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Abstract

We develop a two-stage game in which competing airlines first choose the networks of markets

to serve in the first stage before competing in price in the second stage. Spillovers in entry

decisions across markets are allowed, which accrue on the demand, marginal cost, and fixed

cost sides. We show that the second-stage parameters are point identified, and we design a

tractable procedure to set identify the first-stage parameters and to conduct inference. Further,

we estimate the model using data from the domestic US airline market and find significant

spillovers in entry. In a counterfactual exercise, we evaluate the 2013 merger between American

Airlines and US Airways. Our results highlight that spillovers in entry and post-merger network

readjustments play an important role in shaping post-merger outcomes.

Keywords: endogenous market structure, networks, airlines, oligopoly, product repositioning,

mergers, remedies.
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1 Introduction

When evaluating a merger, antitrust authorities must trade off the costs of an increase

in market power and the benefits of merger-induced efficiencies, putting upward and

downward pressure on prices, respectively (Williamson, 1968). In network industries, such

as the airline industry studied in this paper, post-merger market repositioning can amplify

or nullify these effects. The hub-and-spoke system of this industry creates opportunities

for the newly merged entity to offer passengers more destination choices, hence increasing

the willingness-to-pay on the demand side and reducing costs on the supply side. Driven

by such incentives, the merged entity may decide to re-optimise its network of routes.1

Moreover, rivals may react to the merger by exiting some markets in which the merged

entity has become powerful, and entering others where more competitors can remain

profitable.

Despite these arguments, traditional merger analyses do not formally incorporate

post-merger entry-exit patterns. To address this gap, we build and estimate a structural

model of the airline market in which airlines choose their network of markets to transport

passengers from one city to another. Our model allows us to conduct an exhaustive

evaluation of airline mergers, thus considering the possibility for each airline to redefine

the set of destinations offered to passengers. In particular, we quantify the importance

of post-merger network re-optimisation in shaping final outcomes using the 2013 merger

between American Airlines and US Airways. We also evaluate the global effect of the

remedies imposed by antitrust authorities on the merging parties in order to constrain

post-merger network readjustments and protect consumer surplus.

Endogenising entry decisions in a model for the airline industry is challenging. The

presence of an airline in a given market affects the demand, marginal costs, and fixed costs

of the itineraries offered by the same airline in neighboring markets and, hence, spills over

into the airline’s decision to operate in those neighboring markets. As a result, an airline

does not take its entry decisions market-by-market but rather builds the network of served

markets on a global basis so as to internalise spillovers in entry. These spillovers arise

from the hub-and-spoke system operated by airlines. In addition to flights transporting

passengers directly from one city to another, an airline can offer flights connecting cities

via a common hub, which acts as a stop-over point towards many final destinations. Such

connecting flights can lead to marginal cost savings by activating economies of density

and increase demand by boosting the value of loyalty programs in all the markets linked

to the same hub. At the same time, they may increase fixed costs due to the risk of

congestion at hubs.2

1Clark (2015) studies airline mergers from the early 2000s and finds that both the America West/US
Airways and United/Continental mergers led to network expansions, while the Delta/Northwest merger
led to a smaller post-merger network, mainly due to Cincinnati losing its hub status.

2For more information on the impact of hub-and-spoke operations on demand, marginal costs, and
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We model airlines’ decisions as a two-stage game. In the first stage, each airline forms

its network by weighting changes in the fixed costs against changes in the expected vari-

able profits. In the second stage, conditional on all the networks, airlines face demand for

the offered itineraries, pay the variable costs, and choose the prices to charge while com-

peting in a classic Bertrand-Nash pricing game. The two-stage structure of our model is

similar to Eizenberg (2014) and Wollmann (2018), but we face additional methodological

and computational challenges: the spillovers in entry break the usual separability across

markets of the characteristic space where products are defined.

The timing of the game permits us to identify the supply and demand parameters as

in traditional supply-demand models for differentiated products (Berry and Haile, 2014).

Identification of the fixed cost parameters is hampered by the possibility of multiple Nash

equilibrium networks, which prevents us from writing down a well-defined likelihood func-

tion. Further, constructing the set of Nash equilibrium networks for a given value of the

fixed cost parameters is computationally burdensome, due to the large number of mar-

kets and the presence of spillovers in entry. We circumvent these issues by following the

literature on revealed preferences (Pakes, 2010; Pakes et al., 2015), and derive moment in-

equalities from best-response implications. Namely, if the networks chosen by the airlines

constitute a pure strategy Nash equilibrium, then the airlines’ profits in these networks

are higher than those in counterfactual networks. These moment inequalities are easy

to evaluate because they require us to neither impose any ad-hoc equilibrium selection

assumption, nor to construct the set of equilibrium networks for each possible value of

the fixed cost parameters.

Due to our fixed cost specification, the identified set defined by the moment inequali-

ties is a convex polytope. Convexity has been proven to be a desirable feature in the set

identification literature (Beresteanu and Molinari, 2008; Bontemps et al., 2012; Kaido and

Santos, 2014). In fact, it often reduces the computational burden of estimation because

the analyst can directly estimate the frontier points of the identified set by estimating the

support function. This allows us to estimate a set for the fixed cost parameters with an

easy-to-implement procedure based on solving linear programs. However, constructing

a confidence region for the true parameter vector depends on nuisance parameters that

cannot be uniformly estimated, as for most examples of the set identification literature.

By exploiting the linearity of the moment inequalities, we design a method to appropri-

ately smooth the identified set. We show that this smoothing step characterises a strictly

convex outer set and, hence, guarantees asymptotic normality of the estimated support

function with a variance that can be easily computed from the data. In turn, we can con-

fixed costs, see, for instance, Caves et al. (1984), Kanafani and Ghobrial (1985), Morrison and Winston
(1986), Levine (1987), Butler and Houston (1989), Berry (1990),Borenstein (1989; 1992), Butler and
Houston (1989), Morrison and Winston (1989),Berry (1990), Brueckner et al. (1992), Brueckner and
Spiller (1994), Oum et al. (1995), Berry et al. (1996), Nero (1999), Berry and Jia (2010), and Berry et al.
(2019). See also Section 3 .
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struct confidence intervals for each component (or linear combinations of components) of

the vector of fixed cost parameters by solving linear programs with linear and exponential

cone constraints.

We estimate our model using US domestic tickets data from the Airline Origin and

Destination Survey during the second quarter of 2011. We consider the flights operated

by the main airlines between the top 85 US cities. Our empirical findings reveal significant

spillovers in entry on the demand, marginal cost, and fixed cost sides. Specifically, on the

demand side, consumers benefit from flying with airlines offering many connections out of

the itinerary’s endpoints due to an increase in the value of loyalty programs. Hence, dense

networks increase consumers’ willingness-to-pay for an airline’s flight. On the supply side,

the marginal costs of an itinerary decrease when an airline allows passengers to reach

many cities from the itinerary’s endpoints and intermediate stops, due to economies of

density. Hence, dense networks generate marginal cost savings. At the same time, we

find that the denser the networks, the higher the fixed costs of offering direct flights out

of hubs due to congestion effects.

Our empirical findings have significant consequences on analysing environmental changes,

such as mergers. In particular, we use our estimates to study the merger between Amer-

ican Airlines and US Airways. These two firms merged in 2013, subject to a series of

remedies imposed by the Department of Justice (DoJ) to restrict post-merger network

readjustments and protect consumer surplus. We highlight three main counterfactual

results.

First, without the remedies, the merger leads to a slight increase in consumer surplus

by around 0.5%. With the remedies, consumer surplus rises by around 0.8%.

Second, the impact of the merger differs between the markets that the merging parties

served pre-merger (“old markets”), on which antitrust authorities typically focus, and the

markets where the merged entity enters post-merger (“new markets”), which are usually

ignored by antitrust authorities. On the one hand, old markets undergo consumer surplus

losses of around 5%. If the merger’s effect on consumer surplus in the old markets was the

relevant criterion, then the merger should have been blocked. This is in line with the DoJ’s

initial attempt to stop the merger. On the other hand, new markets experience an increase

in consumer surplus by around 45%, driven by the high willingness-to-pay for direct

flights. It reveals substantial positive effects of the merger and can be used to legitimise its

implementation. Further, the DoJ’s remedies, which were tailored for old markets, reduce

consumer surplus losses in old markets but, at the same time, weaken consumer surplus

gains in new markets. This highlights the need for antitrust authorities to carefully

balance these two effects when designing post-merger interventions. To the best of our

knowledge, this tension between consumer surplus losses in old markets and consumer

surplus gains in new markets is a novel empirical finding that has major implications

for policymakers, and clearly shows the inadequacy of the fixed network approach in
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evaluating mergers.

Third, spillovers in entry substantially shape post-merger outcomes. In particular, the

differences between new and old markets are driven by the expansion of the American

Airlines’ network in an attempt to leverage spillovers on the demand and marginal cost

sides, and the reduction of competitors’ networks, which are unable to compete with the

new powerful player. Importantly, such network changes align with the real entry-exit

patterns observed after 2013.

The rest of the paper is organised as follows. Section 2 summarises the literature.

Section 3 presents the model. Sections 4 and 5 discuss identification and inference.

Section 6 presents the data of our empirical application on the US domestic market.

Section 7 displays our estimates of the structural model and Section 8 studies the merger

between US Airways and American Airlines. Section 9 concludes. Further details are

available in the Online Appendix.

2 Literature review

This paper contributes to a flourishing literature on entry, exit, and product positioning

(Mazzeo, 2002; Seim, 2006; Ho, 2009; Holmes, 2011; Fan, 2013; Eizenberg, 2014; Houde

et al., 2023; Kuehn, 2018; Rossetti, 2018; Wollmann, 2018; Crawford et al., 2019; Aguirre-

gabiria et al., 2020; Fan and Yang, 2022). Although the two-stage structure of our model

is similar to that of Eizenberg (2014) and Wollmann (2018), the spillovers in entry create

additional methodological and computational challenges by preventing us from apply-

ing a market-by-market analysis. Further, we develop and implement a formal inference

procedure for the fixed cost parameters that leverages the convexity of the identified set.

This paper also relates to the recent advances in the econometrics of network forma-

tion games (Chandrasekhar, 2016; Graham, 2015; de Paula, 2017; 2020; Graham and

de Paula, 2020). The methods proposed in this literature typically require the analyst to

construct the set of equilibria for each candidate parameter value. However, this is un-

feasible in our setting due to the large dimension of the airlines’ networks. Our approach

demonstrates that exploiting the necessary conditions for equilibrium, along the lines of

Pakes (2010) and Pakes et al. (2015), represents an alternative route for constructing

identified sets in large network formation games that offers notable computational ad-

vantages. Further, while the network literature typically studies “decentralised” network

formation processes, where each node is controlled by a different player, this paper is

among the first to consider a “centralised” network formation process, where each airline

determines the link decisions of all the nodes.

More broadly, this paper combines two strands of the literature. The first strand is on

structural models of demand and supply. This literature estimates demand and supply

equations, taking entry decisions as exogenously given (Bresnahan, 1987; Berry, 1994;
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Berry et al., 1995; Berry et al., 2004; Berry and Haile, 2014). For applications of these

models to airlines, see Berry et al. (1996), Berry and Jia (2010), Ciliberto and Williams

(2014), Peters (2006), Israel et al. (2013), and Das (2019). For applications to merger

analysis, see Nevo (2000), Bjornerstedt and Verboven (2016), and Miller and Weinberg

(2017). The second strand is the literature on entry models. This literature estimates

the payoffs from entering markets, assuming that entry decisions are independent across

markets, without considering demand and supply equations. See de Paula (2013) for a

review. Applications of entry models to airlines can be found, for instance, in Reiss and

Spiller (1989), Berry (1992), Goolsbee and Syverson (2008), Ciliberto and Tamer (2009),

and Chesher and Rosen (2020).

Last, this paper is among the first to model the airlines’ entry decisions by taking

spillovers in entry into account and combining this step with a supply-demand frame-

work. Ciliberto et al. (2021) and Li et al. (2022) develop methods to estimate models

of entry and price decisions, but assume that entry decisions are independent across

markets. Aguirregabiria and Ho (2012), Benkard et al. (2020), Park (2020), and Yuan

(2020) introduce spillovers in entry in their models for the airline industry. However,

differently from our paper, Aguirregabiria and Ho (2012) assume that entry decisions

are made by independent local managers to reduce the computational burden. Benkard

et al. (2020) investigate the dynamic effects of mergers on the airlines’ networks. They

focus on medium- to long-run transitions towards the post-merger equilibrium and do

not model the demand side. In contrast, our framework includes the demand side and

we are interested in the welfare effects emanating from the change between pre- and

post-merger equilibrium. Park (2020) endogenises entry and slot choices at the Ronald

Reagan Washington National Airport only. Yuan (2020) models entry, capacity, and price

decisions, but does not consider spillovers in entry on the fixed cost side and does not

formally estimate the fixed cost parameters. Finally, our paper is the first to disentangle

and estimate the impact of hub-and-spoke structures, both on the variable profits and

fixed costs.

3 The model

There are N airlines, labeled by f ∈ N := {1, . . . ,N}, which play a two-stage game. The

timing of the game is represented in Figure 1. In the first stage, the airlines design their

networks to transfer passengers from one city to another and pay the fixed costs. Cities

are connected directly and/or via hubs. Hubs are exogenously pre-determined. In the

second stage, given the networks, the airlines face the demand for their products, pay the

variable costs, and compete in prices. In the first stage, the airlines observe their own and

their competitors’ fixed cost shocks. However, they do not observe their own and their

competitors’ demand and supply shocks, which are discovered before the second stage.
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In what follows, we describe the game starting from the second stage.

Figure 1: Timing of the game

Firms learn
fixed cost shocks

Firms form
their networks

Firms learn
supply-demand shocks

Firms compete
in prices

T1 T2

3.1 The second stage: demand and supply

In the second stage, the airlines take as given the networks and consequent product

choices. Markets are non-directional city-pairs, such as Houston-Boston, which allows

the possibility to fly from Boston to Houston or from Houston to Boston. Products are

airline-itinerary combinations. For example, in the Houston-Boston market, American

Airlines might offer two or more products: a direct flight between Boston and Houston,

a one-stop flight between Houston and Boston with an intermediate stop at the Dallas

hub, a one-stop flight between Houston and Boston with an intermediate stop at the New

York hub, and so on. Each market is indexed by m ∈ M, where M is the set of markets.

Alternatively, when we need to keep a record of the endpoint cities, the markets whose

endpoints are cities a and b are denoted by {a, b} ∈ M. Each product offered in market

m is indexed by j ∈ Jm, where Jm is the set of products offered in market m.

In every market, the airlines face the demand for their products, pay the variable costs,

and simultaneously choose the prices to maximise the variable profits, under complete

information. We now present the demand and supply equations.

Demand We consider the nested logit demand with two nests; one for the airline

products, and the other for the outside option of not travelling or travelling by other

means (Berry, 1994). The utility that individual i receives from buying product j in

market m is specified as:

Ui,j,m = X⊤
j,mβ − αpj,m + ξj,m + νi,m(λ) + λǫi,j,m. (1)

The outside option is denoted by 0 and its utility normalised to ǫi,0,m. In (1), Xj,m

is a vector of product characteristics and pj,m is the product price, both observed by

the researcher. ξj,m represents the product characteristics that are unobserved by the

researcher and can be arbitrarily correlated with prices. (νi,m(λ), ǫi,j,m, ǫi,0,m) denote the

consumer tastes, unobserved by the researcher, i.i.d. across i, j,m, and independent of

all the other variables. The probability distribution of (νi,m(λ), ǫi,j,m, ǫi,0,m) is chosen to

yield the familiar nested logit market share function, with: λ ∈ (0, 1].
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We include in Xj,m various product characteristics, such as the number of stops and

the distance flown, along with carrier and city fixed effects. Further, Xj,m contains the

number of direct flights offered out of market m’s endpoints by the same carrier offering

itinerary j (hereafter, “Nonstop Origin”). The variable “Nonstop Origin” captures the

value of frequent flier programs (Berry and Jia, 2010). In fact, the larger the number of

destinations for which consumers can redeem frequent flier miles, the higher the value

of such loyalty programs, and so the higher the utility consumers can get from flying

with a given carrier. Moreover, an airline that flies to many cities is likely to have more

convenient parking and gate access and provide better services. See Figure 2 for an

example. Note that, due to the variable “Nonstop Origin”, the demand for product j

in market m depends on the entry decisions of an airline in neighbouring markets. This

gives rise to spillovers in entry across markets on the demand side.

Figure 2: Let market m be Houston-Boston and product j be a direct flight between
Houston and Boston offered by American Airlines. The larger the number of direct
flights offered by American Airlines to passengers in Houston (for instance, direct flights
to Boston as well as Atlanta, Detroit, and Philadelphia, as represented in the image),
the higher the value of American Airlines’ frequent flier programs, and the more facilities
American Airlines will provide to customers at Houston’s airport. These mechanisms are
expected to increase the utility of buying product j.

From utility maximising behaviour, we obtain the predicted demand in market m.

For product j, sj,m(Xm, pm, ξm; θd)×MSm =
exp(δj,m/λ)

Dm

Dλ
m

1 +Dλ
m

×MSm.

