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Abstract

We consider a model of collective persuasion, in which members of an advisory committee

receive private continuous signals and then vote on a policy change. A decision maker then

decides whether to adopt the change upon observing each vote. Information transmission

between the committee and the decision maker is possible if and only if there exists an infor-

mative equilibrium with the unanimity rule. When the decision maker is more conservative,

a higher level of consensus is needed to persuade her to abandon the status quo in equilib-

rium. Our result thus provide a rationale for the use of the unanimity rule, despite its poor

performance in information aggregation (Feddersen and Pesendorfer 1998). Furthermore, the

continuous-signal model considered in this paper produces results that contrast the discrete-
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signal model considered in the literature (Battaglini 2017; Gradwohl and Feddersen 2018) and

we discuss how the results depend on the coarseness of the signal structure.

1 Introduction

A manager is considering whether to hire a candidate or leave the post open. To evaluate

the candidate, she consults a committee of experts who have private information about the

competence of the candidate. However, committee members often have their own interest in the

decision. For example, the committee may be more eager to have a new hire, while the manager

is more concerned with the salary involved. A common practice is for each committee member

to make a binary recommendation, either for the candidate or against the candidate, to the

manager, and the manager then makes the �nal decision.

In this case, the group of experts serves as an advisory committee and provides decision-

relevant information to the manager through voting. This paper studies information transmission

between the committee and the manager when there is a con�ict of interest between these two

parties. Our model applies to a lot of real-world situations. Examples include the Federal

Advisory Council, which advises the Federal Reserve Board; the Investor Advisory Committee,

which advises the US Securities and Exchange Commission; advisory committees for the US Food

and Drug Administration; and expert panels appointed in WTO dispute settlement proceedings.

Despite their importance in real-world decision making, such committees, usually called advisory

committees, are understudied in the literature (Gradwohl and Feddersen 2018).1

We study the behavior of such an advisory committee with a standard voting framework.

There is an unknown state of the world, and the decision maker needs to choose between a

policy change and the status quo. Each member of the committee receives a continuous signal

about the state, and each casts a vote on whether to adopt the policy change. The decision

maker is informed of each vote, and then chooses between the policy change and the status

1There are also committees that are usually regarded as decision-making committees but face a decision-making
problem similar to the one we describe. For example, the Federal Open Market Committee independently deter-
mines monetary policy, but the economic consequences of the policy depend on the market response. In the United
States, the Congress collectively determines whether to pass a bill, but the Article I of the Constitution requires
that every bill passed by the Congress must be presented to the president for approval, and the president can veto
the passed bill within 10 days. Presidential vetos do happen sometimes.
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quo. All committee members share the same preference. Their preference is completely aligned

with the decision maker�s preference when the state is known. But with incomplete information,

there is a con�ict of interest: the decision maker is more biased toward the status quo; she

can be persuaded to switch her decision only if the committee provides su¢ciently convincing

information supporting the policy change. Thus, there is meaningful information transmission

only if the decision maker can be persuaded to adopt the policy change in equilibrium.

Recent work on advisory committees (Levit and Malenko 2011; Battaglini 2017; Gradwohl

and Feddersen 2018) shows that information transmission between the committee and the deci-

sion maker is impossible when the con�ict of interest is too large. This is because an advisory

committee di¤ers from a decision-making committee in one key aspect. In a decision-making

committee, votes are aggregated by an exogenous voting rule that selects one of the two options.

In an advisory committee, the decision rule is endogenous and chosen by the decision maker.

In equilibrium, the decision maker adopts a certain decision (voting) rule and the committee

members cast their votes in anticipation of the equilibrium decision rule and the other committee

members� equilibrium voting behavior. As a result, a given voting rule may not be supported in

equilibrium if the decision maker is not willing to follow it. When the con�ict of interest is large

enough, the decision maker cannot be persuaded to adopt the policy change under any voting

rule, and the committee�s information is never utilized.

We �rst characterize the necessary and su¢cient condition for information transmission. The

characterization also provides a tractable algorithm to verify whether information transmission

is possible in equilibrium. In Section 4, we have the following main result of the paper:

Proposition Information transmission is possible if and only if the decision maker can be per-

suaded in an equilibrium where she adopts the unanimity rule.

This result implies that to determine whether information transmission is possible, it is suf-

�cient to verify the existence of an equilibrium in which the decision rule is the unanimity rule.

If such an equilibrium does not exist, then information transmission fails in any equilibrium.

Ever since Feddersen and Pesendorfer (1998) pointed out the inferiority of the unanimity

rule in a jury voting model, it remains puzzling why the unanimity rule is so prevailing in

many decision-making processes despite its poor performance in information aggregation from
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a theoretical point of view. Moreover, the unanimity rule is also the uniquely bad voting rule

if deliberation is allowed (Austen-Smith and Feddersen 2006; Gerardi and Yariv 2007). Our

result provides a rationale for the use of the unanimity rule. When the con�ict of interest is

large, the unanimity rule could be the only decision rule that arises in equilibrium and makes

information transmission possible. Although information transmission may also be possible under

other voting rules when the con�ict of interest is moderate, our result shows that whenever some

other voting rules can sustain communication, so does the unanimity rule, but not vice versa.

This means that the unanimity rule can be adopted to transmit information for a wider range of

scenarios than all other voting rules.

More generally, we can compare two decision rules and ask which of them is more likely to

survive when the con�ict of interest between the committee and the decision maker gets larger.

More precisely, which voting rule can sustain information transmission for a wider range of

scenarios? The following result in Section 5 provides a partial answer by comparing all k-rules.

Under a k-rule, the decision maker chooses the policy change when there are no less than k votes

supporting the change.

Proposition If a decision maker can be persuaded in an equilibrium where she adopts k-rule,

then she can be persuaded in an equilibrium where she adopts (k + 1)-rule.

Thus, we expect a higher k-rule to arise in equilibrium when the decision maker gets more

conservative towards the policy change. This aspect has not been considered in the literature,

which mainly focuses on information aggregation in a decision-making committee.2 For an advi-

sory committee, voting behavior depends not only on the preference of the committee, but also

on the degree of the con�ict of interest between the decision maker and the committee. When

the decision maker is more conservative and reluctant to adopt the policy change, the committee

members may have to aim for a higher consensus level, a higher k-rule, for example, to persuade

her.

Our two baseline results above thus con�rm the intuition that more a¢rmative votes make

the case for a policy change more convincing. Therefore, a higher k-rule could allow information

2For example, Persico (2004) shows that the optimal voting rule for a committee is the statistical rule, which
depends on the preference of the committee.
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transmission to a decision maker when a lower k-rule cannot. Such reasoning, however, ignores

the fact that the committee members adjust their votes strategically and vote more aggressively

for a policy change when facing a higher k-rule (Austen-Smith and Banks 1996). While we

show that such naïve reasoning leads to the right conclusion when signals are continuous under

fairly general conditions, in Section 5, we consider a version of our model with binary signals

(Gradwohl and Feddersen 2018) and show that this often-used speci�cation leads to drastically

di¤erent results. This suggests that the assumption of binary signals is not innocuous in studying

advisory committees. To investigate the reasons underlying these contrasting results, we further

consider a general discrete-signal model, in which the signal of each committee member can take

more than two values. The analysis of the general model suggests that if the signals are �ne

enough, then the results will be similar to the continuous-signal case; if the signals are very

coarse, the results will be similar to the binary-signal case.

2 Literature review

Our model builds on the voting model pioneered by Austen-Smith and Banks (1996) and Fed-

dersen and Pesendorfer (1997). These two seminal papers model the voting of a decision-making

committee as non-cooperative strategic games. Austen-Smith and Banks (1996) show that truth-

ful voting is generally not an equilibrium. Feddersen and Pesendorfer (1997) show that in spite of

that, private information held by the committee members can be fully aggregated in a large elec-

tion. Thereafter, the literature has been mainly focusing on studying the performance of decision-

making committees in information aggregation, including the e¤ect of voting rules adopted by the

committees on information aggregation (Feddersen and Pesendorfer 1998; Duggan and Martinelli

2001; Li et al. 2001; Martinelli 2002), the e¢ciency of information aggregation when pre-voting

communication is allowed (Coughlan 2000; Austen-Smith and Feddersen 2006; Gerardi and Yariv

2007), and costly information acquisition (Li 2001; Persico 2004; Martinelli 2006).3 The commit-

tees in this literature are all decision-making committees, but the committee we consider in the

current paper is an advisory committee. Thus, the voting rules in these papers are exogenously

given while the voting rule in our paper is endogenous.

3Li and Suen (2009) and Gerling et al. (2005) provide excellent surveys of the earlier works in this literature.
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This paper is also related to the cheap-talk literature initiated by Crawford and Sobel (1982).

In the cheap-talk literature, the papers closest to the current paper are the ones with multiple

senders (Krishna and Morgan 2001; Battaglini 2002; Ambrus and Takahashi 2008). Di¤erent

from the current paper, these papers mostly focus on whether full revelation is obtainable. In

this paper, we restrict our attention to binary state and action spaces, and focus on the feasibility

of information transmission rather than the possibility of full revelation.

The papers most closely related to this paper are Austen-Smith (1993), Wolinsky (2002), Levit

and Malenko (2011), Battaglini (2017), Gradwohl and Feddersen (2018) and Battaglini, Morton

and Patacchini (2020). Austen-Smith (1993) considers a heterogeneous two-expert committee and

a decision maker who does not commit to a decision rule. He compares simultaneous voting and

sequential voting, and examines the informational properties of these two mechanisms. Levit and

Malenko (2011), Battaglini (2017), and Gradwohl and Feddersen (2018) consider simultaneous

voting models similar to ours but with discrete signals. They �nd that information transmission is

impossible if the con�ict of interest between the committee and the decision maker is large enough,

regardless of the size of the committee. Wolinsky (2002) also reaches a similar impossibility result

in a model with veri�able information but with a di¤erent information and payo¤ structure.

Ekmekci and Lauermann (2022) introduce costly participation and noise to Battaglini (2017). In

contrast to the previous literature, they show that if there are only costs and no noise, information

is fully aggregated when the size of the committee is large enough. Battaglini, Morton and

Patacchini (2020) test the predictions of Battaglini (2017) experimentally. We go beyond these

papers by not only deriving the necessary and su¢cient conditions for information transmission

but also studying the corresponding condition for a given voting rule in detail.

Pei and Strulovici (2021) study a related voting problem where the voting rule is endogenous.

In their model, the voters have endogenous and corrected signals and the underlying state of the

world is also endogenous. But di¤erent from the current paper, they study the attainability of

the full-commitment outcome when the decision maker cannot commit.

The rest of the paper is organized as follows. Section 3 introduces the model. Section

4 characterizes the equilibria and presents the main results of the paper. Section 5 discusses

the model with discrete signals. Section 6 concludes. Most of the proofs are relegated to the
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Appendix.

3 Model

3.1 Setup

There is a committee of N homogeneous members. Each member i receives information about

the state � 2 fy; ng, and then votes simultaneously on two options, status quo N (or nay) and

alternative Y (or yay), vi 2 fY;Ng. The decision maker (DM) is �rst informed of each vote, and

then makes a �nal decision D 2 fY;Ng between status quo N and alternative Y . The common

prior probability that the state is y is p 2 (0; 1).

Payo¤s. The payo¤s of the committee members and the DM, denoted by uC (D; �) and

uDM (D; �), respectively, depend on DM�s choice D and the state �. The payo¤s of status quo

N are normalized to zero in both states for both parties, i.e., uC (N; �) = uDM (N; �) = 0 for

� 2 fy; ng. The payo¤s of alternative Y depend on the state: For the committee members,

uC (Y; n) = �1=2, uC (Y; y) = 1=2; for the DM, uDM (Y; n) = ��, and uDM (Y; y) = 1 � �.

