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Abstract

I study the relationship between data and market power in a duopoly model of price

discrimination with search frictions. One firm receives a signal about the valuation of

any arriving consumer while its rival receives no information. A share of consumers,

referred to as searchers, have equal valuation for the good of either firm and optimally

choose which firms to visit. The remaining consumers are captive. In equilibrium, a

large majority of searchers will only visit the firm with data. The market share of

the firm with data converges to one as the share of searchers in the market goes to

one, regardless of the signal structure. Reductions of search frictions induce higher

market concentration. The establishment of a right to data portability can address the

competitive imbalances caused by data advantages.
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1 Introduction

This paper studies the relationship between data and market power. Data is becoming

increasingly relevant in the digital age and is accumulating unevenly — some firms are

building up significant advantages in terms of the scope and precision of the data they

possess.1 In order to ensure the proper functioning of digital markets, it is hence imperative

to understand how such data advantages will translate into competitive advantages and

foster market dominance. This question has gathered significant attention by policymakers

(European Commission, 2020) and researchers (Kirpalani & Philippon, 2021; Bergemann &

Bonatti, 2022; Eeckhout & Veldkamp, 2022) alike. I study said relationship in a theoretical

model of price discrimination with search frictions, in which individual-level consumer data

is used to personalize prices and consumers optimally choose which firms to visit.2

I show that consumers’ search choices substantially amplify the transmission of data ad-

vantages into competitive advantages. Even arbitrarily small data advantages can make it

optimal for nearly all consumers to only visit the firm with a data advantage, thus granting

this firm market shares close to one. This result underscores the importance of regulat-

ing digital markets. This is because such extreme forms of market dominance will reduce

consumer welfare, for example by deterring entry or by reducing the incentives of firms to

innovate. To guide policy, I study the optimal regulation in such contexts. Whereas re-

ductions of search frictions can only exacerbate market dominance, the establishment of a

right to data portability (as defined in the EU GDPR and the DMA) is an effective way of

correcting the competitive imbalances caused by data advantages.3

I consider a duopoly model of a final goods market with search frictions. Every consumer

can costlessly visit one firm, but has to pay a search cost to visit another firm after the first.

Some consumers are searchers : They have equal valuation for the good of either firm and

want to buy the good at the lowest possible price. The remaining consumers are captive

consumers, who can only buy the good at the firm they are captive to. The valuation of

any consumer is uniformly drawn from the unit interval and is private information to the

consumer.

The two firms have different degrees of information about consumers’ valuations. One

firm in the market, referred to as the firm with data, exogenously receives a private signal

about the valuation of every consumer who visits it. This signal can take on two realizations:

1See, for example, Statista (2021) and Statista (2022).
2There is mounting empirical evidence for price discrimination in online markets — see Hannak et al.

(2014), Larson et al. (2015), and Escobari et al. (2019). Regulatory bodies around the world are becoming
concerned about this business practice — see OECD Secretariat (2016) and European Commission (2019).

3For details, see article 20 of the European Union General Data Protection Regulation (GDPR) and
article 6 of the EU Digital Markets Act (DMA).
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low or high. The high signal realization becomes more likely to occur when a consumer’s

valuation rises. Using this signal, the firm with data will price discriminate: It will offer a

relatively low price (the low signal price) to all consumers who arrive and generate the low

signal and a higher price (the high signal price) to all other arriving consumers. The other

firm, referred to as the firm without data, receives no information about any consumer and

will thus offer the same price to all arriving consumers.4

As a benchmark, I solve a variant of the above model in which every consumer can only

visit one firm in Section 4.1. Then, the decision problem of any searcher boils down to

choosing which firm to visit. Because the firm with data price discriminates, searchers with

low valuations prefer to visit the firm with data, while searchers with high valuations prefer

to visit the firm without data. This is because consumers with low (high) valuations are

likely to be identified as such and receive a comparatively low (high) price at the firm with

data. Formally, the equilibrium strategy of searchers is thus a cutoff rule: Any searcher will

visit the firm with data if her valuation is below a cutoff and the firm without data if her

valuation is above the cutoff.

This search behaviour affects prices through a selection effect. Because searchers with

low valuations visit the firm with data and vice versa, the average valuation of consumers

who visit the firm without data is larger than the average valuation of consumers who visit

the firm with data. Thus, these search patterns entail upward pressure on the uniform price

of the firm without data and downward pressure on the prices of the firm with data.

A key message of this paper is that this selection effect amplifies the transmission of

data advantages into competitive advantages. Simply put, this effect imposes a competitive

externality on the firm without data: It pushes up the uniform price the firm without data

would optimally set, which is to the benefit of the firm with data because it incentivizes

searchers to visit this firm. In fact, a large majority of searchers will just visit the firm with

data in equilibrium — only searchers with very high valuations will optimally visit the firm

without data. Moreover, the market share of the firm with data converges to one as the

share of searchers approaches one, regardless of the signal structure.

Why does the market only equilibrate when the firm without data is just visited by its

captive consumers and searchers with very high valuations? Intuitively, the selection effect

becomes weak enough to enable equilibrium existence. Because the mass of searchers who

visit the firm without data is small, the distribution of consumer valuations is very similar

at the two firms. As a consequence, the optimal uniform price of the firm without data will

be between the prices set by the firm with data. However, the selection effect is still active,

4I focus on equilibria in which firms play pure strategies. In addition, I show that firms play pure
strategies in any equilibrium in which prices are drawn from distributions with connected support.
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which means that the optimal uniform price of the firm without data will lie just below the

highest price of the firm with data (the high signal price), but significantly above the lowest

price of this firm (the low signal price). These prices make it optimal for all searchers, except

those with very high valuations, to visit the firm with data, because the potential benefit of

receiving the low signal price at the firm with data is comparatively large.

In Section 4.2, I show that all previous insights go through when consumers can visit

both firms, albeit under slightly stronger restrictions on the share of searchers. Formally, I

solve the aforementioned model when the costs of visiting a second firm are arbitrary, while

the analysis in Section 4.1 only considers the case in which these search costs are prohibitive.

To begin with, I show that no consumer will visit both firms in equilibrium if the share

of searchers is not too low.5 This result is based on two separate arguments: Firstly, any

searcher who initially visits the firm without data in equilibrium would never continue search-

ing, because the price this firm offers is non-stochastic.6 Secondly, there exists no equilibrium

in which searchers continue searching after visiting the firm with data if there are enough

searchers in the market. This is because searchers who arrive at the firm without data after

visiting its rival exert upward pressure on the uniform price of this firm.7 When the share of

searchers is large enough, the price the firm without data would set in such a hypothetical

equilibrium is thus so high that it is not worthwhile for any consumer to pay a search cost

in pursuit of this price.

In equilibrium, all consumers thus only visit one firm and all results that were derived

within the baseline model extend verbatim. The firm with data price discriminates and

hence, the selection effect is active. As before, a large majority of searchers will thus only

visit the firm with data. Moreover, the market share of the firm with data approaches one

as the share of searchers goes to one, regardless of the signal structure.

Reductions of search frictions can only exacerbate the dominant position of the firm with

data. When search costs are above a certain threshold, the possibility of searching plays no

role and changes in search costs do not affect the equilibrium outcomes. At sufficiently low

search costs, reductions of search costs further increase the market share of the firm with

data. Intuitively, searchers constrain the prices of the firm with data with the threat of

searching when search costs are sufficiently small. By strengthening this threat, reductions

of search costs will induce the firm with data to lower its prices. These reduced prices raise

5I define ρ as the share of searchers in the market. Assuming that ρ ≥ 0.2 is sufficient for this result
when restricting attention to linear signal distributions, independent of the exact level of search costs.

6Any searcher who finds it optimal to continue searching after visiting the firm without data would not
initially visit this firm in equilibrium. She would be strictly better off by visiting the firm with data first
and searching thereafter if and only if a high price is obtained, since this endows her with an option value.

7Note that the firm without data offers a uniform price and there are search costs. Thus, any searcher
would only continue searching after visiting the firm with data if she would buy at the firm without data.
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the incentives of searchers to visit the firm with data, thus granting this firm even higher

market shares.

In Section 5, I argue that the market dominance that arises from data advantages within

my framework creates a need for regulatory interventions. In short, this is because the

accompanying distortions can raise the average price level and will impede innovation and

entry in a dynamic context.

Thereafter, I study the effects of two policies designed to curb data advantages — the

establishment of a right to anonymity and a right to data portability. A right to anonymity

allows consumers to ensure that the firm with data receives no signal about them. Conversely,

a right to data portability enables consumers to transfer the information that the firm with

data has about them to the firm without data. Whereas the former is inconsequential,

the establishment of a right to data portability can be very effective. No consumer would

exercise their right to anonymity, because this would be indicative of having a high valuation.

By contrast, the incentives to exercise one’s right to data portability are highest for low-

valuation consumers. Through an unraveling effect, the establishment of a costless right to

data portability can thus induce all searchers to visit the firm without data in equilibrium.

In Section 6, I consider various extensions of the baseline model. First, I solve a model

in which the firm with data receives a continuous signal about the valuations of visiting

consumers. The previous equilibrium predictions extend as long as the signal remains noisy,

i.e. as long as the firm with data does not know the valuations of arriving consumers

perfectly. Next, I show that the previous results also hold when both firms receive signals

about the valuations of visiting consumers, but the signal of one firm is less precise, or when

consumers’ preferences admit quality differentiation as in Mussa & Rosen (1978).

The rest of the paper proceeds as follows: I offer a detailed literature review in Section 2.

In Section 3, I set up the theoretical framework, which is solved in Section 4. Sections 5 and

6 contain the analysis of the aforementioned policy proposals and extensions. I conclude and

argue why my insights apply more generally, for example in insurance markets, in Section 7.

2 Related Literature

The findings I establish are novel because all previous work on the competitive effects of data

advantages does not consider heterogeneous search patterns in the analysis. In preceding

papers, there are either no search frictions (e.g. Eeckhout & Veldkamp, 2022; Rhodes & Zhou,

2022), search is random (Freedman & Sagredo, 2022) or there is no consumer heterogeneity

that affects search decisions (Kirpalani & Philippon, 2021). As a result, the selection effect

that drives the strong relationship between data advantages and competitive advantages in
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my framework is absent in previous work.

Several recent papers study the competitive effects of data advantages. In Belleflamme

et al. (2020), a firm probabilistically either knows a consumer’s valuation perfectly or knows

nothing about this consumer. Bounie et al. (2021), Gu et al. (2019), Garcia (2022), and

Delbono et al. (2022) study models where firms receive non-stochastic information about

consumer preferences and some firms receive more informative data (e.g. a finer partition of

the Hotelling line).8 Rhodes & Zhou (2022) consider a setting in which some firms conduct

first-degree price discrimination, whereas their rivals can only offer uniform prices.9 Eeckhout

& Veldkamp (2022) study a model in which better data reduces demand risk, thus inducing

firms with data advantages to invest more into reducing marginal costs and attaining scale.

In contrast to my work, there are no search frictions in all the aforementioned contributions.

The papers that are closest to mine within this area are Kirpalani & Philippon (2021)

and Freedman & Sagredo (2022), because these papers consider frameworks with search

frictions. Freedman & Sagredo (2022) examine a model of quality differentiation in which a

unit mass of sellers offer quality-price menus to consumers. The firms observe signals about

consumers’ tastes for quality and different firms have access to signals with varying precision

levels. Consumers are randomly matched with either one or two sellers. The key distinction

to my work thus lies in the fact that consumers’ choice sets are unrelated to their preferences

in Freedman & Sagredo (2022) — in their framework, consumers neither choose how many

firms nor which kind of firms to visit. The heterogeneous consumer search patterns that are

central in my model are thus absent in Freedman & Sagredo (2022).

In Kirpalani & Philippon (2021), consumers choose whether to search for a good on a

platform or an outside market. The platform has access to better data, which allows firms

on the platform to generate a match with a higher probability. In contrast to my work,

there is no consumer heterogeneity in Kirpalani & Philippon (2021) that affects the relative

utility of search on the platform vs. searching on the outside market. In equilibrium, all

consumers must hence be indifferent between searching on the platform or on the outside

market. Thus, the aforementioned separating search behavior of consumers in my model is

also absent in Kirpalani & Philippon (2021). In addition, the prices that consumers pay on

the platform and on the outside market are the same in Kirpalani & Philippon (2021), i.e.

no seller can conduct finer price discrimination in this model.

My work also relates to the growing literature that studies price discrimination in search

markets. Armstrong & Zhou (2016) and Preuss (2021) consider models where firms condition

8Clavorà Braulin (2021) considers a framework in which consumer preferences vary in two dimensions
and firms may acquire different information about the components of a consumer’s preferences.

9Guembel & Hege (2021) and Osório (2022) consider settings in which firms have different abilities to
target their products to the individual preferences of consumers, but there is no price discrimination.
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prices on a consumer’s search history.10 Fabra & Reguant (2020) study a simultaneous search

setting where firms perfectly observe a consumer’s desired quantity and price discriminate

based on this information. Mauring (2021) and Atayev (2021) study a setting with shoppers

and non-shoppers as defined in Burdett & Judd (1983) and Stahl (1989). Mauring (2021)

and Atayev (2021) assume that firms receive imperfect information about the affiliation of a

particular consumer to the groups of shoppers and non-shoppers. Marshall (2020) and Groh

(2022) are the only papers which consider models of price discrimination based on information

about valuations together with search, as this paper does. In all the listed contributions,

consumers do not engage in directed search and no firm has a data advantage.11

Bergemann et al. (2021) study a homogenous goods model with search frictions in which

competing firms receive information about the number of price offers a consumer obtains.

In Bergemann et al. (2021), different firms may observe signals with varying levels of infor-

mativeness. In contrast to my work, all consumers have the same valuation in Bergemann

et al. (2021) and consumers do not engage in directed search. Bergemann & Bonatti (2022)

consider a model in which a platform uses data to match consumers and firms.

Ke et al. (2022) study the information design problem of an intermediary that connects

sellers with consumers. In this model, every consumer just has a match at one seller. Ex

ante, both the consumer and the sellers do not know with which seller the consumer has a

match. By contrast, the intermediary perfectly knows said information and designs a public

information structure about this. Consumers engage in directed search by visiting firms

according to the intermediary’s recommendations. However, all firms are ex ante symmetric

in Ke et al. (2022) and the intermediary’s signals are public, so no firm has an informational

advantage and all firms obtain the same expected outcomes.

3 Theoretical framework

There is a unit mass of consumers, who each want to buy at most one unit of an indivisible

good that is produced by two firms at zero marginal cost. Consumers can costlessly visit

one firm, but visiting a second firm after the first incurs search costs s > 0. There are two

different groups of consumers, namely captive consumers and searchers. Captive consumers

can only buy at the firm they are captive to and have zero valuation for the good of the other

firm. By contrast, searchers have equal valuation for the good of either firm. The valuation

10Garrett et al. (2019) consider a model of second-degree price discrimination in which consumers differ
in their choice sets, but firms do not have information about consumers. Braghieri (2019) studies a search
model in which consumers decide whether or not to reveal their horizontal characteristic to firms.

11My work is also related to Esteves (2014) and Peiseler et al. (2021), who study price discrimination
based on imperfect information about preferences in competitive settings without search frictions.
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of any consumer, which I call v, is drawn uniformly from the unit interval. Searchers make

up a share ρ ∈ (0, 1) of the total mass of consumers, while a share 0.5(1− ρ) of consumers is

captive to either firm. If a consumer with valuation v buys the good at price p, the utility

of the consumer is:

u(v, p) = v − p (1)

The two firms are heterogeneous in the information that is available to them for pricing. One

firm, which I call the firm with data, exogenously receives a binary private signal ṽ ∈
{
ṽL, ṽH

}

about the valuation of any consumer who visits it. I define the probability distribution of this

signal, which only depends on the consumer’s valuation v, as Pr(ṽH |v), where Pr(ṽL|v) :=

1− Pr(ṽH |v). As I will formalize later, I restrict attention to probability distributions that

are monotonic in v. I define the signal ṽH , which becomes more likely to occur when a

consumer’s valuation increases, as the high signal. The other firm, which I name the firm

without data, receives no signal about the valuations of arriving consumers.

Both firms can offer a different price to any consumer who visits. Thus, the game’s

timing is as follows: At the beginning, every consumer observes her valuation (and whether

she is a searcher or captive to some firm) and optimally decides which firm to visit first.

The firm that is visited first offers a price to the consumer. Based on her valuation and

this price offer, the consumer then decides whether to visit the other firm at cost s > 0. If

the consumer visits a second firm, this firm also offers the consumer a price upon arrival.

Crucially, both firms receive no information about any consumer’s search history (i.e. they

do not know whether an arriving consumer visits them first or second) and do not know

whether a consumer is captive or a searcher. This setup implies that, as in Diamond (1971),

firms cannot induce more consumers to visit them via downward deviations from equilibrium

prices.

I study perfect Bayesian equilibria. Throughout the analysis, I mainly focus on equilibria

in which firms play pure strategies. A pure strategy of the firm without data is a uniform

price, which I call pnd. A pure strategy of the firm with data is a price tuple (pL, pH). This

firm offers the price pL (pH) to all consumers that visit it and generate the low (high) signal.12

The strategy of a searcher must define which firm to visit first, based on her valuation. This

decision is captured by a measurable function d : [0, 1] → [0, 1], where d(v) is the probability

that a searcher with valuation v visits the firm with data first. Moreover, the strategy of

a searcher must also codify after which initial price offers they would continue searching,

conditional on the firm that is visited first. Captive consumers always visit the firm they are

12The assumption that ρ < 1, i.e. that every firm has captive consumers, ensures that all information
sets of both firms are on the equilibrium path, which rules out the existence of perfect Bayesian equilibria
that are sustained by implausible off-path punishments.
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captive to and do not search thereafter.

In the model, consumers know which firm has a data advantage. This assumption can be

motivated along two dimensions. Firstly, knowledge of this fact can arise through learning.

Over time, consumers can communicate with their peers and learn which firm sets stochastic

prices and which firm sets a uniform price, allowing them to infer which firm uses data to

personalize prices. Secondly, such awareness might result from regulation. The European

Union, for example, has recently implemented regulation that mandates firms which engage

in personalized pricing to inform any visiting consumer about this fact.13 The benefits of

measures that increase consumer awareness of personalized pricing have also been stressed

by the OECD’s competition committee.14

Consider the monopoly benchmark. I define ΠM(pj|ṽ
k) as the profit a monopolist with

access to the aforementioned information structure makes when offering the price pj to

consumers who generate the signal ṽk, with global maximizers {pk,M}k∈{L,H} given by:

pk,M = argmax
pj

pj

∫ 1

pj

Pr(ṽk|v)dv

︸ ︷︷ ︸

:=ΠM (pj |ṽk)

, k ∈ {L,H} (2)

In the analysis that follows, I impose the following assumptions on Pr(ṽH |v):

Assumption 1 The function Pr(ṽH |v) is strictly increasing, continuous, and satisfies Pr(ṽH |v)

∈ (0, 1) for all v ∈ [0, 1]. Moreover, ΠM(pj|ṽ
L) and ΠM(pj|ṽ

H) are strictly concave in pj.

Under this assumption, pL,M < 0.5 < pH,M holds: When observing the low (high) signal,

a monopolist will set a lower (higher) price than the price he would set when he has no

information about a consumer, namely 0.5. This holds because the average valuation of

consumers who generate the low (high) signal is relatively low (high).

I place no functional form restrictions on Pr(ṽH |v). Thus, my analysis also covers cases

in which the signal ṽ is almost uninformative. Moreover, it is also possible that the firm with

data receives a signal which induces it to set higher average prices. I will reference linear

signal distributions (which all satisfy assumption 1) with the parameter α as an example

throughout the analysis when illustrating the connection between assumptions and primitives

and when visualizing results. A linear signal distribution Pr(ṽH |v) is given by:

Pr(ṽH |v) = 0.5 + α(v − 0.5) (3)

13For details, please examine Directive 2019/2161 of the European Commission.
14See article 5 in OECD Secretariat (2016).
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In addition, I impose the following tie-breaking rule:

Assumption 2 Searchers visit either firm with equal probability if pL = pH = pnd.

In section 4.1, I solve the specified model under the restriction that s → ∞. In section

4.2, I solve this model for arbitrary s > 0. I call the former framework the baseline model

and the latter the sequential search framework.

4 Equilibrium analysis

4.1 Baseline model

Consider first the baseline model, in which it is prohibitively costly for searchers to visit a

second firm (s → ∞). In this framework, the only relevant choice that searchers have to

make is which firm to visit. If firms play pure strategies, a searcher with valuation v prefers

to visit the firm with data if and only if:

Pr(ṽL|v)max{v − pL, 0}+ Pr(ṽH |v)max{v − pH , 0} ≥ max{v − pnd, 0} (4)

The strategy of searchers is represented by a function d(v), where d(v) is the probability that

a searcher with valuation v visits the firm with data. Given the searchers’ behaviour, the

firm with data maximizes the following profit function through choice of the price pj when

observing the signal ṽk, with k ∈ {L,H}:

Πk(pj; d(v)) = pj

[

ρ

∫ 1

pj

d(v)Pr(ṽk|v)dv

︸ ︷︷ ︸

searcher demand

+0.5(1− ρ)

∫ 1

pj

Pr(ṽk|v)dv

︸ ︷︷ ︸

captive consumer demand

]

(5)

Analogously, the firm without data maximizes the following profit function:

Πnd(pj; d(v)) = pj

[

ρ

∫ 1

pj

(1− d(v))dv

︸ ︷︷ ︸

searcher demand

+0.5(1− ρ)

∫ 1

pj

(1)dv

︸ ︷︷ ︸

captive consumer demand

]

(6)

I begin by characterizing equilibria in which firms play pure strategies. In such equilibria,

the uniform price of the firm without data must lie between the prices of the firm with data.

Moreover, the strategy of searchers is described by a cutoff rule:
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Lemma 1 (Equilibrium search patterns)

In an equilibrium in which firms play pure strategies:

• The ordering pL < pnd < pH must hold.

• There exists a v̄ > pL such that all searchers with v ∈ (pL, v̄) visit the firm with data

and all searchers with v ∈ (v̄, 1] visit the firm without data.

Simply put, the first result holds because the optimal prices of the firms satisfy the

ordering pL < pnd < pH if the valuations of consumers who visit either firm follow the same

distribution. This holds, for example, under random search or if all searchers visit a given

firm. In general, setting a price pH that is strictly below pL can never be optimal for the firm

with data.15 Thus, we can restrict attention to equilibrium candidates in which pL ≤ pH .

The only candidate for an equilibrium in which pL = pH holds is an equilibrium in which

all firms set the same uniform price. But then, all searchers visit both firms with equal

probability (by the tie-breaking rule described in assumption 2), and the optimal prices of

the firms would satisfy pL < pnd < pH , a contradiction. Thus, pL < pH must hold.

Similar arguments establish that pnd ∈ (pL, pH) must hold in equilibrium. For example,

suppose that pnd ≤ pL. Then, all searchers with v > pnd visit the firm without data, implying

that pnd ≥ 0.5 must hold. But then, the firm with data has a profitable downward deviation

from pL to pL,M , since it only sells to captive consumers at pL and pL ≥ 0.5 > pL,M .

When deciding which firm to visit, any searcher thus faces a tradeoff: By visiting the

firm with data, she will attain the lowest price pL with probability Pr(ṽL|v), but she may

also obtain an unfavorable outcome if she generates the high signal and is thus offered pH .

Because the probability of receiving pL is strictly falling in v, it becomes strictly less favorable

to visit the firm with data instead of its rival as a searcher’s valuation increases. This implies

the existence of a cutoff v̄ > pL that defines the optimal search behaviour.

The equilibrium search behaviour established above will affect the optimal prices (and

their ordering) through a selection effect : Searchers visit the firm without data if their

valuation is comparatively high and vice versa. Thus, the average valuation of consumers

who visit the firm without data is higher than the average valuation of consumers who visit

the firm with data. This effect entails upward pressure on the uniform price of the firm

without data and downward pressure on the prices of the firm with data.

An equilibrium in which firms play pure strategies is described by a vector (pL, pH , pnd, v̄).

The firms optimally set prices, given the search behaviour represented by v̄. Before charac-

terizing such equilibria, it is instructive to consider the best response functions of firms. To

fix ideas, suppose that all searchers with v < v̄ visit the firm with data and that searchers

15If pH < pL, there would either be a downward deviation from pL to pH when observing ṽL or vice versa.
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with valuation v > v̄ visit the firm without data. Then, the firm with data maximizes the

following objective through choice of pj when observing the signal ṽk, with k ∈ {L,H}:

Πk(pj; v̄) = pj

[

ρ✶[pj ≤ v̄]

∫ v̄

pj

Pr(ṽk|v)dv

︸ ︷︷ ︸

searcher demand

+ 0.5(1− ρ)

∫ 1

pj

Pr(ṽk|v)dv

︸ ︷︷ ︸

captive consumer demand

]

(7)

The firm without data maximizes the following objective function:

Πnd(pj; v̄) = pj

[

ρ

∫ 1

v̄

✶[pj ≤ v]dv

︸ ︷︷ ︸

searcher demand

+ 0.5(1− ρ)

∫ 1

0

✶[pj ≤ v]dv

︸ ︷︷ ︸

captive consumer demand

]

(8)

I define the optimal prices of the firm with data as pL,∗(v̄) = argmaxpj∈[0,1] Π
L(pj; v̄) and

pH,∗(v̄) = argmaxpj∈[0,1] Π
H(pj; v̄). Similarly, I define pnd,∗(v̄) = argmaxpj∈[0,1]Π

nd(pj; v̄).