For the outside option 0, s0,t(Xm, pm, ξm; θd)×MSm =
1

1 +Dλ
m

×MSm,

(2)

whereXm := (Xj,m : j ∈ Jm), pm := (pj,m : j ∈ Jm), ξm := (ξj,m : j ∈ Jm), θd := (β, α, λ),

sj,m(Xm, pm, ξm; θd) is the product share of product j in market m, MSm is the market

size, δj,m := X⊤
j,mβ − αpj,m + ξj,m, and Dm :=

∑Jm
j=1 exp(δj,m/λ). The researcher observes

the product shares without errors, as is standard in the literature.
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Supply The airlines simultaneously set the prices in each market m to maximise the

variable profits, under complete information:

∑

m∈M

∑

j∈Jf,m

(pj,m −MCj,m)× sj,m(Xm, pm, ξm; θd)×MSm, (3)

where Jf,m is the set of products offered by airline f in market m and MCj,m is product

j’s marginal cost. For each airline f and market m, we obtain the Bertrand-Nash F.O.C.s

in the usual way:

MCf,m = pf,m +
(∂sf,m(Xm, pm, ξm; θd)

∂pf,m

)−1

sf,m(Xm, pm, ξm; θd), (4)

where MCf,m, pf,m, and sf,m(Xm, pm, ξm; θd) are the vectors stacking MCj,m, pj,m, and

sj,m(Xm, pm, ξm; θd), respectively, for each product j ∈ Jf,m.
∂sf,m(Xm,pm,ξm;θd)

∂pf,m
is the

matrix collecting the partial derivatives of product shares with respect to prices.

As standard in the literature, we express product j’s marginal cost as a function of

observed and unobserved cost shifters:

MCj,m = W⊤
j,mθs + ωj,m, (5)

where Wj,m is a vector of marginal cost shifters that are observed by the researcher and

ωj,m represents the marginal cost shifters that are unobserved by the researcher.

As for the demand side, we include in Wj,m various product characteristics, such as

the number of stops, the distance flown, and whether the itinerary is short-haul or long-

haul, along with carrier fixed effects. Further, Wj,m contains the number of cities that are

reachable from the endpoints and intermediate stops of itinerary j with the same carrier

offering itinerary j (variable ”Connections”). This variable captures economies of density;

that is, the fact that more densely traveled markets tend to generate marginal cost savings

due to engineering reasons (Berry and Jia, 2010). In particular, the larger the number of

final destinations consumers can reach via connecting flights, the more the opportunities

for an airline to pool passengers from several itineraries into the same planes, and so the

more an airline can efficiently use large aircrafts, which tend to have lower unit costs.

Note that, due to the variable “Connections”, the marginal cost of product j in market

m depends on the entry decisions of an airline in neighboring markets. This gives rise to

spillovers in entry across markets on the marginal cost side.

3.2 The first stage: entry

In the first stage, the airlines design the networks to transfer passengers from one city to

another and pay the fixed costs. Cities are connected directly and/or via hubs with, at
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most, one intermediate stop. Our data contain very few observations of flights with more

than one intermediate stop and flights connecting via non-hubs. We assume that hub

locations are exogenously determined before the starting of the game. This is because

the transition from point-to-point to hub-and-spoke operations was a historical process

that was started by the airlines after the US Airline Deregulation Act of 1978 and was

quickly completed by the 1990s, many years before the period considered in our empirical

application. Once decided upon, hub locations were not altered in any major way by the

airlines, even after mergers and other restructuring events.3

We formalise the network formation process as follows. Given market {a, b}, let:

Gab,f =




1 if airline f offers direct flights between cities a and b,

0 otherwise.

Let Gf := (Gab,f : {a, b} ∈ M) be the network of airline f , where the nodes of the

network are the cities and the links of the network are the markets served by airline f

with direct flights. In the first stage, each airline f chooses its network Gf . In turn,

we make this choice automatically determine which markets are served by airline f with

connecting flights. In particular, if Gah,f = Ghc,f = 1 and city h is one of airline f ’s hubs,

then we assume that airline f also competes in market {a, c} by offering one-stop flights

between cities a and c via h.

When entering markets, the airlines pay the fixed costs of building and maintaining

the physical, technological, and human infrastructures. Examples are the costs of salaries,

insurance, scheduling coordination, computer reservation and revenue management sys-

tems, and aircraft financing. The fixed costs also include the fees for ticket offices, baggage

conveyors, gates, lounges, parking, and hangars at the airports. Further, the literature

suggests that hub-and-spoke operations can increase the fixed costs due to the risk of

congestion at hubs where many connections must be carefully coordinated. For instance,

consider the extra resources needed to invest in order to harmonise flight schedules, the

leasing of contiguous gates, and the management of passenger traffic along different parts

of the airport, in the case of closely scheduled flights. For a discussion on the impact of

hub-and-spoke operations on fixed costs, see Levine (1987), Butler and Houston (1989),

Borenstein (1992), Oum et al. (1995), Peterson et al. (1995), Nero (1999), Berry et al.

(1996), and Berry et al. (2019).

3For detailed studies on the transition to hub-and-spoke operations, see Caves et al. (1984), Kanafani
and Ghobrial (1985), Morrison and Winston (1986), Levine (1987), Borenstein (1989; 1992), Butler and
Houston (1989), Berry (1990), Brueckner et al. (1992), Evans and Kessides (1993), Brueckner and Spiller
(1994), Oum et al. (1995), Berry et al. (1996), Nero (1999), Button et al. (2000), and Reynolds-Feighan
(2001).
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We specify the fixed costs sustained by airline f as:

FCf (Gf , ηf ; γ) =
∑

{a,b}∈M

Gab,f (γ1,f + ηab,f ) +
∑

h∈Hf

γ2,f (
∑

a ∈ C
a 6= h

Gha,f )
2, (6)

where Hf is the set of airline f ’s hubs, C is the set of cities, ηf := (ηab,f : {a, b} ∈
M) is a vector of mean-zero shocks observed by the airlines but unobserved by the

researcher, and γ := (γ1,f , γ2,f : f ∈ N ) collects the parameters to be identified. The

fixed cost equation consists of two parts. First, there are market-specific contributions,

γ1,f + ηab,f , for each market {a, b} served by direct flights. Second, there are quadratic

terms, γ2,f (
∑

a ∈ C
a 6= h

Gha,f )
2, for each hub h, that account for the risk of congestion at hubs,

as discussed in the previous paragraph. In particular,
∑

a ∈ C
a 6= h

Gah,f is the degree of hub

h, that is, the number of markets served out of hub h with direct flights by airline f (also

called “spokes”). Due to such quadratic terms, the increase in the fixed costs sustained

by airline f when adding a spoke to hub h depends on the number of spokes that hub h

already has. This gives rise to spillovers in entry decisions across markets on the fixed

cost side.

The assumption that the fixed cost shocks, η := (ηf : f ∈ N ), are common knowledge

among the airlines is deemed appropriate. In fact, in the airline industry, the fixed costs

capture fairly standard balance sheet entries that pertain to the long-term side of the

business and do not typically involve any industrial or technological ’secrets’. Hence, it

is plausible to suppose that the airlines can predict the competitors’ fixed cost shocks

reasonably well.

In the fixed cost equation, we do not model slot constraints. This is because our

framework does not distinguish between airports in the same city, and big cities typically

have at least two airports. Importantly, there are no cities in the data where all airports

are slot constrained at the time of our empirical application. For the same reason, we

do not consider scenarios where the hub airlines may inhibit the competitors’ ability to

obtain gates, slots, and other facilities necessary for entry or expansion. Nevertheless,

our methodology can incorporate such effects, for instance, by introducing in (6) binding

upper bounds on the number of links formed by the airlines at specific airports.

We assume that, in the first stage, the airlines know everything about the second

stage, except their own and their competitors’ demand and marginal costs shocks. This

is a natural assumption, because the legacy carriers (which, together with Southwest

Airlines, are the main players of our empirical application) typically operate with a time

lag between the entry decisions and the sale of flight tickets.

In the first stage, the airlines simultaneously choose the networks G := (Gf : f ∈ N )
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that maximise the expected second-stage profits minus the fixed costs:

E[Πf (X
⊕,W⊕,MS, ξ⊕, ω⊕, G; θ)|X⊕,W⊕,MS, η]− FCf (Gf , ηf ; γ), (7)

where Πf (X
⊕,W⊕,MS, ξ⊕, ω⊕, G; θ) is the second-stage profit of airline f . Hereafter, we

denote by J ⊕
m the set of all potential products in market m, including the products not

chosen for production. In turn, X⊕ := (Xj,m : j ∈ J ⊕
m ,m ∈ M), W⊕ := (Wj,m : j ∈

J ⊕
m ,m ∈ M), ξ⊕ := (ξj,m : j ∈ J ⊕

m ,m ∈ M), and ω⊕ := (ωj,m : j ∈ J ⊕
m ,m ∈ M) are the

vectors of observed demand shifters, observed marginal cost shifters, demand shocks, and

marginal cost shocks of all potential products across all markets.4 MS := (MSm : m ∈ M)

is the vector of market sizes. θ := (θd, θs) is the vector of second-stage parameters.

Note that the expectation of the second-stage profits is computed by integrating over the

demand and supply shocks, (ξ⊕, ω⊕), conditional on the variables observed by the airlines

in the first stage, (X⊕,W⊕,MS, η). Note also that the second-stage profits depend on the

networks formed by the airlines. In fact, these networks determine the offered products

and their characteristics, and the equilibrium prices in each market.

3.3 Equilibrium

The airlines solve the game by working backwards from the second stage. First, they cal-

culate the equilibrium profits under any possible networks, demand shocks, and marginal

cost shocks. Then, they choose the networks that are maximising the expected value of

those profits. A subgame perfect pure strategy Nash equilibrium consists of networks

and price functions, {G∗, (P ∗
m(ξ

⊕
m, ω

⊕
m, G) : m ∈ M)}, constituting a pure strategy Nash

equilibrium in every subgame.

The existence and uniqueness of (P ∗
m(ξ

⊕
m, ω

⊕
m, G) : m ∈ M) is established by Nocke

and Schutz (2018) for the case of multi-product nested logit, which is what we consider

here. We allow for multiple G∗. Multiple G∗ are possible because the airlines compete at

the entry stage through the second-stage pricing game. As explained in Section B of the

Online Appendix, it is difficult to show that at least one G∗ exists, due to the presence

of spillovers in entry on demand, marginal cost, and fixed cost sides. In what follows, we

assume that G∗ exists. In Section C of the Online Appendix, we show that the moment

inequalities derived in Section 4.2 are robust to the possibility that G∗ does not exist for

some parameter values and variable realisations.

4Analogously, we define the market-specific vectors X⊕
m := (Xj,m : j ∈ J⊕

m ), W⊕
m := (Wj,m : j ∈ J⊕

m ),
s⊕m := (sj,m : j ∈ J⊕

m ), and P⊕
m := (pj,m : j ∈ J⊕

m ). We will also use this notation in Section 4.1.
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4 Identification

This section discusses the identification of the vector of parameters, (θ, γ) ∈ Θ × Γ ⊆
R

K × R
P, where K is the dimension of θ and P is the dimension of γ.

4.1 Identification of the demand and supply parameters

To identify θ := (θd, θs) ∈ Θ, we follow the identification arguments for standard supply-

demand models with differentiated products (Berry and Haile, 2014). Intuitively, the

vector of demand parameters, θd, is identified from the distribution of prices, sales, and

product covariates. Once θd is identified, the markups are also identified from the F.O.C.s

in (4). In turn, the marginal costs are identified as the difference between the prices and

the markups. Last, the variation in the identified marginal costs and product covariates

identifies the vector of marginal cost parameters, θs.

More precisely, there are two potential sources of endogeneity to be considered here.

First, the list of products offered in the second stage is selected by the airlines in the

first stage and may be correlated with the second-stage shocks. Second, the prices and

within-group market shares are correlated with the second-stage shocks because the lat-

ter are observed by the airlines when playing the second stage. We deal with these

two sources of endogeneity by leveraging the timing of choices and information struc-

ture of the game, which legitimise us assuming that the second-stage shocks are mean

independent of the airlines’ information set in the first stage. Formally, we assume that

E(ξj,m, ωj,m|X⊕,W⊕,MS, η) = 0 a.s., for every product j ∈ J ⊕
m .

This mean independence assumption is standard in empirical two-stage games (Eizen-

berg, 2014; Holmes, 2011; Houde et al., 2023; Kuehn, 2018; Rossetti, 2018; Wollmann,

2018) and is similar to the mean independence assumption in classic supply-demand mod-

els. This states that the information owned by the airlines in the first stage does not help

them to better predict the second-stage shocks.

The mean independence assumption rules out correlation between the second-stage

shocks and the fixed cost shocks. Introducing such a correlation is possible in princi-

ple, but numerically challenging, because it would break the separation between the two

stages in the estimation procedure. We view the absence of correlation as a reasonable

simplification. In fact, the selection problem potentially affecting the second-stage esti-

mates is mainly driven by the spillovers in entry. As we explicitly model these spillovers,

our fixed cost shocks capture residual factors, which can be safely assumed to be un-

correlated with the supply-demand shocks. For a different approach, see Ciliberto et al.

(2021) and Li et al. (2022), which allow for correlation between the fixed cost shocks and

the supply-demand shocks without modelling spillovers in entry and given a parametric

specification of the distribution of the fixed cost shocks.

From a technical perspective, the mean independence assumption eliminates the first
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source of endogeneity mentioned above because it implies that E(ξj,m, ωj,m|G) = 0 for

every product j ∈ J ⊕
m , that is, the second-stage shocks are mean independent of the

list of products offered in the second stage. Further, the mean independence assumption

solves the second source of endogeneity because it allows us to instrument the prices

and within-group market shares in the usual way. Specifically, θ can be point identified

as follows. Let zj,m(X
⊕
m,W

⊕
m) be an L × 1 vector of instruments pertaining to product

j ∈ J ⊕
m , where L ≥ K. Given ρj,m := (ξj,m, ωj,m), the mean independence assumption

implies:

E(ρj,m × zj,m,l(X
⊕
m,W

⊕
m)|G) = 0 ∀l = 1, . . . ,L, (8)

for every product j ∈ J ⊕
m . Berry et al. (1995) show that we can uniquely express ρj,m as

a function of the product covariates and θ (“BLP inversion”):

ρj,m = τj,m(X
⊕
m,W

⊕
m ,MSm, s

⊕
m, P

⊕
m , G; θ).

Therefore, we obtain:

E(τj,m(X
⊕
m,W

⊕
m ,MSm, s

⊕
m, P

⊕
m , G; θ)× zj,m,l(X

⊕
m,W

⊕
m)|G) = 0 ∀l = 1, . . . ,L, (9)

for every product j ∈ J ⊕
m . The above moment equalities depend only on variables that are

observed by the researcher and guarantee point identification of θ under an appropriate

rank condition. Following Berry et al. (1995), we use functions of the observed demand

shifters as instruments for the price and the within-group market share. See Section H

of the Online Appendix for the list of second-stage instruments.

4.2 Identification of the fixed cost parameters

This section shows how γ ∈ Γ is set-identified from moment inequalities. We follow

the literature on revealed preferences (Pakes, 2010; Pakes et al., 2015) and derive these

moment inequalities from best-response implications. Namely, if the networks chosen by

the airlines constitute a pure strategy Nash equilibrium (PSNE), then they should lead

to higher profits than if the airlines were to deviate from those networks.

This strategy allows us to circumvent two potential difficulties. First, there may be

multiple PSNE networks. Second, constructing the set of PSNE networks is computa-

tionally burdensome due to the large number of markets and the presence of spillovers in

entry. Our moment inequalities do not require us to impose any ad-hoc equilibrium se-

lection assumption and construct the set of PSNE networks for each candidate parameter

value.
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Best-response implications

Let G−f denote the collections of the networks formed by firm f ’s competitors and G :=

(Gf , G−f ). If such networks constitute a PSNE, as we assume, then they should lie on the

carriers’ best-response curves. In turn, the increase in profits that each airline f would

receive if it deviated from Gf and the other firms were mandated to keep G−f is negative.

We consider one-link deviations only; that is, each airline f can add/delete direct flights

in one market at a time.

For each airline f , take market {a, b} that airline f does not serve with direct flights;

that is, for which Gab,f = 0. Let airline f ’s counterfactual network be the network in

which airline f operates in all markets served under Gf and, additionally, it offers direct

flights between cities a an b. We denote it by G(+ab),f .

From the revealed preference principle, the difference between the expected variable

profits earned by airline f under its counterfactual network and the expected variable

profits earned by airline f under its factual network, while the competitors maintain G−f ,

is less or equal than the extra fixed-cost that airline f pays for the added direct flight:

Πe
f (G(+ab),f , G−f ; θ)− Πe

f (Gf , G−f ; θ) ≤ FCf (G(+ab),f , ηf ; γ)− FCf (Gf , ηf ; γ), (10)

where Πe
f is shorthand notation for the expected variable profits in (7). Following (6), the

right-hand side of (10) is a linear expression in γ1,f , γ2,f and ηab,f . Denoting by ∆Q(+ab),f

the difference between the quadratic terms in (6) at G(+ab),f and Gf , we have:

FCf (G(+ab),f , ηf ; γ)− FCf (Gf , ηf ; γ) = γ2,f∆Q(+ab),f + γ1,f + ηab,f .

When neither a nor b is a hub of airline f , the difference simplifies to γ1,f + ηab,f . As we

expect γ1,f and γ2,f to be positive, (10) provides a “lower” bound for γ1,f and γ2,f .

Similarly, for each airline f , we consider market {a, b} that airline f serves with direct

flights; that is, for which Gab,f = 1. Let airline f ’s counterfactual network be the network

in which airline f operates in all markets served under Gf , but does no longer offer direct

flights between cities a an b. We denote it by G(−ab),f . Following the revealed preference

principle, we have:

Πe
f (Gf , G−f ; θ)− Πe

f (G(−ab),f , G−f ; θ) ≥ FCf (Gf , ηf ; γ)− FCf (G(−ab),f , ηf ; γ). (11)

As above, the right-hand side of (11) can be written as:

FCf (Gf , ηf ; γ)− FCf (G−ab,f , ηf ; γ) = γ2,f∆Q(−ab),f + γ1,f + ηab,f ,

where ∆Q(−ab),f is the difference between the quadratic terms in (6) at Gf and G(−ab),f .

