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Franz Ostrizek‖
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Abstract

We study a dynamic principal-agent setting in which both sides learn about the

importance of effort. The quality of the agentŠs output is not observed directly. Instead,

the principal jointly designs an evaluation technology and a wage schedule. More

precise performance evaluation reduces current agency costs but promotes learning,

which is shown to increase future agency costs. As a result, the optimal evaluation

technology is both imprecise and tough: a bad performance is always sanctioned, but

a good one is not always recognized.

We also study the case in which principal and agent have different priors, for

instance because the agent is overconĄdent. Then, the principal uses a tough evaluation

structure to preserve the agentŠs proĄtable misperception. For an underconĄdent agent,

by contrast, she either uses a fully informative evaluation in order to promote learning

and eliminate costly underconĄdence, or is lenient if learning is too costly.

1 Introduction

Many Ąrms motivate their workers to exert effort with incentive pay based on objective

measures of performance.1 Such measures have become richer and easier to obtain. For

example, the availability of board computers and GPS tracking allows for better monitoring

∗I am grateful to Roland Bénabou, Pietro Ortoleva, Wolfgang Pesendorfer and Leeat Yariv for their
guidance and to Ludmila Matysková, SoĄa Moroni, Leon Musolff, Pellumb Reshidi, Evgenii Safonov, Denis
Shishkin, Nikhil Vellodi, Can Urgun and seminar audiences at Princeton University, PSE, Northwestern
Kellogg, Notre Dame, University of Pittsburgh, ESMT, DICE, University of Bonn, University of Vienna,
CERGE-EI, University of Pennsylvania, Sciences Po, the World Congress of the Econometric Society 2020,
the World Congress of Game Theory 2020, and the 2021 SEA Annual Meeting for helpful comments and
discussions. Funding by the Deutsche Forschungsgemeinschaft (DFG) through CRC TR 224 (Project B02)
is gratefully acknowledged.

‖Department of Economics, University of Bonn; briq Ű Institute on Behavior and Inequality.
franz.ostrizek@gmail.com

1According to data from the BLS National Compensation Survey, 39% of hours worked in US private
sector Ąrms in 2013 were in jobs with performance-related pay. 21% fall into a narrower classiĄcation of
performance-related pay excluding, among other categories, referral bonuses which should arguably should
be excluded from a theoretical perspective, but also safety bonuses which should be retained (Gittleman
and Pierce, 2013).
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of truck drivers and time tracking software in law Ąrms and other offices not only simpliĄes

billing but also logs the activities of employees; shop Ćoor control systems monitor not

only the Ćow of goods but also allow the tracking of workers; improved natural language

processing enables data collection in applications ranging from call centers to health

care.2 Based on such statistics, Ąrms can arrive at better objective measures of workersŠ

contribution to proĄts.

Should this additional information be used to set performance pay? What should be

measured and how should the information be aggregated? The theory of incentives seems

to offer a simple answer to these questions. Providing incentives to workers is costly exactly

because the underlying performance measures are only partially informative about effort.

Conversely, more hard information about the workersŠ contribution is always helpful and

should be used as a basis of performance pay (Holmström, 1979; Grossman and Hart,

1983). In particular, it is not optimal to base incentives on a noisy signal instead of the

contribution to output.3

In this paper, we show that learning changes this conclusion fundamentally. The reason

is that performance evaluation provides not only the basis of incentives but also shapes

learning. By basing wages on a precise evaluation of output, the Ąrm reveals information

about output and hence a workerŠs ability. To illustrate, suppose a workerŠs contract

promises a bonus upon a sufficiently high customer satisfaction score. The worker may

gain little information about customer satisfaction through his job directly. With such an

evaluation scheme, however, he will know that he cleared the threshold if he receives the

bonus, while he learns that he fell short of it if he does not. When the Ąrm prefers workers

to remain uninformed, it cannot base incentive pay on the agentŠs performance directly

but needs to use a noisy signal instead.

Why would it be proĄtable to conceal information about their performance from

workers? The costs of providing incentives itself provides a rationale, since uninformed

workers are on average cheaper to motivate. When effort and the workerŠs match-speciĄc

ability are complements in production, an agent who believes his ability is high only

requires a small bonus to motivate him to exert high effort and vice versa. The impact

of a given change in beliefs is ampliĄed, if it is large relative to the expected impact of

effort. Therefore, it has a large impact at a low posterior, while it has a smaller impact

at a high posterior. This implies that learning, which causes a mean-preserving spread of

posterior beliefs, is costly on average: at low beliefs, the required bonus increases a lot,

while at high beliefs, the required bonus decreases only a little.4

2These tools allow call centers to detect the callersŠ mood, for example (Singer, 2013). For a survey on the
use of natural language processing to extract information from health-related text, see Gonzalez-Hernandez
et al. (2017).

3That is not optimal to add noise continues to hold across a wider class of models, including multi-tasking
(Holmström and Milgrom, 1991) and linear-Gaussian career concerns models Holmström (1999); Hörner and
Lambert (2021). We discuss some settings in which the addition of noise can be beneĄcial in the related
literature.

4Since ability also affects the baseline probability of high output, the exact condition is slightly more
complex and is implied by log-supermodularity, as will be discussed later.
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To capture this fundamental trade-off between incentives and information, we develop

a model of twice-repeated moral hazard with learning. The agentŠs type affects not

only average output, but also the effectiveness of effort. The quality of output is not

observed directly. Instead, in every period the principal designs not only wages but also

the underlying performance evaluation. The agent observes his evaluations and wages. The

evaluation structure therefore determines not only the cost of incentives this period, but also

the extent of learning.5 We analyze the model in Section 3, transforming the contracting

problem into an information design problem with additional constraints (participation and

incentive compatibility) and an additional choice variable, the wage at every posterior.

In the Ąnal period, when the continuation belief is of no importance to the principal, the

optimal evaluation structure is fully informative. In the Ąrst period, however, there is a novel

trade-off. A more precise evaluation structure reduces agency costs this period, but induces

more learning, thereby increasing agency costs in the next period. We solve for the optimal

contract and show that it features a binary evaluation structure: The additional motive of

shaping learning does not add complexity relative to the fully informative evaluation. The

optimal evaluation structure is ŞtoughŤ: The agent obtains a high evaluation and therefore

a bonus only if his output is high quality. Even if output was high, however, he may receive

a low evaluation and thus fail to obtain the bonus. After low quality output, he never

obtains the bonus. This information structure is optimal because it avoids inducing very

low posteriors. Agents with such beliefs would be very expensive to motivate in the next

period and even a small increase in their posterior belief has a large (decreasing) effect on

the required bonus.

The effects we study highlight an important consideration in the design of performance

evaluation: it is not only the basis for incentives but also for workersŠ learning about their

ability, their task, and their match to the organization. This is a rich interaction with many

facets. Our model is intentionally stylized to retain tractability even though evaluations

and contracts are Ćexibly designed and focuses on learning about match-speciĄc ability.

Nevertheless, our results can speak to several notable patterns in incentive systems. First,

we would expect tough evaluations in professions with a strong complementarity between

skills and effort such as law or investment banking. Indeed, these professions are generally

associated with an uncompromising mentality. This is especially prevalent in evaluating

the work of fresh associates, which is in line with our model as well: as the tradeoff is

intertemporal, evaluations become more informative and less tough over time (Section 5.4).

Another feature of evaluations that is in line with our model is that they often focus on the

conduct of workers on the job and less so on available measures of output. In our setting,

this would be optimal since such evaluations allow the Ąrm to motivate without revealing

information about ability.

5Of course, this mechanism is predicated on two background conditions: First, the agent observes his
wages. Second, information that is not used as the basis of explicit incentives does not have to be revealed
to the agent in any other way. We discuss these issue in more detail after introducing the model formally in
Section 2 and provide extensions in Section 5.
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The inĆuence of explicit incentives on the agentŠs learning and conĄdence becomes even

more essential when the agentŠs assessments are initially misguided. Indeed, the learning

environment then also shapes the evolution of the average belief, making it important for

the principal to preserve proĄtable worker misconceptions and eliminate costly ones, and for

the analyst to determine the persistence of such misconceptions. In particular, a substantial

empirical and experimental literature suggests that people are often overconĄdent about

their ability (Larwood and Whittaker, 1977; Burks et al., 2013; Huffman et al., 2019), the

degree of control they have over their environment (Langer, 1975), or the extent to which

they live in a Şjust worldŤ that rewards effort in the long run (Lerner, 1980). In Section

4, we therefore analyze the model with heterogeneous beliefs, allowing the agent to be

optimistic or pessimistic about his type.6 We show that a noisy and tough information

structure remains optimal in the face of overconĄdence: The best way to preserve proĄtable

optimism is not ŞcoddlingŤ grade inĆation, but tough evaluation. If the agent is pessimistic,

the principal is still averse to a dispersion in beliefs, but wants to eliminate costly pessimism:

If the latter effect dominates, the principal uses a fully informative evaluation to promote

learning. If the latter effect dominates, the optimal evaluation structure is now lenient:

Sometimes a bad performance nonetheless receives a good evaluation and is rewarded with

a bonus.

In Section 5 we consider several extensions of our model. We show that the optimal

evaluation remains partially informative and tough if the principal can acquire private

information about the agentŠs performance, if effort is unobserved in addition to being

noncontractible, and when the principal can commit to a continuation value. We also study

the long-run evolution of beliefs. Section 6 concludes. The proofs not given in the text are

collected in the Appendix.

Related Literature

This paper contributes to the large literature on information in moral-hazard models. We

offer a counterpoint to the classic results establishing that more precise evaluation reduces

agency costs (Holmström, 1979; Grossman and Hart, 1983; Kim, 1995) by providing a

setting in which the principal prefers to base wages on a noisy information structure.

We show that noisy evaluation is optimal even though veriĄable information about

the agentŠs true performance would be available. Several strands of the literature show

that coarse or noisy evaluation is optimal when such information is not available, for

instance with multitasking (Holmström and Milgrom, 1991) or when the agent has private

information that would allow him to game a deterministic incentive scheme (Ederer et al.,

2018). Similarly, coarse rewards emerge when the evaluation is subjective, i.e. based on

unveriĄable private information of the principal (MacLeod, 2003; Fuchs, 2007).

6We retain the assumption that the agent is Bayesian. In the domain of self-control, there is evidence
that individuals update their initially optimistic beliefs in a rational manner Yaouanq and Schwardmann
(forthcoming).
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That more information about the technology can reduce proĄts in a moral hazard

setting has been noted in the literature in several settings. In general, it is well understood

that ex-post incentive compatibility is more demanding than ex-ante incentive compatibility.

Lizzeri et al. (2002) show that interim performance evaluation is not optimal when there is

no learning.7 Nafziger (2009) demonstrates that it can be optimal to conceal information

until after the agentŠs effort choice, even though this precludes the principal from adjusting

the implemented action. Indeed, such situations are generic if the problem is sufficiently

rich (Jehiel, 2015). In all these papers, the wage is still allowed to depend on the true

realization of the signal, even if it is not revealed ex-ante. We show that less information

about the technology increases proĄts even if this implies that the wage cannot depend on

the state even ex-post.8

To our knowledge, this is the Ąrst paper to combine the three key features of explicit

incentives, learning about a persistent type, and information design. There are several

literatures combining each two of these features.

A growing literature investigates the design of information structures in one-shot moral

hazard problems with commitment to a wage scheme. The older literature (Dye, 1986;

Feltham and Xie, 1994; Datar et al., 2001) considers the optimal acquisition and aggregation

of information within a parametric class.9 Demougin and Fluet (2001) study the case with

limited liability which results in a binary evaluation. In Georgiadis and Szentes (2020)

and Li and Yang (2020) the costs of information acquisition are assumed as part of the

technology. Dai et al. (2022) study the optimal contract when the principal can allocate

attention between Ąnding good and bad news. Hoffmann et al. (2021) analyze a setting

where the agent takes a single action, but information about his performance arrives over

time. Information acquisition requires delayed payments, which creates endogenous costs

because of impatience and imperfect risk sharing. Perhaps the closest reference regarding

the analyzed trade-off is Orlov (forthcoming), which studies the optimal contract and

intensity of monitoring in a dynamic setting with limited liability. The central trade-off is

between monitoring to avoid wasteful investment and thereby revealing information about

the continuation value which is costly. We analyze not only the intensity but also the

shape of the optimal evaluation when monitoring is required for incentives and its costs

stem from the agentŠs learning about his type.

Learning about a persistent state and information design are combined in a growing

literature. Most closely related to our moral-hazard setting are Smolin (2021) and Ely and

Szydlowski (2019) in which the principal uses information, which is valuable for the agent,

as an incentive. We analyze the role of information design when Ű since the principal sets

7In a tournament setting with exogenous and relative payments depending on cumulative output, the
optimality of interim performance evaluation depends on the shape of the effort cost function (Ederer,
2010).

8Under this assumption, Fang and Moscarini (2005) show that information is detrimental if it erodes
proĄtable overconĄdence, see below.

9Indeed, when restricting attention to linear contracts, it can be optimal to leave information unused.
(Feltham and Xie, 1994; Datar et al., 2001) This is a consequence of the restricted space of contracts,
however.

5



incentives and ability is match-speciĄc Ű information itself is not valuable. Information and

incentive design constrain each other, as the principal reveals at least as much information

as is contained in wages.

Information and implicit incentives are also linked in models of career concerns

(Holmström, 1999). For career concerns, it is essential that ability and effort jointly

affect the performance Ű the agent is motivated to exert effort because a decrease in output

would be interpreted as low skill by the potential employers. In our setting with explicit

incentives, such entangled information is the source of the friction. As a consequence,

the role of information is fundamentally different, a point we return to in the conclusion.

