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Abstract

This paper shows that the principal can strictly benefit from delegating

a decision to an agent whose opinion differs from that of the principal. We

consider a “delegated expertise” problem, in which the agent has an advan-

tage in information acquisition relative to the principal, as opposed to having

preexisting private information. When the principal is ex ante predisposed

towards some action, it is optimal for her to hire an agent who is predisposed

towards the same action, but to a smaller extent, since such an agent would

acquire more information, which outweighs the bias stemming from misalign-

ment. We show that belief misalignment between an agent and a principal

is a viable instrument in delegation, performing on par with contracting and

communication in a class of problems.
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1 Introduction

Delegation is a valuable management tool widely used in business structures, polit-
ical organizations, and other economic contexts. Firm owners delegate operational
decisions to managers, politicians delegate to their advisors, grant funders delegate
award decisions to experts in the field, people rely on advice from financial and
tax advisors. It is also true that in many of these scenarios, the experts do not
have much preexisting knowledge about the case they consider, but rather use their
expertise to more easily acquire additional information to make the best decision.1

What happens if the preferences, or even the perceptions about the fundamentals
are not fully aligned between the principal and the agent? The common wisdom
(see, e.g., Holmstrom (1980)) suggests that this leads to a conflict, since from the
principal’s point of view, the agent then makes suboptimal decisions.2 However,
we show in this paper that when the agent has to actively acquire information, as
opposed to having a preexisting informational advantage, there is more to this story.
In particular, such a misalignment can then benefit the principal by encouraging the
agent to acquire more information than an aligned agent would.

We consider a delegation model, in which the payoffs from different actions de-
pend on the unknown state of the world. Our main focus is on the case, in which the
principal and the agent have common preferences regarding states and actions but
misaligned beliefs about the state of the world. The agent has no private information
about the state, but can acquire costly information about it, which would improve
the quality of the decision made (this setting has been labeled by Demski and Sap-
pington (1987) as “delegated expertise”). The cost of learning is not internalized by
the principal.

We show that the principal benefits the most from delegating to an agent who ex
ante is more uncertain than she is about what the best course of action is (shown in
different contexts by Propositions 1, 2, and 3). This is because the more uncertain
the agent is, the more he learns about the state, and the better his action fits the
conditions – which benefits the principal. This, however, has to be balanced against
the channel described above: any kind of misalignment between the principal and the
agent leads to a bias in the agent’s decisions, compared to what the principal would
prefer. Therefore, the principal ends up hiring an agent, who is more uncertain than
she is and thus conducts a more thorough investigation than an aligned agent would,
– but who still shares her action predispositions to some extent. This result holds
regardless of who has the final decision rights: the optimal delegation strategy is
the same whether the principal delegates the decision rights to the agent or merely
expects a recommendation on the optimal course of action (Proposition 10).

The presence of the principal’s trade-off between the amount of information

1E.g., Graham et al. (2015) show that delegation tends to be used when the decision-making
demands more evidence that the delegatee can provide. Alternatively, the choice to delegate a
decision is often associated with a volatile environment that a delegator faces (Foss and Laursen,
2005; Ekinci and Theodoropoulos, 2021), so any knowledge quickly becomes obsolete.

2This is supported by the empirical evidence: e.g., Hoffman et al. (2018) find that inefficiencies
in the HR managers’ hiring decisions can be a result of their biased preferences. Kennedy (2016)
presents evidence that the principals take the conflict of interest into account when selecting the
expert.
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acquired by an agent and the bias in his resulting decisions (Section 4) relies upon the
flexible information acquisition technology. We use the Shannon model of discrete
rational inattention (see, e.g., Matějka and McKay (2015), Caplin et al. (2019))
to provide this dimension of richness. According to the Shannon model, an agent
can choose any signal structure but has to pay a cost proportional to the expected
entropy reduction.3 The choice of the signal in this model depends on the agent’s
prior belief: an agent, whose prior is skewed towards some state of the world, chooses
a signal which is relatively more informative regarding that state. This dimension
of flexibility is what leads to bias in the final decisions when the agent’s prior belief
is not aligned with the principal’s.

We also show that the principal can equivalently use the misalignment in pref-
erences rather than the misalignment in beliefs (see Theorem 1). Namely, Proposi-
tion 5 states that the second-best outcome can be implemented by hiring an agent
with either optimally misaligned beliefs, or optimally misaligned preferences (or,
equivalently, offering action-contingent compensation). This result has a mirror im-
plication for the empirical literature estimating discrete choice models: Theorem 1
implies that the observed choice probabilities alone do not allow an external observer
to jointly identify the decision maker’s beliefs and preferences in our setting.

The main conclusion of our paper is that delegation to an agent with misaligned
beliefs is an instrument that is available – and valuable – to the principal. Not only
that, but in our setting it can perform as well as action-contingent payments, while
bearing no cost for the principal (Proposition 5), and cannot be improved on by
using outcome-contingent payments (Proposition 7). Further, it is typically better
than restricting the agent’s choice set (Proposition 8). This benefit of misalignment
challenges the opinion that disagreement between the principal and the agent in-
evitably leads to a conflict, and thus the principal should seek to hire an agent who
is most aligned with her preferences and beliefs (see Holmstrom (1980); Crawford
and Sobel (1982); Prendergast (1993); Alonso and Matouschek (2008); Egorov and
Sonin (2011); Che et al. (2013) for some examples of such a message).

Our paper mainly connects to the literature on delegation, mainly to the prob-
lems of “delegated expertise”, in which delegation takes place not to an agent with
some preexisting private information, but rather to an agent, whose goal is to ac-
quire relevant information. The assumption is that the agent’s expertise allows him
to gather information at lower cost than what the principal would have to incur.
The seminal paper in the field is that by Demski and Sappington (1987), who ex-
plore a contracting problem in a setting, in which the agent chooses between a finite
number of signal structures. Lindbeck and Weibull (2020) extend this analysis to
a rationally inattentive agent (who can acquire any information, subject to entropy
costs). Szalay (2005) shows that restricting the agent’s action set could be a useful

3The entropy parametrization leads to information cost being dependent on the prior belief,
even keeping the signal structure constant. This has been one of the critiques of the Shannon
model (see Mensch (2018)). Such a cost function has, however, been rationalized in both the
information theory as a cost function arising from the optimal encoding problem (see Cover and
Thomas (2012)), and decision theory as arising naturally from Wald’s sequential sampling model
(see Hébert and Woodford (2019)). In turn, the Shannon model has been shown to work as a
microfoundation of the logit choice rule commonly used in choice estimation (Matějka and McKay
(2015)).
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tool in such a setting, since banning an ex ante optimal “safe” action can nudge the
agent to acquire more information about which of the risky actions is the best. Our
grand message is similar: the principal is willing to sacrifice something in exchange
for the agent acquiring more information, but we present a different channel through
which the principal can achieve this.

The closest to our paper is contemporary work by Ball and Gao (2021). They
consider a model of delegated expertise and demonstrate a result similar to that
of Szalay (2005): that banning the ex ante safe actions can lead to more informa-
tion acquisition by the agent, which benefits the principal. However, where Szalay
(2005) looks at the scenario where the principal’s and the agent’s preferences coin-
cide ex post (i.e., net of information costs), Ball and Gao (2021) explore a model
with misaligned preferences and show that the principal may benefit from some mis-
alignment between her preferences and those of the agent. In their setting, this is
due to divergence between the principal’s and the agent’s ex ante optimal actions
(due to preference misalignment), which makes banning the ex ante agent-preferred
action less costly for the principal. Our paper suggests a different channel through
which misalignment may incentivize the agent’s information acquisition: we show,
using a flexible information acquisition framework, that misalignment can lead to
more information acquisition by the mere virtue of the agent being more uncertain
about what the optimal action is.

The misalignment in prior beliefs was also studied by Che and Kartik (2009).
They analyze a delegated expertise game, in which the principal retains the decision
rights: i.e., after acquiring the relevant information, the agent must communicate it
to the principal, who then makes a decision she believes is optimal. They show that
the need to communicate may also incentivize an agent with misaligned preferences
to acquire more information, in order to more effectively persuade the principal
about which action needs to be taken. Their conclusion does, however, rely on
an inflexible information acquisition structure (the agent’s probability of observing
the true state of the world is increasing in his effort). It appears likely that in a
more flexible model, a misaligned agent would acquire not more, but rather different
information in order to be persuasive.

The remainder of the paper is organized as follows: we present a simple example
that demonstrates the main effect in Section 2. Section 3 formulates the main model,
which is then analyzed in Section 4 for the special case of binary states and actions,
while Section 5 analyzes the general problem. Section 6 compares misaligned beliefs
as a delegation tool to other tools, such as misaligned preferences, payments, and
restricting the action set. Section 7 explores a number of extensions of the baseline
model, and Section 8 concludes.

2 Illustrative example

This section presents a simple example with inflexible learning and demonstrates
how a misalignment in beliefs between a principal and an agent may benefit the
principal. The full model is introduced in Section 3.

Consider a president (a principal, she) who needs to appoint a minister or a
head of the government agency (an agent/expert, he) to solve a particular policy
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issue, e.g., “the green transition” policy, or the antitrust policy regarding the big
tech companies. Suppose that there are two policies to choose from: a ∈ {L,R}.4
Which policy is optimal depends on the state of the world ω ∈ {l, r}, which is
initially unknown to both the principal and the agent(s). Suppose further that the
principal and the agent have a common interest in implementing the correct policy.5

In particular, the utility u(a, ω) all players derive from policy a in state ω is given
by u(L, l) = u(R, r) = 1 and u(L, r) = u(R, l) = 0. We denote the probability that
the principal’s prior belief assigns to state ω = r as µp ∈ [0.5, 1]. The agent can
choose whether to learn the state at cost c or not, and we assume that this cost is
neither internalized, nor compensated for by the principal.

The principal’s problem is to select the best agent to delegate the decision to.
There are many experts available to the principal, who differ in their prior beliefs
about the state of the world: µ ∈ [0, 1]. For example, she can delegate a decision to
an expert who is certain that ω = r (i.e., µ = 1), or to an agent who has the same
opinion as her (µ = µp), or to the most uncertain agent (µ = 1/2). The expert’s
prior belief is observable by the principal, which could be due to him having an
established reputation for having a certain position on the question at hand. We
assume that the principal can not use monetary transfers and/or restrict the set of
actions available to the agent (see Section 3 for a discussion of this assumption).

The timing is as follows: the principal chooses an agent based on his prior belief
µ from a pool of agents M = [0, 1]; then the agent chooses whether to learn the
state ω at cost c, and subsequently implements the policy a preferred given his prior
belief and the acquired signal.

The agent’s expected utility when he learns the state and when he does not is
given by, respectively:

Eµ[u(a, ω)]− c = 1− c,

Eµ[u(a, ω)] = max{µ, 1− µ}.

Hence the willingness to pay for information of an agent with prior belief µ ≥ 1/2
is given by

1− c
︸ ︷︷ ︸

with info

−max{µ, 1− µ}.
︸ ︷︷ ︸

without info

Since this amount is decreasing in µ when µ ≥ 1/2 and increasing when µ ≤ 1/2,
it is maximized at µ = 1/2. Namely, the most uncertain agent is willing to pay the
most for information: if an agent with some prior µ chooses to obtain information,
then an agent with prior µ = 1/2 would also choose to learn the state. Therefore,
the principal (weakly) prefers to delegate to the most uncertain agent. The next
simple proposition formalizes the result.

Proposition 1. In the equilibrium of the described model, it is (weakly) optimal for
the principal to delegate decision to the most uncertain agent: µ∗ = 1/2.

4This binary model is common in the delegation literature, see e.g. Li and Suen (2004) with
slightly different informal story.

5In this example we focus on misalignment in beliefs; see Section 6.1 for the discussion of
misalignment in preferences.
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The proposition above demonstrates that hiring an agent with misaligned beliefs
may lead to the agent acquiring more information, which is beneficial for the prin-
cipal. This restricted setting, however, cannot illustrate the bias introduced in the
agent’s decisions by the misalignment. In the next section, we proceed to the full
model, which demonstrates that there also exists a countervailing preference for less
misaligned agent due to the bias in actions that this misalignment introduces. Such
a preference arises due to the agent being able to acquire information flexibly.

