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Abstract

We study strategic interactions when players observe equilibrium statistics, focusing

on: First, their endogenous precision as signals of the fundamental; and second, agents’

well-documented difficulty in learning from such signals. We define the novel notion of

cursed expectations equilibrium with information acquisition which disciplines information

acquisition in a setting with incorrect learning by means of a subjective envelope condition:

agents correctly anticipate their actions but incorrectly deem them optimal. Cursed agents

use and acquire more private information, which counteracts suboptimal information

dissemination and increases welfare. Transparency crowds out private information but is

always beneficial; other policy instruments have paradoxical effects.
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1 Introduction

Many economic decisions are taken in environments with interdependent payoffs and

uncertainty both about fundamental states and the actions of others. To guide such decisions,

players rely on information that includes direct sources about the fundamental—that may be

public or private, exogenously given or acquired at cost—as well as signals about aggregate

statistics of the actions of others. Such statistics (“aggregative signals”) arise naturally in

many economic settings, ranging from the transaction price in a financial market (Grossman

and Stiglitz, 1980; Diamond and Verrecchia, 1981; Kyle, 1985) and the level of activity and

number of infections during a pandemic, to inflation (Lucas, 1972; Morris and Shin, 2005).

Aggregative signals do not just contain information about the actions of others but also

disseminate information about the fundamental. The amount of fundamental information

conveyed by such statistics depends both on their precision around the true aggregate

moment—for which we adopt the moniker of transparency—and on the informativeness of

the moment itself, which in turn depends on how much private information the players use

and disseminate through their strategies and, ultimately, on how much information they

possess to begin with.1 The intricate interactions resulting from these feedback loops are at

the center of lively debates both in policy circles and in the academic literature, especially

surrounding policy instruments that directly target the very availability and transmission

of information.2

One key though hitherto neglected aspect of these interactions is that extracting funda-

mental information from an equilibrium statistic requires understanding how the actions

of others reflect their private information. Ample evidence (e.g. on the winner’s curse and

underinference in social learning) indicates that agents often fail to take this inferential

step.3 This strongly suggests that a complete analysis of such environment should take into

account both the endogenous dissemination of information as well agents’ limited grasp of

the information contained in aggregative signals.

Towards this end we study a beauty contest game with information acquisition and

adapt cursed equilibrium (Eyster and Rabin, 2005) as a tractable model of incomplete

inference from aggregative signals. Cursed equilibrium provides a parsimonious solution

concept capturing the range from rational to fully cursed agents who fail to take into

account that the actions of other players are a result of their private information and hence

consider the aggregate outcomes to be uninformative about fundamentals. It has been

used successfully to account for overbidding in common value auctions and has also found

applications to financial markets (Eyster et al., 2019). We consider the simple specification

in which agents target a combination of the state and the average action to focus on the

1Deviations from full transparency may arise, e.g., from measurement error, intentional coarsening of
information or delays in reporting. For example, a fully transparent financial market would be one where a
trader knows the transaction price before submitting his order. A lower level of transparency would correspond to
a market where traders have only noisy information about the transaction price, say they observe the current price
at another similar market place or in the past.

2We briefly review some of these debates in the related literature.
3In the winner’s curse, agents fail to appreciate that they are more likely to win a common value auction when

their private information leads them to overestimate the value of the prize. Implicitly, they dismiss the information
contained in the fact that they won the auction. See Kagel and Levin (2002) for a review of the experimental
evidence. For social learning, see Weizsäcker (2010).
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novel interaction between cursedness, transparency, and information acquisition. In our

analysis, cursedness and transparency serve as complementary antagonists: Transparency

determines how much aggregative information is available (and therefore how much can

be ignored) while cursedness represents the degree of ignorance. Without transparency

there is no aggregative information and hence nothing to be cursed about, while at the

other extreme fully cursed agents completely ignore aggregative information and hence

transparency is without effect.

Agents in our model also make an information acquisition decision: before playing the

beauty contest, they choose (at a cost) the precision of their private information about the

state. To make this decision, clearly, they have to assess the value of information. As cursed

agents fail to understand the information environment, one needs to take a stand on how

such agents perceive this value, i.e. if and to what extent they are aware of their future

misuse. Devising such a notion while attaining the two goals of behavioral plausibility

and analytical tractability presents considerable challenges. To the best of our knowledge,

information acquisition by cursed agents has not been considered in the literature. We

propose a notion of cursed expectations equilibrium with information acquisition that obeys the

following behavioral assumption: Agents correctly anticipate their expected welfare and

play, but they are not meta-rational, i.e. they do not consider their future information use to

be erroneous. The latter implies that agents follow a subjective envelope condition which

allows for a highly tractable analysis of the information acquisition problem.

We now preview our results. The equilibrium is characterized by a vector of loadings on

the different sources of information. As agents become more cursed, they substitute away

from the aggregative signal and increase the use of private information. This is because

cursedness makes them perceive the aggregative signal as less informative so they need to

rely more on their remaining information sources. The subjective envelope condition implies

that the use of private information is a sufficient statistic for its acquisition; in particular,

the comparative statics of information acquisition and information use coincide. Moreover,

the acquisition channel creates a new feedback loop as the precision of private information

becomes a function of its perceived value: using and acquiring more information, cursed

agents disseminate it more effectively.

Cursedness and transparency have opposed impacts on the equilibrium loadings: For

any degree of cursedness, an increase in transparency makes agents substitute from private

information towards the aggregate signal but crowds out private information acquisition.

The crowding out effect, however, never overturns the direct positive effect and the ag-

gregative signal becomes more informative about the state as transparency increases. This

monotonicity does not necessarily hold for other measures of informational efficiency,

such as the total precision of information available to agents or the realized covariance

between the aggregate action and the state. Along the latter metric, cursedness increases

the inflow of private information into the aggregative signal, but it hinders its extraction

and thereby reduces the efficiency of dissemination. With information acquisition, these

forces balance exactly and – contrary to the intuition that inferential naivete hampers

information aggregation and to the result with exogenous private information both in this

paper and Eyster et al. (2019) – the covariance between the aggregate action and the state is
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independent of cursedness and transparency. While cursed agents lean against the wind

coming from aggregative information, they inject more private information.

The tractability of our framework allows an exhaustive analysis of the welfare con-

sequences of cursedness and of information policies. In the rational equilibrium, the

use and acquisition of private information is inefficiently low because of an information

dissemination externality. If agents are cursed enough, however, they may use (and acquire)

at or even above the efficient level, though they simultaneously misuse their signals. Indeed,

welfare is nonmonotonic in the degree of cursedness. Local to rationality, cursedness is

bliss: An increase in cursedness causes a welfare gain from improved dissemination that

dominates the welfare loss from privately suboptimal use. The former is a first-order gain

as dissemination is inefficiently low, while the latter is second order, as the information

use of rational agents is privately optimal. Welfare in the fully cursed case, however, is

always lower than in the rational benchmark, as such agents ignore the aggregative signal

completely and therefore do not reap any gains from information dissemination.

Lower information acquisition costs and more public information have an ambiguous

effect. Both increase welfare in the rational benchmark for our payoff specification (Bayona,

2018; Colombo et al., 2014), but can reduce welfare with partially cursed agents: They cause

agents to substitute away from the aggregative signal and towards private information or

the fundamental source (resp.), exacerbating suboptimal information use when agents are

partially cursed. We show that this effect can dominate the direct effect of cheaper and

more precise information, causing the paradoxical comparative statics. More transparency,

by contrast, always increases welfare. It unambiguously improves the dissemination of

information and does not exacerbate cursed agents’ misuse.

Although their welfare increases with transparency, cursed agents fail to reap its

full benefits. How does an agent who is able to extract all the information from the

environment interact with a cursed crowd? Could it be beneficial to act in an environment

with less rational agents? We address these questions by studying the behavior of an

atomistic rational agent—such as proverbial smart money in a financial market—facing

equilibrium play in a economy of cursed agents. Such a shrewd agent benefits from the large

amount of information disseminated by the cursed crowd, sometimes even abstaining from

acquiring private information. However, the shrewd agent is also harmed by their misuse of

information as strategic complementarity forces him to follow the crowd and distort his

actions away from the fundamental. Compared to the rational environment, low levels of

cursedness are always beneficial for the shrewd agent (whose welfare can even exceed first

best). At high levels of cursedness the imitation effect dominates in games with sufficiently

strong strategic complements, making excessive cursedness harmful. The trade-off between

information free riding and miscoordination creates nontrivial comparative statics in the

policy parameters. A shrewd agent always profits from transparency, but can be hurt

by more public information and lower information acquisition costs, even when they are

beneficial for the cursed crowd.

We conclude the introductory section by discussing the related literature. In Section 2 we

present the model. We establish existence and uniqueness of a cursed equilibrium in Section

3, taking the precision of private information as given, and briefly discuss comparative
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statics results. We introduce information acquisition in Section 4, defining the notion

of cursed expectations equilibrium with information acquisition. Section 5 analyses the

positive comparative statics of the model. We turn to welfare analysis in Section 6. We

analyze the optimal strategy and welfare of an atomistic rational agent in Section 7. Section

8 concludes.

1.1 Related Literature

Conducting our analysis within the workhorse class of linear quadratic models, we connect

to a rich theoretical and applied literature. Models within this class (and those that exhibit

a similar best response structure) are used to investigate questions of information in a wide

range of applications, ranging from in business cycles (e.g. Hellwig and Veldkamp, 2009;

Angeletos and La’O, 2010; Benhabib et al., 2015), demand function competition (Vives,

1988, 2017), to political economy (e.g. Shadmehr et al., 2018).

The study of the social value of information in this setting has been initiated by Morris

and Shin (2002), who show that more precise public information can reduce welfare in

games with strategic complementarities as it leads to excessive coordination. Angeletos

and Pavan (2007) characterize the inefficiencies of information use in a general linear-

quadratic Gaussian game. Ui and Yoshizawa (2015) classify such games according to the

welfare properties of additional public and private information. Colombo et al. (2014) study

how private information acquisition affects the value of information, establishing a close

link between efficient acquisition and efficient use. All these papers consider exogenous

information, i.e. signals of the fundamental. We analyze the value of information in the

presence of a signal of the average action providing information of endogenous precision

about the state. Bayona (2018) considers an information structure with such a signal in a

setting akin to Angeletos and Pavan (2007), establishing that this can lead to a dissemination

inefficiency in the use of private information.4 We analyze the interplay with information

acquisition – indeed, our rational benchmark nests a payoff restriction of Colombo et

al. (2014), Bayona (2018), and their insofar unexplored meet – as well as agents’ limited

understanding of aggregative information. Our restriction of the payoff structure to the

simple beauty contest game allows us to isolate the novel sources of inefficiency in our

setting.

The results of Morris and Shin (2002) have spurred extensive debate in the literature

about the desirability of public information in particular in the context of central bank

announcements.5 This discussion has often been couched in the terminology of “anti-

transparency” vs. “pro-transparency”. This label does not correspond to our usage, as we

reserve the word transparency for the precision of the public signal about the aggregate

4Amador and Weill (2012) show that with such a dissemination externality more public information can cause
a decrease in welfare, even without interdependent payoffs.

5Svensson (2006), e.g., argues that the ratio of private to public precision required for the paradoxical welfare
result is unreasonably high and Woodford (2005) calls into question the assumptions on strategic complementarity
and welfare. The role of these assumptions is clarified and general conditions for such welfare results are given
in Angeletos and Pavan (2007) and Ui and Yoshizawa (2015). Cornand and Heinemann (2008) instead analyze
the extensive margin in public information provision and show that more precise public information is always
desirable if it reaches the optimal fraction of agents. Kool et al. (2011) show that public information can reduce
information acquisition by market participants and thereby increase financial market volatility.
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action.6 Although we would argue that much of the information provided by central banks

is aggregative in nature and explore the impact of such transparency at length, we also

contribute to the original debate by demonstrating a novel channel based on cursed inference

which can render public fundamental information undesirable: It distracts behavioral agents

from other information sources whose information content they underestimate. The issue

of endogenous information dissemination has been studied in the context of business cycles

by Wong (2008) who show that increased transparency can be self-defeating as it reduces

the information available to the central bank itself to learn about the state of the economy, a

mechanism that has also been studied in Morris and Shin (2005).7

Inference from a signal that aggregates information contained in individual best re-

sponses is also at the center of the literature on information aggregation in financial

markets.8 Grossman and Stiglitz (1980) show that the equilibrium informativeness of

the price system is unresponsive to changes in transparency: an increase in noise leads to

more information acquisition which exactly offsets the direct effect. We establish a similar

invariance along a certain metric of informational efficiency in our setting, but show that

transparency has an impact on the total precision available to (rational) agents.

Cursed equilibrium was proposed by Eyster and Rabin (2005) as a model of underin-

ference from the actions of others to explain the winner’s curse as well as trade in settings

where Bayes-Nash equilibrium would predict a breakdown due to adverse selection. Eyster

et al. (2019) apply a cursed analogue to rational expectations equilibrium in a trading

game and show that cursed behavior can explain excessive trade volume. We adapt cursed

equilibrium to a beauty contest game with endogenous information augmenting it with an

information acquisition stage. To the best of our knowledge, the present paper is the first to

analyze information acquisition with cursed agents.

2 The Model

The game has two stages: First, agents choose how much private information to acquire.

Second, agents play a beauty contest game. We begin our description of the setting with the

second stage and treat the game with exogenous precision of private information in this and

the following section, and add information acquisition in Section 4.

6In the financial economics literature, enhanced transparency is sometimes conceptualized as the sharing of
private signals between asymmetrically informed traders, e.g. Glosten and Milgrom (1985); Chowdhry and Nanda
(1991); Pagano and Volpin (2012). Pagano and Röell (1996) define transparency as the extent to which market
makers can observe the size and direction of the current order flow, a notion that is much closer to that we use in
this paper. They find that greater transparency generates lower trading costs for uninformed traders on average,
although not necessarily for every size of trade.