Again, neither a nor b is a hub of airline f , the difference simplifies to γ1,f + ηab,f . As
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we expect γ1,f and γ2,f to be positive, (11) provides an “upper” bound for γ1,f and γ2,f .

Before proceeding, we remark that (10) and (11) are also compatible with equilibrium

notions weaker than PSNE. For instance, they resemble the notion of pairwise stability

used in network theory, as discussed in Section B of the Online Appendix. Further,

Section D of the Online Appendix outlines the steps to calculate (10) and (11) in practice.

Note here that, despite considering one-link deviations, (10) and (11) are not computed

as if entry decisions were independent across markets. In fact, a one-link deviation creates

a “domino effect” in the neighbouring markets, due to the possibility of airline f offering

one-stop flights and the presence of spillover effects. This makes our method different

from the approaches that assume that entry decisions are independent across markets.

From best-response implications to moment inequalities

In this paragraph, we use (10) and (11) to derive moment inequalities. We take the

expectation of (10) and (11) over markets and obtain the following moment inequalities

for each airline f :

E

[
(1−Gab,f )×

(
γ2,f∆Q(+ab),f + γ1,f + ηab,f −

(
Πe

f (G(+ab),f , G−f ; θ)−Πe
f (Gf , G−f ; θ)

)) ]
≥ 0,

E

[
Gab,f ×

(
Πe

f (Gf , G−f ; θ)−Πe
f (G−ab,f , G−f ; θ)−

(
γ2,f∆Q(−ab),f + γ1,f + ηab,f

)) ]
≥ 0.

(12)

If we could claim that E[ηab,f × Gab,f ] = 0, then we would delete ηab,f from the moment

inequalities in (12) and use such moment inequalities for identification. Unfortunately, the

expectation is not equal to zero because the fixed cost shocks are structural components

observed by the airlines when forming their networks.

Various solutions have been proposed in the literature to handle this selection issue.5

Eizenberg (2014) assumes that the fixed cost shocks have a bounded support, which is

contained within the support of the change in the expected variable profits resulting from

one-product deviation at a time. For this approach to generate informative bounds on γ,

the support of the change in the expected variable profits should not be too large. This is

not the case here, as we consider deviations in fundamentally different markets (that is,

small non-hub markets and large hub markets), that face changes in the expected variable

profits of significantly different magnitudes. In turn, Eizenberg (2014)’s strategy does not

lead to meaningful bounds in our setting. Another approach could be to assume that

ηab,f = ηa,f+ηb,f and take the differences between inequalities that contain the same fixed

cost shock, similarly to Kuehn (2018). Alternatively, Ciliberto et al. (2021) parametrically

specify the distribution of η and calculate bounds on the probability of observing each

possible entry decision. This solution requires enumerating every equilibrium network,

which is not feasible in our setting. We do not follow any of these approaches and, instead,

5For a thorough discussion on the available strategies, see Kline et al. (2021).
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overcome the selection issue by introducing instruments, as in Pakes et al. (2015) and

Wollmann (2018). In what follows, we explain how we construct such instruments.

In our data, there are markets that are so profitable for an airline that it would be

impossible not to serve them. For instance, airlines tend to always offer direct service in

large markets where they have a hub at one or both endpoints. As another example, there

are some non-hub markets that airlines have continuously served with direct flights since

deregulation in 1978 due to historical reasons. Following these and similar arguments,

for every airline f , we characterise R− groups of markets and assume that airline f

almost surely offers direct service in the markets belonging to each of these groups,

regardless of the realization of the fixed cost shocks. Formally, for r = 1, . . . ,R−, we

introduce a binary variable Zr,(−ab),f (instrument) which is equal to one if market {a, b}
belongs to group r, and zero otherwise. We assume that E(ηab,f |Zr,(−ab),f = 1) = 0 and

Pr(Gab,f = 1|Zr,(−ab),f = 1, ηab,f ) = 1 almost surely. In turn, we have

E

[
Zr,(−ab),f ×Gab,f ×

(
Πe

f (Gf , G−f ; θ)−Πe
f (G−ab,f , G−f ; θ)−

(
γ2,f∆Q(−ab),f + γ1,f

))]
≥ 0,

r = 1, . . . ,R−.

(13)

Conversely, airlines tend to never offer a direct service between one of their hubs and a

city that has another of their hubs close by, as this would lead to very low profits. For

similar reasons, airlines rarely enter non-hub markets where a competing firm has a hub

at one or both endpoints. As above, for every airline f , we characterise R+ groups of

markets and assume that airline f does not offer a direct service in the markets belonging

to each of these groups almost surely, regardless of the realization of the fixed cost shocks.

Formally, for r = 1, . . . ,R+, we introduce a binary variable Zr,(+ab),f (instrument),which

is equal to one if market {a, b} belongs to group r, and zero otherwise. We assume that

E(ηab,f |Zr,(+ab),f = 1) = 0 Pr(Gab,f = 0|Zr,(+ab),f = 1, ηab,f ) = 1. In turn, we have:

E

[
Zr,(+ab),f × (1−Gab,f )×

(
γ2,f∆Q(+ab),f + γ1,f −

(
Πe

f (G(+ab),f , G−f ; θ)−Πe
f (Gf , G−f ; θ)

))]
≥ 0,

r = 1, . . . ,R+.

(14)

The moment inequalities in (13) and (14) now depend only on variables that are observed

by the researcher and, hence, can be used to set identify γ. We denote by ΓI the identified

set; that is, the collection of parameters γ that satisfy the two sets of moment inequalities

above. We report the list of first-stage instruments in Section H of the Online Appendix.

ΓI is not sharp; that is, it may be a superset of the set of observationally equivalent

parameters. This is due to three reasons. First, the moment inequalities in (13) and (14)

are derived from the necessary conditions for PSNE. If the airlines choose G and this

is a PSNE, then (10) and (11) should hold. However, as there may be multiple PSNE,

one would expect that these moment inequalities do not exploit all the information in
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the model assumptions. Deriving necessary and sufficient conditions for PSNE requires

us to characterize the whole set of possible PSNE, a strategy that is computationally

intractable for our specific game. See Beresteanu et al. (2011) for more details on simpler

games. Second, our procedure may neglect other valid first-stage instruments. Third,

the moment inequalities in (14) and (13) are derived from one-link deviations, but the

airlines may also deviate by deleting/adding more than one link at a time. Considering

many-link deviations is possible in our framework. It may lead to tighter bounds, however

these may be at the cost of increasing the computational burden. We do not account for

many-link deviations to maintain a computationally light procedure. Further, we show in

Section E of the Online Appendix that many-link deviations do not provide a substantial

improvement of the bounds.

Last, in addition to η, Pakes (2010) and Pakes et al. (2015) suggest including in the

revealed-preference inequalities some additive perturbations to account for the fact that

the model may be mis-specified. We have not included these terms but we check for

model mis-specification when conducting inference using the recent work of Stoye (2020).

5 Inference on the fixed cost parameters

Inference on the second-stage parameter, θ, is standard and can be done by GMM. More

details are in Section F of the Online Appendix. In this section, we discuss inference on

the first-stage parameters, γ. For simplicity of exposition, in what follows, we assume

that θ is known. Further, we streamline the notation of (13) and (14) as:

E(Zr,mBm)
⊤γ − E(Zr,mAm) ≤ 0, r = 1, . . . ,R, (15)

where r indexes one of the instruments for firm f , m is a market {a, b}, R is the total num-

ber of instruments across all firms, Zr,m is Zr,(−ab),f or Zr,(+ab),f , Am isGab,f (Π
e
f (Gf , G−f ; θ)−

Πe
f (G−ab,f , G−f ; θ)) or −(1−Gab,f )(Π

e
f (G+ab,f , G−f ; θ)−Πe

f (Gf , G−f ; θ)), Bm is such that

B⊤
mγ is equal to Gab,f (γ1,f +∆Q(−ab),fγ2,f ) or −(1−Gab,f )(γ1,f +∆Q(+ab),fγ2,f ).

The support function

ΓI is a convex polyhedron. It is bounded if the differences in the expected variable

profits between the realized and counterfactual networks are bounded, and there are

enough instruments to select markets that are almost surely served and not served. It

is non-empty if the model is correctly specified. In the empirical analysis, we calculate

confidence intervals robust to mis-specification.

Convexity has been proven to be a desirable feature in the set identification literature

(Beresteanu and Molinari, 2008; Bontemps et al., 2012; Kaido and Santos, 2014). It

often reduces the computational burden of estimation because the analysts can focus
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on estimating the support function of the identified set. The support function of ΓI ,

δ(·; ΓI), in a given direction q, is equal to the (signed) distance between the origin and the

supporting hyperplane with outer normal q. The support function gathers all the moment

inequalities satisfied by the model because γ belongs to ΓI if and only if q⊤γ ≤ δ(q; ΓI)

for each q ∈ R
P. Moreover, inference on a subvector of γ can be easily performed

by considering specific directions. For example, if the chosen direction, q, has its p-th

component equal to 1 (resp., −1) and the other components equal to 0, then the support

function of ΓI in direction q is equal to the maximum (resp., minus the minimum) value

of the p-th component of γ.

Due to the linearity of the moment inequalities in γ, the support function of ΓI in

direction q is a linear program:

δ(q; ΓI) := sup
γ∈Γ

q⊤γ,

s.t. E(Zr,mBm)
⊤γ − E(Zr,mAm) ≤ 0, r = 1, . . . ,R.

(16)

δ(q; ΓI) can be estimated after replacing the expectations in (16) with sample averages.

In particular, let the estimated identified set be defined as:

Γ̂I :=
{
γ ∈ Γ :

(
1

M

M∑

m=1

Zr,mB
⊤
m

)
γ ≤ 1

M

M∑

m=1

Zr,mAm for r = 1, . . . ,R
}
. (17)

The estimated support function in direction q is the support function of the estimated

identified set:

δ̂(q; ΓI) := δ(q; Γ̂I). (18)

Again, δ̂(q; ΓI) can be calculated from a linear program.

Asymptotic distribution of the estimated support function

We make the simplifying assumption that we have an i.i.d. random sample of observa-

tions,

{Z1,m, . . . , ZR,m, Am, Bm}Mm=1,

where M is the number of markets, and that the Central Limit Theorem applies to all the

average of each quantity of interest. The i.i.d. assumption can be relaxed, for example,

by implementing the approaches discussed by Leung (2022) and Leung and Moon (2021).

We introduce some notation that is useful for the next arguments. The Lagrangian

of (16), rewritten as − inf(−q⊤γ), is equal to:

L(γ, λ1, . . . , λR) := −q⊤γ +
R∑

r=1

λr

(
E(Zr,mBm)

⊤γ − E(Zr,mAm)
)
, (19)
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where λ = (λ1, . . . , λR)
⊤ is the vector of Lagrange multipliers associated with the R

inequality constraints. We denote by G0 the set of optimal solutions γ, and by Λ0 the set

of Lagrange multipliers λ. For every r = 1, . . . ,R, let Wr(γ) be the limit in distribution

of:
√
M

(
1

M

M∑

m=1

(Zr,mB
⊤
mγ − Zr,mAm)− (E(Zr,mBm)

⊤γ − E(Zr,mAm))

)
.

Wr(γ) is a univariate centered normal with variance V ar(Zr,mB
⊤
mγ − Zr,mAm).

Theorem 1 provides the asymptotic distribution of δ̂(q; ΓI) in any direction q.

Theorem 1. Assume that the moments of order 2 + τ of the random variables exist for

some τ > 0. Then:

(i) The estimated support function, δ̂(q; ΓI), tends to the true support function, δ(q; ΓI),

uniformly in q in the unit ball;

(ii) It holds that, uniformly in q in the unit ball:

√
M
(
−δ̂(q; ΓI) + δ(q; ΓI)

)
d−→

M→∞
inf
γ∈G0

sup
λ∈Λ0

R∑

r=1

λrWr(γ).

If G0 and Λ0 are singleton, the asymptotic distribution is a Normal distribution. ⋄
Theorem 1 shows that the asymptotic distribution of δ̂(q; ΓI) depends on G0 and

Λ0. If these sets are singleton, then the estimated support function is asymptotically

Normal, with a variance that can be estimated from the data. Unfortunately, this is not

always the case. In particular, if the direction q corresponds to the outer normal of an

exposed face, then Λ0 is a singleton while G0 is not (Bontemps et al., 2012). Further, if

more than P moments cross at the same vertex, then G0 is a singleton while Λ0 is not.

It is generally impossible to know from the sample which case we are facing. Various

solutions to this problem have been proposed. Some papers perturb the linear program

(Cho and Russell, 2020; Gafarov, 2021; Bontemps et al., 2022). Other papers smooth the

identified set (Chandrasekhar et al., 2019). Here, we propose a methodology that follows

the second approach. Our methodology permits us to construct confidence regions after

having appropriately smoothed the identified set.

Smoothing the identified set

If the identified set is strictly convex, then the support function is differentiable every-

where and G0 and Λ0 are singletons. To obtain strict convexity, we consider an approxi-

mation of the function x+ = max(x, 0). Following Chen and Mangasarian (1995), for any

α > 0, the function:

fα(x) = x+
1

α
log(1 + exp(−αx)) =

1

α
log(1 + exp(αx)),
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is strictly convex and lies above x+. The maximum distance between the two functions

is equal to log(2)/α (at x = 0) and it holds that:

fα(x)− log(2)/α ≤ x+ ≤ fα(x),

for each x in R. As a result, fα converges uniformly to x+ as α goes to infinity. By using

this insight, we replace the original R inequality constraints with:

gα(γ) =
R∑

r=1

fα(E(Zr,mBm)
⊤γ − E(Zr,mAm))− R log(2)/α ≤ 0. (20)

Let Γα
I be the collection of γs that satisfy (20). Observe that Γα

I is strictly convex because

gα is strictly convex. Moreover, the Hausdorff distance between Γα
I and ΓI is bounded

above by K/α, where K which depends on ΓI (Chen and Mangasarian, 1995).

By using (20), we rewrite (16) as:

δ(q; Γα
I ) := sup

γ∈Γ
q⊤γ,

s.t. gα(γ) ≤ 0.

(21)

We show in Section G of the Online Appendix that (21) is a linear optimisation problem

with exponential cone constraints. This problem can be efficiently solved with any solver

used in convex optimisation (RMOSEK in our case).

Let the estimate of Γα
I be defined as:

Γ̂α
I :=

{
γ ∈ Γ :

R∑

r=1

fα

( 1

M

M∑

m=1

Zr,mB
⊤
mγ − 1

M

M∑

m=1

Zr,mAm

)
− R log(2)/α ≤ 0

}
,

and its support function be:

δ̂(q; Γα
I ) := δ(q; Γ̂α

I ).

Theorem 2 provides the asymptotic distribution of δ̂(q; Γα
I ) in any direction q.

Theorem 2. Assume that the moments of order 2 + τ of the random variables exist for

some τ > 0. Then:

(i) The estimated support function, δ̂(q; Γα
I ), tends to the true support function, δ(q; ΓI),

uniformly in q in the unit ball, when α tends to infinity;

(ii) It holds that: √
M
(
δ̂(q; Γα

I )− δ(q; Γα
I )
)

d−→
M→∞

Zα(q),
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where

Zα(q) = λ

(
R∑

r=1

Wr(γq)

1 + exp (−α (E(Zr,mBm)⊤γq − E(Zr,mAm)))

)
,

γq is the unique point of the frontier of Γα
I achieving the supremum of q⊤γ and λ,

the (unique) Lagrange multiplier related to the constraint gα(γ) ≤ 0.

⋄

As δ(q,Γα
I ) is differentiable everywhere in q, Theorem 2 shows that the asymptotic

distribution of δ̂(q; Γα
I ) is normally distributed with a variance that can be estimated from

the data. Note that if only one constraint, r0, is binding, then the variance of δ̂(q; Γα
I ) is

equal to the variance of λWr0(γq)/(1 + 2−R).

Theorem 2 allows us to construct a confidence region for the outer set Γα
I that is valid

for the identified set. In particular, it is straightforward to construct a confidence interval

for each component or linear combination of components of γ. It also allows us to draw

points from the confidence region for γ. Further details are in Section G of the Online

Appendix.

6 Data

Our data are from the Airline Origin and Destination Survey (DB1B) and consist of a

10% random sample of all tickets issued in the United States during the second quarter

of 2011. By then, the merger between United Airlines and Continental Airlines had

been completed and American Airlines and US Airways had not yet announced their

intention to merge. We restrict the sample to the flights operated between the 85 largest

metropolitan statistical areas (MSAs) in the United States.6 Hereafter, we refer to MSAs

as cities.

A market is defined as a non-directional pair of two cities, regardless of the actual

journey from one city to the other. We delete tickets with multiple operating carriers or

multiple ticketing carriers; tickets with different inbound and outbound itineraries; tickets

that are not round-trip; connecting tickets via cities that are not hubs; or with more than

one stop. Note that we observe very few of these tickets. A product is a combination

between an itinerary between two cities with, at most, one stop via a hub and an airline

ticketing this trip. We consider tickets featuring the same airline-itinerary combination

but with different fares as the same product. We compute the corresponding price as the

trimmed average price, weighted by the number of passengers.7

6We focus on domestic operations because the effects of the merger between American Airlines and
US Airways were mainly felt domestically.

7We delete tickets with fares in the highest and lowest percentiles and tickets with fares below $25.
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We compute the market sizes using data from the US Census Bureau on MSA pop-

ulation. In particular, we calculate the size of a market as the geometric mean of the

populations at the endpoints. We compute the share of a product as the total number of

passengers buying that product divided by the market size.

