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Abstract. I consider a repeated auction setting with colluding buyers and a seller who adjusts

reserve prices over time without long-term commitment. To model the seller’s concern for collusion, I

introduce a new equilibrium concept: collusive public perfect equilibrium (cPPE). For every strategy

of the seller I define the corresponding “buyer-game” in which the seller is replaced by Nature who

chooses the reserve prices for the buyers in accordance with the seller’s strategy. A public perfect

equilibrium is collusive if the buyers cannot achieve a higher symmetric public perfect equilibrium

payoff in the corresponding buyer-game. In a setting with symmetric buyers with private binary iid

valuations and publicly revealed bids, I find a collusive public perfect equilibrium that allows the seller

to extract the entire surplus from the buyers in the limit as the discount factor goes to 1. I therefore

show that a patient, non-committed seller can effectively fight collusion even when she can only set

reserve prices and has to satisfy stringent public disclosure requirements.
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1 Introduction

Auctions rarely involve a one-shot interaction, often buyers and sellers face each other re-

peatedly. Procurement decisions for road construction and maintenance, to take one example,

have to be made regularly and public authorities often have to deal with the same pool of

potential suppliers. Auctions for electromagnetic spectrum, although less regular, often involve

the same pool of potential buyers.

I model a seller who is concerned about colluding buyers and her own lack of commitment

power. I assume that the seller offers an infinite sequence of first-price auctions with adjustable

reserve prices and has to satisfy stringent public disclosure requirements: both the reserve prices

and the buyers’ bids are publicly disclosed after each round of trading. The seller can commit

to her chosen reserve prices within every period, but does not have enough commitment power

to fix the whole dynamic sequence of reserve prices. With respect to collusion, the seller takes

a rather pessimistic stance: she expects the buyers to take her chosen strategy as given and

try to collectively maximize their own payoff. To model the seller’s concern for collusion, I

introduce a subclass of public perfect equilibria, which I call collusive public perfect equilibria.

For every public strategy of the seller I define the corresponding dynamic game among the buyers

(“buyer-game”) in which the reserve prices are chosen by Nature in accordance with the seller’s

strategy; I select only those public perfect equilibria of the repeated first-price auction game, in

which the buyers’ payoff is no smaller than the payoff they could achieve in the maximal strongly

symmetric public perfect equilibrium of the corresponding buyer-game. I call the selected public

perfect equilibria collusive. My main goal is to determine the highest payoff that the seller can

obtain in a collusive public perfect equilibrium of the repeated auction game.

I consider buyers whose valuations are binary, independent and identically distributed across

them and over time. The buyers in my model employ strongly symmetric strategies in any

public perfect equilibrium of any buyer-game. In essence, the buyers are prohibited from using

more complex asymmetric collusive schemes which might involve communication and/or bidding

strategies dependent on each buyer’s identity. While it is possible that the seller has less power

against a more sophisticated cartel, it should be noted that asymmetric strategies (due to their
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complexity) might require explicit coordination among the buyers, and explicit coordination

could be more easily detected and prevented via the traditional instruments of anti-trust policy.

This paper finds a seller’s strategy that is robust to collusive schemes that are simpler and more

tacit, and thus harder to detect and prove to a court.

I study equilibrium outcomes as the discount factor goes to 1 and show that collusion in

repeated auctions can be dealt with rather effectively: I establish that there is a collusive public

perfect equilibrium that achieves full surplus extraction in the limit as the discount factor goes to

1, even though the seller can only set reserve prices, and stringent public disclosure requirements

force her to publicly reveal bids in the end of each period. This full-surplus-extracting collusive

public perfect equilibrium is stationary along the equilibrium path, features higher reserve prices

than the static outcome and forces the buyers to bid even if their valuation is below the offered

reserve price in the current period. Note that, since I am studying a restricted class of public

perfect equilibria, my full surplus extraction results do not rely on any of the existing folk

theorems. Since these theorems refer to the full set of public equilibrium payoffs, even the mere

possibility of full surplus extraction by any collusive public perfect equilibrium (let alone by a

cPPE of any particular structure) is not implied by the existing folk theorems.

In the full-surplus-extracting equilibrium the seller forces the buyer types to separate and

punishes any off-equilibrium path deviations she can detect. In the corresponding buyer-game

the buyers take the seller’s threat as given and might try to deviate to a lower bidding profile.

The key to the construction of the optimal equilibrium is in identifying the optimal symmetric

joint deviation for the buyers and making sure that the original construction renders this joint

deviation unprofitable. Since the full-surplus-extracting cPPE forces any low-type buyer to bid

even when his valuation is below the reserve price, the optimal joint deviation will involve the

low-type buyers abstaining from participating and receiving the punishment of zero continu-

ation payoffs, and the high-type buyers bidding at the reserve price. There are three cases

corresponding to different parameter values. In all three cases the seller extracts full surplus

from the buyers. In Cases 1 and 2, the buyers’ payoff in the full-surplus-extracting cPPE is

exactly equal to the payoff of the optimal joint deviation. In Case 3 the proportion of the

low-type buyers is so high that the optimal joint deviation would provide the buyers with a
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strictly lower payoff than the one they obtain along the equilibrium path.

Beyond addressing purely theoretical concerns, my results shed light on how collusion can be

dealt with in practice. Note that dealing with collusion in repeated first-price auctions is espe-

cially challenging because of a fundamental conflict between revenue maximization and fighting

collusion. A seller, who wants to maximize her revenue, must force the different valuation types

of the buyers to separate, making the higher types bid relatively high. But separation of the

different valuation types creates scope for collusion since, absent punishments, the buyers would

try to coordinate on a lower bidding profile. Higher patience will only make this coordination

process easier for them. What my results suggest, however, is that higher patience also allows

the seller to come up with very effective punishments for colluding buyers. To effectively fight

collusion, a revenue-maximizing seller should force the buyers to pay “upfront” for the contin-

uation of favorable terms of trade, which is achieved by making the relatively low-valuation

types participate even when they have to bid above their current valuations. Penalization of

non-participation makes sure that the buyers cannot improve their payoff by making the lower

types abstain from the auction altogether and making the higher types take their place in bid-

ding low. Since the higher valuation types also want to avoid (inefficiently) pooling with the

lower valuation types, they can do nothing but bid high.

1.1 Related literature

The dynamic nature of the interaction presents formidable challenges for an auction designer.

Some of those challenges (e.g. intertemporal dependence of agents’ private information) have

been addressed by the dynamic mechanism design literature (see e.g. Pavan et al. (2014), and

Bergemann and Välimäki (2019) for a review). Other important issues however remain. It

is well-known that dynamic games often exhibit a multiplicity of equilibria, which makes the

classical mechanism design assumption of favorable equilibrium selection harder to justify. For

example, in repeated auction settings, collusive outcomes with lower revenue can be supported

in equilibrium (see e.g. Skrzypacz and Hopenhayn (2004), who analyze equilibria of repeated

first-price auctions and conclude that a bid rotation scheme, which leaves the seller with less
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revenue than optimal, can be supported even under limited observability of bids and auction

outcomes). Moreover, collusive equilibria seem to be practically relevant as collusive bidding

patterns are observed in many different repeated auction settings around the world (see e.g

Chassang et al. (2021)).

Repeated auctions are special cases of general repeated games. Equilibria of repeated games

were studied by Abreu et al. (1990), who provide a recursive characterization of equilibrium

payoffs for repeated games with imperfect monitoring, and Fudenberg et al. (1994) who prove

a folk theorem for these games. Athey et al. (2004) introduce (iid) private information into a

repeated Bertrand game with imperfect monitoring and apply the recursive characterization of

Abreu et al. (1990) to their game. They show that patient players can sustain high rigid prices

in the optimal equilibrium, thus extracting a lot of surplus from the consumers. Their model

can be translated to an auction setting with a passive seller who chooses a reserve price once

and for all in the beginning of the game. In the buyer-optimal equilibrium with patient buyers

such a seller would be forced to sell the good at her chosen reserve price in every period.

Even though the literature on collusion in repeated auctions and oligopolies with private

information is very extensive (see Correia-da Silva (2017) for a review), very few papers are

concerned with the study of how the seller’s or auction designer’s behavior might affect the

buyers’ collusion. Abdulkadiroglu and Chung (2004) consider a stage game design problem

in which a committed seller proposes a mechanism that will become the stage game played

repeatedly by a set of tacitly colluding buyers. The seller in their model is concerned with

buyers coordinating on the buyer-optimal sequential equilibrium and designs the stage game

accordingly. Similarly to my paper, Abdulkadiroglu and Chung (2004) find that there is a

mechanism which extracts the entire surplus from the buyers. In the optimal mechanism all

the buyers pay the same participation fee to the seller and then the partnership dissolution

mechanism of Cramton et al. (1987) is run. Abdulkadiroglu and Chung (2004) however note

that a non-committed seller will fall far short of full surplus extraction: in the buyer-optimal

sequential equilibrium of the repeated game in which the seller moves first and proposes a

mechanism, the seller’s revenue will be zero. In this paper I propose a less pessimistic (from

the seller’s point of view) model of equilibrium coordination. While the seller in my model
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lacks long-term commitment, she is able to control her own strategy and does not have to

coordinate on the worst equilibrium for herself. She cannot however guarantee that the buyers

will coordinate on her preferred equilibrium either. The buyers could take her strategy as given

and tacitly coordinate on a lower bidding profile using their continuation values to enforce

collusive behavior, hence her equilibrium strategy must make such coordination unprofitable

for the buyers. Although the seller has a more active role in equilibrium coordination in my

model, she is more constrained in terms of feasible mechanisms: she must offer a first-price

auction in every period and can only adjust reserve prices over time. The first-price auctions

are widely used in practice, but give rise to severe challenges when it comes to collusive behavior

under private information. A seller who wants to obtain a higher revenue should try to force

the buyer types to separate, but that very separation creates a scope for collusion. I show that

this conflict is resolved in favor of the seller when she is patient enough.

A few other papers study similar settings, but none of them (to the best of my knowledge)

simultaneously deals with the lack of seller’s commitment and equilibrium coordination in a

satisfactory way. Thomas (2005) notices that a seller could make collusion harder for the

buyers by raising reserve prices, but assumes that the seller moves only once, in the beginning

of time, and chooses one reserve price for the entirety of the repeated game between the buyers.

Zhang (2021) studies a class of collusive agreements between bidders in a model of repeated

first-price auctions, and, as a side note to his main results, shows how a revenue-maximizing

seller should respond to collusion. His seller, much like the seller in Thomas (2005), moves only

once and commits to a single reserve price. As the discount factor goes to 1, the seller is forced

to tolerate “full collusion”, in which all bids are suppressed down to the reserve price, and thus

essentially makes an optimal take-it-or-leave-it offer to the colluding bidders. In contrast to the

results in my paper, the revenue of a patient seller, who is restricted to choose only one reserve

price once and for all, is lower than the revenue achieved under the infinite repetition of the

competitive static outcome, and is therefore of course far below full surplus.

Ortner et al. (2020) are concerned with mitigating the effects of collusion in repeated pro-

curement auctions. They propose a model with a regulator who observes the whole (infinite)

bidding history and can punish colluding bidders. They construct tests for detecting collusive
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patterns of behavior which only allow for false negatives – therefore competitive bidders pass

them with probability one. The regulator can then use the outcomes of the tests to punish the

colluding bidders. My seller only has access to finite histories of bids and can only use reserve

prices to punish colluding bidders.

Bergemann and Hörner (2018) also study a binary type model of first-price auctions similar

to mine. The seller in their model is however passive and does not set a reserve price at all,

and the buyers’ valuations are perfectly persistent. They are concerned with disclosure regimes

regarding the bid and winning history. In contrast to the findings in my paper, they show that

the maximal disclosure regime leads to inefficient equilibria with low revenues. I show that an

active seller who can adjust reserve prices over time can extract full surplus even when the full

history of bids and identities of the winning buyers is publicly disclosed.

My paper is also related to the literature on collusion in static auctions. This literature

was started by McAfee and McMillan (1992), who study outcomes of explicit before-auction

communication in a first-price auction setting. They solve for optimal collusive schemes with

(“strong collusion”) and without transfers (“weak collusion”). In the optimal weak collusion

scheme, the bidders bid at the reserve price as long as their valuation exceeds it and abstain

otherwise. In the optimal strong collusion scheme, the colluding buyers can obtain a higher

expected payoff by running a “knock-out” auction among themselves. The winner of the knock-

out auction bids at the reserve price (as long as it exceeds his valuation) in the legitimate auction,

and the losers are compensated for abstaining from the legitimate auction. It is however known

now, that in the static setting the seller can avoid the dramatic losses from collusion via more

sophisticated auction design. Che and Kim (2009) show that the second-best auction can be

made collusion-proof, even when the bidders can use transfers to collude.

Finally, this paper speaks to the large literature on robustness in mechanism design (see

Carroll (2019) for a comprehensive review). In my paper the seller aims to be robust to collusive

behavior of the buyers.
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1.2 Roadmap

The rest of the paper is organized as follows: Section 2 introduces the model of a repeated

first-price auction game. In Section 3, I introduce the definitions of a buyer-game and a collusive

public perfect equilibrium. In Section 4, I show how supporting collusive public perfect equilibria

can be constructed to punish the seller and the buyers for deviations from the equilibrium path

of full-surplus-extracting cPPE constructed in Sections 5 and 6. Section 7 briefly discusses the

optimal reserve prices of the seller. Finally, Section 8 concludes.

2 Model

2.1 Setup

There is a seller (player 0) and n ≥ 2 buyers (players 1, . . . , n) who interact over infinitely

many periods. The seller sells one unit of a private good in every period via a first price auction

with a reserve price. Each buyer is privately informed about his valuation type, which is drawn

from a binary set Θ = {θ, θ}, with 0 ≤ θ < θ, iid across periods and buyers. The probability of

the low type θ is q ∈ (0, 1). The players share a common discount factor δ ∈ [0, 1).

The players play a repeated extensive form game with imperfect public monitoring. The

timing of each period is as follows:

1. Seller announces a reserve price r.

2. Buyers privately learn their valuations for the good in the current stage.

3. Buyers bid or abstain (∅) in the first price auction with the reserve price r.

4. The winner (if any) is determined, the buyers’ choices are publicly disclosed.

The action set of the seller is A0 = R+, the action set of each buyer is A = {∅} ∪ R+.

Buyer i’s payoff is equal to his valuation θi net of his bid bi if he wins the auction and zero

otherwise. Ties are broken by a fair coin toss. Formally,

ui(r, b, θi) =







1
#(win)

(θi − bi), if bi ≥ r &
(
bi = max{b1, ..., bn} or b−i = ∅

)

0, otherwise

,
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where #(win) stands for the number of winners in the auction, i.e. the number of buyers who

placed the highest bid.

The seller’s revenue is equal to the highest bid if there is a buyer who bids above his reserve

price, and zero otherwise:

R(r, b) =







bi, if bi ≥ r &
(
bi = max{b1, ..., bn} or b−i = ∅

)

0, otherwise

.

2.2 One-shot auctions

Before we turn our attention to the repeated auction problem, we have to consider subgame

perfect equilibria of the stage game. The intuition here is rather straightforward. If there are

relatively few low types in the population (the probability q of having a low valuation is small),

then the seller will prefer to trade with high types only, and will therefore set the reserve price

equal to the high valuation θ. The low-type buyers will abstain while the high-type buyers will

bid their valuation θ. If there are relatively many low types in the population, then the seller

will prefer to trade with both types, and will therefore set the reserve price to the low valuation

θ. The low-type buyers will bid their valuation while the high-type buyers will play a mixed

strategy whose support lies above θ. The following proposition applies:

Proposition 1. One-shot auction equilibria

❼ If the parameters of the model fall into the High-reserve-price region
(
q < n(θ−θ)

θ+n(θ−θ)

)
,

then the seller sets r∗os = θ and generates revenue R∗
os

= (1 − qn)θ; the buyers get the ex

ante payoff v∗
os
= 0.

❼ If the parameters of the model fall into the Low-reserve-price region
(
q ≥ n(θ−θ)

θ+n(θ−θ)

)
,

then the seller sets r∗os = θ and generates revenue R∗
os
= (1−qn)θ+qnθ−n(1−q)qn−1(θ−θ);

the buyers get the ex ante payoff v∗
os
= (1− q)qn−1(θ − θ).

Its proof along with other details of equilibrium characterization is provided in Appendix A.
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3 Collusive Public Perfect Equilibrium

3.1 Motivation

Let us consider the Low-reserve-price region and the infinite repetition of the associated one-

shot equilibrium. Clearly, it is an equilibrium of the infinitely repeated auction game, but there

is no reason to believe that the players will actually coordinate on it. In fact, buyers’ collusion

is a good reason to believe otherwise. Suppose that the seller sets the reserve price equal to the

low valuation θ, but the buyers, instead of coordinating on their one-shot equilibrium strategies,

use a different bidding profile, in which high-type buyers bid b = θ and the low-type buyers

abstain b = ∅ in every period. This bidding profile gives a lower revenue of (1 − qn)θ to the

seller and a higher payoff of 1
n
(1− qn)(θ − θ) to the buyers. The buyers can support their new

bidding profile using a “grim-trigger” strategy, which punishes deviations by moving back to the

one-shot equilibrium strategies of the Low-reserve-price region; the buyers only have to make

sure that the high types do not want to deviate to θ + ϵ, i.e. whenever

(1− δ)
1− qn

n(1− q)
(θ − θ) + δ

1

n
(1− qn)(θ − θ)

︸ ︷︷ ︸

Payoff from b=θ, b=∅

≥ (1− δ)(θ − θ)
︸ ︷︷ ︸

Today’s deviation payoff

+ δ(1− q)qn−1(θ − θ)
︸ ︷︷ ︸

Grim punishment payoff

,

which can be satisfied for high enough values of δ.

As we can see, the infinite repetition of the one-shot equilibrium in the Low-reserve-price

region is not “collusive” because the buyers do not exploit their ability to collude to the fullest

extent possible. A seller who has concerns about buyers’ collusion should not hope to end up in

such an equilibrium and needs to consider more sophisticated strategies. The seller’s equilibrium

strategy should however always guarantee that the buyers cannot improve their payoff similarly

to how they did it in the above example. I formalize this requirement by introducing the concept

of collusive public perfect equilibrium.

3.2 Definition

A collusive public perfect equilibrium is a strongly symmetric public perfect equilibrium that

satisfies two novel requirements:
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1. Collusiveness on path. The buyers must collude given the seller’s on-path play of

her equilibrium strategy. Central to this requirement is the notion of a buyer-game I

introduce below. Buyer-game is a stochastic first price auction game between the buyers,

in which the reserve prices are determined according to the seller’s strategy. Collusiveness

requires that the buyers be unable to improve their payoff by moving to a different strongly

symmetric public perfect equilibrium in the buyer-game induced by the seller’s equilibrium

strategy. In the above example of the infinite repetition of the one-shot equilibrium of the

Low-reserve-price region collusiveness was violated since the buyers could improve their

payoff by moving to a different equilibrium between themselves.

2. Collusiveness off path. The continuation play must be collusive on path in the above

sense in the above sense regardless of seller’s actions as long as the buyers stick to their

equilibrium strategies. This requirement formalizes the idea that buyers’ collusive agree-

ments cannot be broken by seller’s actions. It does however allow non-collusive equilibria

to be played following buyers’ deviations and thus imposes no restriction on the buyers’

ability to collude.

Strongly symmetric public perfect equilibrium is a public perfect equilibrium, in which buy-

ers take symmetric actions on and off the equilibrium path. Public perfect equilibrium is an

equilibrium in public strategies, i.e. strategies which map public histories into players’ actions.

A public history in the beginning of period t + 1 is a sequence that includes all the actions

taken by each player up to that period:
(
Ø, (r0, b10, . . . , bn0), . . . , (rt−1, b1t, . . . , bnt)

)
, where Ø

denotes the initial history. The set of those histories is given by H0 ≡ ∪∞
t=0

(
A0 × An

)t
, with a

typical period-t history denoted ht
0. Since buyers additionally observe the action taken by the

seller in every period, the set of public histories at which they get to make a move is given by

H ≡ ∪∞
t=0

[(
A0 ×An

)t]×A0 with a typical period-t history denoted ht. A pure public strategy

for the seller is a mapping σ0 : H0 → A0, for the buyers it is σi : H×Θ → A.

The expected payoff of the seller in the repeated auction game is given by:

U0(σ) = (1− δ)E
∞∑

t=0

δtR
(
σ0(h

t
0), σi(h

t, θit), σ−i(h
t, θ−it)

)
.
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The expected payoff of the buyers i = 1, 2, ..., n in the repeated auction game is given by:

Ui(σ) = (1− δ)E
∞∑

t=0

δtui

(
σ0(h

t
0), σi(h

t, θit), σ−i(h
t, θ−it), θit

)
.