The parameter � 2 (1=2; 1) measures the con�ict of interest between the DM and the committee

members. Under perfect information, all players have the same preference, i.e., all players strictly

prefer alternative Y in state y and status quo N in state n. For every interior belief about the

state, the DM�s expected payo¤ of adopting alternative Y is lower than that of the committee

members. Moreover, we assume that the optimal uninformed decision for the DM is status quo

N , i.e., � > p.4

� = n � = y

D = N 0 0

D = Y �� 1� �

� = n � = y

D = N 0 0

D = Y �1
2

1
2

Table 1: The DM�s (left) and committee member�s (right) payo¤s.

Information. Before voting, each member i receives a private signal si regarding the state �.

4This assumption is non-essential for our results. If � < p, then the DM will choose alternative Y instead of
status quo N in an uninformative equilibrium. Our characterizations for informative equilibria remain valid.
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Signal si is distributed on (a; b) according to distribution function F (:) if the state is y and G (:)

if the state is n, where a; b 2 R[f�1;+1g. The distributions F (:) and G (:) admit continuous

density functions f (:) and g (:), respectively, on (a; b). All signals are independently distributed

conditional on the true state.

Strategies. A voting strategy of a committee member i is a (measurable) function, mi :

(a; b)! [0; 1], that maps his signal si into the probability of voting for alternative Y . A voting

strategy mi is a partisan strategy if committee member i votes for the same option regardless

of his signal. A voting strategy mi is increasing if mi (si) � mi (s
0
i) for all si � s0i. A voting

strategy mi is a cuto¤ strategy if there exists an s
�
i 2 (a; b) such that mi (si) = I for all si > s

�
i

and mi (si) = J for all si < s
�
i , where I; J 2 f0; 1g and I 6= J . We use m := (m1;m2; : : : ;mN )

to denote the voting strategy pro�le of the committee members.

A decision rule of the DM is a function d : fY;NgN !fY;Ng that maps a vote pro�le

v 2 fY;NgN into one of the two options. We e¤ectively assume that the DM uses a pure strategy.

In the online appendix, we show that allowing mixed strategies for the DM does not a¤ect any

of our main results. Below we introduce two types of decision rules that will be important for

our analysis. Denote the number of yay votes in a vote pro�le v by jvj. A decision rule d is a

k-rule if there exists a threshold k 2 f1; 2; :::;Ng such that, for all v 2 fY;NgN , d (v) = Y if

jvj � k, and d (v) = N if jvj < k. Each k-rule is uniquely characterized by the corresponding

threshold k. A decision rule d is a weighted voting rule if there exists a weight pro�le w =

(w1; w2; :::w N ) 2 RN+ and a quota Q 2 R+ such that d (v) = Y if
PN
i=1wi1fvi=Y g � Q and

d (v) = N if
PN
i=1wi1fvi=Y g < Q, where 1 is the indicator function.5 A k-rule, for example,

corresponds to a weighted voting rule in which w1 = ::: = wN = 1 and Q = k.

Equilibrium. We use perfect Bayesian equilibrium (PBE) as the solution concept. A PBE

consists of a voting strategy pro�lem, a decision rule d, and a system of belief � : fY;NgN ![0; 1]

that speci�es the posterior belief of the DM about the state for each vote pro�le. Each committee

member i�s voting strategy mi is optimal given the other committee members� voting strategies

m�i and the decision rule d; the decision rule d is optimal given the voting strategy pro�le m

and the belief system �; and � is updated according to Bayes� rule whenever possible. Finally,

5See Shapley and Shubik (1954) and Felsenthal and Machover (1998), for example, for the study of these voting
rules in cooperative game theory.
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we assume that the DM always chooses alternative Y when indi¤erent.

An equilibrium is informative if the DM chooses both options with positive probability in

equilibrium. We say that a DM, characterized by her preference parameter �, can be persuaded

if there exists an informative equilibrium. An equilibrium is symmetric if all committee members

use the same voting strategy, and asymmetric otherwise. Finally, two equilibria with strategy

pro�les (m; d) and (m0; d0) are outcome-equivalent if for all signal pro�les (s1; s2; ::; sN ) 2 (a; b)
N ,

Pr (d (v) = Y j (s1; s2; ::; sN ) ;m) = Pr (d0 (v) = Y j (s1; s2; ::; sN ) ;m0).

3.2 Assumptions on information structure

Let hF (s) :=
f(s)

1�F (s) and hG (s) :=
g(s)

1�G(s) be the hazard functions for distributions F (:) and

G (:), respectively. De�ne the hazard ratio at signal s as the ratio of the hazard functions at

signal s, i.e., hF (s) =hG(s). We impose the following three assumptions on F (:) and G (:).

Assumption 1 (MLRP) F (:) and G(:) satisfy the strict monotone likelihood ratio property

(MLRP), i.e., f(s)=g(s) is strictly increasing in s.

Assumption 2 (Unbounded likelihood ratio) As s approaches a, f(s)=g(s) approaches zero.

As s approaches b, f(s)=g(s) approaches positive in�nity.

Assumption 3 (IHRP) F (:) and G(:) satisfy the strict increasing hazard ratio property (IHRP),

i.e., hF (s) =hG(s) is strictly increasing in s.

Assumption 1 is a standard assumption in the literature, which guarantees that a higher signal

is more indicative of the state being y. We summarize some useful properties of distributions

satisfying MLRP in Lemma 4 in the Appendix.

Assumption 2 implies unbounded posterior odds, which means that signals can be arbitrarily

precise. This assumption guarantees that for any �xed k-rule, an informative equilibrium exists in

the corresponding decision-making committee.6 Moreover, under this assumption, a su¢ciently

6A weaker assumption that guarantees this is f (a) =g (a) < (1�p)=p < f (b) =g (b). This assumption is employed
by Duggan and Martinelli (2001). It makes sure that a committee member who behaves �naively� (i.e., as if his
vote alone determines the outcome) will vote for status quo N (alternative Y ) after receiving a signal that is low
(high) enough.
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large committee can persuade any conservative DM (see Corollary 2) and persuade the DM to

choose the correct option in both states (see Proposition 5).

Assumption 3 is a regularity assumption that has been studied by Duggan and Martinelli

(2001) in the context of a decision-making committee. Kalashnikov and Rachev (1986) �rst

introduced this property in the statistical literature.7 It was also shown to be an important

condition for the absence of information cascades in the observational learning models (Herrera

and Hörner 2011, 2013). Most but not all distributions commonly used in economics and political

science satisfy IHRP.8 For example, if both F (:) and G (:) are normal distributions that satisfy

MLRP, then they satisfy IHRP.9

To provide some intuition for Assumption 3, consider two signals s and s0 such that s > s0.

IHRP implies that

f (s) =g (s)

f (s0) =g (s0)
>
(1� F (s)) = (1�G (s))

(1� F (s0)) = (1�G (s0))
:

Given signal s, f (s) =g (s) is the likelihood ratio of signal s, (1� F (s)) = (1�G (s)) is the like-

lihood ratio of a truncation above s. Then IHRP implies that the likelihood ratio of a signal

increases faster than that of the upper truncation. The interpretation of Assumption 3 will be

more transparent once we discuss the equilibrium voting strategy.

4 Equilibrium analysis

In this section, we study the properties of informative equilibria and establish the necessary and

su¢cient conditions for the existence of an informative equilibrium. We �rst consider symmetric

voting in Section 4.1. We show that when voting is symmetric, the DM can be persuaded if and

only if there exists an informative equilibrium with the unanimity rule. Then in Section 4.2, we

extend the results to asymmetric voting. We show that focusing on symmetric equilibrium is

without loss in investigating the possibility of information transmission.

7 In survival analysis, IHRP is referred to as the �ageing faster property.� This is because the hazard function
represents the instantaneous probability of death. Thus, the probability of death for an agent whose lifetime
distribution function is given by F (:) increases faster as s increases than the probability of death for an agent
whose lifetime distribution function is given by G (:).

8See Herrera and Hörner (2011) for a discussion and a list of distributions that satisfy IHRP. A notable case
that fails IHRP is the exponential distribution, whose hazard ratio is a constant (Duggan and Martinelli 2001;
Herrera and Hörner 2011). It is thus a knife edge case.

9See Lemma 5 in the Appendix.
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The equilibrium strategies of the committee members and the DM can be arbitrarily complex.

However, the following proposition indicates that since we are only interested in the equilibrium

outcome, it is without loss to restrict attention to a speci�c class of equilibria, in which the

committee members use either cuto¤ strategies or partisan strategies and the DM uses a weighted

voting rule.

Proposition 1 For any equilibrium, there exists an outcome-equivalent equilibrium with strategy

pro�le (m; d) such that

1. each member i�s voting strategy mi is either an increasing cuto¤ strategy or a partisan

strategy;

2. the DM�s decision rule d is a weighted voting rule.

In the following analysis, we further restrict attention to equilibria in which all committee

members use increasing cuto¤ strategies. When a committee member adopts a partisan strategy,

his vote does not depend on the signal received. For other committee members who use increasing

cuto¤ strategies, they decide how to vote as if they ignore how partisan members vote. To see

why this is the case, note that committee members who use increasing cuto¤ strategies decide

how to vote conditional on their own signal as well as being pivotal.10 The posterior belief

conditional on being pivotal does not depend on the vote cast by a partisan voter, because a

partisan member�s vote is independent of the state. Therefore, these members behave as if the

partisan voters are absent. By the same logic, for every vote pro�le that occurs with positive

probability in equilibrium, the DM decides between the two options as if she ignores how partisan

members vote as well. Hence, dropping the partisan members out of the committee a¤ects neither

how the other members vote, nor how the DM decides between alternative Y and status quo N ,

and generates the same equilibrium outcome. Conversely, given an equilibrium in which all

members of a smaller committee use increasing cuto¤ strategies, there is always an equilibrium

that generates the same outcome in a larger committee where the extra members use partisan

strategies.

10A member is pivotal when his vote can a¤ect the �nal outcome. For example, when the decision rule is a
k-rule, then a member is pivotal when there are exactly k � 1 yay votes from all other members.
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This means that the existence of partisan committee members e¤ectively reduces the commit-

tee size. Since our focus is on the existence of an informative equilibrium, for a given committee

size, it is without loss to focus only on equilibria in which all members vote informatively. In

these equilibria, the cuto¤ s�i fully characterizes member i�s equilibrium voting strategy, so we

also use mi and s
�
i interchangeably.

4.1 Symmetric voting

We �rst consider symmetric informative equilibria in which all committee members use the same

cuto¤ strategy. By Proposition 1, every yay vote in such an equilibrium will be assigned the

same weight, because the voter identity provides no extra information to the DM in addition to

the number of yay votes jvj. Thus, the equilibrium decision rule must be a k-rule.

We now characterize the equilibrium cuto¤ strategy of the committee members. Note that

a committee member with the cuto¤ signal is indi¤erent between voting for alternative Y and

status quo N conditional on being pivotal, and member i is pivotal when there are exactly k� 1

yay votes among all other members, i.e., jv�ij = k� 1. So the cuto¤ signal s� solves the following

equation,

p

1� p

�
1� F (s)

1�G (s)

�k�1�F (s)
G (s)

�N�k f (s)
g (s)

= 1: (1)

To understand this equilibrium condition, note that p=(1 � p) is the prior likelihood ratio of

the state (state y versus state n), (1 � F (s))=(1 � G (s)) is the likelihood ratio of a yay vote,

F (s) =G (s) is the likelihood ratio of a nay vote, and f (s) =g (s) is the likelihood ratio of signal s.