Hörner and Lambert (2021) analyze the optimal evaluation in a Gaussian career concerns

model and show how it combines information from different sources or vintages to achieve

the optimal combination of dependence on effort and ability.10

The literature on learning in moral hazard models (Adrian and WesterĄeld, 2009; Giat

et al., 2010; Prat and Jovanovic, 2014; Demarzo and Sannikov, 2017) studies learning based

on output while we study learning based on an information structure that is designed

endogenously by the principal. Another important distinction is that we consider learning

about the importance of effort as opposed to learning about a state that affects only the

level of output, which is often considerably more tractable (see Bhaskar and Mailath (2019)

and Bhaskar (2021) for notable exceptions).

Our extension to heterogeneous beliefs connects to the literature on contracting with

overconĄdent agents, in particular de la Rosa (2011) who shows that overconĄdence about

the impact of effort relaxes the incentive constraint and is proĄtable for the principal.

Fang and Moscarini (2005) show that if workers are sufficiently overconĄdent, the principal

wants to conceal her private information about their true type by offering the same wage

contract (which involves a fully informative evaluation of their output) to all workers. We

derive how the principal shapes the performance evaluation to shape learning and preserve

this misperception.

Technically, our paper relates to the literature on information design (Kamenica and

Gentzkow, 2011; Bergemann and Morris, 2019), in particular recent contributions to

information design problems with constraints (Boleslavsky and Kim, 2017; Le Treust and

Tomala, 2019; Doval and Skreta, 2018) and additional choice variables (Georgiadis and

Szentes, 2020) Ű in our case wages. We consider a setting where the information designer

chooses a signal structure about one variable Ű output Ű in order to affect beliefs about

another Ű the ability of the agent. This feature is particularly important in our extension

to heterogeneous beliefs: Even though the prior of the principal and the agent are not

mutually absolutely continuous, the information design problem can be analyzed using the

transformation approach of Alonso and Câmara (2016).

10They also show that is never optimal to introduce noise into the evaluation when implementing the
highest effort. Dewatripont et al. (1999) consider a one-shot career concerns problem when effort and the
agentŠs type enter output in a general form and show that it can be optimal to add noise to the signal of
his performance, as noise may increase the impact of effort on the realized signal. Rodina (2018) provides
conditions for additional information on output and less prior information about ability to increase effort.
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2 The Model

A principal (she) employs an agent (he) for two periods. The principal is risk neutral, the

agent is risk averse with a strictly increasing utility index u : [0,∞) → [0,∞) which we

assume to be unbounded.11 Both share a common discount factor δ ∈ (0, 1].

Technology

Each period, the agent exerts nonveriĄable effort et ∈ ¶0, 1♢ at cost c · et, with c > 0. The

worker has a time-invariant ability θ ∈ ¶θL, θH♢. For the main sections, we assume that

the principal and the agent share a common prior belief µ that the agent has a high ability.

The resulting output has either high or low quality, y ∈ ¶yL, yH♢. We normalize the

expected revenue from low output to zero and denote the expected revenue from high

output by Y > 0. The probability of a high quality depends on the agentŠs effort and type,

as follows:

type

effort
et = 0 et = 1

θ = θL a a+ b

θ = θH a+ ∆a a+ b+ ∆a+ ∆b

Effort and ability are both productive, b ≥ 0 and ∆a ≥ 0, and the technology is

log-supermodular, a∆b− b∆a > 0. We assume that the principal wants to implement high

effort in both periods and after all histories.12

Information, Contracts and Commitment

We assume that the principal has full commitment within each period, but no commitment

across periods. Within every period, timing is as follows: The principal proposes a contract

(S, p, w), comprising an arbitrary measurable signal space S, a distribution p(·♣y) ∈ ∆(S)13

over signals conditional on high (resp. low) output, and a mapping w : S → R from signals

to wages.14 Having observed the contract, the agent decides whether to quit and obtain

outside utility U or to work, choosing effort level et. The outside utility is independent of

the agentŠs type, which is assumed to be match speciĄc, and satisĄes U > a
b
c.15 At the

end of the period, output, signals and wages realize.

11This is for simplicity to avoid corner solutions.
12It is easy to see that implementing high effort after all histories is optimal for the principal for a

sufficiently high gain from high quality output, Y . This sharpens the trade-off between incentives and
learning we aim to investigate, as the principal derives no instrumental value of information. Furthermore,
implementing a given effort level is a standard focus in the contracting literature.

13Throughout, we will use integral notation for expected values and understand expressions of the form∫
f(x) dx in the sense of distributions where required; no absolute continuity is assumed. With slight abuse

of notation, we write f(x) = fx ∈ R for f(x) = fxδx, where δx denotes a unit mass at x.
14This restriction to deterministic wages conditional on the signal is without loss, as the principal can

simply extend the signal space to generate any desired randomness in the wage.
15The condition on the outside utility assures that the non-negativity constraint implicit in the utility

function is never binding in the optimal contract.
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Output is informative about the agentŠs type, but not directly observed by the agent or

the principal.16 The principal and the agent observe (noncontractible) effort, signals and

wages and update their beliefs about the agentŠs type according to Bayes rule. Therefore,

the evaluation designed by the principal has the dual role of providing the basis for incentive

pay and determining the learning environment.

Discussion

An important feature of our model is that the Ąrm cannot engage in complete backloading

of information while still providing incentives. If the principal could record the output of

the agent without revealing this information and credibly commit to contingent payments

at the end of the relationship and if such a delay was costless (as with risk-neutrality and

common discounting), a fully informative and fully delayed evaluation would be optimal.17

Our mechanism comes into effect when such complete backloading is costly or infeasible.

In the main sections, this is achieved in a tractable manner by restricting the principal to

period-by-period contracts. This lack of intertemporal commitment ensures that incentives

for effort have to be provided in the concurrent period. Wages in the Ąrst period are

thus informative about output. More generally, risk aversion itself makes backloading

information costly: Period-by-period contracting makes the model tractable, but is not

the source of the trade-off between incentive provision and learning. We return to this

commitment assumption and how it can be relaxed in Section 5.3.

In the design of the evaluation, we allow the principal to reveal more information about

output to the agent than is used in wage-setting. This will not be essential, but is allowed

for additional generality. What is crucial, however, is that the agent observes at least as

much information as is contained in the wages.

The present model features learning based on an endogenous signal distribution with

hidden actions and therefore has the potential to create subtle issues of endogenous private

information, both for the principal and the agent. For tractability and to focus on the

main trade-off between incentives and learning, our assumptions in the baseline model

ensure that no endogenous private information arises. Regarding the principal, she does

not acquire private information about the type of the agent, since she does not privately

observe the quality of output itself but only the result of the public evaluation. We

relax this assumption in Section 5.1 and show that our results generalize to the unique

16In a large organization, this assumption is consistent with the Ąrm observing statistics such as output,
proĄt, and sales in aggregate, as long as it is difficult to link aggregate shortfalls to the individual worker,
however. Formally, consider the model with a continuum of agents. Through is regular accounting activities,
the Ąrm observes aggregate outcomes such as proĄts, revenues or the average quality of output. These
outcomes are not informative about the performance about an individual, inĄnitesimal agent.

17An instructive comparison is with Orlov (forthcoming): Due to common discounting and risk-neutrality,
the cost of incentives is minimized when all payments and also all information about performance is delayed
until the end of the relationship. Monitoring instead has an efficiency beneĄt (weeding out bad projects),
which drives the main trade-off. In our setting of risk aversion, by contrast, the cost of incentives is
minimized when all information about performance is revealed as early as possible and payments are
distributed over time, while fully delayed information revelation would be best to avoid the costs associated
with learning about match-speciĄc ability. Period-by-period contracting makes this trade-off more tractable,
but is not its source.
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equilibrium in a natural class. Regarding the agent, the benchmark model ensures that

his posterior belief remains common knowledge after a deviation to lower effort, since

effort is noncontractible but observed. If effort was unobserved, the agent would acquire

private information about his belief after a deviation and double deviations to low effort in

both periods may be proĄtable. In Section 5.2, we derive the resulting dynamic incentive

compatibility constraint, analyze this extended model, and show that our results generalize

to this case.

3 Analysis

In this section, we Ąnd the optimal contracts (S, p, w) by transforming the contracting

problem into the space of posterior beliefs and solving it backwards from the second to the

Ąrst period. We suppress time indices throughout when no confusion can arise.

3.1 Transformation to Belief Space

Every signal s ∈ S induces a posterior belief

µ(s) = µ
p(s♣yL) + (a+ b+ ∆a+ ∆b) [p(s♣yH) − p(s♣yL)]

p(s♣yL) + (a+ b+ (∆a+ ∆b)µ) [p(s♣yH) − p(s♣yL)]
(1)

by Bayes rule. Note that (1) relies on the presumption that high effort was exerted and is

therefore only valid if there is no deviation from the effort proposed in the contract. The

posterior is increasing in the likelihood ratio of the signal, p(s♣yH)
p(s♣yL) , since the high type is

more likely to produce high output, and is fully determined by this likelihood ratio. It is

bounded between µ and µ̄, where

µ = µ
1 − (a+ b+ ∆a+ ∆b)

1 − (a+ b+ (∆a+ ∆b)µ)
; µ̄ = µ

a+ b+ ∆a+ ∆b

a+ b+ (∆a+ ∆b)µ
(2)

denote the posteriors associated to a signal that realizes only after a low output (p(s♣yH) = 0)

and only after a high output (p(s♣yL) = 0), respectively.

The contract in period t affects proĄts in that period but also the distribution over

posteriors, which determines the continuation value of the principal. In the last period,

this value is of course zero. In the Ąrst period, it is given by the expectation over the value

of the contracting problem in the terminal period as a function of posterior beliefs. Let P e
µ

denote the expected probability of high output under belief µ if the agent exerts effort e.

9



The optimal contract solves

Πt(µ) = max
S,p,w

P 1
µY +

∫

S



P 1
µp(s♣yH) +

(

1 − P 1
µ



p(s♣yL)



δΠt+1(µ(s)) − w(s)



ds (3)

s.t.

∫

S



P 1
µp(s♣yH) +

(

1 − P 1
µ



p(s♣yL)



u(w(s)) ds− c ≥ U (P)

∫

S



P 1
µp(s♣yH) +

(

1 − P 1
µ



p(s♣yL)



u(w(s)) ds− c ≥
∫

S



P 0
µp(s♣yH) +

(

1 − P 0
µ



p(s♣yL)



u(w(s)) ds (IC)

∫

S
p(s♣yH) ds =

∫

S
p(s♣yL) ds = 1; p(s♣y) ≥ 0 (S)

This is a standard moral hazard problem with two added features. First, the principal

chooses an evaluation structure and the wage cannot be more informative about the agentŠs

output than the evaluation structure it is based on. In particular, the principal can choose

to condition the wage on partially informative signals of output instead of output directly.

Second, there is a belief-dependent continuation value Πt+1(µ(s)).

Proposition 1. The optimal contract contains no signals that induce the same belief but

are mapped to different wages. The contracting problem can be written as a choice of a

distribution over posteriors m with mean µ and support on [µ, µ̄], and a mapping from

posteriors to wages.

While rewriting the choice of a signal structure as a choice of a distribution over

posteriors is standard in the literature on Bayesian persuasion, applying this transformation

to our contracting problem requires two adaptions. First, note that the principal designs

an information structure about output, but the beliefs are about the agentŠs type. Since

both spaces are one-dimensional and high quality output is more likely if the agent has a

high type, there exists a one-to-one mapping between the two. Second, after a deviation to

low effort, the distribution of signals changes. We need to be able to express this change

as a function of the posterior distribution. Again, because the mapping from beliefs over

output to beliefs over ability is one-to-one, we can Ąnd such a transformation (Boleslavsky

and Kim, 2017).

Let m denote the distribution over posteriors and (with slight abuse of notation) w the

mapping from posteriors to utilities associated to (S, p, w). It is easy to see that

∫

S



P 1
µp(s♣yH) +

(

1 − P 1
µ



p(s♣yL)



δΠt+1(µ(s)) − w(s)



ds (4)

=

∫

m(µ̂) (δΠt+1(µ̂) − w(µ̂)) dµ̂, (5)

and similarly for the participation constraint. To transform the incentive constraint, note

Ąrst that the original form of the incentive constraint is equivalent to

∫

S



b+ ∆bµ



p(s♣yH) − p(s♣yL)



u(w(s)) ds ≥ c (6)
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An increase in effort increases the probability of high output by b+ ∆bµ. This increase

affects utility by shifting mass towards signals that are more likely after high output,

therefore incentive compatibility requires a sufficiently strong correlation between a signalŠs

responsiveness to high output and the utility delivered after it. We can express this

responsiveness directly as a function of the induced posterior. Transforming the contracting

problem in this fashion into belief space, it reads

Πt(µ) = max
m,w

PµY +

∫

m(µ̂) (δΠt+1(µ̂) − w(µ̂)) dµ̂ (7)

s.t.

∫

u(w(µ̂))m(µ̂) dµ̂− c ≥ U (P)
∫
(
b+ ∆bµ

) µ̂− µ

(∆a+ ∆b)µ(1 − µ)
u(w(µ̂))m(µ̂) dµ̂ ≥ c (IC)

∫

µ̂m(µ̂) dµ̂ = µ ; supp(m) ⊂ [µ, µ̄] (BP)

The incentive constraint now requires a sufficiently strong correlation between the posterior

and utility. This is because signals that are more likely after a good outcome are also

associated with a high posterior probability that the agent is the high type. This correlation

is rescaled since, depending on the parameters of the problem, this dependence may be

more or less strong.