3 Model

3.1 Concepts and Definitions

Consider a principal (she) who would like to implement an optimal decision that
depends on the unknown state of the world. To choose the best course of action,
the principal delegates the decision to an expert (an agent, he), who can acquire
information about what the optimal decision is.6 There are many experts available
to the principal, and all experts have common interest with the principal, but differ
in their opinions on the issue.7 Experts with different initial opinions would acquire
different information, and thus possibly make different final decisions. The principal
is thus concerned with finding the best agent for the job.8

The above can be modeled as a game played between a principal and a population
of agents. In particular, let A ≡ {a1, ..., aN} denote the set of actions and Ω ≡
{ω1, ..., ωM} the set of states. The principal has a prior belief µp ∈ ∆(Ω), where
∆(Ω) denotes the set of all probability distributions on Ω. Every agent in the
population has some prior belief µ ∈ ∆(Ω), which is observable and verifiable, e.g.,
due to the reputation concerns (i.e., agents needing to publicly establish a particular
stance on the broad policy question for sake of earning, and subsequently capitalizing
on, a specific reputation).9 In what follows, we refer to an agent according to his
prior belief. Let M ⊆ ∆(Ω) denote the set of prior beliefs of all agents in the
population.10,

6An alternative would be to ask the agent to learn about the state and report the findings to the
principal, who then makes the decision. This version is explored in Section 7.2, which demonstrates
that communication is equivalent to delegation in our setting (barring the equilibrium multiplicity).

7In the “green transition” policy example, the experts would differ in their stance on the severity
of the climate threat.

8Our results can, alternatively, be interpreted as comparative statics for a game between a
principal and a given an agent with some fixed misalignment, w.r.t. the degree of misalignment.

9To clarify, we work with a model of non-common prior beliefs about ω, and we take this
assumption at face value. Such settings are not uncommon in economic theory (see Morris (1995);
Alonso and Câmara (2016); Che and Kartik (2009) for some examples). It is well known (see
Aumann (1976) and Bonanno and Nehring (1997)) that agents starting with a common prior can
not commonly know that they hold differing beliefs. We allow the agents to have heterogeneous
prior beliefs, and, thus, to “agree to disagree”. While it may be possible to replicate our results in a
common-prior model with asymmetric information, such a model would feature signaling concerns
(e.g., an agent learning something about the principal’s information about the state from the fact
that he was chosen for the job, and the principal then exploiting this inference channel). We prefer
to abstract from such signaling and simply assume non-common priors from the start.

10For most of the results we assume that the population of agents is rich enough to represent
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The terminal payoff that both the principal and the agent selected by the prin-
cipal receive when action a is chosen in the state ω is given by u(a, ω). Prior to
making the decision, the selected agent can acquire additional information about the
realized state. We assume that the agent can choose any signal structure defined by
the respective conditional distribution φ(s|ω) of signals s ∈ S given the state ω ∈ Ω,
where S is arbitrarily rich. Signals are costly: when choosing a signal structure φ,
the agent must incur cost c(φ, µ) that may depend on the informativeness of the
signal and the agent’s prior belief.11

The cost function we consider is the Shannon entropy cost function used in
rational inattention models (Matějka and McKay, 2015). In this specification, the
cost is proportional to the expected reduction in the entropy of the agent’s belief
resulting from receiving the signal. Namely, let η : S → ∆(Ω) denote the agent’s
posterior belief after observing signal realization s, obtained from µ and φ using the
Bayes’ rule. The cost can be defined as

c(φ, µ) ≡ λ

(

−
∑

ω∈Ω
µ(ω) lnµ(ω)+

+
∑

ω∈Ω

∑

s∈S

(
∑

ω′∈Ω
µ(ω′)φ(s|ω′)

)

η(ω|s) ln η(ω|s)
)

, (1)

where λ ∈ R++ is a cost parameter.12 We assume that the principal does not
internalize the cost of learning, and the agent fully bears this cost. The main
interpretation (shared by, e.g., Lipnowski et al. (2020)) of this assumption is that
the cost reflects the cognitive process of the agent. Information acquisition costs
thus lead to moral hazard, with the agent potentially not willing to acquire the
amount of information desired by the principal. This is the main conflict between
the two parties in our model.

In line with the delegation literature, we assume that the principal can not
use monetary or other kinds of transfers to manage the agent’s incentives. This is
primarily because learning is non-contractible in most settings – indeed, it is hard to
think of a setting, in which a learning-based contract could be enforceable, i.e., either
the principal or the agent could demonstrate beyond reasonable doubt exactly how
much effort the agent has put into learning the relevant information, and what kind
of conclusions he has arrived at. A simpler justification of the no-transfer assumption
could be that such transfers are institutionally prohibited in some settings.13 We do
allow for some classes of transfers in Section 7 and show that even in those settings
where contracting is feasible, it does not necessarily perform better than hiring an
agent with a misaligned belief.

the whole spectrum of viewpoints: M = ∆(Ω).
11Similar to, e.g., Alonso and Câmara (2016), we assume that the agent and the principal share

the understanding of the signal structure. Combined with them having different (subjective) prior
beliefs over states, this implies they would also have different (subjective) posterior beliefs if both
observed the signal realization.

12We also follow the standard convention and let 0 ln 0 = 0.
13See Laffont and Triole (1990); Armstrong and Sappington (2007); Alonso and Matouschek

(2008) for some examples and discussion of such settings.
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The game proceeds as follows. In the first stage, the principal selects an agent
from the population based on the agent’s prior belief µ. In the second stage, the
selected agent chooses signal structure φ and pays cost c(φ, µ). In the third stage,
the agent receives signal s according to the chosen φ and selects action a given s.
Payoffs u(a, ω) are then realized for the principal and the agent.

The following subsections describe the respective optimization problems faced
by the principal and her selected agent, and define the equilibrium concept.

3.2 The Agent’s Problem

The agent selected by the principal chooses a signal structure φ : Ω → ∆(S) and a
choice rule σ : S → A to maximize his expected payoff net of the information costs.
The agent’s objective function is

Eµ[u(a, ω)]− c(φ, µ) =
∑

ω∈Ω
µ(ω)

∑

s∈S
φ(s|ω)u(σ(s), ω)− c(φ, µ),

where Eµ denotes the expectation w.r.t. the agent’s belief µ. The agent’s problem
can then be written down as

max
φ,σ

{
∑

ω∈Ω
µ(ω)

∑

s∈S
φ(s|ω)u(σ(s), ω)− c(φ, µ)

}

,

s.t. ∀ω ∈ Ω : φ(·|ω) ∈ ∆(S).
(2)

Lemma 1 in Matějka and McKay (2015) shows that problem (2) with entropy
cost function can be reframed as a problem of selecting a collection of conditional
choice probabilities. This reformulation is presented in Section 3.5.

3.3 The Principal’s Problem

The principal’s problem is to choose an agent based on his prior belief µ ∈ M in
order to maximize her expected utility from the action eventually chosen by the agent
(where Ep denotes the expectation w.r.t. the principal’s belief µp). Her objective
function is

Ep[u(a, ω)] =
∑

ω∈Ω
µp(ω)

∑

s∈S
φ(s|ω)u(σ(s), ω),

so her optimization problem can be written down as

max
µ

{
∑

ω∈Ω
µp(ω)

∑

s∈S
φ(s|ω)u(σ(s), ω)

}

, (3)

where the signal structure φ and the decision rule σ are given by the agent’s equi-
librium strategy, and this strategy depends on his prior belief µ. Therefore, the
principal’s choice of agent indirectly determines φ and σ.
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3.4 Equilibrium Definition

We now present the equilibrium notion used throughout the paper; the discussion
follows.

Definition (Equilibrium). An equilibrium of the game is given by (µ∗, {φ∗
µ, σ

∗
µ}µ∈M):

the principal’s choice µ∗ ∈ M of the agent who the task is delegated to and a col-
lection of the agents’ information acquisition strategies φ∗

µ : Ω → ∆(S) and decision
rules σ∗

µ : S → A for all µ ∈ M, such that:

1. φ∗
µ and σ∗

µ constitute a solution to (2) for every µ ∈ M;

2. µ∗ is a solution to (3) given (φ∗
µ, σ

∗
µ).

Note that the above effectively defines a Subgame-Perfect Nash Equilibrium.
While our game features incomplete information (about the state of the world chosen
by Nature), and the players’ beliefs play a central role in the analysis, problem
formulations (2) and (3) allow us to treat these beliefs as just some exogenous
functions entering the terminal payoff functions. This is primarily due to the fact
that one player’s actions do not affect another player’s beliefs in this game, hence
a belief consistency requirement is not needed (however, we do require internal
consistency in that the agent’s posterior belief η is obtained by updating his prior
belief µ via Bayes’ rule given his requested signal structure φ).

3.5 Preliminary Analysis

Matějka and McKay (2015) show that with entropy costs, the agent’s problem of
choosing information structure and choice rule can be reduced to the problem of
choosing the conditional action probabilities. Namely, the maximization problem
of the agent can be rewritten as that of choosing a single state-contingent action
distribution π : Ω → ∆(A) (as opposed to the combination of a signal strategy
φ : Ω → ∆(S) and a decision rule σ : S → A):

max
π

{
N∑

j=1

µ(ωj)

(
N∑

i=1

π(ai|ωj)u(ai, ωj)

)

−

− λ

(
N∑

j=1

µ(ωj)

(
N∑

i=1

π(ai|ωj) ln π(ai|wj)

)

−
N∑

i=1

β(ai) ln β(ai)

)}

, (4)

where π(ai|ωj) stands for the conditional probability of choosing alternative ai in
state ωj, and β(ai) denotes the respective unconditional probability of choosing
alternative ai (calculated using the agent’s own prior belief µ):

β(ai) ≡
N∑

j=1

µ(ωj)π(ai|ωj). (5)

The principal’s problem can then be rewritten as choosing µ ∈ M that solves

max
µ

{
N∑

j=1

µp(ωj)

(
N∑

i=1

π(ai|ωj)u(ai, ωj)

)}

s.t. π solves (4).

(6)
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In what follows, we refer to problem (6) as the principal’s full problem. Note that
the solution of the full problem together with the corresponding π constitute an
equilibrium as defined above, when complemented with the optimal strategies of the
non-chosen agents (those with µ ∈ M\{µ∗}).

We now proceed to analyze the model described above.

4 Binary Case

In this section we return to the binary-state, binary-action version of the model set
up in Section 2 to see how it behaves when the agent has flexibility in his learning
technology (as opposed to binary all-or-nothing learning). We show that with the
entropy cost function, the principal has to balance off the amount of information
acquired against the nature of information acquired – since agents with different
prior beliefs bias their learning towards different states. This makes the principal
favor agents who are somewhat more uncertain than her regarding the state, but
not necessarily have a uniform prior belief (Proposition 2).

To remind, Section 2 assumed that the state space is Ω = {l, r}, the action set
is A = {L,R}, and the common utility function net of information costs is such
that u(L|l) = u(R|r) = 1 and u(L|r) = u(R|l) = 0. We proceed by the backward
induction, looking at the agent’s problem first, and then using the agent’s optimal
behavior to solve the principal’s problem of choosing the best agent.

The agent is allowed to choose any informational structure (Blackwell experi-
ment) he wants, paying the cost which is proportional to expected reduction of the
Shannon entropy of his belief. Using the result presented in Section 3.5, the agent’s
problem can be reformulated as the problem of choosing a stochastic choice rule
π : Ω → ∆(A), which solves

max
π

{

µπ(R|r) + (1− µ)π(L|l)− c(π, µ)
}

, (7)

where c(π, µ) = λ




∑

a∈{L,R}
β(a) ln β(a)−

∑

ω∈{l,r}
µ(ω)

∑

a∈{L,R}
π(a|ω) ln π(a|ω)



 .

The solution to this problem can be summarized by the two precisions {π(R|r), π(L|l)}
or, alternatively, the two unconditional probabilities {β(R), β(L)}. Using Theorem
1 in Matějka and McKay (2015), we get that

π(L|l) = β(L)e
1
λ

β(L)e
1
λ + β(R)

, π(R|r) = β(R)e
1
λ

β(L)e
1
λ + β(R)

, (8)

and their Corollary 2 then adds the conditions

µ

β(L) + β(R)e
1
λ

+
(1− µ)e

1
λ

β(L)e
1
λ + β(R)

= 1, (9)

µe
1
λ

β(L) + β(R)e
1
λ

+
(1− µ)

β(L)e
1
λ + β(R)

= 1. (10)
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Combining (8)–(10), we get14

π(R|r) =

(

µe
1
λ − (1− µ)

)

e
1
λ

(

e
2
λ − 1

)

µ
,

π(L|l) =

(

(1− µ)e
1
λ − µ

)

e
1
λ

(

e
2
λ − 1

)

(1− µ)
,

(11)

cropped to [0, 1]. In turn, the principal’s problem is the same as in Section 2:

max
µ

{µpπ(R|r) + (1− µp)π(L|l)}

s.t. π solves problem (7) given µ.
(12)

It is easy to see by comparing the payoffs in (7) and (12) that the principal ben-
efits from higher precisions π(R|r) and π(L|l), same as the agent. However, the
relative weights the principal and the agent assign to these precisions depend on
their respective priors µp and µ, and hence differ between the two. Hence in order
to understand the trade-offs that the principal faces in hiring agents with different
priors, we need to explore how the agent’s optimal strategy (11) depends on his
prior belief µ.