The above definitions extend naturally to behavioral strategies. We can now state the

following definition:

Definition 1. Strongly symmetric public perfect equilibrium

A strategy profile (σ∗
0, σ

∗
1, ..., σ

∗
n) is a strongly symmetric public perfect equilibrium if

1. it induces a Nash equilibrium after every public history h0 ∈ H0 and h ∈ H;

2. σ∗
i (h, θ) = σ∗

j (h, θ) after any public history h ∈ H for any two buyers i, j and any θ.

The first condition of Definition 1 rules out non-credible threats at every public history

much like subgame perfect equilibrium rules out non-credible threats in every subgame. The

second condition makes sure that the buyers use symmetric bidding actions on and off the

equilibrium path. Note that strongly symmetric public perfect equilibria have recursive struc-

ture: the continuation play after any public history is itself a strongly symmetric public perfect

equilibrium.

All strongly symmetric public perfect equilibria I construct below, except the infinite repeti-

tion of the one-shot equilibrium in the Low-reserve-price region, satisfy the following additional

assumption:

Assumption 1(a). Pure bidding actions along the equilibrium path

Buyers use pure bidding actions along the equilibrium path, i.e. after any public history

h ∈ H consistent with the on-path play of (σ∗
0, σ

∗, . . . , σ∗), the action σ∗(h, θ) is pure for both

types θ ∈ {θ, θ}.

Assumption 1(a) itself is not restrictive since we can find a full-surplus-extracting strongly

symmetric public perfect equilibrium that belongs to the class of equilibria allowed by Assump-

tion 1(a). However, I make a similar assumption in the next subsection (Assumption 1(b)),

which forces the buyers to play the same class of equilibria in any buyer-game, restricting the

set of collusive schemes they could use. It remains an open question whether Assumptions 1(a)

and 1(b) could be dispensed with.
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3.2.1 Collusiveness on path

To define collusiveness on path formally, we have to introduce the notion of a buyer-game

induced by a seller’s strategy. To define the states in the buyer-game, we need to define the

path automaton of a seller’s strategy1. In order to do that, fix a particular pure public strategy2

of the seller σ0. Let H̃0(σ0) be the set of histories consistent with the seller’s play of σ0 and any

profile of buyers’ strategies3. Two histories h0 and h′
0 from H̃0(σ0) are called σ0-equivalent if

they prescribe the same continuation play for the seller according to σ0, i.e. σ0|h0
= σ0|h′

0
. Let

Ω be the resulting set of equivalence classes with ω0 being the equivalence class of the initial

history Ø. The path automaton representation of σ0 is defined as follows:

Definition 2. Path automaton of a seller’s strategy

The path automaton of σ0 is the tuple
(
Ω, ω0, r, τ

)
, where

❼ r : Ω → A0 is the decision rule satisfying r(ω) = σ0(h0) for any h0 ∈ ω.

❼ τ : Ω×An → Ω is the transition function satisfying τ(ω, b) = w′ iff for any history h0 ∈ w

the concatenated history (h0, r(ω), b) ∈ w′.

We can now introduce the definition of the buyer-game induced by σ0:

Definition 3. Buyer-game

Let
(
Ω, ω0, r, τ

)
be the path automaton of σ0. The buyer-game induced by σ0 is a stochastic

game between the buyers where:

❼ The set of states is Ω, with the initial state ω0. State transitions occur according to τ .

❼ The set of actions for each buyer is A, i.e. is as defined in the repeated auction game.

1Unlike an automaton representation, the path automaton of a seller’s strategy assumes that the seller never

deviates from σ0, and therefore represents only part of her repeated game strategy. See also Kandori and Obara

(2006) who employ a similar definition of a path automaton in the context of repeated games with private

monitoring.
2It is without loss of generality to restrict attention to pure strategies of the seller, since our goal is to construct

a full-surplus-extracting collusive public perfect equilibrium, which can be achieved under this restriction.
3A typical element of H̃0(σ0) can be written as ht

0
=

(
Ø,

(
σ0(Ø), b0

)
,
(
σ0(h

1

0
), b1

)
, . . . ,

(
σ0(h

t−1

0
), bt−1

))
;

where h1

0
=

(
σ0(Ø), b0

)
, h2

0
=

((
σ0(Ø), b0

)
,
(
σ0(h

0

0
), b1

))
, etc.
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❼ The set of valuations for each buyer is Θ, i.e. is as defined in the repeated auction game.

❼ The utility of buyer i with type θi bidding bi in state ω is

ũi(ω, b, θi) =







1
#(win)

(θi − bi), if bi ≥ r(ω) &
(
bi = max{b1, ..., bn} or b−i = ∅

)

0, otherwise

,

where #(win) stands for the number of winners in the auction.

Let us look at the strongly symmetric public perfect equilibria of the buyer-game induced

by σ0. A public history at period t + 1 in the buyer-game includes all states and bids up to

period t+ 1:
(
ω0, (b10, . . . , bn0), . . . , ωt, (b1t, . . . , bnt), ωt+1

)
. Let H(σ0) be the set of these public

histories. A public strategy in the buyer game is a function ρi : H(σ0)×Θ → A. This definition

of public strategy extends naturally to behavior strategies. A strongly symmetric public perfect

equilibrium in the buyer-game induced by a seller’s strategy σ0 is defined as follows:

Definition 4. Strongly symmetric public perfect equilibrium in the buyer-game

A strategy profile (ρ∗1, . . . , ρ
∗
n) is a strongly symmetric public perfect equilibrium equilibrium

of the buyer-game induced by σ0 if

1. It induces a Nash equilibrium after any public history h ∈ H(σ0).

2. ρ∗i (h, θ) = ρ∗j(h, θ) after any public history h ∈ H(σ0) for any two buyers i, j and any θ.

Recall that by Assumption 1(a) the buyers use pure bidding actions along the equilibrium

path of any strongly symmetric public perfect equilibrium of the repeated auction game. The

following Assumption 1(b) restrict the buyers to play equilibria from the same class in the buyer

game.

Assumption 1(b). Pure bidding actions along the equilibrium path of a buyer-game

Buyers use pure bidding actions along the equilibrium path in the buyer-game induced by

σ0, i.e. after any public history h ∈ H(σ0) consistent with the on-path play of (ρ∗, . . . , ρ∗), the

action ρ∗(h, θ) is pure for both types θ ∈ {θ, θ}.

Assumption 1(b) does not allow the buyers to collude by moving to a strongly symmetric

public perfect equilibrium of the buyer game that exhibits mixed actions along the equilibrium
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path. It is in principle possible that the buyers could collectively benefit from using mixed

actions along the equilibrium of the buyer-game induced by the full-surplus-extracting collu-

sive equilibrium constructed below. It can be shown that the simplest collusive schemes with

mixed actions do not help the buyers to improve their payoff4. The larger question of whether

Assumption 1(b) could be dispensed with remains open.

We can now use the above definitions to formally introduce the notion of collusiveness on

path.

Definition 5. Collusiveness on path

A strongly symmetric public perfect equilibrium (σ∗
0, σ

∗, ..., σ∗) of the repeated auction game

is collusive on path if there is no strongly symmetric public perfect equilibrium with pure actions

along the equilibrium path (i.e. satisfying Assumption 1(b)) in the buyer-game induced by σ∗
0,

whose equilibrium payoff exceeds the buyer payoff from (σ∗
0, σ

∗, ..., σ∗) in the repeated auction

game.

3.2.2 Collusiveness off path

Recall that the requirement of collusiveness off path formalizes the idea that buyers’ collusive

agreements cannot be broken by seller’s actions. More specifically, if the buyers have played

their equilibrium actions up to the current period, then they must collude on path from the

next period on no matter what the seller has played. The formal definition is as follows:

Definition 6. Collusiveness off path

Suppose (σ∗
0, σ

∗, . . . , σ∗) is a strongly symmetric public perfect equilibrium of the repeated

auction game. Consider an alternative seller’s strategy σ′
0 and let ht

0 ∈ H0 be a period-

t history consistent with the on-path play of (σ′
0, σ

∗, . . . , σ∗). If the continuation equilibrium

(σ∗
0|ht

0
, σ∗|ht

0
, . . . , σ∗|ht

0
) is collusive on path for any such ht

0 and σ′
0, then (σ∗

0, σ
∗, . . . , σ∗) is col-

lusive off path.

We can now state the main definition:

4For example, some stationary schemes, in which the high types mix over two bidding actions on path, do

not improve the buyers’ payoff because of their efficiency loss vis-à-vis fully separating behavior
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Definition 7. Collusive public perfect equilibrium

A strongly symmetric public perfect equilibrium of the repeated auction game is a collusive

public perfect equilibrium if it is collusive on and off path.

Remark 1. Observe that the infinite repetition of the one-shot equilibrium in the High-reserve-

price region is a collusive public perfect equilibrium in the sense of Definition 7. First of all

it is clearly a strongly symmetric public perfect equilibrium. To show collusiveness on path,

observe that the buyers get zero payoff along the equilibrium path, and it is not possible for them

to improve their payoff once the seller’s on path play is fixed: bidding below θ leads to a zero

payoff as well, bidding above θ can only lead to losses. Since after a deviation by any player,

the players return to the same equilibrium in the next period, it is also collusive off path.

4 Supporting collusive equilibria

A seller who intends to actively fight collusion has to come up with punishment strategies

for the buyers who are suspected of coordinating their bidding behavior. Since our ultimate

goal is to construct a collusive public perfect equilibrium, in which the seller extracts the entire

surplus from the buyers in the limit as the discount factor goes to 1, the punishment has to be

as severe as possible. The most severe punishment that the seller could construct in principle

involves leaving zero payoff to the buyers. Our goal in this section is to establish that a threat

of such an severe punishment can be made credible if the seller is patient enough.

4.1 Repetition of static equilibrium in the High-reserve-price region

It is easy to see that the threat of severe punishment is immediately available to the seller

if the parameters belong to High-reserve-price region. Since the one-shot equilibrium payoff of

the buyers is already equal to zero, the seller can always reduce the equilibrium payoff of the

buyers to zero, no matter what the value of δ is by switching to the infinite repetition of the

one-shot equilibrium. Moreover since the equilibrium reserve price is extremely high, there is

no room for collusion in this equilibrium:
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Lemma 1. Suppose that the parameters of the model belong to then the infinite repetition of the

equilibrium of Proposition 1 (with r∗ = θ in every period) is a collusive public perfect equilibrium

in the sense of Definition 7.

Proof. The buyers get zero payoff along the equilibrium path. It is not possible for them to

improve their payoff once the seller’s strategy is fixed: bidding below θ is impossible, bidding

above θ can only lead to losses

4.2 Low-revenue collusive equilibria in the Low-reserve-price region

Suppose now that the parameters of the model belong to the Low-reserve-price region. Unlike

in the High-reserve-price region, it might be harder for the seller to reduce the buyers’ payoff to

zero when she prefers trading with both types in the one-shot auction game. It nevertheless turns

out to be possible when the seller is patient enough. To provide the appropriate punishments

to the seller, I first construct collusive public perfect equilibria which leave the seller with little

revenue. I will then use these equilibria to support a high reserve price equilibrium, in which

the seller sets r = θ along the equilibrium path and the buyers get zero equilibrium payoffs.

This high reserve price equilibrium equilibrium will then be used to support the full-surplus-

extracting equilibrium in Section 6.

4.2.1 Low-revenue separating equilibrium

I will now construct a separating equilibrium with low (but non-zero) revenue that can be

supported for high enough discount factors. Since our aim is to find a low revenue equilibrium,

it is reasonable to try to force the seller to set r = 0 along the equilibrium path and have the

low type of each buyer bid zero in every period. I denote the high type’s bid by b.

First, we have to make sure that the on-schedule incentive compatibility conditions are

satisfied, i.e. that the low type does not want to emulate the behavior of the high type and vice

versa. A low type θ obtains in every period: qn−1

n
θ and a high type’s payoff in each period is:

1−qn

n(1−q)
(θ− b)5 If a low type buyer attempts to mimic a high type buyer’s behavior, his payoff is

5Interested readers will find the calculation of separating equilibrium payoffs in Appendix B.
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going to be: 1−qn

n(1−q)
(θ − b)), thus the low type incentive compatibility is given by:

qn−1

n
θ ≥ 1− qn

n(1− q)
(θ − b),

which is equivalent to b ≥ 1−qn−1

1−qn
θ. Since we are attempting to minimize the seller’s revenue, it

is reasonable to select the minimal possible bid for a high type buyer:

b
∗
=

1− qn−1

1− qn
θ.

The ex ante equilibrium payoff of each buyer:

v∗lrs =
1

n

[

(1− qn)

(

θ − 1− qn−1

1− qn
θ

)

+ qnθ

]

=
1

n

[
(1− qn)(θ − θ) + qn−1θ

]
(1)

The resulting revenue of the seller:

R∗
lrs = (1− qn)

1− qn−1

1− qn
θ + qn0 = (1− qn−1)θ.

Recall that in the one-shot equilibrium of Proposition ??, the ex ante equilibrium payoff for

each bidder is given by v∗os = (1 − q)qn−1(θ − θ). Comparing the static equilibrium payoff in

Proposition 1 and the payoff in (1), we obtain:

v∗lrs − v∗os =
1

n

[
(1− qn)(θ − θ) + qn−1θ

]
− (1− q)qn−1(θ − θ)

=
1

n

[
(1− qn)(θ − θ) + qn−1θ − n(1− q)qn−1(θ − θ)

]

=
1

n

[
(1− qn − n(1− q)qn−1)(θ − θ) + qn−1θ

]

=
1

n

[(

(1− q)
n−1∑

k=0

qk − n(1− q)qn−1

)

(θ − θ) + qn−1θ

]

=
1

n

[

(1− q)

( n−1∑

k=0

qk − nqn−1

)

(θ − θ) + qn−1θ

]

>
1

n

[
(1− q)

(
nqn−1 − nqn−1

)
(θ − θ) + qn−1θ

]
=

1

n
qn−1θ > 0,

which suggests that the chosen on-path behavior of the buyers can be supported by the threat

of switching to the infinite repetition of the one-shot equilibrium. We can now formulate the

full definition of the strategy profile:
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LRS

One-shot Abstain

r = 0, ∀i bi ∈
{
0, 1−qn−1

1−qn
θ
}

r = 0, ∃i : bi ̸∈
{
0, 1−qn−1

1−qn
θ
}

r ̸= 0

∀i bi = ∅

∃i : bi ̸= ∅

Figure 1: Low-revenue separating (LRS) strategy profile

Definition 8. Low-revenue separating strategy profile

(i) Along the equilibrium path:

(a) Seller sets r∗ = 0,

(b) Any low-type buyer bids b∗ = 0,

(c) Any high-type bids b
∗
= 1−qn−1

1−qn
θ,

(ii) If at any history following r = 0 in every period a bid outside of {b∗, b∗} is made, then the

game switches to the infinite repetition of the one-shot equilibrium of Low-reserve-price

region forever.

(iii) Both buyer types abstain whenever r > 0.

(iv) After any history along which a positive bid has been observed following r > 0, the game

switches the infinite repetition of the one-shot equilibrium of the Low-reserve-price region

forever.

The low-revenue separating strategy profile is illustrated by Figure 1. The following propo-

sition shows that the low-revenue separating strategy profile is a strongly symmetric public

perfect equilibrium of the repeated auction game for high values of the discount factor.
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Proposition 2. Suppose that the parameters of the model belong to the Low-reserve-price region.

There exists δ∗ such that for all δ ∈ [δ∗, 1) the low-revenue separating strategy profile is a strongly

symmetric public perfect equilibrium of the repeated auction game. Along the equilibrium path

the buyers will obtain the payoff of v∗
lrs

= 1
n

[
(1 − qn)(θ − θ) + qn−1θ

]
, and the seller will get

R∗
lrs

= (1− qn−1)θ.

Proof. Consider first the incentives of the seller. It is clear that the seller does not want to

deviate: if she attempts a one-shot deviation to r > 0, her revenue will become (1− δ)0+ δ(1−
qn−1)θ = δ(1 − qn−1)θ (because all the buyers will abstain following r > 0), which can never

exceed his equilibrium revenue of (1− qn−1)θ.

Now turn to the buyers. Consider first the public histories along which neither of the players

has deviated. Incentive compatibility will require for a high-type buyer:

(1− δ)
1− qn

n(1− q)
(θ − b

∗
)+δ

1

n

[
(1− qn)(θ − θ) + qn−1θ

]

≥ (1− δ)max{qn−1θ, θ − b
∗}+ δ(1− q)qn−1(θ − θ),

and for a low type buyer:

(1− δ)
qn−1

n
θ+δ

1

n

[
(1− qn)(θ − θ) + qn−1θ

]

≥ (1− δ)max{qn−1θ, θ − b
∗}+ δ(1− q)qn−1(θ − θ).

Before dealing with these constraints, consider a public history along which the seller has

deviated to r > 0 in the current period. The equilibrium strategy of the buyers prescribes

abstaining from participation if the reserve price is set above zero. The associated incentive

compatibility condition of a high-type buyer is given by:

δ
1

n

[
(1− qn)(θ − θ) + qn−1θ

]
> (1− δ)(θ − r) + δ(1− q)qn−1(θ − θ).

For a low-type buyer it is given by:

δ
1

n

[
(1− qn)(θ − θ) + qn−1θ

]
≥ (1− δ)(θ − r) + δ(1− q)qn−1(θ − θ).

20



The best deviation for r > 0 is the one for the high type and when r ≈ 0. This deviation is

unprofitable whenever:

δ
1

n

[
(1− qn)(θ − θ) + qn−1θ

]
≥ (1− δ)θ + δ(1− q)qn−1(θ − θ). (2)

Notice that the incentive compatibility condition in (2) implies all of the above incentive

compatibility conditions since the on-path payoff in each of them can only be higher and the

deviation payoff can only be lower than in (2). The incentive compatibility condition in (2) is

satisfied for all δ such that:

δ >
nθ

nθ +
(
1− qn − n(1− q)qn−1

)
(θ − θ) + qn−1θ

≡ δ∗. (3)

Since 1− qn − n(1− q)qn−1 > 0, we can conclude that δ∗ ∈ [0, 1).

4.2.2 Zero-revenue pooling equilibrium

It is natural to ask the question whether the seller can be forced to give away the good in

every period for free (clearly the worst possible outcome for the seller in this setup). That would

require the seller to set the reserve price r = 0 along the equilibrium path and the buyers to

bid b∗ = 0 along the equilibrium path. The buyers’ payoff would be equal to:

v∗zrp = (1− q)
1

n
(θ − r) + q

1

n
(θ − r) =

E(θ)

n
. (4)

Comparing the buyer’s payoff in 4 to the ex ante payoff of the buyers in the low-revenue

separating equilibrium, we get:

v∗lrs − v∗zrp =
1

n

[
(1− qn)(θ − θ) + qn−1θ

]
− (1− q)

1

n
θ − q

1

n
θ

=
1

n

[
(1− qn)(θ − θ) + qn−1θ − (1− q)θ − qθ

]

=
1

n

[
(q − qn)θ + (−1 + qn + qn−1 − q)θ

]

=
1

n

[
q(1− qn−1)θ − (1 + q)(1− qn−1)θ

]

=
1− qn−1

n

[
qθ − (1 + q)θ

]
,
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which means that v∗lrs < v∗zrp whenever qθ − (1 + q)θ < 0 or

q <
θ

θ − θ
. (5)

We can now formulate the full definition of the zero-revenue pooling strategy profile:

Definition 9. Zero-revenue pooling strategy profile

(i) Along the equilibrium path

(a) Seller sets r∗ = 0,

(b) Both buyer types bid 0,

(ii) If at any history following r = 0 in every period a bid b ̸= 0 is placed, then the game

switches to the infinite repetition of the one-shot equilibrium of the Low-reserve-price region

forever.

(iii) Both buyer types abstain whenever r > 0.

(iv) After any history along which a bid has been observed following r > 0, the play of the game

switches to the infinite repetition of the one-shot equilibrium of the Low-reserve-price region

forever.

The zero-revenue pooling strategy profile is illustrated by Figure 2. The following proposition

shows that the zero-revenue pooling strategy profile is a strongly symmetric public perfect

equilibrium of the repeated auction game condition in (5) is satisfied.

Proposition 3. Suppose that the parameters of the model belong to the Low-reserve-price region,

and suppose further that the condition in (5) is satisfied, then there exists δ∗ ∈ [0, 1) such that

for all δ > δ∗ the zero-revenue pooling strategy profile is a strongly symmetric public perfect

equilibrium of the repeated auction game.