The major carriers in the sample are United Airlines (UA), Delta Airlines (DL),

American Airlines (AA), US Airways (US), and Southwest Airlines (WN). The four legacy

carriers rely on hub-and-spoke operations. Southwest Airlines does not exploit a pure

hub-and-spoke business model, but a hybrid system in which a small number of airports

are focus cities offering some of the services generally found at hubs. When estimating

our model, we treat focus cities as hubs. All the other carriers in the sample are put

either in a group called Low-Cost Carriers (LCC), or in a group called Other. These

carriers are considered to be fringe competitors, differing only in whether or not they

can be classified as low cost. Further, to enhance computational tractability, we do not

consider the fixed costs of LCC and Other when estimating the first-stage parameters,

and we assume that their networks are exogenously determined before the starting of the

game.8

The observed demand shifters, Xj,m, include the number of stops (which is 1 or 0,

“Indirect”), the maximum number of direct flights offered at the itinerary’s endpoints by

the same carrier offering itinerary j (“Nonstop Origin”), the distance flown in thousands

of miles, (“Distance”), and its squared value (“Distance2”). We also add to Xj,m carrier

and city fixed effects, in order to capture unobserved brand- and city-specific features.

We allow the marginal cost parameters to differ between short-haul and long-haul flights,

which are defined as flights covering up to 1,500 miles and flights covering more than

1,500 miles, respectively. The observed marginal cost shifters, Wj,m, include the number

of stops (“Indirect”), the average number of cities that are reachable from the endpoints

and intermediate stops of itinerary j with the same carrier offering itinerary j (“Con-

nections”). We also add to Wj,m carrier fixed effects. We report the list of second-stage

instruments in Section H of the Online Appendix.

Table 1 provides some summary statistics. Panel (b) reveals that American Airlines

and US Airways are the two smallest carriers among the major airlines. However, if

combined, they become the largest airline in terms of pre-merger market shares. From

panel (c), we can see that hub cities are much more connected than non-hub cities, as

evidenced by the average degree and average density.

8See Tables H.1 and H.2 in Section H of the Online Appendix for the list of hubs and focus cities in
2011 and the list of the airlines included in LLC and Other, respectively.
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Table 1: Summary statistics.

(a) Sizes
Number of firms 7
Number of products 17,481
Number of markets 3,146
Fraction of direct flights 0.14
Fraction of hub itineraries 0.83
Number of passengers 25.33
Fraction of direct passengers 0.85
Fraction of passengers in hub markets 0.57
Fraction of markets served 0.93

(b) Market shares by airline
AA 0.12
DL 0.19
UA 0.15
US 0.09
WN 0.24
LCC 0.16
Other 0.05

(c) Network statistics Mean St.Dev
Degree (Hub) 49.86 13.03
Density (Hub) 0.61 0.16
Clustering (Hub) 0.24 0.14
Degree (No hub) 7.21 7.72
Density (No hub) 0.09 0.09
Clustering (No hub) 0.80 0.33

(d) Demand and marginal cost variables Mean St.Dev
Price (100 USD) 4.32 1.20
Indirect 0.86 0.34
Nonstop Origin (100) 0.20 0.19
Connections (100) 0.56 0.15
Distance (1,000 miles) 1.44 0.68
Product share 4.61e-04 1.48e-03
Market Size (1 million) 2.55 1.85

(e) Market-level statistics Mean St.Dev
Number of firms 3.59 1.81
Number of products 5.56 4.43
Number of direct flights 0.75 1.20
Number of hub itineraries 4.62 3.43
Number of passengers (1,000) 8.05 24.43
Number of direct passengers (1,000) 6.82 23.98
Number of passengers in hub markets (1,000) 4.60 15.39

Note: The degree is the number of links out of a node. The density is the
ratio between the actual number of links and the total number of potential
links. The clustering coefficient is the ratio between the number of closed
triplets and the total number of triplets.
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7 Results

7.1 Results from the demand and supply

The second-stage results are in Table 2. We find significant spillovers in entry on the

demand side. Specifically, passengers benefit from having a large number of direct flights

offered by an airline at the itinerary’s endpoints (“Nonstop Origin”). Hence, denser

networks increase consumers’ willingness-to-pay for an airline’s flights, all the rest being

constant. To give an idea of the magnitude of the spillovers, note that, on average, an

origin city allows passengers to reach 20 destinations with a given airline. Doubling this

number generates an increase in utility equivalent to a decrease in price of around $30.9

The price coefficient is negative. It lies between the price coefficients of the two

consumer types considered by Berry and Jia (2010) and within the ballpark of what

other contributions have found. Passenger utility is an inverted U-shaped function of the

distance flown. This means that, as distance increases, air travel becomes more pleasant

relative to the outside option. However, as distance increases further, travel becomes less

enjoyable and demand starts to decrease. In line with the literature, passengers exhibit

a strong disutility for connecting flights. Last, we estimate the nesting parameter, λ, to

be around 0.6. Therefore, we can conclude that there is substitution between the inside

goods and the outside option.

We also find significant spillovers in entry on the marginal cost side. Specifically, the

marginal cost of an itinerary decreases with the average number of cities that an airline

allows to reach from the itinerary’s endpoints and intermediate stops (“Connections”).

This is due to economies of density: the larger the number of final destinations consumers

can reach, the more the opportunities for an airline to pool passengers from several

itineraries into the same planes, and so the more an airline can efficiently use larger

aircraft that typically have lower unit costs. Hence, denser hub-and-spoke structures

lead to marginal cost savings, all the rest being constant. The impact of the variable

“Connections” is more pronounced for long-haul flights, as the efficiency of large planes is

especially evident in long routes. Further, long-haul one-stop flights have lower marginal

costs than long-haul direct flights, again by virtue of economies of density. Short-haul

one-stop flights are not significantly cheaper or more expensive than short-haul direct

flights. This is because economies of density may be offset by the extra take-off and

landing, which uses a large volume of fuel. The marginal costs of both long-haul and

short-haul flights increase with the distance flown. This is because, as distance increases,

more fuel is needed to cover the itinerary. Last, as expected, Southwest Airlines, LCC,

and Other have lower marginal costs than the legacy carriers. To provide an illustration

of the magnitude of the spillovers, observe that an additional connection reduces marginal

9Remember that both “Nonstop Origin” and “Price” are measured in hundreds.
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costs by $1.2 for short-haul and $2 for long-haul flights. These magnitudes are comparable

to increasing the distance flown by around 30 miles.

Table 3 reports some elasticity estimates. In particular, we call price elasticity the

average price elasticity across products. The aggregate elasticity is the percentage change

in the inside product share when all products’ prices rise by 1%. The price elasticity is

consistent with previous findings in the literature.10

Section H of the Online Appendix presents the variable profit estimates and a discus-

sion on firm sources of profitability.

Table 2: Second-stage estimates.

Utility Marginal Cost

Coefficient SE Coefficient SE

Mean utility Short-haul flights
Intercept -5.598 (0.262) Intercept 3.118 (0.090)
Price -0.587 (0.066) Indirect 0.031 (0.028)
Indirect -1.794 (0.066) Distance 0.474 (0.037)
Nonstop Origin 0.868 (0.032) Connections -1.245 (0.136)
Distance 0.289 (0.084) Long-haul flights
Distance2 -0.093 (0.095) Intercept 3.703 (0.114)
Nesting Parameter (λ) 0.623 (0.025) Indirect -0.189 (0.041)

Distance 0.667 (0.032)
Connections -2.016 (0.145)

Carrier FEs Carrier FEs
DL -0.168 (0.018) DL 0.082 (0.035)
UA -0.387 (0.025) UA 0.050 (0.032)
US 0.142 (0.025) US 0.079 (0.032)
WN -0.519 (0.032) WN -0.363 (0.029)
LCC -0.348 (0.032) LCC -1.509 (0.055)
Other -0.074 (0.056) Other -1.398 (0.049)

Statistics
J-statistic 15.627
p-value (J-stat) 0.156
Number of products 17,481

Note: “Price” is in hundreds of USD. “Connections” and “Nonstop Origin” are in hundreds. “Dis-

tance” is in thousands of miles. City fixed effects are included in the demand. The number of
over-identifying restrictions is 11.

Table 3: Elasticity estimates.

Price elasticity −3.780 (1.090)
Aggregate elasticity∗ −2.100

Note: Standard deviations across products in
parentheses are computed.
* : There is only one estimate for the whole
dataset.

10See, for example, Ciliberto and Williams (2014) or Li et al. (2022).
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7.2 Results from entry

The second and third columns of Table 4 report the projection of the estimated identified

set of the first-stage parameters, Γ̂I , from (17) and (18). We see that, in the absence of

congestion costs at hubs, the baseline fixed costs, γ1, of offering a direct service between

two endpoints are between $655, 719 and $872, 891. In turn, the total baseline fixed costs

are obtained by multiplying those numbers by the number of markets an airline serves

with direct flights. For example, the total baseline fixed costs of American Airlines are

between $153 and $204 million.

To interpret the congestion cost parameters, (γ2,f : f ∈ N ), consider the second and

third columns of Table 5, which report the estimated increase in fixed costs when adding

a spoke to a hub with 20 spokes. The results are heterogeneous across firms, although

we cannot reject the hypothesis that they are all equal. For instance, US Airways and

Southwest Airlines register higher lower bounds than the other airlines. This is because

Southwest Airlines uses a business model, which combines hub-and-spoke and point-to-

point operations, and US Airways has a small network that is mainly concentrated in the

Eastern US. These findings align with the second and third columns of Table 6, which

show that US Airways and Southwest Airlines potentially face the highest total fixed

costs for a hub with 20 spokes. Such higher fixed costs are counterbalanced by lower

marginal costs, as highlighted in Table H.5 of the Online Appendix.

To verify if our fixed cost estimates are reasonable, we compute the estimated share of

the variable costs over the “operating costs”. The former are obtained as marginal costs

times the number of passengers. The latter are defined as the sum of the variable costs

and fixed costs, without considering the congestion costs. Table H.6 in Section H of the

Online Appendix reports this share for each airline. We compare such shares with the

estimates from the FAA for 2018 based on administrative data (Table H.7) and observe

similar orders of magnitude.11

The other columns of Tables 4, 5, and 6 report the quantities discussed above, but

are now corresponding to the estimated smoothed outer set, Γ̂α
I , with α = 10, 000 and

α = 50, 000. As expected, the projections of Γ̂α
I get wider as α decreases. Deriving the

optimal value of α is beyond the scope of this paper. It depends on the magnitude of the

moments 1
M

∑M
m=1(Zr,mB

⊤
mγ − Zr,mAm), r = 1, . . . ,R considered. Here, we have chosen

α to cover Γ̂I with a maximum of 1% discrepancy.12 For our dataset, α = 50, 000 seems

a good compromise. From Table 5 onwards, we report our results based on this choice of

α.

Table 7 shows the 95% confidence intervals for each component of γ, obtained from the

application of Theorem 2. Implementing the mis-specified adaptive confidence intervals of

11See https://www.faa.gov/regulations_policies/policy_guidance/benefit_cost, Section 4 of
the Benefit-Cost analysis, Table 4-6.

12Recall that the identified set can be estimated consistently without smoothing.
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Stoye (2020) does not change these confidence intervals, because the estimated difference

between upper and lower bounds of each component is large. To further validate our

smoothing approach, we consider the test statistic:

ξ(γ) = max
r=1,...,R

√
M
(

1
M

∑M
m=1 Zr,mB

⊤
mγ − Zr,mAm

)

√
Wr(γ)

. (22)

In empirical analysis with moment inequalities, researchers often construct a confidence

region by testing if the true parameter vector is equal to γ using (22) and the conservative

but competitive critical value proposed by Chernozhukov et al. (2018). To be more

specific, γ ∈ Γ belongs to the confidence region if the test statistic is below the critical

value. Here, we compute (22) for each of the 12 vectors γ, such that each component of γ

achieves it maximum/minimum within our 95% confidence region. These 12 vectors are

the frontier points of the 95% confidence region. Moreover, we calculate the (one-step)

Self Normalized critical value with size 5% of Chernozhukov et al. (2018). If (22) is lower

(higher) than this critical value, our procedure provides more (less) accurate estimates

of the frontier points. Table 8 reports the 12 values of (22) and the critical value. Our

procedure performs better in nine of the 12 frontier points considered.

Table 4: First-stage estimates.

Γ̂IΓ̂IΓ̂I Γ̂α
I , α = 10, 000Γ̂α
I , α = 10, 000Γ̂α
I , α = 10, 000 Γ̂α

I , α = 50, 000Γ̂α
I , α = 50, 000Γ̂α
I , α = 50, 000

LB UB LB UB LB UB

Baseline fixed costs (γ1) 655,719 872,891 647,808 1,023,612 655,560 875,906

Congestion costs (γ2,f )
AA 8,663 28,152 7,184 32,456 8,633 28,238
DL 6,774 21,906 4,416 24,412 6,727 21,956
UA 4,632 16,708 3,057 18,658 4,600 16,747
US 15,044 34,309 11,450 37,144 14,972 34,366
WN 17,091 31,084 10,173 34,026 16,952 31,143

Note: Quantities are in USD.

Table 5: Estimated increase in fixed costs when adding a spoke to a hub with 20 spokes.

Γ̂IΓ̂IΓ̂I Γ̂α
IΓ̂
α
IΓ̂
α
I

LB UB LB UB

AA 1.106 1.960 1.106 1.963
DL 1.027 1.702 1.025 1.705
UA 0.945 1.493 0.945 1.495
US 1.362 2.200 1.359 2.202
WN 1.446 2.086 1.440 2.088

Note: Quantities are in USD 1 mil-
lion. α = 50, 000.
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Table 6: Estimated fixed costs for a hub with 20 spokes.

Γ̂IΓ̂IΓ̂I Γ̂α
IΓ̂
α
IΓ̂
α
I

LB UB LB UB

AA 17.508 28.062 17.503 28.110
DL 16.735 25.551 16.715 25.598
UA 15.938 23.511 15.935 23.559
US 20.009 30.406 19.979 30.451
WN 20.828 29.289 20.770 29.336

Note: Quantities are in USD 1 million.
α = 50, 000.

Table 7: First-stage inference.

Γ̂α
IΓ̂
α
IΓ̂
α
I 95% CI

LB UB LB UB

Baseline fixed costs (γ1) 655,560 875,906 643,814 1,097,497

Congestion costs (γ2,f )
AA 8,633 28,238 6,019 33,102
DL 6,727 21,956 4,043 25,744
UA 4,600 16,747 2,046 18,546
US 14,972 34,366 11,609 38,711
WN 16,952 31,143 13,318 35,751

Note: Quantities are in USD. α = 50, 000.

Table 8: Test statistic (22) and the (one-step) Self Normalized critical value.

ξ(γ)

max γ1 1.672
max γ2,AA 1.267
max γ2,DL 1.611
max γ2,UA 1.030
max γ2,US 1.441
max γ2,WN 2.918

min γ1 1.580
min γ2,AA 3.883
min γ2,DL 0.987
min γ2,UA 8.711
min γ2,US 0.962
min γ2,WN 2.177

Note: The Self
Normalized 5%
critical value is
2.639.
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8 Counterfactuals

This section studies the impact on firm and market outcomes of a merger between two of

the four legacy carriers in our sample, American Airlines and US Airways. These two firms

did in fact merge in 2013. They first expressed an interest in merging in January 2012 and

officially announced their plans to merge in February 2013. At the time they expressed

their interest to merge, American Airlines’ holding company (AMR Corporation) was in

Chapter 11 bankruptcy.13 Further, the Department of Justice (DoJ), along with several

state attorney generals, sought to block the merger, as they were concerned that it would

have substantially lessened competition and hurt consumers. In 2013, a settlement was

reached, whereby the merging parties pledged to give up landing slots or gates at seven

major airports and to maintain the same level of operations in the hub markets out of

Charlotte, New York (Kennedy), Los Angeles, Miami, Chicago (O’Hare), Philadelphia,

and Phoenix for a period of three years.14 Below, we refer to this settlement as the 2013

settlement. According to articles from the time the merger was announced, the parties

expected the merger to make the new entity the largest airline in the world in terms of

passenger numbers and to generate annual cost savings of around $1 billion per year.15

In addition, the merger was seen by analysts as an opportunity for American Airlines to

expand its footprint in markets along the East Coast, where US Airways had a strong

presence.16 The merger was the last in a series of mergers between large airlines and

reduced the number of legacy carriers to four (Delta Airlines, United Airlines, Southwest

Airlines, and the new American Airlines).

8.1 Set-up

When simulating a merger between airlines, the canonical approach consists of relying

on demand and supply models, where the firms best respond to competitors by adjusting

their prices, while holding the networks fixed. Given that the networks are held fixed,

before running the simulation, the researcher needs to take a stand on which network the

merged entity will inherit. In turn, this choice determines the list of products offered by

the merged entity and their observed characteristics.

In particular, the previous literature has considered a base-case scenario, where the

13Recall that we use data from the second quarter of 2011, which is before the two parties expressed
an interest to merge and corresponds to the last quarter before AMR Corporation filed for Chapter 11
bankruptcy.

14https://www.justice.gov/opa/pr/justice-department-requires-us-airways-and-

american-airlines-divest-facilities-seven-key, https://americanairlines.gcs-

web.com/news-releases/news-release-details/amr-corporation-and-us-airways-announce-

settlement-us-department.
15https://www.reuters.com/article/uk-americanairlines-merger-idUSLNE91D02020130214.
16https://money.cnn.com/2013/02/14/news/companies/us-airways-american-airlines-

merger/index.html.
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merging firms maintain their pre-merger products and behave as if they have colluded.

Additionally, a best-case scenario is considered, where the merged entity offers the itineraries

that have the most favorable features of the pre-merger products of the merging firms.

These are just two possible scenarios, and nothing suggests that they should be taken

as extreme reference cases, as there are infinite plausible ways in which the merged en-

tity may revisit its entry decisions. Our methodology eliminates such ambiguity because

it allows the merged entity to best respond by adjusting both its network and prices.