Solving the problem (7), the agent faces a trade-off between increasing the preci-
sion of his decisions, π(R|r) and π(L|l), and the cost of information. With the flexible
acquisition technology, the agent focuses on the more important event: namely, the
higher is the probability that the agent’s prior belief assigns to ω = r, the more
important is precision π(R|r) for his payoff, compared to π(L|l). Therefore, two
agents with different beliefs would acquire different information, leading to different
precisions π(R|r) and π(L|l).15 At the same time, as the prior belief µ gets close
to the extremes (µ = 0 or µ = 1), the agent becomes so confident about the state
that the precision in the other state becomes irrelevant, and the agent gravitates to
the ex ante optimal action. The marginal benefit of additional information for the
agent in this scenario is low, and the agent consumes less information in total (in
bits).

To summarize, the agent’s belief µ affects his optimal decision precisions in two
ways: a more uncertain agent acquires more information (and hence makes a better
decision on average) than an agent who believes one state is more likely. However,
the latter is more concerned with choosing the correct action in the ex ante more
likely state, while neglecting the other state. Figure 1 demonstrates how the agent’s
action precisions choice depends on his prior belief.

The principal prefers, ceteris paribus, to hire an agent who acquires more infor-
mation and hence makes better choices – i.e., a more uncertain agent (µ close to 0.5).

14This solution takes the form of the so-called rational inattention (RI) logit. In comparison
to the standard logit behavior, under RI-logit the decision-maker (the agent in our case) has a
stronger tendency to select the ex ante optimal alternatives more frequently.

15This feature of the flexible information acquisition model was analyzed in the application to
belief polarization by Nimark and Sundaresan (2019), as well as in the marketing literature (see
Jerath and Ren (2021)).
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Figure 1: Solution to the problem (7) with different prior beliefs.
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Figure 2: Expected utility of principal with prior belief µp = 0.7 as a function of
the agent’s prior belief µ.

However, if she believes that, e.g., state r is ex ante more likely (µp > 0.5), then
she, for all the same reasons as the agent, cares more about the agent choosing the
optimal action in state r than in state l. The latter leads her to prefer an agent who
is not completely uncertain (µ 6= 0.5), favoring those who agree with her in terms of
which state is more likely (µ > 0.5). Balancing the two issues leads to the principal
optimally hiring an agent who has a belief different from hers: µ 6= µp, yet who fun-
damentally agrees with her on the ex ante optimal action: µ ≥ 0.5 ⇐⇒ µp ≥ 0.5.

Figure 2 plots the principal’s expected utility from hiring an agent as a function
of the agent’s belief µ when µp = 0.7. We can see the principal with a prior belief
µp = 0.7 would prefer to hire an agent with a prior belief µ ≈ 0.6. Note that the
graph is flat for very high and very low µ, which corresponds to the agents who do
not learn anything, and simply always choose the ex ante optimal action. Further,
there exist agents with low µ ∼ (0.15, 0.25) who acquire non-trivial information,
but hiring whom is worse for the principal than taking the ex ante optimal action
(equivalent to hiring an agent with µ = 1). The latter demonstrates that if an agent
is too biased, the information he acquires does not benefit the principal due to the
bias in the agent’s actions resulting from his initial predisposition.

The proposition 2 below formalizes this intuition and provides a closed-form
solution for the optimal delegation strategy given the principal’s prior belief µp.
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Figure 3: The optimal delegation strategy µ∗ as a function of the principal’s prior
belief µp.

Figure 3 visualizes the optimal delegation strategy as a function of µp.

Proposition 2. If M = [0, 1], then the principal’s optimal delegation strategy is
given by

µ∗ =

√
µp

√
µp +

√
1− µp

. (13)

Therefore, if µp ∈
(
1
2
, 1
)
, the principal optimally delegates to an agent with belief

µA ∈
(
1
2
, µp

)
.

One thing to note about Proposition 2 is that the optimal delegation strategy
(13) does not depend on the agent’s information cost factor, λ. While it is immediate
that the higher is λ, the less information the agent with any given prior µ collects,
Proposition 2 serves to show that the trade-off between the quantity of information
and the bias in the decisions does not depend on the absolute quantity of infor-
mation the agent acquires. Further, for a moderately high λ (and/or a moderately
extreme µp), an agent with belief µ∗ acquires no information, while an agent with
belief µ = 1/2 would acquire some. In this case, it is nonetheless optimal for the
principal to hire the µ∗ agent (or, alternatively, simply choose the ex ante optimal
action himself), since a learning agent would be too misaligned, and the benefits of
information would be outweighed by the bias in the decisions.

Figure 4 demonstrates the difference in the action precisions between delegating
to a perfectly aligned agent (µ = µp) and the optimally misaligned agent as given
by (13). Optimal delegation leads to the agent consuming more information, lowers
the probability of correctly matching the ex ante more likely (according to the
principal’s belief µp) state, π(R|r), and increases π(L|l), thereby bringing the two
closer together. Overall, under the optimal delegation the less attractive ex-ante
option is implemented relatively more frequently as compared to the case of the
aligned delegation.

An interesting connection can be made here to prospect theory (see Barberis
(2013) for a review). In particular, Tversky and Kahneman (1992) suggest that
in problems of choice under risk, individual decision-makers tend to succumb to
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Figure 4: Action precisions under optimal delegation and delegating to the aligned
agent.

cognitive biases such as overweighing small probabilities and underweighing large
probabilities. They propose a probability weighting function that decision makers
unconsciously use, which is reminiscent of our optimal delegation strategy (13), with
µp being the objective probability and µ∗ being the decision-maker’s perceived prob-
ability. Our result can thus be interpreted as one possible evolutionary explanation
of the probability weighting functions. Namely, suppose that “Nature” (evolutionary
pressure) is the principal and “Human” is the agent. They both have common utility
function u(a, ω) representing the survival probability of the individual/population,
but natural selection is indifferent towards the human’s cognitive costs c(φ, µ) in-
volved in the decision-making process. In this setting, natural selection would lead
humans to develop probabilistic misperceptions according to (13), since these max-
imize the survival probability.16

In the next section we generalize the binary model, assuming more available
alternatives, while keeping the structure of the payoffs the same.

5 General Case

In this section we extend the analysis to a general problem of finding the best
alternative, allowing for N > 2 actions and states. We show that the principal’s
optimal delegation strategy is qualitatively the same as in the binary case, i.e., it is
optimal to hire a “more uncertain” agent, who considers more actions in search of
the best one, relative to a fully aligned agent. Further, we characterize the whole set
of decision rules that can be achieved by selecting the agent’s prior belief and show
that it coincides with what can be achieved by selecting action-contingent subsidies
for the agent.

We are now looking at the model with A ≡ {a1, ..., aN} and Ω ≡ {ω1, ..., ωN} for
some N , and the preferences are given by u(ai, ωi) = 1 and u(ai, ωj) = 0 if i 6= j.

16Steiner and Stewart (2016) suggest an alternative explanation of probabilistic misperceptions
using a similar nature-as-a-principal approach, but a different source of conflict between Nature
and Human.
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Without loss of generality we assume that the principal’s belief µp is such that
µp(ω1) ≥ µp(ω2) ≥ . . . ≥ µp(ωN) (otherwise relabel states and actions as necessary).
Same as before, the results from Section 3.5 apply, meaning that the agent’s problem
is equivalent to choosing the action distribution π : Ω → ∆(A) to maximize (4),
and the principal selects an agent according to his prior µ ∈ M to maximize (6).
We do not restrict the choice of agents and let M = ∆(Ω) (i.e., for any probability
distribution µ ∈ ∆(Ω), the principal can find and hire an agent with prior belief µ).

5.1 Agent’s Problem

Proceeding by backward induction, we start by looking at the problem of an agent
with some prior belief µ. Invoking Theorem 1 from Matějka and McKay (2015), as
we did in the binary case, we can obtain the agent’s optimal decision rule:

π(ai|ωj) =
β(ai)e

u(ai,ωj)

λ

∑N

k=1 β(ak)e
u(ak,ωj)

λ

, (14)

where β(ai), defined in (5), is the unconditional choice probability according to the
agent’s prior belief µ. Corollary 2 from Matějka and McKay (2015) shows that these
probabilities solve the system of equations given by

N∑

j=1

µ(ωj)
e

u(ai,ωj)

λ

∑N

k=1 β(ak)e
u(ak,ωj)

λ

= 1, (15)

for every i ∈ {1, ..., N} such that β(ai) > 0.

5.2 Principal’s Relaxed Problem

Note that (14) implies that a collection of the unconditional choice probabilities β
pins down the whole decision rule. Let us then consider a relaxed problem for
the principal, in which instead of choosing agent’s prior µ, she is free to select the
unconditional choice probabilities β ∈ ∆(A) directly:

max
β

{
N∑

j=1

µp(ωj)

(
N∑

i=1

β(ai)e
u(ai,ωj)

λ

∑N

k=1 β(ak)e
u(ak,ωj)

λ

u(ai, ωj)

)}

. (16)

In the above, we used (14) to represent the conditional probabilities π(ai|ωj) in (6)
in terms of unconditional β(ai). We show in Section 5.3 that the solution to this
relaxed problem is implementable in the full problem.

Note that β(ai) in the above represents the probability with which an agent ex-
pects to select action ai. The principal’s expected probability of ai being selected,
∑N

j=1 µp(ωj)π(ai|ωj), would generically be different, since her prior belief µp is differ-
ent. Despite the potential confusion this enables, analyzing the principal’s problem
through the prism of choosing β is the most convenient approach due to the RI-logit
structure of the solution to the agent’s problem.
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Given the state-matching preferences u(aj, ωj) = 1, u(ai, ωj) = 0 if i 6= j, we can
simplify (16) to

max
β

{
N∑

j=1

µp(ωj)
β(aj)e

1
λ

1 + δβ(aj)

}

, (17)

where δ ≡ e
1
λ − 1. To characterize the solution to this relaxed problem, we need

to introduce two new pieces of notation. For a given decision rule π, let C(β) ≡
{i ∈ {1, ..., N} : β(ai) > 0} denote the consideration set, i.e., the set of actions
that are chosen with strictly positive probabilities. Further, let K(β) ≡ |C(β)|
denote the power (number of actions in) this set. We can now state the solution to
the principal’s problem as follows.

Lemma 1. The solution to the principal’s relaxed problem (17) is given by

β∗(ai) = max







0,
1

δ





(K(β∗) + δ)

√

µp(ωi)
∑

j∈C(β∗)

√

µp(ωj)
− 1












,

where δ ≡ e
1
λ − 1.

Lemma 1 describes the solution in terms of the action choice probabilities, which
do not necessarily give the reader a good idea of its features and the intuition behind
this solution. We explore these in more detail in Section 5.4. Before that, however,
we need to ensure that this solution is attainable in the principal’s full problem,
which is done in the following section.

5.3 Principal’s Full Problem

The question this section explores is: can the principal generate choice probabilities
β∗ by appropriately choosing the agent’s prior belief µ? In the binary case, the
answer was trivially “yes”: due to continuity of the agent’s strategy, by varying the
agent’s belief µ(r) between 0 and 1, the principal could induce any unconditional
probability β(R). In the multidimensional case, this is not immediate. However, the
following theorem shows that the result still holds with N actions and states under
state-matching preferences.

Theorem 1. In the principal’s full problem (6), any vector β ∈ ∆(A) of uncondi-
tional choice probabilities is implementable: there exists a prior belief µ ∈ ∆(Ω)
such that β(ai) =

∑N

j=1 µ(ωj)π
∗
µ(ai|ωj), where π∗

µ solves the agent’s problem (4)
given µ.