7Amador and Weill (2010) show that through a similar signal jamming channel public information can be
welfare decreasing, as it reduces the informativeness of the price system thereby increasing uncertainty about the
monetary shock.

8In demand function competition, Vives (2017) shows that there is both an information dissemination
externality as well as a pecuniary externality, the latter causing excessive weight on private information.
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Actions and Payoff

There is a unit interval of agents i ∈ [0,1], playing a simple beauty contest game. Their

payoff is given by

u(ai , ā,θ) = − (1− r) (ai −θ)2 − r (ai − ā)2 , (1)

where ai ∈R is the action of player i, ā =
∫
i
ai di is the average action9 and θ ∈R is the state

(or fundamental). We allow for both strategic complementarity (r > 0), and substitutability

(r < 0), and assume that complementarity is not too strong (r < 1) to ensure the existence of

a unique interior linear equilibrium and a planner solution.

The restriction to a simple beauty contest allows us to isolate the inefficiencies generated

by the features specific to our information environment: the dissemination externality of

aggregative information, and cursed updating from that source. Indeed, in our simple

beauty contest game both information use and acquisition are efficient for the rational

benchmark without aggregative information (Angeletos and Pavan, 2007; Colombo et al.,

2014).10

Signals and Inference

The following information structure is common knowledge. The state θ is drawn from the

prior distribution N (0,τ−1
θ

).11 Agents receive three signals: a private fundamental signal

si = θ + zsi ∼N (θ,τ−1
s ), i.i.d. across agents, a public fundamental signal y = θ + zy ∼N (θ,τ−1

y )

about the state and a public aggregative signal p = ā+zp ∼N (ā,τ−1
p ) where τp, the precision of

the aggregative signal as a signal of a, is our transparency parameter.12 We will endogenize

τs in the information acquisition stage.

The optimal action is given by

ai(si , y,p) = argmax
ai

Ei [u(ai , ā,θ)] (2)

where Ei is the expectation operator with respect to agent i’s information, including his

updating biases.13 As u is quadratic, (2) takes the linear best response form

ai = (1− r)Ei (θ) + rEi (a) (3)

9As is customary we adopt a SLLN for the private signals as a convention, see Vives (2008, 10.3.1) for a
discussion. One formal operationalization of this is to view the integrals in the sense of Pettis, see Uhlig (1996).

10This contrasts with the specification of the beauty contest in Morris and Shin (2002) who consider the utility
function u(ai , ā,θ) = − (1− r) (ai −θ)2−r(ai−aj )2, which results in a dependence of individual utility on the variance
of others’ actions. A natural extension of our paper is to analyze the interplay between a richer payoff structure
(which broadens the set of economic applications) and our information environment.

11A prior mean of zero is merely a convenient normalization. We insist on a proper prior as we analyze the
comparative statics of ex-ante welfare.

12The situation we have in mind is that of a central authority having exclusive access to the set of actions chosen
by each player inside a market. With those data she can perform statistical analysis (difficult because of missing
data, imperfect reports, etc) and produce a report which will then be observed without further noise by everyone.
Interpreted as the accuracy of the process turning actions into a report, transparency becomes a natural parameter
for positive comparative statics as well as policy evaluation.

13While we assume that the aggregative signal is observed before taking the action, our model can be written
equivalently in action schedules ai : p 7→ a ∈R (see Vives, 2014). Both formulations are equivalent for rational and
(partially) cursed agents and it depends on the application which seems more natural. In the context of (financial)
markets, it is common to analyze models of demand/supply function competition, while acting based on a realized
signal seems more natural for individual consumers or workers reacting to the inflation rate.

7



Throughout, we focus on linear equilibria. That is, the optimal action rule takes the form

ai = α0 +α1si +α2y +α3p (4)

for some vector of loadings α. Then, we can write the true aggregate action as

ā =
∫ 1

0
ai di = δ0 + δ1θ + δ2y + δ3p (5)

with aggregate weights δ. Inspection of equation (5) makes clear that the aggregative signal

p provides information of endogenous precision about θ. Indeed, under the assumption that

δ3 , 1 (and conditionally on y), p is informationally equivalent to

p̂ =
1− δ3

δ1

[
p − δ2

1− δ3
y

]
− δ0

δ1
= θ +

1
δ1

zp ∼N
θ, 1

δ2
1τp

 (6)

The Bayesian posterior on θ can be written based on the three conditionally independent

sources (s,y, p̂) which determines the posterior on a through (5). The precision of the

aggregative signal about the state, δ2
1τp, depends both on transparency τp and on the

equilibrium loading δ1.

Cursed Equilibrium

As a model of the failure to update from observing the action of others, we adapt cursed

equilibrium (Eyster and Rabin, 2005). In this solution concept, agents are characterized by

a parameter χ, the degree of cursedness, that ranges from χ = 0 for rational benchmark to

χ = 1 denoting fully cursed behavior. A fully cursed agent fails to perceive any correlation

between other agents’ actions and their private information. Instead, he thinks that others

play according to the marginal distribution of their actions conditional on his private

information. Consequently, according to the beliefs of a fully cursed agent i with information

Ii , the action of agent j is

aj = E[aj |Ii ] =α0 +α1E[θ |Ii ] +α2y +α3p+α1

(
sj −E[θ |Ii ]

)
(7)

where the αk are the weights used in the linear strategy of player j. The fully cursed agent

treats the prediction error sj −E[θ |Ii ] as independent of the state. Therefore, in a linear

symmetric equilibrium,

ā = δ0 + δ1E[θ|Ii] + δ2y + δ3p (8)

i.e. that the aggregate statistic is independent of θ conditional on his information. A fortiori,

ā and hence p do not provide additional information about the state.14

14In contrast to other updating biases – e.g. overconfidence or dismissiveness –, cursed agents correctly perceive
the relative precision of p as a signal about the aggregate action. They fail, however, to relate it to the private
information of others and to extract information about the state.
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Partially cursed agents are characterized by an interior level of cursedness χ ∈ (0,1).

They form expectations as a convex combination of rational and fully cursed ones, namely

Eχ[θ |Ii ] = χ
τyy + τssi
τθ + τy + τs

+ (1−χ)
τyy + τssi + δ2

1τpp̂

τθ + τy + τs + δ2
1τp

(9)

Eχ[ā|si , y,p] = χ

(
δ0 + δ1

τyy + τssi
τθ + τy + τs

+ δ2y + δ3p

)
+ (1−χ)(δ0 + δ1θ + δ2y + δ3p) (10)

Note that even cursed agents do all the updating about the state θ and then turns it into

a belief about a through the equilibrium condition (5): they have “equilibrium awareness”.

Where they go wrong is in the under-appreciation of the correlation between their private

information and others’ actions.

When we interpret our game as one of submitting action schedules as a function of

the aggregative signal (see FN 13), cursedness also captures agents inability to engage in

conditional or hypothetical thinking (Esponda and Vespa, 2014; Ngangoué and Weizsäcker,

2021). In light of this evidence, we interpret the degree of cursedness not as an individual

characteristic but as codetermined by the market structure.

Cursed equilibrium is defined as a solution concept for Bayesian games. Due to our

information structure, however, the model described so far is not a Bayesian game, strictly

speaking: agents react to a signal that itself is an integral over actions. We therefore adapt

cursed equilibrium in a fashion similar to a linear rational expectations equilibrium:15

Definition 1. A vector of loadings (α,δ) constitutes a χ-cursed expectations equilibrium if α

satisfies the best response condition (3)-(4) with expectations formed according to (9)-(10)

given δ; and the aggregate action is consistent with individual actions, δ = α.

3 Equilibrium Analysis for Exogenous τs

This section studies the equilibrium without information acquisition. An equilibrium is

computed by matching coefficients in the best-response function (3).

Proposition 1. There exists a unique χ-cursed equilibrium for any τs. It is given by

α0 = δ0 = 0 (11)

α1 = δ1 (12)

α2 = δ2 =
δ2

1τy

(1− r)τs − δ1

(
τθ + τy

) (13)

α3 = δ3 = 1− δ1 (1− r)τs
(1− r)τs − δ1

(
τθ + τy

) (14)

where δ1 ∈ [0,1) is the unique real solution to

δ1 = [1− r + rδ1]
τs

τθ + τy + τs + δ2
1τp

1 +χ
δ2

1τp

τθ + τy + τs

 (15)

15See also Eyster et al. (2019) for a similar approach in a trading game with finitely many agents.
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In (15) the RHS has a natural interpretation as it denotes the optimal loading on private

information given aggregate δ1. First, the private signal is valuable for predicting the

state, with best-response weight 1− r, as well as the aggregate action to the degree that it

reflects the state (conditional on public signals), with best-response weight rδ1. Second, the

relative precision of the private signal is the usual Bayesian weight τs

τθ+τy+τs+δ
2
1τp

. Hence, the

private signal is ignored (δ1 = 0) only if it is pure noise (τs = 0). This term also contains the

information spillover effect: the more other agents use their private information (higher

δ1), the more can be learned from the aggregative signal, which reduces the weight on the

private signal. Third, the final term adjusts this weight as cursed agents fail to understand

that the aggregative signal is informative about the state and therefore perceives the private

signal to be relatively more informative. In the extreme case of χ = 1, the agent ignores

the aggregative signal and the two final factors simplify to τs
τθ+τy+τs

, the relative precision

of the private signal as if there were no aggregative information. Therefore, transparency

is without effect in the fully cursed equilibrium while, symmetrically, cursedness has an

impact on the equilibrium16 only if there is an informative aggregative signal (τp > 0).

Cursedness manifests itself as a pure updating bias and only distorts inference from the

aggregative signal. Absent such signal, cursed agents act just like a rational agent as they

correctly interpret all fundamental sources of information.

At first sight, that cursedness matters only in the presence of an aggregative signal may

be surprising when compared with the implications of cursed equilibrium in a common

value auction. In the auction, there is no aggregative information available to the agent

before he chooses his action but still cursedness impacts his choice. This, however, is a

natural consequence of the payoff structure: In an auction, the agent considers his payoff
conditional on winning the auction, which is exactly such an aggregative conditioning event.

In our model, the payoffs themselves weigh all states equally ex-ante and there is no such

“implicit conditioning” embedded in them.

The fully rational case is easily obtained from Proposition 1 but doesn’t lead to a simple

and immediately interpretable representation. It was analyzed in depth in Bayona (2018).

The opposite case results in a considerable simplification.

Corollary (Fully Cursed Equilibrium). The equilibrium with χ = 1 is

δFC
1 =

(1− r)τs
τθ + τy + (1− r)τs

, δFC
2 =

τy

τθ + τy + (1− r)τs
, δFC

3 = 0 (16)

The role of strategic substitutability and complementarity is directly apparent in the

fully cursed equilibrium. If there are no such strategic interactions, cursed agents weigh the

two signals at their (mental) disposal according to their precision. Strategic complementarity

shifts weight away from the private signal si and towards the public signal, y, while

substitutability has the opposite effect.

The fact that the fully cursed equilibrium puts no weight on the aggregative signal

deserves a clarification. This does not follow from cursedness alone. Indeed even for fully

cursed agents, the aggregative signal, p, remains a valid source of the public fundamental
16Although both cursedness and transparency affect all three loadings, they enter δ2 and δ3 only indirectly as

summarized by δ1 in this convenient representation of the equilibrium system.
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signal, y, and of public noise, zp. As those are relevant for coordination purposes, agents

want to incorporate p into their best response as long as others do so, but always with a

lower weight. Hence, only as a result of the interplay between equilibrium and cursedness,

do we obtain δFC
3 = 0 by an unraveling argument.17

3.1 Comparative Statics

We study the impact of cursedness and transparency on the equilibrium loadings as well as

on δ2
1τp, the precision of the aggregative signal p as a signal about θ.

Proposition 2. The comparative statics are given by

∂δ1

∂χ
≥ 0,

∂δ2

∂χ
≥ 0,

∂δ3

∂χ
≤ 0,

∂
∂χ

δ1

δ2
≤ 0 (17)

∂δ1

∂τp
≤ 0,

∂δ2

∂τp
≤ 0,

∂δ3

∂τp
≥ 0,

∂
∂τp

δ1

δ2
≥ 0, (18)

all inequalities being strict if τp , 0 and χ , 1. Furthermore,

∂
∂τp

δ2
1τp > 0. (19)

Cursed agents rely less on the aggregative signal as their behavioral bias makes them

underappreciate its information content and substitute towards both private and public

information. It shifts relative loadings on fundamental information in favor of the public

signal ( ∂
∂χ

δ1
δ2
≤ 0) irrespective of other parameters, in particular of the degree of complemen-

tarities r. This is because the public signal is a closer substitute to the aggregative one as

both have a public noise component.

The mirror structure of comparative statics in Proposition 2 confirms the intuition that

cursedness and transparency are complementary antagonists: increasing the processing

bias has qualitatively the same impact on equilibrium loadings as reducing the amount

of information provided by this source. In particular, higher transparency decreases the

loading on private information: As the private information of others is disseminated more

effectively, I rely less on my own. Nevertheless, this crowding out effect never dominates

and the precision of the aggregative signal about the fundamental is always increasing in

transparency.

Proposition 3. The weight on private information respond to parameter changes as follows:

∂δ1

∂τs
≥ 0,

∂δ1

∂τy
≤ 0,

∂δ1

∂r
≤ 0 (20)

Agents rely more on the private signal as it becomes more precise relative to the public

fundamental signal. As complementarities become stronger the public signals become more

17In a related paper, Vives (2017) considers limited inference, equivalent to fully cursed behavior, in a LQN
model of competition in supply schedules with unknown costs. Fully cursed traders in his setting do not ignore
the noisy signal of fundamentals, the price, as it is directly payoff relevant.
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attractive relative to the private signal as it allows for better coordination with the aggregate

action. Consequently, an increase in r decreases the weight on the private signal.