Depending on the dominating forces, the merged entity may find it convenient to exit

some markets in order to downsize the higher total congestion costs from managing a

denser network. Alternatively, they may enter new markets so as to exploit the marginal

cost savings from denser hub-and-spoke structures and consumers’ willingness-to-pay for

flying from dense nodes. Further, our methodology allows the competitors to re-optimise

both their networks and prices. For example, the competitors may find it opportune to

exit markets where the merged firm has acquired excessive market power, or to enter

markets where the merger has created space for other companies.

To highlight the advantages of our framework, we compare the counterfactual pre-

dictions arising from our model with those obtained using ad-hoc assumptions on the

post-merger network. In particular, we consider three ad-hoc scenarios:

1. Networks fixed - base case. After the merger, the merging airlines remain separate

entities. All firms maintain the pre-merger networks and products. They play the si-

multaneous pricing game described in Section 3.1 and new equilibrium prices arise. The

merging firms choose the prices that maximise their joint profits; that is, they behave as

if they have colluded;

2. Networks fixed - best case. After the merger, all firms, except American Airlines

and US Airways, maintain the pre-merger networks and products. The merging firms

remain separate entities. They also keep the pre-merger products, but update some of

their covariates. In particular, the products of the merging firms get the best firm dummy.

Further, if the merging firms offered the same itinerary before the merger, then the two

products inherit the most favorable observed demand and marginal cost shifters. For

example, on the demand side, the estimated coefficient of the variable “Nonstop Origin”

is positive. Hence, the two products get the highest value of “Nonstop Origin” between

the merging airlines. After such rearrangements, the firms play the simultaneous pricing

game described in Section 3.1 and new equilibrium prices arise. As in the previous

scenario, the merging firms choose the prices maximizing their joint profits;

3. Networks fixed - updated case. After the merger, all firms, except American Airlines

and US Airways, maintain the pre-merger networks and products. We treat the merged

entity as a new firm that gets the best firm dummy between the merging airlines. We

assign the merged entity to the network resulting from merging the pre-merger networks

of American Airlines and US Airways. The products of the merged entity and their
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covariates are constructed from the merged network. The demand and supply shocks of

the itineraries that were offered both by American Airlines and US Airways before the

merger are replaced by their mean values. After such rearrangements, the firms play the

simultaneous pricing game described in Section 3.1 and new equilibrium prices arise.

These three ad-hoc scenario are compared with the simulations from our full model.

When simulating our full model, we consider three possible scenarios:

1. Networks vary - without remedies. After the merger, we treat the merged entity as

a new firm that gets the best firm dummy between the merging airlines. We let the firms

play the two-stage game described in Section 3. New equilibrium networks and prices

arise. More details on the algorithm used to reach the new set of equilibria are in Section

I of the Online Appendix;

2. Networks vary - with remedies. An important advantage of our approach is that

it allows us to evaluate the impact on firm and market outcomes of the 2013 settlement.

To do so, after the merger, we treat the merged entity as a new firm that gets the

best firm dummy between the merging airlines. We let the firms play the two-stage

game described in Section 3. New equilibrium networks and prices arise. However,

in contrast to the Networks vary - without remedies scenario, now we incorporate as

binding constraints some of the DoJ’s remedies contained in the 2013 settlement. In

particular, we force the merged entity to continue serving all the markets that were

served by the merging firms before the merger out of Charlotte, New York, Los Angeles,

Miami, Chicago, Philadelphia, and Phoenix. Recall that these were the cities signalled

by the DoJ, as discussed at the beginning of Section 8.17,18

3. Networks vary - PHX dehubbed. In contrast to the Networks vary - w/o remedies

scenario, we assume that the merged entity removes the hub status of Phoenix and can

only offer a direct service from Phoenix to the remaining hubs and no longer to non-hub

cities. Later, we clarify why we focus on Phoenix.

8.2 Results

Table 9 shows the impact of the merger on consumer surplus. Before commenting on

the results, we clarify that, under the Networks fixed column, we report each quantity’s

median, minimum, and maximum percentage changes across the Networks fixed - base

17Note that this scenario differs from the Networks fixed - Updated case scenario because, first, the
competitors of the merged entity are allowed to re-optimise their networks; second, the merged entity
is allowed to increase its operations in the markets out of the hubs signalled by the DoJ and to in-
crease/decrease its operations in the markets out of the hubs not signalled by the DoJ (Washington DC
and Dallas).

18As highlighted at the beginning of Section 8, the 2013 settlement also required the merged airline to
give up landing slots or gates at seven major slot constrained airports, in order to facilitate the expansion
of low-cost carriers, such as Southwest. This part of the settlement is not incorporated in the simulations,
because our framework does not distinguish between airports in the same cities and, hence, does not
explicitly model the process of slot assignment. See also Section 3.2 for a discussion on this issue.
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case, best case, and updated case scenarios. Under the Networks vary columns, we report

each quantity’s median, minimum, and maximum percentage changes across different

parameter values in the estimated identified set and across different equilibria constructed

by the counterfactual algorithms. The minimum and maximum percentage changes are

in square brackets. The median percentage change is above the square brackets. The

other tables have a similar structure and sometimes replace percentage changes with

actual values. For simplicity of exposition, our discussion will be often based on the

median values or percentage changes. Hereafter, the merged entity is also referred to

as American Airlines. In Section I of the Online Appendix, we present the confidence

intervals for our counterfactuals.

The first row of Table 9 reports the impact of the merger on total consumer surplus.

Absent any remedies, the merger leads to a modest median increase in consumer surplus

by around 0.5%. However, if we look at the minimum percentage changes, our analysis

does not rule out a decrease in consumer surplus of up to 7%. With the remedies discussed

above, the median increase in consumer surplus is slightly more pronounced and around

0.8%. Importantly, if we look at the minimum percentage changes, the remedies limit

consumer surplus losses by more than half. Last, had Phoenix been dehubbed, the

merger would have led to a decrease in consumer surplus. These results suggest that

the remedies helped prevent consumer surplus losses and that hub closures can cause

significant consumer surplus losses.

The second and third rows of Table 9 show the impact of the merger on consumer

surplus when we distinguish between two groups of markets. We call “new markets”

the markets where the merging parties do not offer direct flights pre-merger. and where

the merged entity offers directs flights post-merger. We call “old markets” the markets

where the merging parties offer direct flights pre-merger. Old markets are those on

which antitrust authorities typically focus their merger analysis. We can see that while

the overall impact of the merger on consumer surplus is small, there is an important

tension between old and new markets. On the one hand, due to the entry-exit patterns

explained below, old markets undergo consumer surplus losses. If the merger’s effect

on consumer surplus in old markets was the relevant criterion, then the merger should

have been blocked. This is in line with the DoJ’s initial attempt to stop the merger.

On the other hand, new markets experience a considerable increase in consumer surplus,

which reveals substantial positive effects of the merger and can be used to legitimise

its implementation. Further, the remedies, which were tailored to prevent the exit of

American Airlines from the old markets, reduce median consumer surplus losses in the

old markets but, at the same time, slightly weaken median consumer surplus gains in

new markets. This highlights the need for antitrust authorities to carefully balance these

two effects when designing network interventions. To the best of our knowledge, this

tension between consumer surplus losses in old markets and consumer surplus gains in
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Table 9: Percentage change in consumer surplus across different scenarios.

Networks fixed Networks vary

w/o remedies w/ remedies PHX dehubbed

Total consumer surplus +0.08 +0.46 +0.77 -0.90
[-0.47, +3.40] [-7.13, +3.45] [-2.96, +4.02] [-8.37, +1.71]

New markets +45.28 +44.78 +42.79
[+26.87, +52.06] [+26.9, +53.17] [+21.36, +55.73]

Old markets +0.08 -5.25 -5.21 -4.65
[-0.47, +3.40] [-9.32, -3.84] [-7.12, -4.03] [-9.31, -2.97]

Note: Consumer surplus is computed using the log-sum formula and it is in USD 1 million up to
constant of integration. Percentage changes with respect to the pre-merger scenario are reported.

new markets is a novel empirical finding that has major implications for policymakers.

Contrary to the fixed network approach, our model is best suited to study such a trade-off.

Table 10 sheds some light on what drives these effects. The last two rows report the

number of markets served with direct flights by American Airlines and its competitors be-

fore and after the merger out of American Airlines and US Airways’ hubs.19 The merger

leads American Airlines to expand its network. Instead, the other major airlines decrease

the size of their operations. Taken together, these reactions reduce competition in old

markets and generate entry in new markets. On the one hand, American Airlines ex-

pands its network to decrease marginal costs via economies of density (recall the variable

“Connections” in the marginal cost equation) and exploit consumers’ willingness-to-pay

for flying from dense nodes (recall the variable “Nonstop Origin” in the utility function).

By doing so, it offsets the higher congestion costs (recall the quadratic term in the fixed

cost equation) due to managing a larger number of hubs. On the other hand, post-merger

entry by rivals does not happen. This may seem counter-intuitive, as one would expect

reduced competition due to the elimination of one firm to free room for competitors. We

do not observe this mechanism for two reasons. First, there was relatively little overlap

between American Airlines and US Airways, hence there was almost no space created

for post-merger entry by the other airlines. Second, as mentioned above, by expanding

its network, American Airlines increases consumers’ willingness-to-pay for its flights and

decreases its marginal costs. This makes it more challenging for the other carriers to com-

pete with such a powerful player and may cause them to exit. As the drop of consumer

surplus in the old market suggests, the increased consumer utility from American Ailines’

larger network is neutralised by the reduction of competitors’ operations. In Section I.3

of the Online Appendix, we show that the expansion of American Airlines’ network and

the reduction of competitors’ networks align with the real entry-exit dynamics observed

19Before the merger, we take the sum of the number of markets served with direct flights by US
Airways and American Airlines.
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Table 10: Outcomes across different scenarios.

Before Merger

Networks fixed Networks vary

w/o remedies w/ remedies PHX dehubbed

Total consumer surplus 2807.06 +0.08 +0.46 +0.77 -0.90
[-0.47, +3.40] [-7.13, +3.45] [-2.96, +4.02] [-8.37, +1.71]

Mean consumer surplus 4.09 +0.08 -0.87 -0.55 -2.18
[-0.47, +3.40] [-8.18, +1.82] [-4.18, +2.38] [-9.15, +0.39]

Markups: AA/US 119.2 +7.34 +12.77 +12.89 +11.71
[+5.98, +8.64] [+7.05, +15.3] [+9.92, +15.8] [+6.75, +14.47]

Markups: Other major airlines 116.22 -0.45 -1.28 -1.35 -0.79
[-0.68, +0.07] [-1.81, +0.97] [-2.03, -0.40] [-1.42, +1.15]

Segments: AA/US 430 430 491 498 457
[348, 531] [435, 546] [335, 497]

Segments: Other major airlines 736 736 686 689 693
[607, 720] [606, 710] [612, 721]

Note: Consumer surplus is computed using the log-sum formula and it is in USD 1 million up to constant of
integration. Percentage changes with respect to the pre-merger scenario are reported for total consumer surplus,
mean consumer surplus, and markups.

after 2013.

Table 10 also reveals that American Airlines’ markups increase substantially. This is

due to the increase in market power and the necessity of covering the higher fixed costs

of serving a larger post-merger network. Table I.3 in Section I of the Online Appendix

digs deeper into this effect and shows that American Airlines benefits from considerable

marginal cost savings thanks to the merger, with these benefits only partially passed

through to consumers.

The entry-exit patterns generated by the merger lead to noticeable heterogeneity

across American Airlines’ hub markets. Table 11 highlights that while some hub markets

experience large consumer surplus gains, others suffer from the merger. The negative

effect of the merger is especially pronounced in the markets out of New York, Chicago,

Miami, and Phoenix. Table I.2 in Section I of the Online Appendix also reports the hub-

level changes in the number of direct flights offered by American Airlines and the other

major airlines. It reveals that the consumer surplus decrease in the markets out of New

York, Chicago, and Phoenix was driven by the exit of competitors, whereas the consumer

surplus decrease in the markets out of Miami was driven by the exit of both American

Airlines and competitors. Remember that the 2013 settlement required the merged airline

to divest slots at Chicago O’Hare and gates in Miami and at La Guardia Airport in New

York. Such remedies, which we do not model, likely prevented the significant rival exit

that we predicted in these markets.
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Table 11: Percentage change in consumer surplus in the hub markets of AA and US.

Before Merger

Networks fixed Networks vary

w/o remedies w/ remedies PHX dehubbed

AA hubs
DFW 341.22 -1.48 +5.36 +5.36 +4.44

[-2.94, +7.04] [+3.24, +8.10] [+3.45, +8.11] [+2.11, +7.52]
LAX 520.29 +0.01 -0.81 -0.65 -1.03

[-0.32, +2.44] [-6.15, +0.55] [-2.38, +0.56] [-6.77, +0.27]
ORD 485.16 +0.46 -11.72 -11.03 -11.95

[-0.29, +4.07] [-20.09, -8.01] [-18.06, -7.01] [-19.83, -8.86]
MIA 314.55 -0.34 -23.18 -17.62 -23.89

[-0.51, +4.56] [-29.23, -16.87] [-19.34, -15.67] [-30.51, -17.69]
JFK 631.27 -0.30 -11.86 -11.28 -15.33

[-0.43, +2.19] [-21.95, -3.34] [-17.39, -3.46] [-24.48, -7.34]

US hubs
CLT 134.27 -1.52 +11.91 +12.53 +5.85

[-2.56, +3.27] [-6.90, +16.80] [+6.50, +16.80] [-7.82, +8.61]
PHX 237.55 -0.64 -20.34 -19.92 -32.05

[-2.48, +3.66] [-29.42, -18.35] [-22.26, -18.33] [-34.78, -30.78]
DCA 428.19 -0.29 +24.88 +22.22 +20.71

[-0.62, +2.26] [+4.80, +27.18] [+4.78, +27.32] [+1.15, +23.08]
PHL 213.55 -0.91 +13.32 +13.32 +10.78

[-1.01, +2.98] [-4.62, +22.06] [+9.98, +22.06] [-5.90, +18.45]

Note: Consumer surplus is computed using the log-sum formula and it is in USD 1 million
up to constant of integration. Percentage changes with respect to the pre-merger scenario
are reported.
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9 Conclusions

In this paper, we build and estimate a two-stage game model of airline competition in

which the airlines choose the networks of markets to serve in the first stage and compete

in prices in the second stage. Our model allows for spillovers in entry decisions across

markets on the demand, marginal cost, and fixed cost sides. We estimate the model

using data from US domestic fares from the second quarter of 2011 and find significant

spillovers in entry. We use the estimates to counterfactually evaluate the 2013 merger

between American Airlines and US Airways. Our counterfactuals reveal that, absent

any remedies, the merger leads to a modest increase in consumer surplus. With the

remedies, the increase in consumer surplus is more pronounced. Further, we uncover

two important sources of heterogeneity in the merger’s impact: first, some hubs enjoy

large gains in consumer surplus, while other hubs suffers substantial losses; and second,

consumer surplus decreases in markets in which the merging parties served pre-merger and

increases substantially in markets where the merged entity enters post-merger. Hence,

the decision of whether or not to allow for the merger depends significantly on which

markets the antitrust authority focuses on. Last, we show that such differences are driven

by the expansion of American Airlines’ network in an attempt to leverage spillovers in

entry and the exit of rivals. Overall, these findings have important implications for

antitrust authorities because they underlie the relevance of endogenising post-merger

network readjustments and accounting for spillovers when evaluating mergers.

There are several directions for further research. For instance, it would be interesting

to consider whether capacity constraints and intertemporal price discrimination may

generate dynamics in the pricing strategies of the airlines. Notably, we also abstract

away from frequency choices by airlines. Flight frequency is another margin by which the

airlines can respond to a merger and that may have a direct impact on marginal costs

and consumer utility. We leave these extensions to future work.
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A Proofs

Proof of Theorem 1 (i) comes from the convergence of Γ̂I to ΓI with respect to the

Hausdorff distance. (ii) comes from Shapiro et al. (2014), Theorem 5.11, p.193. The

uniformity in q for both (i) and (ii) comes from the compactness of the unit ball and the

identified set. �

Proof of Theorem 2 (i) comes from the convergence of Γ̂α
I to Γα

I with respect to the

Hausdorff distance. (ii) comes from Shapiro et al. (2014), Theorem 5.11, p.193 combined

with the Delta method for the asymptotic variance of the estimated constraints. As a

matter of fact, denoting br = E(Zr,mBm) and ar = E(Zr,mAm), for r = 1, . . . ,R, we have

∂gα
∂br

(γ) =
γ exp

(
α
[
b⊤r γ − ar

])

1 + exp (α [b⊤r γ − ar])
=

γ

1 + exp (−α [b⊤r γ − ar])
,

∂gα
∂ar

(γ) =
−1

1 + exp (−α [b⊤r γ − ar])
.
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Therefore:

√
M(ĝα(γ)− gα(γ)) =

R∑

r=1

√
M

(
(b̂r − br)

⊤γ − (âr − ar)
)

1 + exp (−α [b⊤r γ − ar])
+ oP (1),

=
R∑

r=1

Wr(γ)

1 + exp (−α [b⊤r γ − ar])
+ oP (1).

The uniformity in q comes from the compactness of the unit ball. �

B Existence of Nash equilibrium networks

As discussed in Section 3.3 of the main paper, proving the existence of a pure strategy

Nash equilibrium (PSNE) G := (Gf : f ∈ N ) is difficult due to the presence of spillovers

from entry across markets on the demand, marginal cost and fixed cost sides.