The theorem states that if M = ∆(Ω), then the principal can generate any
vector of unconditional action probabilities. Note that this does not imply that
she is able to select any decision rule π(ai|ωj) – if this were the case, under the
state-matching preferences she would simply choose to have π(ai|ωi) = 1 for all i.
However, Theorem 1 does imply that the choice probabilities described in Lemma
1 – those that solve the principal’s relaxed problem, – are implementable and thus
also solve her full problem.

The result does, however, rely on the state-matching preferences: we show in
Section 6.1 that it does not hold for arbitrary payoffs.
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5.4 Properties of the Optimal Delegation Strategy

While Lemma 1 presents the solution of the principal’s problem in terms of the
unconditional choice probabilities, this representation is not the most visual. We
now demonstrate some implications of this solution in terms of other variables.
Namely, Proposition 3 extends Proposition 2 and shows how the chosen agent’s
prior belief relates to that of the principal. Proposition 4 then compares actions
taken under optimal delegation vs aligned delegation.

We begin by looking at the optimal agent choice in terms of the agent’s belief
µ∗.

Proposition 3. The principal’s equilibrium delegation strategy µ∗ is such that for
all i, j ∈ {1, ..., N}:

µ∗(ωi)

µ∗(ωj)
=

√

µp(ωi)
√

µp(ωj)
.

In particular, µ∗(ω1) ≥ ... ≥ µ∗(ωN). Further, µ∗(ω1) ≤ µp(ω1) and µ∗(ωN) ≥
µp(ωN), with equalities if and only if µp(ω1) = ... = µp(ωj).

The intuition behind the proposition above is the same as behind Proposition 2:
the optimally chosen agent is more uncertain than the principal between any given
pair of states. To see this, note that if µp(ωi) > µp(ωj) then 1 < µ∗(ωi)

µ∗(ωj)
< µp(ωi)

µp(ωj)
–

i.e., the agent believes state ωi is ex ante more likely than ωj, as the principal does,
but he assigns relatively less weight to ωi. This applies to any pair of states, so
the implication is that the optimal agent must assign a lower ex ante probability to
ω1, the most likely state according to the principal, than she does, and vice versa
for ωN . Note further that the result in Proposition 3 is again independent of λ,
implying that the optimal delegation strategy is determined by the relative trade-off
between the quantity of information acquired and the bias introduced in actions by
the misalignment in beliefs, but the absolute quantity of information acquired is
irrelevant. In particular, hiring an agent with µ∗ is optimal even when he acquires
no information, and another agent µ is available, who would be willing invest effort
in learning ω (since such a µ-agent would be too biased relative to the principal).

We now switch to comparing the choices made under optimal delegation to those
that would arise under aligned delegation – i.e., if the principal selected an agent
with µ = µp. Let β̄ denote the choice probabilities that would be generated under
aligned delegation. Caplin et al. (2019) show that these probabilities β̄, as a function
of the agent’s prior µ, are given by (see their Theorem 1)

β̄(ai) = max







0,
1

δ





(K(β̄) + δ)µ(ωi)

∑

j∈C(β̄)

µ(ωj)
− 1












. (18)

Since µp(ω1) > ... > µp(ωN), the consideration set in the aligned problem is then
simply C(β̄) = {1, ..., K̄}, and its size K̄ ≡ K(β̄) is the unique solution of

µp(ωK̄) >
1

K̄ + δ

K̄∑

j=1

µp(ωj) ≥ µp(ωK̄+1). (19)
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In turn, we can see from Lemma 1 that under optimal delegation, size K∗ = K(β∗)
of the consideration set under optimal choice is

√

µp(ωK∗) >
1

K∗ + δ

K∗

∑

j=1

√

µp(ωj) ≥
√

µp(ωK∗+1). (20)

These two conditions allow us to compare K∗ and K̄ directly, which is done by the
following proposition.

Proposition 4. Optimal delegation weakly expands the consideration set relative to
aligned delegation:

K(β∗) ≥ K(β̄).

In other words, delegating to an optimally misaligned agent leads to a wider
variety of actions played in equilibrium. This is a direct consequence of delegation
to a more uncertain agent – since he is less sure than the principal of what the
optimal action is ex ante, he considers more actions as worth investigating. Every
action has some positive probability of actually being optimal, thus a more uncertain
agent plays a wider range of different actions ex post. We could already see this
effect at play in the binary case, where if µp is extreme, then an aligned agent takes
the ex ante optimal action without acquiring any additional information, whereas
the optimally chosen agent could investigate both actions.

6 Misaligned Beliefs Versus Other Instruments

The preceding analysis above explored the problem of selecting an agent according
to their prior belief. It gave grounds for using the misaligned beliefs as an instrument
in delegation, yet it still worth studying how this instrument compares to the other
instruments, such as contracting or restricting the delegation set. In this section,
we draw this comparison. We keep the overall structure of the problem the same
as in Section 5, but now consider three separate versions, in which the principal
has different tools at her disposal, and compare outcomes to those in the baseline
problem of choosing agent’s beliefs.

6.1 Contracting on Actions/Misaligned Preferences

The most basic delegation tool is contracting: if the principal could offer the agent
a contract that specifies contingent payments, this would be the most direct way
to provide incentives.17 We can think of two main options here: contracting on
outcomes (where “outcome” is understood in the sense of “was the agent’s action
correct?”) and contracting on actions. The former requires that both outcomes are
contractible (i.e., observable and verifiable), the latter imposes such requirement
on actions. Both options require that the principal has the freedom to design the
payments, which is a strong assumption in itself.

17See Laffont and Martimort (2009) for many examples.
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We begin by exploring the contracting on actions in our framework, in which
the principal must design a payment schedule {τ(ai)} to be paid to the agent. We
assume that all agents and the principal have a common prior belief µp, all players’
preferences are quasilinear in payments, and the principal’s marginal utility of money
is ρ, and the agent’s marginal utility of money is 1. For some results, we additionally
impose the limited liability assumption (τ(ai) ≥ 0 for all i).18

Note that instead of contracting, we can interpret this setup as a problem of
selecting an agent with misaligned preferences by setting ρ = 0. Collection {τ(ai)}
then represents an agent’s “biases”, i.e., inherent preferences towards certain actions
on top of the “unbiased” utility u(a, ω). Such a problem of selecting an agent with
optimally misaligned preferences is a natural counterpart to our baseline problem of
selecting an agent with optimally misaligned beliefs.

The agent’s problem (again using the equivalence presented in 3.5) is then given
by

max
π

{
N∑

j=1

µp(ωj)
N∑

i=1

π(ai|ωj)
(
u(ai, ωj) + τ(ai)

)
− c(φ, µp)

}

, (21)

given τ , and the principal’s contracting problem is

max
τ

{
N∑

j=1

µp(ωj)
N∑

i=1

π(ai|ωj)
(
u(ai, ωj)− ρτ(ai)

)

}

, (22)

subject to π solving (21) given τ .
Instead of providing a closed-form solution to this problem, we appeal to Theo-

rem 1 to argue that regardless of ρ, the principal cannot obtain higher expected util-
ity than in the baseline problem of choosing an agent with a misaligned belief µ. In
particular, Theorem 1 implies that any unconditional choice probabilities β ∈ ∆(A)
generated by an agent, who is incentivized by payments or misaligned preferences,
can also be obtained by selecting an agent with appropriately misaligned beliefs.
Moreover, if we relax limited liability and allow negative payments, then by using
results of Matveenko and Mikhalishchev (2021) we can also show the converse – that
any choice rule achievable with misaligned beliefs can be replicated with payments τ
(or by setting the quotas – i.e., imposing specific unconditional choice probabilities
for different action). These results are formalized in the following proposition.19

Proposition 5. The principal’s problem of contracting on actions (22) is equivalent
to her full (delegation) problem (6):

1. For any vector τ : A → R of payments/biases and a corresponding β : Ω →
∆(A) that solves (21) given τ , there exists a prior belief µ ∈ ∆(Ω) such that
β also solves (4) given µ.

18In line with the baseline problem, we do not impose any participation constraints on the agent.
The implicit assumption here is that the agent is being paid some non-negotiable unconditional
salary if he is hired, which is sufficient to ensure participation. Payments {τ(ai)} should then be
treated as premia, with the limited liability assumption implying they must be non-negative.

19The result regarding quotas is not included in the proposition, yet it follows immediately from
Lemma 1 of Matveenko and Mikhalishchev (2021).
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2. For any µ ∈ ∆(Ω) and the corresponding β : Ω → ∆(A) that solves (4) given
µ, there exist payments τ : A → R such that β also solves (21) given τ .

The proposition above directly implies that neither of the two instruments (con-
tracting on actions or searching for an agent with stronger/weaker preferences for
specific actions) can yield better results than hiring an agent with an optimally mis-
aligned belief. If limited liability is in place (τ(ai) ≥ 0 for all i), then contracting
on actions is strictly worse, since it cannot yield a better decision rule, but requires
payments from the principal – payments which are avoidable if she instead hires an
agent who is intrinsically motivated by his beliefs over states or preferences towards
specific actions.

Further, Theorem 1 and the results of Matveenko and Mikhalishchev (2021)
also imply that the space of solutions to either problem covers the whole universe
of RI-logit choice rules given fixed preferences between states. This implies that
no combination of misaligned beliefs, misaligned preferences, and payments for ac-
tions can perform better than any individual instrument. Moreover, it also implies
that suboptimal misalignment along any dimension can be amended using other
instruments. I.e., if a given agent holds a non-optimal prior belief (that does not
coincide with the principal’s either), the optimal behavior might be induced via
action-contingent transfers. Conversely, if all agents are biased towards certain ac-
tions, this misalignment can be compensated for by selecting an agent with the right
prior belief. The following proposition presents one example of such equivalence, in
the context of a model with N = 2.

Proposition 6. Consider the binary setting of Section 4. Consider the principal’s
problem of contracting on actions (22), where ρ = 0 and the agent holds prior belief
µ 6= µp. Then:

1. for any µ, there exist payments/biases {τ ∗(L), τ ∗(R)} that implement the op-
timal conditional choice probabilities from Section 4;

2. these payments/biases are such that20

τ ∗(R) ≥ τ ∗(L) ⇐⇒ µ ≤ µ∗ =

√
µp

√
µp +

√
1− µp

.

It is easy to see the intuition behind the proposition: if the agent’s prior belief
µ assigns lower probability to state ω = r compared to the principal-optimal prior
µ∗ given in Proposition 2, such an agent is ex ante too biased towards action L for
the principal’s taste, even though he potentially acquires more information than an
agent with belief µ∗. Therefore, the principal can nudge the agent towards action R
by offering higher payment if he selects R (or find an agent, whose preference bias
towards R offsets his belief bias towards state l).

20The closed-form expressions are available in the proof in the Appendix.
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6.2 Contracting on Outcomes

We now turn to contracting on outcomes. The outcome in our model is effectively
binary: whether a correct action was chosen (a = aj when ω = ωj) or not. We thus
let the principal select payments τ̄ , τ that the agent receives, so that τ(ai, ωi) = τ̄
and τ(ai, ωj) = τ if i 6= j.21 We again assume limited liability (τ̄ , τ ≥ 0), preferences
that are quasilinear in payments for all agents, and let the agent’s marginal utility
of money to be 1, and the principal’s marginal utility of money to be ρ.

The agent’s problem is then choosing π : Ω → ∆(A) that solves22

max
π

{
N∑

j=1

µ(ωj)
N∑

i=1

π(ai|ωj)
(
u(ai, ωj) + τ(ai, ωj)

)
− c(φ, µ)

}

, (23)

and the principal’s contracting problem is

max
τ̄ ,τ

{
N∑

j=1

µp(ωj)
N∑

i=1

π(ai|ωj)
(
u(ai, ωj)− ρτ(ai, ωj)

)

}

, (24)

s.t. τ(ai, ωi) = τ̄ for all i,

τ(ai, ωj) = τ for all i, j 6= i,

and subject to β corresponding to a solution of (23) given τ̄ , τ .
It is trivially optimal for the principal to set τ = 0, since her objective is to

provide incentives for the agent to match the state. Then, however, the agent’s (ex
post) payoff net of information cost becomes u(ai, ωj) + τ(ai, ωj) = (1 + τ̄)u(ai, ωj),
and the principal’s payoff is u(ai, ωj)− τ(ai, ωj) = (1− ρτ̄)u(ai, ωj). In other words,
by increasing the incentive payment τ̄ , the principal effectively lowers the relative
cost of information for the agent, at the cost of decreasing her own payoff. It then
appears like an instrument that could be universally useful for the principal – even
when she chooses an agent with the optimal prior belief, she could still benefit from
reducing the agent’s information cost, which would result in him acquiring more
information. The following proposition shows, however, that this is not the case:
while contracting on outcomes may be a useful instrument, it cannot improve on
delegating to the optimally biased agent when payments are costly to the principal.