At the heart of the analysis is the loading on private information δ1, as it determines

the endogenous precision of the aggregative signal. The other two loadings, δ2 and δ3 have

an immediate interpretation as the weight given by the agent to the public fundamental

and aggregative signal, respectively, but have to be interpreted with care. The agent

loads on the public signal, for example, both directly through the public signal as well as

indirectly through the aggregative signal. Hence, the comparative statics of those loadings

in τs,τy , r (which are all ambiguous, see Appendix) are difficult to interpret. To get a better

understanding of how agents use public information, we study equilibrium loadings in the

fundamental representation

ai =
δ1 + δ2

1− δ3︸  ︷︷  ︸
β

θ + δ1zsi +
δ2

1− δ3︸︷︷︸
γ2

zy +
δ3

1− δ3︸︷︷︸
γ3

zp (21)

The regression coefficient of the individual action (and hence also the aggregate action) on

the state is denoted β. This parameter hence can be interpreted as a measure of informational

efficiency of the equilibrium. The weights γ2,γ3 on the public shocks differ from the direct

loadings on the signals by a factor of 1
1−δ3

, since the aggregative signal contains and amplifies

both public shocks.18 Using (13)-(15) one obtains

Proposition 4. In equilibrium, the loadings in the fundamental representation (21) are

β = 1− δ1τθ

(1− r)τs
, γ2 =

δ1τy

(1− r)τs
, γ3 =

1− δ1

δ1
−

(
τθ + τy

)
(1− r)τs

.

Furthermore,

dβ

dχ
< 0,

dβ

dτp
> 0,

dβ

dτs
> 0,

dγ2

dτy
> 0,

dγ2

dτs
< 0,

dγ2

dτp
< 0.

The responsiveness of the action to the state, β, is determined both by the use of private

information and by the efficiency of its dissemination. If the precision of private information

or the level of transparency increases, it rises unambiguously. An increase in cursedness

increases private information use but hampers dissemination as cursed agents fail to learn

from the aggregative signal. The latter effect dominates and the responsiveness decreases

unambiguously. The comparative statics of γ2 are intuitive: As the public fundamental

signal becomes relatively more precise, agents substitute towards it.19 The comparative

statics of γ3 are identical to those of δ3 and are therefore ambiguous. For instance, consider

the effect of an increase in τs. If τs is low, the information content of the aggregative signal is

18The average action does not contain the agents private noise term zs , whence the direct loading and the weight
on the private shock coincide and we do not introduce a new variable γ1.

19The comparative static of δ2, by contrast, can be ambiguous. Take for example the impact of τs, where we

can have ∂δ2
∂τs

> 0: As δ1 increases and agents substitute away from aggregative information, they desire to keep a

similar loading on public information. Before, this was obtained as a byproduct of aggregative information, but
now has to be used directly through δ2. The transformation to γ2 neutralizes this composition effect.

12



low as well and increases strongly together with τs. Therefore, agents substitute towards the

aggregative signal and γ3 increases. If τs is large, agents already possess precise information

about the state and the information content of the aggregative signal reacts relatively little

to an increase in τs. Therefore, agents substitute away from the noisy aggregative signal and

γ3 goes down.

4 Information Acquisition

In the first stage, agents simultaneously choose the precision of their private signal, τs, at

cost cτs. The crucial step to study this decision is deriving a representation for the agents

perceived ex-ante welfare as a function of τs. This is tricky because cursed agents fail

to understand the information environment. We propose a notion of cursed expectations
equilibrium with information acquisition based on three principles. First, cursedness is a bias

of conditional thinking and inference, individuals are correct on average and unconditionally.

Therefore, at the information acquisition stage, agents conceptualize their true ex-ante

welfare as a function of parameters, their actions and their equilibrium conjecture. Second,

cursedness is the result of a systematic tendency and not of a systematic but unexpected

mistake: agents correctly anticipate their information use, but they do not consider it to be

erroneous. Therefore, agents believe that the cursed use of information is (individually)

optimal and so evaluate private information following a subjective envelope condition.

In other words, agents do not try and fix their bias via information acquisition: they

consider only the direct impact of more information holding their actions fixed. Third,

when evaluating the returns to private acquisition an agent holds coplayers’ acquisition and

use fixed at their equilibrium values. All in all, in a cursed expectations equilibrium with

information acquisition agents consider the gradient of true ex-ante welfare taking their

future actions and the equilibrium relation as given.

We now proceed towards a formal definition. The true ex-ante welfare of an agent that

acquires precision τs, plays according to α and faces an equilibrium δ is given by

W(α,δ,τs) =E
[
− (1− r) (ai −θ)2 − r (ai − ā)2

]
− cτs (22)

=−
α2

1
τs
− (1− r)

[α2 + δ2α3
1

1− δ3

]2 1
τy

+[
α3

1
1− δ3

]2 1
τp

+
(
α1 +α2 +α3

1
1− δ3

{δ1 + δ2} − 1
)2 1

τθ

− cτs (23)

The optimal τs taking both the equilibrium loadings as given as well as considering the

continuation play as optimal solves

∂
∂τs

W(α,δ,τs) = 0. (24)
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Hence, we arrive at the first-order subjective envelope condition

α2
1

τ2
s

= c (25)

The weight on private information in the best response, α1, is a sufficient statistic for the

marginal value of private information, even if agents are cursed. Cursedness only affects the

calculus through α1(δ1) and equilibrium. This envelope condition follows from the rational

choice of a Bayesian agent, both in our setting and in the case without an aggregative signal

but a more general payoff structure studied in Colombo et al. (2014). For the cursed case,

we include the condition as part of our equilibrium notion.

Definition 2. A tuple (α,δ,τs) constitutes a χ-cursed expectations equilibrium with information
acquisition if (α,δ) constitute a χ-cursed expectations equilibrium given τs and (α1,τs) satisfy

the subjective envelope condition (25).

The subjective envelope condition (25) and equilibrium consistency give a linear depen-

dence between τs and δ1

τs =
δ1√
c

(26)

Taking account of endogenous information acquisition in the equilibrium condition (15),

we arrive at

δ1 = [1− r + rδ1]
δ1

δ1 +
√
c
(
τθ + τy + δ2

1τp

) 1 +χ

√
cδ2

1τp

δ1 +
√
c
(
τθ + τy

) (27)

Contrary to the game with exogenous τs, the existence of an interior equilibrium requires

a condition on parameters. This is because we need to ensure that agents are willing to

acquire private information, i.e. that the best-response weight on private information (RHS)

exceeds δ1 local to δ1 = 0. This is the case if

√
c ≤ 1− r

τθ + τy
(28)

or, equivalently, if the costs of acquiring information are sufficiently small compared to the

benefits of private information in the trivial candidate equilibrium. These benefits depend

on the precision of prior and public information τθ + τy and the relative value of public

versus private information, as summarized by 1− r.20 If this condition is not met, we are

stuck in a corner solution with zero information acquisition (and therefore use). Note that

(27) has a trivial solution, which describes the equilibrium in that case. We now summarize

this discussion.

20If we instead assume convex costs with an Inada-type condition at zero, the analogue of (28) is always satisfied
and we have an interior solution.
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Proposition 5. There exists a unique χ-cursed equilibrium with information acquisition. If
√
c < (1−r)

τy+τθ
, it is given by

α0 = δ0 = 0 (29)

α1 = δ1 (30)

α2 = δ2 =

√
cδ1τy

(1− r)−
√
c
(
τθ + τy

) (31)

α3 = δ3 = 1− δ1 (1− r)
(1− r)−

√
c
(
τθ + τy

) (32)

τs =
δ1√
c

(33)

and δ1 ∈ (0,1) is the unique interior real solution to (27). Otherwise, we have a corner equilibrium
with δ1 = δ3 = τs = 0 and δ2 =

τy
τθ+τy

.

Discussion: Cursed Information Acquisition

Before moving to the analysis of cursed equilibrium with information acquisition, we discuss

in more detail the behavioral assumptions that lead to our notion and contrast them with

possible alternatives.

Recall that the information acquisition choice requires agents to take an ex-ante per-

spective and consider the value of information before the signals have realized. Cursed

equilibrium, however, is defined directly using the conditional expectation ex-interim. To

derive the subjective value of private information, we therefore need to take a stance on how

cursed agents perceive their information environment and their actions from an ex-ante

perspective. In cursed expectations equilibrium with information acquisition, agents take

the precision of public information as well as the equilibrium loadings as given and have

correct beliefs about their realized equilibrium welfare, however they do not attempt to use

information acquisition to fix their bias.

A quasi-Bayesian specification in which agents have a misspecified prior but are Bayesian

otherwise shares some of these features. Such an agent uses information identically to a

χ-cursed agent for every signal realization and we hence have an envelope theorem if his

perceived signal precisions are given by21

(̂
τθ , τ̂s, τ̂y , τ̂p

)
=

τθ ,τs,τy , (1−χ)τp
τθ + τy + τs

τθ + τy + τs +χδ2
1τp

 . (34)

However, imposing such a quasi-Bayesian perspective upon the model has several drawbacks.

First, the perceived precision of the exogenous signal about the aggregate action now

depends on the endogenous equilibrium weight δ1. Second, and more importantly, the

perceived precision of the public signal p depends on his individually chosen τs. In other

words, the agent behaves as if his personal information acquisition affects the precision

21The quasi-Bayesian representation is unique among those preserving the conditional independence of all
signals and the (implicit) weight on the prior mean.
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of public information obtained by all agents. In addition, this is inconsistent with taking

equilibrium as given: Since δ1 depends on the precision of the aggregate signals (but only

population τs), taking τ̂p to be endogenous but δ1 to be exogenous to your private decision is

problematic.

A second alternative is to derive information acquisition by maximizing true ex-ante

welfare without imposing the subjective envelope condition. This corresponds to a rational

agent who correctly predicts his cursed actions but desires to correct them by distorting

the precision of private information available to his future biased self. This level of

sophistication together with an inability to use the aggregative signal correctly ex-interim

seems implausible. Our notion instead allows us to avoid this excessive meta-rationality

while preserving a subjective world view that is consistent with the atomistic position of the

agent within the game.

5 Comparative Statics with Information Acquisition

The information acquisition channel introduces a confounding force to the comparative

statics of Section 3. Consider a parameter change that – holding acquisition fixed – would

increase δ1 (for example, higher cursedness). Since the precision of the aggregative signal

increases with δ1, this depresses the value of private information. This feedback puts

downward pressure on the acquisition and use of private information. In equilibrium,

however, τs and δ1 are tightly linked by the envelope condition (25) and this feedback loop

never dominates.

Proposition 6. It holds that
∂δ1

∂c
< 0.

The comparative statics wrt. other parameters in Propositions 2 and 3 continue to hold with
endogenous information acquisition.

The comparative statics of τs have the same sign as the comparative statics of δ1, namely

∂τs
∂χ

> 0,
∂τs
∂c
≤ 0,

∂τs
∂τy
≤ 0,

∂τs
∂τp
≤ 0,

∂τs
∂r
≤ 0 (35)

The precision of privately acquired information is reduced by both higher cost and

more precise alternative sources, for any degree of cursedness. The effect of cursedness and

transparency on δ1 are preserved qualitatively and amplified: An increase in cursedness,

for instance, does not only affect δ1 through information use, but also causes an increase in

information acquisition, further increasing δ1. In particular, the endogenous precision of

the aggregative signal about the state, δ2
1τp, is still increasing in transparency (see Figure

1). The mirrored roles of transparency and cursedness – providing aggregative information

and dampening its processing – continue to be in place and lead to opposed comparative

statics in these two parameters.

As discussed in the case without information acquisition, the comparative statics of δ2

are often ambiguous since it captures only part of the fundamental loading on the public
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fundamental signal. We hence return to the fundamental representation of ai derived in

(21).
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Figure 1: Crowd-out vs Reliance on Private Information: The effect of τp on δ1 and δ2
1τP for different levels of

cursedness.

Proposition 7. In an equilibrium with information acquisition, the loadings in the fundamental
representation (21) are

β = 1−
√
cτθ

1− r
, γ2 =

τy
√
c

1− r
, γ3 =

1
δ1

(
1− δ1 −

τθ + τy

1− r
√
c
)
. (36)

The comparative statics of β and γ2 are immediate. γ3 is decreasing in cursedness and
increasing in transparency.

Only cursedness and transparency have an unambiguous impact on γ3 = δ3
1−δ3

: when

agents consider the aggregative signal to be less informative, either because they are more

cursed or because the environment is less transparent, they will use it less. The comparative

statics of γ3 in τy ,τθ , r, c are instead ambiguous. Consider, for example, the effect of an

increase in c. On the one hand, it reduces information acquisition and makes agents

substitute towards the aggregative signal. On the other hand, the reduction in information

acquisition and reliance on the private signal removes the very basis of information in p,

making it less attractive. Either effect can dominate. A similar intuition is the basis for the

ambiguous comparative statics in the other parameters: the precision of the aggregative

signal changes both in level and relative to the precision of other signals.

The state-action regression coefficient β is decreasing in costs, the prior precision and

the degree of complementarity; it does not depend on either cursedness or transparency.

Recall that when private precision was fixed (Proposition 4), β was increasing in τp and

decreasing in χ. Once we allow agents to adjust τs in response to changes in the perceived

value of private information caused by either a more transparent environment or a decrease

in cursedness, those effects are neutralized. The resulting invariance property has three

consequences of economic relevance: First, we cannot identify the degree of cursedness

in a market by just looking at the responsiveness of individual actions to fundamentals.