Berry (1992)establishes the existence of a PSNE in one of the first empirical models

of entry that incorporates strategic interactions between firms in the second-stage pricing

game. His proof relies on the assumption that the entry decisions are independent across

markets. It is therefore not applicable to our framework. Another approach used in the

network formation literature to show the existence of a PSNE is to represent the model

as a potential game (Monderer and Shapley, 1996). This is possible if the payoff function

is additive separable in the linking decisions and linear in the spillovers (as for example in

Mele, 2017), which is not the case here. Alternatively, it is possible to show the existence

of a PSNE under the assumption that the game is supermodular, in order to exploit the

fixed point theorem for isotone mappings (Topkis, 1979). However, supermodularity does

not hold in our setting due to the second-stage competition between airlines. Finally, one

could try to decompose the original game into “local” games such that the original game

is in equilibrium if and only if each local game is in equilibrium (Gualdani, 2021). In

turn, the existence of a PSNE in each local game - which is typically easier to establish

- is sufficient for the existence of a PSNE in the original game. However, the classes of

spillovers considered in our model do not allow us to implement such a decomposition.

One might also ask whether allowing for private fixed cost shocks could simplify the

existence proof. Esṕın-Sánchez et al. (2021) prove equilibrium existence in an entry model

where firms have some private information at the entry stage. However, they do not allow

for multi-product firms and they do not allow for spillovers from entry across markets.

Moreover, in our setting it is more reasonable to assume that the fixed cost shocks are

common knowledge among airlines, as discussed in Section 3.2 of the main paper.

Note that the moment inequalities in Section 4.2 of the main paper are based on

necessary conditions for PSNE. Therefore, one could consider a first-stage equilibrium

notion that is weaker than PSNE. In particular, given our focus on one-link deviations,
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inequalities (10) and (11) resemble the notion of pairwise stability used in network theory,

according to which no player has profitable deviations by adding or removing a link

(Jackson and Wolinsky, 1996). Definition 1 introduces a notion of first-stage equilibrium

along the lines of pairwise stability.

Definition 1. (Pairwise Stability) The networks G1, . . . , GN represent a pairwise stable

outcome if, for each market {a, b} ∈ M and airline f ∈ N , it holds that

Gab,f = 0 ⇒ Πe
f (Gf , G−f ; θ)− Πe

f (G(+ab),f , G−f ; θ) + γ2,f∆Q(+ab),f + γ1,f + ηab,f ≥ 0,

Gab,f = 1 ⇒ Πe
f (Gf , G−f ; θ)− Πe

f (G(−ab),f , G−f ; θ)− γ2,f∆Q(−ab),f − γ1,f − ηab,f ≥ 0.

⋄

In the absence of ties (it is sufficient that the fixed cost shocks have a continuous

distribution), Definition 1 can be rewritten as a simultaneous equation model.

Lemma 1. (Equivalent representation of pairwise stability) In the absence of ties, the

networks G1, . . . , GN represent a pairwise stable outcome if and only if:

Gab,f = ✶{Πe
f (Gf , G−f ; θ)− Πe

f (G(−ab),f , G−f ; θ)− γ2,f∆Q(−ab),f − γ1,f − ηab,f ≥ 0},
∀{a, b} ∈ M, ∀f ∈ N .

(B.1)

⋄

See Menzel (2017) or Sheng (2020) for a proof of Lemma B.1. Note that although

pairwise stability is a weaker equilibrium notion than PSNE, establishing the existence

of a pairwise stable outcome does not appear to be easier in our setting. In particular,

according to Jackson and Watts (2002), for any payoff function there is either a pairwise

stable outcome or a closed cycle.1 A typical way used in the literature to exclude the

presence of closed cycles is to show that the model can be represented as a potential game,

as discussed by Jackson and Watts (2001) and Hellmann (2013). As before, however, this

is possible if the payoff function is additive separable in the link decisions and linear in

the spillovers (as in Sheng, 2020), which is not our case.

C How to deal with incoherence

In Section 4.2 of the main paper, we have constructed the identified set for the first-stage

parameters under the assumption that PSNE networks exist for each parameter value

and variable realisation. As discussed above, proving the existence of PSNE networks is

difficult. Therefore, it is legitimate to wonder whether one should modify the definition

1A closed cycle represents a situation in which individuals never reach a stable state and constantly
alternate between forming and severing links.
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of the identified set when non-existence is possible, i.e., when our model is incoherent in

the terminology of Tamer (2003) and Lewbel (2007).

To explain how we deal with incoherence, we first report here the moment inequalities

predicted by our model as derived in Section 4.2 of the main paper:

EPr

[
Zr,(−ab),f ×Gab,f ×

(
Πe

f (Gf , G−f ; θ)−Πe
f (G−ab,f , G−f ; θ)−

(
γ2,f∆Q(−ab),f + γ1,f

)) ]
≥ 0,

r = 1, . . . ,R−,

EPr

[
Zr,(+ab),f × (1−Gab,f )×

(
γ2,f∆Q(+ab),f + γ1,f −

(
Πe

f (G(+ab),f , G−f ; θ)−Πe
f (Gf , G−f ; θ)

)) ]
≥ 0,

r = 1, . . . ,R+,

(C.1)

where EPr is the expectation operator based on the probability function Pr associated

with the probability space where the random variables of the model are defined. Second,

to simplify the exposition, we focus on one moment inequality from (C.1):

EPr

[
Zr,(−ab),f ×Gab,f ×

(
Πe

f (Gf , G−f ; θ)−Πe
f (G−ab,f , G−f ; θ)−

(
γ2,f∆Q(−ab),f + γ1,f

)) ]
≥ 0.

(C.2)

Third, we streamline the notation of (C.2) as:

EPr(GmÃm)− EPr(GmB̃
⊤
m)γ ≥ 0, (C.3)

where the subscripts f and r are omitted,m is a market {a, b}, Ãm is Zr,(−ab),f (Π
e
f (Gf , G−f ; θ)−

Πe
f (G−ab,f , G−f ; θ)), B̃m is such that B̃⊤

mγ is equal to Zr,(−ab),f (∆Q(−ab),fγ2,f + γ1,f ).

Let P be the distribution of (GmÃm, GmB̃m) identified by the sampling process. If

the set of PSNE networks is non-empty for each parameter value and variable realisation,

then we can replace EPr with EP in (C.3) and obtain the identified set for γ associated

with P:

ΓI :=
{
γ ∈ Γ : EP(GmÃm)− EP(GmB̃

⊤
m)γ ≥ 0

}
. (C.4)

If the set of PSNE networks is empty for some parameter values and variable realisations,

then the relationship between P and Pr is not completely defined because our model is

silent about the realisations of (GmÃm, GmB̃m) when the set of PSNE networks is empty.

Since non-existence outcomes are never observed in our data, we approach the incoherence

problem by assuming that the data are drawn from the subset of the sample space in

which the set of PSNE networks is non-empty. That is, P comes from a truncated version

of Pr, as discussed in Section 4.2 of Chesher and Rosen (2020). In what follows, we show

that the identified set for γ associated with P is still defined by (C.4).

For ease of explanation, let us assume that Ãm and B̃m are discrete random variables.

Given γ ∈ γI , our model predicts that

∑

a∈A

a× Pr(Ãm = a,Gm = 1)−
∑

b∈B

b⊤ × Pr(B̃m = b, Gm = 1)× γ ≥ 0, (C.5)
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where A and B are the supports of Ãm and B̃m, respectively. Let Sθ,γ(X
⊕,W⊕,MS, η) be

the random closed set of PSNE networks.2 If our model is correctly specified, then the

observed realisation of G is associated with realisations of X⊕,W⊕,MS, η from the trun-

cated support {(x⊕, w⊕,ms, η̄) ∈ SuppX⊕,W⊕,MS,η : Sθ,γ(x
⊕, w⊕,ms, η̄) 6= ∅}. Therefore,

it holds that:

P(Ãm = a,Gm = 1) = Pr(Ãm = a,Gm = 1|Sθ,γ(X
⊕,W⊕,MS, η) 6= ∅)

=
Pr(Ãm = a,Gm = 1,Sθ,γ(X

⊕,W⊕,MS, η) 6= ∅)
Pr(Sθ,γ(X⊕,W⊕,MS, η) 6= ∅) =

Pr(Ãm = a,Gm = 1)

Pr(Sθ,γ(X⊕,W⊕,MS, η) 6= ∅) .
(C.6)

In turn, we can write:

Pr(Ãm = a,Gm = 1) = P(Ãm = a,Gm = 1)× Pr(Sθ,γ(X
⊕,W⊕,MS, η) 6= ∅),

Pr(B̃m = b, Gm = 1) = P(B̃m = b, Gm = 1)× Pr(Sθ,γ(X
⊕,W⊕,MS, η) 6= ∅).

(C.7)

We plug (C.7) in (C.5) and obtain:

Pr(Sθ,γ(X
⊕,W⊕,MS, η) 6= ∅)× [EP(GmÃm)− EP(GmB̃

⊤
m)γ] ≥ 0, (C.8)

which is equivalent to

EP(GmÃm)− EP(GmB̃
⊤
m)γ ≥ 0. (C.9)

Hence, the identified set associated with P is:

ΓI :=
{
γ ∈ Γ : EP(GmÃm)− EP(GmB̃

⊤
m)γ ≥ 0

}
, (C.10)

as in (C.4).

D Computing the first-stage moment inequalities

We provide some directions on how to compute Πe
f (G(+ab),f , G−f ; θ)−Πe

f (Gf , G−f ; θ) and

FCf (G(+ab),f , ηf ; γ) − FCf (Gf , ηf ; γ) entering (10). A similar procedure can be followed

to compute (11).

First, we compute FCf (G(+ab),f , ηf ; γ) − FCf (Gf , ηf ; γ). If none of cities a and b are

firm f ’s hubs, then FCf (G(+ab),f , ηf ; γ) − FCf (Gf , ηf ; γ) = γ1,f + ηab,f . If only city a

(resp. b) is one of firm f ’s hubs, then FCf (G(+ab),f , ηf ; γ) − FCf (Gf , ηf ; γ) = γ1,f +

γ2,f × ((Da,f +1)2−D2
a,f )+ηab,f (resp. FCf (G(+ab),f , ηf ; γ)−FCf (Gf , ηf ; γ = γ1,f +γ2,f ×

((Db,f+1)2−D2
b,f )+ηab,f ), where Da,f (resp. Db,f ) is the number of spokes of hub a (resp.

b). If both cities a and b are firm f ’s hubs, then FCf (G(+ab),f , ηf ; γ) − FCf (Gf , ηf ; γ) =

2For the formal definition of a random closed set, see Molchanov and Molinari (2018) and Molinari
(2020).
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γ1,f + γ2,f × ((Da,f + 1)2 −D2
a,f ) + γ2,f × ((Db,f + 1)2 −D2

b,f ).

Second, we determine the realisations of the second-stage shocks used to evaluate

the airlines’ expected variable profits. In particular, from the vector of second-stage

estimates, θ̂, we compute the second-stage shocks for each product offered using the BLP

inversion. For each airline f , we compute the mean and variance of the second-stage

shocks just obtained and denote them by µf and Σf respectively. For each potential

product of each airline f , we take 100 random draws from a normal distribution with

mean µf and variance Σf . We store all such draws in a matrix Ξ.

Third, we compute the expected variable profits of airline f under (G(+ab),f , G−f ).

To do so, we update the list of products offered by firm f , by adding direct flights

between cities a and b. Further, note that setting Gab,f = 1 creates a “domino effect”

in neighbouring markets, due to the possibility for airline f to offer one-stop flights and

the presence of spillovers in entry across markets. Specifically, if a is one of firm f ’s

hubs, then we add one-stop flights, via a, between b and all cities d such that Gda,f = 1.

Similarly, if b is one of firm f ’s hubs, then we add one-stop flights, via b, between a and all

cities d such that Gdb,f = 1. We update the matrices of product covariates by including

the observed demand and marginal cost shifters of the new products. We also update the

covariates (namely, “Nonstop Origin” and “Connections”) of the pre-existing products

that are affected by the new products. Let Mab,f be the list of markets containing either

new products or products with modified covariates. For each market m ∈ Mab,f , we let

the firms reoptimise their prices by iterating on the F.O.C.s in (4), for every draw of the

second-stage shocks stored in the matrix Ξ.3 We compute the variable profits of airline f ,

average across draws, and get the simulated expected variable profits of airline f , which we

denote by
∑

m∈Mab,f
Πe

f,m(G(+ab),f , G−f ; θ). We implement a similar procedure to compute

the expected variable profits of airline f in each markets m ∈ Mab,f under G, which

we denote by
∑

m∈Mab,f
Πe

f,m(Gf , G−f ; θ). Lastly, we calculate Πe
f (G(+ab),f , G−f ; θ) −

Πe
f (Gf , G−f ; θ) =

∑
m∈Mab,f

Πe
f,m(G(+ab),f , G−f ; θ)−

∑
m∈Mab,f

Πe
f,m(Gf , G−f ; θ).

E Bounds under many-link deviations

In this section, we show that many-link deviations do not provide a substantial improve-

ment in the bounds. In particular, we show that two-link deviations generate many

redundant inequalities compared to those generated by the one-link deviations.

3We have decided to use the F.O.C.s in (4) as a contraction mapping. While we do not formally prove
that (4) is indeed a contraction mapping, we have found that the resulting price vector does not change
when starting from different values and that the mapping converges in all the cases considered.
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Adding links to the factual network

Consider markets {a, b} and {c, d} that are not served by airline f with direct flights (i.e.,

Gab,f = Gcd,f = 0). From the revealed preference principle, it holds that

Πe
f (G(+ab),f , G−f ; θ)− Πe

f (Gf , G−f ; θ) ≤ FCf (G(+ab),f , ηf ; γ)− FCf (Gf , ηf ; γ), (E.1)

Πe
f (G(+cd),f , G−f ; θ)− Πe

f (Gf , G−f ; θ) ≤ FCf (G(+cd),f , ηf ; γ)− FCf (Gf , ηf ; γ), (E.2)

Πe
f (G(+ab,+cd),f , G−f ; θ)− Πe

f (Gf , G−f ; θ) ≤ FCf (G(+ab,+cd),f , ηf ; γ)− FCf (Gf , ηf ; γ).

(E.3)

(E.1) and (E.2) are taken into account by our identification methodology, as they refer to

one-link deviations. (E.3) is ignored by our identification methodology, as it refers to a

two-link deviation. In what follows, we show that if markets {a, b} and {c, d} are non-hub

markets for airline f and have no cities in common, or they share a hub endpoint, then

(E.1) and (E.2) imply (E.3). Hence, (E.3) is redundant.

First, consider the case where markets {a, b} and {c, d} are non-hub markets for airline

f and have no cities in common. Given our fixed cost equation, it holds that

FCf (G(+ab,+cd),f , ηf ; γ)− FCf (G(+cd),f , ηf ; γ) = FCf (G(+ab),f , ηf ; γ)− FCf (Gf , ηf ; γ).

Therefore, the right-hand-side of (E.3) is equal to

FCf (G(+ab,+cd),f , ηf ; γ)− FCf (Gf , ηf ; γ) =FCf (G(+cd),f , ηf ; γ)− FCf (Gf , ηf ; γ)

+ FCf (G(+ab),f , ηf ; γ)− FCf (Gf , ηf ; γ).

(E.4)

Observe that the left-hand-side of (E.3) can be rewritten as

Πe
f (G(+ab,+cd),f , G−f ; θ)− Πe

f (G(+cd),f , G−f ; θ) + Πe
f (G(+cd),f , G−f ; θ)− Πe

f (Gf , G−f ; θ).

Furthermore, from our second-stage estimates, it generally holds that

Πe
f (G(+ab,+cd),f , G−f ; θ)− Πe

f (G(+cd),f , G−f ; θ) ≤ Πe
f (G(+ab),f , G−f ; θ)− Πe

f (Gf , G−f ; θ).

(E.5)

In other words, adding an independent edge {a, b} to the counterfactual network G(+cd),f

does not tend to generate more expected variable profits than adding it to the actual

network Gf . In fact, adding {a, b} to G(+cd),f increases expected variable profits due

to two effects. First, the demand in market {a, b} increases because the passengers of

market {a, b} can now fly directly between a and b instead of flying through a hub of

f which is neither c nor d (recall the variable “Indirect” entering the demand function).

Second, the demand in markets having a or b as endpoints is increased by adding the
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direct service between a and b (recall the variable “Nonstop Origin” entering the demand

function). From Table 2 (demand panel) we can see that the first effect dominates the

second: flying direct increases utility by 1.794; adding one direct connection increases

utility by 0.00868. In turn, through (E.1), (E.2) and (E.5), we see that

Πe
f (G(+ab,+cd),f , G−f ; θ)− Πe

f (G(+cd),f , G−f ; θ) + Πe
f (G(+cd),f , G−f ; θ)− Πe

f (Gf , G−f ; θ)

≤ FCf (G(+ab),f , ηf ; γ)− FCf (Gf , ηf ; γ) + FCf (G(+cd),f , ηf ; γ)− FCf (Gf , ηf ; γ).

(E.6)

Hence, by combining (E.4) and (E.6), (E.3) is verified.

Second, consider the case where markets {a, b} and {c, d} share a hub endpoint. For

instance suppose a = c and a is a hub. Then,

FCf (G(+ab,+cd),f , ηf ; γ)−FCf (Gf , ηf ; γ)

=FCf (G(+ab),f , ηf ; γ)− FCf (Gf , ηf ; γ)

+FCf (G(+cd),f , ηf ; γ)− FCf (Gf , ηf ; γ)

+γ2(2Da,f + 3),

where Da,f is the number of hub a’s spokes in the factual network Gf (mean 20 in the

dataset). Again, given our second-stage estimates, it generally holds that

(
Πe

f (G(+ab,+cd),f , G−f ; θ)− Πe
f (G(+cd),f , G−f ; θ)

)
−
(
Πe

f (G(+ab),f , G−f ; θ)− Πe
f (Gf , G−f ; θ)

)

is small, compared to γ2(2Da,f + 3). (E.5) is not always satisfied because adding {a, b}
and {a, d} creates opportunities to fly from b to d via a. However, in our data, it is

always possible to fly from b to d via other hubs in the factual network for the same

airline f . As a result, it is reasonable to believe that (E.5) holds for most, if not all,

two-link deviations. Therefore, using the same steps as above, we conclude that (E.3)

holds.