In the following two graphs, I visualize these best response functions for a given para-

metric example in which ρ = 0.5 and Pr(ṽH |v) = 0.5 + 0.7(v − 0.5). The functions pL,∗(v̄),

pH,∗(v̄), and pnd,∗(v̄) are plotted in blue, red, and yellow, respectively:

Figure 1: Best response functions

Consider first the optimal prices of the firm with data and recall that this firm is visited

by searchers with valuation in [0, v̄]. For low values of v̄, this firm can only sell to searchers

by setting very low prices, which yields low total profits. When v̄ is low, it is hence optimal

to forego these consumers entirely and to set prices that maximize the profits that accrue

from captive consumers, namely pL,M and pH,M , respectively. As v̄ increases, it becomes

optimal to set a price strictly below v̄, thereby making the sale to some searchers. For such

v̄, the optimal prices of the firm with data are rising in v̄, because the average valuation of

consumers who visit the firm with data is rising in v̄.
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Now consider the optimal uniform price of the firm without data, which also responds non-

monotonically to changes in v̄. Recall that this firm is visited by searchers with valuations

in the interval [v̄, 1]. In general, the profits this firm attains from its captive consumers are

maximized by setting the price 0.5. When v̄ ≤ 0.5, setting the price 0.5 also maximizes the

profits that accrue from searchers. When v̄ > 0.5, the profits generated by searchers are

maximized by setting the price pj = v̄. Thus, the optimal price pnd,∗(v̄) is equal to 0.5 when

v̄ < 0.5 and will lie in between 0.5 and v̄ for v̄ ∈ [0.5, 1].

When v̄ ∈ [0.5, 1], the optimal price of the firm without data depends on the mass of

searchers who arrive at this firm and the corresponding strength of the selection effect. Given

that these consumers entail upward pressure on the uniform price of this firm, this price will

be comparatively low (high) when the mass of arriving searchers is small (large). When

v̄ ∈ [0.5, 0.5(1+ρ)], the mass of searchers who arrive at the firm without data is large, which

implies that pnd,∗(v̄) will be equal to v̄. For v̄ ∈ (0.5(1 + ρ), 1], the mass of searchers who

arrive at the firm without data becomes small, which means that the optimal price pnd,∗(v̄)

will be strictly below v̄. Moreover, pnd,∗(v̄) is now falling in v̄, because the average valuation

of consumers who visit the firm without data is falling in v̄ in this interval.16

The presence of the selection effect implies that a majority of searchers must visit the

firm with data in equilibrium:

Proposition 1 (Competitive advantages)

In an equilibrium in which firms play pure strategies, the cutoff v̄ must satisfy v̄ ≥ 0.5(1+ρ).

Intuitively, any hypothetical equilibrium in which v̄ < 0.5(1 + ρ) holds is ruled out by

an incompatibility between optimal search behavior and optimal pricing by the firm without

data. To see this, note firstly that optimality of the searchers’ choices requires that pnd < v̄

must hold in equilibrium. This is because any searcher with valuation just above pnd would

strictly prefer to visit the firm with data (since pL < pnd must be true in an equilibrium by

lemma 1). Thus, the ordering pL < pnd < v̄ must be satisfied in an equilibrium in which

firms play pure strategies.

However, previous results have established that setting a price pnd ∈ (pL, v̄) cannot be

optimal for the firm without data when v̄ < 0.5(1 + ρ). For any v̄ and any pL, the profits of

this firm are equal to Πnd(pj; v̄) when pj ∈ (pL, v̄). If v̄ < 0.5(1+ρ), the profits of this firm are

thus strictly increasing in pj at any possible equilibrium pnd ∈ (pL, v̄), because the upward

pricing pressure created by the large mass of arriving searchers is strong, a contradiction.

16In general, the average valuation of searchers who arrive at the firm without data is rising in v̄, while
their mass is falling in v̄. Thus, increases in v̄ entail opposing effects on the average valuation of all consumers
who visit the firm without data. The latter effect dominates for v̄ ∈ [0.5(1 + ρ), 1].
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Having defined the key properties of any equilibrium in which firms play pure strategies,

I now establish the existence of such an equilibrium.

Proposition 2 (Equilibrium existence)

There exists an equilibrium in which firms play pure strategies.

The proof of proposition 2 is by construction. I show that there always exists a v̄∗ ∈

[0.5(1 + ρ), 1] that induces optimal prices (given by pL,∗(v̄∗), pH,∗(v̄∗), and pnd,∗(v̄∗)) which,

in turn, make it optimal for searchers to visit the firm without data if and only if their

valuation is above v̄∗. I will find such a v̄∗ using a fixed point approach.

Continuity of the firms’ best response functions plays an important role in the proof of

proposition 2. Without further assumptions, the functions pL,∗(v̄) and pnd,∗(v̄) will both be

continuous on the interval v̄ ∈ [0.5(1+ρ), 1]. However, the function pH,∗(v̄) is not necessarily

continuous for these v̄ if ΠH(0.5; 0.5 + 0.5ρ) ≤ 0.5(1 − ρ)ΠH,M(pH,M) i.e. when the share

of searchers (ρ) is too small. This represents the main technical challenge in proving this

proposition. I relegate the formal arguments which show existence of an equilibrium in

these constellations to the appendix and focus on the case in which ΠH(0.5; 0.5 + 0.5ρ) >

0.5(1− ρ)ΠH,M(pH,M) holds in the following discussion.17

Under this assumption, the optimal pH,∗(v̄) will lie strictly below v̄ for any v̄ ∈ [0.5(1 +

ρ), 1].18 Thus, the optimal price must satisfy a first-order condition, which guarantees con-

tinuity of the function pH,∗(v̄) on [0.5(1 + ρ), 1].

To characterize the optimal search behavior of consumers, I define the following function:

v̂(pL, pH , pnd) := sup
{
v ∈ [0, 1] : Pr(ṽL|v)pL + Pr(ṽH |v)pH

︸ ︷︷ ︸

exp. price at firm with data

< pnd
}

(9)

Conditional on (pL, pH , pnd), all searchers will obtain a lower expected price at the firm with

data if and only if their valuation is below v̂(pL, pH , pnd). Plugging in the best-response price

functions into v̂(pL, pH , pnd) yields:

v̂B(v̄) := v̂
(
pL,∗(v̄), pH,∗(v̄), pnd,∗(v̄)

)
(10)

A value v̄∗ ≥ 0.5(1 + ρ) at which v̄B(v̄∗) = v̄∗, together with the implied optimal prices,

constitutes an equilibrium. To see this, suppose that searchers visit the firm without data

if v > v̄∗ and the firm with data if v < v̄∗, where v̂B(v̄∗) = v̄∗ and v̄∗ ≥ 0.5(1 + ρ).

17This property holds for any linear signal distribution if ρ ≥ 0.13.
18Consider any v̄ ≥ 0.5(1 + ρ). The high signal profits from any price pj ≥ v̄ are bounded from above by

0.5(1 − ρ)ΠH,M (pH,M ). By setting a price pj < v̄, e.g. pj = 0.5, when observing ṽH , the firm can attain
higher profits, because ΠH(0.5; v̄) ≥ ΠH(0.5; 0.5 + 0.5ρ) holds for any v̄ ≥ 0.5(1 + ρ).
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Given the search behavior represented by v̄∗, the firm without data optimally sets the price

pnd,∗(v̄∗). The optimal prices of the firm with data are pL,∗(v̄∗) and pH,∗(v̄∗). Given these

prices, searchers optimally visit the firm where they receive the lower expected price (con-

ditional on their valuation v). Thus, it is optimal for searchers to visit firms according

to the cutoff rule implied by v̄∗, because v̄∗ = v̂B(v̄∗). This means that the combination

(pL,∗(v̄∗), pH,∗(v̄∗), pnd,∗(v̄∗), v̄∗) constitutes an equilibrium.

Thus, proving that an equilibrium in pure strategies exists amounts to establishing the

existence of a solution to the equation v̂B(v̄) − v̄ = 0 in the interval [0.5(1 + ρ), 1]. The

existence of an appropriate fixed point can be verified by applying the intermediate value

theorem to this equation, together with the boundary conditions (i) v̂B(0.5+0.5ρ) > 0.5(1+ρ)

and (ii) v̂B(1) ≤ 1. At v̄ = 0.5(1+ρ), pnd,∗(0.5(1+ρ)) = 0.5(1+ρ) holds, while both optimal

prices of the firm with data are strictly below v̄. This establishes that v̂B(0.5(1 + ρ)) = 1.

The second boundary condition, namely v̂B(1) ≤ 1, holds because v̂B(v̄) is the supremum

of a set with elements that cannot be larger than 1. Moreover, v̂B(v̄) is continuous on

v̄ ∈ [0.5(1 + ρ), 1] because all price functions are continuous in v̄. Thus, a solution to

v̂B(v̄)− v̄ = 0 exists in the interval [0.5(1 + ρ), 1].

To build further intuition, I present a numerical example. Consider a linear signal dis-

tribution with α = 0.7 and suppose that ρ = 0.5. For all possible equilibrium values of v̄

on the x-axis19, I have plotted the resulting pL,∗(v̄) in blue, pH,∗(v̄) in red, and pnd,∗(v̄) in

yellow, respectively, in the following graph. The function v̂B(v̄) is plotted in green:

Figure 2: Visualization - equilibrium existence

The point v̄ at which v̂B(v̄) crosses the 45-degree line constitutes an equilibrium. The

presence of the selection effect is central to the properties and the existence of an equilibrium.

19As argued previously, we can directly exclude equilibrium candidates in which v̄ < 0.5.
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When v̄ ≤ 0.5(1 + ρ), the selection effect is too strong to sustain an equilibrium. This

manifests in the fact that the optimal uniform price of the firm without data lies above both

prices the firm with data would set, so all searchers would prefer to visit the firm with data

(i.e. v̂B(v̄) = 1).

As v̄ moves closer to 1, the selection effect becomes progressively weaker, i.e. the average

valuations of consumers who visit either firm converge to each other.20 This is accompanied

by increases in the optimal prices of the firm with data and decreases in the optimal uniform

price of the firm without data. These price changes will induce more searchers to visit the

firm without data, which is represented by a falling v̂B(v̄). When v̄ ≈ 1, the optimal pnd

will lie just below the optimal pH , while the optimal pL lies substantially below these two

prices. These prices, in turn, make the search behaviour represented by such high levels of v̄

optimal. Only consumers with very high valuations, who are very likely to receive the high

price at the firm with data, will optimally visit the firm without data.

Note that there may potentially exist multiple equilibria in which firms play pure strate-

gies. This is because the search behavior of consumers with v < pL is not pinned down in

equilibrium, which means that there might be equilibria in which consumers with v < pL do

not visit the firm with data. This creates an issue of multiplicity, because the derivative of

Π(pj; ṽ
L) jumps down at pj = pL in such equilibrium candidates.

However, this multiplicity is largely inconsequential for the analysis of market concentra-

tion, because v̄ ≥ 0.5(1+ρ) holds true in any equilibrium in which firms play pure strategies.

Moreover, the issue of multiplicity is easily solved by imposing the refinement that searchers

with a valuation in an open interval below the lowest equilibrium price visit the firm that

offers this price. This is automatic if consumers face a tiny degree of uncertainty regarding

their valuation v or the exact equilibrium prices.

This completes the characterization of equilibria in which firms play pure strategies.

Now, I consider equilibria in which at least one firm plays a mixed strategy. Before moving

forward, I impose a tie-breaking rule on the behavior of searchers with a valuation above the

lowest equilibrium price, which I name p, in such equilibria:

Assumption 3 When firms play mixed strategies, any searcher with v > p who obtains

equal expected utility by visiting either firm first visits both firms with equal probability.

I restrict attention to equilibria in which firms draw prices from distributions with con-

nected support.21 As defined in Burdett & Judd (1983), a distribution H(p) has connected

20To see this, consider the case where v̄ = 1. Then, the firm without data is only visited by its captive
consumers, whose valuations are uniformly drawn from [0, 1], as is the case for the searchers who all visit
the firm with data. Thus, the valuation distribution of consumers who visit either firm is exactly equal.

21This restriction applies to any information set separately. To clarify this restriction, note that an
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support if H(p1) 6= H(p2) holds for any distinct prices p1, p2 in its support. There exists no

such equilibrium in which firms mix.

Proposition 3 (No mixing)

Restrict attention to equilibria in which firms draw prices from distributions with connected

support. In any such equilibrium, all firms play pure strategies.

This result is based on the following logic: I define the lowest price set by the firm without

data and the firm with data as pnd and pd, respectively. In an equilibrium in which firms

mix, pd = pnd must hold. Under our tie-breaking rule, there exists an interval of prices above

this lowest price for which the profit functions of both firms are strictly concave. Thus, this

lowest price pnd must be offered with probability 1 by the firm without data. But then, the

firm with data would also not mix. This is because it only sells to its captive consumers for

any price above pnd, which means that the profits it makes are equal to ΠM(pj|ṽ
k) for any

price pj it offers, which is a strictly concave function for either signal ṽk.

Thus, we can restrict attention to equilibria in which firms play pure strategies, which

I have characterized. In such equilibria, the firm with data has significant competitive

advantages, as reiterated by the following corollary:

Corollary 1 (Market dominance)

The equilibrium market share of the firm with data approaches 1 as ρ → 1.

Recall that ρ is the share of searchers in the market. As ρ → 1, the measure of captive

consumers approaches 0. In equilibrium, the measure of searchers who buy at the firm

without data also approaches 0, because v̄ ≥ 0.5(1 + ρ) and this lower bound converges to

1 as ρ → 1. This is true even when there are multiple equilibria in which firms play pure

strategies, because v̄ ≥ 0.5(1 + ρ) holds in such any equilibrium. Thus, the equilibrium

demand received by the firm without data approaches 0 as ρ → 1, which implies that the

market share of the firm with data approaches 1.

To build further intution for this result, I now visualize the equilibrium prices and search

cutoffs for different values of ρ. A given graph corresponds to a fixed linear signal distribution,

with α ∈ {0.25, 0.6, 0.95}, while different levels of ρ are plotted on the x-axis of each graph.

The color scheme of prices is as before, and the equilibrium levels of v̄ are plotted in lilac.

equilibrium in which the firm with data draws prices from the interval [0.3, 0.4] when observing ṽL and
draws prices from [0.5, 0.6] when observing ṽH is admissible. However, an equilibrium in which this firm
draws prices from a distribution with support [0.3, 0.4] ∪ [0.5, 0.6] when observing ṽL is inadmissible.
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Figure 3: Baseline model - comparative statics (ρ)

When ρ → 1, corollary 1 has established that v̄ → 1. As a result, the uniform price

of the firm without data approaches Pr(ṽL|1)pL,M + Pr(ṽH |1)pH,M , which is the expected

price a searcher with valuation 1 would receive at a monopolist with access to data. To

see this, note that the optimal low and high signal prices of the firm with data converge to

pL,M and pH,M as v̄ approaches 1, respectively. In order for the search behaviour represented

by such a high level of v̄ to be optimal, the uniform price of the firm without data has

to be above the expected price at the firm with data (conditional on the valuation) for

almost all searchers. This is guaranteed when the uniform price of this firm approaches

Pr(ṽL|1)pL,M + Pr(ṽH |1)pH,M . Such a price is optimal for the firm without data because

the slope of pnd,∗(v̄) on v̄ ∈ [0.5(1 + ρ), 1] becomes very large as ρ → 1.

As the signal of the firm with data becomes more informative, the degree of market

dominance enjoyed by this firm falls. Formally, the equilibrium levels of v̄ are falling in α.

This holds by the following logic: When the precision of the signal (α) rises, searchers with

high valuations are more likely to be recognized by the firm with data, in which case they

receive an unfavorably high price. This reduces their incentives to visit this firm, which, in

equilibrium, induces more searchers with high valuations to visit the firm without data.

I have established that arbitrarily small data advantages translate into substantial com-

petitive advantages through directed consumer search. This result is underscored by consid-

ering what happens when no firm receives an informative signal. In this benchmark, both

firms set the same uniform price in equilibrium and will thus receive exactly half of the

market under the tie-breaking rule defined in assumption 2.
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4.2 Sequential search framework

In this section, I show that all the results from the baseline model go through even if searchers

can visit a second firm, albeit under slightly stronger restrictions on ρ. Formally, I no longer

assume that s is prohibitively high, but consider an arbitrary s > 0. In terms of policy, these

results show that the problem of market dominance cannot be solved by reducing search

costs to negligibly small levels.

I begin the analysis by characterizing equilibria in which firms play pure strategies. As

before, such an equilibrium needs to define the low signal and high signal price (pL and

pH , respectively) of the firm with data, as well as the uniform price of the firm without

data (pnd). The strategy of searchers now specifies, for a given v, (i) which firm to visit

first (captured by a function d(v), as in the baseline model), (ii) after what price offers to

search after visiting the firm with data first, and (iii) after what price offers to search after

visiting the firm without data first.22 Because searchers are forward-looking, they take into

account under what conditions they would continue searching after sampling the first firm

when deciding which firm to initially visit.

To express whether there is search on the equilibrium path, I define the probability with

which a searcher with valuation v visits both firms in an equilibrium as b(v). Consider the

set
{
v ∈ [0, 1] : b(v) > 0

}
. I say that there is search on the equilibrium path if and only if

this set has strictly positive measure. When the share of searchers (ρ) is sufficiently large,

there will be no search on the equilibrium path, independent of the exact value of search

costs s. This is formalized by the following assumption and accompanying proposition:

Assumption 4 Suppose that pnd,s + s > pH,M , where pnd,s solves the following:

[

ρ

∫ 1

pnd,s+s

Pr(ṽH |v)dv + 0.5(1− ρ)

∫ 1

pnd,s

dv

]

= 0.5(1− ρ)pnd,s (11)

Proposition 4 (No search beyond the first firm)

Consider the sequential search framework and suppose that assumption 4 holds. There exists

no equilibrium in which firms play pure strategies and there is search on the equilibrium path.

Assumption 4 requires that enough consumers engage in directed search, i.e. that ρ is

high enough:

Remark 1 For any linear Pr(ṽH |v), assumption 4 is satisfied if ρ ≥ 0.2.

22Off-path beliefs play no role in the analysis. All information sets of the firms are on the equilibrium
path. Any searcher is only uncertain which node the game has reached when visiting the firm with data —
then, she does not know which signal was generated. However, this does affect her incentives to continue
searching, since these are fully pinned down by the initial price offer and the equilibrium price pnd.
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The proof of proposition 4 consists of three steps: Firstly, pL < pH must hold in any

equilibrium with on-path search. If pL = pH , any searcher would directly visit the firm

which offers the lower uniform price and there would be no reason to search thereafter. If

pH < pL, the firm with data would not be optimizing. Thus, the following arguments consider

equilibria with pL < pH and show that (i) no searcher who initially visits the firm without

data in equilibrium would continue searching and (ii) that, under assumption 4, there exists

no equilibrium in which searchers would continue searching after initially visiting the firm

with data.

Result (i) follows from a contrapositive argument and requires no assumptions — any

searcher who finds it weakly optimal to continue searching after visiting the firm without

data (and receiving pnd) would never optimally visit this firm first. This holds by the

following logic: By visiting the firm without data first and searching thereafter, the best

price this consumer will have in hand after search is pL with probability Pr(ṽL|v) and pnd

with probability Pr(ṽH |v), while the search cost s > 0 is surely paid. Alternatively, the

consumer could visit the firm with data first and continue searching if and only if pH is

received. The latter approach would achieve strictly higher expected utility than visiting

the firm without data first and searching thereafter, because it yields the same distribution

of prices, but saves search costs. By contraposition, no consumer would continue searching

after visiting the firm without data in equilibrium — because any such consumer would have

never optimally visited this firm first.

Now consider point (ii). The existence of equilibria in which a positive measure of

searchers visit the firm without data second is ruled out under assumption 4 by the fol-

lowing logic: Firstly, searchers who visit the firm with data first would only find it optimal

to continue searching if the initially received price is weakly above pnd+s. Thus, pH ≥ pnd+s

must hold in such an equilibrium. There exists no equilibrium in which pH = pnd + s and

a positive measure of consumers search after visiting the firm with data. Under this speci-

fication, a marginal downward deviation from pH would be optimal for the firm with data,

since this is sufficient to prevent search by all consumers.

Thus, it only remains to consider equilibria in which pnd + s < pH (and pL < pH). In

such equilibrium candidates, all searchers with v > pH who visit the firm with data first

and receive pH would continue searching and never return. Thus, the firm with data only

makes the sale to captive consumers for prices in an open ball around pH , which implies

that pH = pH,M must hold. The optimal price the firm without data would set in such an

equilibrium is bounded from below by pnd,s (which is defined in the statement of assumption

4), given that all searchers who arrive at the firm without data surely buy for prices around

pnd. Under assumption 4, such an equilibrium cannot exist, because pnd + s > pH would
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hold, which contradicts the premise of this equilibrium.

Thus, equilibria in which some consumers search after receiving pH cannot exist when

ρ is high enough. Intuitively, this is based on the following logic: Searchers who arrive at

the firm without data second put upward pressure on pnd. This is because visiting this firm

second (i.e. paying the search cost s > 0) is only optimal for consumers who would buy at

pnd. When the share of searchers (ρ) is high, the upward pressure these consumers exert on

pnd is strong. Then, pnd would be very high in such a hypothetical equilibrium —so high, in

fact, that no searcher would find it optimal to pay a search cost in pursuit of this price.

Now, I turn my attention to equilibria without on-path search. Under an assumption on

ρ, all the results established for the baseline model go through verbatim for these equilibria:

Assumption 5 Assume that ΠH(0.5; 0.5 + 0.5ρ) > 0.5(1− ρ)ΠH,M(pH,M).

Proposition 5 (Sequential search framework: equilibrium characterization)

Consider the sequential search framework. In an equilibrium in which firms play pure strate-

gies and there is no search on the equilibrium path:

• There exists a v̄ > pL such that all searchers with v ∈ (pL, v̄) visit the firm with data

first and all searchers with v ∈ (v̄, 1] visit the firm without data first.

• The cutoff v̄ must satisfy v̄ ≥ 0.5(1 + ρ).

Under assumption 5, such an equilibrium exists.

Remark 2 For any linear Pr(ṽH |v), assumption 5 is satisfied if ρ ≥ 0.13.

Consider an equilibrium in which firms play pure strategies and there is no search on the

equilibrium path. As before, the equilibrium prices must satisfy the ordering pL < pnd < pH .

Thus, the strategy of searchers must be a cutoff rule, because the distribution of prices at

the firm with data becomes strictly less favorable as a consumer’s valuation rises. Moreover,

there exists no such equilibrium in which v̄ < 0.5(1 + ρ) holds, because the firm without

data would optimally set pnd weakly above v̄ in such a hypothetical equilibrium. This is

inconsistent with optimal search behavior, because searchers with valuation just above pnd

would strictly prefer to visit the firm with data, given that pL < pnd must hold.

The proof that an equilibrium without on-path search exists for any s > 0 under as-

sumption 5 is by construction. First, consider the equilibrium derived for the baseline

model (in which s was prohibitively high). I define the components of this equilibrium as

(pL,1, pH,1, pnd,1, v̄1), where v̄1 = v̂B(v̄1), pL,1 = pL,∗(v̄1), pH,1 = pH,∗(v̄1), and pnd,1 = pnd,∗(v̄1).

The arguments pertaining to proposition 2 establish that such a combination exists.
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If search costs are so high that pH,1 ≤ pnd,1 + s, this combination of prices and v̄ remains

an equilibrium. Then, searchers would never find it optimal to search after visiting the first

firm, which implies that it is optimal to visit firms according to the search rule implied by

v̄1. Given this search behaviour, firms will find it optimal to set the prices pL,1, pH,1 and

pnd,1, respectively, establishing that this vector of prices and v̄1 constitutes an equilibrium.

Thus, it only remains to establish that an equilibrium of the desired form exists when

pH,1 > pnd,1 + s. Consider an equilibrium candidate (pL,2, pH,2, pnd,2, v̄2), in which pL,2 =

pL,∗(v̄2), pnd,2 = pnd,∗(v̄2), pH,2 = pnd,2 + s, and v̄2 is a solution to the following equation:

v̄2 − v̂
(
pL,∗(v̄2), pnd,∗(v̄2) + s, pnd,∗(v̄2)

)

︸ ︷︷ ︸

:=v̂S(v̄2)

= 0 (12)

There exists a value v̄2 ∈ [0.5(1+ρ), 1] that solves this equation. To see why it constitutes an

equilibrium, consider the search behaviour of searchers: As before, searchers will maximize

their expected utility by initially visiting the firm that offers them (based on their valuation)

the lower expected price. Because pH,2 = pnd,2 + s, it is weakly optimal to refrain from

searching after visiting the firm with data. Moreover, one can show that searchers with v > v̄2

would not search after visiting the firm without data. Thus, it is optimal for searchers to

visit firms according to the cutoff rule implied by v̄2 and to refrain from searching thereafter.