Second, transparency is an ineffective tool at increasing the informational efficiency along

the β metric as its effect is fully offset by lower acquisition and use of private information, a

result akin to the invariance with respect to the variance of net supply from noise traders in
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Grossman and Stiglitz (1980). Third, as opposed to the setting without information acquisi-

tion and the findings in Eyster et al. (2019), cursedness does not reduce the responsiveness

of the aggregate action with respect to the true state. Even though cursed agents reduce the

efficiency of information dissemination by failing to amplify the information content of p,

they inject more private information into the system.

Since information acquisition stabilizes the ratio δ1
τs

to
√
c, γ2 is now pinned down by the

triplet τy , r, c with intuitive comparative statics: agents load more on the public fundamental

signal if it is more precise, if private acquisition is more costly, or if the coordination motive

is stronger. The degree of cursedness does not affect γ2, not even indirectly. Even though

cursed agents fail to process all information disseminated through the aggregative signal,

when they can adjust τs, their increased demand for and use of private information exactly

offsets the less efficient inference.

While cursedness does not affect the total weight on information obtained through

private signals, β − γ2, it changes its composition: agents substitute away from indirect

inference of disseminated private information, δ3, towards information agents have acquired

themselves, 1− δ3. This decomposition is apparent in the following rewriting of (21)

ai = (β− γ2) [(1− δ3) (θ + zs) + δ3θ] + γ2y + γ3zp (37)

and is depicted in Figure 2.
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Figure 2: Equilibrium weight on information from private signals: direct and indirect.

Total Precision

We continue to address the impact of transparency on the informational efficiency of

the environment. The measures δ2
1τp and β analyzed in the previous section combine

information acquisition, dissemination and use and therefore might not be the ideal metric

to assess the informativeness of the environment. We hence study the impact of τp on

τΣ B τθ + τy + τs + δ2
1τp, the total precision of information that agents possess about the

state.22 This impact is ambiguous, at least qualitatively: The endogenous precision of the

22A similar question is addressed in Morris and Shin (2005) who show that a central bank may inadvertently
sabotage its own information collection from observing aggregate outcomes by providing precise information
about these outcomes to the market.
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aggregative signal is increasing in transparency while the precision of private information

is decreasing.

To quantify the counteracting effects it is convenient to consider the following factoriza-

tion of total precision (obtained by manipulating (27))

τΣ =
(

1− r + rδ1√
c

)1 +χ
δ2

1τp

τθ + τy + τs

 . (38)

Recall that δ1 and τs are decreasing in τp while δ2
1τp is increasing. Thus the first factor in

(38) is increasing in transparency if and only if actions are substitutes (r < 0), while the

second factor is always increasing, strictly unless χ = 0. Therefore transparency increases

total precision in the rational benchmark if actions are substitutes and decreases it if actions

are complements. If actions are substitutes, transparency increases τΣ even for interior

degrees of cursedness. In a game of complementarities, cursedness increases the range of

parameters where transparency is desirable by scaling up the second factor: Cursedness

dampens the crowding out of agents’ private information as a response to the increase in

transparency. Summarizing,

Proposition 8. The total precision available the agents is increasing in τp if and only if r < R(χ),
for a cutoff R(χ), possibly trivial, with R(0) = 0 and R′ > 0.

Figure 3 shows the effects of both τp and τy on total precision as a function of the

strategic complementarity parameter r. It is easy to see that more precise public funda-

mental information has a impact qualitatively comparable to transparency but the opposite

interaction with cursedness.

Proposition 8 implies that there exists a threshold level of cursedness χ̄ for each fixed

r (trivially equal to zero if r ≤ 0) such that transparency increases total precision if and

only if χ > χ̄. When cursedness is large, aggregative information becomes more effective

at enhancing total precision as the crowding out effect is shut down. In particular, in a

fully cursed economy τΣ is always increasing in τp as there is no crowding out of private

information acquisition and use. As agents become more cursed, however, this metric is

less and less relevant as a welfare measure since they cannot reap all gains from a more

informative environment. We hence turn to welfare analysis to evaluate this trade-off.

6 Welfare

We first characterize the first-best benchmark for the use and acquisition of information.

Then we identify and characterize the inefficiencies of the χ−cursed equilibrium with

information acquisition. Finally, we perform welfare comparative statics.
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Figure 3: The effect of τp ,τy on τΣ in the rational (left) and partially cursed (χ = 0.5, right) model.

6.1 The Planner Problem

As a welfare benchmark, we consider the problem of a planner who controls both the use

and acquisition of information, but cannot share information across agents.23 To this end we

impose the consistency condition α = δ in the welfare expression (22) and, with slight abuse

of notation, let W(δ,τs) := W(δ,δ,τs) denote the objective function of a planner choosing(
δ⋆ ,τ⋆s

)
= argmax

(δ,τs)
W(δ,τs) (39)

where straightforward calculations show

W(δ,τs) = − (1− r)
(1− δ3)2

{
δ2

2
τy

+
δ2

3
τp

+
(1− δ1 − δ2 − δ3)2

τθ

}
−
δ2

1
τs
− cτs. (40)

We proceed by characterizing the solution of (39).

Proposition 9. The efficient linear action rule satisfies

δ⋆2 =
τy(1− δ⋆1)

τθ + τy + τpδ
⋆
1
, δ⋆3 =

δ⋆1(1− δ⋆1)τp
τθ + τy + τpδ

⋆
1
,

(
δ⋆1

τ⋆s

)2

= c (41)

where δ⋆1 is the unique solution of

δ1 = (1− r + rδ1)τ⋆s
1τθ + τy + τpδ

2
1

τθ + τy + τpδ1

︸              ︷︷              ︸
efficiency wedge

(
τθ + τy + τpδ

2
1

)
+ τ⋆s

(42)

Condition (42) corresponds to the rational equilibrium condition (15) modified by an

efficiency wedge, accounting for the fact that using public information as the basis of action

23This is the benchmark customarily adopted in the literature (Angeletos and Pavan, 2007). It avoids the unfair
comparison with an economy in which agents can also share information: as there are uncountably many, this
would coincide with playing a game of complete information with a trivial solution and trivial welfare properties.
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dilutes the dissemination of private information. The planner internalizes this effect and

therefore downweighs public information by the adjustment term
τθ+τy+τpδ

2
1

τθ+τy+τpδ1
< 1. This

wedge is equal to one only if δ⋆1 = 1 and therefore δ⋆2 = δ⋆3 = 0, i.e. if the aggregative

signal is not polluted by public signals to begin with, which is impossible in equilibrium.

This observation has two economically relevant implications. First, the efficient solution

features a higher weight on private information compared to the rational equilibrium.24

Therefore, the equilibrium with χ = 0 is never efficient. For a positive level of cursedness,

the inefficiency of the equilibrium is an immediate consequence of the processing bias.

Therefore, we have the second implication, the equilibrium is always inefficient.

The optimality condition for τs is our familiar envelope condition: The use of private

information is a sufficient statistic for the gains from acquiring it, even for the planner. Both

efficient and equilibrium information acquisition are fully determined by the respective use

of private information.

Proposition 10. There is under-(over)acquisition of private information in equilibrium if and
only if there is under- (over)use of private information in equilibrium, i.e.

sgn{τs − τ⋆s } = sgn{δ1 − δ⋆1}. (43)

In particular, information acquisition in equilibrium is efficient if an only if information use in
equilibrium is efficient.

Before turning to other inefficiencies of equilibrium we record the comparative statics of

first-best welfare. Plugging the optimality conditions (41) into the welfare expression (40)

we get

W⋆ BW
(
δ⋆ ,τ⋆s

)
= max

δ1
−2
√
cδ1 −

(1− r) (1− δ1)2

τθ + τy + δ2
1τp

(44)

The comparative statics of first-best welfare now follow easily from an envelope argument.

Proposition 11. First-best welfare satisfies

dW⋆

dτθ
> 0,

dW⋆

dτy
> 0,

dW⋆

dτp
> 0,

dW⋆

dc
< 0.

As information is used efficiently by the planner, increasing precision – whatever the

source – or lowering acquisition costs always increases first best welfare.

6.2 The Inefficiencies of Equilibrium

In equilibrium, by contrast, information is generally used inefficiently: agents do not

internalize the dissemination externality and they are subject to a processing bias that

makes them misuse available information.

24The ratio of δ2 to δ3 is the same in the efficient action rule and in the rational equilibrium. While agents in the
rational equilibrium underuse and underacquire private information, the relative weights on public aggregative
and fundamental information are efficient. This changes for the cursed equilibrium, since d

dχ
δ2
δ3

> 0 (Proposition
6). Whenever agents are cursed, they overweigh fundamental information relative to aggregative information.
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Proposition 12. The rational equilibrium always has inefficiently low information acquisition.
Sufficiently cursed agents acquire more private information than the efficient benchmark if τp > τp,
where

τp =
(
τθ + τy

) 1− 2δFC
1(

δFC
1

)3 . (45)

Since rational agents do not internalize the dissemination externality, the equilibrium

with χ = 0 features underacquisition. As τs is increasing in χ by Proposition 3, cursedness

alleviates this inefficiency. This effect can be strong enough to lead to overacquisition

relative to the efficient benchmark if the aggregative signal is sufficiently precise. Intuitively,

if transparency exceeds the lower bound (45), then dissemination is so effective that even

τ⋆s (which is independent of χ) is low compared to the precision of information acquired

by the agent in the fully cursed equilibrium (which is by construction independent of τp).

Then, there exists an interior χ such that the equilibrium use and acquisition of private

information coincide with the efficient quantity (see the left panel of Figure 4).25 Even

in this case, however, agents misperceive the information environment and hence misuse

their information. To analyze this source of inefficiency, consider the gradient of welfare at

equilibrium as we vary the cursedness parameter (displayed in the right panel of Figure 4).
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Figure 4: Equilibrium vs. efficient information acquisition (Proposition 12, left) and the gradient of W in
equilibrium (Proposition 13, right) as a function of cursedness.

Proposition 13. In a rational equilibrium, δ3 is conditionally efficient: ∂W
∂δ3

(δ,τs) = 0, for χ = 0.

In a fully cursed equilibrium, δ1 is conditionally efficient: ∂W
∂δ1

(δ,τs) = 0, for χ = 1.

In any equilibrium, δ2 is conditionally efficient: ∂W
∂δ2

(δ,τs) = 0, for all χ.

In a fully rational equilibrium, the only externality is the dissemination of private

information. Fixing the use of private information and thereby its dissemination, the other

loadings of the equilibrium are conditionally efficient. In a fully cursed equilibrium agents

ignore the aggregative signal altogether, so there is no dissemination externality and private

25The cutoff (45) is always met (τp < 0) if incentives for private information acquisition are sufficiently high,

namely
√
c
(
τθ+τy

)
1−r ≤ 1

2 .
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information is used efficiently.26 Independently of the degree of cursedness, there is no

externality or misunderstanding in the use of the public fundamental signal.

6.3 The Comparative Statics of Equilibrium Welfare

The sources of equilibrium inefficiency identified in Propositions 12 and 13 provide the

bedrock for analyzing the impact of cursedness and changes in the information environment

on equilibrium welfare. Let WEQ B W
(
δχ,τχs

)
denote equilibrium welfare, where we

introduce δχ,τχs as shorthand for the equilibrium with χ-cursed agents.

Cursedness is Bliss

Consider a marginal increase in cursedness starting from the rational equilibrium. It

has two impacts on welfare. First, agents now use their information suboptimally as

they underestimate the information contained in p. The associated welfare reduction is

second order, however, as δ is privately optimal in the rational equilibrium. Second, cursed

agents acquire and disseminate more information. Since the rational equilibrium features

underacquisition, this impact on the dissemination externality has a first order effect on

welfare. Thus, local to rationality and up to first order, cursedness only has beneficial effects

on welfare. When χ is already large, however, marginal increments in cursedness have a first

order negative effects from additional misuse, while the underacquisition gap is narrower if

existent at all. The inefficient use dominates close to full cursedness. Fully cursed agents do

not use the information contained in the aggregative signal, so providing more disseminated

information to them is not valuable.

Proposition 14 (Cursedness is Bliss).

dWEQ

dχ

∣∣∣∣∣∣
χ=0

> 0 (46)

Furthermore,
dWEQ

dχ

∣∣∣∣∣∣
χ=1

< 0 (47)

so any level of cursedness maximizing equilibrium welfare must be interior.

The shape of welfare as a function of χ and the comparison to efficient welfare is shown

in Figure 5. One might wonder if the comparison in the plot holds in general or whether a

fully cursed economy can ever outperform full rationality. This cannot happen. Indeed, it is

easy to show that in the two extreme cases χ ∈ {0,1}, welfare takes the simple form

WEQ = −
√
c (1 + δ1) . (48)

and it follows from the comparative statics of δ1 that the fully cursed equilibrium has lower

welfare than the rational case: Even though acquisition and dissemination of private infor-
26Again, recall that fully cursed equilibrium coincides at the action stage with fully rational equilibrium in

which τp is set to zero. Without an aggregative signal our model is a special case of Angeletos and Pavan (2007)
where payoffs satisfy the conditions for efficient use of information.
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Figure 5: Cursedness is Bliss

mation are higher, cursed agents are unable to make any use of their aggregative information.

The inefficiently imprecise aggregative information provided in the rational equilibrium is

preferable to complete ignorance of – albeit plentiful – aggregative information.

The Impact of Information on Equilibrium Welfare

In contrast to the efficient solution (Proposition 11), more information and lower costs do

not always increase welfare in equilibrium.

