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Abstract

We analyze a social learning model where the agents’ utility depends on a common
component and an idiosyncratic component. Each agent splits a learning budget between
the two components. We show that information about the common component is fully
aggregated if and only if agents do not have to sacrifice learning about their idiosyncratic
component in order to learn marginally about the common component. If agents vary in
how much they value their idiosyncratic component, then the order of agents can strictly
impact how much information is aggregated.

JEL classification: D82, D83
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1 Introduction

Individuals often learn from the actions of other individuals in a society about some common

unknown state of the world. Classic examples of this social learning are how much to invest

in financial assets or the choice of insurance coverage (Banerjee, 1992; Bikchandani et al.,

1992). Yet the preferences of individuals are typically not perfectly homogeneous. In the

above examples, individuals might have some idiosyncratic taste or match realization of which

they are not perfectly informed. For example, the optimal choice of health insurance coverage

∗This is a revision of the paper “Learning what unites or divides us: information acquisition in social
learning.” We are grateful to S. Nageeb Ali, Stephan Lauermann, Ignacio Monzón, Mallesh Pai, seminar
audiences at Aalto University, University of Bonn, Mannheim University, Stanford GSB, and Texas A&M,
four anonymous referees and the editor Xavier Vives for helpful comments and suggestions. Financial support
by the German Research Foundation (DFG) through CRC TR 224 (project B04) is gratefully acknowledged.

†Rice University, nina.bobkova@rice.edu.
‡University of Bonn, hmass@uni-bonn.de.

1



might depend on a policyholder’s predisposition to some illnesses that could require further

testing; the optimal investment might depend on the composition of the portfolio that the

investor already owns.

We introduce idiosyncratic uncertainty into a tractable and continuous model of information

acquisition in social learning from Burguet and Vives (2000). In our setup, individuals face a

common and idiosyncratic uncertainty, and split their attention between the two dimensions

of this uncertainty. Will individuals successfully aggregate their private information so that in

the long run society learns the common state of the world, or will the heterogeneity among

agents bring the learning process to a halt? That is, will learning be complete? We show that

even if all individuals have a fixed learning budget for free, learning is incomplete under fairly

general conditions.

In our model, an infinite ordered sequence of agents faces a prediction problem: guessing

a weighted sum of a common component and their idiosyncratic component. The common

component is a Gaussian random variable and identical for every agent. Each agent’s

idiosyncratic component is an independently and identically distributed Gaussian random

variable. Neither the common component nor any idiosyncratic one is known. First, an agent

observes the predictions of all previous agents. Then, she obtains two additional private signals

- one about the common component and another about her idiosyncratic component. The

agent chooses the precision of each signal. The agent is endowed with some fixed learning

budget and faces a trade-off: if she increases the precision of the common component signal,

then she decreases the precision of the idiosyncratic component signal, and vice versa.

The information contained in the prediction about the idiosyncratic component leads to

an inference problem: it impedes future agents’ learning from previous actions. Another

impediment for learning is that agents do not internalize the benefit of their learning about

the common component for all future agents, leading to a free-rider problem.

Our main result is that learning is complete if and only if the learning technology satisfies

a particular condition on the marginal rate of transformation. Specifically, the condition states

that starting from an uninformative signal about the common component, learning marginally

more about it does not decrease the precision of the idiosyncratic signal. If the condition is

not satisfied, then agents eventually invest their entire learning budget into the idiosyncratic

component. This is because the more information society has aggregated about the common

component, the lower the marginal benefit of learning further about it. Eventually, this

marginal benefit approaches zero, while the marginal cost from decreasing the idiosyncratic

component precision remains constant (and strictly positive). Thus, there exists an upper

bound on the public precision of the common component, and learning is incomplete. On the
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other hand, if the condition is fulfilled, then — in a sufficiently small neighborhood around

zero — the marginal gain from learning about the common component outweighs the marginal

loss from learning less about the idiosyncratic component. In that case, agents spend at least

part of their learning budget on the common component irrespective of how much information

about the common component has been already aggregated.

This reasoning relates to a result in Burguet and Vives (2000). They study a framework

in which a continuum of agents faces the same one-dimensional uncertain state of the world

in each period. Agents choose how much costly information to acquire in order to increase

the precision of their signal. Burguet and Vives (2000) show that learning is complete if and

only if the marginal cost of information at zero is zero. If this condition is fulfilled, learning

continues ad infinitum and is bounded away from zero for a finite precision, a result similar to

ours.

Ali (2018) studies information aggregation for more general action and signal spaces.

Learning is complete in a responsive1 decision problem, if arbitrarily cheap signals are available.

Due to the structure of the sets of signals, arbitrarily uninformative signals do not exist. Thus,

if learning goes on forever, then it is complete. In contrast, in both Burguet and Vives

(2000) and our paper, an infinite sequence of agents acquiring information about the common

component is not sufficient for complete learning.

A condition similar to the one in Ali (2018) is also relevant in Mueller-Frank and Pai

(2016). In their model, agents face a common uncertainty about the payoff of finitely many

actions. Agents can sequentially discover the utility of each action for a fixed cost. Complete

learning occurs if and only if the distribution of search costs includes zero in its support.