By Bayes� rule, the product of these terms on the left-hand side of (1) is the posterior likelihood

ratio of the state conditional on a committee member receiving a signal s, knowing that k � 1

other members cast yay votes and N � k cast nay votes. For a member with the cuto¤ signal s�,

this posterior likelihood ratio must be 1, which means that he is indi¤erent between status quo

N and alternative Y .

By MLRP, f (s) =g (s) is strictly increasing in s, and both (1�F (s))=(1�G (s)) and F (s) =G (s)

are strictly increasing in s. Therefore, the left-hand side of (1) is strictly increasing in s. Com-

bined with Assumption 2, this implies that (1) has a unique solution. Denote the unique solution

to (1) by s (k;N ). We have,
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Lemma 1 The voting cuto¤ s (k;N ) is strictly decreasing in k.

Intuitively, when the DM asks for more yay votes to choose alternative Y , the members cast

yay votes more often in equilibrium. To see why this must be the case, note that when the

decision rule is k-rule, member i is pivotal when jv�ij = k � 1. By the de�nition of s (k;N ), a

member with signal s (k;N ) is indi¤erent between alternative Y and status quo N conditional

on being pivotal. When the decision rule is (k + 1)-rule, member i is pivotal when jv�ij = k. If

s (k + 1;N ) is higher than s (k;N ), then under (k + 1)-rule, a member with signal s (k + 1;N )

would never be indi¤erent between alternative Y and status quoN conditional on pivotal, because

he is conditioning on more yay votes and each yay vote is more indicative of the state being y

than under k-rule. Thus, s (k + 1;N ) must be strictly lower than s (k;N ).

The DM decides between alternative Y and status quo N after observing the vote pro�le

v. Given that each member uses an increasing cuto¤ strategy featuring cuto¤ s(k;N), we can

therefore �nd the condition for the existence of a symmetric informative equilibrium with the

corresponding k-rule. The following lemma provides the necessary and su¢cient condition for

the existence of a symmetric informative equilibrium with k-rule.

Lemma 2 For each k 2 f1; 2; :::;Ng, a symmetric informative equilibrium with k-rule exists if

and only if � � � (k;N ), where � (k;N ) is the unique solution to

�

1� �
=
hG (s (k;N ))

hF (s (k;N ))
:

Note that in a symmetric equilibrium with k-rule, the DM optimally chooses alternative Y if

jvj � k, and status quo N if jvj < k. Given s� = s (k;N ), this means that the posterior likelihood

ratio of the state that makes the DM indi¤erent between Y and N , �=(1� �), satis�es

p

1� p

�
1� F (s�)
1�G (s�)

�k�1�F (s�)
G (s�)

�N�k+1
<

�

1� �
�

p

1� p

�
1� F (s�)
1�G (s�)

�k �F (s�)
G (s�)

�N�k
; (2)

where the lower bound is the posterior likelihood ratio when jvj = k � 1, and the upper bound

is the posterior likelihood ratio when jvj = k. According to condition (1), when observing the

signal s� = s (k;N ) and jv�ij = k � 1, one believes that states y and n are equally likely. Thus,
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the posterior likelihood ratio when observing jv�ij = k can be replaced by the inverse of the

likelihood ratio of signal s� = s (k;N ). As a result, condition (2) can be reformulated as

F (s�)
G (s�)

g (s�)
f (s�)

<
�

1� �
�
(1� F (s�))
(1�G (s�))

g (s�)
f (s�)

: (3)

By MLRP, F (s�)=G(s�) < f(s�)=g(s�). That is, a nay vote is less indicative of the state being y

than the signal s�. Thus the posterior likelihood ratio when jvj = k�1 is less than 1, and the left

inequality of (3) always holds for � > 1=2. Therefore, for a given k, the right inequality in (3)

is a necessary and su¢cient condition for the existence of a symmetric informative equilibrium

with the corresponding k-rule. The value �(k;N ) represents the most conservative DM that may

adopt k-rule in a symmetric informative equilibrium when the committee size is N .

We are now ready to state our �rst main result.

Proposition 2 (Symmetric voting) There exists a symmetric informative equilibrium if and

only if

� � � (N ;N ) :

Furthermore, for all k0 > k, there exists a symmetric informative equilibrium with k0-rule if there

exists a symmetric informative equilibrium with k-rule, but the converse is in general not true.

The �rst part of the result establishes a necessary and su¢cient condition for the existence of

a symmetric informative equilibrium. It also provides a simple algorithm to check whether infor-

mation transmission is possible when the committee members adopt symmetric voting strategies.

The second part of the result implies that a higher k-rule can sustain information transmission

for a larger set of �. In other words, a higher k-rule is more likely to arise endogenously in

equilibrium when the DM becomes more conservative. It also provides a rationale for the pressure

for a higher level of consensus in many institutions.

We start with the second part of the result to explain the intuition. When increasing the

threshold of the decision rule, say from k to k+1, there are two opposite e¤ects. One is a direct

consensus e¤ect. The increase in the threshold means that the DM asks for a higher consensus

level among the members to choose alternative Y . A higher consensus level is more indicative of
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the state being y. The other is an indirect strategic e¤ect. As shown in Lemma 1, an increase

in the threshold leads to the committee members casting yay votes less conservatively, that is,

s(k + 1;N ) < s(k;N ). It makes each single yay vote less indicative of the state being y. By

IHRP, the consensus e¤ect dominates the strategic e¤ect, so we have �(k + 1;N ) > �(k;N ).

Combined with Lemma 2, we obtain the second part of the proposition. The �rst part of this

proposition naturally follows.

In Figure 1, we illustrate how � (k;N ) increases with k when the signals are normally dis-

tributed in both states. We show in Lemma 5 in the Appendix that if two normal distribu-

tions F (:) and G(:) satisfy MLRP, they satisfy IHRP. The distributions illustrated in the �gure,

F (s) = �(s � 1) and G(s) = �(s + 1),11 satisfy MLRP, thus also satisfy the other assumptions

of the model.

2 4 6 8 10 12 14 16 18 20
0.6
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0.75
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0.95

1

Figure 1: The function � (k;N ) :

Parameters: p = 1=2, N = 21, F (s) = �(s� 1), G(s) = �(s+ 1):

According to Proposition 2, the existence of a symmetric informative equilibrium depends on

the size of the committee. Our next result further explores the role of committee size and shows

that, under symmetric voting, if there is informative transmission with a smaller committee, then

there is informative transmission with a larger committee, but not vice versa.12

11�(s) :=
�
1=
p
2�
� R s

�1
e�t

2=2dt is the cumulative distribution function of the standard normal distribution.
12This is not necessarily the case, when the signals are binary. See the discussion in Section 5.
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Corollary 1 For all N 0 > N , if there exists a symmetric informative equilibrium when the

committee size is N , then there exists a symmetric informative equilibrium when the committee

size is N 0, but the converse is in general not true.

This corollary is a direct implication of Proposition 2 and the fact that � (N ;N ) is strictly

increasing in N . To understand why � (N ;N ) is strictly increasing in N , note that s (N ;N ) is

the unique solution to

p

1� p

�
1� F (s)

1�G (s)

�N�1 f (s)
g (s)

= 1: (4)

By MLRP, f (s) =g (s) is strictly increasing in s, and ((1� F (s))=(1�G (s)))N�1 is strictly

increasing in s and N . Therefore, the left-hand side of (4) is strictly increasing in both s and

N . Thus, s (N ;N ) must be strictly decreasing in N . This is because under the unanimity rule,

there are more yay votes in a larger committee when a member is pivotal, so the members vote

less conservatively. By IHRP, this implies that � (N ;N ) is strictly increasing in N .

Corollary 1 mainly concerns with the existence of an informative equilibrium when the com-

mittee is of di¤erent sizes. However, if the unanimity rule is not used in equilibrium, a larger

committee may fail to transmit information when a smaller committee voting under the unanimity

rule is able to. We illustrate this point through the following example.

Example 1 Suppose voting is symmetric, and F (:) and G (:) are two normal distributions sat-

isfying MLRP. When p > 1=2, � (1; 1) > � (�+ 1; 2�+ 1) for all � � 1.

In this example, for a DM with � such that � (�+ 1; 2�+ 1) < � < � (1; 1), there is a

symmetric informative equilibrium when there is a single expert, but no symmetric informative

equilibrium with the simple majority rule, even when the committee is arbitrarily large. This

example shows that with regard to information transmission, not only the committee size matters,

the equilibrium decision rule is also crucial.

4.2 Asymmetric voting

In this section, we generalize the equilibrium analysis by allowing asymmetric voting. With fewer

constraints on the voting strategies of the committee members, one natural question is: Can a
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committee persuade a more conservative DM under asymmetric voting than under symmetric

voting? Proposition 3 says the answer is no.

Proposition 3 There exists an informative equilibrium if and only if

� � � (N ;N ) :

Proposition 3 generalizes the �rst part of Proposition 2 to asymmetric voting. There exists

an informative equilibrium if and only if there exists a symmetric informative equilibrium with

the unanimity rule. Therefore, allowing asymmetric voting does not make a di¤erence in terms

of the possibility of information transmission. Proposition 3 also provides a tight upper bound

for the degree of con�ict of interest between the DM and the committee members that allows

information transmission. This upper bound can and can only be achieved by the unanimity rule.

Gradwohl and Feddersen (2018) also derive an upper bound in a binary-signal model, but their

upper bound is not achievable by the unanimity rule nor by symmetric voting. In a more general

discrete-signal model, Battaglini (2017) derives an upper bound that is not tight. In Section 5,

we will discuss the di¤erences between the continuous-signal model and the discrete-signal model,

with a special focus on the binary-signal case.

To see why asymmetric voting would not change the existence condition for an informative

equilibrium, consider a two-member committee. By Lemma 1, there exists a symmetric informa-

tive equilibrium with the unanimity rule for all � � � (2; 2). Consider an asymmetric equilibrium.

There are three possibilities:

Case 1: The DM chooses alternative Y if and only if there are two yay votes. In this case,

the decision rule is the unanimity rule. As shown by Duggan and Martinelli (2001), under IHRP,

voting under the unanimity rule is always symmetric. Therefore, this case is irrelevant.

Case 2: The DM chooses alternative Y if and only if there is at least one yay vote. In this

case, the decision rule is a k-rule and k = 1. Without loss of generality, assume that member

1 has the higher cuto¤. It must be the case that s�1 > s (1; 2) > s�2, otherwise either member

1 with signal s�1 or member 2 with signal s
�
2 is not indi¤erent between alternative Y and status

quo N conditional on being pivotal. Moreover, member 1�s pivotal consideration implies that s�2
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must be low enough. IHRP makes sure that the e¤ect of the decrease in s�2 relative to s (1; 2)

dominates the e¤ect of the increase in s�1 relative to s (1; 2), so that a yay vote from member 1

and a nay vote from member 2 would not be more indicative of the state being y than one yay

vote and one nay vote under symmetric voting.13 Thus, DM cannot be more conservative than

� (1; 2). Therefore, such an equilibrium does not exist when � � � (2; 2).

Case 3: The DM chooses alternative Y if and only if a speci�c committee member, say member

1, casts a yay vote. In this case, the decision rule means that how member 2 votes is irrelevant,

so member 2 is never pivotal. E¤ectively, the committee is a one-man committee. By Corollary

1, � (1; 1) < � (2; 2). Therefore, such an equilibrium does not exist when � � � (2; 2).

These three cases together imply that there does not exist an asymmetric informative equi-

librium when � � � (2; 2). More generally, for a committee of arbitrary size, the basic idea

underlying this example still applies. That is, asymmetric voting implies that the DM must be

willing to choose alternative Y given some vote pro�les other than unanimity. Some of these vote

pro�les are less indicative of the state being y than the others. IHRP ensures that we can �nd a

vote pro�le that leads to a lower posterior belief than unanimity.