Proof. Consider first the seller’s incentives. The seller does not have any incentive to deviate

because she would end up with zero revenue regardless of the reserve price, which makes setting

r = 0 one of the optimal choices.
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ZRP

One-shot Abstain

r = 0, ∀i bi = 0

r = 0, ∃i : bi ̸= 0

r ̸= 0

∀i bi = ∅

∃i : bi ̸= ∅

Figure 2: Zero-revenue pooling (ZRP) strategy profile

Consider now one of the buyers who is contemplating a deviation. Consider first a public

history along which neither player has deviated, the best available deviation after such a history

is for the high type to bid 0 + ϵ for some small ϵ. This deviation will be detected by both

the seller and the competing buyer. The competing buyer would then have to punish the

deviator by switching to the infinite repetition of the one-shot equilibrium with r = θ and

competitive bidding, enforcing the continuation value of (1 − q)qn−1(θ − θ). The associated

incentive compatibility condition for the high type is then given by:

(1− δ)
1

n
θ + δ

E(θ)

n
≥ (1− δ)θ + δ(1− q)qn−1(θ − θ). (6)

Consider now a public history along which the seller has deviated to r > 0 in the current

period. The equilibrium strategy prescribes abstaining from participation for both buyers in the

current period. The payoff from following the equilibrium strategy is thus δ E(θ)/n. The best

deviation available to the buyers is for the high type to bid r and get the good with the payoff

of θ− r. Since this deviation is automatically detected by the seller and the competing buyers,

the game then switches to the infinite repetition of the one-shot equilibrium, thus resulting in

the incentive compatibility condition given by:

δ
E(θ)

n
≥ (1− δ)(θ − r) + δ(1− q)qn−1(θ − θ).
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Clearly this deviation is most profitable when r ≈ 0, therefore we could rule out all such

deviations if we made sure that the following condition holds:

δ
E(θ)

n
≥ (1− δ)θ + δ(1− q)qn−1(θ − θ). (7)

Recall now the no-deviation condition in (6). Clearly its left-hand side is strictly above the

left-hand side of (7). As the respective right-hand sides are identical, it is obvious then that (7)

implies (6). The condition in 7 is satisfied whenever

δ ≥ nθ

nθ + qθ + (1− q)θ − n(1− q)qn−1(θ − θ)
≡ δ∗. (8)

Note that the critical value of the discount factor δ∗ defined in (8) is in [0, 1) as long as qθ+(1−
q)θ−n(1− q)qn−1(θ− θ) = n(v∗zrp − v∗os) is strictly positive. Recall that the payoff from the low

revenue separating equilibrium v∗lrs always exceeds the one-shot equilibrium payoff v∗os. Under

the assumption that q < θ

θ−θ
in (5) we have v∗zrp > v∗lrs > v∗os, which establishes the claim.

Observe that both the low-revenue separating equilibrium and the zero-revenue pooling

equilibrium lead to the same buyer-game. This buyer game is a repeated first-price auction

game in which the reserve price is set to zero. In an optimal strongly symmetric public perfect

equilibrium of this game the buyers either pool or separate along the equilibrium path. If

they pool, then their optimal equilibrium payoff is equal to the buyers’ payoff in the zero-

revenue pooling equilibrium. If they separate, then their optimal equilibrium payoff is equal to

the buyer’s payoff in the low-revenue pooling equilibrium. Thus, depending on the parameter

values, either the zero-revenue pooling equilibrium is collusive, or the low-revenue separating

equilibrium is collusive. The following proposition, whose proof is relegated to Appendix C,

establishes this claim formally.

Proposition 4. If q ≥ θ

θ−θ
, then the low-revenue separating equilibrium of Proposition 2 is col-

lusive in the sense of Definition 7, otherwise the zero-revenue pooling equilibrium of Proposition

3 is collusive in the sense of Definition 7.

Proof. See Appendix C.
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4.3 High-reserve-price equilibrium in the Low-reserve-price region

Having constructed equilibria with low revenue in the previous sections, we can now proceed

to characterize some of the high(er) revenue equilibria in which the seller actively fights collusion

among the buyers. Suppose that the seller sets r = θ along the equilibrium path. Clearly the

optimal response of the buyers is to bid θ for the high type and to abstain for the low type.

This equilibrium therefore leaves zero rents to the buyers, but is inefficient and therefore does

not allow the seller to extract full surplus. It does, however, allow the seller to credibly threaten

the buyers with zero continuation value (as does the repetition of the one-shot equilibrium in

the High-reserve-price region). In the full-surplus-extracting equilibria of Section 6 the buyers

can therefore be incentivized to give up almost the entire surplus along the equilibrium path.

The on-path behavior in this equilibrium can be supported either by the threat of switching

to the low-revenue separating equilibrium or by the threat of switching to the zero-revenue

separating equilibrium. The full definition of the strategy profile is as follows:

Definition 10. High-reserve-price strategy profile

(i) At any history in which the seller has always set r∗ = θ

(a) The seller sets r∗ = θ,

(b) Any low-type buyer abstains,

(c) Any high-type buyer bids θ.

(ii) If q ≥ θ

θ−θ
(low-revenue separating equilibrium is collusive), then

❼ Following any observation of r < θ in period t, the buyers abstain in period t and the

low-revenue separating equilibrium is played from period t+ 1 on.

❼ Following any observation of r < θ in period t, if any of the buyers fails to abstain in

period t, the one-shot equilibrium of the Low-reserve-price region is infinitely repeated

from period t+ 1 on.

(iii) If q < θ

θ−θ
(zero-revenue pooling equilibrium is collusive), then
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High r Low-rev.

Abstain One-shot

r = θ

r ̸= θ
∀i bi = ∅

∃i : bi ̸= ∅

Figure 3: High-reserve-price (High r) strategy profile

❼ Following any observation of r < θ in period t, the buyers abstain in period t and the

zero-revenue pooling equilibrium is played from period t+ 1 on.

❼ Following any observation of r < θ in period t, if any of the buyers fails to abstain

in period t and places a positive bid above r, the one-shot equilibrium of the Low-

reserve-price region is infinitely repeated from period t+ 1 on.

The high-reserve-price strategy profile is illustrated by Figure 3. The following proposition

shows that it is a strongly symmetric public perfect equilibrium of the repeated auction game

for high values of the discount factor.

Proposition 5. Suppose that the parameters of the model belong to the , then there exists

δ∗ ∈ [0, 1) such that for all δ > δ∗ the high-reserve-price strategy profile is a strongly symmetric

public perfect equilibrium of the repeated auction game. The buyers get the payoff v∗hrp = 0, the

seller gets the revenue of R∗
hrp = (1− qn)θ.

Proof. (ii) Low-revenue separating equilibrium is collusive

It is easy to see that the seller does not want to deviate in any period. Along the equilibrium

path, her revenue is equal to R∗
hrp = (1 − qn)θ. If she deviates to any r < θ, then her
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revenue is (1− δ)0 + δ(1− qn−1)θ = δ(1− qn−1)θ < (1− qn)θ.

Buyers get zero payoffs along the equilibrium path. Following r = θ neither type wants

to deviate: bidding leads to a negative payoff for the low type in the current period, and

abstaining does not improve the payoff of the high type in the current period. It remains

to make sure that buyers do not want to deviate from the proposed strategy following an

observation of a lower reserve price r < θ. It is required that both types prefer abstaining

in the current period and playing the low-revenue separating equilibrium to bidding r (the

lowest possible bid) and playing the one-shot equilibrium in the continuation game, i.e.

for type θi ∈ {θ, θ}

δ
1

n

[
(1− qn)(θ − θ) + qn−1θ

]
> (1− δ)(θi − r) + δ(1− q)qn−1(θ − θ).

The best deviation obtains for the high type at r = 0:

δ
1

n

[
(1− qn)(θ − θ) + qn−1θ

]
> (1− δ)θ + δ(1− q)qn−1(θ − θ),

which is the same condition as in (2) satisfied for all δ defined in (3).

(iii) Zero-revenue pooling equilibrium is collusive

Just as in the previous case, the seller’s revenue is equal to R∗
hrp = (1 − qn)θ. She does

not want to deviate since deviation leads to zero revenue forever.

As before the best deviation is for a high type buyer whenever the seller deviates to a

reserve price r > 0 near zero. The condition is:

δ
E(θ)

n
≥ (1− δ)θ + δ(1− q)qn−1(θ − θ),

which is identical to the no deviation condition in 7, and therefore leads to the same

threshold for the discount factors as in (8).

The following corollary is immediate:

Corollary 1. The high-reserve-price equilibrium of Proposition 5 is collusive in the sense of

Definition 7.
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Proof. Holding the seller’s equilibrium strategy fixed, it is impossible for the two buyers to

improve their payoff even if they perfectly coordinate: bidding higher leads to negative payoffs,

bidding lower is impossible.

Since this equilibrium leaves the buyers with zero payoffs, we can now use it to construct

full-surplus-extracting equilibria by threatening the buyers who deviate off-schedule with zero

continuation values.

5 High-revenue collusive equilibria

In this section I will introduce a class of collusive public perfect equilibria that allow the

seller to extract full surplus in the limit as δ goes to 1. These equilibria are stationary and

separating along the equilibrium path, i.e. in each of them any low-type buyer bids b, and a

high-type buyer bids b, while the seller sets the reserve price to r = b in every period along the

equilibrium path. The full description of the class of strategy profiles I am considering is given

by the following definition.

Definition 11. High-revenue strategy profile

Fix a pair of bids (b, b). The corresponding high-revenue strategy profile is described as

follows.

(i) Along the equilibrium path

❼ Seller sets a reserve price equal to the equilibrium bid of a low type buyer r = b.

❼ Any low-type buyer bids b

❼ Any high-type buyer bids b

(ii) If the parameters of the model belong to the High-reserve-price-region, then

❼ If at any history following r in every period a bid outside of {b, b} is placed, the play

of the game switches to the infinite repetition of the one-shot equilibrium of High-

reserve-price region forever.
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❼ If in period t the seller sets r′ ̸= r, then the buyers play the one-shot equilibrium with

reserve price r′ in period t, and the play of the game switches to the infinite repetition

of the one-shot equilibrium of High-reserve-price region forever.

(iii) If the parameters of the model belong to the Low-reserve-price region, then

❼ If at any history following r in every period a bid outside of {b, b} is placed, then

the play of the game switches to the high-reserve-price equilibrium of Proposition 5

forever.

❼ both types abstain in period t if r′ ̸= r is observed in period t, and from t+ 1 on the

play of the game game switches to the low-revenue separating equilibrium when it is

collusive, (i.e. when q ≥ θ

θ−θ
) or to the zero-revenue pooling equilibrium when it is

collusive (i.e. when q < θ

θ−θ
).

❼ After any history along which a bid has been observed following r′ ̸= r, the game

switches to the infinite repetition of the one-shot equilibrium of he Low-reserve-price

region forever.

The high-revenue strategy profile is illustrated by Figure 4.
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High-rev.

High r Low-rev.

Abstain One-shot

r = b, ∀i bi ∈ {b, b}

r = b, ∃i : bi ̸∈ {b, b}

r ̸= b

r = θ

r ̸= θ
∀i bi = ∅

∃i : bi ̸= ∅

(a) Low-reserve-price region

High-rev.

One-shot (r′) One-shot

r = b, ∀i bi ∈ {b, b}

r = b, ∃i : bi ̸∈ {b, b}r = r′ ̸= b

(b) High-reserve-price region

Figure 4: High-revenue strategy profile
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Having discussed the structure of the high-revenue strategy profiles, I can set up the following

revenue maximization problem:

RM : R∗
fse ≡ max

b,b,v

(1− qn)b+ qnb, s.t.

(Eq-payoff) v =
1

n

[
(1− qn)(θ − b) + qn(θ − b)

]
;

Incentive constraints:

(LowIC) (1− δ)
qn−1

n
(θ − b) + δv ≥ 0,

(HighIC-up) (1− δ)
1− qn

n(1− q)
(θ − b) + δv ≥ (1− δ)(θ − b),

(HighIC-down) (1− δ)
1− qn

n(1− q)
(θ − b) + δv ≥ (1− δ)qn−1(θ − b),

(HighIC-on-sch)
1− qn

n(1− q)
(θ − b) ≥ qn−1

n
(θ − b);

No-collusion constraints:

(No-col-sep-1) v ≥ (1− δ)(1− qn)(θ − b)

n(1− δ(1− q)n)
,

(No-col-sep-2) v ≥ (1− δ)
[
(1− qn)(θ − b) + qn(θ − b)

]

n(1− δqn)
,

(No-col-pool) v ≥ 1

n

[
(1− q)(θ − b) + q(θ − b)

]
;

A solution to the revenue maximization problem in RM is a pair of bids (b
∗
, b∗) together

with a buyer payoff v∗fse. In the next lemma, I will show that the high-revenue strategy profile

corresponding to (b
∗
, b∗) is a collusive public perfect equilibrium for high enough values of δ as

long as the solution to RM induces a well-defined separating equilibrium (i.e. b
∗
> b∗), the

low-type buyers bid strictly above their valuation (i.e. b∗ > θ), and the seller achieves a higher

revenue than in the high reserve price equilibrium (i.e. R∗
fse ≥ (1 − qn)θ). In Section 6, I will

solve RM, verify that its solution satisfies the aforementioned conditions for sufficiently high

values of δ, and show that the maximal revenue goes to full surplus as δ goes to 1.

Lemma 2. Suppose
(
b
∗
, b∗, v∗fse

)
solve the revenue maximization problem RM. Suppose further

that θ < b∗ < b
∗
and R∗

fse ≥ (1 − qn)θ, then the high-revenue strategy profile corresponding to
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(
b
∗
, b∗

)
(as defined by 11) is a collusive public perfect equilibrium of the repeated auction game

if

(i) the parameters of the model belong to the High-reserve-price region; or

(ii) the parameters of the model belong to the Low-reserve-price region and δ satisfies

❼ condition (3) if q ≥ θ

θ−θ
(low-revenue separating equilibrium is collusive),

❼ condition (8) if q < θ

θ−θ
(zero-revenue pooling equilibrium is collusive).

Proof. Let us show first that the high-revenue strategy profile is a strongly symmetric public

perfect equilibrium of the repeated auction game. Strong symmetry follows from Definition 11,

thus we only need to check the players’ incentives. I start with the buyers.

Incentive compatibility of the buyers. Consider histories in which every player has stayed on

the equilibrium path up to period t. Suppose first that the parameters of the model fall into i.e.

r = θ is optimal in the one-shot game). If the seller deviates in period t, the play from t+ 1 is

a public perfect equilibrium by construction. Since the buyers receive zero continuation values

from t+ 1 on, they will play the one-shot equilibrium in period t for a given reserve price as if

the game ends tomorrow, hence the buyers do not want to deviate in period t. Suppose now

that the parameters of the model fall into the Low-reserve-price region (i.e. r = θ is optimal

in the one-shot game). If the seller deviates in period t, then the equilibrium strategy dictates

that the buyers abstain in period t. Since a buyer’s deviation triggers the switch to the infinite

repetition of the one-shot equilibrium of Low-reserve-price region, it is not profitable for the

buyers as long as δ satisfies conditions (3) or (8) by the argument employed in the construction

of the low-revenue separating or zero-revenue pooling equilbria respectively.

Suppose now that the seller does not deviate in period t, and consider the buyers’ incentives.

Let us start with on-schedule deviations, i.e. attempts to mimic the behavior of the other type.

The on-schedule deviation is unprofitable of a low-type buyer as long as:

qn−1

n
(θ − b∗)

︸ ︷︷ ︸

Equilibrium reward

≥ 1− qn

n(1− q)
(θ − b

∗
)

︸ ︷︷ ︸

Mimic the high type

.

32



This incentive compatibility condition is satisfied since θ < b∗ < b
∗
by assumption: if a low-type

buyer deviates to b
∗
, then he receives a lower payoff with a higher probability, which cannot be

profitable. The on-schedule deviation is unprofitable for a high-type buyer as long as:

1− qn

n(1− q)
(θ − b

∗
)

︸ ︷︷ ︸

Equilibrium reward

≥ qn−1

n
(θ − b∗)

︸ ︷︷ ︸

Mimic the low type

,

which is the incentive constraint (HighIC-on-sch) of the revenue maximization problem RM
evaluated at (b

∗
, b∗), and is therefore satisfied.

Consider now off-schedule deviations. First of all, we must make sure that a low-type buyer

is actually willing to participate in the auction as opposed to abstaining and getting the forever

punishment of high reserve price, i.e. that the following condition is satisfied:

(1− δ)
qn−1

n
(θ − b∗) + δv∗fse

︸ ︷︷ ︸

Equilibrium payoff of a low-type buyer

≥ (1− δ) 0
︸︷︷︸

Abstain today

+δ 0
︸︷︷︸

Switch to r = θ forever

= 0,

which is the incentive constraint (LowIC) of the revenue maximization problem RM evaluated

at (b
∗
, b∗, v∗fse). If a low-type buyer deviates to a higher off-schedule bid, then he receives a

negative expected reward in the period of the attempted deviation (since θ < b∗) and zero

continuation value, which cannot be profitable for someone who receives a positive payoff along

the equilibrium path. We can therefore conclude that the remaining off-schedule incentive

constraints of a low-type buyer are satisfied at
(
b
∗
, b∗, v∗fse

)
.

Consider now high-type buyers who contemplate off-schedule deviations. A high-type buyer

could deviate upwards which would guarantee him winning the auction with probability 1. The

best upward deviation is to b
∗
+ ϵ which gives the deviating high-type buyer a payoff almost

equal to θ − b
∗
. For this deviation to be unprofitable, we must have:

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse

︸ ︷︷ ︸

Equilibrium payoff of a high-type buyer

≥ (1− δ) (θ − b
∗
)

︸ ︷︷ ︸

Deviate to b
∗

+ϵ

+δ 0
︸︷︷︸

Switch to r = θ forever

= (1− δ)(θ − b
∗
),

which is the incentive constraint (HighIC-up) of the revenue maximization problem RM eval-

uated at (b
∗
, b∗, v∗fse).
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A high-type buyer could also deviate downwards and win the auction only in the case when

all his competitors are low-type buyers, that is with probability qn−1. In this case the best

deviation is to b∗+ ϵ with a payoff almost equal to θ− b∗. For this deviation to be unprofitable,

we must have:

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse

︸ ︷︷ ︸

Equilibrium payoff of a high type buyer

≥ (1− δ) qn−1(θ − b∗)
︸ ︷︷ ︸

Deviate to b∗+ϵ

+δ 0
︸︷︷︸

Switch to r = θ forever

= (1− δ)qn−1(θ− b
∗
),

which is the incentive constraint (HighIC-down) of the revenue maximization problem RM
evaluated at (b

∗
, b∗, v∗fse).

Incentive compatibility of the seller. Consider now the seller’s incentives. Recall that we

have R∗
fse ≥ (1 − qn)θ by assumption. If the parameters of the model belong to the High-

reserve-price region, a deviating seller would receive the payoff of (1− δ)R∗
r +δ(1− qn)θ where

R∗
r is the revenue achieved by the seller in the one-shot auction game with the reserve price

equal to r. In the High-reserve-price region the optimal reserve price for the seller is r = θ

with the associated revenue of (1− qn)θ. Thus a deviating seller would not be able to get more

than (1− δ)(1− qn)θ + δ(1− qn)θ = (1− qn)θ which cannot exceed R∗
fse. If the parameters of

the model belong to Low-reserve-price region, a deviating seller would receive either 0 (if the

zero-revenue pooling equilibrium is collusive), or δ(1 − qn−1)θ (if the low revenue separating

equilibrium is collusive), neither of which can exceed R∗
fse.

Other histories. Neither the seller nor the buyers want to deviate after any of the other

histories by construction of continuation equilibria, hence the high-revenue strategy profile cor-

responding to the bids (b
∗
, b∗) is a strongly symmetric public perfect equilibrium.

Buyer-game. We must make sure that the public perfect equilibrium we have constructed

is indeed collusive in the sense of Definition 7. To do that, we shall consider the buyer-game

induced by the seller’s equilibrium strategy. This buyer game is a stochastic game with two
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states. The game starts in the low reserve price state ωl, in which the reserve price is equal to

r(ωl) = b∗, and remains in that state unless a bid outside of
{
b∗, b

∗}
is placed by at least one

buyer, in which the game transitions to the high reserve price state ωh, in which the reserve

price is r(ωh) = θ. The high reserve price state is absorbing, i.e. once the high reserve price

state is achieved, the game remains in that state forever. The full definition of this high-revenue

buyer-game is as follows:

Definition 12. High-revenue buyer-game

❼ The set of states is Ω = {ωl, ωh}, the initial state is ω0 = ωl.