We provide a broader perspective for why learning might be incomplete: we believe that

it is reasonable to assume that there is more than one uncertain variable in an economy

about which agents can learn.2 In our setup, there are no fixed monetary costs associated

with learning, in contrast to the setups in Burguet and Vives (2000), Mueller-Frank and Pai

(2016), and Ali (2018). Instead, agents evaluate the nonmonetary opportunity costs of giving

up learning about other components. These marginal nonmonetary opportunity costs are

endogenously determined by how much has already been learned from previous agents. Each

agent solves an information choice problem: how much information to acquire about which

1In a responsive decision problem, every change in the belief of an agent about the state changes her action,
as is the case in Burguet and Vives (2000) and in our model.

2Known idiosyncratic types and no information acquisition have been considered, e.g., in Smith and
Sørensen (2000) and Goeree et al. (2006). In Hendricks et al. (2012), agents decide whether to learn the sum of
their idiosyncratic and common components perfectly or not at all. For information choice in other economic
settings, see Deimen and Szalay (2019), Liang and Mu (2020), and Bobkova (2022).
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component. Therefore, the necessary and sufficient conditions for complete learning in our

model do not refer to a fixed marginal cost but rather to the marginal rate of transformation

between two sources of information.

2 Model

There is an infinite ordered sequence of agents, indexed by i = 1, 2, . . . . Each agent i chooses

an irreversible action ai ∈ R. The payoff of each agent i from an action ai depends on two

unknown states of the world: a common component Θ ∼ N (0, 1
P
) with finite P > 0, and a

private component Ti ∼ N (0, 1
Q
) with finite Q > 0. All private components are i.i.d. draws

and independent from the common component. Given agent i’s action ai, a realization θ of

the common component, and a realization ti of her idiosyncratic component, her utility is

ui(ai, θ, ti) = −(ai − (1− µ)θ − µti)
2 (1)

where µ ∈ (0, 1). Agent i’s objective is to minimize the distance between her action and a

weighted sum of the common and idiosyncratic component.

Agent i observes all actions a1, . . . , ai−1 of her predecessors. In addition, each agent

i observes two independent private signals, sΘi ∼ N
(

0, 1
ρi

)

, and sTi ∼ N
(

0, 1
τi

)

. The

information choice of agent i consists of choosing the precision of the common component

signal, ρi, and the private component signal, τi, along a precision function f that shows all

feasible precision combinations (ρi, τi).

Assumption 1. The precision function f : R+ → R
+ is twice continuously differentiable,

f ′(ρi) < 0 for ρi > 0 and f ′′(ρi) ≤ 0. There exist finite ρ and τ such that 0 = f(ρ) and

τ := f(0).

The precision of the idiosyncratic component τi is determined by the choice of ρi. The

derivative of the precision function, f ′, corresponds to the marginal rate of transformation

between the two variables ρi and τi. As a microfoundation for the precision function, agents

could have a budget B and face an increasing cost function c(ρi, τi) for their learning choice.

Since it is always strictly optimal to spend the entire budget, we can restrict an agent’s decision

to choosing the precision of the common component such that B = c(ρi, f(ρi)).
3

The timing is as follows: at time i, agent i observes the history of all previous actions

Ai := {a1, . . . , ai−1}. She then chooses ρi, her information choice, which determines τi = f(ρi).

3See also Section 5 for a discussion of an endogenous learning budget.
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Then, she observes her signal realizations sΘi and sTi and chooses her irreversible action ai.

Finally, her utility is realized, unobserved by all future agents.

3 Main analysis

Given an information choice ρi and signals sΘi and sTi , agent i’s optimal action a∗i is a weighted

average of a two-dimensional belief about the common and idiosyncratic component, namely

a∗i = E[(1− µ)Θ + µTi|sTi , sΘi , ρi;Ai].

As we will see, for every possible history Ai, agent i faces a Gaussian distribution of the

common component, Θ|Ai, with some precision Pi. We refer to Pi as the public precision.

Without an idiosyncratic component (µ = 0) there is a bijection between signals and

actions, and an agent can infer her predecessors’ signals from their actions. In contrast, in the

presence of an idiosyncratic component an inference problem arises: a high action can be the

result of either a high private component signal sTi or a high common component signal sΘi .

Lemma 1 (Precision Updating). For every Ai, the random variable Θ|Ai follows a Gaussian

distribution. Let agent i− 1 acquire a signal about the common component with precision ρi−1.

Then, Pi = Pi−1 + ψ(ρi−1, Pi−1) where ψ(ρi−1, Pi−1) := ρi−1

[

1 + µ2

(1−µ)2
(ρi−1+Pi−1)

2

f(ρi−1)+Q

f(ρi−1)
Qρi−1

]−1

.

Agent i faces the precision Pi−1 + ψ(ρi−1, Pi−1) which depends on the learning choice ρi−1

of her predecessor but not on her action. The term ψ(ρi−1, Pi−1) is lower than ρi−1 and reflects

the loss in inference since only past actions and not past signals are observable.

After agent i chooses ρi and learns sΘi and sTi , her updated common-component precision

is Pi + ρi and her private-component precision is Q+ f(ρi). With a quadratic payoff in (1),

an agent’s expected loss when choosing ρi is the variance of (1− µ)Θ + µTi, given Pi and Q.

Hence, the optimal information choice of agent i solves

ρ∗i ∈ arg min
ρi∈[0,ρ]

(1− µ)2

Pi + ρi
+

µ2

Q+ f(ρi)
. (2)

The agent faces a trade-off: decreasing the loss from the variance of the common component

(by increasing ρi) increases the loss from the variance of the private component. We categorize

the optimal learning choices into three regimes. If an agent learns exclusively about either the

common component or the idiosyncratic component, then we say that she is in the common

regime or the idiosyncratic regime, respectively. If the agent learns about both components

(ρ∗i ∈ (0, ρ)), then the agent is in the splitting regime.