It remains to show that the prices (pL,2, pH,2, pnd,2) are optimal for firms if searchers visit

firms according to the rule implied by v̄2. There will be no profitable deviations from pL,2

and pnd,2, because these prices are global maximizers of the respective profit functions when

no consumer would ever leave to search, which are weakly above true profits for any price.

There will be no profitable deviations from pH,2 under assumption 5 by the following

logic: Because search costs are so low that pH,1 > pnd,1 + s, the ordering pH,2 < pH,∗(v̄2)

will hold. Intuitively, this represents the notion that searchers push down the high signal

price of the firm with data using the threat of searching when s is sufficiently low. By

strict concavity of the respective profit function, there will not be any profitable downward

deviations from pH,2. Moreover, assumption 5 guarantees that there will not be any profitable

upward deviations (for which the firm with data would only sell to captive consumers). This

is because equilibrium profits are bounded from below by ΠH(0.5, 0.5(1+ρ)), while the profits

from any deviation above pH,2 are bounded from above by 0.5(1− ρ)ΠH,M(pH,M).

As before, one can rule out the existence of equilibria in which firms mix (within the set

of equilibria in which firms draw prices from distributions with connected support):

Proposition 6 (Sequential search framework: no mixing)

Consider the sequential search framework. Suppose that searchers who receive the same price
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at both firms buy at each firm with equal probability. In any equilibrium in which firms draw

prices from distributions with connected support, all firms play pure strategies.

Summing up, the key results from the baseline model are retained. A large majority of

searchers only visit the firm with data. Moreover, the market share of the firm with data

approaches 1, independent of the signal distribution, as ρ → 1.

Corollary 2 (Sequential search framework: market dominance)

Consider the sequential search framework. The equilibrium market share of the firm with

data approaches 1 as ρ → 1.

When ρ (the share of seachers) approaches 1, both assumptions 4 and 5 will hold, in-

dependent of the signal distribution. Thus, an equilibrium will exist. In equilibrium, all

consumers just visit one firm and v̄ ≥ 0.5(1 + ρ) must hold, which implies the result.

It remains to study the effects of search cost reductions on the equilibrium objects to

understand whether reductions of search frictions can at least mitigate the problem of market

dominance. Within the equilibrium established for the baseline model, search cost reductions

play no role. When s becomes sufficiently small, reductions of search costs exacerbate market

dominance:

Corollary 3 (Reductions of search costs)

Suppose s < pH,1 − pnd,1 and that assumptions 4 and 5 hold. Then, the equilibrium level of

v̄ is weakly decreasing in search costs.

I visualize these effects in the following graph, in which I plot the equilibrium quantities

for different levels of search costs (on the x-axis) and α-ρ combinations. The color scheme

is as before.23

Figure 4: Comparative statics - search costs

23I assume that the equilibrium (pL,1, pH,1, pnd,1, v̄1) is played whenever it exists, i.e. when pnd,1+s ≥ pH,1.
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When search costs are sufficiently high (i.e., s ≥ 0.03), the equilibrium (pL,1, pH,1, pnd,1, v̄1)

from the baseline model is played, in which the possibility of searching is not relevant. When

s becomes sufficiently small, the equilibrium quantities are given by (pL,2, pH,2, pnd,2, v̄2).

Then, search cost reductions lead to lower price levels, but exacerbate the problem of market

dominance. Intuitively, searchers are now able to constrain the high signal price of the firm

with data with the threat of searching, which implies that this price will approach pnd as

search costs fall. This increases the incentives of searchers to visit the firm with data. In

particular, all searchers will prefer to only visit the firm with data (i.e. v̄ = 1) when s

becomes sufficiently small, because pL always remains substantially below pnd and pH .

5 Welfare and policy recommendations

5.1 Data and consumer welfare

The effects of data advantages imply a need for regulatory interventions for two reasons.

Firstly, personalized pricing by the firm with data may lead to higher average prices, thereby

reducing consumer welfare. More importantly, the market dominance resulting from data

advantages (no matter how small these data advantages are) can reduce consumer welfare

by discouraging entry, distorting competition, and by reducing the incentives to innovate.

The personalized pricing that the firm with data implements can lower consumer welfare

as such. For example, suppose that the firm with data receives a binary signal that is effective

at identifying high-valuation consumers, where Pr(ṽH |v) = 0.5 if v < 0.6 and Pr(ṽH |v) = 1

if v ≥ 0.6. If all searchers visit the firm with data, a searcher’s ex ante expected utility is

0.1025, while it equals 0.125 when no firm has data. When ρ is high and v̄ is thus close

to 1, consumer welfare in the competitive equilibrium with data will hence be lower than

when no firm has data. However, I note that the impact of personalized pricing on consumer

welfare depends on the signal structure. This follows existing ideas, which are summarized

by Acquisti et al. (2016).

The market dominance enabled by data advantages can deter entry. This is best con-

ceptualized by augmenting the baseline model with an initial entry stage. There are two

firms: the incumbent and the potential entrant, who has no data about consumers. Initially,

the entrant has to decide whether or not to pay a fixed cost to enter the market, while the

incumbent has to pay no such cost. After the entry decision, the product market competition

game from the baseline model is played. If the incumbent has no data, both firms receive

half of the market if the entrant enters. If the incumbent has a data advantage, the entrant

is visited by a much lower mass of consumers, which makes entry less profitable. Thus, data
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advantages may discourage entry, which is to the detriment of consumers who have a strong

preference for the entrant’s product (e.g. the captive consumers in my model).

Empirical evidence by Li et al. (2021) shows that shielding firms from competitive pres-

sures reduces their incentives to innovate. This effect can also be found in an extension of

my framework, in which the product market competition described throughout the paper

is modeled as a second stage that follows an innovation decision. Suppose that there is a

high-quality and a low-quality firm. The valuations that searchers (and the corresponding

captive consumers) have for the product of the high-quality firm, call these v, are uniformly

distributed on [0, 1]. The valuation that any searcher has for the product of the low-quality

firm is given by v − µ. In accordance, the valuations that captive consumers have for the

product of the low-quality firm are uniformly drawn from [−µ, 1− µ], where µ ≥ 0 captures

the extent of the quality difference.

Suppose that no firm has data, but that µ > 0. In a monopoly benchmark, the low-quality

firm would set the price 0.5(1 − µ), while the high-quality firm would set the price 0.5. In

the competitive equilibrium, searchers thus only visit the high-quality firm.24 Endowing

the low-quality firm with data changes this prediction. To see this, define pL,µ and pH,µ as

the prices this firm would set in the monopoly benchmark when receiving the low and high

signal, respectively. If pL,µ + µ < 0.5 < pH,µ + µ holds, the equilibrium predictions from the

baseline model are retained — a large majority of searchers only visit the low-quality firm,

because it has data.

This example shows how the presence of data can distort competition. In addition, these

distortions reduce the incentives of the low-quality firm to reduce µ, e.g. by conducting

product innovation. When this firm has no data, reducing µ to 0 will increase the market

share of this firm from 0.5(1 − ρ) to 0.5, while the benefits of innovation are much smaller

for this firm if it has a data advantage. This is to the detriment of consumers, who would

benefit from innovation.

5.2 A right to anonymity

The first way of depriving the firm with data of its advantage is to endow consumers with

a right to anonymity. I study the effects of such a policy by integrating this possibility into

the baseline framework — now, any searcher can pay a cost e ≥ 0 before obtaining a price

quote at the firm with data to ensure that this firm receives no signal about them, i.e. to

become anonymous. Everything else is as in the baseline model. Any searcher thus has three

24This is because any searcher will obtain the utility max{v − 0.5, 0} at the high-quality firm, which is
strictly larger than the utility she would obtain at the low-quality firm, namely max{v − 0.5(1 + µ), 0}.
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possible choices: (i) visit the firm without data, (ii) visit the firm with data and choose to

become anonymous, or (iii) visit the firm with data and refrain from becoming anonymous.

The analysis requires a tie-breaking rule. I assume that whenever two of the approaches

listed above entail the offering of an identical uniform price, both these choices will be

selected by searchers with equal probability.

An equilibrium in this extension consists of a price pa that the firm with data offers

to all consumers who opt out of generating a signal, in addition to the prices (pL, pH , pnd)

introduced previously. The establishment of a right to anonymity will be inconsequential:

Proposition 7 (Ineffective anonymity)

Consider the baseline model, augmented with the right to anonymity. For any e ≥ 0, the set

of consumers who exercise this right has measure zero.

The intuition behind this result mirrors the insights of Belleflamme & Vergote (2016),

who show a similar result in a monopoly setting. Only consumers with comparatively high

valuations would ever want to exercise a right to anonymity — low valuation consumers,

by contrast, benefit from the possibility that a firm profiles them. In equilibrium, firms

will thus offer high prices to consumers who choose to become anonymous, which makes it

detrimental for consumers to exercise this right.

5.3 A right to data portability

In this subsection, I integrate a right to data portability into the baseline model. Suppose

that every searcher can, before obtaining a price quote anywhere, costlessly copy all the

information the firm with data has about her and transfer this to the firm without data. A

searcher now has three choices: As before, she can (i) visit the firm with data or (ii) obtain

a price offer at the firm without data without porting her data. In addition, she can now

(iii) obtain a price offer at the firm without data after porting her data. Formally, porting

the data implies that the firm without data will, upon being visited, receive a signal about

the consumer’s valuation. The distribution of this signal is Pr(ṽH |v), just as for the firm

with data.

A pure strategy of the firm with data remains a price tuple (pL, pH), while a pure strategy

of the firm without data is now a vector (pL,nd, pH,nd, pnd). This firm offers the price pnd to

all consumers who visit it but do not port their data and the prices pL,nd and pH,nd to all

consumers who port their data and generate the low and high signal, respectively.

Endowing searchers with the ability to costlessly exercise their right to data portability

can eliminate the advantage of the firm with data:
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Proposition 8 (Data portability)

If searchers can costlessly exercise their right to data portability, there exists an equilibrium

in which all searchers visit the firm without data.

This equilibrium has the following form: All searchers visit the firm without data. The

firm with data is only visited by its captive consumers and will thus optimally set the

monopoly prices, namely pL,M and pH,M . Searchers exercise their right to data portability if

and only if their valuation is below a cutoff vt. If their valuation is above vt, they visit the

firm without data but don’t port their data. This cutoff vt solves:

vt = sup
{
v ∈ [0, 1] : Pr(ṽH |v)pH,nd + Pr(ṽL|v)pL,nd − pnd ≤ 0

}
(13)

Because of this separating behaviour, the prices that the firm without data would offer to

consumers who port their data are lower than their monopoly counterparts, i.e. pL,nd ≤ pL,M

and pH,nd ≤ pH,M . This is because the average valuation of consumers who exercise their

right to data portability is comparatively low. Because pL,nd ≤ pL,M and pH,nd ≤ pH,M , it is

optimal for all searchers to visit the firm with data. This is because visiting this firm and

porting the data yields a higher expected utility than visiting the firm with data.

Calculating the equilibrium values of vt shows that vt is generally below 1. This is crucial,

because it implies that the equilibrium prices satisfy pL,nd < pL and pH,nd < pH , making it

strictly optimal for searchers to visit the firm without data. This insight establishes that a

right to data portability can effectively counteract the competitive effects of data advantages

even when exercising this right is costly or generates a less informative signal.

6 Extensions

6.1 Continuous signals

The previous insights all go through even when the firm with data receives continuous signals

about consumer valuations, so long as the information is not perfect. I show this in a model

which retains all the specifications from the baseline model, with one exception: The firm

with data now receives a signal ṽ = v + ǫ about the valuation of any arriving consumer

(v), where the noise term ǫ is uniformly distributed on the interval [−ǭ, ǭ]. I assume that

ǭ ∈ (0, 1/8). As ǭ → 0, the signal becomes almost perfect. Just as in the baseline model, I

assume that searchers can only visit one firm. I name this framework the continuous signals

framework. In this and all the following extensions, I restrict attention to equilibria in which

firms play pure strategies.
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An equilibrium in which firms play pure strategies thus consists of (i) a uniform price

(pnd) of the firm without data, (ii) a function pd(ṽ) that defines what price the firm with data

would offer after observing the signal ṽ, and (iii) the search strategy of searchers, namely

d(v). In equilibrium, searchers separate exactly as before:

Lemma 2 (Continuous signals: search)

Consider the continuous signals framework. In equilibrium:

• Any consumer with v > 0 obtains strictly positive expected utility at the firm with data.

• There exists a v̄ such that all searchers with v ∈ (0, v̄) visit the firm with data and all

searchers with v ∈ (v̄, 1] visit the firm without data.

Because ǭ > 0, the firm with data cannot perfectly price discriminate and any consumer

with positive valuation can gain some utility (in expectation) by visiting this firm. Thus, all

searchers with v < pnd will optimally visit the firm with data. However, the price distribution

at the firm with data becomes strictly less favorable as a consumer’s valuation increases. This

implies that, as before, searchers with low valuations visit the firm with data and vice versa.

As before, this separating behavior will give rise to a selection effect. In equilibrium, a

majority of searchers will thus visit the firm with data:

Proposition 9 (Continuous signals: equilibrium)

Consider the continuous signals framework. In equilibrium, v̄ ≥ 0.5(1+ ρ) must hold and an

equilibrium exists.

As before, any equilibrium candidate in which v̄ < 0.5(1 + ρ) holds is ruled out by an

incompatibility of optimal search and optimal pricing by the firm without data. Optimal

behavior by searchers implies that pnd < v̄ must hold in equilibrium, since any consumer

with positive valuation can attain strictly positive expected utility by visiting the firm with

data. A searcher who is indifferent between both firms (i.e. a searcher with valuation v̄) must

hence receive strictly positive utility at the firm without data. However, the firm without

data would optimally set a uniform price pnd weakly above v̄ when v̄ < 0.5(1 + ρ), which

rules out any such equilibria.

The optimization calculus of the firm without data is the same as in the baseline model.

Thus, the uniform price it will set is given by pnd,∗(v̄). The assumption that ǭ < 1/8 implies

that the firm with data will price according to the following function for any v̄ ≥ 0.5(1+ ρ):

pd,∗(ṽ) =







0.5(ṽ + ǭ) ṽ ∈ [−ǭ, 3ǭ]

(ṽ − ǭ) ṽ ∈ [3ǭ, 1 + ǭ]
(14)

27



The prices set by the firms respond continuously to changes in v̄, which is sufficient to ensure

equilibrium existence. It remains to study the properties of these equilibria in some more

detail. To that end, I fix ρ = 0.4 and visualize the equilibrium values of v̄ and pnd for

different levels of ǭ (which are plotted on the x-axis) in the following graph:

Figure 5: Equilibria under continuous signals

As ǭ → 0, the cutoff v̄ and the price pnd both converge to 0.5(1+ρ). To see why, suppose

that ǭ ≈ 0 and that searchers visit firms according to a cutoff rule with v̄ ≈ 0.5(1 + ρ).

The firm without data will optimally set the price pnd,∗(v̄), which is approximately equal

to 0.5(1 + ρ) for this search rule. Because the firm with data is able to almost perfectly

price discriminate, every consumer will attain close to zero expected utility by visiting this

firm. While consumers with v < pnd ≈ 0.5(1 + ρ) would still prefer to visit the firm with

data, almost all consumers with valuation above pnd would prefer to visit the firm without

data, because the utility they attain there is linearly rising in v. Thus, the search behavior

represented by the cutoff v̄ ≈ 0.5(1 + ρ) is optimal, because pnd ≈ 0.5(1 + ρ).

6.2 Endowing both firms with data

In this section, I study a framework in which both firms receive binary signals about the

valuation of any consumer who visits. I specify that there is one firm that has access to

better data than the other. I define the two firms as the firm with better data and the firm

with worse data. Everything else is as in the baseline model and all consumers can only visit

one firm. I label the resulting framework the dispersed data framework.

The probability that a consumer with valuation v generates the high signal at the firm

with better data is PrHB(v) and PrHW (v) at the firm with worse data. In the dispersed data

framework, an equilibrium consists of a quadruple of prices (pLB, pHB, pLW , pHW ) and the

search strategy of searchers. The prices that the firm with better data offers to consumers

28



that generate the low and high signal, respectively, are (pLB, pHB). The prices the firm with

worse data offers in the respective information sets are (pLW , pHW ).

To illustrate differences in signal precision, consider a monopolist with access to a signal

with distribution PrHB(v). I define the prices this firm would set after the low and high

signal as pLB,M and pHB,M , respectively. Analogously, the prices set by a monopolist who

receives a signal with distribution PrHW (v) in the respective information sets are defined as

pLW,M and pHW,M . In the analysis, I assume that the signal distributions are well behaved

and that the firm with better data receives a more precise signal in the following sense:

Assumption 6 Both functions PrHB(v) and PrHW (v) are strictly increasing in v, contin-

uous, and map into (0, 1) for any v. The signal probability functions are such that:

• For any v < 0.5, PrHB(v) < PrHW (v). For any v > 0.5, PrHB(v) > PrHW (v).

• The prices that firms would set when all consumers randomize between firms satisfy

the ordering pLB,M < pLW,M < pHW,M < pHB,M .

In words, the signal which the firm with better data receives implies a higher chance of

correctly recognizing whether a consumer’s valuation is in the upper or lower half of the

valuation interval. Moreover, the signal of the firm with better data is more informative

in the sense that, when consumers randomly arrive at firms, this firm sets a lower price to

consumers who generate the low signal and vice versa.

Moreover, I impose a tie-breaking rule concerning searchers with valuation below the

lowest equilibrium price, which I call pmin := min{pLW , pHW , pLB, pHB}.

Assumption 7 Searchers with v ≤ pmin visit the firm that offers pmin with higher probabil-

ity.

The richness of the pricing possibilities enables the potential existence of equilibria with

intractable search behaviour. To facilitate the analysis, I restrict attention to the following

”simple” category of equilibria.

Definition 1 An equilibrium is simple if and only if (i) all searchers visit each firm with

probability 0.5 or (ii) there exists some v̄ s.t. all searchers with valuation above v̄ visit a

particular firm and all searchers with valuation below v̄ visit the other firm.

The definition of a simple equilibrium does not impose restrictions on which firm con-

sumers on either side of a cutoff v̄ visit in an equilibrium where their strategy is a cutoff rule.

Instead, I show that any simple equilibrium retains the structure of previous equilibria.25

Moreover, the equilibrium v̄ is bounded from below, as before.

25If both firms receive a signal with the same probability distribution, there is a unique simple equilibrium
in which both firms follow the same pricing strategy and all searchers randomize between both firms.
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Lemma 3 (Dispersed data: equilibrium characterization)

Consider the dispersed data framework. In a simple equilibrium:

• The ordering pLB ≤ pLW holds. There exists a v̄ such that searchers visit the firm with

worse data if v > v̄ and the firm with better data if v < v̄.

• v̄ ≥ v̄LW must hold, where v̄kW ∈ (0, 1) solves the following for either k ∈ {L,H}:

ρ

∫ 1

v̄kW
PrkW (v)dv + 0.5(1− ρ)

[ ∫ 1

v̄kW
PrkW (v)dv − v̄kWPrkW (v̄kW )

]

= 0 (15)

Low-valuation consumers prefer to visit the firm with better data, because they are more

likely to generate the low signal, i.e. to be correctly identified, at this firm. As a result,

consumers with low (high) valuations can expect a more favorable price distribution at the

firm with better data (firm with worse data). The interpretation of v̄LW is the same as in

the baseline model:26 For any v̄ < v̄LW , the firm with worse data would optimally set a low

signal price (pLW ) that is weakly above v̄. However, searchers with valuation just above pLW

would never visit the firm with worse data in a simple equilibrium, because the firm with

better data will always offer the lowest equilibrium price. This means that v̄ ≤ pLW cannot

hold in a simple equilibrium, which rules out equilibria in which v̄ < v̄LW .

It remains to establish the existence of a simple equilibrium. For a given v̄, the prices

of the firm with better data need to maximize the following objective functions for the

corresponding signal ṽk ∈ {ṽL, ṽH} in any such equilibrium:

ΠkB(pj; v̄) := pj

[

ρ

∫ v̄

0

PrkB(v)✶[pj ≤ v]dv

︸ ︷︷ ︸

searcher demand

+0.5(1− ρ)

∫ 1

0

PrkB(v)✶[pj ≤ v]dv

︸ ︷︷ ︸

captive consumer demand

]

(16)

The firm with worse data maximizes the following objective, given the signal ṽk ∈ {ṽL, ṽH}:

ΠkW (pj; v̄) := pj

[

ρ

∫ 1

v̄

PrkW (v)✶[pj ≤ v]dv

︸ ︷︷ ︸

searcher demand

+0.5(1− ρ)

∫ 1

0

PrkW (v)✶[pj ≤ v]dv

︸ ︷︷ ︸

captive consumer demand

]

(17)

I define the optimal prices of the firm with better data for a given v̄ as pLB,∗(v̄) := argmaxpj∈[0,1]

ΠLB(pj; v̄) and pHB,∗(v̄) := argmaxpj∈[0,1] Π
HB(pj; v̄). Analogously, I define the optimal

prices of the firm with worse data as pLW,∗(v̄) := argmaxpj∈[0,1] Π
LW (pj; v̄) and pHW,∗(v̄) :=

argmaxpj∈[0,1] Π
HW (pj; v̄). In equilibrium, the search behavior of searchers will, as before, be

26In fact, this cutoff becomes v̄LW = 0.5 + 0.5ρ when PrLW (v) = PrHW (v), i.e. when the firm with
worse data receives no informative signal, as in the baseline model.
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determined by the expected prices they can anticipate at the two firms. For firm j ∈ {W,B}

and a fixed v̄, these expected prices (conditional on v) are given by:

EP j(v; v̄) = PrLj(v)pLj,∗(v̄) + PrHj(v)pHj,∗(v̄) (18)

For which searchers the expected price is lower at the firm with better data (given the

equilibrium level of v̄) is tracked by the following object:

v̂X(v̄) = sup
{
v ∈ [0, 1] : EPB(v; v̄)− EPW (v; v̄) < 0

}
(19)

Now, I define an assumption that ensures the existence of a viable candidate for a simple

equilibrium. Afterwards, I establish when this candidate constitutes an equilibrium.

Assumption 8 Define v̄D = max{v̄LW , pHB,M}. Suppose that EPB(v̄D; v̄D) < EPW (v̄D; v̄D).

Remark 3 Assumption 8 is satisfied for any linear signal distribution.

Proposition 10 (Dispersed data: equilibrium existence)

Consider the dispersed data framework. Under assumption 8, the following equation has a

solution v̄∗ ∈ [v̄LW , 1]:

v̄∗ = v̂X(v̄∗) (20)

The combination (pLB(v̄∗), pHB(v̄∗), pLW (v̄∗), pHW (v̄∗), v̄∗) is an equilibrium if, given (pLB(v̄∗),

pHB(v̄∗), pLW (v̄∗), pHW (v̄∗)), it is weakly optimal for searchers to visit the firm with better

data if and only if v ≤ v̄∗.

In a hypothetical equilibrium of the above form, all prices of the firms are optimal by

construction. Imposing optimality of the postulated search behavior is required, because the

fact that v̄ = v̂X(v̄) holds does not rule out the possibility that some consumers with v < v̄

optimally visit the firm with worse data. This is because the search preferences of searchers

have kinks at the equilibrium prices, which means that it may not necessarily be optimal for

them to visit the firm where they receive the lower expected price.

However, numerical analysis shows that it is indeed optimal for searchers to visit the firm

where they receive the lower expected price in equilibrium candidates of the above form,

establishing that these combinations constitute equilibria. In appendix E.1, I study linear

signal distributions as defined in equation (3), where the precision of the signal the firm with

better data receives is αb and the precision of the signal that its rival receives is αw, with

αw < αb. I consider ρ ∈ {0.05, 0.35, 0.65, 0.95}, αw ∈ [0, 0.49] and αb ∈ [0.5, 0.99] (with 25
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grid points each). For different combinations of ρ, αw, and αb, I calculate the solution to

equation (20). Given the implied prices, I then check whether it is optimal for all searchers

with v < v̄∗ to visit the firm with better data and vice versa for searchers with v > v̄∗. I

show that this requirement is met, i.e. that said combination of prices and v̄ constitutes an

equilibrium, for any of the parameter combinations listed above.

Finally, I visualize the comparative statics results of increases in αw for different param-

eter combinations in the following figures:

Figure 6: Equilibrium objects in the dispersed data framework

Summing up, the key prediction from the baseline model also holds true in the dispersed

data framework when restricting attention to simple equilibria. Any simple equilibrium

retains the property that v̄ is bounded from below. The numerical simulations indicate that

a simple equilibrium always exists and that v̄ → 1 as ρ → 1.