❼ The set of actions for each buyer is A, i.e. as defined in the repeated auction game

❼ The transitions between states occur according to τ :

τ(ωl, b) =







ωl, if b ∈
{
b∗, b

∗}n

ωh, otherwise

,

τ(ωh, b) = ωh, ∀b.

❼ The set of valuations for each buyer is Θ, i.e. is as defined in the repeated auction game.

❼ The utility of buyer i with type θi bidding bi in state ω is

ũi(ω, b, θi) =







1
#(win)

(θi − bi), if bi ≥ r(ω) &
(
bi = max{b1, ..., bn} or b−i = ∅

)

0, otherwise

,

where #(win) stands for the number of winners in the auction.

The definition of collusive public perfect equilibria (Definition 7) requires that the buyers be

unable to play a strongly symmetric public perfect equilibrium of the high-revenue buyer-game

in Definition 12 that improves their payoff. I first show that the buyers’ strategy in any strongly

symmetric public perfect equilibrium of the buyer-game must be monotonic:
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Lemma 3. Monotonicity lemma

Consider the high-revenue buyer-game in Definition 12. Any strongly symmetric public per-

fect equilibrium of this buyer-game satisfies monotonicity: pick any history of play that leads

to state ωl, if b is the equilibrium bidding action of a high-type buyer and b is the equilibrium

bidding action of a low-type buyer after that history, then b ≥ b.

Proof. See Appendix D.

The Monotonicity lemma shows any high-type buyer must always place a higher bid than

any low type buyer in any symmetric public perfect equilibrium of the buyer-game whenever

the current state is ωl. Recall that when the current state is ωh, the reserve price is equal to

θ, and thus the buyers cannot get more than zero in any continuation equilibrium is that state.

Since they cannot get a negative payoff in any continuation equilibrium either, they must be

getting zero once the game is stuck in state ωh. As I restrict attention to pure strategies along

the equilibrium path, the resulting ex ante payoff from bidding (b, b) in state ωl is given by:

ûωl(b, b) ≡







1
n

[
(1− qn)(θ − b) + qn(θ − b)

]
if b > b

1
n

[
(1− q)(θ − b) + q(θ − b)

]
if b = b

where whenever b < r(ωl), the convention is to set θ − b = 0 for the respective type θ ∈ {θ, θ}
Consider now the optimal collusion problem in the high-revenue buyer-game and ignore all

the aspects of incentive compatibility except monotonicity. Since all the remaining incentive

compatibility constraints are ignored, the following maximization problem provides an upper

bound on symmetric equilibrium payoffs in the buyer-game:

max
{bt,bt}+∞

t=0

(1− δ)
+∞∑

t=0

δtûω(bt, bt) s.t. (9)

(i) bt ≥ bt,

(ii) Transition function τ.

where ûωl(b, b) is defined above, and ûωh(b, b) is assumed to be equal to zero without loss of

generality. The optimization problem in (9) is a Markov decision problem. It follows from
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Blackwell (1965) that, if this problem has a solution, it must also have a stationary solution. I

therefore consider two kinds of stationary monotonic bidding profiles: separating and pooling.

Separating profiles. Suppose first that the buyers coordinate on a separating bidding profile

in the high-revenue buyer-game under consideration. If both types bid on schedule, then clearly

there is only one option: b = b∗ and b = b
∗
with the payoff equal to v∗fse. If all buyers of type

θ bid on schedule and all buyers of type θ bid off schedule, then the off-schedule action of any

low-type buyer will be immediately detected by the seller and punished with zero continuation

values. Since the punishment will not occur if and only if all buyers have high types (i.e. with

probability (1− q)n), the resulting payoff will be:

v = (1− δ)
1

n

[
(1− qn)(θ − b) + qn(θ − b)

]
+ δ(1− q)nv.

Recall that we assume b∗ > θ, hence by incentive compatibility we must have b
∗
< θ. Then the

optimal solution here is to coordinate on the bidding profile in which any high-type buyer bids

the low equilibrium bid b and any low-type buyer abstains, i.e. choose b∗ = ∅ and b = b∗, which

results in the payoff:

v(b∗, ∅) = (1− δ)
[
(1− qn)(θ − b∗)

]

n(1− δ(1− q)n)
.

The no-collusion constraint (No-col-sep-1) of the revenue maximization problem RM evaluated

at (b
∗
, b∗, v∗fse) gives us v

∗
fse ≥ v(b∗, ∅).

If all buyers of type θ bid off schedule and all buyers of type θ bid on schedule, then the off-

schedule action of any high-type buyer will be immediately detected by the seller and punished

with zero continuation values. Since the punishment will not occur if and only if all buyers have

low types (i.e. with probability qn), the resulting payoff will be:

v = (1− δ)
1

n

[
(1− qn)(θ − b) + qn(θ − b)

]
+ δqnv,

which can be solved for v′ to get:

v =
(1− δ)

[
(1− qn)(θ − b) + qn(θ − b)

]

n(1− δqn)
.
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The optimal solution here is for the low types to choose b = b∗ and for the high types to choose

b = b∗ + ϵ, with the resulting payoff of:

v(b∗ + ϵ, b∗) =
(1− δ)

[
(1− qn)(θ − b∗) + qn(θ − b∗)

]

n(1− δqn)
.

The no-collusion constraint (No-col-sep-2) of the revenue maximization problem RM evaluated

at (b
∗
, b∗, v∗fse) gives us v

∗
fse ≥ v(b∗ + ϵ, b∗).

If buyers of both types bid off schedule, then the seller will punish them in the first period

with probability 1, and the resulting payoff will be:

v = (1− δ)
1

n

[
(1− qn)(θ − b) + qn(θ − b)

]
+ δ0.

Since it must be that b
∗
< θ, the best bidding profile here is for the high types to choose

b = b∗ + ϵ and for the low types to choose b = ∅ with the payoff of:

v(b∗ + ϵ, ∅) = (1− δ)
1

n
(1− qn)(θ − b∗),

which is clearly below v(b∗, ∅) and therefore below v∗fse.

Pooling profiles. The buyers might find it optimal to pool instead of separating. If the buyers

pool on schedule, then their collusive scheme is never detected by the seller. Clearly the optimal

pooling on schedule is achieved at b∗ with the resulting payoff of:

v(b∗, b∗) =
1

n

[
(1− q)(θ − b∗) + q(θ − b∗)

]
(10)

The no-collusion constraint (No-col-pool) of the revenue maximization problem RM evaluated

at (b
∗
, b∗, v∗fse) gives us v

∗
fse ≥ v(b∗, b∗).

Note that the payoff from pooling off-schedule cannot exceed v∗fse. If the buyers coordinate

on any off-schedule bid above b∗ they will get a fraction of the payoff in 10 since they will be

punished by the seller with probability 1. Abstaining from the auction altogether cannot be

optimal as long as v∗fse ≥ 0, which it is by incentive compatibility.

We therefore conclude that no strongly symmetric public perfect equilibrium payoff in the

high-revenue buyer game corresponding to (b∗, b
∗
) can exceed v∗fse, and therefore the high-revenue
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strategy profile corresponding to (b∗, b
∗
) is a collusive public perfect equilibrium of the repeated

auction game in the sense of Definition 7.

6 Full surplus extraction

Let us now solve the revenue maximization problem RM . There are three cases depending

on which constraints are binding; the parameter values corresponding to each case are illustrated

by Figure 5. In Case 1, (No-col-sep-1) and (LowIC) constraints are binding with both types

being indifferent between their payoff in the full-surplus-extracting cPPE and the payoff they

could have obtained by coordinating on the bidding profile (b∗, ∅). Case 1 does not always apply

because its solution candidate does not always satisfy the (HighIC-up) incentive compatibility

constraint: if n is high enough, the winning probability of a high-type buyer is so low that

such a buyer would prefer to win with probability 1 by placing a slightly higher bid and suffer

the punishment of zero continuation values. We therefore have to consider Case 2, in which

(HighIC-up) and (No-col-sep-1) are binding and the remaining constraints are slack. Case 2

equilibrium candidate in turn does not apply for high values of q: in this case the (HighIC-

down) incentive compatibility constraint will be violated. Intuitively, if the mass of low types

is sufficiently large, then a high type buyer will have a fairly high chance of winning by bidding

just above the low type equilibrium bid even though placing such a bid is severely punished. In

Case 3, only (HighIC-up) and (HighIC-down) are binding, and the remaining constraints are

slack, which implies that the buyers do not have a strict incentive to collude.

The remaining constraints in the revenue maximization problem are never binding. Consider

first the on-schedule incentive compatibility constraint of a high-type buyer (HighIC-on-sch).

This constraint essentially puts an upper bound on the high-type equilibrium bid (if a high-type

buyer is asked to bid a lot more than a low-type buyer, he might find it profitable to deviate

to the low-type bid and get a much higher reward with a smaller winning probability), but we

have already included a constraint that does the same, the no-collusion constraint (No-col-sep-

1). Indeed, if a high-type buyer is asked to place a very high bid in every period, then the

buyers might find it profitable to collude on a lower bidding profile, and such a collusion scheme
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Figure 5: Parameters corresponding to Cases 1, 2, and 3. For each number of buyers n, the

respective line shows which values of q belong to Cases 1, 2, and 3.

is prevented by (No-col-sep-1). The restriction on equilibrium bids imposed by (No-col-sep-1)

is more severe than the one imposed by the on-schedule incentive compatibility of a high type

buyer. Clearly, if the more severe restriction were the one imposed by incentive compatibility,

we would be unlikely to consider collusion an important problem in an auction setting with

adverse selection.

The two remaining no-collusion constraints, (No-col-sep-2) and (No-col-pool), are also non-

binding in all three cases, which means that the optimal optimal collusion scheme for the buyers

always involves bidding b∗ for the high types and abstaining for the low types. Collusion by

pooling on schedule turns out to be particularly inefficient as it leads to negative payoffs for

the buyers for δ close to 1, while the buyers’ payoff in the full-surplus-extracting cPPE is

non-negative by construction. Collusion by leaving the low types on schedule and moving the

high types off schedule does not outperform the optimal collusion scheme because it leads to
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punishments for the high types, who, as opposed to the low types, get a positive payoff in

every period. The gain from bidding lower made by the high types in this collusion scheme is

completely offset by the severity of the seller’s punishment.

In the following subsections I will construct the solutions to the revenue maximization prob-

lem RM in each of the three cases. I will show that the revenue-maximizing bidding profiles

can indeed be supported in the collusive public perfect equilibrium with the corresponding high-

revenue strategy profiles (as defined by 11), and derive the conditions on the parameters of the

model for each of the three cases. In all three cases the seller will be able to extract full surplus

from the buyers in the limit as the discount factor δ goes to 1.

Case 1: High expected valuation/Small number of buyers

Recall that in Case 1, the no-collusion constraint (No-col-sep-1) and the low-type incentive

compatibility constraint (LowIC) bind at the optimum of the revenue maximization problem

RM.

Full surplus extraction cPPE, Case 1.

❼ Equilibrium conditions:

(No-col-sep-1) v∗fse =
(1− δ)(1− qn)(θ − b∗)

n(1− δ(1− q)n)
,

(LowIC) (1− δ)
qn−1

n
(θ − b∗) + δv∗fse = 0,

(Eq-payoff) v∗fse =
1

n

[
(1− qn)(θ − b

∗
) + qn(θ − b∗)

]
.

❼ Parameter restriction:

q <
1− qn

n(1− q)
.

The solution to this system of equilibrium conditions is provided in Appendix E.1. I will

derive the condition on the parameters in the course of proving Proposition 6 below. The
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resulting equilibrium payoff for a low-type buyer conditional upon winning with b∗ is:

θ − b∗ =
−δq

(
1− qn

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ; (11)

for a high-type buyer winning with b
∗
we have:

θ − b
∗
=

qn(1− δ(1− q))(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ; (12)

and for a high-type buyer winning with b∗

θ − b∗ =
qn
(
1− δ(1− q)n

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) . (13)

The ex ante equilibrium payoff is:

v∗fse =
1

n

(1− δ)qn(1− qn)(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) . (14)

The equilibrium bids can be immediately computed from the payoffs in 11 and 12:

b∗ = θ +
δq
(
1− qn

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) , (15)

b
∗
= θ − qn(1− δ(1− q))(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) . (16)

I first show that the equilibrium bids in (15) and (16) satisfy the condition of Lemma 2.

Lemma 4. θ < b∗ < b
∗
.

Proof. (i) θ < b∗ is equivalent to θ − b∗ < 0, which is true since −δq(1− qn)(θ − θ) < 0.

(ii) b∗ < b
∗
is equivalent to θ − b∗ > θ − b

∗
, which is true since 1 − δ(1 − q)n > 1 − δ(1 − q)

because (1− q)n < (1− q) for any q ∈ (0, 1) and n ≥ 2.

I now show that the bids in (15) and (16) can in fact be supported in a collusive public

perfect equilibrium for a high values of δ:
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Proposition 6. Suppose that q < 1−qn

n(1−q)
. Suppose further that b∗ and b

∗
are as defined in (15)

and (16) respectively, then there exists a critical discount factor δ∗, such that for all δ ∈ [δ∗, 1)

the high-revenue strategy profile corresponding to (b
∗
, b∗) (as defined by 11) is a collusive public

perfect equilibrium of the repeated auction game in the sense of Definition 7. Moreover, the

seller achieves full surplus extraction in the limit as δ goes to 1.

Proof sketch. The complete proof is provided in Appendix G.1. Here I briefly sketch the main

arguments. Recall that by Lemma 2 and Lemma 4, it is enough to check that R∗
fse ≥ (1− qn)θ

and that the remaining constraints in the revenue maximization problem RM are satisfied at

(b
∗
, b∗, v∗fse) for high enough δ. I start with the seller’s revenue.

Seller’s revenue. The seller’s revenue is equal to the full surplus net of the equilibrium payoff

of the buyers:

R∗
fse = (1− qn)θ + qnθ − nv∗fse.

Recall that nv∗fse is given by:

nv∗fse =
(1− δ)qn(1− qn)(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) −−→
δ→1

0.

and therefore the seller extracts full surplus in the limit as δ goes to 1 and R∗
fse ≈ (1−qn)θ+qnθ

for δ close enough to 1, which clearly exceeds (1− qn)θ.

Incentive constraints. All of the remaining incentive constraints in in the revenue maximiza-

tion problem RM are non-binding at (b
∗
, b∗, v∗fse) for all δ high enough and all values of q and n,

except the incentive constraint (HighIC-up). There is a region of q and n, where this constraint

cannot be satisfied even for δ close to 1. To see why, observe that (HighIC-up) can be rewritten

as:

δv∗fse ≥ (1− δ)

(

1− 1− qn

n(1− q)

)

(θ − b
∗
)

Plugging the respective payoffs from (12) and (14) in, we obtain:
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δ

n

(1− δ)qn(1− qn)(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ≥ (1− δ)

(

1− 1− qn

n(1− q)

)
qn(1− δ(1− q))(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ,

which simplifies to:

δ ≥ 1

1− q
− 1− qn

n(1− q)2
. (17)

The condition on δ identified in (17) can only be satisfied if the right-hand side of this inequality

is strictly below 1, which is only true whenever:

q <
1− qn

n(1− q)
,

which gives is satisfied in Case 1 by assumption.

No-collusion constraints. We check that the no-collusion constraints (No-col-sep-2) and (No-

col-pool) are satisfied, or, in other words, that in the corresponding buyer-game pooling at b∗

and bidding (b∗+ϵ, b∗) does not improve the buyers’ payoff. If the buyers decide to bid (b∗+ϵ, b∗)

in the buyer-game, their payoff will be:

v(b∗ + ϵ, b∗) =
(1− δ)

[
(1− qn)(θ − b∗) + qn(θ − b∗)

]

n(1− δqn)

=
(1− δ)qn(1− qn)

(
1− δ(1− q)n − δq

)
(θ − θ)

n(1− δqn)
(
δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)) .

We must make sure that that v∗fse ≥ v(b∗ + ϵ, b∗), which is equivalent to:

1 ≥ 1− δ(1− q)n − δq

1− δqn
⇔ (1− q)n ≥ −q + qn,

which is true since the right-hand side of (1−q)n ≥ −q+qn is strictly negative, and the left-hand

side is strictly positive.

If the buyers coordinate on pooling at b∗ in the buyer-game, they will obtain:

v(b∗, b∗) =
1

n

[
(1− q)(θ − b∗) + q(θ − b∗)

]
=

=

(
(1− q)qn

(
1− δ(1− q)n

)
− δq2(1− qn)

)
(θ − θ)

n
(
δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)) . (18)
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Consider the numerator of (18) in the limit as δ goes to 1:

(1− q)qn
(
1− (1− q)n

)
− q2(1− qn)

= (1− q)

[

qn
(
1− (1− q)n

)
− q2

n−1∑

k=0

qk
]

= (1− q)

[

− qn(1− q)n − q2
n−3∑

k=0

qk − qn+1

]

< 0

Hence the payoff from pooling at b∗ in (18) is strictly negative for all δ sufficiently close to 1,

and therefore cannot exceed v∗fse for δ around 1.

Case 1: the restriction on the parameters

The full surplus extraction equilibrium of Proposition 6 can only be sustained if q < 1−qn

n(1−q)
.

It is easy to check that this condition can be satisfied for any q as long as n = 2 or n = 3, but

only for some q if n ≥ 4. Indeed consider n = 2 first:

(I) n = 2. In this case the condition becomes:

2q <
1− q2

1− q
⇔ 2q < 1 + q ⇔ q < 1,

which is obviously true.

(II) n = 3. In this case the condition becomes:

3q <
1− q3

1− q
⇔ 3q < 1 + q + q2 ⇔ 0 < 1− 2q + q2 ⇔ 0 < (1− q)2,

which is also obviously true for any q ∈ (0, 1).

(III) n = 4 In this case the condition becomes:

4q <
1− q4

1− q
⇔ 4q < 1 + q + q2 + q3 ⇔ 0 < 1− 3q + q2 + q3

⇔ 0 < (1− q)(−q2 − 2q + 1) ⇔ 0 < −q2 − 2q + 1,

which is only true for q ∈ (0,−1 +
√
2).
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It it however possible to establish that for any number of players n there will be some values

of q falling into Case 1:

Proposition 7. The equation 1 − qn = nq(1 − q) has a unique solution q∗ on (0, 1) for any

n ≥ 4. Moreover for all q < q∗ it is true that q < 1−qn

n(1−q)
and vice versa.

Proof. See Appendix H.1.

The above proposition essentially shows that for every n ≥ 4 the restriction divides the

interval (0, 1) into two parts. In the left part of the segment one will find the values of q that

fall into Case 1, and in the right part of the segment one will find the values of q that fall into

Cases 2 and 3. Figure 5 provides an illustration and also suggests that, as n goes to infinity,

lower and lower values of q fall into Case 1 until there are none left in the limit. Indeed, it is

easy to see that

lim
n→∞

nq(1− q)− (1− qn) = +∞,

implying that, for any fixed value of q, the parameter restriction does not hold for all sufficiently

high n.

Case 2: Medium expected valuation

Recall that in Case 2, the no-collusion constraint (No-col-sep-1) and the upward incentive

compatibility constraint of a high-type buyer (HighIC-up) bind at the optimum of the revenue

maximization problem RM.
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Full surplus extraction cPPE, Case 2.

❼ Equilibrium conditions:

(No-col-sep-1) v∗fse =
(1− δ)(1− qn)(θ − b∗)

n(1− δ(1− q)n)
,

(HighIC-up) (1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse = (1− δ)(θ − b

∗
),

(Eq-payoff) v∗fse =
1

n

[
(1− qn)(θ − b

∗
) + qn(θ − b∗)

]
.

❼ Parameter restrictions:

q ≥ 1− qn

n(1− q)
,

(1− qn)(1− q) > qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
.

The complete solution to the system of equilibrium conditions is provided in Appendix E.2.

I will derive the restrictions on the parameters in the course of the proof of Proposition 8. First,

define D(δ) as:

D(δ) = qn
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
+ (1− qn)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
.

The payoff of a low-type buyer who wins by bidding b∗ is given by:

θ − b∗ = − 1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(1− qn)(θ − θ). (19)

The payoff of a high type buyer who wins by bidding b
∗
is given by:

θ − b
∗
=

1

D(δ)
δqn(1− qn)(1− q)(θ − θ), (20)

and the payoff of a high type buyer who wins by bidding b∗ is given by:

θ − b∗ =
1

D(δ)
qn
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
(θ − θ). (21)

The resulting ex ante equilibrium payoff of the buyers is:

v∗fse =
1− δ

nD(δ)
qn(1− qn)

[
n(1− q)− (1− qn)

]
(θ − θ). (22)
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Note that as δ goes to 1, D(δ) goes to:

D(1) = qn
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
+ (1− qn)(1− qn)(1− q) > 0,

hence we can conclude that D(δ) is strictly positive for all δ sufficiently close to 16.