5



Lemma 2 (Three Learning Regimes). There exists a unique ρ∗i that solves (2). The optimal

learning choice ρ∗i is nonincreasing in Pi and nondecreasing in Q. Agent i is

1. in the common regime if Pi ≤ α,

2. in the splitting regime if Pi ∈ (α, β),

3. in the idiosyncratic regime if Pi ≥ β,

where α := 1−µ

µ

Q√
−f ′(ρ)

− ρ and β := 1−µ

µ

Q+f(0)√
−f ′(0)

.4

The optimal information choice of every agent depends only on Pi and Q, not on the action

history Ai. Hence, the learning process {Pi}∞i=1 follows a deterministic path. The higher the

initial precision of a component (Pi or Q), the lower the marginal benefit from learning more

about it. In the optimal learning choice, the agent chooses either a corner solution (in the

common or idiosyncratic regime) or an interior optimum (in the splitting regime). For some

precision functions, the solution is always interior. If f ′(0) = 0, then β is unbounded and the

idiosyncratic regime does not arise: the agent does not have to give up any precision about the

idiosyncratic component when learning marginally about the common component. Similarly,

if f ′(ρ) = −∞, then the common regime never arises.

How much information about the common component does the public history accumulate?

We say that learning is complete if and only if the limiting public precision, denoted by

P∞ := limi→∞ Pi, equals +∞. Learning is incomplete otherwise. Our main theorem identifies

β or P as the only possible values for the limiting public precision. Hence, for learning to be

complete, we require β = +∞, which occurs if and only if f ′(0) = 0 by Lemma 2.

Theorem 1. The limiting public precision is P∞ = max{P, β}. Learning is complete if and

only if f ′(0) = 0.

By Lemma 2, if the initial precision of the common component is sufficiently high (P ≥ β),

it deters even the first agent from learning anything about Θ. Hence, agents never escape the

idiosyncratic regime, and the public precision remains at the initial precision P . If the initial

precision of the common component is sufficiently low (P < β), then the first agents are either

in the common or the splitting regime. No agent would ever acquire so much precision about

the common component as to raise her precision above β.5 Furthermore, the limiting public

precision cannot stop short of β: the learning choice of an agent converges to zero only as the

public precision approaches β. As long as the public precision is strictly below β, agents keep

4If f ′(0) = 0, we define β by β := lim
ρ→0

1−µ
µ

Q+τ√
−f ′(ρ)

. If lim
ρ→ρ

f ′(ρ) = ∞, we set α = 0.

5See Lemma 3 and Proposition 3 in the appendix for more details about the learning regime dynamics.
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spending a constant amount of their learning budget on the common component, and learning

continues.

Observable Signals. A first intuition might be that incomplete learning is due to signals

being unobservable. Yet this is not the case: incomplete learning is caused by the binary

uncertainty about two components and the free-rider problem, not by the inference lost

through observational noise. Observing the signals {sΘi , sTi } of all previous agents leads to a

faster convergence of Pi to P∞ since no precision is lost through noisy observations. However,

learning is bounded by the same precision max{P, β} as in the case of unobservable signals.

See Proposition 4 in the appendix for further details. A related observation has been made in

Burguet and Vives (2000) and in Corollary 1 in Ali (2016), where it is not the loss of inference

from signals to actions that drives the incomplete learning result, but the decreased incentives

to buy costly information as public precision increases.

4 Heterogeneous agents

Next, we explore the effect of heterogeneous agents on information aggregation. Instead of

a common weight µ as in (1), each agent i has a weight µi ∈ M, where M ⊆ [0, 1] is the

set of weights on the idiosyncratic component. The sequence of agents’ weights {µi}i≥1, the

ordering, is publicly known. In light of the paragraph on observable signals above and for

simplicity of notation, we assume that all signals are observable. When is learning complete

in a heterogeneous society?

Proposition 1. Let f ′(0) 6= 0. Then, learning is complete if and only if there exists a

subsequence of agents {µik}k≥1 with µik → 0 as k → ∞. Let f ′(0) = 0. If µi 6→ 1 as i→ ∞,

learning is complete. If µi → 1 as i→ ∞, learning can be either complete or incomplete.

One key qualitative takeaway is this: if for every agent i, µi ∈ [µ, µ] for some 0 < µ ≤ µ < 1,

then our main result still holds, learning is complete if and only if f ′(0) = 0. Only in the

pathological case in which a subsequence of agents cares so much about the common component

relative to the private one that they learn about the common component for any public belief,

learning is complete even if f ′(0) 6= 0. On the other hand, if agents eventually care (and thus,

learn) only about the idiosyncratic component, then there is no guarantee that learning is

complete even if f ′(0) = 0.

Along the learning path, however, the ordering {µi}i≥1 has a quantitative impact: it

influences the speed of learning and possibly even the limiting precision P∞. The following

proposition shows when agents with a lower µi should move later to facilitate learning.
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Proposition 2. Let there be two consecutive agents with µj < µj+1 in some sequence {µi}i≥1.

Fix ρ and τ . Then, there exists ε > 0 such that if f ′(0)−f ′(ρ) < ε, then swapping the positions

j and j + 1 yields (1) a weakly higher public precision Pi for every agent i ≥ j + 2, and (2) a

weakly higher limiting precision P∞.