Proposition 7. Consider the principal’s contracting problem (24) in the binary
setting of Section 4 and suppose ρ = 1 and µp > 1/2. Then there exist µ̄1, µ̄2: µ̄1 <
µ∗ < µp < µ̄2 (where µ∗ is as in Proposition 2), such that if either 1

1+e
1
λ

≤ µ ≤ µ̄1,

or µ̄2 ≤ µ ≤ e
1
λ

1+e
1
λ

, then τ̄ > 0 solves (24).

21If the principal could contract on both actions and outcomes, she would have the freedom to
select any payment schedule {τ(ai, ωj)}. Lindbeck and Weibull (2020) study such a problem with
N states and two actions.

22While it is more common in the literature to consider an agent who yields no intrinsic utility
from actions and is motivated exclusively via payments, for sake of consistency, we maintain the
assumption that the agent enjoys the same intrinsic utility u(a, ω) as the principal, albeit possibly
to a different magnitude.
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The proposition states that the principal uses the incentive payments, τ̄ > 0,
when there is an intermediate degree of misalignment in opinions with the agent.
If the agent has a very extreme prior belief and acquires no information on his
own, it may be too costly for the principal to incentivize such an agent to acquire

any information. The requirements that 1

1+e
1
λ

≤ µ ≤ e
1
λ

1+e
1
λ

ensure that the agent

acquires information voluntarily so that this problem does not arise.23 On the other
hand, if there is too little misalignment (µ̄1 < µ < µ̄2), then the agent’s information
acquisition choice is already in line with the principal’s wishes, and any further
payments would not have a significant enough effect on the agent’s incentives to
justify the cost they incur on the principal.

6.3 Restricting the Delegation Set

Another instrument commonly explored in the delegation literature is restricting the
delegation set – i.e., the set of actions that the agent may take (see, e.g., Holmstrom
(1980)). In particular, in the context of “delegated expertise” problems, Szalay
(2005) and Ball and Gao (2021) show that it may be optimal to rule out an ex ante
optimal action in order to force the agent to exert effort and learn which of the
ex post optimal (but ex ante risky) actions is best. Lipnowski et al. (2020) show
a similar result in a Bayesian Persuasion setting, where the receiver is rationally
inattentive to the sender’s message.

In our setting, however, there are no “safe” actions that the principal could rule
out, as Propostion 4 suggests. Assuming that the principal and the agent hold the
same prior belief µp, and µp(ω1) > ... > µp(ωN), action a1 is the “safest” in the
sense of being the most likely ex ante to be optimal. Yet, it would be trivially
suboptimal for the principal to ban a1 – since, indeed, this is the action that is ex
ante most likely to be ex post optimal! In other words, while excluding a1 from
the delegation set would lead the agent to acquire more information, it would also
lead to larger ex post losses due to the agent being unable to select action a1 in
cases when it is optimal to do so. So while the general idea of the principal being
willing to nudge the agent to acquire more information/information about ex ante
suboptimal actions holds true in our setting, restricting the delegation set is not an
instrument that lends any value to the principal.

Proposition 8 below summarizes this logic. Consider the agent’s problem as given
by

max
π

{
N∑

j=1

µp(ωj)
N∑

i=1

π(ai|ωj)u(ai, ωj)− c(φ, µp)

}

, (25)

given A∗ ⊆ A (and the maximization is w.r.t. a mapping π : Ω → ∆(A∗)), and the

23Note that there may still be µ outside of this interval for which offering positive incentive
payments is optimal for the principal. In that sense, Proposition 7 only provides a condition on µ

that is sufficient for τ̄ > 0. A necessary and sufficient condition would look similarly, but feature
different outer boundaries for µ.
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principal’s restriction problem

max
A∗

{
N∑

j=1

µp(ωj)
N∑

i=1

π(ai|ωj)u(ai, ωj)

}

, (26)

subject to π : Ω → ∆(A∗) solving (25) given A∗. Then we can state the result as
follows.

Proposition 8. The unrestricted delegation set A∗ = A is always a solution to the
principal’s restriction problem (26).

7 Extensions

7.1 Alternative Preference Specifications

The analysis in Sections 5 and 6.1 is heavily reliant on state-matching preferences
that we assume are shared by both the principal and the agent(s). It is reasonable
to ask whether our conclusions hold under other preference specifications. Since the
utility function u(a, ω) is shared by both the principal and the agent, it is reasonable
to generalize one at a time.

We begin by generalizing the principal’s utility function up(a, ω) while main-
taining the agent’s intrinsic preference for matching the state: uA(ai, ωi) = 1,
uA(ai, ωj) = 0 if i 6= j. Naturally, the specific functional forms of the optimal
delegation strategies (such as those presented in Propositions 2 and 3, and Lemma
1) depend on the specific form of the principal’s utility function. However, The-
orem 1 only depends on the agent’s utility function, meaning that Proposition 5
still holds: any outcome that can be achieved by contracting on actions or hiring
an agent with the misaligned intrinsic preferences, can also be achieved by hiring
an agent with misaligned beliefs (and vice versa). Meaning that regardless of the
principal’s objective function, hiring an agent with state-matching preferences and a
suitable belief is as good as hiring an agent with aligned prior belief, state-matching
preferences, and either some additional preference over actions, or action-contingent
payments on top of that.

The above does, however, hinge on the agent having state-matching preferences
as a baseline. Once we allow arbitrary preferences for the agent – even if they align
with the principal’s preferences net of the information cost – the equivalence stated
in Proposition 5 breaks down. In such a general case, finding an agent with optimally
misaligned preferences may yield strictly better results for the principal than hiring
an agent with an optimally misaligned belief, and hence contracting on actions may,
in principle, yield better results too. An example (for misaligned preferences) is
presented in the proof of the following proposition.

Proposition 9. There exists a utility function u(ai, ωj) with u(ai, ωi) = max
k

{u(ak, ωi)}
such that the solution of the principal’s relaxed problem (17) can not be attained as
a solution of the full problem (6).
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The optimal choice rule is never in the relative interior, since mixing between two
options dominates using mixing from three. However, according to Proposition 3 and
Lemma 1 from Matveenko and Mikhalishchev (2021), the principal may implement
the optimal solution via action-contingent payments/biased preferences.

7.2 Communication

In this section we consider the importance of decision rights in our model with
misaligned beliefs. In particular, we juxtapose the delegation scheme explored so far,
under which the agent has the power to make the final decision, to communication,
where an agent must instead communicate his findings to the principal, who then
chooses the action. A large literature in organizational economics is devoted to
comparing delegation and communication in various settings (see Dessein (2002);
Alonso et al. (2008), and Rantakari (2008) for some examples). We show that in
our setting, communication performs as well as delegation – i.e., the principal will
always find it optimal to follow the agent’s recommendation. This is, perhaps,
unsuprising, since Holmstrom (1980) showed that communication is equivalent to
restricting the agent’s action set, and this latter problem was shown in Section 6.3
to be an irrelevant instrument in our setting, as long as the principal can select an
agent with the prior belief she prefers.

Although the principal and an agent have the same preferences, it is generally
unclear whether it is optimal for the principal to follow a recommendation of an
agent due to the misalignment in their beliefs. Namely, since the principal and the
agent start from different prior beliefs, the same is true for posteriors: if the principal
could observe the information that the agent obtained, her posterior belief would be
different from that of the agent. This implies that ex post, the principal could prefer
an action different from the agent’s choice, and could benefit ex post from overruling
the agent’s decision if she had the power to do so. However, this would mean that
the agent’s incentives to acquire information are different from the baseline model,
and could lead to the agent acquiring either more or less information than in the
baseline, with the principal having some influence over the agent’s learning strategy
via her final decision rule.24 We show below that in the end, none of these effects
come into play, and there exists a communication equilibrium that replicates the
delegation equilibrium.

The setup follows the baseline model from Section 3, with the exception that
the final stage (“agent selecting action a ∈ A”) is replaced by two. First, after
observing signal s ∈ S generated by his signal structure φ, the agent selects a
recommendation (message) ã ∈ A to the principal. After that, the principal observes
the recommendation ã, uses it to update her belief µp(ω|ã) about the state of the
world, and then selects an action a ∈ A that determines the both parties’ payoffs.25

The equilibrium of the communication game is then defined as follows.

24Argenziano et al. (2016) provide one example of how the principal can manipulate the agent’s
information acquisition incentives under cheap talk communication.

25For simplicity, we assume that the principal only observes the recommendation made by the
agent, and not the signal he received or the signal structure he requested. These appear to be
reasonable, yet substantial assumptions, and the results would be different if we assumed the
principal could observe either the learning strategy, or the realized signal.
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Definition (Communication Equilibrium). An equilibrium of the cheap talk game
is characterized by (µ∗, {φ∗

µ, σ̃
∗
µ}µ∈M, σ∗, µp), which consists of the following:

1. the principal’s posterior beliefs µp : A → ∆(Ω) that are consistent with (φ∗
µ, σ

∗
µ)

(i.e., satisfy Bayes’ rule on the equilibrium path);

2. the principal’s decision rule σ∗ : A → A, which solves the following for every
ã ∈ A, given the posterior µp:

max
σ(ã)

{
∑

ω∈Ω
µp(ω|ã)u(σ(ã)|ω)

}

;

3. a collection of the agents’ information acquisition strategies φ∗
µ : Ω → ∆(S)

and communication strategies σ̃∗
µ : S → A that solve the following given σ for

every µ ∈ M:

max
φ,σ̃

{
∑

ω∈Ω
µ(ω)

∑

s∈S
φ(s|ω)u(σ(σ̃(s)), ω)− c(φ, µ)

}

;

4. the principal’s choice µ∗ ∈ M of the agent to whom the task is delegated, which
solves the following given (φ∗

µ, σ
∗
µ), σ

∗, and µp:

max
µ

{
∑

ω∈Ω
µp(ω)

∑

s∈S
φ(s|ω)u(σ(σ̃(s)), ω)

}

.

We can then state the result as follows.

Proposition 10. There exists a communication equilibrium that is outcome-equivalent
to the equilibrium of the original game, in the sense that (µ∗, φ∗

µ∗ , σ̃∗
µ∗) are the same

in both equilibria, and σ∗ is an identity mapping.

This result, however, is subject to a few caveats. First, cheap talk models are
plagued by equilibrium multiplicity: for any informative equilibrium, there exist
equilibria with less informative communication, up to completely uninformative
(babbling) equilibria. In our setting this means that in addition to the equilib-
rium outlined in Proposition 10 above, there also exists a babbling equilibrium, in
which the agent acquires no information and makes a random recommendation, and
the principal always ignores it and selects the ex ante optimal action.26 There would
also likely exist multiple equilibria of intermediate informativeness – e.g., equilibria
with a limited vocabulary, where only some actions Ã ⊂ A are recommended on
equilibrium path. In practice, this means that under communication, there is a
risk of miscoordination on uninformative equilibria, whereas under delegation the
equilibrium is unique. The same force may also work the other way, and there may

26If an agent makes uninformed recommendations, it is optimal for the principal to ignore it. If
the principal ignores the recommendation, it is optimal for the agent to not acquire any information.
Neither agent in this situation can unilaterally deviate to informative communication.
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be equilibria that are preferred by the principal to the delegation equilibrium, that
can only be sustained under cheap talk (see Argenziano et al. (2016) for an example
of how such equilibria may arise). However, the question of whether such equilibria
exist is beyond the scope of this paper.

The second caveat lies in the fact that Proposition 10 relies on the state-matching
preferences. In our setting (with the exception of Section 7.1), any action is either
“right” or “wrong”, without any degrees of correctness. The misalignment of beliefs
across the principal and the agent is thus small enough to not warrant the prin-
cipal overriding the agent’s suggested action. In contrast, in a uniform-quadratic
framework, both states and actions lie in a continuum, and the principal’s loss is
proportional to the distance between the realized state and the chosen action. In
such a setting, any misalignment (be it in preferences or beliefs) between the prin-
cipal and the agent would lead to the principal being willing to override the agent’s
recommendation, leading to the delegation equilibrium being no longer directly sus-
tainable under communication.