6.3 Quality differentiation

In this section, I integrate quality differentiation into the analysis by combining the previous

search setup with the model of Mussa & Rosen (1978). The consumer’s type is now denoted

by θ ∼ U [0, 1]. The firms can offer different quality levels q ∈ [0, 1]. When paying the price

p for a good with quality q, a consumer’s net utility is:

u(q, p; θ) = θq − p (21)

There are two active firms, namely the firm with data and the firm without data. For any

consumer who arrives, the firm with data receives a signal θ̃ ∈ {θ̃L, θ̃H} about the consumer’s

type. The probability distribution of this signal is denoted by Pr(θ̃ = θ̃H |θ) := PrH(θ),
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where PrL(θ) := 1 − PrH(θ). The firm without data receives no information about any

consumer. The provision of any quality level is costless. As in the baseline analysis, there

are searchers and captive consumers, with shares ρ ∈ (0, 1) and (1− ρ). Any consumer can

only visit one firm. I label this model the quality differentiation framework.

By the revelation principle, it is without loss to restrict the strategy space of the firms to

direct mechanisms. Thus, an equilibrium in this game consists of the following objects: (i)

the search strategy of searchers, (ii) a quality-price menu (qnd(θ), tnd(θ)) offered by the firm

without data, and two quality price menus (qL(θ), tL(θ)) and (qH(θ), tH(θ)) that the firm

with data offers to consumers who generate the low signal and the high signal, respectively.

I restrict the strategy space of the firms to menus in which the mapping from messages into

qualities is a measurable function. I further restrict attention to simple equilibria:

Definition 2 An equilibrium in the quality differentiation framework is simple if and only

if (i) all searchers visit either firm with probability 0.5 or (ii) there exists a cutoff θ̄ such that

all searchers with θ < θ̄ visit a given firm and all searchers with θ > θ̄ visit the other firm.

Moreover, I impose some tie-breaking rules. I define the infimum of types that receive

quality at the firm with data and at the firm without data as θd and θnd, respectively.

Assumption 9 If firms offer identical quality-price menus, searchers visit either firm with

equal probability. For any other combination of menus, searchers with θ ≤ min{θd, θnd} visit

the firm j with the lower θj. If θnd = θd, searchers with θ ≤ min{θd, θnd} visit the same firm.

The main technical challenge in the following analysis stems from the fact that the

density of types that arrive at either firm is not continuous — it has a jump discontinuity

at θ̄. However, because this stark difference in the consumers’ search choices can only occur

at precisely one level of θ in a simple equilibrium, the types of consumers that arrive at the

firms are still absolutely continuous random variables and admit a well-defined density.

To express these densities, I define the probability that a consumer arrives at the firm

without data in equilibrium as Pr(Ind) and the probability that a consumer arrives at the firm

with data and generates the signal θ̃k as Pr(Ik). Because each firm has captive consumers,

these probabilities are all strictly positive, i.e. all information sets of both firms are on the

equilibrium path. To characterize the search behavior of consumers in a simple equilibrium,

I define gH ∈ {0, 0.5, 1} and gL ∈ {0, 0.5, 1} as the probabilities with which a searcher with

type θ > θ̄ and θ < θ̄ visits the firm with data, respectively. If all searchers visit either

firm with equal probability, this is captured by setting gL = gH = 0.5 and choosing any

θ̄. Defining g := (gL, gH), the type of a consumer who visits the firm without data has the
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following probability density:

fnd(θ; θ̄, g) =







(1/Pr(Ind))(ρ(1− gL) + 0.5(1− ρ)) θ < θ̄

(1/Pr(Ind))(ρ(1− gH) + 0.5(1− ρ)) θ > θ̄
(22)

The type of a consumer who visits the firm with data and generates the signal θ̃k has an

analogously defined probability density, which I call fk(θ; θ̄, g).

Given these densities, we can construct the virtual valuation functions. The virtual

valuation function of consumers who visit the firm without data, which I call Jnd(θ; θ̄, g),

is Jnd(θ; θ̄, g) = θ − (1 − F nd(θ; θ̄, g))/fnd(θ; θ̄, g). The virtual valuation function of con-

sumers who visit the firm with data and generate the signal θ̃k is Jk(θ; θ̄, g) = θ − (1 −

F k(θ; θ̄, g))/fk(θ; θ̄, g). Note that F nd(θ; θ̄, g) and F k(θ; θ̄, g) are the cumulative density

functions that accompany fnd(θ; θ̄, g) and fk(θ; θ̄, g), respectively. Moving forward, I impose

the following assumptions:

Assumption 10 The signal distribution PrH(θ) is continuous, strictly increasing, and maps

into (0, 1) for any θ ∈ [0, 1].

Under these assumptions, the insights of Milgrom & Segal (2002) apply and the expected

utility a consumer with type θ attains in an implementable mechanism can be expressed

using the integrability condition. Thus, the expected revenue the firm without data obtains

in an implementable mechanism is:

Rnd(qnd(θ); θ̄, g) = −Und(0) +

∫ 1

0

qnd(θ)Jnd(θ; θ̄, g)fnd(θ; θ̄, g)dθ (23)

The expected revenue the firm with data obtains from a consumer that generates θ̃k has

an analogous form. I have defined Und(0) as the utility the lowest type would attain in a

mechanism set by the firm without data. The set of consumer types for which the virtual

valuations are positive are partially characterized by the cutoffs θ̂nd, θ̂L, and θ̂H , which are

defined as follows:

θ̂k = inf
{
θ : Jk(θ; θ̄, g) > 0

}
; θ̂nd = inf

{
θ : Jnd(θ; θ̄, g) > 0

}
(24)

Note that the virtual valuation functions can jump down at θ̄, which means that the virtual

valuations are not necessarily positive for all θ above said cutoffs. In addition, while the

functions Jnd(θ; θ̄, g) and JH(θ; θ̄, g) are both piecewise strictly increasing in θ by construc-

tion, the low signal virtual valuation function JL(θ; θ̄, g) may be non-monotonic. To deal

with the former problem in the equilibrium analysis, I set up the following assumption:
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Assumption 11 Fix gL = 0 and gH = 1. For any θ̄ ≤ 0.5, JL(θ; θ̄, g) < 0 ∀θ ≤ θ̄.

Remark 4 For any linear PrH(v), assumption 11 is satisfied if ρ ≥ 0.34.

This assumption rules out equilibria in which searchers separate in a different way than

previously, i.e. equilibria in which searchers with low θ visit the firm without data. Such

equilibria could only be sustained if the firm without data implements an ironing mechanism,

in which it starts providing quality at lower types than the firm with data (formally, θ̂nd <

θ̂L). This assumption rules out such equilibria, given that any such equilibrium must feature

θ̂L < θ̄ and θ̄ ≤ 0.5, which is made impossible under said assumption. Moreover, there

generally exists no equilibrium in which all searchers randomize between the firms. These

notions are formalized in the following lemma:

Lemma 4 (Quality differentiation: search)

Consider the quality differentiation framework:

• When all searchers visit firms randomly, the cutoffs satisfy θ̂L < θ̂nd < θ̂H .

• Suppose assumption 11 holds as well. In a simple equilibrium, there exists a θ̄ such

that searchers visit the firm with data if θ < θ̄ and the firm without data if θ > θ̄.

The first result follows from the fact that consumers who generate the low signal have

a distribution of types θ with less mass at high types and vice versa. This shifts up the

distribution of virtual valuations. Intuitively, a firm would be more willing to offer positive

quality to a consumer with a given θ when observing the low signal (rather than the high

signal or no signal), because the mass of consumers with higher types for whom this decision

would incur a revenue loss becomes smaller. The second result holds because the firm without

data cannot attract low type consumers with an ironing mechanism in equilibrium.

The main result from the baseline analysis is retained in any simple equilibrium. This is

formalized in the following proposition, together with the accompanying assumptions:

Assumption 12 Fix gL = 1 and gH = 0.

• The function JL(θ; θ̄, g) is piecewise strictly increasing in θ for θ ∈ [0, θ̄) and θ ∈ (θ̄, 1].

• For any θ̄ ≥ 0.5(1 + ρ), limθ↓θ̄ J
k(θ; θ̄, g) > 0 holds for both k ∈ {L,H}.

Remark 5 Assumption 12 is satisfied for any linear signal distribution.

This assumption guarantees that, in equilibrium, all functions Jx(θ; θ̄, g) (with x ∈

{nd, L,H}) will be strictly negative if θ < θ̂x and strictly positive if θ > θ̂x. Thus, the

optimal qx(θ) assigns quality 1 to all types above θ̂x and quality 0 to all types below this

threshold. Such an equilibrium exists and retains the key property from the baseline analysis:
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Proposition 11 (Quality differentiation: equilibrium)

Consider the quality differentiation framework. Under assumptions 11 and 12, θ̄ ≥ 0.5(1+ρ)

must hold in any simple equilibrium, and a simple equilibrium always exists.

Any value θ̄ < 0.5(1 + ρ) cannot constitute an equilibrium, since θ̄ ≤ θ̂nd would hold for

any such θ̄ < 0.5(1 + ρ). This is not consistent with optimal consumer search behavior —

because θ̂L < θ̂nd, searchers with θ just above θ̂nd would strictly prefer to visit the firm with

data, but visit the firm without data in the supposed equilibrium. Thus, θ̄ ≥ 0.5(1 + ρ)

must hold in a simple equilibrium, which exactly replicates the result from the baseline

analysis. Such a simple equilibrium always exists under the stated assumptions. Thus, the

main equilibrium result from the baseline model is retained in this extension, albeit under

slightly stronger restrictions on ρ, as expressed in remark 4.

7 Conclusion

I have analyzed the relationship between data and market power in a duopoly model of

directed search and personalized pricing. One of the firms in the market has a data advantage

— in the baseline model, this firm receives a signal about the valuation of any consumer who

visits it, while its rival receives no such information. Consumers can costlessly visit one firm,

but have to pay a search cost to visit a second firm after the first. There are two groups of

consumers, namely captive consumers and searchers. Searchers have equal valuation for the

good of both firms and, based on their valuation, optimally choose which firms to visit.

Directed consumer search strongly facilitates the transmission of data advantages into

competitive advantages. In equilibrium, a large majority of searchers only visit the firm with

data. The firm without data is just visited by searchers with very high valuations. As the

share of searchers goes to 1, so does the market share of the firm with data, independent of

the extent of the data advantage.

While I have considered a framework in which data is only used to price discriminate, the

insights apply more generally. Consider, for instance, an insurance market: Consumers with

low risk benefit if a firm has information about their traits, because this would translate into

more favorable contract terms. Thus, these consumers would all prefer to visit a firm with

a data advantage, which improves the overall risk profile of consumers who visit this firm.

The generally better contract terms this firm can offer as a result would, in turn, attract

even more consumers, mirroring the unraveling channels present in my model.
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A Proofs - section 4

A.1 Proof of lemma 1

Part 1: In an equilibrium in which firms play pure strategies, pH < pL cannot hold.

To see this, note that the conditional valuation distribution of consumers that generate

ṽH at the firm with data strictly hazard rate dominates the conditional distribution for con-

sumers that generate ṽL (both of which are Lipschitz continuous) at the firm with data.

Consumers visit the firm with data with probability g(v) = ρd(v) + 0.5(1 + ρ), which is

measurable. I first define the conditional cumulative density functions:

F k(x) = Pr(v ≤ x|ṽk) =
1

Pr(ṽk)

∫ 1

0

Pr(v ≤ x ∧ ṽk|v)g(v)dv =
1

Pr(ṽk)

∫ x

0

Pr(ṽk|v)g(v)dv

We can define a probability density function fk(x) = (1/Pr(ṽk))Pr(ṽk|x)g(x) corresponding

to F k(x). The hazard rates for these distributions are hk(x) = fk(x)
1−Fk(x)

. Thus, hH(x) < hL(x)

∀x ∈ (0, 1), i.e. FH(x) strictly hazard ratio dominates FL(x), since:

hH(x) < hL(x) ⇐⇒

∫ 1

x

(Pr(ṽL|v)/Pr(ṽl|x))
︸ ︷︷ ︸

<1

g(v)dv <

∫ 1

x

(Pr(ṽH |v)/Pr(ṽH |x))
︸ ︷︷ ︸

>1

g(v)dv

Since pL and pH are available to set after any signal, there must be no profitable deviation

from pL to pH after ṽL and no profitable deviation from pH to pL after ṽH . But given the

hazard ratio ordering established above, it will either be profitable to deviate from pL to pH

when observing ṽL or vice versa, a contradiction.

Part 2: In an equilibrium in which firms play pure strategies, pL = pH cannot hold.

If pL = pH > pnd, or pL = pH < pnd, all consumers with valuation above the lowest

equilibrium price visit a given firm. This will imply that there is either a deviation from pL

or pnd. If pnd < pL = pH , for instance, all searchers with v ≥ pnd visit the firm without data.

Thus, pL = pL,M and pH = pH,M must hold, which contradicts pL < pH . Thus, suppose that

pL = pH = pnd. But then, all searchers randomize, which means that the distribution of

valuations that visit either firm is the same. As a result, the prices pL < pnd < pH would be

optimal, a contradiction.
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Part 3: In an equilibrium in which firms play pure strategies, pL < pnd < pH must hold.

Previous arguments establish that pL < pH must hold. Suppose, for a contradiction, that

pnd ≤ pL. Then, all searchers with v > pnd visit the firm without data, since pL < pH . For

pj ≥ pnd, the profit function of the firm without data thus becomes:

Πnd(pj) = pj

[

ρ

∫ 1

pj

(1)dv + 0.5(1− ρ)

∫ 1

pj

(1)dv

]

We know that the derivative of this is strictly positive when pj < 0.5. Thus, the equilibrium

price pnd must satisfy pnd ≥ 0.5 to avoid the existence of a profitable upward deviation.

This implies that pL ≥ pnd ≥ 0.5. In equilibrium, no searcher with v > pL arrives at

the firm with data - thus, equilibrium profits at the firm with data are only attained from

captive consumers. Because pL ≥ 0.5, the low signal profits from captive consumers can be

strictly increased by a downward deviation, a contradiction.

Suppose instead that pH ≤ pnd. Since pL < pH ≤ pnd thus holds, all searchers with v > pL

surely visit the firm with data in equilibrium. For prices in an open ball around pH , the high

signal profits of the firm with data are:

ΠH(pj) = pj

[

ρ

∫ 1

pj

PrH(v)dv + 0.5(1− ρ)

∫ 1

pj

PrH(v)dv

]

Thus, the price pH must set a corresponding first-order condition equal to 0 and hence

pH = pH,M > 0.5 must hold. Thus, pnd > 0.5 also holds. In equilibrium, no searcher with

v > pnd arrives at the firm with data - this firm only obtains profits from captive consumers.

By deviating downward towards 0.5, this firm strictly raises the profits it makes from cap-

tive consumers, while weakly raising the profits it may obtain from searchers, a contradiction.

Part 4: Existence of the cutoff v̄.

In equilibrium, we must have pL < pnd < pH . We know that all consumers with v ∈ (pL, pnd]

visit the firm with data, since their utility at the firm without data is 0.

Consider consumers with v ∈ (pnd, pH ], for whom the preference for the firm with data

is: PD(v) =
[
PrL(v)(v − pL)

]
− (v − pnd). This is strictly falling in v.
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Now consider consumers with v ∈ [pH , 1]. For them, the preference for the firm with data

is PD(v) =
[
PrL(v)(v − pL) + PrH(v)(v − pH)

]
− (v − pnd), which is continuous at pH . For

consumers with v ∈ [pH , 1], the preference for the firm with data is strictly falling in v.

Thus, there must be a unique v̄, because all searchers with v ∈ (pL, pnd] strictly prefer

the firm with data and the preference for this firm is strictly decreasing in v thereafter.

A.2 Proof of proposition 1

In equilibrium, the inequality pnd < v̄ must hold. Suppose, for a contradiction, that pnd ≥ v̄

holds. Because pL < pnd, consumers with v ∈ (pL, pnd] strictly prefer to visit the firm with

data. Since the expected utilities at the two firms are continuous in v, consumers with v just

above pnd will also prefer to visit the firm with data. Thus, we have a contradiction, since

these consumers visit the firm without data in the supposed equilibrium.

Now suppose, for a contradiction, that we have an equilibrium in which v̄ < 0.5(1 + ρ).

In equilibrium, the objective function of the firm with data for prices pj ∈ (pL, v̄) is:

Πnd(pj) = pj

[

ρ

∫ 1

v̄

(1)dν +
1− ρ

2

∫ 1

pj

dν

]

We consider any pnd < v̄ and any v̄ < 0.5(1 + ρ). Here, this derivative at pnd satisfies:

∂Πnd(pj)

∂pj

∣
∣
∣
∣
pnd∈(pL,v̄)

= ρ(1− v̄) + 0.5(1− ρ)− pnd(1− ρ) > ρ(1− v̄) + 0.5(1− ρ)− v̄(1− ρ) =

ρ− ρv̄ + 0.5(1− ρ)− v̄ + ρv̄ = 0.5(1 + ρ)− v̄ > 0

This is a contradiction - there would surely exist a profitable upward deviation.

A.3 Proof of proposition 2

Part 1: Preliminiaries - definition and properties of v̄HC .

I define a cutoff v̄HC that solves: maxpj≤v̄HC ΠH(pj; v̄
HC) = 0.5(1− ρ)ΠH,M(pH,M).

For any v̄ > v̄HC , maxpj≤v̄ Π
H(pj; v̄) > maxpj≤v̄HC ΠH(pj; v̄

HC), because the firm could set

the old argmaxpj≤v̄ Π
H(pj; v̄), but obtain strictly higher demand there via increases in v̄.
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(i) v̄HC < pH,M .

Suppose v̄HC = pH,M . Then, the left derivative of ΠH(pj; v̄
HC) at pj = v̄HC = pH,M would

be strictly negative - thus, profits could be strictly increased by a downward movement from

pj = v̄HC and we could not have said equality.

Suppose v̄HC > pH,M . Then, setting pj = pH,M < v̄HC is available within [0, v̄HC ] - this

would yield strictly higher profits than the scaled monopoly profits from captive consumers

only, so said equality could not be satisfied.

(ii) If v̄ ≥ v̄HC , i.e. maxpj≤v̄ Π
H(pj; v̄) ≥ 0.5(1 − ρ)ΠH,M(pH,M), the locally optimal price

pj ≤ v̄ must be strictly below v̄ and thus solve the FOC.

If it were equal to v̄, the left derivative there would need to be weakly positive, i.e.

∂ΠH(pj; v̄)

∂pj

∣
∣
∣
∣
pj↑v̄

= 0.5(1− ρ)

∫ 1

v̄

Prk(v)dv − v̄
[
0.5(1 + ρ)Prk(v̄)

]
≥ 0

In order for this derivative to be weakly positive, we know that v̄ < pH,M must hold, since

at v̄ ≥ pH,M , this derivative would be strictly negative. But thus, we have a contradiction,

as the (strictly higher) and thus positive right derivative at pj = v̄ would imply that setting

pj = pH,M would yield strictly higher profits, a contradiction to the assumed case.

We distinguish two cases in the proof, namely (a) v̄HC ≤ 0.5(1+ρ) and (b) 0.5(1+ρ) < v̄HC .

Part 2: Suppose (a) v̄HC ≤ 0.5(1 + ρ). For any v̄ ≥ 0.5(1 + ρ), pL,∗(v̄) < pH,∗(v̄) < v̄.

The price pH,∗(v̄) will lie below v̄. This is because v̄ ≥ v̄HC . Moreover, pL,∗(v̄) < v̄ holds for

any v̄ ≥ 0.5(1 + ρ) since pL,M < 0.5. Thus, these prices must solve:

ρ

∫ v̄

pk,∗

(
Prk(v)/Prk(pk,∗)

)
dv + 0.5(1− ρ)

∫ 1

pk,∗

(
Prk(v)/Prk(pk,∗)

)
dv = pk,∗

[
0.5(1 + ρ)

]
(25)

Since PrH(v) is strictly increasing, the following holds for all ∀v > pk,∗:
(
PrH(v)/PrH(pk,∗)

)
>

1 >
(
PrL(v)/PrL(pk,∗)

)
. This implies that pL,∗(v̄) < pH,∗(v̄) must hold, because otherwise

the respective two first-order conditions could not be jointly satisfied.

Part 3: Suppose (a) v̄HC ≤ 0.5(1+ρ). There exists a v̄ ∈ [0.5(1+ρ), 1] such that v̄ = v̂B(v̄).
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At v̄ = 0.5(1 + ρ), we have v̂B(0.5(1 + ρ)) = 1. To see this, note that pnd,∗(0.5(1 + ρ)) =

0.5(1 + ρ). In addition, we have pH,∗(0.5(1 + ρ)) < 0.5(1 + ρ). Thus, both prices at the firm

with data are strictly below pnd, i.e. v̂B(0.5(1 + ρ)) = 1.

I define D(v, v̄) := PrH(v)pH,∗(v̄) + PrL(v)pL,∗(v̄) − pnd,∗(v̄). Moreover, we can define

v̄′ ∈ (0.5(1 + ρ), 1] at a cutoff such that:

D(1, v̄′) := PrH(1)pH,∗(v̄′) + PrL(1)pL,∗(v̄′)− pnd,∗(v̄′) = 0

At most one such such v̄′ exists because pH,∗(v̄) and pL,∗(v̄) are strictly rising in v̄ for

v̄ ∈ (0.5(1 + ρ), 1) and pnd,∗(v̄) is strictly falling in v̄ on this interval. Thus, the function

D(1, v̄) is strictly increasing in v̄. At v̄ = 0.5(1+ρ), we know thatD(v, v̄) < 0 holds for any v.

Suppose that no such v̄′ exists. Then, D(1, v̄) < 0 must hold for any v̄ ∈ [0.5(1 + ρ), 1]. If

this inequality were reversed for any v̄, we would have a contradiction by continuity of D(.).

Note that D(v, v̄) is strictly increasing in v for any v̄, because pH,∗(v̄) > pL,∗(v̄) holds for any

v̄ and PrH(v) is strictly increasing in v. Thus, D(v, v̄) ≤ D(1, v̄) < 0 holds in this scenario

and hence v̂B(v̄) = 1 for any v̄ ∈ [0.5(1 + ρ), 1], which means that v̂B(v̄) = v̄ ⇐⇒ v̄ = 1.

Suppose instead that a v̄′ ∈ [0.5(1+ ρ), 1] exists - this can be v̄′ = 1. At v̄ ≤ v̄′, D(1, v̄) ≤ 0,

i.e. D(v, v̄) < 0 holds for any v < 1, and hence v̂B(v̄) = 1 holds for any v̄ ∈ [0.5(1 + ρ), v̄′].

At v̄ ∈ [v̄′, 1], v̂B(v̄) will be the unique solution to:

D(v̂B, v̄) := PrH(v̂B)pH,∗(v̄) + PrL(v̂B)pL,∗(v̄)− pnd,∗(v̄) = 0

Note that v̂B(v̄) is continuous in v̄ on v̄ ∈ [v̄′, 1] by the implicit function theorem, since the

above equation is continuous in both arguments. Because v̂B(1) ≤ 1, there exists a solution

to v̂B(v̄) = v̄ on [v̄′, 1] when v̄′ ≤ 1 exists (by the intermediate value theorem).

Part 4: Suppose (a) v̄HC ≤ 0.5(1 + ρ). If v̂B(v̄) = v̄ holds at v̄ > 0.5(1 + ρ), the re-

sulting combination pL,∗(v̄), pH,∗(v̄), pnd,∗(v̄) and v̄ constitute a perfect Bayesian equilibrium.

Recall that: v̂B(v̄) := sup
{
v ∈ [0, 1] : Pr(ṽL|v)pL,∗(v̄) + Pr(ṽH |v)pH,∗(v̄)

︸ ︷︷ ︸

exp. price at firm with data

< pnd,∗(v̄)
}
.
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By construction, all prices of the firm with data are set optimally if searchers visit the

firm with data if and only if v < v̄.

Since v̄ = v̂B(v̄), it is optimal for searchers to visit the firm with data if and only if

v < v̄ = v̂B(v̄). We know pL < pH < v̄ = v̂B(v̄) holds because v̄ > 0.5(1 + ρ). More-

over, we know that pL < pnd < pH holds for the best response prices listed above. If v̄ = 1,

this holds by construction. If v̄ < 1, the expected prices must be exactly equal at v̄, which

requires that pL < pnd < pH .

Thus, the expected price at the firm with data is strictly lower for consumers with v = pH ,

i.e. all searchers with v ∈ (pL, pH) strictly prefer to visit the firm with data. All consumers

with v ≤ pL visit the firm with data. The sign of the expected price relationship flips at

v̄ for consumers with v > pH , which implies that it is optimal for them to sort according to v̄.

Part 5: Suppose (b) 0.5(1 + ρ) < v̄HC . An equilibrium exists.