Removing links from the factual network

Consider the mirror case where markets {a, b} and {c, d} are served by airline f with

direct flights (i.e. Gab,f = Gcd,f = 1). From the revealed preference principle we can see

that

Πe
f (Gf , G−f ; θ)− Πe

f (G(−ab),f , G−f ; θ) ≥ FCf (Gf , ηf ; γ)− FCf (G(−ab),f , ηf ; γ), (E.7)

Πe
f (Gf , G−f ; θ)− Πe

f (G(−cd),f , G−f ; θ) ≥ FCf (Gf , ηf ; γ)− FCf (G(−cd),f , ηf ; γ), (E.8)

Πe
f (Gf , G−f ; θ)− Πe

f (G(−ab,−cd),f , G−f ; θ) ≥ FCf (Gf , ηf ; γ)− FCf (G(−ab,−cd),f , ηf ; γ).

(E.9)
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(E.7) and (E.8) are taken into account by our identification methodology, as they refer

to one-link deviations. (E.9) is ignored by our identification methodology, as it refers to

a two-link deviation. By following the steps above, it is possible to show that, in most of

the cases, (E.9) is redundant.

F Inference on the demand and supply parameters

We conduct inference on θ via GMM under the assumption that the number of markets

goes to infinity. Formally, we consider the moment conditions of Section 4.1 and use their

sample analogues to construct a GMM objective function which should be minimised with

respect to θ ∈ Θ:

Q(θ) = D(θ)′AD(θ), (F.1)

where

D(θ) :=




1
|J |

∑
m∈M

∑
j∈Jm

[τj,m(X
⊕
m,W

⊕
m ,MSm, s

⊕
m, P

⊕
m , G; θ)× zj,m,1(X

⊕
m,W

⊕
m)]

1
|J |

∑
m∈M

∑
j∈Jm

[τj,m(X
⊕
m,W

⊕
m ,MSm, s

⊕
m, P

⊕
m , G; θ)× zj,m,2(X

⊕
m,W

⊕
m)]

...
1
|J |

∑
m∈M

∑
j∈Jm

[τj,m(X
⊕
m,W

⊕
m ,MSm, s

⊕
m, P

⊕
m , G; θ)× zj,m,L(X

⊕
m,W

⊕
m)]




,

J := ∪m∈MJm is the set of all offered products, and A is an appropriate 2L×2L weighting

matrix. In particular, A is computed via the usual two-step procedure: first, we estimate

the parameters using the optimal weighting matrix under conditional homoskedasticity;

second, we use the obtained estimates to construct the optimal weighting matrix under

conditional heteroskedasticity and re-estimate the parameters.

Note that we estimate the demand and supply sides jointly. We could also estimate the

demand and supply sides separately by following a two-step procedure: first estimating

the demand parameters; then using these estimates to calculate the mark-ups; finally

regressing the resulting marginal costs on the observed marginal cost shifts to obtain the

supply parameters. We have chosen to estimate the demand and supply sides together

because it allows us to take into account the potential correlation between the demand

and supply moments and thus obtain more precise estimates, as discussed in Berry et al.

(1995). Moreover, since we have a computationally “light” demand specification, the

additional cost of estimating the demand and supply sides jointly is negligible.
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G Inference on the fixed cost parameters

G.1 Writing (21) as a linear optimisation problem with expo-

nential cone constraints

In what follows, we show that (21) is a linear optimisation problem with exponential cone

constraints. First, we simplify the notation of (21) and write it as

δ(q,Γα
I ) := sup

γ∈Γ
q⊤γ,

s.t.
R∑

r=1

fα(brγ − ar)− R log(2)/α ≤ 0,
(G.1)

where br stands for E(Zr,mBm) and ar for E(Zr,mAm). Both quantities can be estimated

consistently from their empirical analogue. Second, observe that

R∑

r=1

fα(brγ − ar)− R log(2)/α ≤ 0 (G.2)

⇔ log(1 + exp(α(brγ − ar))) ≤ tr for r = 1, . . . ,R and
R∑

r=1

tr ≤ R log 2 (G.3)

⇔ exp(−tr) + exp(−tr + α(brγ − ar)) ≤ 1 for r = 1, . . . ,R and
R∑

r=1

tr ≤ R log 2 (G.4)

Therefore, (G.1) is equivalent to

max q⊤γ +
R∑

r=1

0.tr + 0.ur + 0.vr,

under the constraints

R∑

r=1

tr ≤ R log 2,

ur + vr ≤ 1, r = 1, . . . ,R,

(vr, 1,−tr) ∈ Kexp r = 1, . . . ,R,

(ur, 1, α(brγ − ar)− tr) ∈ Kexp r = 1, . . . ,R.

The exponential cone Kexp is a convex subset of R3 such that

Kexp = {(x1, x2, x3) : x1 ≥ x2 exp(x3/x2); x2 > 0} ∪ {(x1, 0, x3), x1 ≥ 0, x3 ≥ 0}.
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The constraints above ensure, in particular, that for any r, vr ≥ exp(−tr) and ur ≥
exp(−tr + α(brγ − ar)), and, therefore, ensure (G.4).

See https://docs.mosek.com/modeling-cookbook/expo.html#softplus-function

for further details.

G.2 Constructing a confidence interval for a component of γ

Suppose we want to construct a confidence interval for a specific linear combination of

components of γ, c⊤γ. Let q = c/‖c‖. By Theorem 2,

√
M

(
δ̂(q; Γα

I )− δ(q; Γα
I )
)

d−→
M→∞

Zα(q).

The optimisation routine detailed in Section G.1 gives us the unique point, γq, which

achieves the maximum of c⊤γ on Γ̂α
I . Let λq be the Lagrange multiplier solving

λq∇gα(γq) = q,

where

∇gα(γq) =
R∑

r=1

br
exp

(
α
[
b⊤r γ − ar

])

1 + exp (α [b⊤r γ − ar])
.

Let Wr(γq) be a random normal variable with variance equal to the asymptotic variance

of 1
M

∑M
m=1(Zr,mB

⊤
mγq − Zr,mAm). In turn, we can compute the variance of Zα(q), which

is the variance of a centered normal random variable. We denote it vα(q). The quantity

c⊤γq + ‖c‖n1−β

√
vα(q),

is the upper bound of the 1 − β confidence interval for c⊤γ, where n1−β is the 1 − β

quantile of the standard normal distribution.

Similarly, let −q = −c/‖c‖ and γ−q be the point which achieves the maximum of

−c⊤γ on Γ̂α
I . Let λ−q be the Lagrange multiplier solving

λ−q∇gα(γ−q) = −q.

As above, we can compute the variance of Zα(−q) and denote it vα(−q). The quantity

c⊤γ−q − ‖c‖n1−β

√
vα(−q),

is the lower bound of the 1− β confidence interval for c⊤γ.

Note that, following Stoye (2009), we can adapt the choice of the quantile to handle

near to point-identified cases.
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G.3 Drawing points from the confidence region for γ

In this section, we outline the steps to draw points from the confidence region for the

true value γ0 in order to run our counterfactual analysis.

1. We look for an interior point γc in Γ̂α
I . This is known in the convex optimization

literature as the Chebyshev center of a polyhedron (Boyd and Vandenberghe, 2004,

page 148). Interestingly, it can be solved by linear programming:

max
r≥0

r,

s.t.
1

M

M∑

m=1

(−Zr,mB
⊤
mγ + Zr,mAm) + r‖ 1

M

M∑

m=1

Zr,mBm‖2 ≤ 0,

r = 1, . . . ,R.

2. Draw a random direction q on the unit sphere and find the frontier point γq = γc+rqq

of Γ̂α
I (rq ≥ 0). Again, this is a linear program.

3. Calculate the outer normal vector of Γ̂α
I at γq. This is the direction q′ such that

δ(q′, Γ̂α
I ) = q′⊤γq. It can be done analytically by calculating the gradient of gα(·) at

γq.

4. Calculate the variance Vα(q
′) of Zα(q

′) using Theorem 2.

5. The point fq = γq+
√

Vα(q′)n1−βq
′ is a frontier point of the (conservative) confidence

region CR1−β(γ0) (drawn from γq in direction q′).

6. Draw a norm l uniformly on [0, 1].

7. Pick the point γc + lfq which belongs to CR1−β(γ0).

Figure G.1 illustrates the sequence.

H Empirical application

H.1 Data

Table H.1 lists the airlines’ hubs. Table H.2 reports the airlines belonging to the groups

LCC and Other.
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Γ̂α
I

∂Γ̂α
I

∂CR1−β(γ0)

γc•
q

γq•
q′ γq + 0.8fq•

fq•

Figure G.1: Drawing from the confidence region

AA DL UA US WN

Dallas Atlanta Washington DC Charlotte Washington DC
New York Cincinnati Denver Washington DC Denver
Los Angeles Detroit Houston Philadelphia Houston
Miami New York New York Phoenix Las Vegas
Chicago Memphis Los Angeles Chicago

Minneapolis-Saint Paul Chicago Phoenix
Salt Lake City San Francisco

Table H.1: Hubs of the legacy carriers and focus cities of Southwest Airlines in 2011.

LCC Other

Frontier Airlines AirTran Airways
Alaska Airlines USA3000 Airlines
Spirit Airlines
Jetblue Airlines
Virgin America
Sun County Airlines
Allegiant Air

Table H.2: Airlines in the categories LLC and Other.
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H.2 Instruments

Table H.3 lists the instruments we use in the estimation of the fixed cost parameters.

Table H.4 lists the instruments we use in the estimation of the demand and supply

parameters.

Table H.3: First-stage instruments.

Zr,(−ab),f = 1 if
All firms {a, b} is not a hub market and has been continuously served since 1979 Q1
AA {a, b} is a hub market with size above 6 million
DL {a, b} is a hub market with size above 6 million
UA {a, b} is a hub market with size above 6 million
US {a, b} is a hub market with size above 5 million
WL {a, b} is a hub market with size above 6 million

Zr,(+ab),f = 1 if
All firms {a, b} is not a hub market and a competitor has a hub at a or b
AA {a} is a hub and {b} is closer to at least 2 other AA hubs
DL {a} is a capacity constrained hub and {b} is closer to all other DL hubs
UA {a} is a hub and {b} is closer to at least 2 other UA hubs
US {a} is a capacity constrained hub and {b} is closer to all other US hubs
WL {a} is a capacity constrained hub and {b} is closer to all other WN hubs

Note: Capacity constrained airports are defined to be airports in need of capacity improvements
according to the Federal Aviation Administration’s FACT3 report. Note that this definition is not
equivalent to an airport being slot constrained.

Table H.4: Second-stage instruments.

Number of firms present in the market
Number of itineraries offered in the market
Number of products offered in the market
Indicator for destination being a hub
Indicator for the market being a monopoly
Number of rival firms offering direct flights in the market
Square of the number of rival firms offering direct flights in the market

H.3 Results from demand and supply

Table H.5 shows the estimated variable profits, prices, marginal costs, and markups at the

firm level. For each airline, the first, second, and third rows contain quantities averaged

over all products, direct flights and one-stop flights respectively. The fourth and fifth rows

contain quantities averaged over direct flights where at least one of the endpoints is a

hub, and direct flights where no endpoint is a hub. We can see that airlines charge higher

markups on direct flights compared to one-stop flights, which is in line with the fact that
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consumers prefer to take direct flights (see “Indirect” in Table 2, demand panel). The

legacy carriers charge higher markups on direct flights where at least one of the endpoints

is a hub than on direct flights where no endpoint is a hub, suggesting the existence of

a hub premium. This hub premium may be due to the fact that consumers value flying

from dense hubs (see “Nonstop Origin” in Table 2, demand panel) or to fixed costs due

to congestion effects at hubs (see Table 4). While American Airlines, US Airways and

Southwest Airlines have lower marginal costs for direct flights, the opposite is true for

Delta and United Airlines.4 The marginal cost of Southwest Airlines is lower than the

marginal cost of the legacy carriers. For direct flights, the difference is quite substantial.

For one-stop flights, Southwest Airlines’ advantage is small, consistent with the fact that

Southwest Airlines uses focus cities rather than hubs. Therefore, the marginal cost savings

of offering one-stop flights (see “Connections” and “Indirect” in Table 2, Supply panel)

may be less pronounced as not all the features of traditional hubs are used.

H.4 Estimated shares of the variable costs over the operating

costs

We compute the estimated share of the variable costs over the operating costs. The

former are obtained as marginal costs times number of passengers. The latter are defined

as the sum of the variable costs and fixed costs, without considering the congestion costs.

Table H.6 reports this share for each airline based on our results. We compare such

shares with estimates from the FAA for 2018 based on administrative data (Table H.7)

and observe similar orders of magnitude.

I Counterfactuals

I.1 Descriptions of the counterfactual algorithm

The possibility of multiple PSNE networks raises the question of how to obtain counter-

factuals when airlines are allowed to reoptimise their networks and prices. Although the

data tell us which equilibrium was played in the past, they do not tell us which equilib-

rium will be chosen by the players once we change the environment. Previous literature

has suggested several ways of solving this problem. For example, the analyst could enu-

merate all possible equilibria and report some summary measures of the resulting range of

counterfactuals (Eizenberg, 2014). Alternatively, the analyst could implement a learning

algorithm and use it to select a probability distribution of possible equilibria (Lee and

4Note that the fact that American Airlines, US Airways and Southwest Airlines have lower marginal
costs on direct flights does not contradict the negative sign of the coefficient on “Connections” in Table
2. In fact, recall that the results in Table 2 should be interpreted ceteris paribus. Instead, the results in
Table H.5 are obtained by averaging over all itineraries, including those with different characteristics.
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Table H.5: Profits by firms.

Profits (100k) Price Marginal cost Markup Lerner Index

AA
All 1.78 453.36 335.20 118.16 0.28
Direct 13.77 402.37 277.42 124.94 0.32
One-stop 0.39 459.26 341.89 117.38 0.27
Direct, hub endpoint 15.06 402.75 276.66 126.09 0.33
Direct, non-hub endpoints 2.00 398.87 284.48 114.40 0.30

DL
All 1.41 436.45 310.40 126.05 0.31
Direct 12.31 463.26 321.03 142.23 0.33
One-stop 0.33 433.80 309.35 124.45 0.31
Direct, hub endpoint 13.49 482.67 336.83 145.84 0.32
Direct, non-hub endpoints 4.47 334.75 216.44 118.31 0.38

UA
All 1.25 445.56 328.43 117.13 0.28
Direct 9.17 458.50 334.97 123.53 0.29
One-stop 0.20 443.85 327.56 116.28 0.28
Direct, hub endpoint 11.03 456.82 332.24 124.58 0.29
Direct, non-hub endpoints 2.17 464.88 345.33 119.55 0.29

US
All 1.30 453.43 336.77 116.67 0.27
Direct 8.99 407.34 275.17 132.17 0.35
One-stop 0.35 459.10 344.34 114.76 0.26
Direct, hub endpoint 10.42 418.96 282.96 136.00 0.35
Direct, non-hub endpoints 3.95 366.22 247.58 118.64 0.36

WN
All 2.79 419.43 299.51 119.92 0.31
Direct 12.09 365.14 237.09 128.05 0.38
One-stop 0.23 434.40 316.73 117.67 0.29
Direct, hub endpoint 16.49 362.34 233.95 128.39 0.38
Direct, non-hub endpoints 8.88 367.19 239.39 127.80 0.38

Note: Quantities are in USD.

Table H.6: Estimated shares of the variable costs over the operating costs.

Min. 1st Qu. Median Mean 3rd Qu. Max.

AA 80.5% 81.5% 82.4% 82.5% 83.7% 84.8%
DL 78.2% 79.3% 80.2% 80.4% 81.7% 82.9%
UA 75.0% 76.2% 77.2% 77.4% 78.8% 80.1%
US 73.9% 75.1% 76.2% 76.4% 77.9% 79.2%
WN 66.3% 67.7% 69.0% 69.3% 71.0% 72.6%
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Table H.7: Passenger Air Carriers Filing Schedule P-5.2 Operating and Fixed Costs per
Block Hours.

Cost per Block Hour
Aircraft Category Fuel Mainte- Crew Total Deprec. Rentals Other Total Share

and Oil nance Variable Fixed Variable

Wide-body more
than 300 seats

$5,411 $1,331 $2,356 $9,097 $845 $406 $5 $1,254 87.9%

Wide-body 300
seats and below

$4,080 $1,289 $1,857 $7,227 $685 $366 $8 $1,058 87.2%

Narrow-body more
than 160 seats

$2,054 $718 $1,152 $3,925 $355 $217 $10 $582 87.1%

Narrow-body 160
seats and below

$1,741 $737 $1,034 $3,512 $306 $215 $12 $533 86.8%

RJ more than 60
seats

$115 $431 $444 $991 $131 $252 $14 $397 71.4%

RJ 60 seats and be-
low

$92 $479 $470 $1,041 $58 $227 $8 $293 78.0%

Turboprop more
than 60 seats

$0 $880 $360 $1,241 $439 $103 $2 $544 69.5%

All Aircraft $1,681 $727 $1,012 $3,420 $314 $239 $11 $564 85.8%

Source: FAA, https://www.faa.gov/regulations_policies/policy_guidance/benefit_cost,
Section 4 of the Benefit-Cost analysis, Table 4-6.
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Pakes, 2009; Wollmann, 2018). The first approach is not computationally feasible in our

setting, due to the large number of markets and the presence of entry spillovers. There-

fore, we follow the second approach. We fix an order of markets and firms. For a given

value of the parameters, the first firm in the first market best responds to its competitors

in terms of entry and pricing decisions. The second firm similarly best responds, taking

into account the best response of the first firm. The third company also best responds,

taking into account the best responses of the first and second companies. The algorithm

cycles through the firms and markets until no airline wishes to deviate. The procedure is

repeated for 50 draws of parameter values from the estimated identified set of first-stage

parameters. For each parameter value, we consider four market orderings. In the first

ordering, we rank the markets according to which hub is involved, whether the market is

served by the merged firm, the size of the merged firm’s operations at the endpoints, and

the market size(ordering A). In the second ordering, we reverse this ranking (ordering

B). In the third and fourth orderings, werank markets randomly (orderings C and D).