When we focus on the class of equilibria in which the equilibrium decision rule is a k-rule, we

can also show that asymmetric voting does not help a committee to persuade a more conservative

DM, when a particular k-rule is adopted in equilibrium. This immediately implies that the second

part of Proposition 2 still holds when asymmetric voting is allowed.

Proposition 4 (k-rules) For all k 2 f1; 2; :::;Ng, there exists an informative equilibrium with

k-rule if and only if there exists a symmetric informative equilibrium with k-rule.

The proof of Proposition 4 generalizes the argument in Case 2 of the two-member committee

example. We only need to show that asymmetric voting under k-rule would not enable the

13Formally, member 1�s indi¤erence condition is given by

p

1� p
F (s�2)

G (s�2)

f (s�1)

g (s�1)
= 1:

Thus, the posterior likelihood ratio of the state given a yay vote from member 1 and a nay vote from member 2 is:

p

1� p
1� F (s�1)
1�G (s�1)

F (s�2)

G (s�2)
=
g (s�1)

f (s�1)

1� F (s�1)
1�G (s�1)

=
hG(s

�
1)

hF (s�1)
:

By IHRP, this ratio is strictly smaller than hG(s (1; 2))=hF (s (1; 2)).
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committee to persuade a more conservative DM. In an asymmetric informative equilibrium with

k-rule, among all vote pro�les with k yay votes, some induce a lower posterior belief of the state

being y than others. IHRP makes sure that at least one of these vote pro�les is less indicative of

the state being y than k votes under symmetric voting.

We now examine the e¤ect of the committee size. Combined with the fact that �(N ;N )

is increasing in N , Proposition 3 naturally implies that Corollary 1 can be generalized to any

informative equilibrium, that is, if there is an informative equilibrium with a smaller committee,

there must exist an informative equilibrium with a larger one. This justi�es our focus on the

case in which all committee members vote informatively, when considering the possibility of

information transmission. It is because, as discussed at the beginning of this section, the partisan

members essentially only play the role of reducing the committee size.

Given that a more conservative DM can be persuaded by a larger committee, one may ask

whether any DM, no matter how conservative she is, can be persuaded by a committee that is

su¢ciently large. The answer is yes. We state this result formally in the following corollary.

Corollary 2 For any � 2 (1=2; 1), there exists an N (�) <1, such that an informative equilib-

rium exists for all committees larger than N (�).

The above corollary implies that, for any DM, there always exists an informative equilibrium

when the committee is large enough. This result relies on Assumption 2, which implies � (N ;N )

is increasing in N without bound.

Though a su¢ciently large committee can persuade any DM to choose alternative Y some of

the time, it could still be that the probability that the DM chooses alternative Y is very small.

If this is the case, then at a practical level, the insights obtained above are not very useful.

However, we show below that this is not the case. When the committee size goes to in�nity,

the DM chooses the correct option in both states almost surely. Therefore, both information

aggregation and transmission can be e¢cient asymptotically.

Proposition 5 (Duggan and Martinelli (2001)) There is a sequence of informative equilib-

ria with strategy pro�les
�
mN ; dN

�1
N=1 such that the probabilities that the DM chooses alternative
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Y in state y and chooses status quo N in state n converge to 1, that is,

lim
N!1

Pr
�
dN = Y j� = y

�
= lim
N!1

Pr
�
dN = N j� = n

�
= 1:

Duggan and Martinelli (2001) and Martinelli (2002) proved this result for a decision-making

committee voting under the unanimity rule. Proposition 5 follows immediately from their result

and Corollary 2. Intuitively, when the unanimity rule is used, alternative Y is rejected only if

one of the committee members casts a nay vote. Thus, the DM e¤ectively delegates the decision

to the committee member who has received the most negative information against alternative

Y . Under Assumption 2, when the committee size goes to in�nity, the cuto¤ signal becomes

arbitrarily low, then a nay vote becomes arbitrarily indicative of the state being n. Therefore,

the DM chooses the correct option in each state with probability one in the limit.

5 Discrete signals

In the baseline model, we assume that each committee member receives a continuous signal.

In this section, we consider the situation in which each member receives a discrete signal. We

�rst focus on the binary-signal case and then discuss brie�y the general case with more than

two signals. The results we have for the binary-signal case are very di¤erent from those in the

baseline model, and the discussion on the general discrete-signal case explains how and why our

results depend on the coarseness of the signal structure.

5.1 Binary signals

The binary-signal model considered in this section has been studied by Gradwohl and Feddersen

(2018). The assumption of binary signal is common in the collective decision-making literature,

as it is often thought to be an innocuous assumption that provides a good �rst approximation of

models with more general information structures. As in the previous sections, we �rst analyze the

existence conditions for the symmetric informative equilibrium with a particular k-rule, which

are not discussed in Gradwohl and Feddersen (2018), then we discuss whether the existence

conditions change when asymmetric voting is allowed. One will see that the results we obtain
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strikingly contrast with those in the continuous-signal model.

Suppose each committee member i privately receives a binary signal si 2 fY;Ng about the

state �. The signals are symmetrically informative about the state, i.e.,

Pr (si = Y j� = y) = Pr (si = N j� = n) = q;

where q 2 (1=2; 1). For simplicity, we assume that the prior of the state being y is 1=2. The

setting is so far identical to the one considered in Gradwohl and Feddersen (2018).

A voting strategy of committee member i is a tuple
�
�iN ; �

i
Y

�
, where �iN and �iY are the

probabilities of voting for alternative Y after receiving an N -signal and a Y -signal, respectively.

Voting is truthful if one votes according to his signal, i.e.,
�
�iN ; �

i
Y

�
= (0; 1); and voting is

informative if voting is responsive to the signal, i.e., �iY 6= �
i
N .

First, we consider symmetric voting, where
�
�iN ; �

i
Y

�
= (�N ; �Y ) for every member i =

1; 2; : : : ;N . For simplicity, we assume that N is odd. In an informative equilibrium, if voting is

symmetric and increasing, the equilibrium decision rule must be a k-rule. When the decision rule

is the simple majority rule, i.e., k = (N +1)=2, voting is truthful, i.e., �N = 0 and �Y = 1. When

the decision rule is a minority rule, i.e., k < (N + 1)=2, the committee members vote for each

option with positive probability after receiving a Y -signal, i.e., �N = 0 and �Y 2 (0; 1). When

the decision rule is a supermajority rule, i.e., k > (N + 1)=2, the committee members vote for

each option with positive probability after receiving an N -signal, i.e., �N 2 (0; 1) and �Y = 1.

Consider the supermajority rules. For all k > (N +1)=2, the indi¤erent signal is the N -signal.

Therefore, conditional on being pivotal, a committee member with an N -signal is indi¤erent

between voting for alternative Y and status quo N , so �N solves the following equation,

�
q + (1� q) �N
q�N + (1� q)

�k�1�1� q
q

�N�k �1� q
q

�
= 1: (5)

Note that (q + (1� q) �N ) = (q�N + (1� q)) is the likelihood ratio of a yay vote, and (1� q)=q is

the likelihood ratio of a nay vote. Therefore, on the left-hand side of (5), the �rst term is the

likelihood ratio of k � 1 yay votes, the second term is the likelihood ratio of N � k nay votes,

and the third term is the likelihood ratio of an N -signal. The left-hand side of (5) is thus the
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posterior likelihood ratio of the state conditional on being pivotal and receiving an N -signal.14

The posterior likelihood ratio must be 1 to make a member with an N -signal indi¤erent between

alternative Y and status quo N . Note that the likelihood ratio is strictly larger than 1 when

�N = 0, strictly smaller than 1 when �N = 1, and strictly decreasing in �N . Therefore, (5) has a

unique solution in (0; 1). Denote the unique solution by �N (k;N ), for k > (N + 1)=2.

It is worth mentioning that for k > (N + 1)=2, �N (k;N ) is increasing in k, that is, when

the DM asks for more yay votes to choose alternative Y , the members cast yay vote more often

after receiving the indi¤erent signal, N -signal. The reason is very similar to that of Lemma 1.

If �N (k + 1;N ) is smaller than �N (k;N ), then under (k + 1)-rule, a member with an N -signal

cannot be indi¤erent between alternative Y and status quo N conditional on being pivotal,

because compared with k-rule, there are more yay votes when the member is pivotal and each

yay vote is more indicative of the state being y. Thus �N (k + 1;N ) must be strictly larger than

�N (k;N ).

For a k-rule to be supported in an informative equilibrium, it must be the case that the DM

�nds it optimal to follow the given k-rule, that is,

Pr (jvj = k � 1j� = y)

Pr (jvj = k � 1j� = n)
<

�

1� �
�
Pr (jvj = kj� = y)

Pr (jvj = kj� = n)
: (6)

The left-hand side of the �rst inequality is the posterior likelihood ratio when jvj = k�1, and the

right-hand side of the second inequality is the posterior likelihood ratio when jvj = k. Similar to

� (k;N ) in the continuous-signal model, de�ne �2 (k;N ) in the following way: for k < (N +1)=2,

let �2 (k;N ) := 1=2; for k = (N + 1)=2, let �2 (k;N ) := q; for k > (N + 1)=2 , let �2 (k;N ) be

the unique solution to

�

1� �
=

q

1� q

q + (1� q) �N (k;N )

q�N (k;N ) + (1� q)
: (7)

The right-hand side of (7) is the likelihood ratio of a Y -signal and a yay vote, given the voting

strategy (�N (k;N ) ; 1). Since �N (k;N ) 2 (0; 1), the right-hand side of (7) is strictly larger

than q= (1� q) and strictly smaller than q2= (1� q)2. Moreover, the right-hand side of (7) is

strictly decreasing in �N (k;N ). Hence, �2 (k;N ) is strictly decreasing in k given that �N (k;N )

14Since p = 1=2, the likelihood ratio of the state is 1, so the parameter p does not appear in the expression of
the posterior likelihood ratio.
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is strictly increasing in k.

The following lemma characterizes the necessary and su¢cient conditions for the existence of

symmetric informative equilibria with k-rule.

Lemma 3 When voting is symmetric,

1. there exists no informative equilibrium with k-rule where k < (N + 1)=2;

2. there exists an informative equilibrium with k-rule where k � (N + 1)=2 if and only if

� � �2 (k;N ).

To understand this lemma, we consider three cases, k = (N + 1)=2, k > (N + 1)=2, and

k < (N + 1)=2, separately. As discussed above, when k = (N + 1)=2, voting is truthful. Thus,

observing jvj = (N + 1)=2 is informationally equivalent to observing (N + 1)=2 Y -signals and

(N�1)=2 N -signals, which is informationally equivalent to observing a single Y -signal, given that

the signals are symmetrically informative. Similarly, observing jvj = (N �1)=2 is informationally

equivalent to observing a single N -signal. Therefore, to have the simple majority rule supported

in a symmetric informative equilibrium, it must be the case that 1� q < � � q, according to (6).

Since � > 1=2, there exists a symmetric informative equilibrium with the simple majority rule if

and only if � � q.

When k > (N + 1)=2, the indi¤erent signal is the N -signal, which implies that conditional

on the pivotal event v�i such that jv�ij = k � 1 is equivalent to observing a Y -signal. Thus, for

the DM, observing a vote pro�le v = (vi; v�i) with vi = Y and jv�ij = k � 1 is equivalent to

observing a Y -signal and a yay vote. The corresponding posterior likelihood ratio is

q

1� q

q + (1� q) �N (k;N )

q�N (k;N ) + (1� q)
;

which is the right-hand side of (7). Similarly, observing jvj = k � 1 is equivalent to observing a

Y -signal and a nay vote, which is equivalent to receiving no information at all. Therefore, there

exists a symmetric informative equilibrium with k > (N + 1)=2 if and only if � � �2 (k;N ).