3.2 Terminal Period

In the second period, the principal has no continuation value from the relationship. Absent

any reason to manipulate the agentŠs learning, the only objective in designing the signal

structure is to provide incentives cheaply and there is no reason to leave information about

output unused. It is optimal to use the most informative signal structure (Grossman and

Hart, 1983).

Proposition 2. The optimal contract in the second period uses the fully informative

evaluation structure.

From the perspective of the Ąrst period, the proĄt in the terminal period induces a

continuation value ∫

Π2(µ̂)m(µ̂) dµ̂, (8)

where m is the distribution over posteriors induced by learning from the evaluation in the

Ąrst-period. We now show that this learning is costly for the principal, since it always

reduces her continuation value.

More information about the agentŠs ability has two effects. On the one hand, it

allows the principal to adapt the contract to the agentŠs ability. The contract Ąlters

out the nuisance parameter ŞabilityŤ more effectively and provides incentives for effort

more precisely. As a consequence, the wage can be less risky and it is cheaper to provide

incentives. This effect is stronger the larger the effect of ability on the probability of high

11



output (∆a). On the other hand, the agent also has more information when he decides

whether to shirk or exert effort. Consequently, the wage has to be more risky on average

in order to satisfy the IC constraint and it is more expensive to provide incentives. In

other words, it is easier to satisfy the incentive compatibility constraint in expectation

(Şex-anteŤ) rather than for a more informed agent (ŞinterimŤ). This effect is stronger the

larger the effect of ability on the impact of effort (∆b). It dominates and learning reduces

proĄts whenever complementarities are sufficiently strong, i.e. when the technology is

log-supermodular in effort and ability.18

Proposition 3. The value of the second period contracting problem, Π2, is strictly concave

in beliefs.

Equivalently, consider the expected continuation value induced by distributions over

beliefs, m,m′ ∈ ∆([0, 1]), where m is Blackwell less informative than m′. The principal

prefers the less informative distribution

∫

Π2(µ̂)m(µ̂) dµ̂ ≥
∫

Π2(µ)m′(µ̂) dµ̂. (9)

To see this effect of information on the costs of incentives more concretely, consider the

IC constraint in the terminal period,

(b+ ∆bµ) (u(wH) − u(wL)) = c. (10)

High effort increases the probability of high output by P 1
µ − P 0

µ = b+ µ∆b. The principal

pays a base wage wL and adds a bonus wH −wL if and only if output is high (Proposition 2).

The required utility bonus is inversely proportional to the expected impact of effort, b+µ∆b,

and thus a convex function of the agentŠs beliefs. Consequently, a greater dispersion of

beliefs causes an increase in the expected bonus. The principal wants the agent to stay

uninformed, because it is cheaper to pay a bonus that is large enough in expectation than

the expected bonus required by an informed agent.

3.3 Initial Period

In the Ąrst period, our main trade-off is in effect. By Proposition 2, providing incentives for

the agent is cheaper in this period if the evaluation structure is more informative, while by

Proposition 3 the resulting learning is costly as it increases the expected cost of incentives

in the next period.

How is this trade-off resolved in the optimal contract? We employ the tools of

information design to characterize the optimal evaluation structure without imposing

any exogenous restrictions. While such restrictions, e.g. to a binary evaluation structure,

may seem natural in a setting with a binary state and binary output, we know from this

literature that they can be with loss of generality. Indeed, since the contracting problem

18This is merely a sufficient condition. It is not tight for any nondegenerate utility function. Furthermore,
learning is also costly if substitutability is sufficiently strong, see Remark 1. A sufficient condition is that
the probability of low output is log-supermodular in effort and ability.
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has two constraints Ű participation and incentive compatibility, results from constrained

information design suggest that the optimal evaluation structure may involve up to four

signals (Le Treust and Tomala, 2019; Doval and Skreta, 2018).

To analyze this joint information and contract design problem, we make some assump-

tions on the utility function.

Assumption 1. Let w = u−1 denote the wage function mapping a level of utility to the

wage required to provide it. It satisĄes

1. (No incentives at inĄnity) w(x)
x

→ ∞ as x → ∞.

2. (Bounded changes in curvature)

3(b+ µ∆b)∆b

c(a∆b− b∆a)
≥ w′′′(uL)

w′′(uL)
and

w′′′(uH)

w′′(uH)
≥ − 3(b+ µ∆b)∆b

c((1 − a)∆b+ b∆a)
,

where uL = U − a+µ∆a
b+µ∆b

c and uH = U + 1−a−µ∆a
b+µ∆b

c.

3. (Decreasing curvature) w′′′ ≤ 0.

All three restrictions are sufficient conditions that will be used in the proof of the

main theorem. The Ąrst condition ensures that an interior solution exists. The principal

doesnŠt Ąnd it proĄtable to provide an arbitrarily high payment with vanishing probability

in order to incentivize the agent. The second condition ensures that the shape of the

continuation value Π2 is determined unambiguously by the technology and not by changes

in the curvature of the utility function. It rules out that the curvature of the utility function

changes too quickly. The third condition ensures that the information design problem

is governed by the shape of the continuation value. All three conditions are satisĄed for

CRRA utility (u(x) = x1−γ

1−γ
) for γ ≤ 1

2 if the outside utility is sufficiently high.19 They are

always satisĄed for u(x) =
√

2x.

Theorem 1. Suppose u satisĄes Assumption 1. Then, the optimal evaluation structure in

the Ąrst period is (essentially) unique. It is binary and tough with S = ¶G,B♢ and

p(G♣yH) = 1 − σ, p(B♣yH) = σ, p(G♣yL) = 0 p(B♣yL) = 1, (11)

for σ ∈ [0, 1).

First, the motive to control learning does not increase the complexity of the evaluation

structure. While the most informative evaluation is binary, a noisy evaluation can take

many forms. The Theorem establishes that the optimal evaluation remains binary. The

joint design of wages and information is crucial for this result, it may not hold when the

wage function is Ąxed exogenously.

Second, the principal uses a noisy binary signal of output as the basis of evaluation.

The noise is asymmetric, making the evaluation ŞtoughŤ: A good evaluation results only if

19To see this, note that w′′′(x)
w′′(x)

= 2γ−1
1−γ

1
x

for CRRA utility.
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output was high. Low output always results in a bad evaluation, and the bad signal realizes

also after high quality output with probability σ. In order to reduce the informativeness

of the signal, the principal does not engage in Şgrade inĆationŤ, but instead measures

performance against an ŞunreasonablyŤ high standard.

The reason for this result is the shape of the continuation value of the principal. While

the principal is always information averse, the degree of information aversion is decreasing

in the agentŠs posterior (Π′′′
2 > 0). The main objective of the Ąrm is to avoid workers from

getting very pessimistic about their ability. To see why, consider again the second period

IC,

(b+ ∆bµ) (u(wH) − u(wL)) = c. (12)

As we discussed previously, the impact of effort, b + ∆bµ, and the required bonus are

inversely proportional, which implies that the continuation value is concave. Furthermore,

this effect of learning is stronger when the posterior is low. In this case, the agent is

pessimistic about the impact of his effort and even a small change in his belief has a large

relative effect and causes large changes to the bonus. This leverage effect determines the

shape of the continuation value if the curvature of the utility function doesnŠt change

too much, which is guaranteed by Assumption 1.2. Therefore, the principalŠs information

aversion is larger at low posteriors. In order to raise the low posterior, the optimal

monitoring structure pools at the bottom. Since the low evaluation might have been the

result of bad luck, it is less damning.

Proof of Theorem 1

The proof of Theorem 1 poses the challenge of jointly designing an information structure

and a wage scheme. Given a wage scheme, the information design problem can be solved

by concaviĄcation (Aumann and Maschler, 1995; Kamenica and Gentzkow, 2011) taking

into account the P and IC constraints (Boleslavsky and Kim, 2017; Le Treust and Tomala,

2019). The constraints make the problem multidimensional so that, although conceptually

tractable, concaviĄcation is analytically difficult. Conversely, given an information structure,

the problem of Ąnding wages is a standard moral hazard problem. This tractable problem

provides the starting point for a duality-based approach to such a joint information and

incentive design problem, as outlined in Georgiadis and Szentes (2020). In the main text,

we sketch the main steps of the argument, while we relegate the explicit duality arguments

that are required to justify our approach to the appendix.

Consider the Lagrangian L associated to the contracting problem (7), where we retain

(BP) as a constraint, and λP , λIC denote the Lagrange multipliers associated to the
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participation and incentive constraint, respectively,

L(m,w; (λP , λIC)) =

∫ {

P 1
µY + δΠ2(µ̂) − w(µ̂) (13)

+ λP (u(w(µ̂)) − c− U)

+λIC


b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)
(µ̂− µ)u(w(µ̂)) − c

}

dµ̂.

We will write λ = (λP , λIC) when convenient.

Wage Setting Fix a distribution m satisfying (BP) and consider the problem of Ąnding

optimal wages subject to the participation and incentive constraint. This is a standard

moral hazard problem and the optimal wage schedule follows from pointwise optimization

of the Lagrangian.

w∗(λ, µ̂) = max¶0, u′−1(λP +
b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)
(µ̂− µ))♢ (14)

Plugging this function back into the Lagrangian of the problem, it is written as an

expectation of a function of the posterior

sup
w

L(m,w;λ) =

∫

ℓ∗(µ̂;λ)m(µ̂) dµ̂ (15)

where ℓ∗ is the integrand of (13) evaluated at (14).

Information Design Therefore, the information design problem for a given λ is of

standard form. The principal simply maximizes the expectation of a function of posteriors,

sup
m s.t. (BP)

∫

ℓ∗(µ̂;λ)m(µ̂) dµ̂. (16)

Such an information design problem can be solved via concaviĄcation. In order to determine

the concaviĄcation of ℓ∗, we need to determine its shape as a function of µ̂. Using an

envelope argument, it is straightforward to show20 that

∂2

∂µ̂2
ℓ∗(µ̂;λ) =λ2

IC


b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)

2

ρ′(λP + λIC
b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)
(µ̂− µ))

+ δΠ′′
2(µ̂) (17)

where ρ(x) := u(u′−1( 1
x
)) denotes the function that translates multipliers and scores to

utilities, a function commonly encountered in moral hazard problems. The Ąrst term

of (17) corresponds to the cost of providing incentives in the Ąrst period. It is positive,

indicating convexity: the principal prefers the most informative evaluation structure in

order to reduce agency costs. The second term corresponds to the impact of beliefs on the

20In the main text, we suppress boundary conditions related to the non-negativity constraint on wages.
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continuation value. It is negative: the principal wants to keep the agent uninformed in

order to reduce agency costs in the next period.

Furthermore, we have that

∂3

∂µ̂3
ℓ∗(µ̂;λ) =λ3

IC


b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)

3

ρ′′(λP + λIC
b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)
(µ̂− µ))

+ δΠ′′′
2 (µ̂) > 0 (18)

The third derivative of ℓ∗ has two components. The Ąrst term is the impact of the shape

of the utility function. For given Lagrange multipliers, it is cheaper to provide incentives

at higher posteriors as the curvature of w is decreasing (Assumption 1.3) and, equivalently,

ρ′′ ≥ 0.21 The second term is determined by the shape of the continuation value. The

principal is less information averse for high posteriors.

(a) Interior solution.

µ1µ µ̄µ µ̂

ℓ∗(µ̂, λ)

(b) Corner solution.

µ = µ∗ µ̄µ µ̂

ℓ∗(µ̂, λ)

Figure 1: The concaviĄcation of ℓ∗ at µ.

There are three possible cases. If λIC is sufficiently small, the objective ℓ∗ is strictly

concave and the optimal information structure is uninformative. Clearly, this cannot be

the case in the solution of (7), since the incentive constraint cannot be satisĄed without

any information. As λIC increases, we reach a region where ℓ∗ is concave for low posteriors

and convex for high posteriors. The optimal information structure is fully informative at

the top and uses partial pooling at the bottom (Fig. 1a). Finally, as λIC increases further,

ℓ∗ becomes globally convex as the costs of incentives overwhelm the gains from concealing

information. The resulting evaluation structure is fully informative (Fig. 1b).

The arguments in the appendix establish through a series of lemmas that a solution to

the problem exists and is characterized by the two-step procedure above. QED.

21To see this, note that w′′(u(x)) = − u′′(x)

[u′(x)]3
and that ρ′(x) = −

[u′(f(x))]3

u′′(f(x))
for the strictly increasing

f(x) = u′−1( 1
x

). Hence, the former is decreasing (Assumption 1.3) if and only if the latter is increasing
(ρ′′ ≥ 0 as required).

This condition sufficient but I conjecture that the restriction to utility functions with ρ′′ ≥ 0 is far
from necessary. Instead, it is a result of the proof approach that requires establishing properties of the

Lagrangian that are uniform across multipliers; ∂3

∂µ̂3 ℓ∗(µ̂; λ) is positive for all multipliers only if ρ′′ ≥ 0.
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3.4 Analysis of the Solution and Comparative Statics

The properties of an interior solution are pinned down by tangency condition

ℓ∗(µ∗, λ(µ∗)) +
∂ℓ∗

∂µ̂
♣(µ̂,λ)=(µ∗,λ(µ∗))(µ̄− µ∗) = ℓ(µ̄, λ(µ∗)), (19)

determining the posterior µ∗ in the concaviĄcation of ℓ∗ (Fig. 1). Note, however, that this

condition does not correspond to the concaviĄcation of a given function. Instead, there

is an additional dependence on λ(µ∗). This term is present because we are not solving

an information design problem given payoffs, but design payoffs and information jointly,

subject to a participation and and incentive compatibility constraint. For the graphical

representation of our analysis this implies that, as we vary the tangent point in Figure 1 to

Ąnd the optimal µ∗, not only the tangent line but the whole function ℓ∗ shifts.