8 Conclusion

We show that hiring an agent with beliefs that are misaligned with those of the
principal can be beneficial for the principal, contrary to popular belief. In particular,
if the agent needs to acquire information to make a decision, delegation to an agent
who is ex ante more uncertain about what the best action is but shares some of the
principal’s predispositions is optimal for her. This is mainly due to a more uncertain
agent being willing to acquire more information about the state, which enables more
efficient actions being taken. We show that exploiting belief misalignment can be a
valid instrument that the principal can use in delegation, which in some settings is
on par with or better than state-contingent transfers or restriction of the action set
from which the agent can choose.

In the analysis, we use the workhorse rational inattention model for discrete
choice, the Shannon model. It allows us to provide a richer demonstration of the
consequences of delegation to a biased agent by allowing the agent to acquire infor-
mation flexibly, which introduces additional bias into the decisions of an agent with
misaligned beliefs. We show that misaligned delegation is optimal despite the bias
introduced by this flexibility. Hence, while the exact trade-offs do, obviously, de-
pend on the particular cost function specification, the main takeaways would persist
regardless of the form of the costs of information.

Our analysis focuses on misalignment and away from contracting. A potentially
fruitful avenue for further research would be to consider more carefully the contract-
ing problem in a setting where the principal and the agent have misaligned beliefs
and/or preferences, and to investigate how contracting can build upon the inherent
benefits of misalignment.

Further, due to the added complexity of rational inattention models, we confine
our exploration to a discrete state-matching model, which strays away from the
continuous models more commonly used in delegation problems. In a model with
continuous actions, the scope for an agent to manifest his bias is much larger, hence
the trade-off between the agent’s information acquisition and biased decision-making
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would again be different. Exploration of the effects of misalignment in a continuous
model of delegated expertise could be an interesting direction for further research
as well.

Yet another assumption that may feel excessively strong in our analysis is the
common knowledge of all agents’ and the principal’s prior beliefs. It may be more
reasonable to assume that agents are strategic in presenting their viewpoints to the
principal, as well as making inferences from the fact that they were chosen for the
job. Such signaling concerns could yield an economically meaningful effect, yet we
abstract from them completely in our paper. A more careful investigation is in
order.
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A Main Proofs

A.1 Proof of Proposition 2

Throughout this proof, we will refer to the delegation rule under consideration,

µ∗ =

√
µp

√
µp +

√
1− µp

,

as the candidate rule. It is straightforward that under the candidate rule, if µp >
1
2

then µ∗ ∈
(
1
2
, µp

)
, since

µ∗

1− µ∗ =

√
µp

√
1− µp

<
µp

1− µp

when µp >
1
2
, so µ∗ < µp, and also

√
µp >

√
1− µp in that case, so µ∗ > 1

2
. It thus

remains to show that the candidate rule is indeed optimal for the principal. While a
shorter proof exists that invokes Lemma 1 that derives an optimal strategy for the
case of N states and actions, we choose to present a more direct, albeit a somewhat
longer, proof.

Plugging the solution of the agent’s problem (11) (assuming this solution is
interior for now) into the principal’s problem (12), we get that the principal’s payoff
looks as follows:

µpπ(R|r) + (1− µp)π(L|l) = µp

(

µe
1
λ − (1− µ)

)

e
1
λ

(

e
2
λ − 1

)

µ
+ (1− µp)

(

(1− µ)e
1
λ − µ

)

e
1
λ

(

e
2
λ − 1

)

(1− µ)

=
e

1
λ

e
2
λ − 1

[

µp

(

e
1
λ − 1− µ

µ

)

+ (1− µp)

(

e
1
λ − µ

1− µ

)]

∝ e
1
λ − µp

1− µ

µ
− (1− µp)

µ

1− µ
.

The FOC for the principal’s maximization problem above w.r.t. µ is

µp

µ2
− 1− µp

(1− µp)2
= 0

⇐⇒ µ

1− µ
=

√
µp

√
1− µp

. (27)

It is trivial to verify that the second-order condition holds as well, hence as long
as (27) yields an interior solution (i.e., the probabilities in (11) are in [0, 1]), the
candidate solution is indeed optimal among all such interior solutions.

We now check for which µ the solution (11) is interior. Using the expressions

(11), one can easily verify that π(R|r) ≥ 0 ⇐⇒ µ

1−µ
≥ e−

1
λ and π(R|r) ≤ 1 ⇐⇒

µ

1−µ
≤ e

1
λ , and the conditions π(L|l) ∈ [0, 1] yield the same two interiority conditions.

This implies that if µ

1−µ
∈
[

e−
1
λ , e

1
λ

]

, then the agent acquires some information and

selects both actions with positive probabilities, and otherwise (π(R|r), π(L|l)) ∈
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{(1, 0), (0, 1)}, meaning that the agent simply chooses the ex ante optimal action for
sure without acquiring any information about the state.

The candidate rule then suggests that the principal delegates to a learning agent

iff µp

1−µp
∈
[

e−
2
λ , e

2
λ

]

, and otherwise delegates to an agent who plays the ex ante

optimal action. We have shown that the candidate rule selects the optimal among
the learning agents; it is left to verify that such a choice rule between learning and
non-learning agents is optimal for the principal.

Consider µp ≥ 1
2
; then among the non-learning agents the principal would ob-

viously choose the one who plays a = R (rather than a = L), and such a choice
yields the principal expected payoff µp · 1 + (1 − µp) · 0 = µp. Optimal delegation
to a learning agent yields (by plugging the candidate rule into the principal’s payoff
obtained above)

e
1
λ

e
2
λ − 1

[

e
1
λ − µp

1− µ∗

µ∗ − (1− µp)
µ∗

1− µ∗

]

=
e

1
λ

e
2
λ − 1

[

e
1
λ − 2

√

µp(1− µp)

]

. (28)

Taking the difference between (28) and µp, the payoff from delegating to a non-
learning agent, lets us find belief µp of a principal who would be indifferent between
the two:

e
1
λ

e
2
λ − 1

[

e
1
λ − 2

√

µp(1− µp)

]

− µp = 0

⇐⇒ e
2
λ − 2e

1
λ

√

µp(1− µp) = µpe
2
λ − µp

⇐⇒
(

e
1
λ

√

1− µp −
√
µp

)2

= 0

⇐⇒
√
µp

√
1− µp

= e
1
λ .

Hence, the principal prefers a learning agent when
√
µp√
1−µp

< e
1
λ and a non-learning

agent when
√
µp√
1−µp

> e
1
λ . Therefore, the candidate rule is indeed optimal for µp ≥ 1

2
.

A mirror argument can be used to establish optimality for µp ≤ 1
2
. This concludes

the proof of Proposition 2.

A.2 Proof of Lemma 1

The goal is to find the optimal choice probabilities β∗ ∈ ∆(A) which maximize the

principal’s expected utility (17). First, let us rewrite expression (17) using δ ≡ e
1
λ−1:

N∑

j=1

µp(ωj)
β(aj)e

1
λ

1 + δβ(aj)
=
∑

j∈C(β)

e
1
λ

µp(ωj)

δ
(1 + δβ(aj))− µp(ωj)

δ

1 + δβ(aj)

=
∑

j∈C(β)

e
1
λ

(
µp(ωj)

δ
− µp(ωj)

δ (1 + δβ(aj))

)

.
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The first term in the brackets above is independent of β, so the principal’s maxi-
mization problem is equivalent to

min
β

∑

j∈C(β)

µp(ωj)

1 + δβ(aj)
. (29)

Let ξ denote the Lagrange multiplier corresponding to the constraint
N∑

j=1

β(aj) = 1.

Then the first-order condition for β(ai) with i ∈ C(β) is

(1 + δβ(ai))
2 = −µp(ωi)

ξ
. (30)

Summing up these equalities over all j ∈ C(β), we get that

∑

j∈C(β)

(1 + δβ(aj))
2 = −

∑

j∈C(β) µp(ωj)

ξ
(31)

Combining (30) and (31):

1 + δβ(ai) =

√

µp(ωi)
√∑

j∈C(β) µp(ωj)

√
∑

j∈C(β)

(1 + δβ(aj))2 (32)

Once again summing up these equalities over all j ∈ C(β), we get that

K(β) + δ =

∑

j∈C(β)

√

µp(ωj)
√∑

j∈C(β) µp(ωj)

√
∑

j∈C(β)

(1 + δβ(aj))2.

Expressing
√∑

j∈C(β)(1 + δβ(aj))2 from this expression and plugging it into (32)

allows us to express β(ai) (for i ∈ C(β)) in closed form as

β(ai) =
1

δ

(

(K(β) + δ)
√

µp(ωi)
∑

j∈C(β)

√

µp(ωj)
− 1

)

. (33)

The necessary condition for option i to be in a consideration set (i ∈ C(β)) is
β(ai) ≥ 0 or, equivalently,

√

µp(ωi) >
1

K(β) + δ

∑

j∈C(β)

√

µp(ωj).

Now let ξk denote the Lagrange multiplier for the constraint β(ak) ≥ 0. Then
the first-order condition for an alternative k /∈ C(β) that is not chosen is

µp(ωk) = −ξ − ξk ⇒ µp(ωk) ≤ −ξ.
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Plugging in ξ from (30) into the inequality above yields

µp(ωk) ≤
∑

j∈C(β) µp(ωj)
∑

j∈C(β)(1 + δβ(aj))2
⇔

√

µp(ωk) ≤
1

K(β) + δ

∑

j∈C(β)

√

µp(ωj)

for all k /∈ C(β).
Since the minimization problem has a convex objective function and linear con-

straints, the Kuhn-Tucker conditions are necessary and sufficient. Thus the neces-
sary and sufficient conditions that the solution β∗ must satisfy are given by:







√

µp(ωi) >
1

K(β∗)+δ

∑

j∈C(β∗)

√

µp(ωj) for all i ∈ C(β∗),

√

µp(ωk) ≤ 1
K(β∗)+δ

∑

j∈C(β∗)

√

µp(ωj) for all k /∈ C(β∗).

Recall that we assumed, without loss of generality, that µp(ω1) ≥ µp(ω2) ≥ . . . ≥
µp(ωN). Suppose that the solution β∗ is such that K(β∗) = K ′. Clearly then, in the
optimum, the consideration set C(β∗) will consist of the first K ′ alternatives.

Denote ∆L ≡ (L+ δ)
√

µp(ωL)−
L∑

j=1

√

µp(ωj). Notice that for all L > 1:

∆L ≡(L+ δ)
√

µp(ωL)−
L∑

j=1

√

µp(ωj)

=(L− 1 + δ)
√

µp(ωL−1)−
L−1∑

j=1

√

µp(ωj)−
√

µp(ωL)

− (L− 1 + δ)
√

µp(ωL−1) + (L+ δ)
√

µp(ωL)

=∆L−1 − (L− 1 + δ)

(√

µp(ωL−1)−
√

µp(ωL)

)

.

Therefore, ∆L decreases in L. Since ∆1 > 0, there either exists unique K ′ such that
∆K′ > 0 and ∆K′+1 ≤ 0, or ∆L > 0 for all L. In the former case, K(β∗) = K ′, and
in the latter case, K(β∗) = N .

In the end, the solution to the principal’s problem is given by β∗(ai) as in (33)
if i ∈ C(β∗), β∗(ai) = 0 if i /∈ C(β∗), and C(β∗) = 1, ..., K(β∗), where K(β∗) is as
described above.

A.3 Proof of Theorem 1

As stated in the text, the results in Matějka and McKay (2015) and Caplin et al.
(2019) state that β ∈ ∆(A) can only be a solution of (4) if (15) holds for all i ∈ C(β).
The question then is: given a vector β ∈ ∆(A) of unconditional choice probabilities,
can we find µ ∈ RN

+ that solves the following system:







µ(ω1) + µ(ω2) + . . .+ µ(ωN) = 1,
N∑

j=1

µ(ωj)
e
u(ai,ωj)

λ

N∑

k=1

β(ak)e
u(ak,ωj)

λ

= 1 ∀i ∈ C(β). (34)
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The system above is a linear system of K(β) + 1 equations with N unknowns. To
prove the solution exists, we use the Farkas’ lemma (see, e.g., Corollary 5.85 in
Aliprantis and Border (2006)). It states that given some matrix A ∈ Rm×n and a
vector b ∈ Rm, the linear system Ax = b has a non-negative root x ∈ Rn

+ if and only
if there exists no vector y ∈ Rm such that A′y ≥ 0 with b′y < 0. The two latter
inequalities applied to our case form the following system:







y0

(
N∑

k=1

β(ak)e
u(ak,ωj)

λ

)

+

(

∑

i∈C(β)

yie
u(ai,ωj)

λ

)

≥ 0 ∀j ∈ {1, ..., N},

y0 +
∑

i∈C(β)

yi < 0.
(35)

We need to show there exists no y ∈ RK(β)+1 that solves the system above. Let

us define zi ≡ yi + y0β(ai) for i ∈ C(β). Then recalling that e
u(ai,ωi)

λ = e
1
λ and

e
u(ai,ωj)

λ = 1 for i 6= j, system (35) transforms to







zje
1
λ +

∑

i∈C(β)\{j}
zi ≥ 0 ∀j ∈ C(β),

∑

i∈C(β)

zi ≥ 0 ∀j ∈ {1, ..., N}\C(β),

∑

i∈C(β)

zi < 0.