When k < (N + 1)=2, committee member i is indi¤erent between alternative Y and status

quo N conditional on being pivotal after receiving a Y -signal. Similar to the logic in the previous
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case, for the DM, observing jvj = k is equivalent to observing an N -signal and a yay vote. Since a

member casts a yay vote only after receiving a Y -signal, the DM�s posterior belief after observing

an N -signal and a yay vote is equal to that after observing a Y -signal and an N -signal. Thus, the

DM�s posterior is exactly 1=2 after observing a vote pro�le v with jvj = k. Since � > 1=2, she is

never willing to choose alternative Y when jvj = k. Therefore, there is no symmetric informative

equilibrium with k < (N + 1)=2.

Based on the above discussion, we illustrate in Figure 2 how �2 (k;N ) changes with k =

1; 2; : : : ;N , using an example with N = 21 and q = 0:7.
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Figure 2: The function �2 (k;N ).

Parameters: p = 1=2, N = 21, q = 0:7.

In Figure 2, note that �2 ((N + 1)=2;N ) is lower than �2 (k;N ) for all k > (N + 1)=2, so

according to Lemma 3, the existence of an informative equilibrium with the simple majority rule

implies the existence of an informative equilibrium with a supermajority rule. Furthermore, for

all supermajority rules, �2 (k;N ) is strictly decreasing in k, so the existence of an informative

equilibrium with a higher k-rule implies the existence of an informative equilibrium with a lower

k-rule. We summarize these observations formally in the following proposition.

Proposition 6 When voting is symmetric,

1. there exists an informative equilibrium with a supermajority rule if there exists an infor-

mative equilibrium with the simple majority rule, but the converse is in general not true;
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2. for all k > (N + 1)=2 and k0 > k, there exists an informative equilibrium with k-rule if

there exists an informative equilibrium with k0-rule, but the converse is in general not true.

The second part of the proposition is the opposite of what we obtained in the continuous-signal

model (See Proposition 2). Moreover, it implies that the existence of an informative equilibrium

with the unanimity rule is no longer the necessary and su¢cient condition for information trans-

mission. The stark di¤erence is because � (k;N ) in the continuous-signal model is increasing in

k but �2 (k;N ) in the binary-signal model is decreasing in k for k > (N + 1)=2.

We now explain how the two information structures generate the di¤erences. Consider �rst

the continuous-signal model. To be consistent with the binary-signal model under consideration,

we assume p = 1=2. Suppose that the voting cuto¤ in a symmetric equilibrium with k-rule is s,

then as shown in (3), the likelihood ratio when jvj = k is

Pr (jvj = kj� = y)

Pr (jvj = kj� = n)
=

g (s)

f (s)
| {z }

a signal s�

�
1� F (s)

1�G (s)
| {z }
a yay vote

: (8)

For a given signal s, consider a hypothetical signal s�, such that f (s�) =g (s�)= g (s) =f (s). A

signal s� cancels a signal s exactly, that is, the posterior belief conditional on a signal s� and

a signal s is exactly the prior. We call s� the anti-signal of signal s. Thus, the likelihood ratio

when jvj = k is equal to that of an anti-signal s� and a yay vote. By MLRP, when s decreases,

the likelihood ratio of the anti-signal s� increases, while that of a yay vote decreases. By IHRP,

the likelihood ratio of the anti-signal s� increases � faster� than the likelihood ratio of a yay

vote decreases. Therefore, the likelihood ratio when jvj = k decreases with s, which implies that

� (k;N ) increases with k.

Consider next the binary-signal model. For k > (N + 1)=2, in a symmetric equilibrium with

k-rule, the indi¤erent signal is the N -signal, and the likelihood ratio when jvj = k is equal to the

likelihood ratio of a Y -signal (the anti-signal of an N -signal) and a yay vote, i.e.,

Pr (jvj = kj� = y)

Pr (jvj = kj� = n)
=

q

1� q| {z }
a Y -signal

�
q + (1� q) �N (k;N )

q�N (k;N ) + (1� q)| {z }
a yay vote

: (9)
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The likelihood ratio of a Y -signal is constant, and the likelihood ratio of a yay vote depends on

how often the committee members vote for alternative Y after receiving an N -signal. When k

increases, the committee members vote for alternative Y more often after receiving an N -signal,

which means that the likelihood ratio of a yay vote gets lower. Unlike in the continuous-signal

model, the decrease in the likelihood ratio of the yay vote is not compensated by a corresponding

increase in the likelihood ratio of the anti-signal, because the likelihood ratio of a Y -signal is

constant. As a result, for all k >(N +1)=2, the likelihood ratio of jvj = k decreases with k, which

implies that �2 (k;N ) decreases with k.

Now we will discuss asymmetric voting, and illustrate another di¤erence between the binary-

signal model and the continuous-signal model. In the continuous-signal model, allowing asym-

metric voting has no e¤ect on the existence of an informative equilibrium. But this is not the

case in the binary-signal model, as shown in the following proposition.

Proposition 7 (Gradwohl and Feddersen (2018)) Suppose N 2f3; 5; 7; : : : g. There exists

an informative equilibrium if and only if � � �, where � is the unique solution to

�

1� �
=

�
q

1� q

�2
:

Moreover, there exists an asymmetric informative equilibrium if there exists a symmetric infor-

mative equilibrium, but the converse is in general not true.

Gradwohl and Feddersen (2018) derived this result.15 We include it here to highlight the

di¤erence between the binary-signal model and the continuous-signal model with regard to asym-

metric voting. Note that � represents the most conservative DM, who is only willing to choose

alternative Y after observing two Y -signals. Thus, the �rst part of Proposition 7 implies that if

a DM strictly prefers status quo N given two Y -signals, then information transmission is never

possible. Di¤erent from the continuous-signal model, the upper bound � cannot be achieved

by symmetric voting. The reason is that according to Lemma 3, under symmetric voting, the

existence of an informative equilibrium depends on the posterior belief of the DM upon observing

15Gradwohl and Feddersen (2018) state the �only if � part of our Proposition 7 as a separate lemma (Lemma 1),
while constructing an asymmetric informative equilibrium for any DM with � � �.
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a Y -signal and a yay vote. A yay vote, however, is always strictly less indicative of the state

being y than a Y -signal under symmetric voting. Allowing asymmetric voting can change the

situation. For example, consider a three-member committee. When � = �, there exists an asym-

metric informative equilibrium in which member 1 always votes for alternative Y , the other two

members vote truthfully, and the DM chooses alternative Y if and only if both members 2 and

3 vote for alternative Y . But there does not exists a symmetric informative equilibrium.

To summarize, there are four main di¤erences between the binary-signal model and the

continuous-signal model. First, when the signals are continuous, a necessary and su¢cient

condition for information transmission is the existence of an informative equilibrium with the

unanimity rule (Proposition 3), but it is not the case when the signals are binary (Proposition

6). Second, restricting to supermajority rules, when the signals are continuous, there exists a

symmetric informative equilibrium with a lower k-rule only if there exists a symmetric informa-

tive equilibrium with a higher k-rule (Proposition 4), but it is just the opposite when the signals

are binary (Proposition 6). Third, when the signals are binary, allowing asymmetric voting could

make information transmission possible with a more conservative DM (Proposition 7), but it is

not the case when the signals are continuous (Proposition 3). Finally, information transmission

is always possible with a committee large enough in the continuous-signal model (Corollary 1),

but not in the binary-signal model (Proposition 7).

The �rst three di¤erences arise because of the assumption of discrete signals. We have de-

liberately chosen the binary-signal structure and a set of parameters that make the comparison

easiest and sharpest. When we relax the assumptions on the prior probability p (which could

be nonuniform), the signal structure (which could be asymmetric) or the committee size (which

could be even), the results may change. However, the point remains that the binary-signal model

generates results that are very di¤erent from those of the continuous-signal model. The last

di¤erence comes from Assumption 2, and has little to do with whether the signals are continuous

or not. If Assumption 2 is relaxed, the last di¤erence disappears, and we get a result similar to

both Battaglini (2017) and Gradwohl and Feddersen (2018) in the continuous-signal model.
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5.2 General discrete signals

In this section, we consider the case where the committee members receive discrete signals that

can take more than two values and try to reconcile the seemingly con�icting �ndings from the

continuous-signal model and the binary-signal model. Battaglini (2017) adopts a very similar

information structure in a Poisson voting game.16 However, he does not investigate how the

existence condition of the symmetric informative equilibrium with k-rule changes with k.

Suppose each member i receives a private signal si 2 ft1; t2; :::tMg, where M � 2 is the

number of possible signal realizations. We continue to assume p = 1=2 as in the last section,

even though it is inessential for our discussion here. Let qF (tm) and qG (tm) be the probabilities

that si = tm when the state is y and n, respectively. De�ne the hazard functions in the current

information structure as hF (tm) := qF (tm) =
PM
l=m qF (tl) and hG (tm) := qG (tm) =

PM
l=m qG (tl).

Correspondingly, MLRP and IHRP become:

Assumption 4 (MLRP) F (:) and G(:) satisfy the strict monotone likelihood ratio property

(MLRP), i.e., qF (tm) =qG (tm) is strictly increasing in m.

Assumption 5 (IHRP) F (:) and G(:) satisfy the strict increasing hazard ratio property (IHRP),

i.e., hF (tm) =hG (tm) is strictly increasing in m.

Note that when the signals are discrete, there is no loss to assume that MLRP holds. This

is because we can simply reorder the signals and combine signals that have the same likelihood

ratio.

We focus on symmetric voting. Thus, as in the previous sections, the equilibrium decision rule

in an informative equilibrium must be a k-rule. Similar to�(k;N ) and�2(k;N ), de�ne�M (k;N )

as the unique solution to

�

1� �
=
Pr (jvj = kj� = y)

Pr (jvj = kj� = n)
:

Thus, �M (k;N ) is the upper bound of � such that a symmetric informative equilibrium with

k-rule exists. We will show that the pattern of how �M (k;N ) changes with k combines features

of �(k;N ) and �2(k;N ).

16Di¤erent from the current paper, Battaglini (2017) models the voting problem using the Poisson game approach
introduced by Myerson (1998a, 1998b, 2000). Therefore, his model is, strictly speaking, di¤erent from ours.
However, the two approaches often produce similar results.
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To see that, consider a symmetric informative equilibrium in which the decision rule is k-rule

and the indi¤erent signal is tm, that is, the committee members are indi¤erent between the two

options after receiving signal tm conditional on being pivotal. Then, the posterior likelihood ratio

of the vote pro�le v with jvj = k is given by

Pr (jvj = kj� = y)

Pr (jvj = kj� = n)
=

qG (tm)

qF (tm)| {z }
anti-signal t�m

�
qF (tm) �m (k;N ) +

PM
l=m+1 qF (tl)

qG (tm) �m (k;N ) +
PM
l=m+1 qG (tl)| {z }

a yay vote

; (10)

where �m (k;N ) is the probability that a committee member votes for alternative Y after re-

ceiving the indi¤erent signal tm. As indicated in (10), observing a vote pro�le v with jvj = k is

informationally equivalent to observing the anti-signal t�m of the indi¤erent signal tm and a yay

vote, similar to (9) :

As k increases, intuitively the committee members vote for alternative Y more often in equi-

librium. The increase in the probability of a yay vote could be associated with an increase in

�m (k;N ) with the same indi¤erent signal or a lower indi¤erent signal.
17 These two changes poten-

tially have opposing e¤ects on the likelihood ratio when jvj = k, Pr (jvj = kj� = y) =Pr (jvj = kj� = n).

When the indi¤erent signal tm is unchanged as k increases, then �m (k;N ) increases. By MLRP,

the likelihood ratio of a yay vote in (10) decreases (Lemma 7 in the Appendix), so the value

of �M (k;N ) decreases as in the binary-signal case with supermajority rules. If the indi¤erent

signal tm decreases, the likelihood ratio of the anti-signal t
�
m in (10) increases according to MLRP.