Under the assumption that u(x) =
√

2x we can transform (19) into a more concrete

form:

c2

2


(∆a+ ∆b)µ(1 − µ)

b+ ∆bµ

µ̄− µ∗

(µ̄− µ)(µ− µ∗)

2

= δ
(
Π2(µ∗) + Π′

2(µ̄)(µ̄− µ∗) − Π′
2(µ̄)

)
(20)

The LHS is the beneĄt from a more informative evaluation structure in period one. A more

precise signal about output decreases agency costs today. This effect is larger if agency

costs ( c
b+∆bµ

) are already high and if a large dispersion of posteriors is required for a given

level of information about output (since output is very informative: ∆bµ(1 − µ) large).

The RHS is the cost of a more informative information structure through learning. A more

precise signal today allows learning and thereby increases average agency costs in the next

period. Indeed, the RHS is a measure of the concavity of the continuation value.

The optimal degree of shrouding, σ, is pinned down by the lower posterior belief µ∗

according to

σ(µ∗) =
1 − Pµ

Pµ

µ⋆ − µ

µ̄− µ∗
∈ [0, 1], (21)

which follows from inverting Bayes rule. It is increasing in µ∗; if the principal wants to

cushion bad news, she needs to pool more on the bad signal.

Proposition 4. The optimal level of shrouding σ is

(1) weakly increasing in the discount factor δ

(2) weakly decreasing in the costs of effort in the Ąrst period, and

for u(x) =
√

2x, weakly increasing in the costs of effort in the second period and

independent of a common increase in the cost of effort.

All comparisons are strict at interior σ.

Both comparative statics illustrate the trade-off between the cost of incentives in the Ąrst

and second period. As the second period becomes more important, the evaluation structure

becomes less informative. Higher costs of effort in the Ąrst period make economizing on
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Figure 2: Comparative statics with u(x) =
√

2x around (a, b,∆a,∆b) = (0.2, 0.1, 0.2, 0.4),
µ = 0.35, δ = 1.

agency costs in that period more important, thus the evaluation structure becomes more

informative. Numerical computations (Figure 2) show that the noise in the evaluation is

highest when there is a lot of uncertainty about the agentŠs type (intermediate priors),

when the impact of ability on output is high (both directly, ∆a, and through the impact of

effort, ∆b), and when high ability is relatively more essential for the impact of effort (low

∆b) and less essential for the baseline level of output (high a).

Remark 1 (Substitutes). If effort and ability enter the likelihood of high output linearly (i.e.

∆b = 0), agent learning is not costly and Π2 is convex. Therefore, the optimal evaluation is

fully informative. If the two are sufficiently strong substitutes (i.e. −(1 − a)∆b > b∆a), Π2

is concave with Π′′′
2 < 0 and one can show under a modiĄcation of Assumption 1 (replacing

w′′′ ≤ 0 by w′′′ ≥ 0) that the optimal evaluation is binary and lenient. In this setting,

workers who are too sure of themselves are disproportionately expensive to motivate and

therefore it is optimal to reduce the informativeness of the good evaluation.

4 Preserving and Correcting Misperceptions

So far, we have argued that noisy and tough evaluation is the optimal way to preserve

uncertainty about the agentŠs ability while providing incentives. We assumed that the

principal and the agent agree about the situation, i.e. that they share a common prior.

There is some evidence suggesting, however, that beliefs concerning the impact of effort

on outcomes Ű which are the driving factor of our results Ű may be systematically biased.

Overestimation of oneŠs abilities has been demonstrated in several laboratory contexts
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as well as in the workplace.22 OverconĄdent workers overestimate their type and hence,

given the complementarity between effort and ability, the importance of their contribution.

Other biases can also affect beliefs about the impact of effort, for example the illusion of

control, a tendency to overestimate the impact of individual choices on outcomes that also

depend on chance, or the belief in a Şjust worldŤ.23 Some individuals are also systematically

underconĄdent and this trait is common in some demographic groups.24

In this section, we analyze the optimal contract when the agent is not merely uncertain

about his type, but enters the relationship with a systematic misperception. The principal

now has an additional motive to shape learning, namely to affect the average posterior of

the agent. An agent who overestimates his ability is more proĄtable because he is easier

to incentivize. The principal would like to preserve this proĄtable misconception. Is this

still achieved via tough evaluations or does she use a lenient information structure, akin to

grade inĆation, as the optimal way to preserve optimism?25

4.1 Contracting with Heterogeneous Priors

We solve the contracting problem with heterogeneous priors (de la Rosa, 2011; Dumav et

al., 2021). The agent again has a prior belief µ that he has high ability. The principal,

by contrast, has a prior belief η ∈ ¶0, 1♢.26 When η = 0, the principal is sure that the

agent has low ability and we say that the agent is overconĄdent. When η = 1, by contrast,

the principal is sure the agent has high ability and the agent is underconĄdent. The two

players agree to disagree and update their priors using Bayes rule.

We maintain our restrictions on the technology, namely that effort is productive

(b ≥ 0), the high type is more productive (∆a ≥ 0), the technology is log-supermodular

22See, for example Larwood and Whittaker (1977) for early evidence that individuals overestimate their
abilities in a laboratory setting, (Burks et al., 2013) for a more recent incentivized study. OverconĄdence is
also present in tournaments (Park and Santos-Pinto, 2010) and among store managers (Huffman et al.,
2019).

23Langer (1975) deĄnes the illusion of control broadly as "an expectancy of a personal success probability
inappropriately higher than the objective probability would warrant". The typical experiment establishes
increased optimism about the outcome of a lottery in situations involving "choice, stimulus or response
familiarity, passive or active involvement or competition". The fact that most experiments involve pure
chance is intended as an extreme condition, suggesting that "the effects should be far greater when they are
introduced into situations when there already is an element of control". But note Charness and Gneezy
(2010); Filippin and Crosetto (2016), who Ąnd no evidence of illusion of control in two main experimental
paradigms with monetary incentives.

According to just-world belief, effort and more generally good deeds are rewarded in the world. Such
attitudes vary widely across countries and appear at best weakly related to true level of meritocracy. See
Lerner (1980), and Bénabou and Tirole (2006) and the references therein for a discussion of the evidence.

24There is some evidence that women tend to be underconĄdent, for example (Niederle and Vesterlund,
2007; Hügelschäfer and Achtziger, 2014).

25Indeed, supporting studentsŠ self-esteem is often cited as a reason for grade inĆation in schools and
universities (Boretz, 2004).

26Generally, it is reasonable to believe that the principal has better knowledge than the agent about
his match-speciĄc ability. The assumption that the principal is certain about the agentŠs match-speciĄc
ability is crucial for tractability in the case of heterogeneous priors. This is because the continuation value
now depends both on the agents belief and the level of disagreement. With either identical priors or one
degenerate prior, these two variables are simple. If these restrictions donŠt hold, the problem can still be
rewritten in one dimension, but the information design problem is not tractable.
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(a∆b− b∆a > 0) and that the outside option is sufficiently attractive to ensure an interior

solution (U > a+b
b
c). To focus on the effect of heterogeneous beliefs on the problem, we

assume that u(x) =
√

2x.

The Transformation to Belief Space

As before, we will transform the contracting problem and write it as the choice of a

distribution of posterior beliefs and a wage function. However, the principal and the agent

now have heterogeneous priors. In particular, the belief of the principal is degenerate

and we therefore write the problem in terms of the posterior of the agent. In addition,

the principal and the agent have different beliefs over the induced distribution of these

posteriors. Let m denote the distribution according to the agentŠs belief and mP this

distribution according to the principal. The distribution over posteriors satisĄes Bayes

plausibility according to the agent,

∫

µ̂m(µ̂) dµ̂ = µ (22)

but, generically, not according to the principal. We can write the distribution over posteriors

under the principalŠs prior belief, mP , as a transformation of m, as follows. Let s be the

signal inducing posterior µ̂(s).27 Then, the probability of µ̂(s) according to the agent is

m(µ̂(s)) = p(s♣yL) + (a+ b+ (∆a+ ∆b)µ) [p(s♣yH) − p(s♣yL)] (23)

According to the principal, this event has probability

mP (µ̂(s)) = p(s♣yL) + (a+ b+ (∆a+ ∆b)η) [p(s♣yH) − p(s♣yL)]

= m(µ̂(s)) + (η − µ)(∆a+ ∆b) [p(s♣yH) − p(s♣yL)]

=



η
µ̂(s)

µ
+ (1 − η)

1 − µ̂(s)

1 − µ



m(µ̂(s)) (24)

Hence, we can follow the approach of Alonso and Câmara (2016) to Bayesian persuasion

with heterogeneous priors and solve for the distribution m while the transformation factor

Dη(µ, µ̂) :=
[

η µ̂
µ

+ (1 − η)1−µ̂
1−µ

]

takes the heterogeneous priors into account.28

27In the optimal evaluation structure, there is at most one such signal by a straightforward extension of
Proposition 1.

28Note that, in contrast to Alonso and Câmara (2016), the priors of the principal and the agent on the
state space are not mutually absolutely continuous. The transformation method (as opposed to information
design with surprises, Galperti, 2019) is still applicable since the posterior needs to be measurable with
respect to a noisy signal of the state, namely output. This restriction keeps the belief transformation
bounded. To be more precise, in our framework the principal designs an information structure about output,
which implies a posterior about the type. Beliefs about the distribution of output are heterogeneous, but
mutually absolutely continuous. There is a 1:1 mapping from beliefs about output to posteriors over the
type.
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The contracting problem with heterogeneous beliefs is thus

Πη
t (µ) = max

m,w
P 1

η Y +

∫
(
δΠη

t+1(µ̂) − w(µ̂)
)
Dη(µ, µ̂)m(µ̂) dµ̂ (25)

s.t.

∫

u(w(µ̂))m(µ̂) dµ̂− c ≥ U (P)
∫
(
b+ ∆bµ

) µ̂− µ

∆bµ(1 − µ)
u(w(µ̂))m(µ̂) dµ̂ ≥ c (IC)

∫

µ̂m(µ̂) dµ̂ = µ ; supp(m) ⊂ [µ, µ̄] (BP)

4.2 Terminal Period

Our results about the problem in the Ąnal period extend to the setting with heterogeneous

priors. There is no reason to shape learning, so the principal prefers as much information

as possible to incentivize effort as cheaply as possible. Therefore, the optimal evaluation

structure in the Ąnal period is fully informative.

In order to evaluate the impact of learning on the continuation value of the principal,

we need to take into account the measure transform and consider

Dη(µ, µ̂)Πη
2(µ̂) (26)

Learning now has two effects. First, it creates a dispersion of the agentŠs posterior. This

is costly for the principal, since ∂2

∂µ̂2 Πη
2(µ̂) < 0 for the reasons discussed in the previous

section. In addition, learning now also affects the expected posterior under the principalŠs

belief. This drift has two effects. First, the disagreement between the principal and the

agent decreases. This makes it harder to gamble on their belief difference and reduces

proĄts. Second, the agent move towards the truth on average. Since gambling is limited

due to risk aversion, this second effect dominates. If the agent is optimistic about the

impact of effort (η = 0), this means he becomes less optimistic as he learns. Since optimism

is proĄtable, the principal has an additional incentive to sabotage learning. If, instead, the

agent is pessimistic (η = 1), he becomes less pessimistic on average, which is good for the

principal.

The total effect of learning combines the two forces of increased dispersion and drift.

Learning reduces proĄts with optimism and has an ambiguous impact with pessimism. Let

us summarize the preceding discussion.

Proposition 5. Consider the contracting problem with heterogeneous beliefs. In the

terminal period, the optimal evaluation structure is fully informative. The value of the

second period contracting problem, Πη
2, is strictly is increasing and concave in the agentŠs

posterior.
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(a) Optimism about the effect of effort.

EP [µ̂]µ µ̄µ = EA[µ̂] µ̂

ΠH
2

(b) Pessimism about the effect of effort.

EP [µ̂]µ µ̄µ = EA[µ̂] µ̂

ΠH
2

Figure 3: The effect of information on the principalŠs continuation value.

The impact of information is determined by

∂2

∂µ̂2
(Dη(µ, µ̂)Πη

2(µ̂)) =



η
µ̂

µ
+ (1 − η)

1 − µ̂

1 − µ



Πη′′
2 (µ̂)

︸ ︷︷ ︸

dispersion

+ 2
η − µ

(1 − µ)µ
Πη′

2 (µ̂)

︸ ︷︷ ︸

drift

(27)

It is negative if the agent is overconĄdent (η = 0). If the agent is underconĄdent (η = 1)

the sign is ambiguous.

4.3 Initial Period

The shape of the optimal evaluation structure is determined by two factors: First, based on

the continuation value, is the principal information averse and how does this information

aversion change as a function of the posterior? This effect is similar to the common prior

case, with the addition of the impact of the drift effect. Second, how do the costs of

delivering utility change as a function of the posterior? This effect is not present with

common priors and stems directly from the heterogeneity of beliefs.