A sufficient condition for such a swap to increase the public precision is if the expression

ρ(µi, P
′
i )−ρ(µi, Pi) is nonincreasing in µi for all splitting-regime precisions P ′

i ≥ Pi. Intuitively,

this condition says that agents who care more about the common component react less

sensitively to an increase in the public precision (and thus, to moving later in the sequence

when more is known) than agents who care less about the common component. If the slope of

the precision function is sufficiently constant, the opportunity costs of learning more about

the common component (i.e., the loss in idiosyncratic precision) are approximately similar at

every learning choice, but the marginal gain is higher for an agent who cares relatively more

about the common component.

The order of agents can strictly increase the limiting precision. Consider the linear case

f(ρ) = 1− ρ, P1 = Q = 1, and a sequence {µi}i≥1 where µi = 0.6 for i 6= 1, and µ1 = 0.2. Let

ρ(µi, Pi) be the information choice of agent i with weight µi and public precision Pi.
6 If the

agent with µ1 = 0.2 moves first, then she learns exclusively about the common component,

and P2 = 2. This is above the idiosyncratic-regime threshold of an agent with µi = 0.6, so

learning stops after the first agent and P∞ = 2. However, swapping the positions of agents 1

and 2 strictly increases the limiting precision: at P1 = 1, agent 2 is in the splitting regime,

and chooses ρ(0.6, 1) > 0. After agent 2 moves, agent 1 is still in the common regime at

P2 = 1 + ρ(0.6, 1), and thus, P∞ = 2 + ρ(0.6, 1) > 2. Proposition 2 provides a recipe for how

to increase the limiting public precision even further: the later in the sequence agent 1 moves,

the strictly higher the limiting public precision P∞ will be.7

If the slope of the precision function is not sufficiently constant, it may be optimal if the

agent with the lower weight on the idiosyncratic component moves first. Consider two agents

with µ1 = 0.6 and µ2 = 0.4 and a precision function f(ρ) = 0.5 if ρ ∈ [0, 0.5] and f(ρ) = 1− ρ

if ρ ∈ (0.5, 1].8 Agent 1’s opportunity costs from increasing ρ beyond 0.5 are so high that it is

never optimal to learn in the steep interval of the precision function for any Pi ≥ 1; for this

reason, she chooses ρ(0.6, Pi) = 0.5. Due to agent 2’s higher weight on the common component,

6This is pinned down by Lemma 2, after substituting µi for µ everywhere.
7An optimal ordering does not exist because all agents cannot be sorted in decreasing order of µi.
8Although this example does not satisfy Assumption 1 (i.e., f decreasing and differentiable everywhere),

it is simple to follow. One could easily approximate the precision function in this example via a strictly
decreasing concave function that is differentiable everywhere.
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and therefore, her higher marginal benefit from learning more about it, agent 2’s optimal

learning choice lies in the steep interval of the precision function: she chooses ρ(0.4, 1) = 0.8

when moving first, and ρ(0.4, 1.5) = 0.6 when moving second. In contrast to the previous

example, now the agent with the lower µi reacts more to a change in public precision; hence,

the public precision increases for all subsequent agents if agent 2 moves before agent 1.

5 Extensions

Two prediction problems. Instead of predicting a weighted average of two components,

consider an alternative scenario in which each agent faces two separate prediction problems: (i)

predict a variable Θ with action aΘi , and (ii) predict a variable Ti (an independent investment

problem) with action aTi , with the following utility function:

ui(a
Θ
i , a

T
i , θ, ti) = −(aΘi − θ)2 − (aTi − ti)

2.

The expected utility reduces to − 1
Pi+ρi

− 1
Q+f(ρi)

; this is the expression in the two-dimensional

prediction problem in (2) for µ = 1
2
multiplied by a constant. All our previous results apply,

and learning is complete if and only if f ′(0) = 0. If agents are uncertain about more than one

prediction problem, then complete learning might also be difficult to achieve.

Beyond a concave precision function. The concavity of the precision function guarantees

the existence of a unique optimal learning choice. However, even with a nonconcave learning

technology (with f satisfying Assumption 1, but imposing no assumption on f ′′), our main

result still holds. Specifically, if f ′(0) > 0, then there exists some finite, sufficiently high public

precision P , for which agents are in the idiosyncratic regime because their payoff is strictly

decreasing in ρ on the whole domain; thus, the public precision can never increase beyond P ,

and learning is incomplete. On the other hand, if f ′(0) = 0, then learning cannot stop at any

finite P∞. At any finite precision, all agents learn at least the same strictly positive amount

about the common component, implying that learning cannot stop there. If the learning

technology is convex (e.g., if it is easier to focus exclusively on one component than to learn

about two components at the same time), we necessarily have f ′(0) > 0, and learning is always

incomplete.

Endogenous learning budget. So far, all agents have been choosing how much to learn

along some common exogenous precision function. This can arise, for example, when agents

have a fixed learning budget and decide how to split it between the two components. However,

in many scenarios, agents might endogenously determine how much they spend overall on
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learning. Such an endogenous learning budget might depend on the public precision that

agents are facing, and hence, might differ among agents.

To make this point concrete, consider the following setup:9 Let the agents’ utility function

be V (xi) + u(ai, θ, ti), where xi ∈ R
+ is consumption, V ′(xi) > 0, and V ′′(xi) ≤ 0, and u

is as defined in (1). Suppose that agents face a budget constraint B = xi + c(ρi, τi), where

c : R+ × R
+ → R

+ determines the costs of acquiring the signals and is increasing in both

arguments, strictly convex, and satisfies c(0, 0) = 0.