For each of the four market orderings, we consider two firm orderings: AA-DL-UA-WL

(ordering 1) and the reverse (ordering 2). This procedure generates a distribution of

possible equilibria over 400 (i.e., 50× 4× 2) counterfactual runs. In the tables of Section

8.2, we report the minimum, maximum, and median changes in the relevant outcomes

under such distribution.

The remainder of the section illustrates the details of the counterfactual algorithm.

In particular, we explain the algorithm implemented to simulate the merger under the

Networks vary - w/o remedies scenario, given an order of markets and firms and a value

of the parameters. The algorithm is structured in the following steps:

1. Latent variables. We determine the realisations of the latent variables that are

needed to evaluate the airlines’ profits. In particular, from the vector of second-stage

estimates, θ̂, we compute the second-stage shocks for each product offered by the air-

lines before the merger, via BLP inversion. For each airline f , we compute the mean

and variance of the second-stage shocks and denote them by µf and Σf , respectively.

When computing µf and Σf for the merged airline, we consider the second-stage shocks

associated with all the products offered by the merging firms before the merger. If both

American Airlines and US Airways offer a given itinerary before the merger, then we take

the mean value of the second-stage shocks of the two pre-merger products. For each po-

tential product of every airline f , we take 100 random draws from a normal distribution

with mean µf and variance Σf . We store all such draws in a matrix Ξ. Further, for each

market {a, b} and airline f , we impute the fixed cost shock ηab,f as explained in Section

I.2.

2. Initial state. At the start, all firms except the merged entity are assigned their pre-

merger networks and products. The merged entity is assigned the network resulting from

combining the pre-merger networks of American Airlines and US Airways. The products
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initially offered by the merged entity and their observed characteristics are constructed

from such merged network. We denote by G := (G1, . . . , GN-1) the initial networks of

the carriers. We let the firms play the simultaneous pricing game described in Section

3.1, for each draw of the second-stage shocks stored in the matrix Ξ. We save the initial

equilibrium prices in a matrix P .

3. Iterations. We take the first firm f in the first market {a, b} and let it play its best

response as follows. Suppose, for instance, that the initial network Gf is characterised by

Gab,f = 0. First, we compute airline f ’s expected variable profits under (G(+ab),f , G−f ).

To do so, we update the list of products offered by firm f , by adding direct flights

between cities a and b. Further, note that setting Gab,f = 1 creates a “domino effect” in

neighbouring markets, due to the possibility for airline f to offer one-stop flights and the

presence of spillovers in entry across markets. Hence, if a is one of firm f ’s hubs, then we

add one-stop flights, via a, between b and all cities d such that Gda,f = 1. Similarly, if b

is one of firm f ’s hubs, then we add one-stop flights, via b, between a and all cities d such

that Gdb,f = 1. We update the matrices of product covariates by including the observed

demand and marginal cost shifters of the new products. We also update the product

covariates (namely, “Nonstop Origin” and “Connections”) of the pre-existing products

that are affected by the new products. Let Mab,f be the list of markets containing either

new products or products with modified covariates. For each of these products in every

market m ∈ Mab,f , we let airline f find the best-response price, while holding the other

prices in P fixed, for every draw of the second-stage shocks stored in the matrix Ξ. We

compute airline f ’s variable profits, average across draws, and get the simulated airline

f ’s expected variable profits, which we denote by
∑

m∈Mab,f
Πe

f,m(G(+ab),f , G−f ; θ̂). Next,

we implement a similar procedure to compute airline f ’s expected variable profits in

each markets m ∈ Mab,f under G, which we denote by
∑

m∈Mab,f
Πe

f,m(Gf , G−f ; θ̂). We

take the difference between airline f ’s fixed costs under (G(+ab),f , G−f ) and G, which is

FCf (G(+ab),f , ηf ; γ̂) − FCf (Gf , ηf ; γ̂) = γ̂2,f∆Q(+ab),f + γ̂1,f + ηab,f , where γ̂ is the value

of the fixed costs parameters drawn from the estimated identified set and ηab,f is the

imputed value of the fixed cost shock. Lastly, we compute:

∑

m∈Mab,f

Πe
f,m(G(+ab),f , G−f ; θ̂)−

∑

m∈Mab,f

Πe
f,m(Gf , G−f ; θ̂)− (γ̂2,f∆Q(+ab),f + γ̂1,f + ηab,f ).

(I.1)

If (I.1) is positive (negative), then the best-response entry of airline f is Gab,f = 1

(Gab,f = 0). We update G and P and move to the second firm in the first market. We

let this firm best respond, while taking into account the first firm’s best response. The

third firm similarly best responds, while taking into account the first and second firms’

best responses, and so on.

4. Stop. We cycle through the firms and markets. When no firm wants to deviate in

none of the markets, we stop the procedure. In practice, we have obtained convergence
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in all the cases considered.

Due to computational costs, the above algorithm does not consider all possible entry

deviations by each firm. In fact, it imposes that each firm considers adding/deleting

direct flights in one market at a time. Nevertheless, at the rest point of the procedure, the

necessary conditions for PSNE that are used in the estimation of the fixed cost parameters

hold. Hence, the algorithm provides an equilibrium that is internally consistent with our

model. Similar restrictions on the set of admissible deviations are assumed by Eizenberg

(2014) and Wollmann (2018).5

We also adopt the above algorithm in the merger simulation for the Networks vary

- w/ remedies and 6. Networks vary - PHX dehubbed scenarios. However, in scenario

Networks vary - w/ remedies, we do not allow the merged entity to exit the markets out

of Charlotte, New York, Los Angeles, Miami, Chicago, Philadelphia, and Phoenix that

were served before the merger by American Airlines or US Airways. In scenario Networks

vary - PHX dehubbed we delete all flights of the merged entity between Phoenix and

non-hub cities and do not allow the merged entity to re-enter those markets.

I.2 Imputation of the fixed cost shocks in the counterfactuals

To perform the counterfactuals, we need a measure of the fixed cost shocks. Different

approaches have been taken in the literature. For example, Wollmann (2018) draws the

fixed cost shocks from a normal distribution with zero mean and variance equal to a

fraction of the variance of the systematic fixed costs. Kuehn (2018) finds, for each mar-

ket, the range of realisations of the fixed cost shocks generating the observed entry/exit

patterns and takes the midpoint. We use a procedure that is similar to Kuehn (2018).

We repeat the steps below for each value of γ drawn from the estimated identified set at

which we run the counterfactual algorithm. When we observe airline f serving market

{a, b} with direct flights (i.e., Gab,f = 1), we infer that this choice must be profitable,

giving us an upper bound for ηab,f . In fact, let Πe
f (Gf , G−f ; θ) − Πe

f (G(−ab),f , G−f ; θ) −
γ2,f∆Q(−ab),f−γ1,f−ηab,f be the difference between the factual profits of airline f and the

profits that airline f would get if deviating to Gab,f = 0. By best-response arguments, it

must be that Πe
f (Gf , G−f ; θ)−Πe

f (G(−ab),f , G−f ; θ)− γ2,f∆Q(−ab),f − γ1,f − ηab,f ≥ 0, i.e.,

ηab,f ≤ Πe
f (Gf , G−f ; θ)−Πe

f (G(−ab),f , G−f ; θ)−γ2,f∆Q(−ab),f−γ1,f . Thus, Π
e
f (Gf , G−f ; θ)−

Πe
f (G(−ab),f , G−f ; θ)− γ2,f∆Q(−ab),f − γ1,f represents an upper bound for ηab,f . Next, we

collect all the markets where airline f does not enter, that are hub markets (non-hub

markets) if market {a, b} is a hub market (is not a hub market) for airline f , and that

5The networks at the rest point of our algorithm constitute a pairwise stable outcome, in the sense
illustrated by Section B. In fact, our algorithm resembles the tâtonnement dynamics discussed by Jackson
and Watts (2002), in which agents form or destroy individual connections, taking the remaining network
as given and not anticipating future adjustments. Jackson and Watts (2002) show that pairwise stable
networks can be achieved by tâtonnement dynamics.
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Table I.1: Comparison of merger prediction with data from 2015-2019.

2011 Prediction 2015 2016 2017 2018 2019 Mean 15-19

Segments: AA/US 430 498 445 465 464 478 491 468.6
[435, 546]

Segments: Other major airlines 736 689 669 678 698 681 678 680.8
[606, 710]

face similar congestion costs. These markets give us a vector of lower bounds for ηab,f .

We take the 2.5th percentile of these lower bounds and use it as a lower bound for ηab,f .

Lastly, we set ηab,f equal to the mid-point between the lower and upper bounds. We im-

plement a similar procedure to determine the fixed cost shocks for the markets that are

not served by airline f in the data. However, instead of the 2.5th percentile, in that case

we take the 97.5th percentile to obtain an upper bound. When simulating the merger,

the merged entity gets the mean value of the fixed cost shocks imputed to the merging

firms by following the above procedure.

I.3 Comparison with post-merger data

Table I.1 shows a comparison of our Networks vary - w/ remedies scenario with post-

merger data on the markets served with direct flights by American Airlines and its com-

petitors before and after the merger out of American Airlines and US Airways’ hubs.

Note that such a comparison is always fraught with difficulties because other changes

occurred at the same time the merger was consummated, such as changes in preferences,

costs (e.g., a significant drop in the price of kerosene in the 2010s), and other changes

in market structure. See, for instance, Bontemps et al. (2022). Nevertheless, our model

predicts relatively well the actual entry-exit dynamics. In particular, we correctly predict

the post-merger expansion of American Airlines’ network and reduction of competitors’

networks. In particular, towards 2019, the observed number of markets served with di-

rect flights closely matches the median prediction of our scenarios. Further, the observed

number of markets served with direct flights lies within the lower-and upper bounds of

our predictions in every year considered.
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I.4 Additional tables

Table I.2 shows the hub-level changes in the number of direct flights offered by American

Airlines and the other major airlines. The column Av. presence reports the average

number of main carriers present across all possible markets out of a given hub. Table

I.3 reports the percentage change in prices, marginal costs, and markups of American

Airlines and the other major airlines. It distinguishes between direct flights and one-stop

flights.

Table I.2: Changes in direct flights offered in the hub markets of AA and US.

Before Merger

w/o remedies w/ remedies PHX dehubbed

AA/US Others Av. presence AA/US Others Av. presence AA/US Others Av. presence AA/US Others Av. presence

AA hubs
DFW 68 55 1.6 69 57 1.52 68 57 1.52 68 57 1.52

[66, 73] [55, 57] [1.5, 1.59] [66, 73] [55, 57] [1.5, 1.59] [67, 74] [54, 57] [1.49, 1.6]
LAX 28 90 1.51 30 90 1.47 30 90 1.48 34 90 1.52

[21, 33] [87, 91] [1.36, 1.52] [28, 33] [87, 91] [1.44, 1.52] [22, 35] [88, 91] [1.38, 1.56]
ORD 59 129 2.35 63 105 2.05 63 110 2.1 62 108 2.09

[56, 70] [73, 116] [1.68, 2.21] [60, 71] [73, 115] [1.73, 2.23] [53, 69] [75, 118] [1.71, 2.2]
MIA 40 51 1.17 25 52 0.94 42 52 1.13 25 52 0.94

[15, 44] [50, 52] [0.8, 1.16] [40, 47] [50, 52] [1.11, 1.21] [14, 46] [50, 52] [0.79, 1.18]
JFK 41 113 2 58 95 1.85 56 96 1.88 61 97 1.85

[29, 81] [49, 113] [1.55, 2.17] [43, 81] [49, 106] [1.59, 2.16] [29, 81] [51, 112] [1.57, 2.16]

US hubs
CLT 61 41 1.29 64 41 1.28 65 41 1.29 64 41 1.28

[43, 69] [39, 42] [1.02, 1.35] [61, 69] [39, 42] [1.23, 1.35] [43, 68] [39, 42] [1.04, 1.33]
PHX 41 74 1.49 40 66 1.29 42 65 1.3 8 68 0.93

[23, 43] [61, 69] [1.1, 1.35] [41, 43] [59, 68] [1.22, 1.35] [8, 8] [63, 70] [0.87, 0.95]
DCA 40 130 2.16 81 127 2.52 75 128 2.46 81 127 2.52

[34, 82] [123, 133] [2, 2.6] [28, 82] [124, 133] [1.91, 2.61] [32, 82] [124, 133] [1.98, 2.59]
PHL 52 53 1.33 54 56 1.36 56 55 1.37 55 56 1.37

[25, 67] [54, 60] [1.04, 1.52] [52, 67] [54, 56] [1.32, 1.52] [28, 66] [54, 61] [1.07, 1.49]

Total
Total 430 736 1.66 491 686 1.6 498 689 1.61 457 693 1.56

[348, 531] [607, 720] [1.43, 1.65] [435, 546] [606, 710] [1.54, 1.67] [335, 497] [612, 721] [1.41, 1.62]

Note: Median outcomes are reported, with minimum and maximum outcome in brackets.

I.5 Inference on counterfactuals

In this section, we report the confidence intervals for the counterfactuals presented in

Section 8.2 of the main paper. To construct these confidence intervals, we run the coun-

terfactual algorithm discussed in Section I.1 at 50 draws of parameter values from the

95% confidence region for γ. Section G.3 explains how we take such draws. In particular,

Table I.4 reports the confidence intervals for Table 9, Table I.5 reports the confidence

intervals for Table 10.
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Table I.3: Percentage change in prices, marginal cost, and markups.

Before Merger

w/o remedies w/ remedies PHX dehubbed

AA/US: Direct
Price 406.24 -4.71 -4.68 -4.72

[-6.73, -3.67] [-5.36, -3.53] [-6.71, -3.60]
Marginal cost 276.70 -10.23 -10.05 -10.06

[-12.62, -9.66] [-10.87, -9.43] [-12.52, -9.28]
Markup 129.54 +7.39 +7.04 +7.30

[+4.6, +9.41] [+5.64, +9.39] [+4.22, +9.23]

Others: Direct
Price 413.19 +0.56 +0.55 +0.78

[-0.25, +2.50] [-0.18, +1.43] [-0.14, +2.65]
Marginal cost 291.60 +1.39 +1.35 +1.38

[+0.30, +3.40] [+0.51, +2.26] [+0.20, +3.23]
Markup 121.59 -1.44 -1.43 -0.64

[-1.80, +1.16] [-1.97, -0.21] [-1.12, +1.50]

AA/US: One-stop
Price 466.39 -5.69 -5.42 -6.19

[-8.15, -5.19] [-5.90, -4.74] [-7.62, -5.60]
Marginal cost 351.28 -12.67 -12.43 -12.85

[-14.08, -11.75] [-12.91, -10.49] [-13.31, -10.33]
Markup 115.11 +15.27 +15.44 +13.63

[+8.22, +17.82] [+12.01, +18.52] [+8.07, +16.62]

Others: One-stop
Price 416.12 +4.05 +3.97 +4.13

[+3.42, +4.97] [+3.43, +4.52] [+3.55, +4.98]
Marginal cost 301.18 +6.00 +5.94 +6.03

[+5.35, +6.63] [+5.41, +6.49] [+5.40, +6.58]
Markup 114.94 -1.25 -1.31 -0.84

[-1.81, +0.99] [-2.00, -0.44] [-1.49, +1.07]

Note: Percentage changes with respect to the pre-merger scenario are reported.

Table I.4: Percentage change in consumer surplus across different scenarios.

Networks fixed Networks vary

w/o remedies w/ remedies PHX dehubbed

Total consumer surplus +0.08 +0.77 +0.91 -0.67
[-0.47, +3.40] [-8.92, +3.47] [-3.92, +3.84] [-10.01, +1.79]

New markets 0 45.15 45.02 42.87
[30.77, 52.29] [29.47, 53.37] [23.58, 53.02]

Old markets +0.08 -5.28 -5.12 -4.67
[-0.47, +3.40] [-10.67, -3.97] [-8.18, -3.94] [-11.23, -3.32]

Note: Consumer surplus is computed using the log-sum formula and it is in USD 1 million
up to constant of integration. Percentage changes with respect to the pre-merger scenario
are reported.
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Table I.5: Outcomes across different scenarios

Before Merger

Networks fixed Networks vary

w/o remedies w/ remedies PHX dehubbed

Total 2807.06 +0.08 +0.77 +0.91 -0.67
[-0.47, +3.40] [-8.92, +3.47] [-3.92, +3.84] [-10.01, +1.79]

Mean 4.09 +0.08 -0.73 -0.44 -1.96
[-0.47, +3.40] [-9.58, +1.83] [-4.76, +2.20] [-10.67, +0.34]

Markups: AA/US 119.20 +7.34 +12.86 +12.96 +12.36
[+5.98, +8.64] [+7.44, +16.30] [+10.05, +16.37] [+6.41, +15.50]

Markups: Other major airlines 116.22 -0.45 -1.30 -1.37 -0.93
[-0.68, +0.07] [-2.11, +1.10] [-2.22, -0.40] [-1.58, +1.17]

Segments: AA/US 430 430 493.5 500 467
[346, 551] [434, 559] [330, 514]

Segments: Other major airlines 736 736 686 688.5 691
[594, 717] [596, 710] [613, 719]

Note: Consumer surplus is computed using the log-sum formula and it is in USD 1 million up to constant of
integration. Percentage changes with respect to the pre-merger scenario are reported for total consumer surplus,
mean consumer surplus, and markups.
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