s1)

)

+s2(3s2 + ∆s)

(

2θ −
c(s2)

s2
− c′(s1)

)

−3s1s2

(

2θ −
c(s2)

s2
− c′(s1)

)

+ 3s1s2

(
∆c

∆s
− c′(s1)

)]

=
s2

s1

α

(3s2 + ∆s)2

[

(2∆s(3s2 + ∆s) + 3s1s2)

(
∆c

∆s
− c′(s1)

)

(C51)

+s2(3s2 + ∆s)

(

2
c(s1)

s1
− θ − c′(s1)

)

+
(

3s2
2 + s2∆s − 3s1s2

)

︸ ︷︷ ︸

=4s2∆s

(

2θ −
c(s2)

s2
− c′(s1)

)]

.

For firm 2 the proof follows analogous steps but now

∂Π2(s1, s2)

∂s2
= β2 + 2β∆s

∂β(s1, s2)

∂s2
(C52)

Def β
=

β

(3s2 + ∆s)2

[

(3s2 + ∆s)s2

(

2θ −
c(s2)

s2
−

∆c

∆s

)

+2∆s
∂β(s1, s2)

∂s2
(3s2 + ∆s)2

]

,

the two versions of β read

β(s1, s2) :=
1

3s2 + ∆s

(

2s2θ − c(s2) − s2
c(s2) − c(s1)

∆s

)

(C53)

=
1

3s2 + ∆s

(

2s2θ +
s2

∆s
c(s1) −

s2 + ∆s

∆s
c(s2)

)

, (C54)

for the derivative of β w.r.t. s2 we have

∂β(s1, s2)

∂s2
(3s2 + ∆s)2 =

[

2θ −
s1

(∆s)2
c(s1) +

s1

(∆s)2
c(s2) −

s2 + ∆s

∆s
c′(s2)

]

(3s2 + ∆s)

−4

(

2θs2 − c(s2) − s2
∆c

∆s

)
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= −
(s2 + ∆s)(3s2 + ∆s)

∆s
c′(s2) +

s1(3s2 + ∆s) + 4s2∆s

∆s
︸ ︷︷ ︸

=
(s2+∆s)(3s2−∆s)

∆s

(
∆c

∆s

)

−2θs1 + 4c(s2)

=
(s2 + ∆s)(3s2 + ∆s)

∆s

(
∆c

∆s
− c′(s2)

)

− 2
(s2 + ∆s)∆s

∆s

(
∆c

∆s

)

−2θs1 + 4c(s2)

=
(s2 + ∆s)(3s2 + ∆s)

∆s

(
∆c

∆s
− c′(s2)

)

−2s1

(

θ +
∆c

∆s

)

+2(2s1)
∆c

∆s
− 4s2

∆c

∆s
+ 4c(s2)

︸ ︷︷ ︸

=−4∆c+4c(s2)=4c(s1)

=
(s2 + ∆s)(3s2 + ∆s)

∆s

(
∆c

∆s
− c′(s2)

)

+ 2s1

(

2
c(s1)

s1
− θ −

∆c

∆s

)

and together with (C53) this yields

∂Π2(s1, s2)

∂s2
=

β

(3s2 + ∆s)2

[

(3s2 + ∆s)s2

(

2θ −
c(s2)

s2
−

∆c

∆s

)

(C55)

−2(s2 + ∆s)(3s2 + ∆s)

(

c′(s2) −
∆c

∆s

)

+ (2∆s)2s1

(

2
c(s1)

s1
− θ −

∆c

∆s

)]

=
β

(3s2 + ∆s)2

[

(3s2 + ∆s)s2

(

2θ −
c(s2)

s2
− c′(s2)

)

(C56)

−s2(3s2 + ∆s)
∆c

∆s
+ s2(3s2 + ∆s)c′(s2)

+(2s2 + 2∆s)(3s2 + ∆s)

(
∆c

∆s
− c′(s2)

)

+ 4s1∆s

(

2
c(s1)

s1
− θ −

∆c

∆s

)]

=
β

(3s2 + ∆s)2

[

(3s2 + ∆s)s2

(

2θ −
c(s2)

s2
− c′(s2)

)

(C57)

+(3s2 + ∆s)(s2 + 2∆s)

(
∆c

∆s
− c′(s2)

)

+ 4s1∆s

(

2
c(s1)

s1
− θ −

∆c

∆s

)]

.