Let x∗(Pi) be the optimal consumption choice of agent i given some public precision Pi,

leaving agent i an endogenous learning budget of B − x∗(Pi). Given x∗(Pi), the optimal

information choice (ρ∗i (Pi), τ
∗
i (Pi)) coincides with the optimal point on the isocost curve, or

precision function, which is given by c(ρi, τi) = B − x∗(Pi). Define fPi
(ρ) to be the implicit

function of τ as a function of ρ, such that c(ρi, fPi
(ρi)) = B − x∗(Pi). If this implicit function

satisfies Assumption 1 for every Pi, then we get the same sufficient condition for complete

learning as before, pointwise for every Pi: learning is complete if f ′
Pi
(0) = 0 for all Pi and

∂c(0,0)
∂ρ

= 0.10 Yet, these conditions are not necessary for complete learning. The condition

f ′
Pi
(0) = 0 ought to hold only along the sequence of Pi’s which are realized. Interestingly,

reaching a single isocost curve in which an agent is in the idiosyncratic regime halts learning

forever, even if f ′
Pi
(0) = 0 for any sufficiently high public precision Pi.

6 Discussion

This paper has developed a new model for information choice in observational learning. Our

central interest is in investigating how agents resolve the trade-off between learning about

a common component that affects all of their payoffs and learning about an idiosyncratic

component that affects only one’s own payoff. If others devote their resources to learning

about the common component, later agents have a natural inclination to free-ride on that

choice and to devote their resources to learning about their own idiosyncratic component.

This incentive potentially impedes complete learning of the common component. In our study

of this trade-off, we provide a necessary and sufficient condition for complete learning. As we

show, learning is complete if agents do not have to sacrifice learning about their idiosyncratic

component in order to learn marginally about the common component. We believe that for a

9We are very grateful to a referee for suggesting this interpretation.
10The latter condition guarantees that consumption does not amount to the entire budget B. By the implicit

function theorem, learning is complete if ∂c(0,τ)
∂ρ

= 0 for every τ > 0. This is a generalization of a sufficiency

result in Burguet and Vives (2000): they show that learning is complete if and only if the marginal cost of
learning about the common (and only) component is zero at zero, c′(0) = 0.
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variety of prediction problems — such as financial markets and health insurance choices —

this condition might not be fulfilled. In such cases, a one-dimensional model incorrectly yields

complete learning in these markets while a model with multidimensional uncertainty provides

better predictions.

Appendix

Proof of Lemma 1. Using the standard Gaussian updating rule, the optimal action of
agent i− 1 who faces a public precision Pi−1 and an expected common component γi−1 is

a∗i−1 = (1− µ)
ρi−1

ρi−1 + Pi−1

sΘi−1 + (1− µ)
Pi−1

ρi−1 + Pi−1

γi−1 + µ
f(ρi−1)

f(ρi−1) +Q
sTi−1.

From the perspective of agent i who does not learn sΘi−1 and sTi−1 of her predecessor, observing

a∗i−1 is equivalent to observing a variable bi−1 :=
(

a∗i−1 − (1− µ) Pi−1

ρi−1+Pi−1

γi−1

)
ρi−1+Pi−1

ρi−1

1
(1−µ)

.

The conditional distribution of the random variable bi−1 that agent i learns via learning a∗i−1

(when anticipating ρi−1 correctly) is

bi−1|θ ∼ N
(

θ,
1

ρi−1

+
µ2

(1− µ)2
(ρi−1 + Pi−1)

2

ρ2i−1

f(ρi−1)

(f(ρi−1) +Q)

1

Q

)

.

Applying the standard Gaussian updating rule and simplifying to compute θ|bi−1 for agent i,
we get the expressions for ψ(ρi−1, Pi−1) and Pi as stated in the lemma.

Proof of Lemma 2. The derivative of the function in (2) is

− (1− µ)2

(Pi + ρi)2
− µ2

(Q+ f(ρi))2
f ′(ρi), (3)

which is increasing in Pi and nondecreasing in Q. If ρi is interior, then the first order condition
is

ρi =
Q+ f(ρi)
√

−f ′(ρi)

1− µ

µ
− Pi. (4)

Uniqueness. Any interior solution is unique: only one ρi satisfies (4) since Q+f(ρi)√
−f ′(ρi)

is

nonincreasing in ρi. If no interior solution exists, there is exactly one corner solution.
Idiosyncratic and common regimes. Let the derivative at ρi = 0 be positive. Then (as the

second order derivative is nonnegative because f ′′(ρi) ≤ 0), the derivative is positive for all
ρi ∈ [0, ρ], and ρ∗i = 0 is the unique solution. Thus, the following establishes when ρ∗i = 0:

−(1− µ)2

(Pi)2
− µ2

(Q+ τ)2
f ′(0) ≥ 0.

11



The inequality is satisfied whenever Pi ≥ β where β is defined in the proposition.
Similarly, if the derivative at ρi = ρ is nonpositive, then it is negative at every feasible

ρi ∈ [0, ρ) and ρi = ρ is optimal. A sufficient and necessary condition for the first derivative
being nonpositive at ρ is if Pi ≤ α where α is given in the proposition.