In general, the set of searchers who prefer to visit the firm with data, given the optimal

pricing of firms, is given by:

v̂G(v̄) = sup

{

v ∈ [0, 1] : PrL(v)max{v−pL,∗(v̄), 0}+PrH(v)max{v−pH,∗(v̄), 0} ≥ max{v−pnd,∗(v̄), 0}

}

Depending on the optimal high signal price, this function takes different forms:

v̂HM(v̄) = sup

{

v ∈ [0, 1] : PrL(v)max{v−pL,∗(v̄), 0}+PrH(v)max{v−pHM , 0} ≥ max{v−pnd,∗(v̄), 0}

}

v̂FC(v̄) = sup

{

v ∈ [0, 1] : PrL(v)max{v−pL,∗(v̄), 0}+PrH(v)max{v−pH,FC(v̄), 0} ≥ max{v−pnd,∗(v̄), 0}

}

Note that these suprema are not defined over the expected prices as was the case for v̂B(v̄),

but over expected utilities. Note also that pH,FC(v̄) solves the FOC given in equation (25).

Case 1: v̂HM(v̄HC) ≥ v̄HC .

At v̄ = v̄HC , we have that pH,FC(v̄HC) < v̄HC and pHM will yield exactly the same high

signal profits. Thus, setting the FOC high signal price would be optimal for the firm with

data. Also, pH,FC(v̄HC) < v̄HC < pHM . Thus, we have that v̂HM(v̄HC) ≤ v̂FC(v̄HC) (more

people would visit the firm with data if offered the high signal FOC price there).
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By implication, v̂FC(v̄HC) ≥ v̂HM(v̄HC) ≥ v̄HC > pH,FC(v̄HC). Thus, the indifference val-

uation must be above pH,FC(v̄HC) at this v̄ and hence set the expected prices equal. This

establishes that v̂B(v̄HC) ≥ v̄HC , which suffices as a boundary condition for existence of a

solution to v̂B(v̄) = v̄ on v̄ ∈ [v̄HC , 1], because v̂B(1) ≤ 1 and v̂B(v̄) is continuous on [v̄HC , 1].

Such a solution constitutes an equilibrium, because for v̄ ∈ [v̄HC , 1], the price pH,∗(v̄) is

strictly below v̄ - thus, the expected price at the firm with data is lower for v = pH,FC(v̄) at

this solution v̄ and thus, the implied search behavior is optimal, since v̂B(v̄) = v̄.

Case 2: v̂HM(v̄HC) < v̄HC (we are still in the case 0.5(1 + ρ) < v̄HC)

On the interval v̄ ∈ [0.5(1 + ρ), v̄HC ], the optimal prices set by the firm with data are

continuous. Since v̄ > 0.5(1 + ρ), so is pnd,∗(v̄). The function v̂HM(v̄HC) is thus continuous

on this interval. This is because the supremum v̂HM must lie weakly above pnd,∗(v̄), and

must thus solve the following (if the supremum is below 1):

PrL(v̂HM)(v̂HM − pL,∗(v̄)) + PrH(v̂HM)max{v̂HM − pHM , 0} −
(
v̂HM − pnd,∗(v̄)

)
= 0

This function is continuous in both objects. Thus, the solution v̂HM(v̄) must be continuous as

well. At v̄ = 0.5(1+ρ), we know pnd(0.5(1+ρ)) = 0.5(1+ρ), while pL,∗(0.5(1+ρ)) < 0.5(1+ρ).

Thus, v̂HM(0.5(1 + ρ)) ≥ 0.5(1 + ρ). Together with the fact v̂HM(v̄HC) < v̄HC , the in-

termediate value theorem thus guarantees the existence of a solution to v̂HM(v̄) = v̄ on

v̄ ∈ [0.5(1 + ρ), v̄HC ], which thus also solves v̂G(v̄) = v̄.

This constitutes an equilibrium because the prices pL,∗(v̄), pnd,∗(v̄) and pH,M are optimal.

Moreover, pL,∗(v̄) < pnd,∗(v̄). Finally, pnd,∗(v̄) < pH,M . This is because pnd,∗(v̄) < v̄ < v̄HC <

pH,M . By definition, searching according to this cutoff is then optimal, because it’s argument

is strictly falling in v for v > pnd,∗(v̄), since pL,∗(v̄) < pH,M .

A.4 Proof of proposition 3

A proof of a more general statement may be found in the proof of proposition 6.
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A.5 Proof of corollary 1

I work with the equilibrium v̄ for a given signal distribution as a function of ρ, i.e. v̄∗(ρ). An

equilibrium with pL < pH always exists. First, note that limρ→1 v̄
∗(ρ) = 1, by the squeeze

theorem, because, for any ρ ∈ (0, 1), we have that 0.5(1 + ρ) ≤ v̄∗(ρ) ≤ 1.

The total demand that the firm without data receives in equilibrium is:

Dnd∗(ρ) = ρ

∫ 1

v̄∗(ρ)

dv + 0.5(1− ρ)

∫ 1

pnd(ρ)

dv = ρ[1− v̄∗(ρ)] + 0.5(1− ρ)

∫ 1

pnd(ρ)

dv

Now consider the limit of this as ρ → 1, noting that all components of demand are continuous

in ρ and that
∫ 1

pnd dv ∈ [0, 1]. Thus, we have limρ→1 D
nd∗(ρ) = (1)(0)+ (0)

∫ 1

pnd dv = 0. Since

the demand of the firm without data approaches 0 when ρ → 1, the market share of the firm

with data approaches 1 by any definition of the market share (sales or profit).

A.6 Statement and proof of lemma 5

Lemma 5 Consider the sequential search framework. In any equilibrium in which firms play

pure strategies:

• The ordering pL < pnd < pH must hold.

• There exists an ǫ > 0 such that any searcher who visits the firm without data first in

equilibrium will not search when offered a price pj ∈ [0, pnd + ǫ] at this firm.

• There exists a v̄ > pL such that all searchers with v ∈ (pL, v̄) visit the firm with data

first and all searchers with v ∈ (v̄, 1] visit the firm without data first.

• The ordering v̄ ≥ 0.5(1 + ρ) holds.

Proof:

Part 1: In equilibrium, pL < pH must hold.

Part 1a: There exists no equilibrium in which pH < pL.

Previous arguments imply the following: In any equilibrium with pH 6= pL, the ordering

pmin = min{pL, pH} < pnd and pmax = max{pL, pH} > pnd must hold.

Suppose pL ≤ pnd + s, i.e. no searcher will leave the firm with data to search at the
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equilibrium prices. Thus, for pj ∈ [pH , pL], all consumers who arrive at the firm with data

buy there iff the price is below their v - then, the structure of equilibrium profits equal the

one defined in the proof of lemma 1 and there is either a deviation from pL to pH or vice versa.

Suppose instead that pL > pnd + s. Then, the firm with data only sells to its captive

consumers at pL and thus pL = pL,M . All searchers who arrive at the firm without data buy

in an open ball around pnd. Hence, pnd ≥ 0.5 holds, and pnd ≥ 0.5 > pL, a contradiction.

Part 1b: There exists no equilibrium in which pL = pH .

This follows from the same arguments made in the baseline model. The only possible equi-

librium candidate is pL = pH = pnd, which is ruled out under our tie-breaking rule.

Part 2: In equilibrium, pnd ∈ (pL, pH) must hold.

This follows from the arguments made in the proof of lemma 1.

Part 3: Any searcher who optimally visits the firm without data first must find it strictly

optimal to not search when receiving pnd.

To see this, define Und,s(v) and Und,ns(v) as the expected utilities of visiting the firm without

data first and searching or not searching, respectively. Define Ud,s(v) as the expected utility

of visiting the firm with data and searching if and only if pH is received there.

Consider a consumer that optimally visits the firm without data first, who must have ν > pnd.

Suppose, for a contradiction, that PrL(v)(pnd − pL) − s ≥ 0 ⇐⇒ Und,s(v) ≥ Und,ns(v).

Crucially, Ud,s(v) > Und,s(v) will also hold, because:

PrL(v)(v − pL) + PrH(v)(v − pnd − s) > PrL(v)(v − pL) + PrH(v)(v − pnd)− s

The utility of visiting the firm without data is Und,s(v), while the utility of visiting the firm

with data first is at least Ud,s(v). It would thus be strictly optimal for this consumer to visit

the firm with data first, a contradiction. Hence, PrL(v)(pnd − pL) − s < 0 must hold for

any consumer that visits the firm without data first in equilibrium, which implies that there

exists an ǫ > 0 such that these consumers would also not search for prices pj ≤ pnd + ǫ.
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Part 4: Uniqueness of cutoff v̄ for equilibria with pnd + s ≥ pH

We consider an equilibrium candidate and define a ṽI that solves PrL(ṽI)(pnd− pL)− s = 0.

All consumers with v ∈ (pL, ṽI) will surely visit the firm with data first by previous ar-

guments, because search would be optimal for them after visiting the firm without data (if

v > pnd). Now, we just need to make a case distinction w.r.t the ordering of pH and ṽI .

(i) pH < ṽI : For any searcher with v > ṽI , the preference for the firm with data is strictly

falling in v, because it is equal to:

PD(v) = PrL(v)(v−pL)+PrH(v)(v−pH)−(v−pnd) =⇒
∂PD(v)

∂v
=

∂PrL(v)

∂v
(pH−pL) < 0

(ii) ṽI ≤ pnd < pH : All searchers with v ∈ (pL, pnd) visit the firm with data. No searcher

will search after receiving pH since pnd + s ≥ pH by assumption. Thus, the preference for

the firm with data is the following for all v ∈ (pnd, pH ]:

PD(v) = PrL(v)(v−pL)+PrH(v)(0)−(v−pnd) =⇒
∂PD(v)

∂v
= PrL(v)−1+

∂PrL(v)

∂v
(v−pL) < 0

For v > pH , we have PD(v) = PrL(v)(v − pL) + PrH(v)(v − pH) − (v − pnd). Thus, PD(v)

is continuous at v = pH and falling globally. This implies the result.

(iii) ṽI ∈ (pnd, pH): All searchers with v ≤ ṽI visit the firm with data first. Analogous

arguments show that PD(v) is continuous at v = pH and strictly falling in v.

Part 5: Uniqueness of cutoff v̄ in equilibria with pnd + s < pH

Searchers leave the firm with data to search when receiving pH if and only if v > pnd + s.

As before, ṽI solves PrL(ṽI)(pnd − pL)− s = 0. Calculating the relative preferences for the

firm with data for two separate cases, namely (i) pnd + s < ṽI and (ii) ṽI ≤ pnd + s yields

the desired result based on steps that mirror those taken in the previous part.

Part 6: Establishing that v̄ ≥ 0.5(1 + ρ) holds true.

First, note that pnd < v̄ must hold. Suppose, for a contradiction, that we have an equi-

librium with pL < pH in which searchers apply a cutoff strategy with v̄ ≤ pnd.
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This cannot be an equilibrium - consider any consumer with v just above pnd who visits

the firm without data first. This consumer would not search thereafter (else, she would

optimally visit the firm with data). Thus, her utility at the firm without data is v − pnd,

which converges to 0 as v → pnd. By contrast, their utility at the firm with data is at least

PrL(v)(v − pL), which remains strictly positive for any such v. Since expected utilities are

continuous in v, these consumers would rather visit the firm with data, a contradiction.

Hence, pnd < v̄ must hold in an equilibrium (by the choices of searchers). However, if

v̄ < 0.5(1 + ρ), such prices are not optimal for the firm without data:

(i) Case 1: pH ≤ pnd + s.

No arriving searcher will leave the firm without data for prices in an open ball around

pnd. A zero measure of searchers arrives at the firm without data after visiting the its rival,

because pH ≤ pnd + s (if pH = pnd + s, there would else be undercutting by the firm with

data). Thus, for prices in an open ball around pnd, the profits of the firm without data are:

Πnd(pj; v̄) = pj

[

ρ

∫ 1

v̄

(1)dv + 0.5(1− ρ)

∫ 1

pj

(1)dv

]

To constitute an equilibrium, pnd must lie strictly below v̄. But for v̄ < 0.5(1 + ρ), the

derivative at any such price is strictly positive, a contradiction.

(ii) Case 2: pH > pnd + s.

If v̄ ≤ pnd + s, previous arguments directly imply the result. If v̄ > pnd + s, searchers

with v ∈ (pnd+s, v̄) visit the firm with data first and then search if and only if they generate

ṽH . Since pH > pnd + s holds by assumption, these consumers buy in an open ball around

pnd. In an open ball around pnd, the profits at the firm without data are hence:

Πnd(pj; v̄) = pjρ

∫ v̄

pnd+s

PrH(v)dv + pjρ

∫ 1

v̄

(1)dv + pj0.5(1− ρ)

∫ 1

pj

(1)dv

For any v̄ < 0.5(1 + ρ), the derivative of the second component is strictly positive for any

pj < v̄. The derivative of the first component is positive. Hence, v̄ ≥ 0.5(1 + ρ) must hold.
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A.7 Proof of proposition 4

Any searcher who visits two firms with positive probability must either (i) visit the firm

with data first with positive probability and search thereafter with positive probability or

(ii) visit the firm without data first and search thereafter with positive probability. Lemma

5 implies that pL < pH .

Part 1: Any consumer who visits the firm without data first will find it strictly optimal to

not search thereafter.

This follows from the arguments made in the proof of lemma 5, part 3. Thus, the set

of consumers who visit the firm without data first (with positive probability) and search

with positive probability thereafter must have measure zero.

Part 2: If pH < pnd + s, the set of consumers who visit the firm with data first (with

positive probability) and search thereafter has measure zero.

Here, any searcher would find it strictly optimal to not search after any price the firm

with data would offer to her in equilibrium. This implies the result.

Part 3: If pH = pnd + s, the set of consumers who visit the firm with data first (with

positive probability) and search thereafter must have measure zero.

By lemma 5, it must hold that pL < pnd. Thus, pL does not induce search. In a hypo-

thetical equilibrium like this, the firm with data would prefer to undercut pH , since this

deters search by all consumers.

Part 4: Under assumption 2, there exists no equilibrium in which pnd + s < pH and a

strictly positive measure of searchers visit the firm with data first and search thereafter with

positive probability.

Suppose, for a contradiction, that there exists such an equilibrium. By lemma 5, the search

strategy is a cutoff rule with a cutoff v̄ in such equilibria.

Part 4a: In order for a positive measure of searchers to search after visiting the firm with

data, the ordering v̄ > pnd + s must hold.
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Suppose that v̄ ≤ pnd + s. By lemma 5, searchers who visit the firm with data first must

have v ∈ [0, v̄]. Moreover, search is only optimal if v ≥ pnd+s. But since v̄ ≤ pnd+s, the set

of searchers who visit the firm with data first & search thereafter with positive probability

is a subset of [0, v̄] ∩ [pnd + s, 1], which has zero measure, a contradiction.

Part 4b: Optimal pricing of the firm without data.

We have proven that pnd + s < v̄ must hold. All searchers with v ∈ [pnd + s, v̄] will visit

the firm with data first and search when being offered pH , which occurs with probability

PrH(v). Thus, the firm without data makes the sale to all these searchers at the price pnd

with probability PrH(v). Since pnd + s < v̄, the firm without data will also make the sale to

all searchers who initially visit it. For pj in an open ball around pnd, the profit function of

the firm without data is hence:

Πnd(pj) = pj

[

ρ

∫ v̄

pnd+s

PrH(v)dv + ρ

∫ 1

v̄

dv + 0.5(1− ρ)

∫ 1

pj

dv

]

Thus, an equilibrium pnd must equal pnd,3(v̄), which solves:

[

ρ

∫ v̄

pnd,3+s

PrH(v)dv + ρ

∫ 1

v̄

dv + 0.5(1− ρ)

∫ 1

pnd,3

dv

]

− 0.5(1− ρ)pnd,3 = 0

Part 4c: If pnd,3(1) + s > pHM (which holds by assumption 3), such an equi. does not exist.

In this equilibrium, pH = pH,M > pnd + s must be satisfied, where pnd = pnd,3(v̄) must

hold for the equilibrium level of v̄, whatever this may be. Note that the function pnd,3(v̄) is

falling in v̄. Thus, we have pnd,3(1) + s ≤ pnd,3(v̄) + s for any possible v̄.

Suppose that pnd,3(1) + s > pHM , noting that pnd,3(1) = pnd,s as defined in assumption

4. Since pH = pH,M < pnd,3(v̄) + s = pnd + s, this equilibrium cannot exist, because there

exists no v̄ at which the necessary conditions for the existence of this equilibrium are satisfied.

A.8 Proof of proposition 5

Part 1: The first two bullet points hold by lemma 5.

Part 2: When ΠH(0.5; 0.5(1 + ρ)) > 0.5(1 − ρ)ΠH,M(pH,M) (assumption 5), the optimal
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pH,∗(v̄) lies strictly below v̄ for any v̄ ≥ 0.5(1 + ρ). Hence, pH,∗(v̄) solves:

ρ

∫ v̄

pH,∗

PrH(v)dv + 0.5(1− ρ)

∫ 1

pH,∗

PrH(v)dv − pH,∗
[
0.5(1 + ρ)PrH(pH,∗)

]
= 0

By assumption, we have ΠH(0.5; v̄) ≥ ΠH(0.5; 0.5(1 + ρ)) > 0.5(1 − ρ)ΠH,M(pH,M) for any

v̄ ≥ 0.5(1 + ρ). Thus, the optimal high signal price must lie strictly below v̄. A pH,∗(v̄) as

defined above always exists by the intermediate value theorem.

Part 3: Consider an equilibrium candidate in which pL < pnd < pH , pH ≤ pnd + s, pH < v̄,

and v̂(pL, pH , pnd) = v̄. It is optimal for searchers to visit the firm with data if and only if

v > v̄ and never search thereafter.

Part 3a: In such an equilibrium candidate, the cutoff ṽI(pL, pH , pnd) will lie strictly below

v̂I(pL, pH , pnd), where these cutoffs are defined as follows:

PrL(ṽI(.))
(
pnd − pL

)
− s = 0 ; PrL(v̂I(.))pL + PrH(v̂I(.))pH − pnd = 0

Note first that PrL(v)pL+PrH(v)pH = pnd ⇐⇒ PrL(v)
(
pnd−pL

)
+PrH(v)

(
pnd−pH

)
= 0.

Now note that pnd + s ≥ pH by assumption, i.e. pnd − pH ≥ −s. Thus:

0 = PrL(ṽI)
(
pnd−pL

)
−s < PrL(ṽI)

(
pnd−pL

)
−PrH(ṽI)s ≤ PrL(ṽI)

(
pnd−pL

)
+PrH(ṽI)(pnd−pH)

Since ∂
∂v

[
PrL(v)

(
pnd−pL

)
+PrH(v)

(
pnd−pH

)]
< 0, we have ṽI(pL, pH , pnd) < v̂I(pL, pH , pnd).

Part 3b: The postulated search behaviour is optimal:

Because v̂(pL, pH , pnd) = v̄, v̄ is either equal to v̂I(pL, pH , pnd) or 1. Define p = (pL, pH , pnd).

It was established that v̂I(p1) > ṽI(p1).

Suppose ṽI(p) ≥ 1 in equilibrium, which then implies that v̂I(p) > 1, and thus v̂(p) = 1 = v̄.

For all consumers with v < 1 ≤ ṽI(p), it is strictly optimal to visit the firm with data in

equilibrium, i.e. to visit according to the rule represented by v̄ = 1. No searcher will search

after visiting the firm with data since pH ≤ pnd + s. No searcher that arrives at the firm

without data first will find it optimal to search afterwards (since no such consumer exists).
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Suppose ṽI(p) < 1. Because ṽI(p) < v̂I(p) will also hold, v̂(p) is either 1 when v̂I(p) ≥ 1

or v̂(p) = v̂I(p). In either case, ṽI(p) < v̄. Thus, any consumer with v ≥ v̄ finds it strictly

optimal to not search after visiting the firm without data first. Because pH ≤ pnd + s and

v̂(p) = v̄, she will visit the firm without data first and not search thereafter.

Any searcher with v < ṽI(p) visits the firm with data first and does not search there-

after. Any searchers with v ∈ [ṽI(p), v̄] would not search after visiting either firm. Because

v̄ = v̂(p), they hence optimally visit the firm with data.

Part 4: Consider v̄1, where v̂G(v̄1) = v̄1, and v̄1 ∈ [0.5(1+ρ), 1], which exists by proposition

2. If the accompanying (pL,1, pH,1, pnd,1) satisfy pH,1 ≤ pnd,1 + s, it is an equilibrium.

Search: It is optimal for searchers to visit the firm with data if and only if v > v̄ and

never search thereafter.

The ordering pL,1 < pnd,1 < pH,1 holds by construction, since v̂B(v̄1) = v̄1. The latter holds

because assumption 5 guarantees that a solution to v̂G(v̄) = v̄ on v̄ ∈ [0.5(1 + ρ), 1] also

solves v̂B(v̄) = v̄. By assumption 5, we also have pH,1 < v̄1. By specification, pH,1 ≤ pnd,1+s.

Thus, the insights of part 3 apply and the result follows.

Pricing: There are no profitable deviations from the equilibrium prices, given that searchers

split according to v̄1 and do not search thereafter (for equilibrium prices).

Consider first the firm without data. True competitive profits are bounded from above

Πnd(pj; v̄
1). This is because no consumers arrive after search. For prices pj ∈ [0, pnd + ǫ],

true profits equal this function. For prices sufficiently high, searchers leave this firm to

search, implying that true profits are below Πnd(pj; v̄
1). By construction, pnd,1 maximizes

Πnd(pj; v̄
1), and so there will be no profitable deviations.

Analogous arguments show that the firm with data has no profitable deviations, because

competitive profits are bounded from above by Πk(pj; v̄
1), conditional on the signal ṽk.

Part 5: These exists a candidate for an equilibrium of category 2 when pH,1 > pnd,1 + s.

Part 5a: Setup
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In an equilibrium of this category, we have pL = pL,∗(v̄), pnd = pnd,∗(v̄), pH = pnd,∗(v̄) + s.

Recall that pL,1 = pL,∗(v̄1), pnd,1 = pnd,∗(v̄1), and that pH,1 = pH,∗(v̄1). We are looking for a

v̄ that solves:

v̄ = v̂S(v̄) := sup
{
v ∈ [0, 1] : PrL(v)pL,∗(v̄) + PrH(v)(pnd,∗(v̄) + s)− pnd,∗(v̄)

︸ ︷︷ ︸

DS(v;v̄):=PrL(v)(pL,∗(v̄)−pnd,∗(v̄))+PrH(v)s

< 0
}

For any level of v̄ ≥ 0.5(1+ ρ), we have pL,∗(v̄) < v̄ and pnd,∗(v̄) ≤ v̄. Since pL,∗(v̄) ≤ pLM <

0.5 and pnd,∗(v̄) ≥ 0.5, we have pL,∗(v̄) < pnd,∗(v̄). Since pH,1 > pnd,1 + s, we have:

v̂(pL,∗(v̄1), pnd,∗(v̄1) + s, pnd,∗(v̄1))
︸ ︷︷ ︸

=v̂S(v̄1)

≥ v̂(pL,∗(v̄1), pH,∗(v̄1), pnd,∗(v̄1))
︸ ︷︷ ︸

=v̂B(v̄1)

Part 5b: If pH,∗(v̄1) > pnd,∗(v̄1) + s, there exists a v̄2 ∈ [0.5(1 + ρ), 1] s.t. v̂S(v̄2) = v̄2.

To show this, we work towards applying the intermediate value theorem. We know that

(i) v̂S(1) ≤ 1 and (ii) v̂S(v̄1) ≥ v̄1. The second point follows from our previous results, i.e.:

v̂(pL,∗(v̄1), pnd,∗(v̄1) + s, pnd,∗(v̄1))
︸ ︷︷ ︸

=v̂s(v̄1)

≥ v̂(pL,∗(v̄1), pH,∗(v̄1), pnd,∗(v̄1)))
︸ ︷︷ ︸

=v̂B(v̄1)

= v̄1

As previously, we can show continuity of the function v̂S(v̄) on the interval v̄ ∈ [v̄1, 1],

because all price functions will be strictly below v̄ and hence continuous. Thus, the inter-

mediate value theorem establishes existence of an appropriate solution.

(i) Subcase 1: DS(1; v̄1) > 0 (interior search cutoff at v̄1).

Note that DS(1, v̄) is rising in v̄ - in this subcase, we hence have that DS(1; v̄) > 0 holds for

all v̄ ∈ [v̄1, 1]. Thus, the object v̂S(v̄) must solve the following for all v̄ ∈ [v̄1, 1]:

D(v̂S, v̄) = PrL(v̂S)
(
pL,∗(v̄)− pnd,∗(v̄)

)
+ PrH(v̂S)s = 0

Such a solution always exists in the relevant interval. This function is continuous in both

arguments - thus, the implicit function theorem guarantees that the solution function v̂S(v̄)

will also be continuous (we can apply this theorem because the derivative of D(v̂S, v̄) w.r.t

v̂S will never be zero, given that pL,∗(v̄) < pnd,∗(v̄) holds for the relevant v̄).