For the limits in part b) note that for firm 2, if the limit exists, (C38) implies

lim
s1,s2→s0

∂Π1(s1, s2)

∂s1
= − lim

s1,s2→s0
α(s1, s2)2 + lim

s1,s2→s0
2α∆s

∂α(s1, s2)

∂s1
, (C58)

with

lim
s1,s2→s0

α(s1, s2) =
1

3

(

c′(s0) − 2
c(s0)

s0
+ θ

)

=: K1

lim
s1,s2→s0

∂α(s1, s2)

∂s1
= lim

s1,s2→s0

[
(s2 + ∆s)(3s2 + ∆s)

∆s

(
∆c

∆s
− c′(s1)

)

︸ ︷︷ ︸

→3s2
2·0

+2s2

(

2θ −
c(s2)

s2
−

∆c

∆s

)

︸ ︷︷ ︸

→2θ−
c(s0)

s0
−c′(s0)

]

= 2s0

(

2θ −
c(s0)

s0
− c′(s0)

)

=: K2.

Plugged into (C58) this yields

lim
s1,s2→s0

∂Π1(s1, s2)

∂s1
= −K2

1 + 2K1K2 lim
s1,s2→s0

∆s = −K2
1 . (C59)
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Analogously for firm 2 we know from (C40) that, if the limit exists,

lim
s1,s2→s0

∂Π2(s1, s2)

∂s2
= lim

s1,s2→s0
β(s1, s2)2 + lim

s1,s2→s0
2β∆s

∂β(s1, s2)

∂s2
, (C60)

with

lim
s1,s2→s0

β(s1, s2) =
1

3

(

2θ −
c(s0)

s0
− c′(s0)

)

=: K3,

lim
s1,s2→s0

∂β(s1, s2)

∂s2
= lim

s1,s2→s0

[
(s2 + ∆s)(3s2 + ∆s)

∆s

(
∆c

∆s
− c′(s2)

)

︸ ︷︷ ︸

→3s2
2·0

+2s1

(

2
c(s1)

s1
− θ −

∆c

∆s

)

︸ ︷︷ ︸

→2
c(s0)

s0
−θ−c′(s0)

]

= 2s0

(

2
c(s0)

s0
− θ − c′(s0)

)

=: K4.

Plugged into (C60) this yields

lim
s1,s2→s0

∂Π2(s1, s2)

∂s2
= K2

3 + 2K3K4 lim
s1,s2→s0

∆s = K2
3 , (C61)

which concludes the proof.

�

C7 Proof of Proposition 15

The proposition is a direct consequence of the following claim.

Claim. ∂Π1/∂s1 can be bounded from below as follows

∂Π1(s1, s2)

∂s1
≥

s2

s1

α

(3s2 + ∆s)2

︸ ︷︷ ︸

>0

[

(3s2 + ∆s)
︸ ︷︷ ︸

>0

K + s1∆s

(

2θ −
c(s2)

s2
−

∆c

∆s

)

︸ ︷︷ ︸

>0

]

(C62)

with K as defined in the proposition.

Proof of claim. For the lower bound of ∂Π1/∂s1, we start with (C49) to obtain

∂Π1(s1, s2)

∂s1

(C49)
=

s2

s1

α

(3s2 + ∆s)2

[

2∆s(3s2 + ∆s)

(
∆c

∆s
− c′(s1)

)

+s2(3s2 + ∆s)

(

2
c(s1)

s1
− θ − c′(s1)

)

+s2(3s2 + ∆s)

(

2θ −
c(s2)

s2
− c′(s1)

)

− 3s1s2

(

2θ −
c(s2)

s2
−

∆c

∆s

)]

=
s2

s1

α

(3s2 + ∆s)2

[

2∆s(3s2 + ∆s)

(
∆c

∆s
− c′(s1)

)

(C63)

+s2(3s2 + ∆s)

(

2
c(s1)

s1
− θ − c′(s1)

)

+s2(3s2 + ∆s)

(

2θ −
c(s2)

s2
− c′(s1)

)

−(3s2 + ∆s)

(

2θ −
c(s2)

s2
−

∆c

∆s

)

+ s1∆s

(

2θ −
c(s2)

s2
−

∆c

∆s

)]
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=
s2

s1

α

(3s2 + ∆s)2

[

(3s2 + ∆s)K + s1∆s

(

2θ −
c(s2)

s2
−

∆c

∆s

)]

(C64)

with

K = θ(s2 − 2s1) + c(s2)

(
s1

s2
− 1

)

+ 2
s2

s1
c(s1) − 2(s2 + ∆s)c′(s1) + ∆c

(

2 +
s1

∆s

)

(C65)

= θ(s2 − 2s1) − 2(s2 + ∆s)c′(s1) (C66)

+
1

s2∆s

[

c(s2)
(

s2
2 − s2

1 + s1s2

)

+ c(s1)

(

2
s3

2

s1
− 4s2

2 + s1s2

)]

= θ(s2 − 2s1) − 2(s2 + ∆s)c′(s1) (C67)

+
1

s2∆s

[

s2
2

(

c(s2) + 2c(s1)

(
s2

s1
− 2

))