Let us start with the familiar Ąrst effect. Taking into account the measure transform,

the change in information aversion is determined by

∂3

∂µ̂3
(Dη(µ, µ̂)Πη

2(µ̂)) =



η
µ̂

µ
+ (1 − η)

1 − µ̂

1 − µ



Πη′′′
2 (µ̂)

︸ ︷︷ ︸

dispersion

+ 3
η − µ

(1 − µ)µ
Πη′′

2 (µ̂)

︸ ︷︷ ︸

drift

(28)

With an overconĄdent agent, both effects go in the same direction: A dispersion in beliefs

has a higher leverage and is therefore more costly if the agent thinks effort is not very

effective, i.e. at low posteriors. Similarly, the impact if the drift is stronger and therefore

more costly at low posteriors, since a given decrease in the expected impact of effort has

a higher leverage. Therefore, the information aversion of the principal decreases as she

induces higher posteriors.
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With an underconĄdent agent, there is a trade-off. A dispersion in beliefs again has a

higher leverage and is therefore more costly if the agent thinks effort is not very effective,

i.e. at low posteriors. Therefore, inducing dispersion at low posteriors is more costly. Also

the drift effect is also stronger with higher leverage at low posteriors, but since the drift

effect is desirable with a pessimistic agent, this means that inducing drift at a low posterior

is more proĄtable. Therefore, the total effect is ambiguous, the dispersion effect pushes

towards increasing information aversion, while the drift effect pushes towards decreasing

information aversion.

Let us turn to the direct effect of belief heterogeneity. It is cheaper for the principal to

provide utility to the agent in states that the agent believes to be more likely than the

principal. For an overconĄdent agent, that is a high posteriors, for an underconĄdent agent,

that is at low posteriors.

Theorem 2. The optimal evaluation structure in the Ąrst period is unique (up to renaming),

binary and uses partial pooling. Let S = ¶G,B♢ denote the signal space and σ ∈ [0, 1) the

shrouding parameter

• If the agent is overconĄdent (η = 0), the optimal evaluation structure is (weakly)

strict, i.e.

p(G♣yH) = 1 − σ, p(B♣yH) = σ, p(G♣yL) = 0 p(B♣yL) = 1. (29)

• If the agent is underconĄdent (η = 1), the optimal evaluation structure is (weakly)

lenient, i.e.

p(G♣yH) = 1, p(B♣yH) = 0, p(G♣yL) = σ p(B♣yL) = 1 − σ. (30)

Inducing high posteriors is always appealing for overconĄdent agents. All three effects

work in the same direction. For underconĄdent agents, the drift effect and the direct effect

of heterogeneous priors together are strong enough to jointly overpower the increased cost

of dispersion associated to providing information at low posteriors. To realize separation

at the top and pooling at the bottom (in posterior space), the evaluation is lenient.

5 Discussion and Extensions

In the previous sections, we made several assumptions to ensure that the agentŠs posterior

belief is the only state variable of the problem and that no party can acquire endogenous

private information. Now, we relax those assumptions and discuss the impact on our

results.

5.1 Private Information Acquisition

In some settings, it may be possible for the Ąrm to privately observe additional information

about the workerŠs output without disclosing it or using it as a basis of wages in the same
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period. We analyze this case and show that there exist natural equilibria that replicate the

optimal contract. Furthermore, if the Ąrm can commit not to acquire private information,

it has an incentive to do so.

Consider the model with symmetric priors. For simplicity of exposition, we assume

that the principal uses a fully informative evaluation in the second period, as shown to be

optimal in Proposition 2.29 In the Ąrst period, the principal now also designs a private

evaluation structure. Neither this information structure nor its realizations are observed

by the agent, and we allow its distribution to depend on the realization of the public signal.

Writing the problem in belief space, the principal designs a joint distribution of agent and

principal posteriors mP (µP , µ̂), with supp(mP ) ⊂ [µ, µ̄]2. The marginal on the agentŠs

posterior, m(µ̂) =
∫
mp(µP , µ̂) dµP , is observed by the agent. The distribution satisĄes

Bayes plausibility for both players,
∫
µ̂m(µ̂) dµ̂ = µ and

∫
µP mp(µP , µ̂) dµP = µ̂.

The two-period contracting problem now induces a dynamic game with incomplete

information. A perfect Bayesian equilibrium consists of (1) an evaluation structure mP

satisfying the above conditions, (2) a wage function w : µ̂ → w(µ̂) ∈ R+, (3) a Ąrst-period

strategy of the worker mapping the evaluation and wage scheme to participation and effort

choices, m,w → ¶0, 1♢2, (4) a second period contract offer, (µP , µ̂) → (wL, wH) (µP , µ̂),

and (5) a belief system for the agent over his type and the information structure chosen

by the principal, as a function of the posterior and the contract offer, (µ̂, wL, wH) →
∆
(
[0, 1] × ∆[0, 1]2

)
, satisfying sequential rationality and consistency. We say that a PBE

satisĄes no-holdup if the agentŠs participation constraint is binding in almost all on-path

second period contract offers.30 A PBE is said to have passive beliefs if the second period

belief of the agent is independent of the contract offer and equal to the posterior µ̂ induced

by the Ąrst period signal.31

The outcome of Theorem 1 is achieved as the unique equilibrium in this class.

Remark 2. The (essentially unique) equilibrium with passive beliefs is outcome-equivalent

to the optimal contract characterized in Theorem 1. This equilibrium is principal preferred

among all no-holdup PBE of the game.

The intuition for this result is simple. For the principal facing an agent with passive belief

µ̂, the optimal contract in the second period satisĄes both P and IC with equality. Therefore,

the private information of the principal is of no use, and the continuation value induced

on the Ąrst period is the same as in Propositions 2 and 3. Consequently, the principalŠs

choice of mP is equivalent to the Ąrst-period problem.32 To see that this equilibrium is

29This restriction is without loss on path, as a fully informative evaluation structure remains optimal for
the principal. Off path, the restriction reduces the degrees of freedom for deviations, but the equilibrium
we study can be extended naturally.

30Without such a reĄnement, the equilibrium could grant intertemporal commitment. This would allow
the principal to smooth out bonus payments across periods, yielding higher proĄts through a channel
orthogonal to the acquisition of private information.

31Orlov et al. (2020) assume passive beliefs to show that the solution to their dynamic persuasion problem
is robust to exogenous private information of the sender. Passive beliefs are also a common assumption in
games with unobserved bilateral contracts, e.g. Hart and Tirole (1990); Brunnermeier and Oehmke (2013).

32Common reĄnements for signaling games, such as the intuitive criterion (Cho and Kreps, 1987) or D1
(Cho and Sobel, 1990), do not apply as they require the set of types of the principal to be Ąxed, which is
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principal preferred, note that in any no-holdup PBE both the participation constraint and

the incentive compatibility constraint need to be satisĄed on the equilibrium path. The

optimal contract is the best contract satisfying these restrictions. Any information used

and thereby revealed in the second period could have been revealed by using it as the basis

of incentives in the Ąrst period, thus reducing agency costs.

The principal prefers to commit not to reveal additional information through the

contract offer. Passive beliefs effectively provide such a form of commitment. Similarly,

consider the game when the principalŠs choice of information structure mP Ű both for

private and public signals Ű is observed.

Remark 3. When the information structure is observed, any equilibrium33 is outcome

equivalent to the optimal contract characterized in Theorem 1.

5.2 Unobservable Effort

In the main sections, we assume that effort is observed but not contractible. This ensures

that even after a deviation, the principal and the agent share a common belief over the

agentŠs type. Assume instead that effort is not observed by the principal. This does not

affect beliefs on equilibrium path, since the conjectured effort is correct. After a deviation

to e1 = 0, however, the agent updates his beliefs according to

µ̃(s) = µ
p(s♣yL) + (a+ ∆a) [p(s♣yH) − p(s♣yL)]

p(s♣yL) + (a+ µ∆a) [p(s♣yH) − p(s♣yL)]
(31)

while the principal continues to use the on-path updating rule (1). Hence, depending on

the signal realization, the agent will be less (resp. more) optimistic about his type in the

second period and the contract offered by the principal will violate (resp. over-satisfy)

the incentive compatibility constraint.34 A deviation in the Ąrst period is more proĄtable

for the agent because of this belief-manipulation effect.35 We now analyze this model,

not the case in our game. There are also no proper subgames to which they could be applied. Ekmekci and
Kos (2021) analyze a signaling game when the sender chooses whether to acquire full information about his
binary type or not, applying a form of never weak best response. Generalizing this kind of analysis to this
extension is left for future research.

If we nevertheless apply the reasoning of the intuitive criterion loosely to the contract offer game in the
second period, it does not satisfy the requirement. This is because the principalŠs types with posteriors
above those of the agent have a deviation that allows them to separate. This deviation, however, may not
be the most intuitive psychologically. Compared to the pooling contract, the new contract features a lower
bonus and delivers lower utility to the agent both under the original and under any plausible posterior
belief. One may conjecture that workers see such a contract offer less as a gesture of trust Ű as the intuitive
criterion requires Ű but as a slight that demonstrate that the principal does not value their continued
employment.

33Among no-holdup PBE which satisfy the following natural restriction, a form of no-signaling-what-
you-donŠt-know: After observing the information structure mP and signal µ̂, his belief is always supported
on the convex hull of the support of mP (·, µ̂).

34This assumes that the principal does not elicit the agentŠs belief at the beginning of the second period.
In such a mechanism, however, truthtelling would need to be preferable to imitating the type that realizes
on path. Hence, a screening mechanism in the second period cannot reduce the post-deviation payoff and
therefore does not affect the optimal contract.

35This effect is central in the analysis of many models of moral hazard with learning, e.g. Prat and
Jovanovic (2014); Demarzo and Sannikov (2017). Bhaskar and Mailath (2019) show that this motive implies
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assuming that ∆a = 0. This condition ensures that the agent does not learn about his

type after a deviation and simpliĄes the problem considerably.

Note that the problem in the second period is unchanged: The modiĄcation only affects

continuation beliefs. In the Ąrst period, we need to modify the incentive-compatibility

constraint in order to take the belief-manipulation effect into account. Let wL(µ̂(s)) denote

the optimal low wage in the second period problem with belief µ̂(s). The Ąrst period IC

reads

∫

S

(p(s♣yL) + (a+ b+ µ∆b) [p(s♣yH) − p(s♣yL)]) [w(s) + U ] ds− c ≥
∫

S

(p(s♣yL) + a [p(s♣yH) − p(s♣yL)]) ·


w(s) + max



wL(µ̂(s)) + P 1
µ

c

b+ ∆bµ̂(s)
− c, wL(µ̂(s)) + P 0

µ

c

b+ ∆bµ̂(s)

}]

ds (32)

The condition is now dynamic: If the agent does not deviate (Ąrst line), he will obtain

his reservation utility U in the Ąnal period. If effort were observable, this would also be

the case after a deviation, so this term would cancel. Since effort is not observable, he

acquires private information about his type after a deviation and has a nontrivial choice in

the second period between exerting effort (the Ąrst term in the max) and shirking (the

second term in the max). The former is optimal if he is more optimistic after the deviation

(µ > µ̂(s)): The principal believes that the signal that realized is indicative of a low type

and offers a correspondingly high bonus in the next period. The agent exerts effort and

experiences a net gain. The latter is optimal if he is more pessimistic after the deviation

(µ < µ̂(s)): The principal believes that the signal that realized is indicative of a high type

and offers a correspondingly low bonus in the next period. The agent does not exert effort

and thereby receives his reservation utility, avoiding the loss from the low bonus. Since

the agent can reap the gain and avoid the loss, acquiring private information renders a

deviation from high effort more proĄtable.
We can translate this dynamic IC into belief space and write it as
∫ 

(b + µ∆b)

µ(1 − µ)∆b
(µ̂ − µ) u(w(µ̂)) −



1 −
(b + µ∆b)

µ(1 − µ)∆b
(µ̂ − µ)



max¶0, c∆b
µ − µ̂

b + µ̂∆b
♢

}

m(µ̂) dµ̂ ≥ c (33)

Transformed in this fashion, the problem is amenable to an analysis along the lines of

Theorem 1. The added complexity, however, is that kink in the incentive compatibility

constraint introduces a kink in the Lagrangian.

Remark 4. The Lagrangian of the Ąrst period problem is concave-convex, with a concave

kink at the prior, µ̂ = µ. The optimal evaluation structure therefore consists of

that the costs of providing incentives using spot contracts grows unboundedly with the length of the time
horizon in a model similar to ours, but with learning from output. It is doubtful whether the design of the
information structure can reverse this conclusion and we conjecture that implementing high effort does not
remain proĄtable for a long horizon with unobservable effort in our model.
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1. a high signal that realizes only if output was good and results in the highest feasible

posterior µ̄,

2. (possibly) a neutral signal that results in an unchanged posterior µ,

3. a low signal associated with posterior µ∗ ∈ [µ,µ).

Conditional on an informative realization from the evaluation, the signal structure is as

in Theorem 1. The kink in the IC constraint, however, raises the possibility of a third,

uninformative signal. This signal can help to economize on the costs caused by belief-

manipulation (33). In numerical simulations however, this possibility was never realized

and we conjecture that the neutral signal is never part of the optimal contract.

5.3 Long-Run Commitment

In the main sections, we assumed that the principal does not have commitment across

periods. This is not crucial for our results. What is crucial, however, is that the principal

cannot costlessly backload all information.

To see this, suppose that the principal can commit to wages that depend on output in

both periods and are revealed and paid only at the end of the employment relationship

and that doing so is costless e.g. because the agent only consumes at the end of the second

period. Then, informative wages do not lead to learning and hence using a fully informative

evaluation is optimal. Any feature of the model, however, that makes it costly or impossible

to delay informative incentive payments reinstates the trade-off between learning and

incentives analyzed in this paper. Suppose for instance that the agent is less patient than

the principal. In the extreme case of a myopic agent, only the current payments of the

principal matter for payoffs and the problem is equivalent to period-by-period contracting.

Noisy and (weakly) tough performance evaluation is again optimal and this extends by

continuity to interior discount rates. Also simple risk aversion implies that it is costly to

delay informative incentives, as it would be optimal to smooth out bonus payments across

both periods.

Our results continue to hold if the principal can postpone only payments, but not

information. Suppose that the Ąrst period contract speciĄes not only a wage this period,

but also a continuation value. Our results generalize to this model.