(ii) Subcase 2: DS(1; v̄1) ≤ 0 (all searchers would visit firm with data at v̄1).
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Find v̄′ ≥ v̄1 that solves DS(1; v̄′) = 0. If this does not exist, we know that DS(1; v̄) < 0 for

all v̄ ∈ [v̄1, 1], which implies that we will have a solution at 1, i.e. v̂S(1) = 1. If such a v̄′

exists, we know that v̂S(v̄) must solve the following equation for all v̄ ∈ [v̄′, 1]:

D(v̂S, v̄) = PrL(v̂S)
(
pL,∗(v̄)− pnd,∗(v̄)

)
+ PrH(v̂S)s = 0

At v̄ = v̄′, we know v̂S(v̄′) = 1 and at the opposite end, we know it is weakly below 1. The

solution function is continuous - existence of a fixed point is hence guaranteed.

Part 6: Suppose pH,1 > pnd,1 + s. At v̄2, the following two conditions are satisfied: (i)

pH,2 < v̄2 and (ii) pH,2 < argmaxpj Π
H(pj; v̄

2) := pH,∗(v̄2).

Part 6a: If pH,∗(v̄1) > pnd,∗(v̄1) + s holds, previous results imply that v̄2 ≥ v̄1.

To see this, recall v̂S(v̄) := sup
{
v ∈ [0, 1] : PrL,∗(v)pL(v̄)+PrH(v)

(
pnd,∗(v̄)+s

)
< pnd,∗(v̄)

}
.

Suppose v̄1 = 1. Then, v̄2 = v̄1 must be true, by previous arguments.

Suppose instead that v̄1 < 1. Previous arguments have established that:

v̂(pL,∗(v̄1), pnd,∗(v̄1) + s, pnd,∗(v̄1))− v̄1 > v̂(pL,∗(v̄1), pH,∗(v̄1), pnd,∗(v̄1))− v̄1 = 0

Note that v̂(pL,∗(v̄), pnd,∗(v̄) + s, pnd,∗(v̄)) is weakly decreasing in v̄ because pL,∗(v̄) is rising

in v̄ and pnd,∗(v̄) is falling in v̄. Thus, any consumer that previously already had a higher

expected price at the firm with data will continue to do so when v̄ rises.

Thus, we have that the function v̂S(pL,∗(v̄), pnd,∗(v̄) + s, pnd,∗(v̄)) − v̄ is strictly decreas-

ing in v̄ and that this function is strictly positive at v̄1. Hence, v̄2 ≥ v̄1 must hold.

Part 6b: Since v̄2 ≥ v̄1, pH,2 < argmaxpj Π
H(pj; v̄

2) = pH,∗(v̄2) and pH,2 < v̄2 hold.

Note that v̄1 ∈ [0.5(1+ ρ), 1]. Because v̄2 ≥ v̄1 ≥ 0.5(1+ ρ), argmaxpj Π
H(pj; v̄

2) = pH,∗(v̄2)

will be strictly below v̄2 and solve a FOC. Because v̄2 ≥ v̄1, we know that the prices satisfy:

(i) pk,∗(v̄2) ≥ pk,∗(v̄1) and (ii) pnd,∗(v̄2) ≤ pnd,∗(v̄1). Thus:

pH,2 = pnd,∗(v̄2) + s ≤ pnd,∗(v̄1) + s < pH,∗(v̄1) ≤ pH,∗(v̄2) < v̄2
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Part 7: The solution v̄2, with accompanying prices, is an equilibrium if pH,1 > pnd,1 + s.

Part 7a: At v̄2, ΠH(p2,H ; v̄2) ≥ 0.5(1− ρ)ΠH,M(pH,M) holds by assumption 5.

Note that pH,2 = pnd,∗(v̄2) + s > 0.5, since pnd,∗(v̄2) > 0.5. High signal profits for pj < v̄2,

which includes pH,2 since pH,2 < pH,∗(v̄2) < v̄2 are:

ΠH(pj; v̄
2) = pjρ

∫ v̄2

pj

PrH(v)dv + pj0.5(1− ρ)

∫ 1

pH
PrH(v)dv

We know that this function is strictly concave on pj ∈ [0, v̄2] and that 0.5 < pH,2 < pH,∗(v̄2) <

v̄2. Thus, profits from setting the price pj = 0.5 will be below equilibrium profits. Moreover,

we have v̄2 > 0.5 + 0.5ρ, which also implies that ΠH(0.5; v̄2) ≥ ΠH(0.5; 0.5 + 0.5ρ). By

assumption, the final component is above ΠH,M(pH,M).

Part 7b: Search

First, we note that the search behavior represented by the cutoff v̄2 will be optimal by

the arguments in part 3. This is because pL,2 < pnd,2 < pH,2 and pH,2 = pnd,2 + s hold by

construction, pH,2 < v̄2 by part 6, and v̂(pL,2, pnd,2, pH,2) = v̄2 holds by definition.

Part 7c: Pricing

Now consider optimal pricing. Since no consumer leaves to search on the equilibrium path, we

know that Πnd(pj; v̄) and ΠL(pj; v̄) are upper bounds for the true respective objective func-

tions. Since the former are both globally maximized by our prices for the given v̄2 > 0.5(1+ρ),

we know there can be no profitable deviations from them pnd or pL.

Now consider the optimal pricing calculus of the firm with data when observing ṽH . Since

pH,1 > pnd,1 + s, part 6 established that pH,2 < argmaxpj Π
H(pj; v̄

2) and pH,2 < v̄2. Because

the high signal objective function is strictly concave on pj ∈ [0, v̄], we thus know that there

cannot be any downward deviations that are profitable. Any upward deviation would, at

best, yield profits equal to 0.5(1 − ρ)ΠH,M(pH,M). This deviation is not profitable by the

result in part 7a. No other possible deviations remain.
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A.9 Proof of proposition 6

Define the maximal and minimal prices that the firms offer as p̄j and pj, respectively. We

work with the search strategy d(v) and with the cutoff prices p̂j(v), where j ∈ nd, d. I show

that there exists no equilibrium in which firms mix for three different possible cases:

(i) Suppose pnd < pd.

The price pnd is played with probability 1. Suppose it is part of a mixed strategy. Then,

there exists an interval of prices below pd that are played by the firm without data.

All searchers with v < pd will surely visit the firm without data first. For any pj < pd,

no searcher who arrives at the firm without data first will search. Any searcher arrives at

the firm without data first with probability 1− d(v).

Consider consumers who arrive at the firm without data second. Any such consumer has

v > pd and must have received a price strictly above pd - thus, they entail fully inelastic de-

mand. These consumers arrive at the firm without data with probability d(v)Pr(pd > p̂d(v)).

Thus, the firm with data makes the following profits when setting any price pj ∈ [pnd, pd]:

Πnd(pj) = pj

[

ρ

∫ pd

pj

(1)dv + ρ

∫ 1

pd

[
d(v)Pr(pd > p̂d(v)) + (1− d(v))

]
dv + 0.5(1− ρ)

∫ 1

pj

(1)dv

]

This function is strictly concave, which implies that there cannot be any other prices in the

interval pj ∈ [pnd, pd] that are played by the firm with data. Thus, the price pnd must be

played with probability 1 by our restriction of connected support.

Now consider the prices of the firm with data. Because pnd is played with probability 1

and pnd < pd, all searchers visit the firm without data and never arrive at the firm with

data. Thus, the firm with data just makes the sale to its captive consumers for any price

pj > pd. This implies that the firm with data would not mix, since its monopoly profit func-

tions are strictly concave. Summing up, firms would not mix in an equilibrium of category (i).

(ii) Suppose pd < pnd

As before, pd must be played with probability 1 by the firm with data in the corresponding
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information set. This is because all searchers with valuation below pnd visit the firm with

data. All searchers with valuation above pnd will generate inelastic demand for the firm with

data around pd, because no such consumer would search when receiving a price below pnd.

Now consider the optimal pricing of the firm without data. A key step in this proof is to

show that no consumer who visits the firm without data first would search after receiving pnd.

Suppose, for a contradiction, that a searcher with valuation v visits the firm without data

first and finds it weakly optimal to search when receiving the price pnd, which means that

she will search for any price she can receive at this firm. Define the signal which warrants

the offering of pd as ṽ1 and the converse signal as ṽ2, with corresponding probability Pr2(v).

Because pd < pnd, the expected utility this consumer will attain by visiting the firm without

data first is the following (because searching is always weakly optimal):

Und(v) = Pr1(v)(v − pd) + Pr2(v)

∫ p̄H

pH

∫ p̄nd

pnd

max{v − pnd, v − pH , 0}dF nd(pnd)dF 2(pH)− s

Alternatively, this consumer (who must have v > pd) can visit the firm with data first and

search if and only if ṽ2 is generated. This yields strictly higher expected utility, namely:

Ud(v) = Pr1(v)(v− pd) + Pr2(v)

∫ p̄H

pH

∫ p̄nd

pnd

[
max{v− pnd, v− pH , 0} − s

]
dF nd(pnd)dF 2(pH)

Thus, any such consumer would not visit the firm without data first, a contradiction. Thus,

any searcher who visits the firm without data first must find it strictly optimal to not search

at pnd. Because search preferences are continuous in the initial price, searchers will also not

search for prices just above it (by the dominated convergence theorem).

There exist ǫ > 0 and δ > 0 such that:

• Searchers with v ∈ [pd, pnd + ǫ] visit the firm with data first. Setting ǫ small enough

also implies that these consumers would never search thereafter.

• Searchers who visit the firm without data first will not search if offered a price pj ∈

[pnd, pnd + δ].

• Searchers who arrive at the firm without data second buy if offered pj ∈ [pnd, pnd + s].
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Set τ = min{ǫ, δ, s}. For all pj ∈ [pnd, pnd + τ ], the profits of the firm without data are:

Πnd(pj) = pj

[

ρ

∫ 1

pnd+ǫ

[
d(v)Pr(p̂d(v) > pd) + (1− d(v))(1)

]
dv + 0.5(1− ρ)

∫ 1

pj

(1)dv

]

The demand implied by searchers is fully inelastic for these prices. This means that profits

are strictly concave, which implies that pnd must be played with probability 1 by the restric-

tion of connected support.

We have established that pd and pnd both have to be played with probability 1. Thus,

the only possibility of mixing is that the firm with data mixes after one of the two signals.

Define that the firm with data mixes after receiving ṽm, with prices in the support [pm, p̄m].

No consumer who visits the firm without data first will search thereafter (by an option value

logic, as above). Moreover, any searchers who visit the firm with data first will leave to

search if v > pnd + s and the price they receive is above this cutoff.

It cannot hold that pnd + s < p̄m. Then, all searchers will surely not consume at the firm

with data for pj ∈ [pnd + s, p̄m], which means profits only accrue from captive consumers.

Since these are strictly concave, there is a contradiction.

Finally, suppose that p̄m ≤ pnd+s, i.e. that none of the prices played after ṽm trigger search.

Then, we can show that pd, which is strictly lower than p̄m by the assumption that the firm

with data is mixing, must be played after the low signal. If pd were played after ṽH , there

would be a contradiction by hazard ratio ordering arguments (since no price triggers search).

Since pd < p̄m and pd is played after ṽL, the strategy of searchers (d(v)) will be a cutoff

rule, because the price distribution at the firm with data becomes strictly less favorable as

a consumer’s valuation increases. Thus, searchers will visit the firm with data only if their

valuation is below v̄. Because p̄H ≤ v̄ must hold (else the firm only sells to captive consumers

for a subinterval of prices), demand from any price pj ∈ [pH , p̄H ] is:

ΠH(pj) = pj

[

ρ

∫ v̄

pj

(1)PrH(v)dv + 0.5(1− ρ)

∫ 1

pj

(1)PrH(v)dv

]

But this is strictly concave, so the firm with data would also never mix.

(iii) Suppose pd = pnd.
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For prices in an open ball above the lowest price, no consumer that arrives at any firm

will leave to search. Consider this open interval of prices, and call it [pd, pd + ǫ]. If ǫ is set

small enough, consumers with valuation in this open ball will generally never leave to search.

Even if some individual prices in this interval are played with positive probability, the pref-

erences that consumers with v ∈ [pd, pd + ǫ] have over which firm to visit will be continuous

in v. This can be shown by applying the dominated convergence theorem.

Suppose that there exists a v′ ∈ [pd, pd + ǫ] such that a searcher with valuation v′ strictly

prefers to visit the firm with data. Then, consumers with valuation in an open ball with

radius δ around v′ will also strictly prefer to visit the firm with data first. As a result, setting

any price pj ∈ [v′, pd + ǫ] will yield the following profits for the firm with data:

pj

[

ρ

∫ v′+δ

pj

Prk(v)dv+ρ

∫ 1

v′+δ

[
d(v)+(1−d(v))Pr(p̂nd(v) < pnd)

]
Prk(v)dv+0.5(1−ρ)

∫ 1

pj

Prk(v)dv

]

This profit function is strictly concave in this domain, a contradiction to mixing indifference.

Similar arguments rule out that some searchers with v ∈ [pd, pd+ǫ] strictly prefer to visit the

firm without data. Thus, they must all be indifferent and randomize by our tie-breaking rule.

But then, the firm without data would make the following profits for any price pj ∈ [pd, pd+ǫ]:

pj

[

ρ

∫ pd+ǫ

pj

(0.5)dv + ρ

∫ 1

pd+ǫ

[
(1− d(v)) + d(v)Pr(p̂d(v) < pd)

]
dv + 0.5(1− ρ)

∫ 1

pj

(1)dv

]

But this profit function is strictly concave once more. Thus, the firm without data would

have to set this lowest price with probability 1. If the firm with data sets this price with

probability 1 as well, we have no MSE. Alternatively, it sets it with probability below 1.

Then, all searchers with v > pnd visit the firm without data and don’t search. Thus, the firm

with data would not mix, because it sells only to captive consumers for any of its prices.

A.10 Proof of corollary 2

Part 1: As ρ → 1, assumptions 4 and 5 both hold.

Consider any s > 0. Recall that assumption 4 required that pnd,s + s > pH,M , where
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pnd,s(ρ) solves the following:

ρ

∫ 1

pnd,s(ρ)+s

Pr(ṽH |v)dv + 0.5(1− ρ)

[ ∫ 1

pnd,s(ρ)

dv − pnd,s(ρ)

]

= 0

One can show that pnd,s(ρ) → max{0.5, 1− s} as ρ → 1. This means that limρ→1[p
nd,s(ρ) +

s] ≥ 1 > pH,M , i.e. assumption 4 is satisfied.

Now consider assumption 5, namely ΠH(0.5; 0.5+ 0.5ρ) > 0.5(1− ρ)ΠH,M(pH,M). As ρ → 1,

the LHS goes to something strictly positive, while the LHS goes to 0. Thus, the assumption

is satisfied as well.

Part 2: As ρ → 1, there is no search on the equilibrium path and v̄ ≥ 0.5(1 − ρ) holds in

equilibrium by the previous results. Thus, v̄ → 1 as ρ → 1, which implies the result.

A.11 Proof of corollary 3

We consider s < pH,1 − pnd,1. Then, the equilibrium (pL,2, pH,2, pnd,2, v̄2) is played, in which:

v̂(pL,∗(v̄2), pnd,∗(v̄2) + s, pnd,∗(v̄2))− v̄2 = 0

Consider two values of s for which s < pH,1 − pnd,1 and call them s′ and s′′, with s′′ > s′.

Define the resulting equilibrium levels of v̄ as v̄2(s′′) := v̄2,′′ and v̄2(s′) := v̄2,′. I show that

v̄2(s′′) ≤ v̄2(s′). If v̄2(s′) = 1, the result is immediate.

Thus, suppose that v̄2,′ < 1. Then, v̄2,′ must set the expected prices exactly equal. For

s′′ > s′, we thus have: PrL(v̄2,′)(pL,∗(v̄2,′)−pnd,∗(v̄2,′))+PrH(v̄2,′)s′′ > 0. Because pL,∗(v̄2,′)−

pnd,∗(v̄2,′) < 0 and pnd,∗(v̄) (pL,∗(v̄)) is falling (rising) in v̄, this expression is rising in v̄. As

a result, v̄2,′′ < v̄2,′, which completes the proof.

B Proofs - section 5

B.1 Proof of proposition 7

If e > 0, it is optimal to exercise this right only if v ≥ pa+e. Suppose the right to anonymity

is exercised by a positive measure of consumers. Thus, the corresponding information set for

the firm with data is on-path and this firm understands that a consumer who has anonymized

is a searcher and has v > pa+e. Thus, there would be a profitable upward deviation from pa.
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Now consider e = 0 and suppose that a strictly positive measure of consumers exercises

the right to anonymity.

Suppose pnd < pa. Then, any searcher with v > pnd would not visit the firm with data

and utilize their right to data portability. If a consumer exercises this right, she must have

v < pnd. But then, setting the price pa would be suboptimal, a contradiction.

Suppose pa ≤ pnd. Then, all searchers weakly prefer to visit the firm with data. Sup-

pose pL 6= pH . Then, pmin < pa < pmax must hold. But then, consumers with v ≤ pa won’t

exercise the right to anonymity. Thus, there is a profitable upward deviation from pa, as the

firm with data knows that any consumer who anonymizes has a valuation strictly above pa.

Thus, pL = pH must hold. If pa is not exactly equal, either no consumer will anonymize (con-

tradiction) or all searchers anonymize (then contradiction to ordering, since valuations are

uniform). The final case is hence pL = pH = pa. By assumption, consumers then randomize

between anonymizing and not anonymizing - and then, valuations would be uniform once

more and we obtain several contradictions. For instance, pL = pH would not be optimal.

B.2 Proof of proposition 8

There are five equilibrium prices - the prices of the firm with data (pL, pH), the uniform price

of the firm without data (pnd) and the signal prices at this firm (pnd,L, pnd,H). Consider an

equilibrium in which (i) searchers with v ∈ [0, vt) visit the firm without data and port their

data, and (ii) searchers with v ∈ (vt, 1] visit the firm without data but do not port their data.

Pricing & candidate existence:

We are searching for an equilibrium with the property pnd,L < pnd < pnd,H - such that

the cutoff vt can be interior. The prices pL,nd and pH,nd must, given vt, solve:

pnd,k(vt) = argmax
pj

[

pj

∫ vt

pj

ρPrk(v)dv

]

This optimal price will always be strictly below vt. The price pnd must maximize:

Πnd(pj; v
t) = pj

[

ρ

∫ 1

vt
✶[pj ≤ v]dv + 0.5(1− ρ)

∫ 1

0

✶[pj ≤ v]dv

]
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In order for the search behavior we posited to be optimal, we need to have pnd < vt. This,

in turn, implies that vt ≥ 0.5(1 + ρ) must hold. For any vt ≥ 0.5(1 + ρ), the price pnd will

equal pnd,∗(vt). Because all prices must be below vt in equilibrium, vt must solve:

vt = sup
{
v ∈ [0, 1] : PrH(v)pnd,H(vt) + PrL(v)pnd,L(vt)− pnd(vt) < 0

}

︸ ︷︷ ︸

:=v̂T (vt)

Previous arguments show that the function in this supremum is rising in v, which means

we have a well-defined supremum. Moreover, pnd,L(vt) and pnd,H(vt) are both rising in vt,

while the uniform price pnd(vt) is falling in this object. This proves that v̂T (vt) is falling in vt.

This function is also continuous because all price functions are continuous in vt. Together

with two border conditions on vT (.), the intermediate value theorem guarantees the existence

of a solution vt to v̂T (vt)− vt = 0. These border conditions are: At vt = 0.5(1 + ρ), we have

v̂T (0.5(1 + ρ)) = 1 > 0.5(1 + ρ). At vt = 1, we have v̂T (1) ≤ 1 by definition.

Thus, we know that vt = v̂T (vt) holds at some vt ≥ 0.5(1 + ρ) and the prices at the firm

with no data are set optimally, given this search behaviour. We also know that all implied

optimal prices lie below vt. In the supposed equilibrium, the firm with data is only visited

by captive consumers and thus sets the monopoly prices.

Search: If vt = v̂T (vt), it is optimal for consumers to search in the posited way.

For all searchers with v < vt, we know that porting the data will be strictly better than

remaining anonymous at the firm without data. This is because the expected price when

porting the data lies below pnd for a consumer with v = pnd,H . For any consumer with

v > pnd,H , the preferences for porting are strictly falling in v and switch sign at vt.

For consumers with v > vt, it is better to remain anonymous at the firm without data

than to port the data. Now I argue that, for any searcher, it is better to port the data to

the firm without data than to visit the firm with data. In equilibrium, the firm with data

set the prices pL = pL,M and pH = pH,M .

Since vt ≤ 1, we know that pL,nd ≤ pL = pL,M and pH,nd ≤ pH = pH,M . Thus, any

searcher prefers porting the data to visiting the firm with data since:

PrH(v)max{v−pH,nd, 0}+PrL(v)max{v−pL,nd, 0} ≥ PrH(v)max{v−pH , 0}+PrL(v)max{v−pL, 0}
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Thus, all searchers with v < vt port the data. All searchers with v > vt prefer to visit the

firm without data anonymously over porting the data, which they in turn prefer to visiting

the firm with data. Hence, the postulated search behavior is optimal.

C Proofs - section 6

C.1 Proof of lemma 2

For a given valuation v, the random variable ṽ is uniformly distributed with mean v and

support [v − ǭ, v + ǭ]. Hence, the conditional density is fṽ|v = 1/2ǭ for ṽ ∈ [v − ǭ, v + ǭ] and

0 otherwise.

Part 1: The price the firm with data will set is weakly rising in ṽ.

I consider the cumulative density function of v, conditional on ṽ. The density of arriv-

ing consumers valuations is g(v), which is strictly positive and bounded throughout. The

probability that the consumer’s v is below x, conditional on this consumer generating ṽr, is:

Pr(v ≤ x|ṽr) =

∫ x

0

fv|ṽ(v|ṽ
r)dv =

∫ x

0

fṽ|v(ṽ
r|v)g(v)

fṽ(ṽr)
dv =

∫ x

0

✶[v ∈ [ṽr − ǭ, ṽr + ǭ]](1/2ǭ)g(v)

fṽ(ṽr)
dv

Call the corresponding cdf B(x|ṽ). The corresponding density is: b(x|ṽ) = (1/fṽ(ṽ))✶[x ∈

[ṽ − ǭ, ṽ + ǭ]](1/2ǭ)g(x). We can define the hazard ratio:

h(x|ṽ) =
✶[x ∈ [ṽ − ǭ, ṽ + ǭ]](1/2ǭ)g(x)

∫ 1

x
✶[v ∈ [ṽ − ǭ, ṽ + ǭ]](1/2ǭ)g(v)dv

Consider two signal realizations ṽ1, ṽ2 with ṽ1 < ṽ2. Suppose that there is an overlap be-

tween the supports. If there is no overlap, i.e. ṽ1 + ǭ ≤ ṽ2 − ǭ, then p(ṽ1) < p(ṽ2) must

hold, because each price must be in the support of valuations corresponding to a signal. The

interval of valuations where the two signals overlap is [ṽ2 − ǭ, ṽ1 + ǭ].

Suppose, for a contradiction, that pd(ṽ2) := p2 < pd(ṽ1) := p1. The price p2 must sat-

isfy p2 ≥ ṽ2 − ǭ - else, there is a profitable upward deviation. Similarly, p1 < ṽ1 + ǭ must

hold. Thus, both prices must lie in [ṽ2 − ǭ, ṽ1 + ǭ]. For any x ∈ [ṽ2 − ǭ, ṽ1 + ǭ], the hazard

ratios satisfy h(x|ṽ1) > h(x|ṽ2), because ṽ2 > ṽ1. But then, pd(ṽ) must be weakly rising in

the signal ṽ - else, there is a profitable deviation from one of these prices.
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Part 2: Consider any v > 0. There exists a ṽ′ > ṽlb(v) := v − ǭ such that pd(ṽ′) < v.

Suppose there exists no such ṽ′ > ṽlb(v). By implication, pd(ṽ′) ≥ v must hold for any

ṽ′ > ṽlb(v). Consider the profits the firm with data would make after any ṽ′ for some

pj ∈ [max{ṽ′ − ǭ, 0}, ṽ′ + ǭ], which are:

Π(pj; ṽ
′) = pj

1

fṽ(ṽ′)

∫ ṽ′+ǭ

pj

(1/2ǭ)g(v)dv

We can take the following limit of the postulated equilibrium profits:

lim
ṽ′→ṽlb(v)

Π(pd(ṽ′); ṽ′) =
(

lim
ṽ′→ṽlb(v)

pd(ṽ′)
) 1

fṽ(ṽ′)

∫ ṽlb(v)+ǭ

lim
ṽ′→ṽlb(v)

pd(ṽ′)

(1/2ǭ)g(v)dv = 0

The latter condition holds because ṽlb(v) + ǭ = v and limṽ′→ṽlb(v) p
d(ṽ′) ≥ v by assumption.

Thus, profits converge to zero in this case as ṽ → ṽlb(v).

Alternatively, the firm with data could set the price 0.5
(
ṽ′ + ǭ

)
, at which it would be guar-

anteed to make positive profits. For any ṽ, the profits from this approach are:

Π(0.5
(
ṽ′ + ǭ

)
; ṽ′) = 0.5

(
ṽ′ + ǭ

)
[

1

fṽ(ṽ′)

∫ ṽ′+ǭ

max{ṽ′−ǭ,0}

(1/2ǭ)g(v)✶[v > 0.5(ṽ′ + ǭ)]dv

]

This remains strictly positive even in the limit at ṽ′ → ṽlb(v) because v > 0. Thus, we would

have a profitable deviation for some signal close enough to ṽlb(v), and thus a contradiction.