Proposition 15. If χ is sufficiently close to either 0 or 1 or τp is sufficiently small, WEQ is
increasing in τy ,τθ and decreasing in c. If, however, τp is sufficiently large, there exist an interior
region of χ such that equilibrium welfare is

• decreasing in τy ,τθ if strategic complementarities are sufficiently strong (r > 1
2 ),

• and increasing in c in a game with strategic substitutes (r < 0).

Equilibrium welfare is always increasing in τp.

The proposition identifies sufficient conditions for counterintuitive comparative statics.

Let us first focus on the comparative static with respect to the precision of the public

fundamental signal.27 An increase in τy has two equilibrium effects. First, a direct effect

as the precision of the agents’ information increases mechanically. Second, a substitution

effect as agents reduce their use and acquisition of private information and also substitute

towards y and away from p. When strategic complementarities are sufficiently strong, the

second effect is particularly important and causes the paradoxical comparative static: For

partially cursed agents, the use of p is already suboptimally low and a further decrease

entails a welfare loss. This effect dominates the welfare calculus for interior χ. For (close to)

fully cursed agents, however, the substitution effect is negligible as they disregard p and the

direct effect is important as they rely heavily on y.28

27A similar result is also obtained in Morris and Shin (2002), but for different reasons. There, all signals are
fundamental, but the increased use of public information entails a payoff externality. In our setting, payoffs
are such that – absent dissemination externality and cursedness – information use is efficient (Angeletos and
Pavan, 2007; Colombo et al., 2014) and hence more precise public information is always welfare improving. Both
ingredients are needed to break this result, it continues to hold even if τp > 0,χ = 0, a case not subsumed by the
literature.

28We obtain further analytical insight by studying the limit as τp →∞ (Appendix A). From (62), welfare is

decreasing in τy (or, τθ) if and only if 1− 2r + rχ < 0, which provides a lower bound, χ > 2− 1
r , that can be satisfied

24



Likewise, an increase in acquisition costs potentially benefits partially cursed agents:

It causes them to rely less on private information and to substitute towards p, whose

informativeness they effectively underestimate. This effect can dominate with sufficiently

strong strategic substitutes, when the value of information is relatively low because agents

want to anti-coordinate. As we can see in Figure 6, the effect is present for sufficiently small

costs, since then the substitution is towards a relatively informative p, whereas if costs are

too high, the aggregative signal itself becomes too noisy.
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Figure 6: Counterintuitive comparative statics of welfare in τy (left) and c (right).

It might be surprising that transparency always increases welfare: After all, it has an

ambiguous effect on total precision τΣ and other parameters may have perverse effects on

welfare. In addition, inference from aggregative information is biased by cursedness while

the fundamental sources, which generate these counterintuitive effects, are interpreted

correctly. The key observation to understand this difference is that transparency renders

the aggregative signal more informative relative to the fundamental sources of information,

while the opposite is the case for the other parameters. Consequently, partially cursed

agents substitute towards the aggregative signal, which ameliorates their bias. At worst, in

the fully cursed case, the aggregative signal is not understood at all and hence irrelevant.

However, as the fully cursed case makes apparent, there remain unreaped benefits from

increased transparency in such economies.

7 Shrewd Agent: Behavior and Policy

In this section, we study the behavior and welfare of a shrewd agent: a fully rational, atomistic

agent in the model, who understands its structure and is aware that all other agents (the

cursed crowd) are χ-cursed. We discuss the results qualitatively in the text, relegating formal

statements to Appendix C.

7.1 Best Response and Information Acquisition

We continue to denote the precision of information acquired by the cursed crowd as τs

and denote the precision acquired by the shrewd agent as τR
s . The shrewd agent takes

only if r > 1
2 . Incidentally, this is the same threshold that Morris and Shin (2002) obtain for public information τy

to be welfare reducing.
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the equilibrium loadings (and information acquisition) of the cursed crowd as given, and

chooses both how much private information to acquire as well as the coefficients in his

linear action rule aR
i = αR

1 si +αR
2 y +αR

3p. Formally, he solves

max
αR,τR

s

W
(
αR,δ,τR

s

)
(49)

Best responding to the equilibrium in the cursed crowd, the individual loadings of the

shrewd agent, αR, will differ from δ whenever χ > 0. There is again a tight connection

between the use of private information, αR
1 , and its acquisition through the envelope

condition

τR
s =

αR
1√
c
. (50)

Denote the total precision available to the rational agent by τR
Σ
B τθ + τy + τR

s + δ2
1τp. We

obtain an equation linking the information acquired by the shrewd agent and the cursed

crowd
τΣ

τR
Σ

= 1 +
χδ2

1τP

τθ + τy + τs
. (51)

The shrewd agent acquires less information. Compared to the cursed crowd, he can

substitute for it with a better comprehension of aggregative information. If the crowd

is fully cursed, then (51) simplifies to

τR
s = τs − δ2

1τp (52)

that is, the shrewd agent exactly offsets the information he can glean from the aggregative

signal and his total precision is equal to the total precision perceived by the crowd.

Clearly, equation (52) holds only if it delivers a positive τR
s . Otherwise the shrewd agent

will choose τR
s = 0 as he is already satiated with the information he can infer from the

aggregative signal. With a fully cursed crowd, this always happens with sufficiently large

transparency since both τs and δ1 are unresponsive to τp. In that case, transparency only

serves as a cost-saving device for the shrewd agent.

The shrewd agent continues to free-ride on the crowd’s use of private information even

at interior levels of cursedness. He acquires a strictly positive amount of information if and

only if

τθ + τy ∈


(1− r)

(
1− 1

τp
√
c

)
√
c

,
1− r
√
c

 (53)

Therefore, there is an inactivity region whenever τp > 1√
c
; in that case, the shrewd agent

acquires private information only if public information is sufficiently precise. The rationale

is as follows: If public fundamental information is noisy the cursed crowd will acquire and

use a lot of private information; since he can be parasitic on this information, the rational

agent has no incentive to acquire information himself. As public information becomes

more abundant, however, there is less information acquisition and use by the crowd. The

aggregative source dries up and the shrewd agent needs to supplement it with private
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information acquisition. Finally, the upper bound on τθ + τy for the existence of a nontrivial

equilibrium is the same for both classes of agents. In the trivial equilibrium δ1 = τs = 0, the

shrewd agent cannot utilize his comparative advantage in understanding the aggregative

source since it is uninformative: he behaves identically to the crowd.

An immediate consequence of this inactivity region is that τR
s is nonmonotonic in τy .

This contrasts with the unambiguously signed comparative statics for τs (Proposition 6).

Similarly, the effect of information acquisition costs on τR
s is nonmonotonic and we can have

an inactivity region (see Figure 7). Again, a change in parameters affects both the availability

of aggregative information provided by the cursed crowd and the shrewd agent’s demand

for information overall.
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Figure 7: τs and τR
s as a function of c (left). τR

s (normalized to 1 at χ = 0) as a function of χ for r ∈ {0.3,0.75,0.9}
(right).

The impact of cursedness on the precision of information acquired by the shrewd agent

depends on the nature of strategic interactions (see Figure 7). Take as a benchmark the case

of r = 0, i.e. all agents simply try to guess the true state, and all strategic interaction comes

from the precision of aggregative information. In this case, τR
s is decreasing in χ as more

cursed agents acquire and disseminate more information. Strategic substitutes increases this

effect: As the crowd becomes more cursed, δ1 increases which reduces the desire to match

the state and therefore the value of private information. With complements, the opposite

is the case: A higher δ1 increases the desire to match θ and therefore – if this motive is

sufficiently strong – information acquisition.

7.2 Welfare

Let WR
χ denote the welfare of the shrewd agent facing an equilibrium δχ. Then,

WEQ
χ = W

(
δχ,δχ,τχs

)
≤max

α,τR
s

W
(
α,δχ,τR

s

)
= WR

χ (54)

As he comprehends his informational environment, he always obtains a higher welfare than

the cursed crowd. The inequality is strict if χ > 0.
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We now ask whether the shrewd agent benefits from an increase in the cursedness of the

crowd. This is the case for the first modicum of cursedness since for small positive ϵ

WR
ϵ > WEQ

ϵ > WEQ
0 = WR

0 . (55)

The central inequality follows since in this region “cursedness is bliss” (Proposition 14).29

In a highly cursed environment, however, the impact of cursedness depends on nature

of the strategic interaction. If there are strategic substitutes, the shrewd agent always

benefits from increased cursedness of the crowd: not only does he free-ride on aggregative

information, but the crowd’s over-reliance on the private signal helps him anti-coordinate.

In the presence of complementarities, however, informational free-riding and the lack of

coordination implied by cursed information misuse have opposing effects. While the shrewd

agent can learn the state more precisely, his action has to follow the behavior of the less

informed crowd. The latter effect can be overwhelming close to χ = 1 so he would prefer an

interior level of cursedness.

We conclude this section by studying the impact of precision and cost parameters on WR
χ .

If the crowd is close to rational, then policies have an impact similar to that in the rational

equilibrium. We therefore focus our analysis on the other extreme case and evaluate the

welfare of the shrewd agent facing a fully cursed crowd. By continuity, the results extend to

a sufficiently cursed environment.

Recall that WEQ
1 is independent of τp as fully cursed agents do not respond to higher

transparency. Therefore, an increase in transparency only affects the shrewd agent by

providing a more precise aggregative signal, which is clearly beneficial.

Recall also that no paradoxical comparative statics in τy and c can emerge in a fully

cursed environment: more public information and lower cost are always beneficial for

the cursed crowd. There is a crowding out effect on the shrewd agent, however, as

public fundamental information decreases information acquisition and dissemination by

the cursed crowd. This is especially harmful if he is largely relying on this source of

information, leading to the negative welfare impact when τR
s is small. Similarly, higher

costs of information acquisition can be beneficial for the shrewd agent. This effect works

through the action externality. Consider a situation where the shrewd agent does not

acquire information himself – i.e. there is no direct effect of higher costs – and aggregate

information is relatively abundant as τp is large. If costs are higher, cursed agents rely

more on y. This makes it easier for the shrewd agent to anticoordinate with them, which

is beneficial when r < 0 (strategic substitutes). This effect can dominate the harm from

reduced information dissemination. If instead the shrewd agent is acquiring a positive

amount of private information, these effects are dampened by the adjustment of τR
s and

dominated by the direct impact of the change in acquisition costs.

The comparison between Proposition 15 and the results just sketched highlights qual-

itative differences in the impact of policy on the welfare of cursed and shrewd agents.

Transparency leaves the welfare of the cursed crowd unaffected but has strictly positive (and

29Indeed, the information spillover can be strong enough to make the shrewd agent in the cursed world better
off than first-best welfare (as can be checked for r = 0, τθ = τy = 0.1, τp = 0.19, c = 0.03, where we have WR

1 > W⋆ )
By continuity, this holds for an open set of parameters.
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large) impact for the shrewd. In an augmented model where both types affect the aggregate

outcome, this could easily turn into a redistribution result. This observation suggests that

transparency can function as an elitist policy, giving an advantage to sophisticated agents

who are able to understand and utilize aggregative information. For public information and

lower costs this trade-off is already apparent in the present results.30 A natural extension to

study these questions would be a model of true cognitive heterogeneity featuring several

non-atomistic groups with different levels of cursedness, all affecting the aggregate outcomes.

Although the linear structure of the model makes action aggregation straightforward, the

correlation between information use and acquisition affects the aggregate outcome and

introduces nonlinearity. The analysis of such cognitive heterogeneity is therefore beyond

the scope of this paper.

8 Conclusion

This paper studies the effect of aggregative information focusing on the interplay of two key

aspects: First, that the precision of such aggregate statistics as signals of the fundamental

depends on the amount of private information present in individual actions; and second,

agents’ well-documented difficulty in making inference based on such signals as it requires

inferring others’ information from their actions.

We conduct our analysis in a beauty contest game with information acquisition, adapting

a notion of cursed equilibrium to model agents limited understanding of aggregative infor-

mation. Though parsimonious, the model is sufficiently rich to relate to existing literature

and offer alternative explanation of well-established phenomena such as the detrimental

effect of public information and the irrelevance of transparency for informational efficiency.

Since cursedness significantly alters the positive and normative results in our setting, it

would be interesting to extend the analysis to more general payoff specifications as e.g. in

Angeletos and Pavan (2007) and more deeply microfounded models yielding reduced forms

similar to this class, as e.g. the business cycle model considered in Colombo et al. (2014)

and demand function competition in Vives (2017).

We show that there is inefficiently low acquisition and use of private information in the

rational benchmark due to an information dissemination externality. Cursed agents rely

more heavily on their private information which can push information acquisition towards

(or even above) its efficient level. While cursedness creates inefficiencies in information

use, this effect initially dominates: a bit of individual cursedness is a collective blessing.

Transparency crowds out the acquisition and use of private information but always increases

the endogenous precision of the aggregative signal. This is the main driving force making

it the only policy instrument with an unambiguously positive effect on welfare, despite

its ambiguous effect on some measures of informational efficiency (Section 5) and its

redistributive potential (Section 7).