Remark 5. Suppose that u(w) =
√

2w and that in the Ąrst period, the principal can commit

to signal-contingent wages and continuation values. The optimal information structure is

essentially unique, binary, and (weakly) tough.

The case with full commitment raises considerable difficulties and is beyond the scope

of this paper. This is because of the interaction between full commitment and the belief-

manipulation problem. The dynamic contract cannot condition on the true effort exerted

in the Ąrst period, as this would resolve the moral hazard problem. Therefore, the full

commitment contract has to deal with the dynamic constraint (33) outlined in previous

section. As a result, the principal may Ąnd it optimal to commit to excessive bonus
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payments in the Ąnal period to relax this constraint by inducing a learning motive in the

agent. To analyze this problem, the contracts in both periods need to be designed jointly

with the information structure, which is intractable.36

5.4 Long-Run Simulations

In the main sections, we analyze the twice-repeated problem. Consider now the same

period-by-period problem, but repeated for T > 2 periods. Characterizing the solution

of this problem analytically is not tractable. Numerical analysis, however, shows that

the results from the two-period problem generalize: The optimal evaluation is binary and

tough in all periods. The longer the remaining time horizon, the more important the

dynamic learning channel. Therefore, the optimal evaluation is less precise in early periods

and becomes more precise over time (Figure 4). The worker is left in the dark through a

noisy and tough evaluation early in the relationship when additional information affects

many future incentive compatibility constraints. There is signiĄcant uncertainty under the

optimal evaluation even after ten periods, with fewer very low and more moderately high

posterior beliefs compared to a fully informative one (Figure 5b)

μ

0.0 0.5 1.0

final period

period T-1

period T-10

period T-100

Legend

0.0

0.1

0.2

0.3

σ

Figure 4: The probability of a false negative evaluation decreases over time for any prior.

6 Concluding Remarks

Our model demonstrates why it can be in a principalŠs interest to base incentives on a

noisy evaluation of the agentŠs performance, even when the principal could measure true

output and commit to contingent wages. The underlying insight is that output contains

information both about effort, which she wants to ascertain and incentivize, and the agentŠs

match-speciĄc ability, which she would like to keep shrouded.

36One possible work-around is to consider the problem with full commitment when the contract terms in
the second period can condition on true effort in the Ąrst period, the expected utility of the agent, however,
is independent of this information conditional on the evaluations. This problem is akin to commitment to a
continuation value and our results continue to hold as in Remark 5.
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(a) The evolution of beliefs under the dynamically optimal evaluation.
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(b) The CDF at T = 10 (posteriors on the y-axis).

Figure 5: Belief dynamics in the Problem with T = 10 (parameters as in Fig. 2)

When effort and ability are log-complements, the optimal performance evaluation

is tough: Good performance is not always recognized, but bad performance is always

punished. Such tough evaluation ensures that even after a bad evaluation, the agent is not

too pessimistic about his type. This is optimal because learning is especially costly at low

posteriors, as a given change in beliefs has a large impact relative to the small expected

efficiency of effort. One way a Ąrm can commit to tough evaluation is through the selection

and training of evaluators. Unreasonably strict supervisors and drill-sergeant mentality is

in that sense part of the optimal organization design.

Our results inform not only the optimal evaluation of employee performance, but are

also suggestive of the selection of information sources. Among measures that combine

information about effort and ability, the principal prefers measure that are less sensitive to

ability. This may motivate secrecy about salary differences between employees in the same

job as opposed to differences in bonuses, as base-pay reĆects the principalŠs estimate of

ability while bonuses more directly reward effort. Monitoring effort itself and the conduct

of employees more generally instead of output remains desirable. These patterns are in

sharp contrast with models of implicit incentives through career concerns. In such models,

the fact that a signal combines information about effort and ability is not a friction but

the source of incentives, as the agent exerts effort to avoid being perceived as low-ability.

The analysis of evaluation design when both explicit and implicit incentives are present is

an interesting avenue for future research.
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A Proofs

Note that we use the letter w both to denote the promised wage as a function of signals s and

posteriors µ̂, as well as for w = u−1 mapping from promised utilities to the monetary cost of

providing it. Which function is denoted in each speciĄc instance is apparent from its arguments

and context.

Proof of Proposition 1: To see that the mapping from posteriors to wages is 1:1 and deterministic,

let m(s) := P 1
µp(s♣yH) + (1 − P 1

µ)p(s♣yL) denote the probability of the signal under high effort. It

is easy to see that the contracting problem (3) is equivalent to the utility space problem

max
m,v

PµY +

∫

S



δΠt+1(µ̂(s)) − w(v(s))



m(s) ds

s.t.

∫

S

v(s)m(s) ds− c ≥ U

∫

S



b+ ∆bµ


µ(s) − µ

µ(1 − µ)(∆a+ ∆b)
v(s)m(s) ds ≥ c (IC)

∫

µ̂m(µ̂) dµ̂ = µ ; supp(m) ⊂ [µ, µ̄] (BP)

where v(s) is the promised utility at signal s and where we used the representation of the IC in (6)

while writing the posterior as a function of s. Suppose there are two signals s, s′ with µ(s) = µ(s′)

and different utilities v(s) ̸= v(s′). We could then set ṽ = m(s)
m(s)+m(s′)v(s) + m(s′)

m(s)+m(s′)v(s′) after

both signals. This modiĄcation leaves all constraints unchanged, but reduces the costs of incentives

since w is strictly convex.

Therefore, the payoff of any contract is pinned down uniquely by its induced distribution over

posterior beliefs and mapping from posteriors to utilities, where optimality allows us to restrict

attention to deterministic mappings by the above.

To see the bounds on posteriors, consider

µ(s) = µ
1 + (a+ ∆a+ b+ ∆b)(p(s♣yH )

p(s♣yL) − 1)

1 + (a+ ∆aµ+ b+ ∆bµ)(p(s♣yH )
p(s♣yL) − 1)

This expression is maximized for p(s♣yL) = 0, which attains the upper bound, and minimized for

p(s♣yH) = 0, which attains the lower bound.

Proof of Proposition 2: Note that full information is strictly Blackwell more informative than any

other information structure. Then, the result follows from Proposition 13 in Grossman and Hart

(1983). Since both the Blackwell comparison as well as the concavity of the utility function are

strict, uniqueness follows from an immediate generalization of their proof.

Proof of Proposition 3: By standard arguments, both the participation and the incentive constraint

are binding. Hence

Π2(µ) = PµY − Pµw(U − c+ (1 − Pµ)
c

b+ ∆bµ
) − (1 − Pµ)w(U − c− Pµ

c

b+ ∆bµ
).

Note that we require U −Pµ
c

b+∆bµ > 0 to satisfy the implicit nonnegativity constraint in the agentŠs

utility function. Since ∂
∂µ
Pµ

c
b+∆bµ ∝ ∆ab − ∆ba < 0, this is implied by U > a+b

b
c. It is easy to
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verify that

Π′′
2(µ) ∝2(b∆a− a∆b)(b∆a+ ∆b(1 − a))(b+ ∆bµ)

·


w′(U + (1 − Pµ)
c

b+ ∆bµ
) − w′(U − Pµ

c

b+ ∆bµ
)



− cPµ (b∆a+ ∆b(1 − a))
2
w′′(U + (1 − Pµ)

c

b+ ∆bµ
)

− c(1 − Pµ) (b∆a− a∆b)
2
w′′(U − Pµ

c

b+ ∆bµ
)

The two latter terms are clearly negative, and so is the Ąrst, since b∆a− a∆b < 0. The statement

about the Blackwell comparison then follows.

Proof of Theorem 1: The contracting problem is equivalent to

sup
w,m s.t.(BP)

inf
λ≥0

L(m,w; (λP , λIC)). (34)

To see this, note that as

inf
λ≥0

L(m,w;λ) =







∫
m(µ̂)

(
P 1
µY + δΠ2(µ̂) − w(µ̂)

)
dµ̂ if (P)&(IC) are satisĄed

−∞ else
, (35)

the inĄmum simply wraps the constraints into the objective function. It is always the case that

inf sup L ≥ sup inf L, where the supremum is taken over the choice variables and the inĄmum over

the multipliers. If this condition holds with equality, i.e. if we can exchange sup and inf, we say

that the optimization problem satisĄes strong duality.

Fix a distribution m satisfying (BP) and consider the problem of Ąnding optimal wages subject

to the participation and incentive constraint. It can be solved by point-wise optimization, arriving

at (14).

Lemma 1. The wage setting problem satisĄes strong duality, i.e.

sup
w

inf
λ≥0

L(m,w;λ) = inf
λ≥0

sup
w

L(m,w;λ).

Proof of Lemma: If m is degenerate (a point mass on µ), the problem is infeasible and hence both

the primal and dual value are −∞. If m is nondegenerate, it is easy to see that the problem can

be written in utility space where the objective is a concave functional and the constraints are

linear. Furthermore, a strictly feasible utility promise exists (e.g., pay U after every posterior with

a suitable large bonus if and only if µ̂ > µ). Therefore, by standard results (e.g. Luenberger, 1969,

p. 224), the problem satisĄes strong duality. Therefore, so does the wage setting problem since the

two are equivalent. △

Consider now the Lagrangian that results from plugging in for w from (14).

sup
w

L(m,w;λ) =

∫

ℓ∗(µ̂;λ)m(µ̂) dµ̂ (36)

The information design problem given λ reads

sup
m s.t. (BP)

∫

ℓ∗(µ̂;λ)m(µ̂) dµ̂, (37)
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and can therefore be solved via concaviĄcation of ℓ∗.

Lemma 2. For any λ, the optimal evaluation structure is unique and induces at most two posteriors.

It induces the highest feasible posterior µ̄ with probability m(µ̄) ∈ [0,
µ−µ

µ̄−µ ] and a low posterior,

µ∗ ∈ [µ, µ] with m(µ∗) ∈ [ µ̄−µ
µ̄−µ , 1] .

Proof of Lemma: From (17), it is easy to see that

∂3

∂µ̂3
ℓ∗(µ̂;λ) = δΠ′′′

2 (µ̂) + λ3
IC


b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)

3

ρ′′(λP + λIC
b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)
(µ̂− µ))

at an interior wage and ∂3

∂µ̂3 ℓ
∗(µ̂;λ) = δΠ′′′

2 (µ̂) when the wage is zero.37 It is elementary but tedious

to show that

Π′′′
2 (µ) =

c

(b+ µ∆b)6

[

6∆b (b∆a+ (1 − a)∆b) (a∆b− b∆a) (b+ µ∆b)
2

(w′(uH) − w′(uL))

+3c (a∆b− b∆a)
2

(b+ µ∆b) (b∆a+ ∆b (2 − 2a− b− µ(∆a+ ∆b)))w′′(uL)

+3c (b∆a+ (1 − a)∆b)
2

(b+ µ∆b) (a∆b− b∆a+ ∆b (a+ b+ µ(∆a+ ∆b)))w′′(uH)

−c2 (a∆b− b∆a)
3

(1 − a− b− µ(∆a+ ∆b))w′′′(uL)

+c2 (b∆a+ (1 − a)∆b)
3

(a+ b+ µ(∆a+ ∆b))w′′′(uH)

where uL = U − a+µ∆a
b+µ∆b c and uH = U + 1−a−µ∆a

b+µ∆b c. Under Assumption 1.2, we have Π′′′
2 > 0. Hence,

since ρ′′ ≥ 0, we have ∂3

∂µ̂3 ℓ
∗(µ̂;λ) > 0 for all µ̂ and λ.

Let cavf = maxψ,ψ′∈[µ,µ̄],α∈[0,1] s.t.αψ+(1−α)ψ′=µ¶αf(ψ) + (1 − α)f(ψ′)♢ denote the concaviĄ-

cation of f on the interval [µ, µ̄] and consider the set of beliefs that can be used to generate the

concaviĄcation of ℓ∗ at the prior belief µ,

Ψ(λP , λIC) :=¶ψ ∈ [µ,µ̄]♣∃ψ′ ∈ [µ, µ̄], α ∈ [0, 1] s.t.αψ + (1 − α)ψ′ = µ and (38)

cavℓ∗(µ;λP , λIC) = αℓ∗(ψ;λP , λIC) + (1 − α)ℓ∗(ψ′;λP , λIC)♢ (39)

We have to show that the set is at most cardinality two and has the described structure. First,

consider the case when ℓ∗ is globally concave. Then it is strictly concave at µ (since ℓ∗′′′ > 0) and,

clearly, Ψ(λP , λIC) = ¶µ♢. If instead ℓ∗ is globally convex, then Ψ(λP , λIC) = ¶µ, µ̄♢. In all other

cases, there exists a ψ such that ℓ∗ is strictly concave for µ̂ < ψ and strictly convex for µ̂ > ψ. Then,

the concaviĄcation of ℓ∗ is equivalent to ℓ∗ up to a threshold µ∗ < ψ and linear, generated by µ∗, µ̄

afterwards. Hence, either Ψ(λP , λIC) = ¶µ♢, or Ψ(λP , λIC) = ¶µ∗, µ̄♢. The remaining statements

are immediate from Bayes plausibility, M(µ∗)µ∗ +M(µ̄)µ̄ = µ and M(µ∗) +M(µ̄) = 1. △

Applying this result to the original problem requires another step of duality.