In the remaining interval for Pi ∈ (α, β), an interior solution exists, since we are minimizing
a continuous objective function over a closed feasible interval for ρi and the derivative changes
its sign exactly once.

Comparative statics. The common regime threshold α is increasing in Q and independent
of Pi. The idiosyncratic regime threshold β is increasing in Q and independent of Pi. In the
splitting regime, ρ∗ is nonincreasing in Pi and nondecreasing in Q (this follows from applying
the implicit function theorem to (4)).

Lemma 3. Let P ′, P ′′ such that P ′ < P ′′ ≤ β. Then, P ′ + ρ∗(P ′) < P ′′ + ρ∗(P ′′).

Proof. To simplify notation, let ρ′ := ρ∗(P ′) and ρ′′ := ρ∗(P ′′). First, let P ′′ ≤ α. Then,
ρ′ = ρ′′ = ρ and thus, P ′ + ρ′ < P ′′ + ρ′′. Next, let P ′′ > α. By Lemma 2, ρ′′ is in the splitting
regime. By Lemma 2, ρ′ ≥ ρ′′, and ρ′ is in the common or splitting regime. Then, ρ′ and ρ′′

satisfy the first order conditions

− (1− µ)2

(P ′ + ρ′)2
− µ2

(Q+ f(ρ′))2
f ′(ρ′) ≤ 0,

− (1− µ)2

(P ′′ + ρ′′)2
− µ2

(Q+ f(ρ′′))2
f ′(ρ′′) = 0.

Furthermore, f ′(ρ)
(Q+f(ρ))

strictly decreases in ρ > 0 because f ′′(ρ) ≤ 0 by Assumption 1. Then,
adding up the first order conditions yields

(1− µ)2
(

1

(P ′′ + ρ′′)2
− 1

(P ′ + ρ′)2

)

≤ µ2

(
f ′(ρ′)

(Q+ f(ρ′))2
− f ′(ρ′′)

(Q+ f(ρ′′))2

)

< 0.

This can only be satisfied if P ′ + ρ′ < P ′′ + ρ′′.

Proof of Theorem 1. We prove a more general result, connecting initial precision P to the
long run learning choices.

Proposition 3.

1. The learning process leaves the idiosyncratic regime in finite time: if P ≤ α, then there
exists N ∈ N such that ρ∗N ∈ (0, ρ), and P∞ > α.

2. The learning process remains in the idiosyncratic regime forever: if P ≥ β, ρ∗i = 0 for
all i ≥ 1, and P∞ = P.

3. The learning process remains in the splitting regime forever: if P ∈ (α, β), then ρ∗i → 0
and ρ∗i ∈ (0, ρ) for all i ≥ 1, and P∞ = β.

Proof. Proof of point 1. Since P ≤ α, ρ∗1(P ) = ρ. By Lemma 1, there is no inference problem,
P2 = P1 + ψ(P1, ρ) = P + ρ. Similarly, if P2 ≤ α, by the same logic as for the first agent,

12



ρ∗2(P2) = ρ and P3 = P + 2ρ. After a finite number of x := dα−P
ρ

e agents, public precision

equals Px+1 = P + dα−P
ρ

eρ > α. The idiosyncratic regime stops with agent x + 1, and
P∞ ≥ Px+1 > α.

Proof of point 2. Let P ≥ β. Then, by Lemma 2, ρ∗1 = 0. Since a∗1 contains no information
about θ, P2 = P . Thus, ρ∗2 = ρ∗i = 0 for all i, and P∞ = P .

Proof of point 3. Let P ∈ (α, β). By contradiction, let ρ∗i 6→ 0. Since ρ∗i is nondecreasing
in i (Lemma 2), this implies that there exists δ > 0 such that ρ∗i ≥ δ for all i, and ρ∗i → δ.

First, let P∞ <∞. The increase in public precision in each period i is bounded away from
zero: since Pi ≤ P∞, it holds that ψ(ρ∗i , Pi) ≥ ψ(δ, Pi) ≥ ψ(δ, P∞) > 0 (see the formula for ψ
in Lemma 1). But then, P∞ = P +

∑∞
i ψ(ρ∗i , Pi) ≥ P +

∑∞
i ψ(δ, P∞) = ∞.

Second, let P∞ = ∞. From the first-order condition of the minimization problem in (2),
there exists some finite P ′ such that ρ∗i (P

′) = δ. But then, the public precision is bounded
above, Pi ≤ P ′, to satisfy ρ∗i ≥ δ for every agent i. This contradicts P∞ = ∞.

Hence, ρ∗i → 0. By Lemma 3, for any Pi < β =: P ′′ (using ρ∗i (β) = 0),

Pi+1 = Pi + ψ(ρ∗i , Pi) ≤ Pi + ρ∗i (Pi) < β.

Thus, if P ∈ (α, β) then also Pi ∈ (α, β) for every i, and by Lemma 2, ρ∗i ∈ (0, ρ). This also
establishes that P∞ ≤ β for P ∈ (α, β).

By contradiction, let P∞ < β. Then, for all P ′ ∈ (P∞, β), we have ρ∗i (P
′)=0 (this follows

from ρ∗i → 0 since Pi → P∞, and ρ∗i nonincreasing in Pi.) But this contradicts that ρ∗i ∈ (0, 1)
interior for any P ′ ∈ (α, β) (Lemma 2). Hence, P∞ = β.