︸ ︷︷ ︸

≥c(s1)

[

1+2
s2
s1

−4

]

=c(s1)

[
2∆s−s1

s1

]

+c(s2)s1∆s + c(s1)s1s2

]

≥ θ(s2 − 2s1) − 2(s2 + ∆s)c′(s1) (C68)

+
1

s2∆s

[

c(s1)
s2

2

s1
(2∆s) + c(s2)s1∆s + c(s1)(−s2∆s)

]

= θ(s2 − 2s1) + 2s2

(
c(s1)

s1
− c′(s1)

)

− 2c′(s1)∆s +
1

s2
(c(s2)s1 − c(s1)s2)
︸ ︷︷ ︸

=c(s2)s1−c(s1)s1+c(s1)s1−c(s1)s2

(C69)

= θ(s2 − 2s1) + 2s2

(
c(s1)

s1
− c′(s1)

)

− 2c′(s1)∆s +
s1∆s

s2

(
∆c

∆s
−

c(s1)

s1

)

(C70)

= θ(s2 − 2s1) +

(

2s2 − ∆s
s1

s2

)[
c(s1)

s1
− c′(s1)

]

+ ∆s
s1

s2

[
∆c

∆s
− c′(s1)

]

+ 2∆s
(
−c′(s1)

)
.
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C8 Proof of Proposition 16

It remains to derive the profitable deviation s3 = (s2
2 + s1s2 − s2

1)/s2. To that end, let s3 be
some quality choice with s2 < s3 ≤ s. Then with ∆ijs := (sj − si) and ∆ijc := c(sj) − c(si) the
following inequalities are equivalent

Π2(s2, s3) > Π1(s1, s2) (C71)

⇔ ∆23sβ(s2, s3)2 > ∆12s
s2

s1
α(s1, s2)2

⇔ ∆23s

[
s3

3s3 + ∆23s

(

2θ −
c(s3)

s3
−

∆23c

∆23s

)]2

> ∆12s
s2

s1

[
s1

3s2 + ∆12s

(
∆12c

∆12s
− 2

c(s1)

s1
+ θ

)]2

⇔

(
∆23s

∆12s

)(
s1

s2

)(

s2
3

s2
1

)

(3s2 + ∆12s)2

(3s3 + ∆23s)2
>





c(s2)−c(s1)
∆12s − 2 c(s1)

s1
+ θ

2θ − c(s3)
s3

− c(s3)−c(s2)
∆23s





2

(C72)

with α and β for si < sj as defined in (C36) and (C37) at the beginning of Appendix C6.
Suppose we can choose s3 in the admissible interval such that

(s3 − s2)

(s2 − s1)
=

s1

s2
(C73)

⇔ s3 =
s2

2 + s1s2 − s2
1

s2
. (C74)
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With s1/s2 ≤ s3/s2 and this particular choice of s3 we have

(s3 − s2) ≤
s3

s2
(s2 − s1), (C75)

which implies

3s2 + (s2 − s1)

3s3 + (s3 − s2)
≥

s2

s3
. (C76)

Hence, for this specific choice of s3, the LHS of (C72) reads

(
s1

s2

)(
s1

s2

)(

s2
3

s2
1

)

(3s2 + ∆12s)2

(3s3 + ∆23s)2
≥

(

s2
3

s2
2

)(

s2
2

s2
3

)

= 1, (C77)

while we know that the RHS of (C72) is smaller than 1 if and only if

2θ −
c(s3)

s3
−

c(s3) − c(s2)

(s3 − s2)
>

c(s2) − c(s1)

(s2 − s1)
− 2

c(s1)

s1
+ θ. (C78)

But (C78) holds, since from (B4’) we know

2θ −
c(s3)

s3
− c′(s3) > c′(s3) − 2

c(s1)

s1
+ θ

⇔ 2θ −
c(s3)

s3
−

∆23c

(s3 − s2)
+ 2

c(s1)

s1
− θ −

∆12c

(s2 − s1)
> c′(s3) −

∆23c

(s3 − s2)
︸ ︷︷ ︸

>0

+ c′(s3) −
∆12c

(s2 − s1)
︸ ︷︷ ︸

>0

.

Hence, (C72) holds and this particular choice of s3 is in fact a profitable deviation. When is this
choice of s3 infeasible? Suppose s2 < s. For s3 = s2 the LSH of (C73) is zero. As s3 increases,
the expression on the LHS increases. Hence, either (C73) holds for some s3 - in which case we
have found a profitable deviation - or (s − s2) < s1/s2(s2 − s1). This deviation is infeasible if

(s − s2) <
s1

s2
(s2 − s1) =

s1

s2

(

1 −
s1

s2

)

s2, (C79)

which, since the RHS is smaller equal than s2/4, holds if

4

5
s < s2. (C80)
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