Lemma 3. The information design problem satisĄes strong duality, i.e.

sup
m s.t.(BP)

inf
λ≥0

∫

ℓ∗(µ̂;λ)m(µ̂) dµ̂ = inf
λ≥0

sup
m s.t.(BP)

∫

ℓ∗(µ̂;λ)m(µ̂) dµ̂. (40)

Proof of Lemma: Clearly, the space of posterior distributions satisfying (BP) is compact in the

weak topology, and, as ℓ∗ is continuous and bounded for any λ, the problem is continuous and

37Note that ℓ∗′ is continuous at the nonegativity constraint as the wage is locally zero and that ℓ∗′′

jumps upwards as ρ′ ≥ 0.
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linear in m. Continuity in λ is immediate. To see quasi-convexity in λ, note that by an envelope

argument

∂
∫
ℓ∗(µ̂;λ)m(µ̂) dµ̂

∂λP
=

∫ 

ρ(λP + λIC
b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)
(µ̂− µ)) − U − c



m(µ̂) dµ̂

and similarly for λIC and hence the Hessian of
∫
ℓ∗(µ̂;λ)m(µ̂) dµ̂ is given by





∫
f(µ̂) dµ̂

∫
f(µ̂) b+∆bµ

(∆a+∆b)µ(1−µ) (µ̂− µ) dµ̂
∫
f(µ̂) b+∆bµ

(∆a+∆b)µ(1−µ) (µ̂− µ) dµ̂
∫
f(µ̂)

[
b+∆bµ

(∆a+∆b)µ(1−µ) (µ̂− µ)
]2

dµ̂



 (41)

where f(µ̂) := ρ′(λP+λIC
b+∆bµ

(∆a+∆b)µ(1−µ) (µ̂−µ))m(µ̂) is a positive kernel and the range of integration

is over µ̂ such that u′−1(λP + b+∆bµ
(∆a+∆b)µ(1−µ) (µ̂−µ) ≥ 0. Hence, the integral

∫
f(µ̂)g1(µ̂)g2(µ̂) dµ̂ de-

Ąnes an inner product< ·, · >f (between functions that share support withm), and
∫
ℓ∗(µ̂;λ)m(µ̂) dµ̂

is weakly convex by Cauchy-Schwarz, as the determinant of the Hessian reads

< g1, g1 >f< g2, g2 >f − < g1, g2 >
2
f≥ 0

for g1 = 1 and g2 = b+∆bµ
(∆a+∆b)µ(1−µ) (µ̂− µ).

Therefore, the problem satisĄes the conditions of SionŠs Minimax Theorem and we have

inf
λ≥0

sup
w,m s.t. (BP)

L(m,w; (λP , λIC)) = sup
m s.t. (BP)

inf
λ≥0

sup
w

L(m,w; (λP , λIC)). △

Using Lemma 1 and 3, we have

Π1(µ) = sup
w,m s.t. (BP)

inf
λ≥0

L(m,w;λ) = sup
m s.t. (BP)

inf
λ≥0

sup
w

L(m,w;λ) = inf
λ≥0

sup
w,m s.t. (BP)

L(m,w;λ).

We can therefore simplify the general problem (7) using the properties of optimal evaluation

structures from Lemma 2, i.e. we can restrict attention to binary information structures where the

good signal only realizes after high output. This simpliĄed problem is

max
µ∗,m∗,wl,wh

P 1
µY +m∗ [δΠ2(µ∗) − wl] + (1 −m∗) [δΠ2(µ̄) − wh] (42)

s.t.m∗u(wl) + (1 −m∗)u(wh) − c ≥ U (PS)

b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)

[
m∗
(
µ∗ − µ

)
u(wl) + (1 −m∗)

(
µ̄− µ

)
u(wh)

]
≥ c (ICS)

m∗µ∗ + (1 −m∗)µ̄ = µ ; µ∗ ∈ [µ, µ] (BPS)

where µ∗ denotes the posterior after the bad evaluation, m∗ denotes the probability of a bad

evaluation and wl, wh denote the low and high wage, respectively.

Lemma 4. The simpliĄed contracting problem (42) has a unique solution. The optimal information

structure is non-degenerate (µ∗ < µ).

Proof of Lemma: To show nondegeneracy in the simpliĄed problem, we need to show that the

optimal distribution of posteriors is nondegenerate. To this purpose, we show that there exists an

ϵ̄1 such thatµ∗ ≤ µ− ϵ̄1. This also establishes non-degeneracy of the optimal information structure.
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Suppose not, let µ∗ = µ− ϵ and we will show that the costs of providing incentives diverge as

ϵ → 0. To see this, note that

m(µ∗)µ∗ +m(µ̄)µ̄ = µ

m(µ̄) =
µ−m(µ∗)µ∗

µ̄− µ
=
µ−m(µ∗)µ− ϵ

µ̄− µ
= ϵ

m(µ∗)

µ̄− µ
≤ ϵ

1

µ̄− µ

In the IC constraint, we have

c ≤ b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)

[
m∗
(
µ∗ − µ

)
u(w∗) + (1 −m∗)

(
µ̄− µ

)
u(w̄)

]

≤ b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)



ϵ
1

µ̄− µ

(
µ̄− µ

)
(u(w̄) − u(w))



Hence, as ϵ → 0, we require u(w̄) ≥ c0ϵ
−1, for a suitable constant c0. But then, the objective is

≤ c1 − ϵ · c2w
(
ϵ−1
)

→ −∞ for suitable constants, which is clearly not optimal.

Hence, the optimal distribution of posteriors is nondegenerate. It is easy to see that the

constraints have to be binding and consequently the wages can be expressed from the constraints.

Therefore, a solution exists. Is is unique since the problem is concave with a convex constraint

sets. △

Since a wage function and a distribution over posteriors solve the original problem if and only if

they induce a solution in the simpliĄed problem, this concludes the proof. The contract is unique in

the sense that the signal structure is unique up to duplication and the wage function is determined

on all signals that realize with a positive probability.

Proof of Proposition ??: We rewrite the simpliĄed problem, noting thatm∗ = µ̄−µ
µ̄−µ∗

and maximizing

out wages. First, note that the IC constraint reads

b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)
[m∗(µ∗ − µ)u(w∗) + (1 −m∗)(µ̄− µ)u(w̄)] =

b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)


µ̄− µ

µ̄− µ∗
(µ∗ − µ)u(w∗) +

µ− µ∗

µ̄− µ∗
(µ̄− µ)u(w̄)



=

b+ ∆bµ

∆bµ(1 − µ)

(µ̄− µ)(µ− µ∗)

µ̄− µ∗
[u(w̄) − u(w∗)] ≥ c

Then u(w̄) = λP + λIC
b+∆bµ

(∆a+∆b)µ(1−µ) (µ̄ − µ) and u(w∗) = λP − λIC
b+∆bµ

(∆a+∆b)µ(1−µ) (µ − µ∗).

The multipliers are λP = U + c and

λIC =
c

(
b+∆bµ

(∆a+∆b)µ(1−µ)

2

(µ̄− µ)(µ− µ∗)
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By an envelope argument, the Ąrst order condition for µ∗ is (writing in utility space)

0 = δ



µ̄− µ

(µ̄− µ∗)
2 (Π2(µ∗) − Π2(µ̄)) +

µ̄− µ

µ̄− µ∗
Π′

2(µ∗)

]

+

1

2



µ̄− µ

(µ̄− µ∗)
2

(
u∗2 − ū2

)
+

µ̄− µ

µ̄− µ∗
λIC


b+ ∆bµ

∆bµ(1 − µ)



u∗

]

=

= δ



µ̄− µ

(µ̄− µ∗)
2 (Π2(µ∗) − Π2(µ̄)) +

µ̄− µ

µ̄− µ∗
Π′

2(µ∗)

]

− 1

2
λ2
IC


b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)

2

(µ̄− µ)

as is straightforward but tedious to show. Plugging in for the multiplier and multiplying through,

we arrive at the condition

δ [Π2(µ∗) − Π2(µ̄) + (µ̄− µ∗) Π′
2(µ∗)] =

1

2


(∆a+ ∆b)µ(1 − µ)

b+ ∆bµ
c

2
(µ̄− µ∗)

2

(µ̄− µ)2(µ− µ∗)2
(43)

Note that this condition holds for an interior solution. As µ∗ → µ, the RHS diverges while LHS

stays bounded, so there will never be a corner solution at this limit. As µ∗ → µ, LHS grows as

Π′′
2 < 0 and RHS shrinks, but both stay bounded. We therefore have a corner solution at µ∗ = µ if

(??) is violated.

Proof of Proposition 4: The comparative statics follow from implicitly differentiating (43). First,

note that LHS is decreasing in µ∗ (this follows immediately from the concavity of Π2) and that the

RHS is increasing in µ∗ (as µ̄ > µ). Therefore

dµ∗

dδ
=

[Π2(µ∗) − Π2(µ̄) + (µ̄− µ∗) Π′
2(µ∗)]

d
dµ∗



1
2

(
(∆a+∆b)µ(1−µ)

b+∆bµ c
2

(µ̄−µ∗)2

(µ̄−µ)2(µ−µ∗)2



− d
dµ∗

δ [Π2(µ∗) − Π2(µ̄) + (µ̄− µ∗) Π′
2(µ∗)]

> 0

and hence dσ
dδ
> 0. To see the statement about costs, let ct denote the cost of effort in period t.

Then

dµ∗

dc1
=

c1

(
(∆a+∆b)µ(1−µ)

b+∆bµ

2
(µ̄−µ∗)2

(µ̄−µ)2(µ−µ∗)2

d
dµ∗

δ [Π2(µ∗) − Π2(µ̄) + (µ̄− µ∗) Π′
2(µ∗)] − d

dµ∗



1
2

(
(∆a+∆b)µ(1−µ)

b+∆bµ c
2

(µ̄−µ∗)2

(µ̄−µ)2(µ−µ∗)2

 < 0

and hence dσ
dc1

< 0. To see that

dµ∗

dc2
=

δ d
dc2

[Π2(µ∗) − Π2(µ̄) + (µ̄− µ∗) Π′
2(µ∗)]

d
dµ∗



1
2

(
(∆a+∆b)µ(1−µ)

b+∆bµ c
2

(µ̄−µ∗)2

(µ̄−µ)2(µ−µ∗)2



− d
dµ∗

δ [Π2(µ∗) − Π2(µ̄) + (µ̄− µ∗) Π′
2(µ∗)]

> 0
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and hence dσ
dc2

< 0, it remains to show that d
dc2

[Π2(µ∗) − Π2(µ̄) + (µ̄− µ∗) Π′
2(µ∗)] > 0. This

equation is only tractable for u(w) =
√

2w. Then, we have

d

dc2
[Π2(µ∗) − Π2(µ̄) + (µ̄− µ∗) Π′

2(µ∗)] =

=
d

dc2
c2

2



(1 − Pµ̄)Pµ̄

(b+ ∆bµ̄)
2 − (1 − Pµ∗)Pµ∗

(b+ ∆bµ∗)
2 + (µ̄− µ∗)

∆b (b+ ∆bµ∗ + 2a (1 − Pµ∗))

(b+ ∆bµ∗)
3

]

= 2c2



(1 − Pµ̄)Pµ̄

(b+ ∆bµ̄)
2 − (1 − Pµ∗)Pµ∗

(b+ ∆bµ∗)
2 + (µ̄− µ∗)

∆b (b+ ∆bµ∗ + 2a (1 − Pµ∗))

(b+ ∆bµ∗)
3

]

> 0

Finally, from this it is apparent that both sides of (43) are proportional to c2
1 and c2

2, respectively,

if u(w) =
√

2w, which implies that σ is invariant to common changes in costs in that case.

Proof of Proposition 5: To see the Ąrst statement, consider the problem in signal/utility space.

Then, the cost of incentives is

∫

((a+ b+ η(∆a+ ∆b))p(s♣yH) + (1 − a− b− η(∆a+ ∆b))p(s♣yL))w(v(s)) ds

and the constraints depend on

∫

((a+ b+ µ(∆a+ ∆b))p(s♣yH) + (1 − a− b− µ(∆a+ ∆b))p(s♣yL)) v(s) ds

and similar for IC. For a given p, v, we will construct a cheaper fully informative contract. Consider

providing
∫
p(s♣yH)v(s) ds for certain after high output and

∫
p(s♣yL)v(s) ds after low output. The

constraints are unchanged, so this contract is feasible. It is also cheaper by the convexity of w,

strictly so if p were not degenerate.

To see monotonicity and concavity in the case of underconĄdence, note that

Πη
2(µ) =(a+ b+ η(∆a+ ∆b))Y − (a+ b+ η(∆a+ ∆b))

1

2



U + (1 − Pµ)
c

b+ ∆bµ

2

− (1 − a− b− η(∆a+ ∆b))
1

2



U − Pµ
c

b+ ∆bµ

2

Π0′
2 (µ) =

c

(b+ ∆bµ)3
[ac∆b(1 − a− b) + bc∆b (1 − a− b− µ(∆a+ ∆b))

−bc∆a(∆a+ ∆b)µ+ b(∆a+ ∆b)(b+ ∆bµ)U ]

>
c

(b+ ∆bµ)3
[c∆b (1 − a− b− µ(∆a+ ∆b)) (a+ b) + b(∆a+ ∆b)(b+ ∆bµ)U ]

> 0

Π0′′
2 (µ) = − c

(b+ ∆bµ)4

[
c∆b2 (3a(1 − a− b) + b(3 − 3a− 2b− 2∆bµ)

+2b∆b(∆a+ ∆b)(b+ ∆bµ)U − cb(∆a2 + 2∆a∆b) (2∆bµ− b)
]

< − c

(b+ ∆bµ)4

[
c∆b2 (3a(1 − a− b) + b(3 − 3a− 2b− 2∆bµ)

+2b∆b(∆a+ ∆b)(b+ ∆bµ)U − cb(∆a2 + 2∆a∆b) (2∆bµ− b)
]

< 0

using the fact that either (2∆bµ− b) is negative or we can use log-supermodularity. The results for

overconĄdence follow from analogous straightforward but tedious computation.
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To see the result on information, note that information corresponds to a mean preserving spread

of m, which the principal evaluates as an integral of
[

η µ̂
µ

+ (1 − η) 1−µ̂
1−µ

]

Πη
2(µ̂).