(36)

System (36) above does not have a solution. Indeed, if C(β) ( {1, ..., N}, then
the middle set of inequalities directly contradicts the latter inequality. If C(β) =
{1, ..., N}, then subtracting the latter inequality from the former, for a given j ∈
C(β), yields zjδ ≥ 0 ⇐⇒ zj ≥ 0. Since this must hold for all j ∈ C(β), we obtain
a contradiction with the latter inequality,

∑

i∈C(β)

zi < 0.

By the Farkas’ lemma, we then conclude that for any vector β ∈ ∆(A) there
exists a belief µ ∈ ∆(Ω) that solves system (34). This concludes the proof.

A.4 Proof of Proposition 3

This proof proceeds in two parts. First we show that the delegation strategy in-
troduced in the proposition (hereinafter referred to as “the candidate strategy”) is
optimal for the principal. Then we establish that it does indeed possess the stated
properties.

Consider an agent with a prior belief

µ(ωi) =

√

µp(ωi)
N∑

j=1

√

µp(ωj)

. (37)

It is trivial to verify that prior belief µ defined this way satisfies the candidate
strategy in the statement of the proposition, and hence represents the candidate
strategy. Caplin et al. (2019) show (see their Theorem 1) that an agent with a
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prior belief µ optimally chooses a decision rule that generates unconditional choice
probabilities

β(ai) = max







0,
1

δ





(K(β) + δ)µ(ωi)

∑

j∈C(β)

µ(ωj)
− 1












. (38)

Consider an agent hired in accordance with the candidate rule. Substituting (37)
into (38) yields

β(ai) = max







0,
1

δ





(K(β∗) + δ)

√

µp(ωi)
∑

j∈C(β∗)

√

µp(ωj)
− 1












, (39)

which are exactly the probabilities stated in Lemma 1. Therefore, an agent hired
according to the candidate strategy makes decisions in such a way that generates
the principal-optimal unconditional choice probabilities. Therefore, delegation ac-
cording to the candidate strategy is indeed optimal for the principal.

Now we show that the candidate strategy satisfies the properties stated in the
proposition. Firstly, it follows clearly from (37) that µ∗(ω1) ≥ µ∗(ω2) ≥ . . . ≥
µ∗(ωN). It remains to show that µ∗(ω1) ≤ µp(ω1) and µ∗(ωN) ≥ µp(ωN). The
former inequality can be shown as follows:

µ∗(ω1) ≤ µp(ω1)

⇐⇒
√

µp(ωi)
N∑

j=1

√

µp(ωj)

≤ µp(ω1)

⇐⇒ 1 ≤
√

µp(ω1) ·
(

N∑

j=1

√

µp(ωj)

)

⇐⇒ 1 ≤ µp(ω1) +
√

µp(ω1)µp(ω2) + ...+
√

µp(ω1)µp(ωN),

and the latter inequality holds because µp(ω1)+...+µp(ωN) = 1 and
√

µp(ω1)µp(ωj) ≥
µp(ωj) for all j ∈ {1, ..., N}, since µp(ω1) ≥ µp(ωj). Note that µ∗(ω1) = µp(ω1) only
if µp(ω1) = ... = µp(ωN).

Similarly, the inequality µ∗(ωN) ≥ µp(ωN) is equivalent to

1 ≥
√

µp(ω1)µp(ωN) + ...+
√

µp(ωN−1)µp(ωN) + µp(ωN),

which holds because
√

µp(ωj)µp(ωN) ≤ µp(ωj) for all j ∈ {1, ..., N}, with equalities
only if µp(ω1) = ... = µp(ωN). This concludes the proof of Proposition 3.
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A.5 Proof of Proposition 4

It follows from (19) that the size of the consideration set in the aligned problem, K̄,
is such that

K̄∑

j=1

µp(ωj)

µp(ωK̄)
< K̄ + δ ≤

K̄∑

j=1

µp(ωj)

µp(ωK̄+1)

Since µp(ωi)

µp(ωK̄)
> 1 for all i < K̄, we have that µp(ωi)

µp(ωK̄)
>

√
µp(ωi)√
µp(ωK̄)

> 1 holds for all

i < K. Therefore,

K̄∑

j=1

√

µp(ωj)
√

µp(ωK̄)
< K̄ + δ. (40)

From (20), K∗ is the unique solution of

K∗

∑

j=1

√

µp(ωj)
√

µp(ωK∗)
< K∗ + δ ≤

K∗

∑

j=1

√

µp(ωj)
√

µp(ωK∗+1)
. (41)

Two cases are possible, depending on whether

K̄ + δ R
K̄∑

j=1

√

µp(ωj)
√

µp(ωK̄+1)
. (42)

If K̄ + δ ≤ RHS in (42) (where RHS refers to the right-hand side), then together
with (40) this implies that K̄ solves (41), and thus K̄ = K∗, which satisfies that
statement of the proposition.

If, however, K̄+δ > RHS in (42), then K̄ does not solve (41). In this case, note
that going from K by K + 1 increases the LHS of (42) by 1 and increases the RHS

by the amount strictly greater than 1, since a new term

√
µp(ωK+1)√
µp(ωK+2)

> 1 is added to

the sum, and all existing terms increase because µp(ωK+1) < µp(ωK). This holds

for all K, meaning that if K̄ + δ > RHS in (42), then K + δ >
K∑

j=1

√
µp(ωj)√

µp(ωK+1)
for

all K < K̄. Therefore, the unique solution K∗ of (41) must be such that KM > K̄.
This concludes the proof.

A.6 Proof of Proposition 5

Part 2 of the statement follows immediately from Proposition 3 of Matveenko and
Mikhalishchev (2021).

To show part 1, we invoke Theorem 1 from Matějka and McKay (2015) stated in
(14), which claims that in the contracting problem, the β : Ω → ∆(A) that solves
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the agent’s problem (21) is given by

π(ai|ωj) =
β(ai)e

u(ai,ωj)+τ(ai)

λ

∑N

k=1 β(ak)e
u(ak,ωj)+τ(ak)

λ

=
β′(ai)e

u(ai,ωj)

λ

∑N

k=1 β
′(ak)e

u(ak,ωj)

λ

, (43)

where β(ai) =
N∑

j=1

µ(ωj)π(ai|ωj).

and β′(ai) ≡
β(ai)e

τ(ai)

λ

∑N

k=1 β(ak)e
τ(ak)

λ

.

Since β′ is a valid probability distribution on A, representation (43) together with
(14) imply that such a collection of conditional probabilities π is a valid solution of
the agent’s problem (4) when the agent’s preferences net of information costs are
given by u(ai, ωj). I.e., the principal can implement the desired conditional choice
probabilities π by choosing an agent with unbiased preferences and some belief µ,
such that the unconditional choice probabilities selected by this agent are given by
β′. Theorem 1 implies that such a belief µ ∈ ∆(Ω) does indeed exist.

A.7 Proof of Proposition 6

Plugging (13) in (11) yields the optimal conditional choice probabilities for the
binary model, given by

π∗(R|r) =
(

e
2
λ − 1

)−1

e
1
λ

(

e
1
λ −

√

1− µp

µp

)

,

π∗(L|l) =
(

e
2
λ − 1

)−1

e
1
λ

(

e
1
λ −

√
µp

1− µp

)

,

(44)

cropped to [0, 1].
The agent’s preferences only depend on the difference τ(R) − τ(L). Assuming

all τ(R) ∈ R are available to the principal (no limited liability), it is without loss to
set τ(L) = 0. The agent’s problem is given by (21). Solving it given τ = (τ(R), 0)
yields

π(R|r) = 1− e
2
λ (1− µ)− e

1+τ(R)
λ + µ

(

e
2
λ − 1

)(

e
1+τ(R)

λ − 1
)

µ
,

π(L|l) =
e

1
λ

(

e
2
λ (1− µ)− e

1+τ(R)
λ + µ

)

(

e
2
λ − 1

)(

e
1
λ − e

τ(R)
λ

)

(1− µ)
,

(45)

cropped to [0, 1].
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The principal’s contracting problem (22) in the binary setting with ρ = 0 is
similar to (12):

max
τ(R)

{µpπ(R|r) + (1− µp) π(L|l)}

s.t. π(R|r), π(L|l) are given by (45).
(46)

Assuming the probabilities in (45) are interior, the F.O.C. for (46) yields the candi-
date solution τ(R) given by

τ ∗(R) = λ ln





1−µ

µ
e

1
λ +

√
1−µp

µp

1−µ

µ
+ e

1
λ

√
1−µp

µp



 , (47)

where the expression under the ln(·) is non-negative for any λ, µp, µ, thus the can-
didate τ(R) exists for any µ that yields interior probabilities (45).

Plugging (47) into (45) yields, after some routine manipulations, the conditional
choice probabilities that coincide with (44) (hence, the probabilities (45) are interior
given µ and τ ∗(R) if and only if the probabilities (44) are interior). Thus, the
condition (47) is not only necessary, but also sufficient. Hence, for any µp for which
(44) are interior, τ ∗(R) as given by (47) solves the principal’s problem (46), and this
solution exists for any µ.

If λ and µp are such that probabilities (44) are not interior, then the principal
would like the agent to take the ex ante (principal-)preferred action (it can be verified
that the expressions in (44) are such that π∗(R|r) ≥ 1 ⇐⇒ π∗(L|l) ≤ 0 and vice
versa). The candidate transfers (47) yield exactly such non-interior probabilities
(when plugged into (45)), hence they still solve the principal’s problem (46) for any
respective µ.27 This concludes the proof of part 1 of the proposition.

To show part 2, consider (47) as a function of µ. It is strictly decreasing in µ on
[0, 1], and the equation τ ∗(R)(µ) = 0 has a unique root in [0, 1] equal to

µ∗ =

√
µp

√
µp +

√
1− µp

,

meaning that τ(R) ≥ 0 ⇐⇒ µ ≤ µ∗.

A.8 Proof of Proposition 7

Proceeding analogously to Section 4, we obtain that the agent’s problem (23) given
incentive payment τ̄ (assuming τ = 0) is solved by

π (R|r) =
e

1+τ̄
λ

(

e
1+τ̄
λ µ− (1− µ)

)

(

e
2(1+τ̄)

λ − 1
)

µ
=

e
1+τ̄
λ

e
2(1+τ̄)

λ − 1

(

e
1+τ̄
λ − 1− µ

µ

)

,

π (L|l) =
e

1+τ̄
λ

(

e
1+τ̄
λ (1− µ)− µ

)

(

e
2(1+τ̄)

λ − 1
)

(1− µ)
=

e
1+τ̄
λ

e
2(1+τ̄)

λ − 1

(

e
1+τ̄
λ − µ

1− µ

)

,

(48)

27Note that τ∗(R) is not the unique solution in this case. If π∗(R|r) = 1, π∗(L|l) = 0, then

any τ(R) ≥ λ ln
(

µ+ (1− µ)e
2

λ

)

− 1 yields the optimal choice probabilities, and if π∗(R|r) =

0, π∗(L|l) = 1, then any τ(R) ≤ 1− λ ln
(

µe
2

λ + (1− µ)
)

solves the principal’s problem.
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each cropped to [0, 1].
The principal’s problem (24) can be rewritten as

max
τ̄

{(1− τ̄) (µpπ(R|r) + (1− µp)π(L|l))} ,

s.t. π(R|r), π(L|l) are given by (48).
(49)

To begin with, note that the principal would never choose τ̄ < 0 (due to limited
liability) or τ̄ ≥ 1 (since this would render the principal’s payoff negative). Further,
if the solution (48) yields values outside [0, 1] for some τ̄ > 0, then such a τ̄ is clearly
suboptimal for the principal, as she can then reduce her costs without decreasing the
precision of the agent’s choice. Thus, in the optimum, if τ̄ > 0, then the probabilities
(48) are interior. Assuming the latter and plugging (48) into the principal’s problem
(49), the F.O.C. of this problem is given by

µp

1− µ

µ
+ (1− µp)

µ

1− µ
= e

1+τ̄
λ ·

λ
(

e2
1+τ̄
λ − 1

)

+ 2(1− τ̄)

λ
(

e2
1+τ̄
λ − 1

)

+
(

e2
1+τ̄
λ + 1

)

(1− τ̄)
. (50)

Let γ(µ, µp) denote the LHS and χ(τ̄ , λ) the RHS of (50), respectively. Then the
necessary condition for an interior τ̄ to be optimal is γ(µ, µp) = χ(τ̄ , λ). Note that
γ(µ, µp) is minimized for a given µp by µ = µ∗(µp) given by (13), and γ(µ∗(µp), µp) =
2
√

µp (1− µp) < 1. Further, it can be shown that χ(τ̄ , λ) is continuous and increas-
ing in τ̄ for all λ. This means that a solution to (50) exists for a given µ, µp, λ
if and only if χ(0, λ) ≤ γ(µ, µp) ≤ χ(1, λ) (where the “only if” part follows from
the intermediate value theorem). Since χ(τ̄ , λ) is increasing in τ̄ , the second-order
condition holds, meaning that any τ̄ that solves (50) is a local maximizer of (49);
further, there is at most one local maximizer.