The equilibrium bids of each type can be computed from the payoffs in (19) and (20):

b∗ = θ +
1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(1− qn)(θ − θ), (23)

b
∗
= θ − 1

D(δ)
δqn(1− qn)(1− q)(θ − θ). (24)

I first show that the equilibrium bids satisfy the condition of Lemma 2.

Lemma 5. Suppose q ≥ 1−qn

n(1−q)
, and δ is sufficiently close to 1, then θ < b∗ < b

∗
.

Proof. (i) To see that θ < b∗ for sufficiently high δ, observe that

θ − b∗ −−→
δ→1

− 1

D(1)
(1− qn)(1− q)(1− qn)(θ − θ) < 0.

(ii) The proof of b∗ < b
∗
is provided in Appendix F.

I now proceed to establish that the bidding profile (b
∗
, b∗) can indeed be played along the

equilibrium path of a collusive public perfect equilibrium of the repeated auction game:

Proposition 8. Suppose that q ≥ 1−qn

n(1−q)
and (1 − qn)(1 − q) > qn−1

(
1 − (1 − q)n

)[
n(1 − q) −

(1 − qn)
]
. Suppose further that b

∗
and b∗ are defined by (23) and (24) respectively, then there

exists a critical discount factor δ∗, such that for all δ ∈ [δ∗, 1) the high-revenue strategy profile

corresponding to (b
∗
, b∗) (as defined by 11) is a collusive public perfect equilibrium of the repeated

auction game in the sense of Definition 7. Moreover, the seller achieves full surplus extraction

in the limit as δ goes to 1.

6More precisely, for all δ satisfying

δ >
(1− 2qn)

(
n(1− q)− (1− qn)

)

(
1− qn

)2(
n(1− q)− q(1− qn−1)

)
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Proof sketch. The complete proof is provided in Appendix G.2. As in the previous case, I only

provide a sketch of the main argument in the main text. By Lemma 2 and Lemma 5, it is enough

to check that R∗
fse ≥ (1− qn)θ and that the remaining constraints in the revenue maximization

problem RM are satisfied at (b
∗
, b∗, v∗fse) for high enough δ. I start with the seller’s revenue.

Seller’s revenue. The seller’s revenue is equal to the full surplus net of the equilibrium payoff

of the buyers::

R∗
fse = (1− qn)θ + qnθ − nv∗fse.

nv∗fse is equal to:

nv∗fse =
1− δ

D(δ)
qn(1− qn)

[
n(1− q)− (1− qn)

]
(θ − θ),

which goes to zero in the limit as δ goes to 1 (recall that D(δ) converges to a strictly positive

number). Thus R∗
fse ≈ (1− qn)θ + qnθ for δ close enough to 1, which clearly exceeds (1− qn)θ.

Incentive constraints. Since we have relaxed the low type’s incentive compatibility constraint

(LowIC), we must now make sure that this constraint is satisfied in the relevant parameter

region. Recall that a low-type buyer must be willing to participate in the bidding with the bid

b∗ as opposed to abstaining and getting a zero payoff:

(1− δ)
qn−1

n
(θ − b∗) + δv∗fse ≥ 0.

Plugging the payoffs defined in (19) and (22) into the above constraint, I obtain:

−(1− δ)
qn−1

n

1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(1− qn)(θ − θ)

+ δ
1− δ

nD(δ)
qn(1− qn)

[
n(1− q)− (1− qn)

]
(θ − θ) ≥ 0,

which simplifies to:

δ ≤ 1

1− q
− 1− qn

n(1− q)2
,

which is true since 1
1−q

− 1−qn

n(1−q)2
≥ 1 by assumption that q ≥ 1−qn

n(1−q)
.
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The remaining incentive constraints in RM are all non-binding at (b
∗
, b∗, v∗fse) for high values

of δ and all values of q and n, except for the constraint associated with a downward deviation

of a high-type buyer (HighIC-down). Recall that a high-type buyer could deviate to b∗ + ϵ and

win whenever all of his competitors are low types. For this deviation to be unprofitable, his

payoff must satisfy:

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse ≥ (1− δ)qn−1(θ − b∗).

Plugging the payoffs defined in , (20), (21), and (22) into the above inequality, I obtain:

(1− δ)
1− qn

n(1− q)

1

D(δ)
δqn(1− qn)(1− q)(θ − θ)

+ δ
1− δ

nD(δ)
qn(1− qn)

[
n(1− q)− (1− qn)

]
(θ − θ)

≥ (1− δ)qn−1 1

D(δ)
qn
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
(θ − θ),

which simplifies to:

δ(1− qn)(1− q) ≥ qn−1
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
,

which can only be satisfied when for δ high enough:

(1− qn)(1− q) > qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
,

which is the second parameter restriction of Case 2.

No collusion constraints. I check that the no-collusion constraints (No-col-pool) and (No-

col-sep-2) are satisfied, or, equivalently, that pooling at b∗ or bidding (b∗+ ϵ, b∗) cannot help the

buyers to improve their payoff in the buyer-game induced by the seller’s equilibrium strategy.

Suppose first that the buyers attempt to bid according to (b∗ + ϵ, b∗), then their payoff will be

equal to:

v(b∗ + ϵ, b∗) =
(1− δ)

[
(1− qn)(θ − b∗) + qn(θ − b∗)

]

n(1− δqn)

=
(1− δ)qn(1− qn)(θ − θ)

n(1− δqn)D(δ)
×

×
(
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
−
[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
)

,
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which is exceeded by v∗fse for δ sufficiently close to 1 as long as q and n satisfy the following

inequality:

(1− qn)(1− q) >
(
qn − (1− q)n

)[
n(1− q)− (1− qn)

]
,

which is implied by the the second parameter restriction of Case 2 (also given below in (25))

since qn − (1− q)n < qn−1
(
1− (1− q)n

)
.

If the buyers try to coordinate on pooling at b∗, their payoff will be:

v(b∗, b∗) =
1

n

[
(1− q)(θ − b∗) + q(θ − b∗)

]

=
1

n

[

(1− q)
1

D(δ)
qn
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
(θ − θ)

− q
1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(1− qn)(θ − θ)

]

,

v(b∗+ϵ, b∗) converges to a strictly negative number as δ goes to 1. Indeed, in the limit v(b∗+ϵ, b∗)

is given by:

(1− q)(θ − θ)

nD(1)

[
qn
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
− q(1− qn)(1− qn)

]
,

which is strictly negative since (1− qn)(1− qn) > qn−1
[
n(1− q)− (1− qn)

]
(see Appendix G.2

for the proof of this claim).

Case 2: the restrictions on the parameters

Consider the second parameter restriction of Case 2:

(1− qn)(1− q) > qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
. (25)

The pairs of q and n satisfying this restriction (together with the restriction q ≥ 1−qn

n(1−q)
) are

illustrated by Figure 5. In the following proposition I establish that the set of q satisfying (25)

is non-empty for any n ≥ 4 and that there are values q that do not satisfy (25) for every n ≥ 4.
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Proposition 9. The equation

(1− qn)(1− q) = qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]

has a solution on q ∈ (0, 1) for every n ≥ 4.

Proof. See Appendix H.2.

Observe that the range of q expands as n increases. In the next proposition I establish that

any q ∈ (0, 1) will satisfy condition (25) for all sufficiently high values of n:

Proposition 10. For all q ∈ (0, 1)

lim
n→∞

(
(1− qn)(1− q)− qn−1

(
1− (1− q)n

)[
n(1− q)− (1− qn)

])
= 1− q > 0.

Proof. See Appendix H.3.

Figure 5 also suggests that the restriction in (25) can be satisfied for all q ≤ 1
2
. Indeed, this

claim can be shown formally:

Proposition 11. For all q ∈ (0, 1
2

]
it is true that

(1− qn)(1− q) > qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
.

Proof. See Appendix H.4.

Case 3: Low expected valuation

Recall that in Case 3, both of the incentive compatibility constraints of a high type buyer,

i.e. (HighIC-up) and (HighIC-down), bind at the optimum of the revenue maximization problem

RM.
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Full surplus extraction cPPE, Case 3.

❼ Equilibrium conditions:

(HighIC-up) (1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse = (1− δ)(θ − b

∗
),

(HighIC-down) (1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse = (1− δ)qn−1(θ − b∗),

(Eq-payoff) v∗fse =
1

n

[
(1− qn)(θ − b

∗
) + qn(θ − b∗)

]
.

❼ Parameter restriction

(1− qn)(1− q) ≤ qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
.

The full solution to the system of equilibrium conditions is provided in Appendix E.3. Here

I present the equilibrium bids and equilibrium payoffs. I will derive the restriction on the

parameters in the course of the proof of Proposition 12. Observe that the restriction on the

parameters has the following implication:

Lemma 6. For any q ∈ (0, 1) and n ≥ 2

(1− qn)(1− q) ≤ qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
⇒ q ≥ 1− qn

n(1− q)
.

Proof. See Appendix H.5

To write down the expressions for equilibrium bids and payoffs, define D(δ) as:

D(δ) = (1− qn)(1− δq) + δq(1− q)− n(1− δ)(1− q).

A low-type buyer, who wins the auction with the low equilibrium bid b∗, gets:

θ − b∗ = − 1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(θ − θ). (26)

A high-type buyer, who wins the auction with the high equilibrium bid b
∗
, gets:

θ − b
∗
=

1

D(δ)
δqn(1− q)(θ − θ), (27)
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and a high-type buyer, who wins the auction with the low equilibrium bid b∗, gets:

θ − b∗ =
1

D(δ)
δq(1− q)(θ − θ). (28)

The resulting ex ante equilibrium payoff of the buyers is given by:

v∗fse =
1

nD(δ)
(1− δ)qn

[
n(1− q)− (1− qn)

]
(θ − θ). (29)

Note that as δ goes to 1, D(δ) goes to:

D(1) = (1− qn)(1− q) + q(1− q) > 1,

hence D(δ) is strictly positive for δ sufficiently close to 17 by continuity of D(·).
The equilibrium bids of each type can be immediately obtained from the respective payoffs

in (26) and (27):

b∗ = θ +
1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(θ − θ) (30)

b
∗
= θ − 1

D(δ)
δqn(1− q)(θ − θ) (31)

As in the previous two cases, I first establish the following lemma:

Lemma 7. Suppose δ is sufficiently close to 1, then θ < b∗ < b
∗
.

Proof. (i) To see that θ < b∗ for sufficiently high values of δ, observe that:

θ − b∗ −−→
δ→1

− 1

D(1)
(1− qn)(1− q)(θ − θ) < 0.

(ii) b∗ < b
∗
is equivalent to θ − b∗ > θ − b

∗
which is equivalent to:

1

D(δ)
δq(1− q)(θ − θ) >

1

D(δ)
δqn(1− q)(θ − θ),

which is clearly true since D(δ) > 0 for δ high enough, and q > qn for all n ≥ 2 and

q ∈ (0, 1).

7For values of δ satisfying

δ >
n(1− q)− (1− qn)

n(1− q)− q2(1− qn−1)
.
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I now show that the bidding profile in (30) and (31) can be supported in a collusive public

perfect equilibrium of the repeated auction game:

Proposition 12. Suppose that (1−qn)(1−q) ≤ qn−1
(
1−(1−q)n

)[
n(1−q)−(1−qn)

]
. Suppose

further that b∗ and b
∗
are defined by (30) and (31) respectively, then there exists a critical

discount factor δ∗, such that for all δ ∈ [δ∗, 1) the high-revenue strategy profile corresponding to

(b
∗
, b∗) (as defined by 11) is a collusive public perfect equilibrium of the repeated auction game

in the sense of Definition 7. Moreover, the seller achieves full surplus extraction in the limit as

δ goes to 1.

Proof sketch. The complete proof is provided in Appendix G.3, I briefly sketch the main argu-

ments here. Just as in the previous two cases, by Lemma 2 and Lemma 7, it is enough to check

that R∗
fse ≥ (1− qn)θ and that the remaining constraints in the revenue maximization problem

RM are satisfied at (b
∗
, b∗, v∗fse) for high values of δ. I start with the seller’s revenue.

Seller’s revenue. The seller’s revenue is given by:

R∗
fse = (1− qn)θ + qnθ − nv∗fse.

nv∗fse is given by:

nv∗fse =
1

D(δ)
(1− δ)qn

[
n(1− q)− (1− qn)

]
(θ − θ).

Observe that limδ→1 nv
∗
fse = 0, which means R∗

fse ≈ (1 − qn)θ + qnθ for δ close enough to 1,

which clearly exceeds (1− qn)θ.

Incentive constraints. As in Cases 1 and 2, the on-schedule incentive compatibiliy constraint

(HighIC-on-sch) is satisfied. The two off-schedule incentive compatibility constraints (HighIC-

up) and (HighIC-down) are satisfied by construction. Hence it remains to check that the low-

type incentive compatibility constraint (LowIC) is satisfied. Recall that (LowIC), evaluated at

(b
∗
, b∗, v∗fse), is given by:

(1− δ)
qn−1

n
(θ − b∗) + δv∗fse ≥ 0.
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Plugging the payoffs from (26) and (29) in, I get:

−(1− δ)
qn−1

n

1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(θ − θ)

+ δ
1

nD(δ)
(1− δ)qn

[
n(1− q)− (1− qn)

]
(θ − θ) ≥ 0,

which is equivalent to:

δ ≤ 1

1− q
− 1− qn

n(1− q)2
,

which is true whenever 1
1−q

− 1−qn

n(1−q)2
≥ 1 or q ≥ 1−qn

n(1−q)
, which is in turn true in this case by

Lemma 6.

No-collusion constraints. Recall that in Cases 1 and 2 the no-collusion constraint (No-col-

sep-1) was binding and thus the joint deviation to bidding (b∗, ∅) could not benefit the buyers

by construction. Since we have relaxed (No-col-sep-1) here in Case 3, we must now make sure

that it is satisfied at (b
∗
, b∗, v∗fse). Recall that the payoff from bidding (b∗, ∅) is given by

v(b∗, ∅) = (1− δ)(1− qn)(θ − b∗)

n
(
1− δ(1− q)n

) =
(1− δ)(1− qn)δq(1− q)(θ − θ)

nD(δ)
(
1− δ(1− q)n

) .

The equilibrium payoff v∗fse exceeds v(b
∗, ∅) as long as

qn−1
[
n(1− q)− (1− qn)

]
≥ (1− qn)δ(1− q)

(
1− δ(1− q)n

)

⇔
(
1− δ(1− q)n

)
qn−1

[
n(1− q)− (1− qn)

]
≥ δ(1− qn)(1− q),

which can be satisfied for any δ ∈ (0, 1) as long as q and n satisfy

(
1− (1− q)n

)
qn−1

[
n(1− q)− (1− qn)

]
≥ (1− qn)(1− q).

which is true by assumption.

Just as in Cases 1 and 2, we must check whether the constraints (No-col-pool) and (No-col-

sep-2) are satisfied at (b
∗
, b∗, v∗fse), or, equivalently, whether the buyers would lose from pooling

at b∗ or bidding (b∗ + ϵ, b∗) whenever the state is wl in the buyer-game. Suppose the buyers
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coordinate on bidding (b∗ + ϵ, b∗), then their payoff is:

v(b∗ + ϵ, b∗) =
(1− δ)

[
(1− qn)(θ − b∗) + qn(θ − b∗)

]

n
(
1− δqn

)

=
(1− δ)(θ − θ)

nD(δ)
(
1− δqn

)

[

(1− qn)δq(1− q)− qn
[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
]

.

We must show that v∗fse ≥ v(b∗ + ϵ, b∗) for sufficiently high values of δ, i.e. that

qn
[
n(1− q)− (1− qn)

]

≥ 1
(
1− δqn

)

[

(1− qn)δq(1− q)− qn
[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
]

,

which holds for δ sufficiently close to 1 whenever it holds as a strict inequality at δ = 1, i.e.

whenever

qn
[
n(1− q)− (1− qn)

]
>

1
(
1− qn

)
[
(1− qn)q(1− q)− qn(1− qn)(1− q)

]

⇔ qn−1
[
n(1− q)− (1− qn)

]
> (1− q)(1− qn−1).

Now the last line is true since:

(1− q)(1− qn−1) < (1− q)(1− qn) ≤ qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
,

where the strict is inequality is obviously true, and the weak inequality holds true in Case 3 by

assumption.

If the buyers attempt to coordinate on pooling at b∗ instead, then their payoff will become:

v(b∗, b∗) =
1

n

[
(1− q)(θ − b∗) + q(θ − b∗)

]

=
θ − θ

nD(δ)

[

(1− q)δq(1− q)− q
[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
]

.

As in Cases 1 and 2, I show that v(b∗, b∗) converges to a strictly negative number as δ goes

to 1. In the limit the payoff from pooling at b∗ is:

θ − θ

nD(1)

[
(1− q)q(1− q)− q(1− qn)(1− q)

]
=

q(1− q)(θ − θ)

nD(1)

[
qn − q

]
< 0.

Since v∗fse is weakly positive, the payoff from pooling at b∗ cannot exceed the equilibrium payoff

in Case 3 for values of δ sufficiently close to 1.
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Case 3: the restriction on the parameters

The range of parameters, where Case 3 applies, equilibrium construction is defined by the

following inequality:

(1− qn)(1− q) ≤ qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]

The pairs of q and n satisfying the above inequality are illustrated by Figure 5. Recall that in

Lemma 6 we have established that this parameter restriction implies q ≥ 1−qn

n(1−q)
. Recall also

that q ≥ 1−qn

n(1−q)
implies that n ≥ 4 because it cannot be satisfied for any q as long as n = 2 or

n = 3. Combined with the result of Proposition 9, it implies that Case 3 applies to some values

of q for all n ≥ 4, and does not apply to any values of q for n = 2 or n = 3 (see Figure 5 for an

illustration).

7 Revenue-maximizing reserve prices

The reserve prices along the equilibrium path of the full-surplus-extracting collusive public

perfect equilibria (in the limit as δ goes to 1) are given by:

r∗ =







θ + q(1−qn)(θ−θ)

q(1−qn)+qn
(
1−(1−q)n

) in Case 1

θ +

[
(1−qn)

]2
(1−q)(θ−θ)

qn
(
1−(1−q)n

)[
n(1−q)−(1−qn)

]
+
[
(1−qn)

]2
(1−q)

in Case 2

θ + (1−qn)(θ−θ)
1−qn+q

in Case 3

They are illustrated by Figure 6. The reserve prices in the full-surplus-extracting cPPE of

the repeated auction game are decreasing in q, going to θ as q goes to 0 and going to θ as q goes

to 1. Indeed, since q is the probability of the low type, when q is close to zero, the buyers all have

high valuations with a very high probability, and when q is close to 1, the buyers all have low

valuations with a very high probability. Recall that the optimal reserve prices in the one-shot

auction problem are also decreasing in q, but the optimal decision is essentially a cutoff rule (for
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Figure 6: Reserve prices in the full-surplus-extracting cPPE of the repeated auction game in

the limit as δ goes to 1. Valuations are θ = 1 and θ = 2. The curves illustrate the limiting

reserve prices for all probabilities of the low type q ∈ (0, 1), and for each n ∈ {2, ..., 10} moving

from the southwest to the northeast as the number of buyers grows, i.e. the southwesternmost

curve illustrates the reserve prices for n = 2, and the northeasternmost curve illustrates the

reserve prices for n = 10. In the dark-blue, red, and light-blue segments, Cases 1, 2, and 3

apply respectively.
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fixed values of other parameter values): for relatively low values of q the optimal reserve price

is θ, while for relatively high values of q it is θ. Thus, even though the direction of dependence

is the same, the functional form of this dependence is much less trivial in the repeated auction

setting with collusion. Similarly, the optimal reserve prices in the one-shot auction problem are

increasing in the number of buyers, but the dependence takes the form of a cutoff rule (again,

when the other parameter values are fixed), where the optimal reserve price is equal to θ when

the number of buyers is relatively low, and is equal to θ when it is relatively high. In contrast

to the one-shot setting, the reserve prices in the full-surplus-extracting cPPE, even though also

increasing in n, depend on n in a much less trivial way.

This non-trivial dependence of the reserve prices on q and n can to a certain extent be ex-

plained by their very different role in the repeated setting with collusion. In the one-shot auction

problem, the role of the reserve prices is to exclude certain valuation types from participation

with the purpose of increasing competition among the remaining types. In the repeated setting

with colluding buyers, the full-surplus-extracting cPPE is efficient and the reserve prices play

two crucial roles. First, in the off-path component of the seller’s strategy, the reserve prices

are chosen to punish the buyers for deviating from the equilibrium path bidding. Second, and

more importantly, the on-path component of the reserve prices makes sure that the buyers pay

“upfront” for the continuation of favorable terms of trade and at the same time do not have

an incentive to collude on a lower bidding profile, resolving the fundamental conflict between

revenue-maximization and fighting collusion.