Although the likelihood ratio of a yay vote also decreases when tm decreases, the overall e¤ect on

�M (k;N ) is not determined by IHRP. When the increase in the likelihood ratio of the anti-signal

t�m dominates, �M (k;N ) increases.

Given the two e¤ects discussed above, the relationship between �M (k;N ) and k may not

17For illustrative purposes, we focus on situations where the committee members are indi¤erent between alter-
native Y and status quo N after receiving some signal. When the committee members are never indi¤erent, (10)
does not apply and the behavior of �M (k;N ) is less regular. However, suppose the committee members strictly
prefer to vote for alternative Y after receiving signal tm but strictly prefer to vote for status quo N after receiving
signal tm�1. Then, the posterior likelihood ratio is bounded below by the inverse of the hazard ratio, i.e.,

Pr (jvj = kj� = y)
Pr (jvj = kj� = n) �

qG (tm)

qF (tm)

PM
l=m qF (tl)PM
l=m qG (tl)

=
hG (tm)

hF (tm)
:

By IHRP, hG (tm) =hF (tm) is strictly decreasing in m. This suggests that, as k increases and the cuto¤ signal tm
decreases, this lower bound rises and �M (k;N ) could exhibit an upward trend as in the continuous-signal case,
even when the committee members are not indi¤erent at any signal (see Figure 3).
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exhibit a clear monotone pattern as � (k;N ). Note that in the binary-signal case, for all super-

majority rules, only the e¤ect of the increasing �m (k;N ) is present, so �2 (k;N ) is decreasing in

k for all k >(N + 1)=2, while in the continuous-signal model, the e¤ect of the decreasing indif-

ferent signal dominates, so � (k;N ) is increasing in k. With both e¤ects present in the general

discrete-signal model, the pattern of �M (k;N ) has the features of both � (k;N ) and �2 (k;N ).

When the increase in k does not change the indi¤erent signal tm, �M (k;N ) decreases with k as

�2 (k;N ) under supermajority rules. When the increase in k induces a decrease in the indi¤erent

signal, �M (k;N ) may decrease or increase with k. If the e¤ect of the decreasing indi¤erent signal

tm dominates, then �M (k;N ) increases with k as � (k;N ).

For a concrete illustration of the above two e¤ects, we show in Figure 3 how �M (k;N )

changes with k using an example with N = 21 and M = 4.

2 4 6 8 10 12 14 16 18 20
0.5

0.55

0.6

0.65

0.7

0.75

Indifferent signal = t
1

Indifferent signal = t
2

Indifferent signal = t
3

Indifferent signal = t
4

Figure 3: The function �M (k;N ).

Parameters: p = 1=2, N = 21, qF = (1=8; 3=16; 1=4; 7=16), qF = (1=4; 1=4; 1=4; 1=4).

When k � 7, the committee members vote for each option with a positive probability at

signal t4. Since t4 is the highest possible signal, we have

Pr (jvj = kj� = y)

Pr (jvj = kj� = n)
=
qG (t4)

qF (t4)

qF (t4) �4 (k;N )

qG (t4) �4 (k;N )
= 1:

This means that the committee cannot persuade any DM with � > 1=2. When 8 � k � 12, the

committee members mix at signal t3, and �M (k; 21) �rst jumps above 1=2 and then decreases

with k. The same is true for 14 � k � 17 and 19 � k � 21, where the committee members mix
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at signals t2 and t1, respectively. Within these ranges, the committee members are mixing at

the same signal. The e¤ect of the decreasing �m (k;N ) is the only e¤ect present, and �m (k;N )

decreases with k. However, if we compare k = 12, k = 17, and k = 21, we have �M (12; 21) <

�M (17; 21) < �M (21; 21). When the committee members are mixing at di¤erent signals, both

e¤ects are present. In this comparison, the e¤ect of the decreasing cuto¤ signal dominates, and

�M (k;N ) increases with k.

It is clear that the function �M (k;N ) exhibits patterns that are both similar to and di¤erent

from the two extreme cases, � (k;N ) and �2 (k;N ). Thus, the general discrete-signal model forms

a bridge between the continuous-signal model and the binary-signal model. For the analysis of

symmetric voting equilibria, what is important is not whether the signal space is continuous, but

whether the signals are �coarse� or ��ne�. When the signals are �ne enough, the results will be

similar to the continuous-signal case, and �M (k;N ) is mostly increasing in k. When the signals

are coarse enough, the results will be similar to the binary-signal case. If we consider a sequence

of signal structures converging to a continuous signal structure that satis�es Assumptions 1�3,

�M (k;N ) would be increasing in k in the limit.

In general, since �M (k;N ) is not monotone in k, we are unable to obtain a tight upper bound

on � that allows information transmission. However, similar to Lemma 1 in Battaglini (2017),

we can obtain a loose upper bound by bounding the two terms in (10) individually: choosing t1

for the anti-signal and tM for the yay vote. De�ne �M as the unique solution to

�

1� �
=
qG (t1)

qF (t1)

qF (tM )

qG (tM )
;

If � > �M , there does not exist any informative equilibrium. In the example presented in Figure

3, �M = 7=9 � 0:778.

6 Conclusion

We consider a voting model in which members of an advisory committee receive private continuous

signals and vote on a policy change before a DM makes the �nal decision. Our approach di¤ers

from previous works in that the voting rule is endogenous in our model. We show that information
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transmission between the committee and the decision maker is possible if and only if there exists

an informative equilibrium with the unanimity rule. Our results o¤er a new perspective on an

old debate between Feddersen and Pesendorfer (1998) and Coughlan (2000). In our setting, the

committee must �rst be able to persuade the DM before information could be put into use.

We suggest that a more stringent majority requirement could be adopted to make information

transmission possible, even though it may result in suboptimal information aggregation.

With respect to modeling choice, our comparison between the binary-signal model and continuous-

signal model shows that the binary-signal simpli�cation is not innocuous. When the signals are

coarse, it signi�cantly alters most of the results. Modelers, therefore, should be heedful of such

a possibility when applying voting models. Discrete-signal models should be used when it better

approximates the reality, but not as an approximation of the continuous-signal model, especially

in an advisory committee.

Finally, we have made several assumptions on the environment: 1) the committee is homoge-

nous, 2) the DM observes each vote, 3) there is no pre-voting communication, 4) information

is exogenous. Relaxing any of these assumptions could lead to a better understanding of how

advisory committees work.
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Appendix

The following lemma summarizes some basic properties of distributions that satisfy MLRP. These

properties will be useful later in the proofs.

Lemma 4 Suppose F (:) and G (:) satisfy MLRP. Then,

1. For all s 2 (a; b),

f (s)

1� F (s)
<

g (s)

1�G (s)
and

f (s)

F (s)
>
g (s)

G (s)
;

2. For all s 2 (a; b),

F (s) < G (s) ;

3. 1�F (s)
1�G(s) and

F (s)
G(s) are strictly increasing in s;

Proof of Lemma 4. Part 1 follows from the proofs that likelihood ratio dominance im-

plies hazard rate dominance and reverse hazard rate dominance (See Shaked and Shanthikumar

(2007)). It is enough to note that the proofs apply when the weak inequalities are replaced by

strict inequalities.

Part 2 follows from the proof that likelihood ratio dominance implies �rst-order stochastic

dominance. Again, we note that the proof goes through when the weak inequality are replaced

by strict inequality.

Part 3:

@

@s

�
1� F (s)

1�G (s)

�
=
1� F (s)

1�G (s)

�
g (s)

1�G (s)
�

f (s)

1� F (s)

�
> 0;

where the inequality follows from Part 1.

@

@s

�
F (s)

G (s)

�
=
F (s)

G (s)

�
f (s)

F (s)
�
g (s)

G (s)

�
> 0;

where the inequality follows from Part 1.

The following lemma shows that two normal distributions satisfying MLRP also satisfy IHRP.

Lemma 5 (Normal distribution) Suppose F (:) and G (:) are two normal distributions satis-

fying MLRP. Then,
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1. F (:) and G (:) have the same variance, that is, f (s) = 1
�
p
2�
e�

(s��F )
2

2�2 , and g (s) =

1
�
p
2�
e�

(s��G)
2

2�2 for some �F > �G and � > 0;

2. F (:) and G (:) satisfy IHRP, that is, hF (s)=hG (s) is strictly increasing in s.

Proof of Lemma 5. Suppose g (:) = 1
�G
p
2�
e
� (s��G)

2

2�2
G and f (:) = 1

�F
p
2�
e
� (s��F )

2

2�2
F .

1. f (s) =g (s) = �G
�F
exp

�
(s��G)2
2�2G

� (s��F )2
2�2F

�
. Consider ln (f (s) =g (s)) = ln f (s)� ln g (s).

@

@s
(ln f (s)� ln g (s)) = s

�
1

�2G
�
1

�2F

�
+

�
�F
�2F

�
�G
�2G

�
:

By MLRP, @
@s
(ln f (s)� ln g (s)) > 0 for all s. However, if �2G < �

2
F , the above expression

goes to negative in�nity when s goes to negative in�nity. If �2G > �
2
F , it goes to negative

in�nity when s goes to positive in�nity. Hence, we must have �2G = �
2
F = �

2. Thus,

@

@s
(ln f (s)� ln g (s)) =

1

�2
(�F � �G) :

MLRP then implies that �F > �G.

2. Taking derivative of hF (:)=hG (:), we have

@

@s

�
hF (s)

hG (s)

�
=
@

@s

�
f (s) (1�G (s))

g (s) (1� F (s))

�

=
1

�2
(�F � �G)

f (s)

g (s)

1�G (s)

1� F (s)
+
f (s)

g (s)

(1�G (s)) f (s)� g (s) (1� F (s))

(1� F (s))2

=
f (s) (1�G (s))

g (s) (1� F (s))

�
f (s)

1� F (s)
�

g (s)

1�G (s)
+
1

�2
(�F � �G)

�

=
hF (s)

hG (s)

�
hF (s)� hG (s) +

1

�2
(�F � �G)

�

=
hF (s)

hG (s)

�
hF (s)� hF (s+ (�F � �G)) +

1

�2
(�F � �G)

�
;

where the last equality follows from the observation that hG (s) = hF (s+ (�F � �G)).

Thus, @
@s

�
hF (s)
hG(s)

�
has the same sign as hF (s)� hF (s+ (�F � �G)) +

1
�2
(�F � �G).

37



By the mean value theorem, there exists an s0 2 (s; s+ (�F � �G)) such that

hF (s)� hF (s+ (�F � �G)) = �h
0
F

�
s0
�
(�F � �G) :

Note that hN(�;�2) (s) =
1
�
hN(0;1)

�
s��
�

�
. Thus, h0

N(�;�2) (s) =
1
�2
h0
N(0;1)

�
s��
�

�
. Sampford

(1953) shows that 0 < h0
N(0;1) (:) < 1. Hence, 0 < h

0
G (s

0) < 1
�2
. Therefore,

h0F
�
s0
�
(�F � �G) <

1

�2
(�F � �G) ;

which implies that @
@s

�
hF (s)
hG(s)

�
> 0.

Before proving Proposition 1, we prove the following lemma �rst.

Lemma 6 Suppose in equilibrium member i uses a nonpartisan strategy and is pivotal with pos-

itive probability. Then, member i uses a cuto¤ strategy.