Incorporating information acquisition into a model of incorrect information use, such as

cursed equilibrium, is the main theoretical contribution of this paper. Doing so requires

30This conflict of interest between experts and unsophisticated actors casts doubt on the role of expert lobbying
as a source of information on the impact of such policies.
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making an assumption on how such agents asses the value of information. In our notion

of cursed expectations equilibrium with information acquisition, agents correctly anticipate

both the equilibrium strategies as well as how they will make use of their information,

but they mistakenly consider this use to be optimal. This assumption is operationalized

by a subjective envelope condition, which is highly tractable as it results in a close tie

between information use and acquisition. While alternative notions do not conform to the

behavioral desiderata in our setting, the properties and predictive power of such notions

across applications of cursed equilibrium (and other behavioral equilibrium notions that do

not easily allow a quasi-Bayesian analysis) remain an important question for future research.
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A The Transparent Limit and the Price Paradox

An important special case is the limit as τp→∞. In this transparent limit, agents observe not just a

noisy signal, but the aggregate action itself and can condition their actions on it. In this case when the

aggregative signal is noiseless, rational agents are able to infer the state. This generate the famous

price paradox (Grossman and Stiglitz, 1980; Diamond and Verrecchia, 1981): Agents ignore their

private information and cease to acquire any, thereby eliminating the very source of information in the

aggregative signal. As a consequence, no equilibrium can exist.31 We show that even an infinitesimal

degree of cursedness is sufficient to restore existence when private information is exogenous: cursed

agents fail to realize that the aggregative signal is fully revealing, and therefore continue to rely on

their private information. Despite that, the value of private information shrinks to zero for agents that

are approximately rational. For this reason, when information acquisition is costly an equilibrium in

the transparent limit exists if and only if the degree of cursedness is sufficiently large.

We use the transparent limit to establish large τp results in the main text. Accordingly, the

proofs pertaining to this appendix are given as part of Appendix B, where they flow with the formal

development of our results.

A.1 The Transparent Limit with Exogenous τs

With fully rational agents, full transparency leads to the classic price paradox (Diamond and

Verrecchia, 1981): Whenever δ1 , 0, knowledge of ā translates into knowledge of the state which

makes it suboptimal to place any weight on the private signal and hence δ1 = α1 = 0. If instead δ1 = 0,

agents respond with a positive weight on their private signals α1 > 0, which is inconsistent. Hence, no

equilibrium exists.

Cursed agents, however, continue to put a positive weight on the conditionally uninformative

signals si , y even if they observe a fully informative aggregative signal. Even an infinitesimal amount

of cursedness, therefore, resolves the price paradox since it re-introduces residual uncertainty about θ

that was wiped out by infinite transparency.32 Therefore,

Proposition 16. An equilibrium of the limit game exists if and only if χ > 0. It is given by

δ∞1 =
χτs (1− r)

τθ + τy + τs (1− rχ)
(56)

δ∞2 =
χ2 (1− r)τyτs(

τθ + τy + τs (1− rχ)
)(

(1−χ)
(
τθ + τy

)
+ (1−χr)τs

) (57)

δ∞3 =
(1−χ)

(
τθ + τy + τs

)
(1−χ)

(
τθ + τy

)
+ (1−χr)τs

(58)

Moreover, the equilibrium of the game with finite τp converges to δ∞ as τp→∞.

As χ→ 0, we have an exclusive reliance on the fully revealing signal p, as δ∞→ (0,0,1). Close to

the rational limit, agents also neglect y in favor of their private signal
δ∞2
δ∞1
→ 0, as all coordination can

be done by loading on p. As cursedness increases, agents substitute away from this fully revealing

source and towards noisy fundamental signals. As shown in Figure 8, substitution towards the private

31Vives (2014) shows that the price paradox can be solved even without introducing noise traders provided
there is sufficient heterogeneity in traders’ valuation; we show that (sufficient) cursedness also solves the paradox
in a setting where agents are identical.

32Note that cursed agents also remain uncertain about a: Despite being told its realization, they follow updating
rule (10) which generates the posterior about a from the posterior about θ. Somewhat paradoxically, this consistency
of posteriors about (a,θ) delivers this unintuitive implication for posteriors on (p,a).

31



signal dominates and coordination is still almost exclusively achieved through p at low degrees of

cursedness, while the public signal gains importance at high degrees of cursedness.
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Figure 8: δ∞ as a function of χ.

Restoring the existence of an equilibrium in the transparent limit reveals a key property of cursed

equilibrium. Cursedness is different from dismissing part of the aggregative information, e.g. by

scaling down its subjective precision. Indeed, such a scaling is powerless if the precision is infinite.

Instead, cursed agents think that for any level of precision the information contained in the aggregative

signal is not the whole story.

A.2 The Transparent Limit with Acquisition

With information acquisition, the optimality condition (33) implies that τ∞s solves

τs
√
c =

χτs (1− r)
τθ + τy + τs (1− rχ)

(59)

This equation always has a trivial solution with τ∞s = 0, though it constitutes an equilibrium only if

condition (28) is violated. An interior limit equilibrium exists if

χ >
√
c
τθ + τy

(1− r)
(60)

Contrary to the case without information acquisition, where an infinitesimal amount of cursedness

was enough to overcome the price paradox and ensure existence, here a sufficiently large degree of

cursedness is needed.33 If condition (28) holds but (60) is violated, neither the trivial nor an interior

equilibrium exists. Non-existence emerges in this setting because of information acquisition as in

Grossman and Stiglitz (1980). Cursed agents are willing to use any private information they have, but

the marginal value of acquiring it is smaller then its marginal cost unless condition (60) is satisfied.34

Therefore they do not acquire (and a fortiori cannot use) any information, which is impossible in an

informative equilibrium. On the contrary, the classic price paradox would persist even if private

information were free as it would remain unused due to the abundance of aggregative information,

which is impossible in equilibrium.

33Condition (60) does not contradict the sufficiency of condition (28) which holds for any interior τp . Here, we
are in a situation where τp =∞. The order of limits is relevant, as for every fixed τp , the influence of transparency
vanishes as δ1 and τs go to zero.

34Indeed, existence of the transparent limit is guaranteed if the acquisition cost satisfies an Inada-type condition

at zero as the generic condition reads c′(0) <
(
χ(1−r)
τθ+τy

)2
.
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Proposition 17. There exists a nontrivial equilibrium in the transparent limit if and only if χ >
√
c
τθ+τy
(1−r) .

It is given by (31)-(33) with

δ∞1 =
χ (1− r)−

(
τθ + τy

)√
c

(1− rχ)
(61)

In Section A.1, we have seen that in the transparent limit with exogenous τs, agents rely almost

exclusively on aggregative information as χ → 0. Close to rationality, we now have an existence

problem. However, for χ converging to its lower bound
√
c
τθ+τy
(1−r) , we again have an almost exclusive

reliance on the aggregative signal, δ∞→ (0,0,1). Again, as cursedness increases, the reliance on the
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Figure 9: δ∞ with information acquisition as a function of χ.

aggregative signal vanishes and the loadings on the other two signals increase. Comparing Figure

9 to the case without information acquisition (Fig. 8), however, we see that there is no crossing

between δ1,δ2 as their ratio is constant in χ (it can be larger or smaller than one, depending on other

parameters).

Remark (Welfare in the Transparent Limit). Contrary to the efficient solution, which does not admit a

limit as τp→∞, the welfare formula (40) remains valid. In the transparent limit, equilibrium welfare

is given by

WEQ = −
2
√
cχ (1− r)2 − c (1− 2r + rχ)

(
τθ + τy

)
(1− r) (1−χr)

(62)

It is easy to show that ∂WEQ

∂χ
< 0, seemingly overturning the result that cursedness is bliss. This is not

the case since the bliss result holds close to χ = 0 but the transparent limit equilibrium only exists for

χ sufficiently large.

B Proofs (For Online Publication)

B.1 Proofs for Section 3 (Model with Fixed τs)

Proof of Proposition 1: Recall from the text that δi = αi and the best response

ai = (1− r)

χ τssi + τyy

τθ + τy + τs
+ (1−χ)

τssi + τyy + δ2
1τp

1−δ3
δ1

[
p − δ2

1−δ3
y
]

τθ + τy + τs + δ2
1τp


+ r

α0 +α1

χ τssi + τyy

τθ + τy + τs
+ (1−χ)

τssi + τyy + δ2
1τp

1−δ3
δ1

[
p − δ2

1−δ3
y
]

τθ + τy + τs + δ2
1τp

+α2y +α3p


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ai = α0 +α1si +α2y +α3p

Matching coefficients, we get

δ0 =rδ0 (63)

δ1 =(1− r + rδ1)

 τsχ

τθ + τy + τs
+

τs (1−χ)

τθ + τy + τs + δ2
1τp

 (64)

δ2 =(1− r + rδ1)

χ τy

τθ + τy + τs
+ (1−χ)

τy − δ1δ2τp

τθ + τy + τs + δ2
1τp

+ rδ2 (65)

δ3 =(1−χ) [(1− r) + rδ1]
δ1τp (1− δ3)

τθ + τy + τs + δ2
1τp

+ rδ3 (66)

It is easy to see that δ0 = 0 since r < 1. Given δ1, the latter two equations are linear and we can solve

for

δ2 =
(1− r + rδ1)

(
χ

τy
τθ+τy+τs

+ (1−χ)
τy

τθ+τy+τs+δ
2
1τp

)
1− r + (1− r + rδ1) (1−χ)

δ1τp

τθ+τy+τs+δ
2
1τp

(67)

δ3 =
(1−χ) [(1− r) + rδ1]

δ1τp

τθ+τy+τs+δ
2
1τp

(1− r) + (1−χ) [(1− r) + rδ1]
δ1τp

τθ+τy+τs+δ
2
1τp

. (68)

Reformulating the equation for δ1,

δ1 = [1− r + rδ1]
τs

τθ + τy + τs + δ2
1τp

1 +χ
δ2

1τp

τθ + τy + τs


We arrive at the cubic equation f from

δ1
(
τθ + τy + τs + δ2

1τp
)

= [1− r + rδ1]τs

1 +χ
δ2

1τp

τθ + τy + τs


0 = f (δ1)B δ1

(
τθ + τy + δ2

1τp
)
−χ τs

τθ + τy + τs
[1− r + rδ1]δ2

1τp − (1− r) (1− δ1)τs (69)

= δ1
(
τθ + τy + τs + δ2

1τp
)
− τs [1− r + rδ1]

1 +χ
δ2

1τp

τθ + τy + τs


To show that the solution is unique, note that f (δ1)

τθ+τy+τs+δ
2
1τp

evaluated at δ1 = 0 is equal to − 1−r
τθ+τy+τs

< 0

and at δ1 = 1 it is greater than 1− τs
τθ+τy+τs

> 0. Hence, there is at least one root in (0,1). Furthermore,

the expression is increasing at a root, as

∂
∂δ1

f (δ1)

τθ + τy + τs + δ2
1τp

= 1−rτs

 χ

τθ + τy + τs
+

1−χ
τθ + τy + τs + δ2

1τp

+2(1−χ)δ1τpτs
1− r + rδ1(

τθ + τy + τs + δ2
1τp

)2

where the first to terms are in sum positive and, at a root, we have sgn {δ1 [(1− r) + rδ1]} = 1 whence

the final term is also positive.

As a corollary of this argument, we obtain

Corollary 1. In equilibrium, we have (1− r) + rδ1 > 0.

34



Using the rewriting of f

[(1− r) + rδ1] =
δ1

τs
τθ+τy+τs+χδ

2
1τp(

τθ+τy+τs
)(
τθ+τy+τs+δ

2
1τp

) (70)

to express (1− r) + rδ1 we get

δ2 =
δ1τy

(
τθ + τy + τs +χδ2

1τp
)

(1− r)τs
(
τθ + τy + τs

)
+ δ2

1τp
(
(1−χ)

(
τθ + τy

)
+ (1− rχ)τs

) (71)

δ3 =
(1−χ)δ2

1τp

(1− r)τs + δ2
1τp

(
1−χ+ (1− r)χ τs

τθ+τy+τs

) (72)

Note that from (71) and (72), we have δ2 > 0 and δ3 ≥ 0. Solving for χ from (64) we get

χ =
δ1

(
τθ + τy + δ2

1τp
)
− (1− r) (1− δ1)τs

τs
τθ+τy+τs

[1 + r(δ1 − 1)]δ2
1τp

and plugging this into the above δ2,δ3, we obtain the desired expressions.

Proof of Proposition 16: From the equilibrium condition (69) we see that

δ2
1τp

(
δ1 −χ

τs

τθ + τy + τs
[(1− r) + rδ1]

)
+ δ1

(
τθ + τy

)
− (1− r) (1− δ1)τs = 0

so for δ2
1τp to go unbounded, we need that the parenthesis goes to zero:

δ1 =
χ

τs
τθ+τy+τs

(1− r)

1−χ τs
τθ+τy+τs

r
+

ξ

δ2
1τp

for some constant ξ. Plugging this expression into f , we get

ξ+

χ
τs

τθ+τy+τs
(1− r)

1−χ τs
τθ+τy+τs

r
+

ξ

δ2
1τp

(τθ + τy

)
− (1− r)

1−

χ
τs

τθ+τy+τs
(1− r)

1−χ τs
τθ+τy+τs

r
+

ξ

δ2
1τp


τs = 0

ξ = (1− r)
χ

τs
τθ+τy+τs

(
τθ + τy

)
−
(
1−χ τs

τθ+τy+τs

)
τs(

1 +
τθ+τy+(1−r)τs

δ2
1τp

)(
1−χ τs

τθ+τy+τs
r
)

So we just constructed a solution that converges for χ > 0. So, in the transparent limit, we have

δ∞1 =
χ

τs
τθ+τy+τs

(1− r)

1−χ τs
τθ+τy+τs

r

To arrive at δ∞2 and δ∞3 ,we plug δ∞1 into (13) and (14). It is easy to see that
dδ∞2
dχ ≥ 0. The existence of a

limit equilibrium follows, as all the arguments leading to equilibrium are well defined even taking

τp→∞ assuming δ1 > 0, which is the case in the solution if and only if χ > 0.

Proof of Proposition 2: The result follows from implicit differentiation of the equilibrium equation

(69). To this purpose, let us first establish a helpful lemma.
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Lemma 1. In equilibrium, we have fδ > 0.