8 Concluding remarks

In this paper, I have considered a repeated first-price auction model with a non-committed

seller who dynamically adjusts reserve prices to fight collusion among buyers. To model the

interaction between the seller and the colluding buyers, I have proposed the solution concept

of collusive public perfect equilibrium. A collusive public perfect equilibrium is a public perfect

equilibrium that additionally requires that the buyers be unable to improve their equilibrium

payoff in the “buyer-game” induced by the seller’s equilibrium strategy. Studying the outcomes
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as the discount factor goes to 1, I find a collusive public perfect equilibrium which allows the

seller to extract the entire surplus from the colluding buyers. This result suggests that the

problem of collusion in repeated auctions is perhaps less severe than is commonly understood:

it turns out that a sufficiently sophisticated seller can come up with rather effective strategies

for fighting collusion, even when she has to publicly disclose all the bids in the end of every

period.

The buyers in this paper are assumed to have access to symmetric collusive schemes. Such

collusive schemes are particularly simple and thus might require no explicit communication

among the buyers in practice, which makes them virtually impossible to detect for an antitrust

authority. These hard-to-detect collusive schemes must therefore be addressed as part of the

repeated auction design problem itself. My results imply that it can be done quite successfully.

It is however well-known (see e.g. Mailath and Samuelson (2006)) that more sophisticated

asymmetric collusive schemes might allow the buyers to collude more effectively, especially

when they can communicate before the start of each auction. Even though asymmetric collusive

schemes are often dealt with by conventional means of antitrust policy, it is worth studying if

they could also be addressed via more sophisticated auction design.
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A Solution of the one-shot auction problem

Let us first consider the choices made by the buyers who face a reserve price r. Depending

on the reserve price chosen by the seller, there are four possible cases to consider:

Case i: r ≤ θ

In this case both types of each buyer will be willing to participate in the auction. The low types

will bid their own valuation θ and receive the payoff of 0. The high types will randomize on
(
θ, b] where b = (1− qn−1)θ + qn−1θ according to

G(b) =
q

1− q

[(
θ − θ

θ − b

) 1

n−1

− 1

]

,

and will get the payoff of qn−1(θ − θ). The ex ante equilibrium payoff of the buyers is:

v∗r≤θ = (1− q)qn−1(θ − θ).

The seller generates revenue:

R∗
r≤θ = (1− qn)θ + qnθ − nv∗r≤θ = (1− qn)θ + qnθ − n(1− q)qn−1(θ − θ).

Case ii: θ < r < θ

In this case only the high types are willing to participate in the first price auction. The high

types will randomize on
(
θ, b] where b = (1− qn−1)θ + qn−1r according to

G(b) =
q

1− q

[(
θ − r

θ − b

) 1

n−1

− 1

]

,

and will get the payoff of qn−1(θ − r), which leads to the ex ante equilibrium payoff of:

v∗
θ<r<θ

= (1− q)qn−1(θ − r).

The resulting revenue of the seller who chooses a reserve price r ≤ θ:

R∗
θ<r<θ

= (1− qn)θ − nv∗
θ<r<θ

= (1− qn)θ − n(1− q)qn−1(θ − r).
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Case iii: r = θ

In this case only high types are willing to participate, and they of course have no choice but to

bid θ in equilibrium, and the resulting revenue will be:

R∗
r=θ

= (1− qn)θ.

Case iv: r > θ

In this case neither type wants to participate, so every buyer will choose to abstain and the

seller will get zero revenue.

Revenue achieved in Case ii is clearly inferior to that achieved in Case iii, so setting

θ < r < θ cannot be part of any subgame-pefect equilibrium of the static auction game. The

reserve prices r ≤ θ and r = θ could however be optimal for the seller.

Case i: r ≤ θ

In this case it is clear that both types will participate will be willing to participate. It can be

easily shown that there is no Nash equilibrium in pure strategies. It is also immediately clear

that the low types will never place a bid higher than their own valuation because winning with

such a high bid would lead to a negative payoff. But low types should not place a bid that is

lower than their valuation even if they have an opportunity to do so. Suppose low type bidders

do place a bid r < b < θ in equilirium, then one of them could deviate to b + ϵ and guarantee

winning the auction for sure if his competitor is of low type as well, hence there is a profitable

deviation.

Suppose Φ(b) is the unconditional distribution of equilibrium bids for every player. The

expected payoff of a bidder with type θ is given by:

Φn−1(b)(θ − b). (32)

Assuming that only low types bid θ we must have Φ(θ) = q hence by indifference we have:

Φn−1(b)(θ − b) = qn−1(θ − θ). (33)

hence Φ(b) = q
(
θ−θ

θ−b

) 1

n−1 . To find the upper bound of the support we solve q
(
θ−θ

θ−b

) 1

n−1 = 1,

which leads to b = (1− qn−1)θ+ qn−1θ. Hence the high type player randomizes over
(
θ, b]. Since
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Φ(b) is the unconditional distribution of equilibrium bids, the actual mixed strategy of the high

type is:

G(b) ≡ Φ(b|θi = θ) =
q

1− q

[(
θ − θ

θ − b

) 1

n−1

− 1

]

. (34)

The above analysis naturally leads to the following lemma:

Lemma 8. If r ≤ θ,

(i) the low type bids his own valuation in equilibrium: b = θ,

(ii) the high type randomizes his bids on
(
θ, (1− qn−1)θ + qn−1θ

]
according to

G(b) =
q

1− q

[(
θ − θ

θ − b

) 1

n−1

− 1

]

.

The low type expected equilibrium payoff is 0, the high type expected equilibrium payoff is

qn−1(θ − θ), which leads to the ex ante equilibrium payoff of:

v∗r≤θ = (1− q)qn−1(θ − θ).

The equilibrium in Lemma 8 is efficient, hence it leads to the total surplus given by: (1 −
qn)θ + qnθ. The resulting revenue of the seller who chooses a reserve price r ≤ θ:

R∗
r≤θ = (1− qn)θ + qnθ − nu∗

i (35)

= (1− qn)θ + qnθ − n(1− q)qn−1(θ − θ).

Case ii: θ < r < θ

In this case only the high types are willing to participate in the first price auction. It can

also be shown that there is no equilibrium in pure strategies. Hence we will be looking for an

equilibrium in mixed strategies. Suppose that a high type buyer randomizes his bids according

to the distribution function G(b). The payoff of a high type buyer who is bidding b is given by:

(

qn−1 + (n− 1)(1− q)qn−2G(b) + ...+ (1− q)n−1Gn−1(b)

)

(θ − b) (36)

=
(
q + (1− q)G(b)

)n−1
(θ − b).
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Assuming that r is the lower bound of the support of G(b) and that G(b) has no mass points

we get G(r) = 0. By indifference we get for every b in the support:

(
q + (1− q)G(b)

)n−1
(θ − b) =

(
q + (1− q)G(r)

)n−1
(θ − r) = qn−1(θ − r), (37)

which immediately gives us:

G(b) =
q

1− q

[(
θ − r

θ − b

) 1

n−1

− 1

]

. (38)

To find the upper bound of the support b we solve q

1−q

[(
θ−r

θ−b

) 1

n−1 − 1
]
= 1 which leads to

b = (1− qn−1)θ + qn−1r. Hence the following lemma:

Lemma 9. If θ < r < θ,

(i) the low type chooses to abstain from participation b = ∅,
(ii) the high type randomizes his bids on

[
r, (1− qn−1)θ + qn−1r

]
according to

G(b) =
q

1− q

[(
θ − r

θ − b

) 1

n−1

− 1

]

.

The low type expected equilibrium payoff is 0, the high type expected equilibrium payoff is

qn−1(θ − r), which leads to the ex ante equilibrium payoff of:

v∗
θ<r<θ

= (1− q)qn−1(θ − r).

Since only the high types trade with the seller in the equilibrium in Lemma 9, the resulting

total surplus is given by: (1 − qn)θ. The resulting revenue of the seller who chooses a reserve

price r ≤ θ:

R∗
θ<r<θ

= (1− qn)θ − nu∗
i = (1− qn)θ − n(1− q)qn−1(θ − r). (39)

Case iii: r = θ

In this case only high types are willing to participate, and they of course have no choice but to

bid b = θ in equilibrium, and the resulting revenue will be:

R∗
r=θ

= (1− qn)θ. (40)
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Case iv: r > θ

In this case neither type wants to participate, so every buyer will choose to abstain and the

seller will get zero revenue.
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B Separating equilibrium payoffs

Suppose that in every period along the equilibrium path a low type buyer bids b, and a high

type buyer bids b. Then a low type bidder wins with probability 1/n only if all his competitors

are of low type as well, hence his equilibrium payoff is given by:

qn−1

n
(θ − b). (41)

A high type bidder may win in several different cases: whenever k− 1 of his competitors are

also high type buyers, he wins with probability 1/k, hence his winning probability is equal to:

(1− q)n−1 1

n
+ (n− 1)q(1− q)n−2 1

n− 1
+

(n− 1)(n− 2)

2
q2(1− q)n−3 1

n− 2
+ ...+ qn−11

= (1− q)n−1 1

n
+ q(1− q)n−2 +

(n− 1)

2
q2(1− q)n−3 + ...+ qn−1

=
1

n

[

(1− q)n−1 + nq(1− q)n−2 +
n(n− 1)

2
q2(1− q)n−3 + ...+ nqn−1

]

=
1

n(1− q)

[

(1− q)n + nq(1− q)n−1 +
n(n− 1)

2
q2(1− q)n−2 + ...+ nqn−1(1− q)

]

=
1

n(1− q)

[

(1− q)n + nq(1− q)n−1 +
n(n− 1)

2
q2(1− q)n−2 + ...+ nqn−1(1− q) + qn

︸ ︷︷ ︸

=(1−q+q)n=1

−qn
]

=
1

n(1− q)
(1− qn).

The expected payoff of a high type’s buyer then is:

1− qn

n(1− q)
(θ − b). (42)

The resulting ex ante equilibrium payoff of each buyer is then

vi = (1− q)
1− qn

n(1− q)
(θ − b) + q

qn−1

n
(θ − b) (43)

=
1

n

[
(1− qn)(θ − b) + qn(θ − b)

]
.

The resulting revenue of the seller is:

Rs = (1− qn)b+ qnb. (44)
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C Proof of Proposition 4

Proof. 8 Note first that both in the low-revenue separating and zero-revenue pooling equilibrium,

the buyer-game induced by the seller’s equilibrium strategy is the repeated first-price auction

game with zero reserve price. Denote V the set of strongly symmetric public perfect equilibrium

payoffs of this buyer-game. Denote v̂ = supV . We have to distinguish two classes of strongly

symmetric public perfect equilibria: (i) equilibria in which a separating bidding profile is played

in the first period, and (ii) equilibria in which a pooling bidding profile is played in the first

period.

(i) A separating bidding profile is played in the first period

Suppose first that the optimal payoff v̂ is achieved by a symmetric public perfect equilib-

rium in which the buyers separate in the first period. Suppose b(·) is the equilibrium action

taken in the first period. Denote b and b the bids placed in the first period by a low-type

buyer and a high-type buyer respectively. Suppose that the equilibrium continuation value

after the first period is given by v∗ : Rn
+ → R, then the equilibrium payoff of a high-type

buyer i is given by:

(1− δ)
1− qn

n(1− q)
(θ − b) + δ E

(
v∗(b, b(θ−i))

)
.

The equilibrium payoff of a low-type buyer i is given by:

(1− δ)
qn−1

n
(θ − b) + δ E

(
v∗(b, b(θ−i))

)
.

The on-schedule incentive compatibility constraint of a low-type buyer is then given by:

(1− δ)
qn−1

n
(θ − b) + δ E

(
v∗(b, b(θ−i))

)
≥ (1− δ)

1− qn

n(1− q)
(θ − b) + δ E

(
v∗(b, b(θ−i))

)
.

Subtract δv̂ and divide both sides by (1− δ):

qn−1

n
(θ − b) +

δ

1− δ
E
(
v∗(b, b(θ−i))− v̂

)
≥ 1− qn

n(1− q)
(θ − b) +

δ

1− δ
E
(
v∗(b, b(θ−i))− v̂

)
,

8See a similar argument in Chapter 11.2 of Mailath and Samuelson (2006) in the context of a repeated price

competition game with adverse selection.
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and define x ≡ δ
1−δ

E
(
v∗(b, b(θ−i)) − v̂

)
and x ≡ δ

1−δ
E
(
v∗(b, b(θ−i)) − v̂

)
. The incentive

compatibility constraint of a low-type buyer can then be written as:

qn−1

n
(θ − b) + x ≥ 1− qn

n(1− q)
(θ − b) + x. (45)

Recall that the continuation payoffs in any strongly symmetric public perfect equilibrium

must be strongly symmetric public perfect equilibrium payoffs themselves, hence we must

have x ≤ 0 and x ≤ 0 since v̂ = supV .

The ex ante equilibrium payoff is given by:

v̂ = (1− δ)
1

n

[
(1− qn)(θ− b) + qn(θ− b)

]
+ (1− q)δ E

(
v∗(b, b(θ−i))

)
+ qδ E

(
v∗(b, b(θ−i))

)
.

Subtracting δv̂ and dividing by (1− δ) on both sides, we obtain:

v̂ − δv̂

1− δ
=

1

n

[
(1−qn)(θ−b)+qn(θ−b)

]
+(1−q)

δ

1− δ
E
(
v∗(b, b(θ−i))−v̂

)
+q

δ

1− δ
E
(
v∗(b, b(θ−i))−v̂

)
,

which can be rewritten as:

v̂ =
1

n

[
(1− qn)(θ − b) + qn(θ − b)

]
+ (1− q)x+ qx.

Combining this expression with the low-type incentive compatibilty constraint in (45) and

our observation that x, x ≤ 0, we must conclude that9:

v̂ ≤ max
b,b;x,x

1

n

[
(1− qn)(θ − b) + qn(θ − b)

]
+ (1− q)x+ qx subject to (46)

(IC)
qn−1

n
(θ − b) + x ≥ 1− qn

n(1− q)
(θ − b) + x,

(Feas) x, x ≤ 0.

Let us consider the maximization problem in (46). Clearly the (IC) constraint must be

binding at the optimum: suppose not, i.e. suppose qn−1

n
(θ − b) + x > 1−qn

n(1−q)
(θ − b) + x,

9The solution to this maximization problem provides an upper bound on strongly symmetric equilibrium

payoffs since all the other incentive compatibility constraints are ignored, and the constraint x, x ≤ 0 is necessary

for feasibility of continuation values but not sufficient.
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then choose b
′
< b such that the constraint is still satisfied, and this will clearly improve

the value of the objective. Hence, at the optimum of (46), we must have

qn−1

n
(θ − b) + x =

1− qn

n(1− q)
(θ − b) + x,

which we can solve for (1− qn)(θ − b), to obtain:

(1− qn)(θ − b) = (1− q)qn−1(θ − b) + n(1− q)(x− x),

which then implies:

(1− qn)(θ − b) = (1− qn)(θ − θ) + (1− q)qn−1(θ − b) + n(1− q)(x− x). (47)

Plugging (47) into the objective function in (46), we get:

1

n

[
(1− qn)(θ − θ) + (1− q)qn−1(θ − b) + n(1− q)(x− x) + qn(θ − b)

]
+ (1− q)x+ qx

=
1

n
(1− qn)(θ − θ) +

1

n

[
(1− q)qn−1 + qn

]
(θ − b) + (1− q)(x− x) + (1− q)x+ qx

=
1

n
(1− qn)(θ − θ) +

1

n

[
(1− q)qn−1 + qn

]
(θ − b) + x

=
1

n
(1− qn)(θ − θ) +

1

n
qn−1(θ − b) + x,

which implies that:

v̂ ≤max
b,x

1

n
(1− qn)(θ − θ) +

1

n
qn−1(θ − b) + x subject to x ≤ 0.

The optimum is clearly achieved when b = 0 and x = 0, which means that:

v̂ ≤ 1

n
(1− qn)(θ − θ) +

1

n
qn−1θ = v∗lrs.

Hence, if the buyers play a separating bidding profile in the first period in an optimal

strongly symmetric equilibrium of this buyer-game, then the optimal equilibrium payoff

cannot exceed the equilibrium payoff of the low-revenue separating equilibrium.
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(ii) A pooling bidding profile is played in the first period

Consider now a class of strongly symmetric public perfect equilibria in which the buyers

pool in the first period, and denote b the equilibrium action of both types in the first

period. Suppose that the optimal payoff v̂ is achieved by an equilibrium in this class.

Suppose that v∗ : Rn
+ → R is the equilibrium continuation value after the first period. The

ex ante equilibrium payoff is given by:

v̂ = (1− δ)
1

n

(
E(θ)− b

)
+ δv∗(b, . . . , b)

Subtracting δv̂ and dividing by (1− δ) on both sides, we obtain:

v̂ − δv̂

1− δ
=

1

n

(
E(θ)− b

)
+

δ

1− δ
(v∗(b, . . . , b)− v̂)

Denote x = δ
1−δ

(v∗(b, . . . , b)− v̂) and rewrite the above expression as:

v̂ =
1

n

(
E(θ)− b

)
+ x

Since continuation values must be strongly symmetric equilibrium payoffs themselves, we

have x ≤ 0, and therefore:

v̂ ≤ max
b,x

1

n

(
E(θ)− b

)
+ x subject to x ≤ 0

=
1

n
E(θ) = v∗zrp

Hence, if the buyers play a pooling bidding profile in the first period in an optimal strongly

symmetric equilibrium of this buyer-game, then the optimal equilibrium payoff cannot

exceed the equilibrium payoff of the zero-revenue pooling equilibrium.

We can now conclude that there are only two candidates for the optimal strongly symmetric

public perfect equilibrium payoff of the buyer-game: the payoff from the low-revenue separating

equilibrium and the payoff from the zero-revenue pooling equilibrium. The result then follows

from the analysis in the main text.

73



D Proof of the Monotonicity lemma

Proof. Consider first the high reserve price state ωh. Clearly in any public perfect equilibrium

the payoff in this state must be zero, hence we can without loss of generality assume that

bωh(θ) = θ and bωh(θ) = ∅.
Consider now the low reserve price state ωl, in which the buyer-game starts. Consider any

strongly symmetric public perfect equilibrium of the buyer game. Pick any history that leads to

state ωl and suppose any high-type buyer bids according to bωl(θ) = b and any low-type buyer

bids according to bωl(θ) = b after that history, and the equilibrium continuation value is given

by v∗
ωl(b) : A

n(ωl) → R. The equilibrium payoff of a high-type buyer is given by:

(1− δ)p(b)(θ − b) + δ E
(
v∗ωl(b, bωl(θ−i))

)
, (48)

where p(b) is the winning probability from bidding b in the current period. Analogously the

equilibrium payoff of a low-type buyer i is equal to:

(1− δ)p(b)(θ − b) + δ E
(
v∗ωl(b, bωl(θ−i))

)
, (49)

where p(b) is the winning probability from bidding b in the current period.

Since the above are assumed to be public perfect equilibrium payoffs, the following incentive

compatibility must be satisfied, for a high type buyer:

(1− δ)p(b)(θ − b) + δ E
(
v∗ωl(b, bωl(θ−i))

)
≥ (1− δ)p(b)(θ − b) + δ E

(
v∗ωl(b, bωl(θ−i))

)
, (50)

and for a low type buyer:

(1− δ)p(b)(θ − b) + δ E
(
v∗ωl(b, bωl(θ−i))

)
≥ (1− δ)p(b)(θ − b) + δ E

(
v∗ωl(b, bωl(θ−i))

)
. (51)

Adding inequalities (50) and (51) together and canceling the continuation values on both
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sides, we obtain:

(1− δ)p(b)(θ − b) + (1− δ)p(b)(θ − b) ≥ (1− δ)p(b)(θ − b) + (1− δ)p(b)(θ − b)

⇔ p(b)(θ − b) + p(b)(θ − b) ≥ p(b)(θ − b) + p(b)(θ − b)

⇔ p(b)θ + p(b)θ ≥ p(b)θ + p(b)θ

⇔ p(b)(θ − θ) + p(b)(θ − θ) ≥ 0

⇔
(
p(b)− p(b)

)
(θ − θ) ≥ 0

⇔ p(b)− p(b) ≥ 0,

which implies that b ≥ b.
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E Solutions of equilibrium conditions

E.1 Solution of Case 1

Recall that the equilibrium conditions in Case 1 are:

v∗fse =
(1− δ)(1− qn)(θ − b∗)

n(1− δ(1− q)n)
, (52)

and:

(1− δ)
qn−1

n
(θ − b∗) + δv∗fse = 0, (53)

where v∗fse =
1
n

[
(1− qn)(θ − b

∗
) + qn(θ − b∗)

]
.