By Lemma 3, if P ≤ α then Pi < β for all i: learning transitions from the common to the
splitting regime. This and Proposition 3 establishes that P∞ = max{P, β}. Hence, learning is
complete if and only if β = ∞, which occurs if and only if f ′(0) = 0 (Lemma 2).

Proposition 4 (Observable Signals). For every i ≥ 1, let the signals {sΘi , sTi } be perfectly
observable for all future agents j > i. Then,

1. learning is complete if and only if f ′(0) = 0, and P∞ = max{P, β},
2. for every agent, Pi is weakly higher with observable than unobservable signals.

Proof. The proof of P∞ = max{P, β} is the same as in Proposition 3, with substituting ρ∗i for
ψ(ρ∗i , Pi) since there is no inference problem with observable signals.

Let P o
i be the public precision with observable signals, and P u

i with unobservable signals.
If P ≥ β, then P o

∞ = P u
∞ = P . Next, let P < β. By Lemma 3, if P u

i ≤ P o
i then

P u
i+1 = P u

i + ψ(ρ∗i (P
u
i ), P

u
i ) ≤ P u

i + ρ∗i (P
u
i ) ≤ P o

i + ρ∗i (P
o
i ) = P o

i+1.

If P u
i ≤ P o

i for any agent i, then the inequality P u
j ≤ P o

j also holds for all future agents j > i.
Finally, since P = P o

1 = P u
1 , P

o
i ≥ P u

i for all i.

Proof of Proposition 1. First we show that if f ′(0) 6= 0, then learning is complete if and
only if there exists a subsequence of agents {µik}k≥1 with µik → 0 as k → ∞. Proof of
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sufficiency. Assume there exists a subsequence {µik}k≥1 with µik → 0 as k → ∞, and learning
is not complete, P∞ <∞. Pick any µ̂ > 0 such that

P∞ <
1− µ̂

µ̂

Q+ f(0)
√

−f ′(0)
.

There exists a k̂ ∈ N such that for all k ≥ k̂, µik ≤ µ̂. But then, by Lemma 2, an infinite
number of agents after ik̂ choose ρ∗(µk, Pk) ≥ ρ∗(µ̂, P∞) > 0, which contradicts P∞ <∞.

Proof of necessity. Assume that there does not exist a subsequence of µi’s converging to
zero and learning is complete. Then, there exists some k̂ ∈ N such that for all j ∈ N and
j > k̂, µj ≥ µk̂ > 0. Let P ′ =

1−µ
k̂

µ
k̂

Q+f(0)√
−f ′(0)

which is finite since f ′(0) 6= 0. By Lemma 2, no

agent j ≥ k̂ learns about the common component if Pj > P ′. This contradicts P∞ = ∞.

Now let f ′(0) = 0. We show that if µi 6→ 1 as i→ ∞, learning is complete. Let µi 6→ 1.
Then, there exists µ̂ such that for an infinite sequence of agents, µi ≤ µ̂ < 1. Since f ′(0) = 0,
by Theorem 1, learning would be complete if an infinite sequence of agents had µi = µ̂. Since
ρ∗i is nonincreasing in µi, learning is also complete if these agents learn even more about the
common component.

Finally, we show that if µi → 1 as i → ∞, learning can be complete or incomplete. We
prove this by providing two examples for complete and incomplete learning. Note that ρ∗i → 0
in both cases. If learning is incomplete, we cannot have ρ∗i 6→ 0 (otherwise, this contradicts
learning being incomplete). If learning is complete, the marginal gain from any ρ∗i > 0 goes to
zero as Pi → P∞.

For both examples, let f(ρi) = 1 − ρ5i . If µi = 1 for every i ≥ 1 (and thus, µi → 1 as
i → ∞) then learning is incomplete. Next, we provide an example of a sequence of µi’s
converging to 1 such that learning is complete. For this, we prove the following claim.

Claim 1. For any given Pi there exists µ̂i such that µ̂i = 1− ρ∗i .

Proof. Consider the two functions

µi : [0, 1] → [0, 1], µi(ρ
∗
i ) = 1− ρ∗i and

ρ∗i : [0, 1] → [0, 1], ρ∗i (µi) = ρ∗i (µi, Pi).

We have to show that there exists a tuple (µ̂i, ρ̂i) such that ρ̂i = ρ∗i (µ̂i) and µ̂i = µi(ρ̂i).
Equivalently, it must hold that µ̂i = ρ∗i (µi(ρ̂i)) and µ̂i = µi(ρ

∗
i (µ̂i)). The functions ρ∗i ◦ µi and

µi ◦ ρ∗i are continuous functions from a closed interval into itself. Thus, the existence of µ̂i

and ρ̂i is ensured by Brouwer’s fixed point theorem.

Let the sequence of µi’s be as in the claim. Since ρ∗i → 0, it holds that µi → 1. By Lemma
2, for an infinite sequence of agents who are all in the splitting regime (as f ′(0) = 0, there is
no idiosyncratic regime), the optimal learning choice ρ∗i satisfies

ρ∗i =
1− µi

µi

Q+ 1− ρ∗
5

i√
5ρ∗

2

i

− Pi =
ρ∗i

1− ρ∗i

Q+ 1− ρ∗
5

i√
5ρ∗

2

i

− Pi =
1

1− ρ∗i

Q+ 1− ρ∗
5

i√
5ρ∗i

− Pi. (5)
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By contradiction, let learning be incomplete, P∞ < ∞. Then, Pi ≤ P∞ < ∞, and

limρ∗
i
→0

1
1−ρ∗

i

Q+1−ρ∗
5

i√
5ρ∗

i

→ ∞. But this means that Equation 5 cannot be satisfied for ρ∗i
sufficiently small, yielding a contradiction.