Proof of Lemma 6. Suppose in equilibrium member i uses a nonpartisan strategy and is pivotal

with positive probability. Denote the set of vote pro�les of the other committee members, given

which member i is pivotal, by pivi. Since Pr (pivi) > 0, there exists v�i 2 pivi such that

Pr (v�i) > 0. Since the committee member i uses a nonpartisan strategy in equilibrium, for

all v�i 2 pivi, Pr (v�i) > 0 implies that Pr (v = (Y; v�i)) > 0 and Pr (v = (N; v�i)) > 0. This

means that the DM can update her belief using Bayes� rule after seeing the vote pro�les (Y; v�i)

or (N; v�i). Denote the likelihood ratio of a yay vote from member i by L+i :=
Pr(vi=Y j�=y)
Pr(vi=Y j�=n) . We

must have either L+i > 1 or L
+
i < 1. Otherwise, member i�s vote is uninformative. Since the DM

always chooses Y in the case of indi¤erence by assumption, this means that for all v�i 2 pivi

such that Pr (v�i) > 0, the DM takes the same action after seeing (Y; v�i) or (N; v�i). This

contradicts the assumption that member i is pivotal with positive probability.

If L+i > 1, casting a yay vote can only change the �nal outcome from N to Y . Given the

others� voting strategies m�i and the DM�s decision rule d, ignoring non-pivotal events, member

38



i with signal si voting for alternative Y gets

1

2

pf (si)

pf (si) + (1� p) g (si)
Pr (pivij� = y)�

1

2

(1� p) g (si)

pf (si) + (1� p) g (si)
Pr (pivij� = n) :

If he votes for status quo N , he gets 0. When member i with signal si is indi¤erent between

voting for alternative Y and status quo N , we have

pf (si)

(1� p) g (si)
=
Pr (pivij� = n)

Pr (pivij� = y)
; (11)

where the left-hand side is strictly increasing in si by MLRP and the right-hand side is strictly

positive and independent of si. Therefore, by Assumption 2, a solution to (11) exists and is

unique. Member i must use an increasing cuto¤ strategy in equilibrium. Similarly, when L+i < 1,

member i must use a decreasing cuto¤ strategy in equilibrium.

Proof of Proposition 1. Consider an arbitrary equilibrium (m; d; �) of our model. In

equilibrium, the committee members can be classi�ed into three types. Type I members use

partisan strategies. Type II members use nonpartisan strategies, but are never pivotal. Type

III members use nonpartisan strategies and are pivotal with positive probability. We construct

the desired equilibrium (m̂; d̂; �̂) by going through the committee members one by one. Let

(m0; d0; �0) = (m; d; �) and re-order the committee members according to their types so that

type I members appear �rst, type II second, and type III last. For each step i, we modify

committee member i�s strategy, the DM�s decision rule and belief and show that
�
mi; di; �i

�

remains an equilibrium and it is outcome-equivalent to equilibrium
�
mi�1; di�1; �i�1

�
. The �nal

product
�
mN ; dN ; �N

�
will satisfy the desired properties. Consider step i. There are three cases.

1. Suppose in equilibrium
�
mi�1; di�1; �i�1

�
member i is a type I member. We consider only

the case where member i always votes for Y . The other case is similar. We modify the

decision rule such that, for all v�i 2 fY;Ng
N�1, di (N; v�i) = di (Y; v�i) = di�1 (Y; v�i),

and leave the strategy pro�le unchanged, that is, mi = mi�1. After the modi�cation,

di is constant in mi
i. Since d

i�1 is an equilibrium decision rule given mi�1, for all v�i 2

fY;NgN�1, di (Y; v�i) = di�1 (Y; v�i) is optimal. For all v�i 2 fY;Ng
N�1, (N; v�i) does not

39



occur under mi, so di (N; v�i) = di (Y; v�i) is also optimal, if we simply set �i (N; v�i) =

�i (Y; v�i) = �i�1 (Y; v�i). Under the new decision rule di, member i is never pivotal.

Thus, the partisan strategy is optimal for member i. For member j 6= i, di assigns the

same outcome to any vote pro�le that occurs with positive probability as di�1. Thus, mi
j

is optimal for member j. Hence,
�
mi; di; �i

�
remains an equilibrium. Finally, since di

assigns the same outcome to any vote pro�le that occurs with positive probability as di�1,

equilibrium
�
mi; di; �i

�
is clearly outcome-equivalent to equilibrium

�
mi�1; di�1; �i�1

�
.

2. Suppose in equilibrium
�
mi�1; di�1; �i�1

�
member i is a type II member. We modify

the strategy pro�le such that mi
i (:) = 1, and the decision rule such that, for all v�i 2

fY;NgN�1, di (Y; v�i) = di (N; v�i) = di�1 (Y; v�i). After the modi�cation, member i uses

a partisan strategy and the decision rule di is constant in mi
i. For all v�i 2 fY;Ng

N�1 such

that Pr (v�i) > 0 given mi�1, since member i is never pivotal, we must have di�1 (Y; v�i) =

di�1 (N; v�i). Thus, di assigns the same outcomes to all these pro�les v�i as di�1. There-

fore, di is optimal. For all v�i 2 fY;Ng
N�1 such that Pr (v�i) = 0, di is also optimal, if

we assign the DM the proper o¤-the-equilibrium-path belief. Under the new decision rule

di, member i is never pivotal. Thus, the partisan strategy is optimal for him. For member

j 6= i, if mi�1
j is partisan, then mi

j is still optimal because, by Part 1 and Part 2 of this

proof, the decision rule di is constant in mi
j ; if m

i�1
j is nonpartisan, mi

j is still optimal

because, under
�
mi�1; di�1

�
, the probability that Y is chosen given member j�s vote and

any signal pro�le for members �j is the same as before. This also means that equilibrium
�
mi; di; �i

�
is outcome-equivalent to equilibrium

�
mi�1; di�1; �i�1

�
.

3. Suppose in equilibrium
�
mi�1; di�1; �i�1

�
member i is a type III member. By Lemma 6,

mi�1
i is a cuto¤ strategy, which can be either increasing or decreasing. If mi�1

i is increasing,

we leave the strategy pro�le and the decision rule unchanged, i.e.,
�
mi; di

�
=
�
mi�1; di�1

�
.

If mi�1
i is decreasing, we modify the strategy pro�le such that mi

i (:) = 1�m
i�1
i (:), and the

decision rule such that for all v�i 2 fY;Ng
N�1, di (Y; v�i) = di�1 (N; v�i) and di (N; v�i) =

di�1 (Y; v�i). This in e¤ect relabels member i�s a yay vote as a nay vote and a nay vote

as a yay vote. We leave the DM�s belief unchanged, that is, �i = �i�1. Obviously, di is
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optimal for the DM and mi
j is optimal for member j. The pro�le

�
mi; di; �i

�
remains an

equilibrium and it is outcome-equivalent to equilibrium
�
mi�1; di�1; �i�1

�
.

It remains to show that d̂ = dN is a weighted voting rule. We would like to �nd a pair of w

and Q that represents d̂. For player i who uses a cuto¤ strategy s�i , denote the likelihood ratio

of a yay vote from player i by L+i , i.e., L
+
i =

1�F(s�i )
1�G(s�i )

, and the likelihood ratio of a nay vote from

player i by L�i , i.e., L
�
i =

F(s�i )
G(s�i )

. Let the weight of a yay vote from member i be lnL+i � lnL
�
i ,

i.e.,

wi := lnL
+
i � lnL

�
i :

For player i who uses a partisan strategy, set wi := 0.

Denote the total weight of vote pro�le v by W (v) :=
PN
i=1wi1fvi=Y g. Now we show that for

all vote pro�les v and v0 that occur with positive probability in equilibrium, the total weight of

v is larger than the total weight of v0 if and only if Pr (� = yjv) � Pr (� = yjv0).

Let C be the set of committee members who use cuto¤ strategies. Consider a vote pro�le v,

the posterior likelihood ratio of the state conditional on v is

Y

i2C\fi:vi=Y g

1� F (s�i )
1�G (s�i )

Y

i2C\fi:vi=Ng

F (s�i )
G (s�i )

= exp

0

@
X

i2C\fi:vi=Y g
lnL+i +

X

i2C\fi:vi=Ng
lnL�i

1

A

= exp

0

@
X

i2C\fi:vi=Y g
lnL+i �

X

i2C\fi:vi=Y g
lnL�i +

X

i2C
lnL�i

1

A

= exp (W (v) + c) ;

where c is a constant. This implies that the total weight is strictly increasing in Pr (� = yjv).

Now we �nd the quota Q. Given the equilibrium decision rule d̂ and voting strategy m̂,

consider the corresponding V +. There exists a v 2 V + that such that Pr (v) > 0 and for all

v 2 V + that occur with positive probability in equilibrium, we have

Pr (� = yjv) � Pr (� = yjv) .
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Set Q to be the total weight of vote pro�le v, that is,

Q :=W (v) :

This proves that d̂ is a weighted voting rule.

Proof of Lemma 1. For all s 2 (a; b), we have

(1� F (s))k�1 F (s)N�k

(1�G (s))k�1G (s)N�k
=
(1� F (s))k F (s)N�(k+1)

(1�G (s))kG (s)N�(k+1)
(1�G (s))F (s)

(1� F (s))G (s)

<
(1� F (s))k F (s)N�(k+1)

(1�G (s))kG (s)N�(k+1)
;

where the inequality follows from MLRP and Part 2 of Lemma 4. Thus, the left-hand side of (1)

is strictly increasing in k. Moreover, by Part 3 of Lemma 4, the left-hand side of (1) is strictly

increasing in s. Thus, to satisfy (1), it must be the case that s (k + 1;N ) < s (k;N ).

Proof of Lemma 2. In the main text.

Proof of Proposition 2. The proposition follows immediately from IHRP and Lemmas 1 and

2.

Proof of Corollary 1. In the main text.

Proof of Example 1. Suppose both G (:) and F (:) are normal distributions satisfying MLRP.

Then, by Part 1 of Lemma 5, G = N
�
�G; �

2
�
and F = N

�
�F ; �

2
�
, where �F > �G. For a single

expert, s (1; 1) is de�ned by

p

1� p

f (s (1; 1))

g (s (1; 1))
= 1:

Since f
�
�G+�F

2

�
= g

�
�G+�F

2

�
, p > 1

2 implies that s (1; 1) <
�g+�f
2 . Note that, when s = �G+�F

2 ,

(1�F (s))F (s)
(1�G(s))G(s) = 1. Thus, by Part 3 of Lemma 4, s (1; 1) <

�g+�f
2 implies that

�
(1� F (s (1; 1)))F (s (1; 1))

(1�G (s (1; 1)))G (s (1; 1))

��
< 1 =

(1� p) g (s (1; 1))

pf (s (1; 1))
.
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At s� = s (�+ 1; 2�+ 1),

�
(1� F (s�))F (s�)
(1�G (s�))G (s�)

��
=
(1� p) g (s�)
pf (s�)

: (12)

By MLRP, the right-hand side of (12) is strictly decreasing in s. By Part 3 of Lemma 4, the left-

hand side of (12) is strictly increasing in s. Hence, s (1; 1) < s (�+ 1; 2�+ 1). By the de�nition

of � (k;N ) and IHRP, � (1; 1) > � (�+ 1; 2�+ 1) for all �.

Proof of Proposition 3. To prove this proposition, we only need to show that the existence

of an asymmetric informative equilibrium implies the existence of an informative symmetric

equilibrium with the unanimity rule. Consider an asymmetric informative equilibrium. By

Proposition 1, it is without loss to assume that every committee member uses either an increasing

cuto¤ strategy or a partisan strategy. Suppose further that no committee member uses a partisan

strategy. Since all possible vote pro�les appear with positive probability in equilibrium, the

equilibrium in this case is characterized by the pair (s�; d) alone, where s� 2 (a; b)N is a cuto¤

pro�le and d is a weighted voting rule.