Proof of Lemma: Compute

fδ = τθ + τy + 3δ2
1τp −χ

τs

τθ + τy + τs
[2 + r(3δ1 − 2)]δ1τp + (1− r)τs

=
(
τθ + τy + 3δ2

1τp

[
1−χ τs

τθ + τy + τs

[
1 + r(δ1 − 1)

δ1

]])
+χ

τs

τθ + τy + τs
[1− r]δ1τp + (1− r)τs

=

τθ + τy + 3δ2
1τp

1− χτθ +χτy +χτs +χδ2
1τp

τθ + τy + τs +χδ2
1τp


+χ

τs

τθ + τy + τs
[1− r]δ1τp + (1− r)τs > 0

where in the final step we used (70) in the transformation:

1−χ τs

τθ + τy + τs

[
1 + r(δ1 − 1)

δ1

]
= 1−

χτθ +χτy +χτs +χδ2
1τp

τθ + τy + τs +χδ2
1τp

≥ 0. ▲

By implicit differentiation

dδ1
dχ

= −
fχ
fδ
∝ τs

τθ + τy + τs
[(1− r) + rδ1]δ2

1τp ≥ 0

and from (13), (14) it is immediate that dδ2
dχ ∝

dδ1
dχ ≥ 0 and dδ3

dχ ∝ −
dδ1
dχ ≤ 0.

Relative size of δ1 and δ2:

d
dχ

δ2
δ1

=
d

dχ

δ1τy

(1− r)τs − δ1
(
τθ + τy

) =
τy

(
(1− r)τs − δ1

(
τθ + τy

))
+ δ1τy

(
τθ + τy

)
(
(1− r)τs − δ1

(
τθ + τy

))2
dδ1
dχ
≥ 0

whence the result in the proposition follows.

τp comparative statics: Again, dδ1
dτp
∝ −fτp and using (70), we have

fτp = δ3
1 −χ

τs

τθ + τy + τs
[(1− r) + rδ1]δ2

1 = δ3
1

1−χ
τθ + τy + τs + δ2

1τp

τθ + τy + τs +χδ2
1τp

 > 0

From (13) and (14), the comparative statics are immediate. Finally, we have

dδ2
1τp

dτp
= 2δ1τp

dδ1
dτp

+ δ2
1

= −2δ1τp

δ3
1 −χ

τs
τθ+τy+τs

[(1− r) + rδ1]δ2
1(

τθ + τy + 3δ2
1τp

)
−χ τs

τθ+τy+τs
[2 + r(3δ1 − 2)]δ1τp + (1− r)τs

+ δ2
1

=
δ2

1
fδ

{
−2δ1τp

(
δ1 −χ

τs

τθ + τy + τs
[(1− r) + rδ1]

)
+
((
τθ + τy + 3δ2

1τp
)
−χτs [2 + r(3δ1 − 2)]

τθ + τy + τs
δ1τp + (1− r)τs

)}
∝

(
τθ + τy + δ2

1τp
)
−χ τs

τθ + τy + τs
rδ2

1τp + (1− r)τs

=
1
δ1

(
(1− r)τs +χ

τs

τθ + τy + τs
(1− r)δ2

1τp

)
> 0

where we dropped
δ2

1
fδ

> 0 and, in the last step, we use f (δ1) = 0, which establishes the claim.
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Proof of Proposition 3: Since we have fδ > 0 (Lemma 1), we get for a generic parameter ν

dδ1
dν

= −
fν
fδ
∝ −fν

And hence the comparative statics of δ1 follow immediately, occasionally using (70), from

fτy = δ1 +χ [(1− r) + rδ1]δ2
1τp

τs(
τθ + τy + τs

)2 > 0

fτs = −χ
τθ + τy(

τθ + τy + τs

)2 [(1− r) + rδ1]δ2
1τp − (1− r) (1− δ1) < 0

fr = χ
τs (1− δ1)
τθ + τy + τs

δ2
1τp + (1− δ1)τs = τs (1− δ1)

 χδ2
1τp

τθ + τy + τs
+ 1

 > 0

Proof of Proposition 4: The result for dβ
dχ , dβ

dτp
, dγ2
dτp

is immediate from the comparative statics of δ1. For

dγ2
dτy
∝ dδ1

dτy
τy + δ1, we get

dδ1
dτy

τy + δ1 = −
fτy
fδ

τy + δ1 ∝ −fτy τy + fδδ1

=
δ1(

τy + τs + τθ

)2

[(
3δ2

1τp + τθ + (1− r)τs
)(
τy + τs + τθ

)2
−χδ1τpτs

(
(3− 3r + 4rδ1)τy + (2− 2r + 3rδ1) (τs + τθ)

)]
∝

(
3δ2

1τp + τθ + (1− r)τs
)(
τy + τs + τθ

)2
− 3χδ1τpτs (1− r + rδ1)

(
τy + τs + τθ

)
︸                                                                                               ︷︷                                                                                               ︸

CA1

+ A2

where, using (70),

A1 =
(
τy + τs + τθ

)2
τθ + (1− r)τs + 3

(1−χ)δ2
1τp

(
τy + τs + τθ

)
τy + τs + τθ +χδ2

1τp

 > 0.

It remains to show that A2 > 0. We have

A2 ∝ (1− r) (τθ + τs)− τyrδ1 > (1− r) (τθ + τs)− τyrδFC
1

= (1− r) (τθ + τs)− τyr
(1− r)τs

τθ + τy + (1− r)τs
= (1− r)

(
τθ + τs

(
1− r

τy

τθ + τy + (1− r)τs

))
> 0.

Note that the result for dγ2
dτs

and dβ
dτs

follows when we establish d
dτs

δ1
τs

< 0:

d
dτs

δ1
τs

=

dδ1
dτs

τs − δ1

τ2
s

∝ dδ1
dτs

τs − δ1 ∝ −fτsτs + fδδ1

= (1− r) (1− δ1)τs − δ1
(
τy + τθ + (1− r)τs

)
+ 3

χ (1− r)τsδ2
1τp

τy + τθ + τs
−
χ (1− r)τ2

s δ
2
1τp(

τy + τθ + τs

)2

− δ3
1τp

3− 4
χrτs

τy + τθ + τs
+

χrτ2
s(

τy + τθ + τs

)2


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using f to replace (1− r) (1− δ1)τs, we obtain a decomposition B1 + B2 where

B1 =
χδ2

1τpτs(
τy + τθ + τs

)2

[
δ1r

(
τy + τθ

)
− (1− r)τs

]

B2 = −δ1
(
2δ2

1τp + (1− r)τs
)

+ 2
χδ2

1 [1− r + δ1r]τpτs
τy + τθ + τs

Note that in B1 the final term is negative if r < 0, otherwise, estimate δ1 < δFC
1 to arrive at

δ1r
(
τy + τθ

)
− (1− r)τs <

(1− r)τs
τθ + τy + (1− r)τs

r
(
τy + τθ

)
− (1− r)τs

= −
(1− r)2 τs

(
τy + τθ + τs

)
τθ + τy + (1− r)τs

< 0

and therefore B1 < 0. Plugging (70) into B2, we arrive at

B2 = −δ1

(1− r)τs + 2
(1−χ)δ2

1τp
(
τy + τθ + τs

)(
τy + τθ + τs +χδ2

1τp
)  < 0,

whence we have established d
dτs

δ1
τs

< 0 and therefore dγ2
dτs

< 0 and dβ
dτs

> 0.

B.2 Proofs for Section 4 & 5 (Model with Information Acquisition)

Proof of Proposition 5: Equation (33) is derived in the text assuming that δ1 ≥ 0. We now show that

there cannot be an equilibrium with δ1 < 0.

Lemma 2. There is no equilibrium with information acquisition and δ1 < 0.

Proof of Lemma: Towards a contradiction, let δ1 < 0. Then, τs = − δ1√
c

and f reads

(
τθ + τy + δ2

1τp
)

+χ
1

√
c
(
τθ + τy

)
− δ1

[(1− r) + rδ1]δ2
1τp +

1
√
c

(1− r) (1− δ1) = 0

Clearly, for δ1 = 0, the expression is strictly positive. Furthermore, we have d
dδ1

f < 0 , as

2δ1τp +χ
[(1− r) + rδ1]δ2

1τp(√
c
(
τθ + τy

)
− δ1

)2 +χ

[
(1− r) + 3rδ2

1

]
τp

√
c
(
τθ + τy

)
− δ1

− 1
√
c

(1− r) =

1(√
c
(
τθ + τy

)
− δ1

)2

[
2δ1τp

(√
c
(
τθ + τy

)
− δ1

)2
+χ [(1− r) + rδ1]δ2

1τp

+χ
(√

c
(
τθ + τy

)
− δ1

) [
2(1− r)δ1 + 3rδ2

1

]
τp −

1
√
c

(1− r)
(√

c
(
τθ + τy

)
− δ1

)2
]

=

∝ 2δ3
1τp − 4δ1τp

√
c
(
τθ + τy

)
+ 2δ1τpc

(
τθ + τy

)2
+χ [(1− r) + rδ1]δ2

1τp

+χ
(√

c
(
τθ + τy

)
− δ1

) [
2(1− r)δ1 + 3rδ2

1

]
τp −

1
√
c

(1− r)
(√

c
(
τθ + τy

)
− δ1

)2
=

= 2δ3
1τp (1−χr)− δ2

1

[
1
√
c

(1− r) +
(
4τp − 3χrτp

)√
c
(
τθ + τy

)
+χ (1− r)τp

]
+δ12c

(
τθ + τy

) [
(1− r)

(
1 +χτp

√
c
)
τp + τpc

(
τθ + τy

)]
−
√
c (1− r)

(
τθ + τy

)2
< 0
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Hence, we cannot have an solution as f > 0 for all δ1 < 0 and there is no such equilibrium.

Equations (29)-(32) follow immediately from plugging (33) into (11)-(14). The equilibrium δ1

solves 0 = f (δ1,
δ1√
c
), where

f (δ1,
δ1√
c

) = δ1 +
√
c
(
τθ + τy + δ2

1τp
)
− [1− r + rδ1]

1 +χ

√
cδ2

1τp

δ1 +
√
c
(
τθ + τy

) 
In equilibrium, using (70) and (33), we have

d
dδ1

f (δ1,
δ1√
c

) =

(1− r)
(
δ1 +
√
c
(
τθ + τy

))
+
√
cδ2

1τpχ

[
δ1+
√
c
(
τθ+τy+δ2

1τp
)

δ1+
√
c
(
τθ+τy+χδ2

1τp
) − r]

δ1 +
√
c
(
τθ + τy

) + 2
√
cδ1τp

(1−χ)
δ1 +
√
c
(
τθ + τy

)
δ1 +
√
c
(
τθ + τy +χδ2

1τp
) 

≥
(1− r)

(
δ1 +
√
c
(
τθ + τy

))
+
√
cδ2

1τpχ

[
δ1+
√
c
(
τθ+τy+δ2

1τp
)

δ1+
√
c
(
τθ+τy+χδ2

1τp
) − r]

δ1 +
√
c
(
τθ + τy

) ≥
√
cδ2

1τpχ [1− r]

δ1 +
√
c
(
τθ + τy

) > 0

since the first term in the numerator is positive and the fraction in square brackets is greater than 1.

If we are in a corner case, we obtain δ2,δ3 by plugging δ1 = τs = 0 to the original matching

coefficients equations (67) and (68) to obtain δ2 =
τy

τθ+τy
and δ3 = 0.

Proof of Proposition 17: In the text.

Proof of Proposition 6: Our system is defined by

f (δ1,τs) = δ1
(
τθ + τy + δ2

1τp
)
−χ τs

τθ + τy + τs
[1 + r(δ1 − 1)]δ2

1τp − (1− r) (1− δ1)τs = 0

g(δ1,τs) = δ2
1 − c (τs)

2 = 0

and by implicit differentiation,

dδ1
dν

=
gτs fν − fτsgν
gδfτs − gτs fδ

,
dτs
dν

=
fδgν − gδfν
gδfτs − gτs fδ

First, we establish that the denominator of our implicit derivatives is positive.

Lemma 3. In equilibrium, we have gδfτs − gτs fδ > 0, and hence dδ1
dν ∝ gτs fν − fτsgν .

Proof of Lemma: Note that gδ = 2δ1 > 0, gτs = −2cτs < 0 and

fδ =
(
τθ + τy + 3δ2

1τp
)
−χ τs

τθ + τy + τs
[2 + r(3δ1 − 2)]δ1τp + (1− r)τs

fτs = −χ
τθ + τy(

τθ + τy + τs

)2 [1 + r(δ1 − 1)]δ2
1τp − (1− r) (1− δ1) .