Combining the equations (52) and (53), we get

(1− δ)
qn−1

n
(θ − b∗) + δ

(1− δ)(1− qn)(θ − b∗)

n(1− δ(1− q)n)
= 0, (54)

which we can solve for the equilibrium value of b:

b∗ =
δq
(
1− qn

)
θ + qn

(
1− δ(1− q)n

)
θ

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) , (55)

which we can now use to compute the payoff of each type conditional upon winning with b∗, for

a low type buyer we have:

θ − b∗ = θ − δq
(
1− qn

)
θ + qn

(
1− δ(1− q)n

)
θ

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) (56)

=
δq
(
1− qn

)
θ + qn

(
1− δ(1− q)n

)
θ − δq

(
1− qn

)
θ − qn

(
1− δ(1− q)n

)
θ

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)

=
−δq

(
1− qn

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) < 0;

and for a high type buyer we have:

θ − b∗ = θ − δq
(
1− qn

)
θ + qn

(
1− δ(1− q)n

)
θ

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) (57)

=
δq
(
1− qn

)
θ + qn

(
1− δ(1− q)n

)
θ − δq

(
1− qn

)
θ − qn

(
1− δ(1− q)n

)
θ

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)

=
qn
(
1− δ(1− q)n

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) > 0,
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which combined with (52) gives us the resulting equilibrium payoff:

v∗fse =
(1− δ)(1− qn)(θ − b∗)

n(1− δ(1− q)n)
= (58)

=
(1− δ)(1− qn)

n(1− δ(1− q)n)
× qn

(
1− δ(1− q)n

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)

=
1

n

(1− δ)qn(1− qn)(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) .

Recall that the ex ante equilibrium payoff in a separating equilibrium is equal to 1
n

[
(1 −

qn)(θ − b) + qn(θ − b)
]
, we must therefore have:

1

n

[
(1− qn)(θ − b

∗
) + qn(θ − b∗)

]
=

1

n

(1− δ)qn(1− qn)(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ,

which, knowing θ − b∗ from (56), we can solve for θ − b
∗
to obtain:

θ − b
∗
=

(1− δ)qn(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) − qn(θ − b∗)

1− qn
(59)

=
(1− δ)qn(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) +
qnδq(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)

=
qn(1− δ(1− q))(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ,

from which we can now compute θ − b
∗
:

θ − b
∗
= θ − θ + θ − b

∗
= (60)

= θ − b
∗ − (θ − θ)

=
qn(1− δ(1− q))(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) − (θ − θ)

=
δq
(
2qn − qn−1 − 1 + qn−1(1− q)n

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) .

We can now use expression (59) to determine b
∗
:

b
∗
= θ − qn(1− δ(1− q))(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) . (61)
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E.2 Solution of Case 2

Recall that in Case 2 the equilibrium conditions are given by:

v∗fse =
(1− δ)(1− qn)(θ − b∗)

n(1− δ(1− q)n)
, (62)

and:

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse = (1− δ)(θ − b

∗
), (63)

where v∗fse =
1
n

[
(1− qn)(θ − b

∗
) + qn(θ − b∗)

]
.

The equilibrium condition in (62) implies that:

(1− qn)(θ − b
∗
) + qn(θ − b) =

(1− δ)(1− qn)(θ − b∗)

1− δ(1− q)n
, (64)

which can in turn be rewritten as:

(1− qn)(θ − b
∗
) + qn(θ − b∗) =

(1− δ)(1− qn)(θ − θ)

1− δ(1− q)n
+

(1− δ)(1− qn)(θ − b)

1− δ(1− q)n
. (65)

Collecting terms, we get:

(1− qn)(θ− b
∗
) +

[
qn − δqn(1− q)n − (1− δ)(1− qn)

1− δ(1− q)n

]

(θ− b∗) =
(1− δ)(1− qn)(θ − θ)

1− δ(1− q)n
. (66)

Recall that the biding incentive compatibility constraint in (63) implies

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) +

δ

n

[
(1− qn)(θ − b

∗
) + qn(θ − b)

]
= (1− δ)(θ − b

∗
). (67)

This condition can be rewritten as:

δqn

n
(θ − b∗) = (1− δ)(θ − b

∗
)− (1− δ)

1− qn

n(1− q)
(θ − b

∗
)− δ

n
(1− qn)(θ − b

∗
) (68)

= (1− δ)(θ − b
∗
)− 1− qn

n
(θ − b

∗
)

(
1− δ

1− q
+ δ

)

(69)

= (θ − b
∗
)

[

(1− δ)− 1− qn

n(1− q)
(1− δq)

]

(70)

=

[
n(1− q)(1− δ)− (1− qn)(1− δq)

]
(θ − b

∗
)

n(1− q)
. (71)
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Using equations (66) and (71), the system of equilibrium conditions can now be written as:

(1− qn)(θ − b
∗
) +

[
qn − δqn(1− q)n − (1− δ)(1− qn)

1− δ(1− q)n

]

(θ − b∗) =
(1− δ)(1− qn)(θ − θ)

1− δ(1− q)n
,

δqn(θ − b∗) =

[
n(1− q)(1− δ)− (1− qn)(1− δq)

]
(θ − b

∗
)

1− q
,

which can be solved for optimal payoffs θ − b
∗
and θ − b∗:

θ − b∗ = − 1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(1− qn)(θ − θ), (72)

θ − b
∗
=

1

D(δ)
δqn(1− qn)(1− q)(θ − θ), (73)

where D(δ) is given by:

D(δ) = qn
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
+ (1− qn)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
.

The ex ante equilibrium payoff can be found from:

nv∗fse = (1− qn)(θ − b
∗
) + qn(θ − b∗) (74)

=
qn(1− qn)(θ − θ)

D(δ)

[
δ(1− qn)(1− q)− (1− qn)(1− δq) + n(1− δ)(1− q)

]
(75)

=
qn(1− qn)(θ − θ)

D(δ)

[
(1− qn)(δ − δq − 1 + δq) + n(1− δ)(1− q)

]
(76)

=
qn(1− qn)(θ − θ)

D(δ)
(1− δ)

[
− (1− qn) + n(1− q)

]
. (77)

(78)

Hence the ex ante equilibrium payoff is:

v∗fse =
1

nD(δ)
(1− δ)qn(1− qn)

[
n(1− q)− (1− qn)

]
(θ − θ). (79)

We can now determine the payoff of the high type who wins with a low bid, i.e. θ −
b∗. Combining the expression for the ex ante equilibrium payoff in (79) and the equilibrium

condition in 62 we get

(1− δ)(1− qn)(θ − b∗)

n(1− δ(1− q)n)
=

1

nD(δ)
(1− δ)qn(1− qn)

[
n(1− q)− (1− qn)

]
(θ − θ), (80)

which can be solved for θ − b∗:

θ − b∗ =
1

D(δ)
qn(1− δ(1− q)n)

[
n(1− q)− (1− qn)

]
(θ − θ). (81)
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E.3 Solution of Case 3

Recall that in Case 2 the equilibrium conditions are given by:

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse = (1− δ)(θ − b), (82)

and:

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse = (1− δ)qn−1(θ − b), (83)

where v∗fse =
1
n

[
(1− qn)(θ − b) + qn(θ − b)

]
.

Note that conditions (82) and (83) together imply θ−b
∗
= qn−1(θ−b∗). Hence the equilibrium

payoff becomes:

v∗fse =
1

n

[
(1− qn)(θ − b

∗
) + qn(θ − b)

]
(84)

=
1

n

[
(1− qn)(θ − b

∗
) + qn(θ − θ + θ − b∗)

]
(85)

=
1

n

[
(1− qn)(θ − b

∗
) + qn(θ − b∗)− qn(θ − θ)

]
(86)

=
1

n

[
(1− qn)(θ − b

∗
) + q(θ − b

∗
)− qn(θ − θ)

]
(87)

=
1

n

[
(1− qn + q)(θ − b

∗
)− qn(θ − θ)

]
. (88)

The upward incentive compatibility constraint in (82) can then be written as:

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δ

1

n

[
(1− qn + q)(θ − b

∗
)− qn(θ − θ)

]
= (1− δ)(θ − b

∗
). (89)

which can then be solved for θ − b
∗
:

θ − b
∗
=

δqn(1− q)(θ − θ)

(1− qn)(1− δq) + δq(1− q)− n(1− δ)(1− q)
. (90)

We can now introduce shorthand notation for the denominator:

D(δ) = (1− qn)(1− δq) + δq(1− q)− n(1− δ)(1− q). (91)

80



The ex ante equilibrium payoff can now be calculated from (88):

nv∗fse = (1− qn + q)(θ − b
∗
)− qn(θ − θ) (92)

= (1− qn + q)
δqn(1− q)(θ − θ)

(1− qn)(1− δq) + δq(1− q)− n(1− δ)(1− q)
− qn(θ − θ)

=
qn(θ − θ)

D(δ)

[
(1− qn + q)δ(1− q)− (1− qn)(1− δq)− δq(1− q) + n(1− δ)(1− q)

]

=
qn(θ − θ)

D(δ)

[
(1− qn)

(
δ(1− q)− (1− δq)

)
+ n(1− δ)(1− q)

]

=
(1− δ)qn(θ − θ)

D(δ)

[
n(1− q)− (1− qn)

]

=
1

D(δ)
(1− δ)qn

[
n(1− q)− (1− qn)

]
(θ − θ).

The ex ante equilibrium payoff is then given by:

v∗fse =
1

nD(δ)
(1− δ)qn

[
n(1− q)− (1− qn)

]
(θ − θ). (93)

The payoff of a high type buyer who wins with the low bid can be calculated from 90 and

the fact that θ − b∗ = 1
qn−1 (θ − b

∗
), and is therefore given by:

θ − b∗ =
δq(1− q)(θ − θ)

(1− qn)(1− δq) + δq(1− q)− n(1− δ)(1− q)
(94)

=
1

D(δ)
δq(1− q)(θ − θ). (95)

A low type buyer payoff can be calculated from nv∗i = (1− qn)(θ − b) + qn(θ − b∗):

qn(θ − b∗) = nv∗fse − (1− qn)(θ − b
∗
) (96)

=
1

D(δ)
(1− δ)qn

[
n(1− q)− (1− qn)

]
(θ − θ)− (1− qn)

1

D(δ)
δqn(1− q)(θ − θ),

which implies:

θ − b∗ =
1

D(δ)

[

(1− δ)
[
n(1− q)− (1− qn)

]
− (1− qn)δ(1− q)

]

(θ − θ) (97)

=
1

D(δ)

[
n(1− q)(1− δ)− (1− qn)(1− δq)

]
(θ − θ) (98)
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F Proof of Lemma 5

Proof. We have shown θ < b∗ in the main text. To show b∗ < b
∗
, consider the payoffs defined

by (20) and (21). It suffices to show that θ − b∗ > θ − b
∗
, which is equivalent to:

1

D(δ)
qn
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
(θ − θ) >

1

D(δ)
δqn(1− qn)(1− q)(θ − θ) (99)

⇔
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
> δ(1− qn)(1− q). (100)

It is easy to see that the above inequality holds for all δ whenever:

(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
> (1− qn)(1− q) (101)

since the left-hand side of the inequality is decreasing in δ and the right-hand side of the

inequality is increasing in δ.

Recall now that we assume that q ≥ 1−qn

n(1−q)
which is equivalent to:

n(1− q)2q ≥ (1− qn)(1− q), (102)

and in particular implies that n ≥ 4

I now show that 102 implies 101 by showing that:

(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
> n(1− q)2q (103)

for n ≥ 4.

Observe first that
(
1−(1−q)n

)
>

(
1−(1−q)2

)
= q(2−q) for n ≥ 4. Since n(1−q)−(1−qn)

is strictly positive it suffices to show that:

q(2− q)
[
n(1− q)− (1− qn)

]
> n(1− q)2q, (104)
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which is equivalent to:

(2− q)
[
n(1− q)− (1− qn)

]
> n(1− q)2 (105)

(2− q)n(1− q)− n(1− q)2 > (2− q)(1− qn)

n(1− q)(2− q − 1 + q) > (2− q)(1− qn)

n(1− q) > (2− q)(1− qn)

n(1− q) > (2− q)(1− q)
n−1∑

k=0

qk

n > (2− q)
n−1∑

k=0

qk = (1− q)
n−1∑

k=0

qk +
n−1∑

k=0

qk = 1− qn +
n−1∑

k=0

qk.

Consider the function f(q) = 1− qn +
∑n−1

k=0 q
k. Differentiating f(q) with respect to q I get:

f ′(q) = −nqn−1 +
n−1∑

k=1

kqk−1 > −nqn−1 +
n−1∑

k=1

kqn−1

= −nqn−1 + qn−1

n−1∑

k=1

k = qn−1

[ n−1∑

k=1

k − n

]

= qn−1

[
(1 + n− 1)(n− 1)

2
− n

]

= qn−1n

[
(n− 1)

2
− 1

]

= qn−1n
(n− 3)

2
> 0,

where the last inequality is true since n ≥ 4 by assumption.

Hence we can conclude that f(q) is strictly increasing on (0, 1). Computing f(1) we obtain:

f(1) = 1− 1n +
n−1∑

k=0

1k = n, (106)

therefore f(q) < n for all q ∈ (0, 1).
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G Proofs of Propositions 6, 8, 12

(Full-surplus-extracting cPPE)

G.1 Proof of Proposition 6

Proof. Full surplus extraction and R∗ ≥ (1− qn)θ are shown in the main text, hence by Lemma

2 it remains to check the incentive constraints and the no-collusion constraints. I start by

checking incentive compatibility.

(I) On-schedule incentive compatibility of the buyers

Consider a high-type buyer, his equilibrium payoff must be higher than the payoff he

could obtain by mimicking the behavior of a low type buyer:

(HighIC-on-sch)
1− qn

n(1− q)
(θ − b

∗
) ≥ qn−1

n
(θ − b∗). (107)

Plugging the respective payoffs in, we obtain:

1− qn

1− q

qn(1− δ(1− q))(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ≥ qn−1 qn
(
1− δ(1− q)n

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) , (108)

which simplifies to:

1− qn

1− q
(1− δ(1− q)) ≥ qn−1

(
1− δ(1− q)n

)
(109)

⇔ 1− qn

1− q
− δ(1− qn) ≥ qn−1 − qn−1δ(1− q)n (110)

⇔ (1− q)
∑n−1

k=0 q
k

1− q
− δ(1− qn) ≥ qn−1 − qn−1δ(1− q)n (111)

⇔
n−2∑

k=0

qk ≥ δ(1− qn)− qn−1δ(1− q)n (112)

⇔ 1

δ

n−2∑

k=0

qk ≥ (1− qn)− qn−1(1− q)n. (113)
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Since 1
δ

∑n−2
k=0 q

k >
∑n−2

k=0 q
k, it is enough to show that:

n−2∑

k=0

qk ≥ (1− qn)− qn−1(1− q)n (114)

⇔ 1 +
n−2∑

k=1

qk ≥ 1− qn − qn−1(1− q)n (115)

⇔
n−2∑

k=1

qk + qn ≥ −qn−1(1− q)n, (116)

which is clearly true since the left-hand side of the above inequality in (116) is strictly

positive, and the right-hand side is strictly negative.

I now turn to off-schedule incentive compatibility for both types.

(II) Off-schedule incentive compatibility of the buyers

Consider first a high-type buyer who deviates to b∗ + ϵ. The associated incentive com-

patibility constraint is given by:

(HighIC-down) (1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse ≥ (1− δ)qn−1(θ − b∗). (117)

Plugging the respective payoffs in, we obtain:

(1− δ)(1− qn)

n(1− q)

qn(1− δ(1− q))(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) +
δ

n

(1− δ)qn(1− qn)(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)

≥ (1− δ)qn−1 qn
(
1− δ(1− q)n

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ,

which simplifies to:

1− qn

n(1− q)
(1− δ(1− q)) +

δ

n
(1− qn) ≥ qn−1

(
1− δ(1− q)n

)
(118)

⇔ 1− qn

1− q
− δ(1− qn) + δ(1− qn) ≥ nqn−1

(
1− δ(1− q)n

)
(119)

⇔ 1− qn

1− q
≥ nqn−1

(
1− δ(1− q)n

)
(120)

⇔ 1− qn

1− q
− nqn−1 ≥ −nqn−1δ(1− q)n (121)

⇔
n−1∑

k=0

qk − nqn−1 ≥ −nqn−1δ(1− q)n. (122)
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which is true since the left-hand side of (122) is strictly positive and the right-hand side

of (122) is strictly negative.

Now consider a high-type buyer who deviates to b
∗
+ ϵ. The associated incentive com-

patibility constraint is given by:

(HighIC-up) (1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse ≥ (1− δ)(θ − b

∗
), (123)

which is equivalent to:

δv∗fse ≥ (1− δ)

(

1− 1− qn

n(1− q)

)

(θ − b
∗
). (124)

Plugging the respective payoffs in, we get:

δ

n

(1− δ)qn(1− qn)(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ≥ (1−δ)

(

1− 1− qn

n(1− q)

)
qn(1− δ(1− q))(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ,

which is equivalent to:

δ

n
(1− qn) ≥

(

1− 1− qn

n(1− q)

)

(1− δ(1− q)) (125)

⇔ δ

n
(1− qn) ≥ 1− δ(1− q)− 1− qn

n(1− q)
+

δ

n
(1− qn) (126)

⇔ 0 ≥ 1− δ(1− q)− 1− qn

n(1− q)
(127)

⇔ δ ≥ 1

1− q
− 1− qn

n(1− q)2
. (128)

The condition on δ identified in (128) can only be satisfied if:

1

1− q
− 1− qn

n(1− q)2
< 1 (129)

⇔ 1− 1− qn

n(1− q)
< 1− q ⇔ nq <

1− qn

1− q
, (130)

which is true by assumption.

(III) No-collusion constraints
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Suppose θ bids off schedule and θ bids on schedule. The associated constraint is:

(No-col-sep-2) v∗fse ≥ v(b∗ + ϵ, b∗) =
(1− δ)

[
(1− qn)(θ − b∗) + qn(θ − b∗)

]

n(1− δqn)
. (131)

Computing (1− qn)(θ − b∗) + qn(θ − b∗), we get

(1− qn)(θ − b∗) + qn(θ − b∗) = (132)

= (1− qn)
qn
(
1− δ(1− q)n

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) + qn
−δq

(
1− qn

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)

=
qn(1− qn)

(
1− δ(1− q)n − δq

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) , (133)

which then implies that the payoff from this bidding profile is equal to:

v′(b∗ + ϵ, b∗) =
(1− δ)qn(1− qn)

(
1− δ(1− q)n − δq

)
(θ − θ)

n(1− δqn)
(
δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)) . (134)

We need to establish that v∗fse ≥ v′(b∗ + ϵ, b∗). i.e.

1

n

(1− δ)qn(1− qn)(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ≥ (1− δ)qn(1− qn)
(
1− δ(1− q)n − δq

)
(θ − θ)

n(1− δqn)
(
δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)) ,

which simplifies to:

1 ≥ 1− δ(1− q)n − δq

1− δqn
(135)

⇔ 1− δqn ≥ 1− δ(1− q)n − δq (136)

⇔ −δqn ≥ −δ(1− q)n − δq (137)

⇔ −qn ≥ −(1− q)n − q (138)

⇔ (1− q)n ≥ −q + qn, (139)

which is true since the right-hand side of 139 is strictly negative, and the left-hand side

is strictly positive.

Suppose both types pool at b∗. The associated constraint is:

(No-col-pol) v∗fse ≥ v(b∗, b∗) =
1

n

[
(1− q)(θ − b∗) + q(θ − b∗)

]
, (140)
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where

v(b∗, b∗) =
1

n

[
(1− q)(θ − b∗) + q(θ − b∗)

]
=

=
(1− q)

n

qn
(
1− δ(1− q)n

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) +
q

n

−δq
(
1− qn

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)

=

(
(1− q)qn

(
1− δ(1− q)n

)
− δq2(1− qn)

)
(θ − θ)

n
(
δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)) . (141)

Consider the numerator of (141) in the limit as δ goes to 1:

(1− q)qn
(
1− (1− q)n

)
− q2(1− qn) (142)

= (1− q)

[

qn
(
1− (1− q)n

)
− q2

n−1∑

k=0

qk
]

(143)

= (1− q)

[

qn − qn(1− q)n − q2
n−3∑

k=0

qk − qn − qn+1

]

(144)

= (1− q)

[

− qn(1− q)n − q2
n−3∑

k=0

qk − qn+1

]

< 0. (145)

Recall that v∗fse is weakly positive, whereas the payoff in 141 goes to a negative value. By

continuity there is a δ∗ in the neighborhood of 1 such that for all δ > δ∗ the equilibrium

payoff v∗fse exceeds the payoff in 141.