Suppose µ < µ∗(µp). As 1 ≤ χ(0, λ) < +∞ for all λ > 0, γ(0, µp) = +∞,
γ(µ∗(µp), µp) < 1, and γ(µ, µp) is continuous in µ ∈ (0, 1), there exists µ̄1 < µ∗(µp)

such that γ(µ̄1, µp) = χ(0, λ). As χ(1, λ) = e
2
λ > 1, there also exists µ̃1 < µ∗(µp)

such that γ(µ̃1, µp) = χ(1, λ). As χ(0, µ) < χ(1, λ) for all λ, it follows that µ̃1 < µ̄1.
By a mirror argument, there also exist µ̃2 > µ̄2 > µ∗(µp) that satisfy the analogous
properties. Further, γ (µp, µp) = 1, so that µ̄2 > µp. In the end, χ(0, λ) ≤ γ(µ, µp) ≤
χ(1, λ) and, hence, a solution τ̄ to (50) exists (and thus constitutes a local maximum
of (49)) if and only if

µ ∈ [µ̃1, µ̄1] ∪ [µ̄2, µ̃2]. (51)

If µ does not satisfy (51) (which is the case in the “aligned” case, µ = µp), no interior
solution exists to (49), hence τ̄ = 0 is optimal. On the other hand, if µ satisfies (51),
then the optimal τ̄ (that solves (49)) can be given by either the solution to (50), or
the corner solution τ̄ = 0. As argued previously, the latter can only be a candidate
solution if the probabilities (48) are non-interior given τ̄ = 1, which is the case if

µ /∈
[

1

1+e
1
λ

, e
1
λ

1+e
1
λ

]

. Further, it can be shown that µ̃1 < 1

1+e
1
λ

and e
1
λ

1+e
1
λ

< µ̃2. Thus,

we conclude that if

µ ∈
[

1

1 + e
1
λ

, µ̄1

]

∪
[

µ̄2,
e

1
λ

1 + e
1
λ

]

, (52)
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then a τ̄ ∈ (0, 1) that solves (50) is a global maximizer of (49), which proves the
statement of the proposition. It is, however, worth noting that (52) is only a suffi-
cient condition and not a necessary one. Further, one of the invervals in (52) may
be empty for extreme enough µp.

A.9 Proof of Proposition 8

Using Theorem 1 of Caplin et al. (2019), the agent’s problem (25) given some re-
striction set A∗ is solved by π such that the corresponding β ∈ ∆(A∗) satisfies (18)
for all ai ∈ A∗. Further, recall from Section 5 that π and β are connected in the
optimum by relation (14) (where we set π(ai|ωj) ≡ β(ai) ≡ 0 for all ai /∈ A∗ and all
ωj ∈ Ω). Then by plugging (14) and the state-matching utility into the principal’s
expected payoff, it can be rewritten as in (17):

N∑

i=1

µp(ωi)
β(ai)e

1
λ

1 + δβ(ai)
=
∑

i∈C(β)

µp(ωi)
(1 + δ)β(ai)

1 + δβ(ai)
.

Plugging in (18) for β in the expression above transforms it to

∑

i∈C(β)

1+δ
δ
µp(ωi)

[

(K(β) + δ)µp(ωi)−
∑

j∈C(β)

µ(ωj)

]

(K(β) + δ)µp(ωi)

=
1 + δ

δ






∑

i∈C(β)

µp(ωi)−
∑

i∈C(β)

∑

j∈C(β)

µ(ωj)

(K(β) + δ)






=
1 + δ

K(β) + δ

∑

i∈C(β)

µp(ωi). (53)

To prove the proposition statement, we proceed by induction. Consider some
arbitrary action set A− ⊂ A such that ak /∈ A− for some k ∈ {1, ..., N} and another
action set A+ ≡ A− ∪ {ak}. Let β+ denote the unconditional choice probabilities
corresponding to the solution of (25) given A+, let C+ ≡ C(β+) and K+ ≡ K(β+),
and define β−, C−, K− analogously given A−.

Our goal is to show that that selecting A∗ = A+ is weakly better for the principal
than A∗ = A−. If ak /∈ C+, then the payoffs in the two cases are equal, and the
statement is trivially true. Otherwise, using (53) for the principal’s expected payoff,
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the statement amounts to:

0 ≤




1 + δ

K+ + δ

∑

i∈C+

µp(ωi)



−




1 + δ

K− + δ

∑

i∈C−

µp(ωi)





⇐⇒ 0 ≤



(K− + δ)
∑

i∈C+

µp(ωi)



−



(K+ + δ)
∑

i∈C−

µp(ωi)





⇐⇒ 0 ≤(K− + δ)µp(ωk)−




∑

i∈C−

µp(ωi)



 . (54)

Since ak ∈ C+ by assumption, β+(ak) > 0, which, from (18), implies that

0 <
(K(β̄) + δ)µ(ωi)

∑

j∈C(β̄)

µ(ωj)
− 1

⇐⇒ 0 <(K+ + δ)µp(ωk)−




∑

i∈C+

µp(ωi)





⇐⇒ 0 <(K− + 1 + δ)µp(ωk)−




∑

i∈C−

µp(ωi) + µp(ωk)





⇐⇒ 0 <(K− + δ)µp(ωk)−




∑

i∈C−

µp(ωi)



 ,

which immediately implies that (54) holds. Therefore, it is indeed better for the
principal to choose A+ over A−. Since A− was arbitrary, this proves by induction
that allowing a larger action set is always weakly better for the principal, and hence
proves the original proposition.

A.10 Proof of Proposition 9

We provide an example for N = 3. We use the same version of the Farkas’ Lemma
as in the proof of Theorem 1. To show that there is no prior belief that solves the
system of the first-order conditions for the problem, it is sufficient to show that there
is a solution to the following dual inequality system







z1e
u(a1,ω1)

λ + z2e
u(a1,ω2)

λ + z3e
u(a1,ω3)

λ ≥ 0,

z1e
u(a2,ω1)

λ + z2e
u(a2,ω2)

λ + z3e
u(a2,ω3)

λ ≥ 0,

z1e
u(a3,ω1)

λ + z2e
u(a3,ω2)

λ + z3e
u(a3,ω3)

λ ≥ 0,

z1 + z2 + z3 < 0.

(55)

Let us normalize λ = 1 and consider payoffs given by the following matrix:




u(a1, ω1) u(a2, ω1) u(a3, ω1)
u(a1, ω2) u(a2, ω2) u(a3, ω2)
u(a1, ω3) u(a2, ω3) u(a3, ω3)



 =





ln 3 0 ln(2 + ε)
0 ln 3 ln(2 + ε)
0 0 ln(2 + ε)
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Notice that vector (z1, z2, z3) = (−1 − δ,−1 − δ, 2) for small enough δ, ε ≥ 0 solves
system (55): the two latter inequalities hold trivially for all such z, and the two

former inequalities hold if ε ≥ 3
1+δ
2 − 2. Therefore, there exists no µ that solves

system (34) given β ∈ ∆(Θ).

A.11 Proof of Proposition 10

We first show that there exists an equilibrium that replicates the deletation sce-
nario: the optimal agent acquires the same information, makes a truthful action
recommendation, and the principal follows the recommendation.

Suppose that under delegation, the optimally chosen agent follows a decision rule
β∗ that yields a consideration set C(β∗) = {1, ..., K∗}. By Lemma 1, we have that

√

µ(ωK∗) ≥ 1

K∗ + δ

K∗

∑

i=1

√

µ(ωi)

⇐⇒ δ
√

µ(ωK∗) ≥
K∗−1∑

i=1

(√

µ(ωi)−
√

µ(ωK∗)
)

(56)

Suppose the agent reports truthfully. Given the state-matching payoffs, for the
principal to follow recommendation ã = ãK∗ whenever it is issued, it must hold that

µp(ωK∗ |ãK∗) = max
i

µp(ωi|ãK∗), (57)

where µp(ω|ã) is the probability that the principal’s posterior belief assigns to state
ω after hearing recommendation ã from the agent. In equilibrium, the principal’s
posterior µp(ωK∗ |ãK∗) must satisfy the Bayes’ rule:

µp(ωK∗ |ãK∗) =
π(aK∗ |ωK∗)µp(ωK∗)
∑N

i=1 µp(ωi)π(aK∗ |ωi)

=
β(aK∗)e

1
λ

β(a1) + ...+ β(aK∗−1) + β(aK∗)e
1
λ

· µp(ωK∗)
∑N

i=1 µp(ωi)π(aK∗ |ωi)

=
β(aK∗)e

1
λ

1 + δβ(aK∗)
· µp(ωK∗)
∑N

i=1 µp(ωi)π(aK∗ |ωi)

=

∑K∗

i=1

√

µp(ωi)

K∗ + δ
· β(aK∗)e

1
λ ·

√

µ(ωK∗)
∑N

i=1 µp(ωi)π(aK∗ |ωi)
,

Where the last line is obtained by plugging the expression for β(aK∗) from Lemma 1
in the denominator of the preceding line. Similarly, we can calculate the probability
that the principal’s posterior assigns to any other state ωj:

µp(ωj|ãK∗) =







∑K∗

i=1

√
µp(ωi)

K∗+δ
· β(aK∗)e

1
λ ·

√
µ(ωj)

∑N
i=1 µp(ωi)π(aK∗ |ωi)

if j < K∗,

0 if j > K∗.

For condition (57) to hold, it is then enough for

e
1
λ

√

µ(ωK∗) ≥
√

µ(ω1) ⇐⇒ δ
√

µ(ωK∗) ≥
√

µ(ω1)−
√

µ(ωK∗), (58)
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to be satisfied. Note, however, that it is strictly weaker than (56), since

√

µ(ω1)−
√

µ(ωK∗) <
K∗−1∑

i=1

(√

µ(ωi)−
√

µ(ωK∗)
)

.

Therefore, we conclude that (58) holds, and thus it is optimal for the principal to
choose action aK∗ when the agent with prior belief µ∗ recommends it.

Following the same argument, we can show the same for any other recommen-
dation ãi for i ∈ C(β∗): the necessary and sufficient condition for the principal to
find it optimal to follow the recommendation would be

e
1
λ

√

µ(ωi) ≥
√

µ(ω1),

which is implied by (57), since µ(ωi) ≥ µ(ωK∗) for i ∈ C(β∗). This concludes the
proof.

43


	Introduction
	Illustrative example
	Model
	Concepts and Definitions
	The Agent's Problem
	The Principal's Problem
	Equilibrium Definition
	Preliminary Analysis

	Binary Case
	General Case
	Agent's Problem
	Principal's Relaxed Problem
	Principal's Full Problem
	Properties of the Optimal Delegation Strategy

	Misaligned Beliefs Versus Other Instruments
	Contracting on Actions/Misaligned Preferences
	Contracting on Outcomes
	Restricting the Delegation Set

	Extensions
	Alternative Preference Specifications
	Communication

	Conclusion
	Main Proofs
	Proof of Proposition 2
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Proposition 9
	Proof of Proposition 10