Proof of Proposition 2. Define a linear precision function for the given boundary values,
fL(ρ) := τ − τ

ρ
ρ. Let ρL(µ, P ) be the optimal learning choice of an agent with weight µ and

public precision P with precision function fL(.), and αL(µ) and βL(µ) be the common and
idiosyncratic thresholds, respectively. The following auxiliary lemma will prove useful for the
remainder of the proof:

Lemma 4. Let µj+1 > µj and βL(µj+1) > Pj > αL(µj+1). Then,

ρL(µj+1, Pj)− ρL(µj+1, Pj + ρL(µj+1, Pj)) > ρL(µj, Pj)− ρL(µj, Pj + ρL(µj+1, Pj)). (6)

Proof. First, note that the left-hand side of (6) is strictly positive because Pj ∈ (α(µj+1), β(µj+1)).
Also, note that Pj + ρL(µj+1, Pj + ρL(µj+1, Pj)) < βL(µj+1), since an agent never learns so
much to jump from the splitting to the idiosyncratic regime.

If agent j is in the common regime at both precisions Pj and Pj + ρL(µj+1, Pj) (i.e.,
αL(µj) ≥ Pj + ρL(µj+1, Pj)), then the right-hand side of the inequality is zero and (6) holds.

If agent j is in the splitting regime at both precisions Pj and Pj + ρL(µj+1, Pj) (i.e.,
αL(µj) < Pj), then the strict inequality is also satisfied: plugging in f(ρ) = τ − τ

ρ
ρ into the

first-order condition (4) and analyzing the sign of the crossderivative ∂2ρL(µ,P )
∂µ∂P

< 0 establishes

the strict inequality in (6).
Finally, let agent j be in the common regime at precision Pj, and in the splitting regime

at Pj + ρL(µj+1, Pj). Let ρ̃(µj, Pj) be the interior solution of the first-order condition as in

4. Then, note that ρL(µj, Pj) = max{ρ, ρ̃(µj, Pj)} ≤ ρ̃(µj, Pj). Using
∂2ρ̃L(µ,P )

∂µ∂P
< 0 again

shows that (6) holds. As βL(µj) > βL(µj+1) ≥ Pj, this covers all possible cases, and hence,
establishes the lemma.

To prove the proposition, it is sufficient to prove that the public precision Pj+2 after both
agent j and j + 1 move is higher if agent j + 1 moves first. From this, statements (1) and
(2) in the proposition follow using Lemma 3 since each agent i ≥ j + 2 faces a higher public
precision.

For the given ρ and τ , consider any sequence of precision functions {fεk}k≥1 that has
εk → 0 and satisfies the following for every k: Assumption 1, fεk(0) = τ , fεk(ρ) = 0 and
f ′
εk
(0)− f ′

εk
(ρ) < εk. Note that limk→∞ fεk = fL pointwise, where fL(.) is the linear precision

function defined above. Then, the optimal learning choice also converges to the linear solution,
limk→∞ ρεk(µi, Pi) = ρL(µi, Pi). Similarly, the idiosyncratic and common thresholds also
converge to the linear solution, αεk(µ) → αL(µ) and βεk(µ) → βL(µ).

If Pj ≥ βεk(µj+1), then agent j + 1 is in the idiosyncratic regime irrespective of moving
before or after agent j, and the proposition holds trivially. If Pj ≤ αεk(µj+1), then both agent
j and agent j + 1 are in the common regime if moving first, and public precision after the first

15



mover is Pj + ρ. Then, public precision Pj+2 is higher when agent j moves second because
ρ(µj, Pj + ρ) ≥ ρ(µj+1, Pj + ρ).

Finally, consider the remaining case for Pj such that α(µj+1) < Pj < β(µj+1). We want to
show that for k sufficiently high, public precision Pj+2 after both agents j and j + 1 move is
higher when agent j + 1 moves before agent j:

Pj + ρεk(µj+1, Pj) + ρεk(µj, Pj + ρεk(µj+1, Pj))
︸ ︷︷ ︸

j+1 moves first

≥ Pj + ρεk(µj, Pj) + ρεk(µj+1, Pj + ρεk(µj, Pj)).
︸ ︷︷ ︸

j moves first

Note that ρεk(µj+1, Pj + ρεk(µj, Pj)) ≤ ρεk(µj+1, Pj + ρεk(µj+1, Pj)) because ρεk is nonin-
creasing in µ and nonincreasing in Pj. Therefore,

lim
k→∞

ρεk(µj+1, Pj)− ρεk(µj+1, Pj + ρεk(µj, Pj))− ρεk(µj, Pj) + ρεk(µj, Pj + ρεk(µj+1, Pj))

≥ lim
k→∞

ρεk(µj+1, Pj)− ρεk(µj+1, Pj + ρεk(µj+1, Pj))− ρεk(µj, Pj) + ρεk(µj, Pj + ρεk(µj+1, Pj))

=ρL(µj+1, Pj)− ρL(µj+1, Pj + ρL(µj+1, Pj))− ρL(µj, Pj) + ρL(µj, Pj + ρL(µj+1, Pj)) > 0,

where the last strict inequality follows via Lemma 4. Hence, for k sufficiently high, Pj+2 is
weakly higher if agent j + 1 moves first, establishing the result.
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