G.2 Proof of Proposition 8

Proof. Full surplus extraction and R∗ ≥ (1− qn)θ are shown in the main text, hence by Lemma

2 it remains to check the incentive constraints and the no-collusion constraints. I start by

checking incentive compatibility.

(I) On-schedule incentive compatibility of the buyers

Consider a high-type buyer on-schedule incentive compatibility condition:

(HighIC-on-sch)
1− qn

n(1− q)
(θ − b

∗
) ≥ qn−1

n
(θ − b∗). (146)
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Plugging the payoffs defined in (20) and (21) I get:

1− qn

n(1− q)

1

D(δ)
δqn(1− qn)(1− q)(θ − θ) (147)

≥ qn−1

n

1

D(δ)
qn
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
(θ − θ),

which is equivalent to:

δ
(
1− qn)

)2 ≥ qn−1
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
. (148)

which is in particular true whenever

δ(1− qn)(1− qn) ≥ qn−1
[
n(1− q)− (1− qn)

]
, (149)

i.e. for all δ satisfying δ ≥ qn−1

[
n(1−q)−(1−qn)

]

(1−qn)(1−qn)
. Note that such δ exist in (0,1) since

(1− qn)(1− qn) > qn−1
[
n(1− q)− (1− qn)

]
(150)

⇔ (1− qn)(1− qn) + qn−1(1− qn) > nqn−1(1− q)

⇔ (1− qn)(1− qn + qn−1) > nqn−1(1− q)

⇔ (1− qn)(1 + qn−1(1− q)) > nqn−1(1− q)

⇔ (1 + qn−1(1− q))
n−1∑

k=0

qk > nqn−1,

where the last inequality is true since
∑n−1

k=0 q
k > nqn−1 and 1 + qn−1(1 − q) > 1. Thus

the high type on-schedule incentive compatibility constraint is satisfied for a sufficiently

high δ.

(II) Off-schedule incentive compatibility of the buyers

Let us now turn to the off-schedule incentive compatibility constraints of the buyers.

Consider first a low-type buyer. He must be willing to participate in the bidding with

the bid b∗ as opposed to abstaining and getting a zero payoff:

(LowIC) (1− δ)
qn−1

n
(θ − b∗) + δv∗fse ≥ 0. (151)
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Plugging the payoffs defined in (19) and (22), I obtain:

−(1− δ)
qn−1

n

1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(1− qn)(θ − θ) (152)

+ δ
1− δ

nD(δ)
qn(1− qn)

[
n(1− q)− (1− qn)

]
(θ − θ) ≥ 0,

which simplifies to:

−
[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
+ δq

[
n(1− q)− (1− qn)

]
≥ 0 (153)

⇔ n(1− δ)(1− q)− (1− qn)(1− δq) + δqn(1− q)− δq(1− qn) ≥ 0

⇔ n(1− δ + δq)(1− q)− (1− qn) ≥ 0

⇔ 1− δ + δq ≥ 1− qn

n(1− q)
⇔ δ ≤ 1

1− q
− 1− qn

n(1− q)2
,

which is true since 1
1−q

− 1−qn

n(1−q)2
≥ 1 by assumption that q ≥ 1−qn

n(1−q)
.

Consider a high type buyer who attempts a downward deviation to b∗+ ϵ. The associated

incentive compatibility condition is given by:

(HighIC-down) (1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse ≥ (1− δ)qn−1(θ − b∗). (154)

Plugging the payoffs defined in (20), (21), and (22) into the above inequality, I obtain:

(1− δ)
1− qn

n(1− q)

1

D(δ)
δqn(1− qn)(1− q)(θ − θ) (155)

+ δ
1− δ

nD(δ)
qn(1− qn)

[
n(1− q)− (1− qn)

]
(θ − θ)

≥ (1− δ)qn−1 1

D(δ)
qn
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
(θ − θ),

which simplifies to:

(1− qn)
1

n
δ(1− qn) + δ

1

n
(1− qn)

[
n(1− q)− (1− qn)

]
(156)

≥ qn−1
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
,

which can be further simplified to:

δ(1− qn)(1− q) ≥ qn−1
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
, (157)
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i.e. for all discount factors δ such that:

δ ≥ qn−1
[
n(1− q)− (1− qn)

]

(1− qn)(1− q) + qn−1(1− q)n
[
n(1− q)− (1− qn)

] (158)

which can only be satisfied when:

qn−1
[
n(1− q)− (1− qn)

]

(1− qn)(1− q) + qn−1(1− q)n
[
n(1− q)− (1− qn)

] < 1, (159)

or:

(1− qn)(1− q) > qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
, (160)

which is true by assumption.

(III) No-collusion constraints

Suppose θ bids off schedule and θ bids on schedule. The associated no-collusion constraint

is given by:

(No-col-sep-2) v∗fse ≥ v(b∗ + ϵ, b∗) =
(1− δ)

[
(1− qn)(θ − b

∗
) + qn(θ − b∗)

]

n(1− δqn)
. (161)

Plugging the payoffs in, we can rewrite the right-hand side as:

(1− δ)

n(1− δqn)

[

(1− qn)
1

D(δ)
qn
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
(θ − θ) (162)

− qn
1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(1− qn)(θ − θ)

]

,

which simplifies to:

(1− δ)qn(1− qn)(θ − θ)

n(1− δqn)D(δ)

(
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
(163)

−
[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
)

.

We now have to make sure that it is below v∗fse, i.e.

1− δ

nD(δ)
qn(1− qn)

[
n(1− q)− (1− qn)

]
(θ − θ) ≥ (164)

≥ (1− δ)qn(1− qn)(θ − θ)

n(1− δqn)D(δ)

(
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]

−
[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
)

,
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which is equivalent to:

(1− δqn)
[
n(1− q)− (1− qn)

]
≥

(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
(165)

−
[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
,

which in turn simplifies to:

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
≥ δ

(
qn − (1− q)n

)[
n(1− q)− (1− qn)

]
, (166)

which can only be satisfied if:

δ ≥ n(1− q)− (1− qn)

n(1− q)− q(1− qn)−
(
qn − (1− q)n

)[
n(1− q)− (1− qn)

] , (167)

which in turn can only be satisfied for a high enough δ ∈ (0, 1) only if:

(1− qn)(1− q) >
(
qn − (1− q)n

)[
n(1− q)− (1− qn)

]
. (168)

It is easy to show that the above inequality is implied by the parameter restriction of

Case 2. Recall that the parameter restriction is given by:

(1− qn)(1− q) > qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
. (169)

Observe that qn − (1− q)n < qn−1
(
1− (1− q)n

)
, which establishes the result.

Suppose now the buyers pool at b∗, the associated no-collusion constraint is:

(No-col-pool) v∗fse ≥ v(b∗, b∗) =
1

n

[
(1− q)(θ − b∗) + q(θ − b∗)

]
, (170)

where

v(b∗, b∗) =
1

n

[
(1− q)(θ − b∗) + q(θ − b∗)

]
(171)

=
1

n

[

(1− q)
1

D(δ)
qn
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
(θ − θ)

− q
1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(1− qn)(θ − θ)

]

.

I show that v(b∗, b∗) converges to a strictly negative number as δ goes to 1. Indeed in the

limit v(b∗, b∗) is given by:

(1− q)(θ − θ)

nD(1)

[
qn
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
− q(1− qn)(1− qn)

]
. (172)
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I now verify that:

(1− q)(θ − θ)

nD(1)

[
qn
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
− q(1− qn)(1− qn)

]
< 0

⇔ qn
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
− q(1− qn)(1− qn) < 0

⇔ (1− qn)(1− qn) > qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
.

It suffices to show that (1 − qn)(1 − qn) > qn−1
[
n(1 − q) − (1 − qn)

]
, which has already

been established above. I repeat the argument here for completeness:

(1− qn)(1− qn) > qn−1
[
n(1− q)− (1− qn)

]

⇔ (1− qn)(1− qn) + qn−1(1− qn) > nqn−1(1− q)

⇔ (1− qn)(1− qn + qn−1) > nqn−1(1− q)

⇔ (1− qn)(1 + qn−1(1− q)) > nqn−1(1− q)

⇔ (1 + qn−1(1− q))
n−1∑

k=0

qk > nqn−1,

where the last inequality is true since
∑n−1

k=0 q
k > nqn−1 and 1 + qn−1(1− q) > 1.

G.3 Proof of Proposition 12

Proof. Full surplus extraction and R∗ ≥ (1− qn)θ are shown in the main text, hence by Lemma

2 it remains to check the incentive constraints and the no-collusion constraints. Let us now

check on-schedule incentive compatibility.

(I) On-schedule incentive compatibility of the buyers

Consider a high type buyer who contemplates an on-schedule deviation. The associated

on-schedule incentive compatibility condition is given by:

(HighIC-on-sch)
1− qn

n(1− q)
(θ − b

∗
) ≥ qn−1

n
(θ − b∗).
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Note that both θ − b
∗
and θ − b∗ are strictly positive for δ high enough. Recall that by

construction of this public perfect equilibrium θ − b
∗
= qn−1(θ − b∗) and therefore we

obtain:
1− qn

n(1− q)
(θ − b

∗
) >

1

n
(θ − b

∗
) =

qn−1

n
(θ − b∗).

where the first inequality is true since 1 − qn > 1 − q for n ≥ 2 and q ∈ (0, 1), implying

that the high-type on-schedule incentive compatibility is satisfied.

(II) Off-schedule incentive compatibility of the buyers

Having dealt with the on-schedule incentive compatibility constraint of the buyers, I

now establish that the off-schedule incentive compatibility constraints of the buyers are

satisfied. Consider first a low type buyer. A low type buyer must prefer participating in

the auction with the bid b∗ as opposed to abstaining and getting zero forever:

(LowIC) (1− δ)
qn−1

n
(θ − b∗) + δv∗fse ≥ 0. (173)

Plugging the payoffs from (26) and (29) I get:

−(1− δ)
qn−1

n

1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(θ − θ) (174)

+ δ
1

nD(δ)
(1− δ)qn

[
n(1− q)− (1− qn)

]
(θ − θ) ≥ 0,

which is equivalent to:

−
[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
+ δq

[
n(1− q)− (1− qn)

]
≥ 0 (175)

⇔ −(1− qn)(1− δq) + n(1− δ)(1− q) + δqn(1− q)− δq(1− qn) ≥ 0

⇔ n(1− q)(1− δ + δq)− (1− qn) ≥ 0

⇔ 1− δ + δq ≥ 1− qn

n(1− q)

⇔ 1− 1− qn

n(1− q)
≥ δ − δq ⇔ δ ≤ 1

1− q
− 1− qn

n(1− q)2
,

which is true since 1
1−q

− 1−qn

n(1−q)2
≥ 1 by assumption that q ≥ 1−qn

n(1−q)
.
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(III) No-collusion constraints

Suppose θ bids on schedule and θ bids off schedule. The associated no-collusion constraint

is is given by:

(No-col-sep-1) v∗fse ≥ v(b∗, ∅) = (1− δ)(1− qn)(θ − b∗)

n
(
1− δ(1− q)n

) . (176)

Recall the formula for θ − b∗ in (28), plugging it into the payoff formula above, I get

v′(b∗, ∅) = (1− δ)(1− qn)δq(1− q)(θ − θ)

nD(δ)
(
1− δ(1− q)n

) . (177)

The goal is to show that for δ sufficiently high v∗fse ≥ v′(b∗, ∅), i.e.

1

nD(δ)
(1− δ)qn

[
n(1− q)− (1− qn)

]
(θ − θ) ≥ (1− δ)(1− qn)δq(1− q)(θ − θ)

nD(δ)
(
1− δ(1− q)n

) , (178)

which is equivalent to:

qn−1
[
n(1− q)− (1− qn)

]
≥ (1− qn)δ(1− q)

(
1− δ(1− q)n

) (179)

⇔
(
1− δ(1− q)n

)
qn−1

[
n(1− q)− (1− qn)

]
≥ δ(1− qn)(1− q),

which can be satisfied for any δ ∈ (0, 1) as long as it is true that10

(
1− (1− q)n

)
qn−1

[
n(1− q)− (1− qn)

]
≥ (1− qn)(1− q),

which is assumed is Case 3.

Suppose θ bids off schedule and θ bids on schedule. The associated no-collusion constraint

is

(No-col-sep-2) v∗fse ≥ v(b∗ + ϵ, b∗) =
(1− δ)

[
(1− qn)(θ − b∗) + qn(θ − b∗)

]

n
(
1− δqn

) . (180)

10Note that it is required that δ satisfy

δ ≤ qn−1
[
n(1− q)− (1− qn)

]

(1− qn)(1− q) + qn−1(1− q)n
[
n(1− q)− (1− qn)

] .

The restriction on the parameters assumed in Case 3 makes sure that the right-hand side of this inequality is

weakly above 1.
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Recall the formulas for θ − b∗ and θ − b∗ in (26) and (28) respectively, the above payoff

can then be written as

v(b∗+ ϵ, b∗) =
(1− δ)(θ − θ)

nD(δ)
(
1− δqn

)

[

(1− qn)δq(1− q)− qn
[
(1− qn)(1− δq)−n(1− δ)(1− q)

]
]

.

Our goal is to show that v∗fse ≥ v′(b∗ + ϵ, b∗), i.e.

1

nD(δ)
(1− δ)qn

[
n(1− q)− (1− qn)

]
(θ − θ) (181)

≥ (1− δ)(θ − θ)

nD(δ)
(
1− δqn

)

[

(1− qn)δq(1− q)− qn
[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
]

,

which is equivalent to:

qn
[
n(1− q)− (1− qn)

]
(182)

≥ 1
(
1− δqn

)

[

(1− qn)δq(1− q)− qn
[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
]

,

which holds for δ sufficiently close to 1 whenever it holds as a strict inequality at δ = 1,

i.e. whenever

qn
[
n(1− q)− (1− qn)

]
>

1
(
1− qn

)
[
(1− qn)q(1− q)− qn(1− qn)(1− q)

]
(183)

⇔ qn
[
n(1− q)− (1− qn)

]
> q(1− q)− qn(1− q)

⇔ qn−1
[
n(1− q)− (1− qn)

]
> (1− q)(1− qn−1).

Now the last line is true since:

(1− q)(1− qn−1) < (1− q)(1− qn) ≤ qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
.

where the first inequality is evidently true, and the second inequality holds true in Case 3

by assumption. The result follows by the fact that qn−1
(
1−(1−q)n

)[
n(1−q)−(1−qn)

]
<

qn−1
[
n(1− q)− (1− qn)

]
, which in turn is true because 1− (1− q)n < 1.

Suppose both types pool at b∗. The associated no-collusion constraint is:

(No-col-pool) v∗fse ≥ v(b∗, b∗) =
1

n

[
(1− q)(θ − b∗) + q(θ − b∗)

]
. (184)
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Recall again the formulas for θ − b∗ and θ − b∗ in (26) and (28) respectively, the pooling

payoff is then given by:

v(b∗, b∗) =
θ − θ

nD(δ)

[

(1− q)δq(1− q)− q
[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
]

. (185)

As in Cases 1 and 2, I show that limδ→1 v(b
∗, b∗) < 0 implying that v(b∗, b∗) < 0 for any

δ sufficiently close to 1:

lim
δ→1

v′(b∗, b∗) =
θ − θ

nD(1)

[
(1− q)q(1− q)− q(1− qn)(1− q)

]

=
q(1− q)(θ − θ)

nD(1)

[
(1− q)− (1− qn)

]

=
q(1− q)(θ − θ)

nD(1)

[
qn − q

]
< 0.
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H Proofs of Propositions 7, 9, 10, 11, and Lemma 6

(Parameter regions)

H.1 Proof of Proposition 7

Proof. Both sides of the equation can be divided by 1− q to obtain:
∑n−1

k=0 q
k − nq = 0, which

can again be divided by 1− q to obtain: 1−∑n−2
k=1(n− 1− k)qk = 0. Define the function:

g(q) = 1−
n−2∑

k=1

(n− 1− k)qk.

Clearly g(0) = 1, and g(1) is given by:

g(1) = 1−
n−2∑

k=1

(n− 1− k) = 1− (n− 1)(n− 2) +
n−2∑

k=1

k

= 1− (n− 1)(n− 2) +
(n− 1)(n− 2)

2
= 1− (n− 1)(n− 2)

2
=

n

2
(3− n) < 0.

hence the equation has a solution on (0, 1) for every n ≥ 4 by the Intermediate Value Theorem.

Consider now the derivative of g(·):

g′(q) = −
n−2∑

k=1

(n− 1− k)kqk−1 < 0.

which implies that the solution q∗ is unique and that q < 1−qn

n(1−q)
for all q < q∗ and vice versa.

H.2 Proof of Proposition 9

Proof. Consider the equation:

(1− qn)(1− q) = qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]

⇔ (1− qn) = qn−1
(
1− (1− q)n

)
[

n−
n−1∑

k=0

qk
]

⇔ (1− q)
n−1∑

k=0

qk = qn−1
(
1− (1− q)n

)
(1− q)

n−2∑

k=0

(n− 1− k)qk

⇔
n−1∑

k=0

qk = qn−1
(
1− (1− q)n

)
n−2∑

k=0

(n− 1− k)qk.
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and consider the function:

g(q) = qn−1
(
1− (1− q)n

)
n−2∑

k=0

(n− 1− k)qk −
n−1∑

k=0

qk.

Clearly g(0) = −1 and g(1) is computed as:

g(1) =
n−2∑

k=0

(n− 1− k)1k −
n−1∑

k=0

1k

= (n− 1)2 −
n−2∑

k=0

k − n

= (n− 1)2 − (n− 1)(n− 2)

2
− n = n

n− 3

2
> 0.

The result follows by continuity of g(q).

H.3 Proof of Proposition 10

Proof. Note that the expression can be rewritten as:

(1− qn)(1− q)
︸ ︷︷ ︸

→1−q as n→∞

−nqn−1 (1− q)
(
1− (1− q)n

)

︸ ︷︷ ︸

→1−q as n→∞

+ qn−1(1− qn)
(
1− (1− q)n

)

︸ ︷︷ ︸

→0 as n→∞

.

It thus remains to check that limn→∞ nqn−1 = 0. Taking logs, I get:

log
(
nqn−1

)
= log(n) + (n− 1) log(q) ≤

√
n− 1 + (n− 1) log(q)

= (n− 1)

(
1√
n− 1

+ log(q)

)

.

Note that since log(q) is strictly negative and 1√
n−1

goes to 0 as n goes to infinity, we have

for a large enough n:

(n− 1)

(
1√
n− 1

+ log(q)

)

≤ (n− 1)
log(q)

2
.

Since log(q) < 0 we have limn→∞(n − 1) log(q)
2

= −∞, but then limn→∞ log
(
nqn−1

)
= −∞,

which establishes the claim.

99



H.4 Proof of Proposition 11

Proof. The parameter restriction can be rewritten as:

1− qn

1− (1− q)n
> qn−1

[
n−

n−1∑

k=0

qk
]
.

Observe that 1−qn

1−(1−q)n
≥ 1 for all q ≤ 1

2
since 1− qn ≥ 1− (1− q)n is equivalent to 1 − q ≥ q.

It thus suffices to show that 1 ≥ nqn−1 for all q ∈ (0, 1
2

]
. Define the function f(q) = nqn−1 − 1.

It is clearly strictly increasing in q since f ′(q) = n(n − 1)qn−2. It thus suffices to check that

the claim is true for q = 1
2
or 1 ≥ n 1

2n−1 which is equivalent to 2n−1 ≥ n, which is true for all

n ≥ 2.

H.5 Proof of Lemma 6

Proof. We can rewrite the two inequalities as:

qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
− (1− qn)(1− q),≥ 0. (186)

n(1− q)q − (1− qn) ≥ 0 (187)

Our goal is to show that the inequality in (186) implies the inequality in (187). It suffices to

show that

n(1− q)q − (1− qn) ≥ qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
− (1− qn)(1− q), (188)

which can be rewritten as:

n(1− q)q − (1− qn) + (1− qn)(1− q) ≥ qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
(189)

⇔ n(1− q)q − q(1− qn) ≥ qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
(190)

⇔ q
[
n(1− q)− (1− qn)

]
≥ qn−1

(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
(191)

⇔ 1 ≥ qn−2
(
1− (1− q)n

)
. (192)

which is clearly true for any n ≥ 2 and q ∈ (0, 1).
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