Part 3: For any v > 0, the expected utility of visiting the firm with data is strictly positive.

On the interval ṽ ∈ [ṽlb(v), ṽ′], we will have pd(ṽ) < v (by monotonicity of pd(ṽ)). Thus, the

expected utility of the consumer, namely
∫ v+ǭ

v−ǭ
max{v − pd(v), 0}(1/2ǭ)dv, is positive.

Part 4: The expected utility of visiting the firm with data is Lipschitz continuous.

The utility of visiting the firm with data is Ud(v) =
∫ v+ǭ

v−ǭ
max{v − pd(ṽ), 0}(1/2ǭ)dṽ. There

exists K =
(

2
2ǭ
+ 1

)
∈ R

+ such that |Ud(v1)− Ud(v2)| ≤ K|v1 − v2| for any v1, v2.

Part 5: By the previous results, the search rule of consumers is a cutoff rule.
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Consider consumers with v ≤ pnd receive 0 utility at the firm with data, but strictly positive

utility at the firm with data (by previous arguments), so they all prefer the firm without

data. If v > pnd, the expected utility of visiting the firm without data is Und(v) = v − pnd.

It was shown that Ud(v) is Lipschitz continuous, hence differentiable almost everywhere.

The derivative of Ud(v) is strictly below 1, since the price distribution at the firm with data

changes in v. Thus, the preference for the firm with data, namely Ud(v)−Und(v), is strictly

falling in v. This establishes the result.

C.2 Proof of proposition 9

Part 1: If searchers search according to a cutoff rule, the optimal price function at the firm

with data is:

pd(ṽ) =







0.5(ṽ + ǭ) ṽ ∈ [−ǭ, 3ǭ]

(ṽ − ǭ) ṽ ∈ [3ǭ, 1 + ǭ]

Part 1a: Monopoly pricing

The maximization problem of a monopolist with data upon observing ṽ1 ∈ [ǭ, 1 − ǭ] is

to maximize the following through choice of pj ∈ [ṽ1 − ǭ, ṽ1 + ǭ]:

Π(pj; ṽ
1) = pj

∫ ṽ1+ǭ

pj

(1/2ǭ)dv = pj
[
ṽ1 + ǭ− pj

]

The first-order condition of this expression is equal to 0 at p(ṽ1) = 0.5(ṽ1 + ǭ). Whether

this constitutes an interior price depends on ǭ. The lower bound is ṽ1 − ǭ. At ṽ1 = 3ǭ, we

have that p(3ǭ) = 2ǭ, which is exactly equal to the lower bound. Thus, we can compute the

following pricing schedule on [ǭ, 1− ǭ] because 3ǭ < 1− ǭ by the fact that ǭ < 0.25:

p∗(ṽ1) =







0.5(ṽ1 + ǭ) ṽ1 ∈ [ǭ, 3ǭ]

(ṽ1 − ǭ) ṽ1 ∈ [3ǭ, 1− ǭ]

Analogous arguments establish the optimal prices for ṽ1 < ǭ and ṽ1 > 1 − ǭ. Summing up,

the optimal prices of a monopolist are given by the schedule listed at the beginning.

Part 1b: In the competitive equilibrium, the optimal price function remains unchanged.

In equilibrium, searchers will visit the firm with data if v < v̄ and vice versa. Because

they can all obtain strictly positive utility at the firm with data, pnd < v̄ must hold. Thus,
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searchers will push up pnd, and thus v̄ > pnd ≥ 0.5 must hold in an equilibrium.

Consider a signal ṽ1 < 3ǭ, where ṽ1 + ǭ < 4ǭ < 0.5 < v̄. Thus, all searchers with

v ∈ [ṽ1 − ǭ, ṽ1 + ǭ] arrive at the firm with data. The optimal price thus remains 0.5(ṽ1 + ǭ).

Thus, consider a signal ṽ1 > 3ǭ, for which the upper bound of valuations may lie above

v̄. If ṽ1 + ǭ ≤ v̄, as before, then nothing changes - the optimal price is ṽ1 − ǭ.

Suppose instead that v̄ < ṽ1 + ǭ. Then, there are two further possibilities.

(i) v̄ ≤ ṽ1 − ǭ. Then, no searchers would be arriving at this firm and generate ṽ1 - which

means the optimal price is ṽ1 − ǭ (the sale is only made to captive consumers).

(ii) v̄ ∈ (ṽ1 − ǭ, ṽ1 + ǭ): Some arriving searchers will generate ṽ1.

Suppose we have a price at which the sale is only made to captive consumers, which implies

that pj ≥ v̄ > ṽ1 − ǭ. But because ṽ1 > 3ǭ, there is a downward deviation (since this raises

the profits from captive consumers). Thus, consider a price pj < v̄, at which:

Π(pj; ṽ
1) = pj

[

ρ

∫ v̄

pj

(1/2ǭ)dv + 0.5(1− ρ)

∫ min{ṽ1+ǭ,1}

pj

(1/2ǭ)dv

]

Thus, the derivative at any pj will be weakly below the monopoly case, which means that

the optimal price must also be directly at the lower bound here.

Part 2: In equilibrium, v̄ ≥ 0.5(1 + ρ) must hold.

For v̄ < 0.5(1 + ρ), we have pnd,∗(v̄) ≥ v̄. However, this is not consistent with optimal

search behaviour. Any searcher with v > 0 receives strictly positive utility at the firm with

data. Thus, pnd < v̄ must hold in an equilibrium. But such a price would never be optimally

set if v̄ < 0.5(1 + ρ).

Part 3: Establishing equilibrium existence.

For any v̄ ≥ 0.5(1 + ρ), the firm with data will price according p∗(ṽ). The strategy d(v) is a
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cutoff rule. The price pnd depends on v̄. I work with the following object:

v̂C(v̄) = sup

{

v ∈ [0, 1] :

∫ v+ǭ

v−ǭ

max{v − pd(ṽ), 0}(1/2ǭ)dṽ −max{v − pnd(v̄), 0} ≥ 0

}

Since the function in this supremum is strictly falling in v, the supremum separates the

groups of searchers who visit the firm with data from those who visit the firm without data.

As before, we work with boundary conditions and the intermediate value theorem. At

v̄ = 0.5(1 + ρ), it holds that pnd = 0.5(1 + ρ), which means that v̂C(v̄) > v̄ will hold at

v̄ = 0.5(1+ ρ). At v̄ = 1, v̂C(1) ≤ 1 holds by construction. Finally, the utility of visiting the

firm with data will not be affected by changes in v̄, but only pnd responds to changes in v̄.

This establishes continuity of v̂C(v̄), which confirms the existence of an equilibrium.

C.3 Proof of lemma 3

Because there is no search after visiting the first firm by assumption, previous arguments

show that any equilibrium must satisfy the ordering pLW ≤ pHW and pLB ≤ pHB.

Moreover, there exists no simple equilibrium in which all consumers randomize under as-

sumption 4. If all consumers randomize, pLB = pLB,M < pLW,M = pLW would be optimally

set - but then, searchers with v ∈ (pLB, pLW ) would not randomize.

Part 1: In a simple equilibrium, pLB ≤ pLW must hold.

Suppose, for a contradiction, that pLW < pLB. We know that all consumers with v < pLB

will surely visit the firm with worse data.

Suppose that pHW ≤ pLB holds as well. Given that pLW ≤ pHW and pLB ≤ pHB must

hold as well, pLW ≤ pHW ≤ pLB ≤ pHB holds. Then, all searchers will visit the firm with

worse data (since pLW < pLB), which would then imply a contradiction, since pLB < pLW

holds true when the valuations of consumers are uniformly distributed by assumption 6.

Thus, the only possible equilibria with pLW < pLB must satisfy pLB < pHW . Then, there

are two possibilities now (i) pLW < pLB < pHW ≤ pHB, and (ii) pLW < pLB ≤ pHB < pHW .

Neither of these can constitute an equilibrium, as I will show now.
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(i) Ruling out pLW < pLB < pHW ≤ pHB.

Note first that all consumers with v ≤ pLB will surely visit the firm with worse data. The

expected utilities of consumers with v ∈ [pHB, 1] are:

UB(v) = v−
(
PrHB(v)pHB+PrLB(v)pLB

)
; UW (v) = v−

(
PrHW (v)pHW +PrLW (v)pLW

)

For a consumer with v > 0.5, the expected price at the firm with better data is higher:

PrHB(v)pHB +PrLB(v)pLB > PrHW (v)pHB +PrLW (v)pLB > PrHW (v)pHW +PrLW (v)pLW

But this yields a contradiction. Consumers with v > max{pHB, 0.5} will prefer visiting the

firm with worse data, because the expected price there is lower for them. In any equilibrium,

pHB < 1 must hold. Thus, both consumers with valuations v ∈ (max{pHB, 0.5}, 1] and

low-valuation consumers prefer the firm with worse data. Either the definition of the simple

equilibrium fails or all consumers prefer the firm with worse data - in which case our results on

the resulting optimal prices under uniform valuations imply that pLB < pLW , a contradiction.

(ii) Ruling out pLW < pLB ≤ pHB < pHW .

Once again, all searchers with valuations v ≤ pLB surely visit the firm with worse data.

Thus, the cutoff v̄ in a simple equilibrium must be such that all consumers with v > v̄ visit

the firm with better data.

Suppose, for a contradiction, that v̄ < pHB. Then, no searchers will buy at the firm with

worse data (since searchers only visit the firm with worse data if v ≤ v̄), i.e. pHW = pHW,M .

The price of the firm with better data is strictly above v̄, i.e. has to satisfy pHB = pHB,M .

However, we know that pHW,M < pHB,M , which implies that pHW < pHB, a contradiction.

Suppose, instead, that v̄ ∈ [pHB, pHW ). Then, searchers put upward pressure on pHB and

vice versa. Thus, the two prices will optimally satisfy pHW < pHB, a contradiction.

Thus, we have ruled out any candidate for an equilibrium in which pLW < pLB.

Part 2: In a simple equilibrium (where pLB ≤ pLW by part 1), the cutoff v̄ must be

such that all consumers with v > v̄ visit the firm with worse data.
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In such an equilibrium, all consumers with v ≤ pLW surely visit the firm with better data. If

all consumers weakly prefer the firm with better data, then their strategy can be described

by cutoff rule v̄ = 1, where they visit the firm with better data if and only if v ≤ v̄.

Suppose there exists some consumer who strictly prefers the firm with worse data. Then,

any cutoff v̄ must be interior, i.e. v̄ ∈ (0, 1]. Because all consumers with v ≤ pLW surely

visit the firm with better data, there exists no v̄ such that all consumers with v < v̄ visit

the firm with worse data and vice versa.

Part 3: If v̄ < v̄LW , pLW (v̄) ≥ v̄ will be optimally set by the firm with worse data.

Consider the function H(v̄) := ρ
∫ 1

v̄
PrLW (v)dv + 0.5(1− ρ)

[
∫ 1

v̄
PrLW (v)dv − v̄P rLW (v̄)

]

.

Our assumption on concavity of the low signal monopoly profit function implies that this

function is strictly decreasing in v̄. An appropriate v̄LW that sets the above equation to zero

exists by the intermediate value theorem.

Now consider a v̄ < v̄LW , at which H(v̄) > 0. Consider the optimal pricing problem of

the firm with worse data when observing the low signal. For prices pj < v̄, the profits are:

ΠLW (pj) = ρpj

∫ 1

v̄

PrLW (v)dv + 0.5(1− ρ)pj

∫ 1

pj

PrLW (v)dv

The derivative
∂ΠLW (pj)

∂pj
is strictly decreasing in pj by previous arguments. At pj = v̄, we

know that the (left) derivative is strictly positive because v̄ < v̄LW . Thus, this derivative

must be strictly positive for all pj < v̄. Thus, pLW (v̄) ≥ v̄ must hold.

Part 4: In a simple equilibrium, v̄LW ≤ v̄ must hold.

Suppose, for a contradiction, that v̄ < v̄LW . Then, we have established that pLW (v̄) ≥ v̄

will hold. Note that pHW (v̄) ≥ pLW (v̄) will generally hold. Also recall that pLB ≤ pLW must

hold in a simple equilibrium.

If pLB < pLW , a consumer with v = pLW will strictly prefer to visit the firm with bet-

ter data - and by continuity arguments, so will consumers with valuation v just above pLW .

This represents a contradiction to the properties of v̄. This is because v̄ ≤ pLW , but con-

sumers with a valuation in an open ball above pLW , i.e. with v > v̄, would strictly prefer to
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visit the firm with better data but visit the firm with worse data in equilibrium.

Suppose that pLB = pLW . There exists no simple equilibrium in which a firm sets a uniform

price. Thus, pLB < pHB and pLW < pHW must hold in such an equilibrium.

Suppose that pLB = pLW < 0.5. Then, all consumers with valuation in an open ball above

pLW will strictly prefer to visit the firm with better data, because they receive the low signal

price there with a higher probability, a contradiction because v̄ ≤ pLW .

Suppose alternatively that pLB = pLW ≥ 0.5. Then, consumers with v < 0.5 will visit

the firm with better data (since they offer lowest the equilibrium price with higher probabil-

ity to them) and consumers with v just above 0.5 will visit the firm with worse data, since

they receive the low signal price with higher probability at the firm with worse data. Thus,

this cutoff must then be exactly equal to v̄ = 0.5 in a simple equilibrium. Searchers visit

the firm with better data if and only if v < v̄ = 0.5. But then, the optimal price of the firm

with better data is strictly below 0.5, a contradiction.

C.4 Proof of proposition 10

Part 1: For any v̄ ≥ max{pHB, v̄LW}, the function v̂X(v̄) will be continuous.

The prices of the firm with better data are both strictly below v̄ because pHB ≤ v̄, which

implies that pL,∗(v̄) and pH,∗(v̄) must solve the FOCs and be continuous.

We can also generally prove continuity of the prices of the firm with worse data. The

low signal price has to be weakly below v̄ and always solve a FOC that is continuous for any

v̄ ≥ v̄LW - this establishes this part of the result. The high signal price is also continuous.

It solves a FOC for all v̄ ≥ v̄HW . For any v̄ ∈ [pHW,M , v̄HW ), the optimal price is v̄. For any

v̄ < pHW,M , the optimal price is pHW,M .

Part 2: Suppose pHB ≤ v̄LW . A solution v̄ ∈ [v̄LW , 1] to v̂X(v̄) = v̄ exists.

Then, our assumption tells us that the expected price functions at v̄ = v̄LW are such

that v̂X(v̄LW ) > v̄LW . For the prices at v̄ = v̄LW , we know that EPB(v̄LW ; v̄LW ) <

EPW (v̄LW ; v̄LW ) by assumption, which implies that consumers with v in an open ball around

v = v̄LW would have a strictly lower expected price at the firm with better data, which es-
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tablishes that the supremum of the corresponding set must lie above v̄LW . At v̄ = 1, we

know that v̂X(1) ≤ 1. Because pHB ≤ v̄LW , we are guaranteed continuity of this function in

the interval [v̄LW , 1] and hence existence of a solution.

Part 3: Suppose v̄LW < pHB,M . A solution v̄ ∈ [pHB,M , 1] to v̂X(v̄) = v̄ exists.

Our assumption guarantees that v̂X(pHB,M) > pHB,M by previous arguments. Thus, the

supremum of the corresponding set must lie above pHB,M . Continuity of the function proves

existence of an appropriate solution, together with the fact thatv̂X(1) > 1.

Part 4: Consider the v̄ ∈ [v̄LW , 1] with v̂X(v̄) = v̄. By construction, the prices at this

v̄ are optimal. By assumption, the search behavior is optimal, i.e. we have an equilibrium.

C.5 Proof of lemma 4

Part 1: Density of valuations at the firms

Note that the type θ ∼ U [0, 1] of any consumer is a random variable with density f(θ) = 1.

Moreover, the event ”ds” denotes that a consumer is a searcher, while the event ”lc” denotes

the probability that a consumer is captive.

Consider any interval I. We can write the probability that θnd ∈ I as follows:

Pr(θnd ∈ I) = Pr(θ ∈ I|Ind) =
Pr(θ ∈ I ∧ Ind)

Pr(Ind)
=

1

Pr(Ind)

∫ 1

0

Pr(θ ∈ I ∧ Ind|θ)dθ

Note that:

Pr(θ ∈ I∧Ind|θ∧ds)Pr(ds|θ) = ρ✶
[
θ ∈ I

][
✶[θ > θ̄](1−gH)+✶[θ = θ̄](1−ḡ)+✶[θ < θ̄](1−gL)

]

Similarly, we have that Pr(θ ∈ I ∧ Ind|θ ∧ lc)Pr(l|θ) = 0.5(1− ρ)✶
[
θ ∈ I

]
. Thus:

Pr(θnd ∈ I) =

∫

I

(
ρ
[
✶[θ > θ̄](1− gH) + ✶[θ = θ̄](1− ḡ) + ✶[θ < θ̄](1− gL)

]
+ 0.5(1− ρ)

Pr(Ind)
︸ ︷︷ ︸

:=fnd(θ)

)

dθ

Now consider the firm with data. The valuations of consumers that visit the firm with data

and generate the signal ṽk is a random variable - call this θk. This is also an absolutely
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continuous random variable - the following holds for any interval I:

Pr(θk ∈ I) = Pr(θ ∈ I|Ik) =
Pr(θ ∈ I ∧ Ik)

Pr(Ik)
=

1

Pr(Ik)

∫ 1

0

Pr(θ ∈ I ∧ Ik|θ)dθ

Note that:

Pr(θ ∈ I ∧ Ik|θ ∧ ds)Pr(ds|θ) = ρ✶
[
θ ∈ I

]
Prk(θ)

[
✶[θ > θ̄]gH + ✶[θ = θ̄]ḡ + ✶[θ < θ̄]gL

]

Note further that Pr(θ ∈ I ∧ Ik|θ ∧ lc)Pr(lc|θ) = ✶[θ ∈ I]Prk(θ)0.5(1− ρ). Thus:

Pr(θk ∈ I) =

∫

I

1

Pr(Ik)

(

ρPrk(θ)
[
✶[θ > θ̄]gH + ✶[θ = θ̄]ḡ + ✶[θ < θ̄]gL

]
+ Prk(θ)0.5(1− ρ)

)

︸ ︷︷ ︸

:=fk(θ)

dθ

All densities are bounded from above and measurable, i.e. integrable, and thus well-defined.

Part 2: Calculating the virtual valuation functions

I omit the conditioning on (θ̄, g) in the following arguments for ease of exposition.

Consider first the firm without data. For any θ < θ̄, we can note that:

1−F nd(θ) =
1

Pr(Ind)

∫ θ̄

θ

(
ρ(1−gL)+0.5(1−ρ)

)
dx+

1

Pr(Ind)

∫ 1

θ̄

(
ρ(1−gH)+0.5(1−ρ)

)
dx

=⇒ Jnd(θ) = θ −

∫ θ̄

θ

(
ρ(1− gL) + 0.5(1− ρ)

)
dx+

∫ 1

θ̄

(
ρ(1− gH) + 0.5(1− ρ)

)
dx

ρ(1− gL) + 0.5(1− ρ)

For θ > θ̄, the virtual valuation at the firm without data can be calculated as follows:

1−F nd(θ) =
1

Pr(Ind)

∫ 1

θ̄

(
ρ(1−gH)+0.5(1−ρ)

)
dx =⇒ Jnd(θ) = θ−

∫ 1

θ

(
ρ(1− gH) + 0.5(1− ρ)

)
dx

ρ(1− gH) + 0.5(1− ρ)

One can show that Jnd(θ) is always piecewise strictly increasing.

Now let’s calculate the virtual valuations at the firm with data. The virtual valuation

takes the following form when θ < θ̄:

Jk(θ) = θ−
1− F k(θ)

fk(θ)
= θ−

∫ θ̄

θ

(
ρgL + 0.5(1− ρ)

)
Prk(x)dx+

∫ 1

θ̄

(
ρgH + 0.5(1− ρ)

)
Prk(x)dx

(
ρgL + 0.5(1− ρ)

)
Prk(θ)
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The virtual valuation takes the following form when θ > θ̄:

Jk(θ) = θ −
1− F k(θ)

fk(θ)
= θ −

∫ 1

θ

(
ρgH + 0.5(1− ρ)

)
Prk(x)dx

(
ρgH + 0.5(1− ρ)

)
Prk(θ)

One can show that JH(θ) is always piecewise strictly increasing.

Part 3: Setting up the expected revenues of the firms

Any mechanism is incentive compatible if and only of it satisfies both the integrability and

the monotonicity condition. This follows because one can apply the envelope theorem from

Milgrom & Segal (2002). Using standard arguments, the expected revenue becomes:

−E[t(θ)] = −U(0) +

∫ 1

0

q(θ)

(

θ −
1− F nd(θ)

fnd(θ)

)

fnd(θ)dθ

Similar arguments prove that the firm with data, when observing a given signal, would also

face an expected revenue function that is equal to:

−E[tk(θ)] = −Uk(0) +

∫ 1

0

qk(θ)

(

θ −
1− F k(θ)

fk(θ)

)

fk(θ)dθ

Part 4: Ordering of cutoffs when consumers visit randomly:

The virtual valuations at the firm with data and without data are:

Jk(θ) = θ −

∫ 1

θ

(
Prk(x)/Prk(θ)

)
dx : Jnd(θ) = θ −

∫ 1

θ

(1)dx

Because PrH(θ) is strictly increasing, PrL(x)/PrL(θ) < 1 < PrH(x)/PrH(θ) holds ∀x > θ:

This implies that, for any θ ∈ (0, 1), the ordering JH(θ) < Jnd(θ) < JL(θ) holds.

To see this, note that the functions Jnd(θ) and JH(θ) are monotonically increasing and con-

tinuous. Because JH(1) > 0, we know that there must exist a θ̂H < 1 such that JH(θ̂H) = 0

and that the virtual valuation is strictly positive for all θ ≥ θ̂H . At θ > θ̂H , both other

virtual valuations will be strictly positive, which implies that the associated cutoffs must

both lie strictly below θ̂H . That θ̂L < θ̂nd must hold follows by analogous arguments.

Part 5: In any simple equilibrium, there must exist a θ̄ such that all consumers with

θ < θ̄ visit the firm with data and vice versa.
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Part 5a: There exists no simple equilibrium in which all searchers randomize between firms.

In that setting, θ̂L < θ̂nd. The firm without data will offer quality 1 to all consumers

with θ > θ̂nd by monotonicity of Jnd(θ). Then, the firm with data must offer 0 quality to all

consumers with θ ≤ θ̂nd - else, these consumers would not randomize. But then, we obtain

a contradiction, as the utility of consumers with θ ≥ θ̂nd at the firm without data is θ− θ̂nd,

but strictly below (θ − θ̂nd) at the firm with data since θ̂nd < θ̂H . Thus, they would not

randomize, a contradiction.

Part 5b: Initial steps:

Suppose we are in a simple equilibrium where there exists no θ̄ such that all consumers

with type above it visit the firm without data and vice versa. Thus, there must exist a θ̄

such that searchers with θ < θ̄ visit the firm without data and all consumers with θ > θ̄ visit

the firm with data, i.e. gL = 0, gH = 1. In that case, we know that the virtual valuations of

the firm with data jump up at θ̄, because:

lim
θ↑θ̄

Jk(θ) < lim
θ↓θ̄

Jk(θ) ⇐⇒ 0.5(1− ρ) < ρ+ 0.5(1− ρ)

Part 5c: θ̂L < θ̂nd must hold in such a simple equilibrium with gL = 0, gH = 1.

Assume, for a contradiction, that θ̂L ≥ θ̂nd in the supposed equilibrium with gL = 0, gH = 1.

First, note that θ̂L ≤ θ̂H holds once more. Suppose, for a contradiction, that θ̂H < θ̂L

holds in such an equilbrium. When θ̂H 6= θ̄, we know that continuity of the virtual valuation

function implies that θ̂L < θ̂H must hold, a contradiction.

Thus, suppose that θ̂H = θ̄. Suppose that θ̂H < θ̂L holds. This is impossible, as any

θ > θ̂H = θ̄ must satisfy JH(θ) ≥ 0 by monotonicity of JH(θ) - else, we would have a contra-

diction. But this implies that JL(θ) > 0 holds for any θ > θ̄, which implies that θ̂L ≤ θ̄ = θ̂H

must hold in this case, a contradiction.

Thus, we know that θ̂L ≤ θ̂H must hold in any equilibrium of this type. Moreover, re-

call that we have assumed (for a contradiction) that θ̂nd ≤ θ̂L holds.
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Note that θ̂nd 6= θ̄ must hold, since the virtual valuation at the firm with data jumps down

in this subcase. There are thus two subcases two distinguish: (i) θ̂nd > θ̄ and (ii) θ̂nd < θ̄.