In the asymmetric equilibrium (s�; d), there must be a committee member i such that s�i >

s (N ;N ). Otherwise, for all j 2 f1; 2; ::;Ng, s�j � s (N ;N ). By Parts 2 and 3 of Lemma 4, this

means that for all vote pro�le v 2 fY;NgN , we have

Pr (vj� = y)

Pr (vj� = n)
�

�
1� F (s (N ;N ))

1�G (s (N ;N ))

�N
:

Thus, if the asymmetric equilibrium (s�; d) is informative, then an informative symmetric equi-

librium with the unanimity rule exists.

Suppose s�i > s (N ;N ). In equilibrium, since for every v�i 2 pivi, the pro�le (Y; v�i) induces

the DM to choose alternative Y , we have, for all v�i 2 pivi,

�

1� �
�

p

1� p

Pr (v�ij� = y) (1� F (s�i ))
Pr (v�ij� = n) (1�G(s�i ))

:
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The optimality of the cuto¤ s�i implies that 9 v�i 2 pivi,

p

1� p

Pr (v�ij� = y)
Pr (v�ij� = n)

�
g(s�i )
f(s�i )

:

Therefore,

�

1� �
�
g(s�i )(1� F (s

�
i ))

f(s�i )(1�G(s
�
i ))

<
g (s (N ;N )) (1� F (s (N ;N )))

f (s (N ;N )) (1�G (s (N ;N )))
;

where the last inequality follows from IHRP and the fact that s�i > s (N ;N ). This implies that

an informative symmetric equilibrium with the unanimity rule exists.

Finally, suppose in equilibrium some committee members use partisan strategies. As noted

in the main text, in this case the committee in e¤ect becomes a smaller committee. By Corollary

1 and the �rst part of this proof, such an informative equilibrium exists only if there exists a

symmetric informative equilibrium with the unanimity rule with the original committee.

Proof of Proposition 4. We �rst show that in an informative (symmetric or asymmetric)

equilibrium in which the equilibrium decision rule is a k-rule, all committee members must use

cuto¤ strategies. Since the equilibrium is informative, we have Pr (jvj � k) > 0 and Pr (jvj < k) >

0. Independence of committee members� signals then implies that all committee members are

pivotal with positive probability. Given that the decision rule is k-rule and that the realized

signals of the committee members can be arbitrarily precise, they cannot use partisan strategies

in equilibrium. By Lemma 6, all committee members must use cuto¤ strategies.

Consider an asymmetric informative equilibrium (s�; d) in which the equilibrium decision rule

d is a k-rule. There must be a committee member i such that s�i > s (k;N ). Otherwise, for all

j 2 f1; 2; ::;Ng, s�j � s (k;N ). By Part 3 of Lemma 4, this means that for all vote pro�le v such

that jvj = k,

�

1� �
�
Pr (vj� = y)

Pr (vj� = n)
�

�
1� F (s (k;N ))

1�G (s (k;N ))

�k �F (s (k;N ))
G (s (k;N ))

�N�k
:

Thus, an informative symmetric equilibrium with k-rule exists.

Suppose s�i > s (k;N ). Since for every v�i 2 fY;Ng
N�1 such that jv�ij = k � 1, the pro�le

(Y; v�i) induces the DM to choose alternative Y in equilibrium, we have, for all v�i 2 fY;Ng
N�1
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such that jv�ij = k � 1,

�

1� �
�

p

1� p

Pr (v�ij� = y) (1� F (s�i ))
Pr (v�ij� = n) (1�G(s�i ))

:

The optimality of the cuto¤ s�i implies that 9 v�i 2 fY;Ng
N�1 such that jv�ij = k � 1 and

p

1� p

Pr (v�ij� = y)
Pr (v�ij� = n)

�
g(s�i )
f(s�i )

:

Therefore,

�

1� �
�
g(s�i )(1� F (s

�
i ))

f(s�i )(1�G(s
�
i ))

<
g (s (k;N )) (1� F (s (k;N )))

f (s (k;N )) (1�G (s (k;N )))
;

where the last inequality follows from IHRP and the fact that s�i > s (k;N ). This implies that

an informative symmetric equilibrium with k-rule exists.

Proof of Corollary 2. By Proposition 3, there exists an informative equilibrium with the

unanimity rule if and only if � � � (N ;N ). We complete the proof by showing that � (N ;N )

goes to 1 as N goes to in�nity. Consider the optimality condition for the committee members in

the informative equilibrium with the unanimity rule, we have

p

1� p

�
1� F (s (N ;N ))

1�G (s (N ;N ))

�N�1
=
g (s (N ;N ))

f (s (N ;N ))
: (13)

Suppose limN!1 s (N ;N ) = s > a. Then limN!1
g(s(N ;N ))
f(s(N ;N )) =

g(s)
f(s) <1, and

lim
N!1

�
1� F (s (N ;N ))

1�G (s (N ;N ))

�N�1
= lim
N!1

�
1� F (s)

1�G (s)

�N�1
=1;

which violate (13). Therefore, limN!1 s (N ;N ) = a. Then, we have,

lim
N!1

hG (s (N ;N ))

hF (s (N ;N ))
= lim
s!a

hG (s)

hF (s)
= lim
s!a

g (s)

f (s)

1� F (s)

1�G (s)
= lim
s!a

g (s)

f (s)
=1;

where the last equality follows from Assumption 2. This implies � (N ;N )! 1 as N !1.

Proof of Proposition 5. See Duggan and Martinelli (2001), Theorem 4.
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Proof of Lemma 3. In any symmetric informative equilibrium, the DM �nds it optimal to

follow a given k-rule if and only if (6) holds. There are three cases.

1. Suppose k < N+1
2 . If a symmetric informative equilibrium with k-rule exists, the voting

strategy (�N ; �Y ) must satisfy �N = 0 and �Y 2 (0; 1) , which implies that member i must

be indi¤erent between alternative Y and status quo N conditional on being pivotal after

receiving a Y -signal, i.e.,

Pr (pivij� = y)

Pr (pivij� = n)
=
Pr (jv�ij = k � 1j� = y)
Pr (jv�ij = k � 1j� = n)

=
1� q

q
.

Given the voting strategy, we have

Pr (jvj = k � 1j� = y)

Pr (jvj = k � 1j� = n)
=
1� q

q

q (1� �Y ) + (1� q)

(1� q) (1� �Y ) + q
< 1;

and

Pr (jvj = kj� = y)

Pr (jvj = kj� = n)
=
1� q

q

q

1� q
= 1 <

�

1� �
;

as � > 1
2 . Thus, (6) can never be satis�ed. Therefore, there does not exist a symmetric

informative equilibrium in which the equilibrium decision rule is a minority rule.

2. Suppose k = N+1
2 . If a symmetric informative equilibrium with k-rule exists, voting is

truthful. We have

Pr (pivij� = y)

Pr (pivij� = n)
=
Pr (jv�ij = k � 1j� = y)
Pr (jv�ij = k � 1j� = n)

=
q
N�1
2 (1� q)

N�1
2

(1� q)
N�1
2 q

N�1
2

= 1:

Given truthful voting, we have

Pr (jvj = k � 1j� = y)

Pr (jvj = k � 1j� = n)
=
q
N�1
2 (1� q)

N�1
2

(1� q)
N�1
2 q

N�1
2

1� q

q
=
1� q

q
< 1;

and

Pr (jvj = kj� = y)

Pr (jvj = kj� = n)
=
q
N�1
2 (1� q)

N�1
2

(1� q)
N�1
2 q

N�1
2

q

1� q
=

q

1� q
:

Therefore, (6) is equivalent to � � q = �2
�N+1

2 ;N
�
.
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3. Suppose k > N+1
2 . If a symmetric informative equilibrium with k-rule exists, the voting

strategy (�N ; �Y ) must satisfy �N 2 (0; 1) and �Y = 1, which implies that member i

is indi¤erent between alternative Y and status quo N conditional on being pivotal after

receiving an N -signal, i.e.,

Pr (pivij� = y)

Pr (pivij� = n)
=
Pr (jv�ij = k � 1j� = y)
Pr (jv�ij = k � 1j� = n)

=
q

1� q
.

Given the voting strategy, we have

Pr (jvj = k � 1j� = y)

Pr (jvj = k � 1j� = n)
=

q

1� q

1� q

q
= 1;

and

Pr (jvj = kj� = y)

Pr (jvj = kj� = n)
=

q

1� q

q + (1� q) �N
q�N + (1� q)

=
�2 (k;N )

1��2 (k;N )
:

Therefore, (6) is equivalent to � � �2 (k;N ).

Proof of Proposition 6. Follows immediately from Lemma 3.

Proof of Proposition 7. Consider an informative equilibrium. In equilibrium, there must

be at least one committee member who uses a nonpartisan strategy and is pivotal with positive

probability. Let member i be that committee member. Moreover, it is without loss to assume

that the equilibrium decision rule is increasing.

From pivotal consideration, we have

1� q

q
�
Pr (pivij� = y)

Pr (pivij� = n)
�

q

1� q
;

which implies

min
v�i2pivi
Pr(v�i)>0

Pr (v�ij� = y)
Pr (v�ij� = n)

�
q

1� q
:
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Therefore,

min
v2V +
Pr(v)>0

Pr (vj� = y)

Pr (vj� = n)
� min

v�i2pivi
Pr(v�i)>0

Pr (v�ij� = y)
Pr (v�ij� = n)

q

1� q
�

�
q

1� q

�2
:

Thus, we must have � � � in an informative equilibrium.

Next, we consider � = � and construct an informative equilibrium which involves the commit-

tee members voting asymmetrically. Consider the following asymmetric voting strategy pro�le

and decision rule: 1) committee member 1 always votes for status quo N , and 2) committee

member i 2 f2; ::;Ng votes truthfully; the DM chooses alternative Y when there are at least

N+1
2 votes for alternative Y from committee members f2; ::;Ng and status quo N otherwise.

To check that this is an equilibrium, consider committee member 1. Since he is never pivotal,

it is optimal for him to vote for status quo N .

Next, consider committee member i 2 f2; ::;Ng. Since

q

1� q

Pr
�
jv�ij = N�1

2 j� = y
�

Pr
�
jv�ij = N�1

2 j� = n
� =

q
N+1

2 (1� q)
N�3
2

(1� q)
N+1

2 q
N�3
2

=

�
q

1� q

�2
> 1;

he strictly prefers voting for alternative Y after receiving a Y -signal. Moreover, he is indi¤erent

between the two options after receiving an N -signal, since

1� q

q

Pr
�
jv�ij = N�1

2 j� = y
�

Pr
�
jv�ij = N�1

2 j� = n
� =

q
N�1
2 (1� q)

N�1
2

(1� q)
N�1
2 q

N�1
2

= 1:

Finally, since

1 <
�

1� �
=

�
q

1� q

�2
;

the DM also �nds it optimal to follow the decision rule.

The following lemma implies that MLRP implies that the likelihood ratio of a yay vote

decreases as k increases in equilibrium in the discrete-signal model.

Lemma 7 Suppose the signals are discrete. If F (:) and G(:) satisfy MLRP, then, for m 2

f1; 2; ::;M � 1g, the function

H (�) :=
qF (tm) �+

PM
l=m+1 qF (tl)

qG (tm) �+
PM
l=m+1 qG (tl)
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is strictly decreasing.

Proof of Lemma 7. Di¤erentiating H(:), we get

H 0 (�) =
qF (tm)

�PM
l=m+1 qG (tl)

�
� qG (tm)

�PM
l=m+1 qF (tl)

�

�
qG (tm) �+

PM
l=m+1 qG (tl)

�2 < 0:

To see why the inequality holds, note that by MLRP, for all l 2 fm+ 1; ::;Mg,

qF (tm)

qG (tm)
qG (tl) < qF (tl) ,

which means

qF (tm)

qG (tm)

 
MX

l=m+1

qG (tl)

!

<
MX

l=m+1

qF (tl) .
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