If η = 0 : Since U > a+b
b
c, ∂2

∂µ̂2

([

η µ̂
µ

+ (1 − η) 1−µ̂
1−µ

]

Πη
2(µ̂)



< 0 follows from direct computation.

If η = 1: The sign is ambiguous,

∂2

∂µ̂2



η
µ̂

µ
+ (1 − η)

1 − µ̂

1 − µ



Πη
2(µ̂)



∝ c
[
b2∆a (2b− ∆b(6 + 4µ) − ∆a(6 + 3µ))

+(2b− ∆bµ) (∆b(1 − a)(b+ ∆a+ ∆b) + 4b∆a(∆a+ ∆b)

+ ∆ba(1 − a− b− ∆a− ∆b))]

+2b(b+ ∆b)(∆a+ ∆b)(b+ ∆bµ)(U − c)

In particular, the expression is increasing in U. To see that the sign is truly ambiguous, note that

• if b > 0, the principal is information loving if U is sufficiently large, and

• if a(1 − a) > (4a − 1)(∆a + ∆b), there exists a threshold b̄ > 0 such that the principal is

information averse if b < b̄.

To see this, let U = a+b
b
c− δ in order to ensure that the nonnegativity constraint is satisĄed as we

change b. For b = 0, we get

∂2

∂µ̂2



η
µ̂

µ
+ (1 − η)

1 − µ̂

1 − µ



Πη
2(µ̂)



∝ − [a(1 − a) + (∆a+ ∆b)(1 − 4a)]

and if this expression is negative, we get the cutoff by continuity.

Proof of Theorem 2: As this proof closely follows the same template as the proof of Theorem 1,

we will be brief. All functions relate to Section 4, we refrain from using decorators to mark this

association.

(Optimal Wages) The pointwise optimal wage schedule in the Lagrangian associated with (25)

is

w∗(µ̂, λ) =
1

2

(

1

η µ̂
µ

+ (1 − η) 1−µ̂
1−µ

2

λP + λIC
b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)
(µ̂− µ)

2

(Info Design) The Lagrangian is additively separable and

ℓ∗(µ̂;λ) =P0Y +



η
µ̂

µ
+ (1 − η)

1 − µ̂

1 − µ



[δΠ2(µ̂) − w∗(µ̂, λ)] + λP (u(w∗(µ̂, λ)) − c− U)

+ λIC


b+ ∆bµ

(∆a+ ∆b)µ(1 − µ)
(µ̂− µ)u(w∗(µ̂, λ)) − c



If η = 0: Then,

∂2

∂µ̂2
ℓ∗(µ̂;λ) =

1 − µ

(1 − µ̂)3



λP + λIC
b+ ∆bµ

(∆a+ ∆b)µ

2

+ δ
(1 − µ̂)Π0′′

2 (µ̂) − 2Π0′
2 (µ̂)

1 − µ

∂3

∂µ̂3
ℓ∗(µ̂;λ) =3

1 − µ

(1 − µ̂)4



λP + λIC
b+ ∆bµ

(∆a+ ∆b)µ

2

+ δ
(1 − µ̂)Π0′′′

2 (µ̂) − 3Π0′′
2 (µ̂)

1 − µ

and ∂3

∂µ̂3 ℓ
∗(µ̂;λ) > 0. Lemma 2 goes through. We can apply the proof of Lemmas 4 and 3 mutatis

mutandis and arrive at the Theorem.
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If η = 1: Then, we have

∂2

∂µ̂2
ℓ∗(µ̂;λ) =

µ

µ̂3



λP − λIC
b+ ∆bµ

(∆a+ ∆b)(1 − µ)

2

+ δ
µ̂Π1′′

2 (µ̂) + 2Π1′
2 (µ̂)

µ

∂3

∂µ̂3
ℓ∗(µ̂;λ) = − 3

µ

µ̂4



λP − λIC
b+ ∆bµ

(∆a+ ∆b)(1 − µ)

2

+ δ
µ̂Π1′′′

2 (µ̂) + 3Π1′′
2 (µ̂)

µ

It is straightforward but tedious to show that ∂2

∂µ̂2 ℓ
∗(µ̂;λ) = 0 =⇒ ∂3

∂µ̂3 ℓ
∗(µ̂;λ) < 0 and

therefore the Lagrangian is either convex or convex to concave (it cannot be globally concave

by incentive compatibility). Hence, a lenient information structure is optimal and the lemmas

generalize.

A.1 Private Information of the Principal

Consider the game as described in the text.

First, consider any weak PBE satisfying no-holdup. We will show that the principal proĄt is

smaller than Π∗. On path, it induces a distribution over agent posteriors m(µ̂) and conditional on the

posterior µ̂ a distribution over information structures and wage schedules. As the participation and

incentive compatibility constraints are satisĄed conditional on the agentŠs second stage information

set, they are satisĄed conditional on µ̂. Hence, this distribution over information structures and wage

schedules satisĄes the constraints of the second period problem for µ̂. By the proof of Proposition

5 above, the optimal contract is binary and independent of the principalŠs belief. Therefore, the

continuation proĄt ΠEQ
2 satisĄes

∫
ΠEQ

2 (µp, µ̂)dm(µP ♣µ̂) ≤
∫

Π∗
2(µp, µ̂)dm(µP ♣µ̂) = Π∗

2(µ̂). The

principalŠs continuation value is dominated by that under the optimal contract. Similarly, in the

Ąrst period, the equilibrium induces a distribution over wages and agent posteriors on-path that

satisĄes the conditions of the Ąrst period problem (7).38 This implies that the Ąrst-period proĄt

under the equilibrium is dominated by that under the optimal contract, as we set out to argue.

Second, consider a weak PBE with passive beliefs. Formally, we require that the agent does

not update his beliefs about θ based on the contract offer in either period. We will show that any

such PBE induces a joint distribution over agent beliefs and wages that is identical to the one

induced by the optimal contract up to a set of measure zero. Consider the contract offer stage

in the second period. If the agent has posterior belief µ̂, the principal can achieve the optimal

second period proĄt if and only if (up to inessential modiĄcations of the contract) she offers the

optimal contract characterized in the proof of Proposition 5 above. Therefore, the principal offers

this contract in any such PBE. Consequently, by the martingale property, the principalŠs value of

inducing posterior beliefs µp, µ̂ is Π∗
2(µ̂). In the Ąrst period, the agent has belief µ on path (by BayesŠ

rule) and off-path (by passive beliefs). Therefore, the principals best response is the solution to the

contracting problem. Therefore, the equilibrium is outcome equivalent to the optimal contract.

Third, suppose that the agent observes the principalŠs information structure and the agentŠs

posterior satisĄes the restriction of FN 33. We will show that any such PBE induces a joint

distribution over agent beliefs and wages that is identical to the one induced by the optimal

contract up to a set of measure zero. Note that the principal can achieve Π∗ by offering the optimal

Ąrst-period contract and committing not to acquire private information. Furthermore, she can

achieve no higher proĄt by the previous remark. By the uniqueness of the optimal contract (up to

38In a weak no-holdup PBE the agent may be misguided about the contract offered in the second period
after a hypothetical deviation on the Ąrst period. Such beliefs can only strengthen the Ąrst-period IC
constraint: On-path, the agent is held to the participation constraint (no-holdup); after a deviation, he
might obtain a positive continuation surplus.
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measure zero events), the equilibrium has to induce this outcome, otherwise the principal would

obtain a strictly lower proĄt.

A.2 Private Effort Choice

First, we provide details for the rewriting of the dynamic IC constraint (32). It is immediate that

we can write

∫

S

(p(s♣yL) + (a+ b+ µ∆b) [p(s♣yH) − p(s♣yL)]) [w(s) + U ] ds− c ≥
∫

S

(p(s♣yL) + a [p(s♣yH) − p(s♣yL)]) [w(s) + U ] ds+

∫

S

(p(s♣yL) + a [p(s♣yH) − p(s♣yL)]) max



wL(µ̂(s)) + P 1
µ

c

b+ ∆bµ̂(s)
− c− U,wL(µ̂(s)) + P 0

µ

c

b+ ∆bµ̂(s)
− U

}]

ds

(44)

Using the usual rewriting of the signal probabilities and noting that U = wL(µ̂(s))+P 1
µ̂

c
b+∆bµ̂(s) − c,

we can write

∫

m(µ̂)
(b+ µ∆b)

µ(1 − µ)∆b
(µ̂− µ)w(µ̂) dµ̂− c ≥

∫

m(µ̂)



1 − (b+ µ∆b)

µ(1 − µ)∆b
(µ̂− µ)



max



(µ− µ̂)∆b
c

b+ ∆bµ̂
, 0

}]

dµ̂ (45)

which is the form given in (33). Note that the maximum is equal to zero iff µ̂ ≥ µ and that wage

setting is unaffected by this additional term. The partially maxed out Lagrangian reads

∫

ℓ̃(µ̂;λ)m(µ̂) dµ̂.

with

ℓ̃(µ̂;λ) =







ℓ∗(µ̂;λ) − λIC

(

1 − (b+µ∆b)
µ(1−µ)∆b (µ̂− µ)



(µ− µ̂)∆b c
b+∆bµ̂ µ̂ ≤ µ

ℓ∗(µ̂;λ) µ̂ > µ

We have

∂3

∂µ̂3



−λIC


1 − (b+ µ∆b)

µ(1 − µ)∆b
(µ̂− µ)



(µ− µ̂)∆b
c

b+ ∆bµ̂



= λIC
6c∆b(b+ µ∆b)(b2 + µ(2b+ ∆b))

µ(1 − µ)(b+ ∆bµ̂)4
> 0

and therefore it remains the case that ℓ̃′′′ > 0 wherever it is continuously differentiable. The kink is

concave, as

∂

∂µ̂



−λIC


1 − (b+ µ∆b)

µ(1 − µ)∆b
(µ̂− µ)



(µ− µ̂)∆b
c

b+ ∆bµ̂



♣ ˆµ=µ =
c∆bλIC
b+ ∆bµ

> 0

and the curvature of the function increases, as

∂2

∂µ̂2



−λIC


1 − (b+ µ∆b)

µ(1 − µ)∆b
(µ̂− µ)



(µ− µ̂)∆b
c

b+ ∆bµ̂



♣ ˆµ=µ = −2cλIC


1

1 − µ
+

1

µ
+

∆b2

(b+ ∆bµ̂)2



< 0

(Note that the signs are Ćipped relative to their intuitive interpretation, since the component is

part of the Lagrangian for µ̂ ≤ µ.) This establishes the result, as the pasted Lagrangian is concave
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to convex, with a concave kink at µi = µ. If ℓ̃ is concave at µi = µ with a single support point of

concaviĄcation, the optimal information structure is uninformative and therefore the IC cannot

be satisĄed. Therefore, from the shape of ℓ̃, the concaviĄcation is supported at µ̄ and at a point

µ∗ < µ, possibly in addition to µ.

A.3 Commitment to a Continuation Value

Suppose that u(w) = 2
√
w and that in the Ąrst period, the principal can commit to a continuation

value, i.e. U(s). Note that this does not change the transformation to belief space and we can

hence write w(µ̂), U(µ̂). The problem reads

Π1(µ) = max
m,w

PµY +

∫

m(µ̂) (δΠ2(µ̂, U(µ̂)) − w(µ̂)) dµ̂ (46)

s.t.

∫

[u(w(µ̂)) + U(µ̂) − U ]m(µ̂) dµ̂− c ≥ U (P)

∫
(
b+ ∆bµ

) µ̂− µ

(∆a+ ∆b)µ(1 − µ)
[u(w(µ̂)) + U(µ̂)]m(µ̂) dµ̂ ≥ c (IC)

∫

µ̂m(µ̂) dµ̂ = µ ; supp(m) ⊂ [µ, µ̄] (BP)

Straightforward computations establishes that

Π2(µ̂, U(µ̂)) = (a+ b+ (∆a+ ∆b) µ̂)Y−U(µ̂)2

2
−c2 (1 − a− b− (∆a+ ∆b) µ̂) (a+ b+ (∆a+ ∆b) µ̂)

2 (b+ µ̂∆b)
2 .

That is, the continuation value is additively separable in the posterior independent cost of providing

the continuation value and the cost of providing incentives. This is a feature of the utility function

and greatly simpliĄes the analysis.

Rewriting the contracting problem in utility space, we see that the Ąrst period objective reads

PµY+

∫

m(µ̂)

(

δ

(

(Pµ̂Y ) − U(µ̂)2

2
− c2 (1 − a− b− (∆a+ ∆b) µ̂) (a+ b+ (∆a+ ∆b) µ̂)

2 (b+ µ̂∆b)
2



− u(µ̂)2

2



dµ̂

Equating marginal costs of providing utility to the agent, the optimal contract satisĄes δU(µ̂) = u(µ̂).

Hence, the problem is equivalent to the period by period contracting problem with a cost of utility

of w(u) = (δ + δ2)u
2

2 , or, equivalently, a utility function u(w) = 2
(δ+δ2)

√
w. Therefore, Theorem 1

applies and we have the desired result.

Remark. With a general utility function, the costs of providing the continuation utility and the

posterior belief are not separable in the principalŠs continuation proĄt. This introduces cross-terms

in the derivatives of the Lagrangian which are hard to control without making restrictions on the

Lagrange multipliers. Hence, the proof strategy of Theorem 1 does not easily generalize to this case.
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