(i) Subcase 1: θ̄ < θ̂nd

Suppose that θ̂nd < θ̂L and that θ̄ < θ̂nd holds. Because θ̄ < θ̂nd , the firm without data

assigns quality qnd(θ) = 1 to all θ > θ̂nd and 0 to all other types - because the virtual valu-

ation at the firm without data is always monotonic. Then, all consumers with θ ∈ (θ̂nd, θ̂L)

would get strictly positive utility only at the firm without data and would prefer this firm

but visit the firm with data in equilibrium, a contradiction.

Suppose that θ̂nd = θ̂L and that θ̄ < θ̂nd holds. Suppose further that θ̂L = θ̂H . But

then, we have θ̄ < θ̂nd = θ̂L = θ̂H , which cannot be true. Hence, θ̂L < θ̂H must hold true.

Thus, we have the ordering θ̄ < θ̂nd = θ̂L < θ̂H . Consumers with θ ∈ (θ̂nd, θ̂H) get the

utility θ − θ̂nd at the firm without data and at most the utility PrL(θ)(θ − θ̂L) at the firm

with data. Because θ̂nd = θ̂L, they all strictly prefer the firm without data, but visit the

firm with data in equilibrium (since θ̂nd > θ̄), a contradiction.

(ii) Subcase 2: θ̂nd < θ̄ and there exist no θ > θ̄ for which Jnd(θ) < 0.

For all types θ > θ̄, the virtual value Jnd(θ) must then be strictly positive (the converse

creates a contradiction by monotonicity of Jnd(θ)). In that case, the optimal mechanism

of the firm without data sets qnd(θ) = 1 for all θ > θ̂nd - once again, because the virtual

valuation function at the firm without data is always monotonic.

Suppose θ̂nd < θ̂L. Then, consumers with θ > θ̄ get the utility θ− θ̂nd > 0 at the firm without

data. The utility they get at the firm with data is weakly smaller than θ − θ̂L < θ − θ̂nd.

Thus, all consumers with θ > θ̄ strictly prefer the firm without data, a contradiction.

Suppose θ̂nd = θ̂L. Then, we must have θ̂nd = θ̂L < θ̄ and hence θ̂L < θ̂H must hold.

Once again, consumers with θ > θ̄ get the utility θ − θ̂nd > 0 at the firm without data. The

utility they get at the firm with data is strictly smaller than θ− θ̂L, because θ̂L < θ̂H . Thus,

all consumers with θ > θ̄ prefer the firm without data, a contradiction.

(iii) Subcase 3: θ̂nd < θ̄ and there exist some θ > θ̄ for which Jnd(θ) < 0.
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In order for such θ > θ̄ for which Jnd(θ) < 0 to exist, the right limit of the virtual val-

uation at the firm without data must be weakly negative - by monotonicity of Jnd(θ). For

any θ̄ > 0.5, this right limit will be strictly positive, because it is limθ↓θ̄ J
nd(θ) = 2θ̄− 1 > 0.

Thus, θ̄ ≤ 0.5 must hold in such an equilibrium. We are still assuming, for a contradic-

tion, that θ̂L ≥ θ̂nd, and that gH = 1 (high valuation searchers visit firm with data).

Assume, within this subcase, that θ̄ < θ̂L, which also implies that θ̂L < θ̂H . Then, the

provided quality schedule of the firm without data must satisfy qnd(θ) = 0 for any θ ∈ [0, θ̂L).

If this (expected) quality is strictly positive for any such type, then the cutoff θ̄ would not

be below θ̂L - this follows from the search behaviour of consumers, since a consumer with

θ = θ̂L would attain strictly positive utility only at the firm without data.

Thus, the lowest type that gets quality in equilibrium is θ̂L. By our equilibrium refinement,

θ̄ < θ̂L thus cannot hold - all consumers with θ < θ̂L visit the same firm, a contradiction.

Suppose instead that θ̄ = θ̂L, which implies the ordering θ̂nd < θ̄ = θ̂L. Once again, any type

θ ∈ [0, θ̂L) = [0, θ̄) must receive qnd(θ) = 0 - else, the cutoff must lie strictly above θ̂L = θ̄

by monotonicity of qnd(θ) in an equilibrium and the optimal search behavior of consumers.

Thus, all types θ ≥ θ̄ = θ̂L for which Jnd(θ) < 0 must also get zero quality - if they

get positive quality, there would be a profitable deviation by monotonicity of Jnd(θ).

Thus, θnd > θ̄ would hold. Then, either θd ≤ θ̄ or θd > θ̄ must hold. If θd ≤ θ̄, we have

θd ≤ θ̄ < θnd, and thus all consumers with θ < θ̄ visit the firm with data by our first tie-

breaking rule, a contradiction. If θd > θ̄, our tie-breaking rules imply a contradiction as well.

Thus, we must have θ̂L < θ̄ in this sort of problematic equilibrium. It was previously

also established that the equilibrium under consideration must satisfy θ̄ ≤ 0.5. For any such

θ̄, our assumption implies that θ̂L ≥ θ̄, which means that no such equilibrium can exist.

Thus, we are done. We have shown that θ̂L < θ̂nd must hold.

Part 5d: There exists no simple equilibrium in which gL = 0 and gH = 1 (all types above θ̄

go to the firm with data).
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We have established that θ̂L < θ̂nd holds in a simple equilibrium in which there exists

no θ̄ such that consumers with type above it go to the firm without data and vice versa. In

this sort of equilibrium, it must also hold that θ̂nd 6= θ̄. If all consumers visit the firm with

data in equilibrium, we can write θ̄ = 1 and all consumers with type below this visit the firm

with data, a contradiction.

Suppose that θ̄ < θ̂nd, which means that θnd = θ̂nd. Recall that all consumers with θ < θ̄

supposedly visit the firm without data. Then, θd must be weakly above θ̂nd - else, all con-

sumers with θ < θ̄ must visit the firm with data by our refinement. But this implies that all

consumers with θ < θ̂nd either all visit the firm without data (if θnd < θd) or θd = θnd - in

either case, they all visit the same firm by our tie-breaking rule, a contradiction.

Finally, suppose that θ̂nd < θ̄ and hence θ̂L < θ̄.

No type θ ∈ (0, θ̂nd) can receive positive quality at the firm with data. Else, all types

θ < θ̂nd would visit the firm with data by our refinement but visit the firm without data in

the supposed equilibrium, a contradiction. Thus, we have θ̂nd ≤ θd.

Moreover, the fact that θ̂L < θ̄ implies that θ̄ ≥ 0.5 must hold. Previous results imply

that the virtual valuation of the firm without data thus stays weakly positive for all θ > θ̂nd.

Thus, the firm without data will offer quality 1 to all θ > θ̂nd. Because θ̂nd = θnd ≤ θdall

consumers weakly prefer the firm without data.

Suppose (within the subcase θ̂nd < θ̄) that θ̂nd < θd. Then, all consumers visit the firm

without data and we could express the search behavior by θ̄ = 0, where all consumers with

type above θ̄ visit the firm without data, a contradiction.

Thus, suppose (within the subcase θ̂nd < θ̄) that θ̂nd = θd. Unless both firms offer ex-

actly the same menu, all consumers with θ > θ̂nd will strictly prefer the firm without data.

If the preference is strict, all consumers will visit the firm without data, since θ̄ > 0 holds

in the supposed equilibrium and all consumers with θ > θ̂nd strictly prefer the firm without

data. But then, we could have expressed the strategy with a cutoff θ̄ = 0 s.t. all consumers

with θ < θ̄ visit the firm with data and vice versa, a contradiction.

If the menus are the same, all searchers randomize, which cannot be a simple equilibrium.
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C.6 Proof of proposition 11

Part 1: In a simple equilibrium, θ̂L < θ̂nd holds

Suppose we are in a simple equilibrium, in which searchers with θ < θ̄ visit the firm with data.

Suppose, for the contradiction we seek, that θ̂nd ≤ θ̂L. In the equilibrium we study, the vir-

tual valuation functions at the firm with data jump down at θ̄, i.e. limθ↑θ̄ J
k(θ) > limθ↓θ̄ J

k(θ).

Note first that θ̂L < θ̂H must hold. This is because neither cutoff θ̂k can be exactly at

θ̄ - then, limθ↓θ̄ J
k(θ) ≥ 0 would have to hold and hence the virtual corresponding valuation

would also be strictly positive for values just below θ̄. Thus, θ̂L and θ̂H must be at points

where the virtual valuation is continuous, i.e. they must set the corresponding virtual val-

uations to zero. A θ̂H , we would thus have JH(θ̂H) = 0 and hence JL(θ̂H) > 0. Because

JL(θ̂H) > 0 would hold there, thus would also hold for values just below θ̂H . Hence, we

know that θ̂L < θ̂H must hold in an equilibrium where consumers seperate in this way.

The virtual valuation Jnd(θ) jumps up at θ̄, i.e. the utility any consumer attains at the

firm with data is max{θ − θ̂nd, 0}. Thus, all searchers with θ > θ̂nd prefer the firm without

data, since θ̂nd ≤ θ̂L < θ̂H . Thus, θ̄ ≤ θ̂nd must hold, Because θ̂nd ≤ θ̂L by assumption, we

obtain a contradiction, since Jnd(θ; θ̄) < JL(θ; θ̄) for all θ ≥ θ̄ and thus, θ̂L < θ̂nd would hold.

Part 2: There exists no simple equilibrium in which θ̄ ∈ [0.5, 0.5(1 + ρ)].

Consider first θ̄ ∈ [0.5, 0.5(1 + ρ)]. We know that θ̂nd ≥ θ̄ holds for these values of θ̄,

since limθ↑θ̄ J
nd(θ; θ̄) < 0 for θ̄ < 0.5(1 + ρ).

The virtual valuation JL(θ) will be strictly positive for any θ > θ̂L. If θ̂L > θ̄, this is

true by monotonicity. The case θ̂L = θ̄ cannot be true, because, in a simple equilibrium, the

virtual valuations at the firm with data jump down.

Thus, consider the third case where θ̂L < θ̄. While the virtual valuation will be strictly

positive for any θ ∈ (θ̂L, θ̄), it may drop into the negative at θ̄. To discuss this, consider the

right limit of JL(θ) at θ̄. Recall that JL(θ) = θ −
∫ 1

θ

(
PrL(x)/PrL(θ)

)
dx for any θ > θ̄: We

know that PrL(x)/PrL(θ) < 1 holds for all x > θ at any θ. Thus, we have:

lim
θ↓θ̄

JL(θ) = θ̄ −

∫ 1

θ̄

(
PrL(x)/PrL(θ̄)

)
dx > θ̄ −

∫ 1

θ̄

(
1
)
dx = θ̄ − (1− θ̄) = 2θ̄ − 1
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Because θ̄ ≥ 0.5, it follows that limθ↓θ̄ J
L(θ) > 0. Thus, the low signal optimal mechanism

is uniquely pinned down - all types above θ̂L will be assigned the quality level qL(θ) = 1.

Recall that θ̂L < θ̂nd must hold in such an equilibrium - but this contradicts the statement

θ̂nd ≥ θ̄. All consumers with type below θ̂nd surely prefer the firm with data. Moreover,

consumers with θ = θ̂nd attain utility 0 at the firm with data, but strictly positive utility at

the firm without data - so they visit the firm with data, and so will consumers with a type

just above θ̂nd. In equilibrium, they visit the firm without data, a contradiction.

Part 3: There exists no simple equilibrium in which θ̄ ∈ [0, 0.5).

First, note that θ̂nd = 0.5 holds for any such θ̄ < 0.5. The virtual valuation at the firm

without data jumps up at θ̄. Thus, we consider the right limit of Jnd(θ) at θ̄. Recall

that this virtual valuation equals Jnd(θ) = θ −
∫ 1

θ
(1)dx for any θ > θ̄. Thus, we have

limθ↓θ̄ J
nd(θ) = θ̄ − (1− θ̄) = 2θ̄ − 1 < 0. Moreover, we have that:

lim
θ↓θ̄

Jnd(θ) = θ̄ −

∫ 1

θ̄

(1)dx > θ̄ −

∫ 1

θ̄

(
ρ+ 0.5(1− ρ)

0.5(1− ρ)

)

dx = lim
θ↑θ̄

Jnd(θ)

This proves that θ̂nd > θ̄ holds for such θ̄ < 0.5. Moreover, θ̂nd = 0.5 will hold exactly.

For any θ > θ̄, the virtual valuation JL(θ) is strictly greater than Jnd(θ). Thus, we have

some θ̃L > θ̄ with: (i) θ̃L < θ̂nd and (ii) JL(θ) > 0 for any θ > θ̃L.

Suppose we have a simple equilibrium in which θ̄ < 0.5. In equilibrium, the firm with

data must optimally assign strictly positive quality to a strictly positive measure of con-

sumers with θ ∈ (θ̃L, θ̂nd).

Suppose, for a contradiction, that all consumers with θ ∈ (θ̃L, θ̂nd) receive the quality level

0 according to the mechanism qL(θ). By monotonicity, all consumers with θ ≤ θ̃L must also

receive the quality level 0. But this is a contradiction - all consumers with θ > θ̃L have

strictly positive virtual valuations. Thus, the firm is guaranteed to make more higher rev-

enue by setting qL(θ) = 1 to all θ ∈ (θ̃L, 1). This also satisfies monotonicity, so it is feasible,

and we cannot have an equilibrium.

Thus, there must exist a type θ ∈ (θ̃L, θ̂nd) that receives a strictly positive quality level

qL(θ) at the firm with data. By monotonicity, all types above this must also receive a
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strictly positive qL(θ). Thus, the utility of a consumer with θ = θ̂nd > θ̄ at the firm with

data will be strictly positive. The utility this consumer would receive at the firm without

data would be zero - this is a contradiction, as consumers with θ just above θ̄ would similarly

prefer the firm with data, but visit the firm without data in equilibrium.

Part 4: Under said assumptions, there exists a simple equilibrium with θ̄ ≥ [0.5(1 + ρ), 1].

Properties of the virtual valuations under the assumptions:

The virtual valuation of the firm without data always satisfies monotonicity. Moreover,

this virtual valuation Jnd(θ) jumps up around θ̄ in the equilibrium we study.

When θ < θ̄, we have:

∂Jk

∂θ
= 2+

(∫ θ̄

θ

(
ρgL + 0.5(1− ρ)

)
Prk(x)dx+

∫ 1

θ̄

(
ρgH + 0.5(1− ρ)

)
Prk(x)dx

(
ρgL + 0.5(1− ρ)

)
Prk(θ)

)[
(
Prk(θ)

)−1∂Prk(θ)

∂θ

]

For θ > θ̄, this derivative is:

∂Jk

∂θ
= 2−

∫ 1

θ

(
Prk(x)/Prk(θ)

)
dx

[

−
(
Prk(θ)

)−1∂Prk(θ)

∂θ

]

Thus, the high signal virtual valuation is generally piecewise increasing, while the low signal

virtual valuation is rising under our assumptions for θ̄ ∈ [0.5(1+ ρ), 1] and (gL = 1, gH = 0).

It was further assumed that both virtual valuations do not jump into the negative region

at θ̄ for θ̄ ≥ 0.5(1 + ρ). Formally, it was stated that limθ↓θ̄ J
k(θ; θ̄) > 0. Recall that

limθ↑θ̄ J
k(θ; θ̄) > limθ↓θ̄ J

k(θ; θ̄) holds, which implies that θ̂k < θ̄ must hold.

Summing it all up, these assumptions imply that the virtual valuation functions will be

strictly positive for all types above the respective cutoffs θ̂nd and θ̂k, which implies that the

optimal mechanism just assigns quality 1 to all consumers with a positive virtual valuation.

General notions:

I describe the consumer’s search behavior by:

θ∗(θ̄) = sup
{
θ ∈ [0, 1] : PrL(θ)θ̂L(θ̄) + PrH(θ)θ̂H(θ̄) < θ̂nd(θ̄)

}
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We have defined θ̂k(θ̄) = inf
{
θ : Jk(θ, θ̄) > 0

}
and θ̂nd(θ̄) = inf

{
θ : Jnd(θ, θ̄) > 0

}
.

Suppose we have found an θ̄ ≥ 0.5(1 + ρ).

To establish that this is an equilibrium, we make use of some ancillary results. By as-

sumption, we have that θ̂H < θ̄ holds for any θ̄ ≥ 0.5(1+ ρ). Previous arguments imply that

θ̂nd ≤ θ̄ for any such θ̄ ≥ 0.5(1 + ρ). θ̂nd has to solve the following:

Jnd(θ̂, θ̄) = θ̂ −

∫ θ̄

θ̂
0.5(1− ρ)dx+

∫ 1

θ̄
0.5(1 + ρ)dx

0.5(1− ρ)
= 0

Thus, θ̂nd is falling in θ̄. Now consider θ̂k, which has to solve the following since θ̂k < θ̄:

Jk(θ̂k, θ̄) = θ̂k −

∫ θ̄

θ̂k

(
Prk(x)/Prk(θ̂k)

)
dx−

∫ 1

θ̄

(
(1− ρ)/(1 + ρ))

(
Prk(x)/Prk(θ̂k)

)
dx = 0

Thus, we have ∂θ̂k

∂θ̄
= − ∂J/∂θ̄

∂J/∂θ̂k
> 0. Summing up, our assumptions imply that ∂θ̂k

∂θ̄
> 0 and

that ∂θ̂nd

∂θ̄
< 0. Because θ̂L(1) < θ̂nd(1), the following holds for any θ̄ ∈ [0.5(1 + ρ), 1]:

θ̂L(θ̄) ≤ θ̂L(1) < θ̂nd(1) ≤ θ̂nd(θ̄)

Thus, we must have θ̂L < θ̂nd in the equilibrium candidate we have found.

Optimal menus:

Consider first the firm without data, for which Jnd(θ) is monotonic and jumps upward

at θ̄. The virtual valuation Jnd(θ) is thus strictly positive if and only if θ > θ̂nd. Thus, their

optimal menu is to offer qnd(θ) = 1 to all θ > θ̂nd and quality 0 to all other types.

Now consider the firm with data. The virtual valuations are piecewise monotonic by as-

sumption and don’t jump into the negative region at θ̄, again by assumption. Thus, the

virtual valuation Jk(θ) will be strictly positive iff θ > θ̂k, which means their optimal mech-

anism will also assign qk(θ) = 1 to all θ > θ̂k and quality 0 to all other types.

Search:

Because θ̂L < θ̂nd, all searchers with θ < θ̂nd visit the firm with data. The preference

for the firm with data of consumers with θ ∈ [θ̂nd, θ̂H ] is P d(θ) = PrL(θ)(θ− θ̂L)− (θ− θ̂nd).
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This is falling in θ. Because θ̂H lies strictly below θ∗(θ̄) = θ̄ by assumption and the fact that

the LHS in this sup-expression is strictly rising in θ, we have:

PrL(θ̂H)θ̂L + PrH(θ̂H)θ̂H < θ̂nd ⇐⇒ PrL(θ)
(
θ̂H − θ̂L

)
−

(
θ̂H − θ̂nd

)
> 0

Thus, the consumer with θ = θ̂H prefers the firm with data, and so will all θ ∈ [θ̂nd, θ̂H ].

Now consider θ ∈ [θ̂H , θ̄). We know that qH(θ) = 1 for any θ ∈ (θ̂H , θ̄) and qL(θ) = 1

for any θ ∈ (θ̂L, θ̄). Thus, the utility that this consumer attains at the firm with data is

Ud(θ) = PrL(θ)(θ − θ̂L) + PrH(θ)(θ − θ̂H). Similarly, qnd(θ) = 1 for any θ ∈ (θ̂nd, θ̄), i.e.

their utility at the firm without data is θ − θ̂nd. Thus, any such searchers prefer the firm

with data because θ̂nd > PrL(θ)θ̂L + PrH(θ)θ̂H . Consumers with θ > θ̄ prefer to visit the

firm without data by analogous arguments.

Thus: When θ̄ = θ∗(θ̂) and θ̄ > 0.5(1 + ρ), we have an equilibrium.

Existence of a solution to θ̄ = θ∗(θ̂) on θ̄ > 0.5(1 + ρ)

It remains to show that such a value exists. To see this, recall first that θ̂k are both strictly

rising in θ̄, while θ̂nd is strictly falling in θ̄. We work with the object θ̄′. At θ̄ = θ̄′, we have:

PrL(1)θ̂L(θ̄′) + PrH(1)θ̂H(θ̄′)− θ̂nd(θ̄′) = 0

Note that this function is strictly rising in θ, which implies that θ∗(θ̄) = 1 for any such

θ̄ ∈ [0.5(1 + ρ), θ̄′]. Further note that θ̄′ must be strictly above θ̄ = 0.5(1 + ρ), since:

θ̂L(0.5(1 + ρ)) < θ̂H(0.5(1 + ρ)) < 0.5(1 + ρ) = θ̂nd(0.5(1 + ρ))

For any θ̄ ∈ [θ̄′, 1], we have PrL(1)θ̂L(θ̄′) + PrH(1)θ̂H(θ̄′) − θ̂nd(θ̄′) ≥ 0. This implies that

θ∗(θ̄) must solve:

PrL(θ∗)θ̂L(θ̄′) + PrH(θ∗)θ̂H(θ̄′)− θ̂nd(θ̄′) = 0

Thus: (i) At θ̄ = θ̄′, we have θ∗(θ̄) ≥ θ̄. (ii) At θ̄ = 1, θ∗(θ̄) ≤ θ̄. By assumption and our

result, all cutoffs are strictly below θ̄ for θ̄ ≥ 0.5(1+ρ), Thus, their solutions are continuous in

θ̄, and so is θ∗(θ̄). Application of the intermediate value theorem to the equation θ∗(θ̄)−θ̄ = 0

just laid out, together with the border conditions, guarantee existence of such a θ̄.
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D Omitted results

D.1 Baseline model - monopoly solution

The high signal profit function of a monopolist is: ΠM(pj|ṽ
H) = pj

∫ 1

pj
PrH(v)dv. Our

assumptions guarantee that this is strictly concave and differentiable. Thus, the optimal

high signal monopoly price (pHM) has to satisfy:

∫ 1

pHM

PrH(v)dv − pHMPrH(pHM) = 0

Assume, for a contradiction, that pHM ≤ 0.5, i.e. 1 − pHM ≥ 0.5 ≥ pHM . Since PrH(v)

is strictly increasing and pHM < 1 must hold, we have:
∫ 1

pHM PrH(v)dv > pH,MPrH(pHM).

This is a contradiction. Analogous arguments show that pL,M < 0.5 holds.

D.2 Baseline model - equilibria without data advantages

Suppose no firm receives an informative signal in the baseline model, i.e. PrH(v) = 0.5 ∀v.

(i) Ruling out equilibria in which pL = pH 6= pnd.

If pL < pnd, all searchers with v > pL visit the firm with data. Thus, pnd = 0.5, since

the firm without data is only visited by captive consumers. But then, there exists a prof-

itable upward deviation from pL. If pnd < pL, all searchers with v > pnd visit the firm

without data. Thus, pL = 0.5, and there is a profitable upward deviation from pnd.

(ii) Ruling out equilibria with pL < pH (analogous arguments rule out equilibria with

pH < pL, since the signal is not informative):

Previous arguments establish that pL < pnd < pH must hold. As a result, there exists

an ǫ > 0 such that any searcher with v ∈ (pL, pnd + ǫ] will visit the firm with data. Thus,

searchers put upward pressure on pnd, and hence pnd ≥ 0.5 must hold. One can show that

the average price at the two firms must be equal. Then, all searchers with v ∈ (pL, pH)

strictly prefer the firm with data, while those with v ≥ pH are indifferent. Searchers put

upward pressure on pnd, which implies that pnd ≥ 0.5 and hence pH > 0.5. But this is a

contradiction, as searchers put downward pressure on this price, i.e. pH ≤ 0.5.
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D.3 Dispersed data framework - no data advantages

First, one can show that pLB ≤ pLW must hold and that the reverse, namely pLB ≥ pLW ,

must also hold true. This is based on arguments analogous to those made in the proof of

lemma 3, part 1. Thus, pLW = pLB. Based on this, one can show that pHB = pHW must hold.

Suppose that pHB < pHW , noting that both low signal prices must be the same. Then,

all consumers with v ≥ pHB will strictly prefer to visit the firm with better data. In order

to constitute a simple equilibrium, the cutoff must be set in such a way that all searchers

with v > v̄ (where v̄ ≤ pHB) visit the firm with better data.

But by this logic, the firm with worse data will only make the sale to captive consumers in

an open ball around pHW , which implies that pHW = pHW,M . Moreover, because all searchers

with v ≥ pHB visit the firm with better data, we have pHB ≥ pHB,M , as there would be an

upward deviation otherwise. Hence, we have pHB ≥ pHB,M = pHW , a contradiction. Similar

logic rules out the other case - hence, all prices have to be equal and all searchers randomize.

E Numerical illustrations

E.1 Existence results for the dispersed data framework

Consider the equilibrium of proposition 10. Every graph corresponds to a fixed level of ρ.

Different levels of αb are plotted on the x-axis and different levels of αw on the y-axis. For a

given parameter combination, a green dot indicates that the price - search combination from

equation (20) constitutes a perfect Bayesian equilibrium.

Figure 7: Visualization - existence of a simple equilibrium
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