By direct computation

gδfτs − gτs fδ =2δ1

−χ τθ + τy(
τθ + τy + τs

)2 [1 + r(δ1 − 1)]δ2
1τp − (1− r) (1− δ1)


− (−2cτs)

((
τθ + τy + 3δ2

1τp
)
−χ τs

τθ + τy + τs
[2 + r(3δ1 − 2)]δ1τp + (1− r)τs

)
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=2δ1

−χ τθ + τy(
τθ + τy + τs

)2 [1 + r(δ1 − 1)]δ2
1τp − [1 + r(δ1 − 1)] + δ1


+ 2

δ1
τs

((
τθ + τy + 3δ2

1τp
)
δ1 − 2χ

τs

τθ + τy + τs
[1 + r(δ1 − 1)]δ2

1τp + (1− r)τsδ1 −χ
τs

τθ + τy + τs
rδ1δ

2
1τp

)
(fδ>0)
≥ 2

δ1
τs

−χ τθ + τy

τθ + τy + τs

(
τθ + τy + τs + δ2

1τp
)
δ1

τθ + τy + τs +χδ2
1τp

δ2
1τp −

δ1
(
τθ + τy + τs

)(
τθ + τy + τs + δ2

1τp
)

τθ + τy + τs +χδ2
1τp

+ δ1τs


+ 2

δ1
τs


τθ + τy + 3

1−χ
τθ + τy + τs + δ2

1τp

τθ + τy + τs +χδ2
1τp

δ2
1τp

δ1 + (1− r)τsδ1 +χ
τs

τθ + τy + τs
[1− r]δ2

1τp


=2δ2

1

−τyτs − τθ

τs
+ δ2

1τp

− 1
τs

+
1

τθ + τy + τs
− 1−χ
τθ + τy + τs +χδ2

1τp




+ 2
δ1
τs


τθ + τy + 3

1−χ
τθ + τy + τs + δ2

1τp

τθ + τy + τs +χδ2
1τp

δ2
1τp

δ1 + (1− r)τsδ1 +χ
τs

τθ + τy + τs
[1− r]δ2

1τp


(r<1&(33))
≥ 2δ3

1τp (1−χ)
√
c

 2δ2
1 +
√
cχδ3

1τp + 4
√
cδ1

(
τθ + τy

)
+ 2c

(
τθ + τy

)2[
δ1 +
√
c
(
τθ + τy

)] [
δ1 +
√
cχδ2

1τp +
√
c
(
τθ + τy

)]
 ≥ 0

The last equality follows from lengthy but straightforward calculation. The inequality follows since

the expression is decreasing in r and we hence set r = 1 as a worst case, obtaining our result. ▲

Hence, we have

dδ1
dχ
∝ gτs fχ − fτsgχ = gτs fχ =

(
−c′′(τs) (τs)

2 − 2c′(τs)τs
)(
− τs

τθ + τy + τs
[1 + r(δ1 − 1)]δ2

1τp

)
> 0.

For dδ2
dχ , using (31) dδ2

dχ =
√
cτy

(1−r)−
√
c
(
τθ+τy

) dδ1
dχ > 0. Finally, from (32) dδ3

dχ = − (1−r)
(1−r)−

√
c
(
τθ+τy

) dδ1
dχ < 0.

For the remaining comparative statics let us begin with δ1. Note that that for all precision

parameters, we have gτ ≡ 0, and for costs, we have fc ≡ 0. For the cost parameter we have dδ1
dc ∝

fτs (τs)
2 < 0 as fτs < 0. For τs, we get ∂τs

∂c
= 1

c
∂δ1
∂c
− τsc < 0. We have ∂δ1

∂τy
∝ gτs fτy < 0 since fτy > 0 and

∂δ1
∂τθ

= ∂δ1
∂τy

< 0. For τp, we have ∂δ1
∂τp
∝ gτs fτp < 0 since fτp > 0. For r, we get ∂δ1

∂r
∝ gτs fr < 0 since fr ≥ 0.

For δ2, the comparative static wrt τp is immediate.

To see the ambiguity of dδ2
dτy

, consider the transparent limit expression and take the derivative to

obtain

dδ∞2
dτy

=

√
c
[
χ (1− r)−

√
c
(
2τθ + τy

)]
(1− rχ)

(
1− r −

√
c
(
τθ + τy

))
+
√
cτy

[
χ (1− r)−

√
c
(
τθ + τy

)]
(1− rχ)

√
c[

(1− rχ)
(
1− r −

√
c
(
τθ + τy

))]2
∝

[
χ (1− r)−

√
c
(
2τθ + τy

)](
1− r −

√
c
(
τθ + τy

))
+ τy

[
χ (1− r)−

√
c
(
τθ + τy

)]√
c

At χ = 1, we get
dδ∞2
dτy
∝

[
(1− r)−

√
c
(
τθ + τy

)]2
> 0,whereas at the lower limit χ =

√
c
(
τθ+τy

)
1−r , we have

dδ∞2
dτy
∝ −
√
cτy

(
1− r −

√
c
(
τθ + τy

))
< 0, establishing the claim.

To see the other ambiguous comparative statics, we proceed in a similar fashion. Consider dδ2
dc ; in

the transparent limit, for χ = 1 we get
dδ∞2
dc =

τy

2
√
c(1−r) > 0, while at the lower bound, χ→

√
c
τθ+τy

1−r we

have
dδ∞2
dc ∝ − (1− r)τy

(
τθ + τy

)
< 0. For dδ2

dr ; in the transparent limit, for χ = 1 we get
dδ∞2
dc =

√
cτy

(1−r)2 > 0,

while at the lower bound, χ→
√
c
τθ+τy

1−r we have
dδ∞2
dr ∝ −cτy

(
τθ + τy

)
< 0.
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For δ3, the τp comparative static is immediate. To see the ambiguous comparative statics in τy ,

consider

lim
χ→1

∂δ3
∂τy

δ3
∝

(
1− δ1 (1− r)− r −

√
c
(
τθ + τy

))
1− δ1(1−r)

1−r−
√
c
(
τθ+τy

) = 1− r −
√
c
(
τθ + τy

)
> 0

proving ∂δ3
∂τy

converges to 0 from above as χ→ 1. Therefore, δ3 is increasing in τy for large χ. However,

consider the limit as r→ 1−
√
c
(
τθ + τy

)
, then

∂δ3
∂τy
→− 1− r

τθ + τy
δ1 < 0

To see that ∂δ3
∂c

is of ambiguous sign, consider the limit as
√
c→ 1−r

τθ+τy
. Then, we have

sgn
{
∂δ3
∂c

}
→ sgn

{
− (1− r)3

}
< 0

Furthermore, as c→ 0, we have

∂δ3
∂c
∝ δ2

1 (1− r)
(
(1− δ1)

(
τθ + τy

)
+ (1−χ)δ2

1τp
)
> 0

Following similar arguments, ∂δ3
∂r

is ambiguous: In the limit as
√
c→ 1−r

τθ+τy
, we have

sgn
{
∂δ3
∂r

}
→ sgn

{
− (1− r)3

}
< 0

As r→−∞, we get
∂δ3
∂r
∝ −r (1− δ1)

(
δ1 +
√
c
(
τθ + τy +χδ2

1τp
))2

> 0

To show that ∂
∂τp

δ2
1τp > 0:

∂
∂τp

(
τpδ

2
1

)
= δ2

1 + 2δ1τp
∂δ1
∂τp

= δ2
1 + 2δ1τp

gτs fτp
gδfτs − gτs fδ

=
1

gδfτs − gτs fδ

{
δ2

1

(
gδfτs

)
+ δ1gτs

[
2τpfτp − δ1fδ

]}
=

δ2
1

gδfτs − gτs fδ

2δ1

−χ τθ + τy(
τθ + τy + τs

)2 [1 + r(δ1 − 1)]δ2
1τp − (1− r) (1− δ1)


+2δ1

√
c

[(
τθ + τy + δ2

1τp
)
−χ τs

τθ + τy + τs
rδ2

1τp + (1− r)τs
]}

=
2δ4

1
gδfτs − gτs fδ

1− r +

√
cδ2

1τp (1−χr)

δ1 +
√
c
(
τθ + τy

) − √
cδ2

1τp (1−χ)

δ1 +
√
c
(
τθ + τy +χδ2

1τp
)

Where the last step follows from lengthy but straightforward computation involving (70) and (33).

Clearly, 1 − r > 0 so it remains to show that the last two terms sum to a positive expression. This,

however is immediate since the last is equivalent to the first with the strictly greater denominator and

smaller numerator since

(1−χr) > (1−χ) ⇐⇒ χr < χ ⇐⇒ r < 1
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Finally, from the comparative statics of δ3, we immediately get the comparative statics if γ3 = δ3
1−δ3

which is an increasing transformation.

Proof of Proposition 8: Computing

∂
∂τp

(
τθ + τy + τs + τpδ

2
1

)
=

∂τs
∂τp

+ δ2
1 + 2δ1τp

∂δ1
∂τp

=
−gδfτp

gδfτs − gτs fδ
+ δ2

1 + 2δ1τp
gτs fτp

gδfτs − gτs fδ

∝ −gδfτp + δ2
1

(
gδfτs − gτs fδ

)
+ 2δ1τpgτs fτp

Plugging in and using (70) and (33) wherever apparent yields a linear equation in r given δ1, which

can be solved for the implicit equation

Rp(χ) = χ

 δ1 +
√
c
(
τθ + τy + δ2

1τp
)

δ1 +
√
c
(
τθ + τy +χδ2

1τp
) 

2

= χ

 τθ + τy + τs + δ2
1τp

τθ + τy + τs +χδ2
1τp

2

such that ∂
∂τp

(
τθ + τy + τs + τpδ

2
1

)
> 0 if r < Rp. To derive the properties of Rp, let us define

k(χ, r) = χ

 δ1 +
√
c
(
τθ + τy + δ2

1τp
)

δ1 +
√
c
(
τθ + τy +χδ2

1τp
) 

2

− r = 0

To show that Rp(χ) is increasing in χ, we need to establish that R′p(χ) = − kχkr > 0. By lengthy

computation, it is easy to show that,

kχ ∝
(
δ1 +
√
c
(
τθ + τy + δ2

1τp
))(

δ1 +
√
c
(
τθ + τy −χδ2

1τp
))

+
∂δ1
∂χ

2
√
c (1−χ)τpδ1

(
δ1 + 2

√
c
(
τθ + τy

))
Note that ∂δ1

∂χ
> 0, and – if the first term is positive – we have kχ > 0. This is the case for valid

parameters: Suppose towards a contradiction that it is not, i.e.

δ1 +
√
c
(
τθ + τy −χδ2

1τp
)
< 0 ⇐⇒ τp >

δ1 +
√
c
(
τθ + τy

)
√
cχδ2

1

But note that r = χ

(
δ1+
√
c
(
τθ+τy+δ2

1τp
)

δ1+
√
c
(
τθ+τy+χδ2

1τp
) )2

is increasing in τp (as a partial derivative), so this would

imply that

r =χ

 δ1 +
√
c
(
τθ + τy + δ2

1τp
)

δ1 +
√
c
(
τθ + τy +χδ2

1τp
) 

2

> χ


δ1 +
√
c

(
τθ + τy + δ2

1
δ1+
√
c
(
τθ+τy

)
√
cχδ2

1

)
δ1 +
√
c

(
τθ + τy +χδ2

1
δ1+
√
c
(
τθ+τy

)
√
cχδ2

1

)


2

= χ


δ1 +
√
c
(
τθ + τy + δ1

χ
√
c

+ 1
χ

(
τθ + τy

))
δ1 +
√
c
(
τθ + τy + δ1√

c
+
(
τθ + τy

))


2

= χ


(
1 + 1

χ

)(
δ1 +
√
c
(
τθ + τy

))
2δ1 + 2

√
c
(
τθ + τy

) 
2

=
(χ+ 1)2

4χ
= 1 +

(χ− 1)2

4χ
> 1

a contradiction. Hence we require that τp is smaller, otherwise the cutoff is trivial (i.e. greater than

one). Hence, whenever we have an interior cutoff, we have kχ > 0.
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It remains to show (to get dr
dχ > 0) that kr < 0. (with linear costs), which is the case, as

kr =
∂
∂r

χ
 δ1 +

√
c
(
τθ + τy + δ2

1τp
)

δ1 +
√
c
(
τθ + τy +χδ2

1τp
) 

2

− r

 = χ (1−χ)2
√
cτpδ1

(
δ1 + 2

√
c
(
τθ + τy

))(
δ1 +
√
c
(
τθ + τy + δ2

1τp
))

[
δ1 +
√
c
(
τθ + τy +χδ2

1τp
)]3 ∂δ1

∂r
− 1

≤ −1 < 0

In addition, we have that at the solution to k = 0, we always have kr < 0, whence there exists a unique

solution and therefore a cutoff R(χ), such that k ≥ 0 iff r ≤ R(χ), as we wanted to show. In addition,

R′ > 0, and R(0) = 0.

To see that the cutoff can be trivial, note that

∂
∂τp

(
τθ + τy + τs + δ2

1τp
)
→ 1− 1−χ

2
√
c
(
τθ + τy

)
as r→ 1−

√
c
(
τθ + τy

)
, which is of ambiguous sign.

B.3 Welfare

We now derive expression (40).

W(α,δ) = E

[
− (1− r) (ai −θ)2 − r (ai − ā)2

]
(73)

= E

[
− (1− r) (α1si +α2y +α3p −θ)2 − r (α1si +α2y +α3p − ā)2

]
= E

− (1− r)
(
α1 (θ + zs) +α2

(
θ + zy

)
+α3

(
δ1 + δ2
1− δ3

θ +
δ2

1− δ3
zy +

1
1− δ3

zp

)
−θ

)2

−r
(
α1 (θ + zs) +α2

(
θ + zy

)
+α3

(
δ1 + δ2
1− δ3

θ +
δ2

1− δ3
zy +

1
1− δ3

zp

)
−
(
δ1 + δ2
1− δ3

θ +
δ2

1− δ3
zy +

δ3
1− δ3

zp

))2
= − 1

(1− δ3)2

 (α2 (1− δ3) +α3δ2)2 + δ2 (δ2 − 2α3δ2 − 2α2 (1− δ3))r
τy

+
α2

3 − 2α3δ3r + δ2
3r

τp
+
α2

1 (1− δ3)2

τs

+
(1− (1− δ3) (α1 +α2)−α3(δ1 + δ2)− δ3)2 − (1 + (δ1 + δ2) (1− 2α3)− 2(α1 +α2) (1− δ3)− δ3) (1− δ1 − δ2 − δ3)r

τθ

}
where the last step follows after lengthy but straightforward computation. Imposing αi = δi , we get

W(δ) = − (1− r)
(1− δ3)2

δ2
2
τy

+
δ2

3
τp

+
(1− δ1 − δ2 − δ3)2

τθ

− δ2
1
τs

(74)

Proof of Proposition 9: Taking FOC in (39), we obtain

Wδ1 =2
(1− r)

(1− δ3)2
(1− δ1 − δ2 − δ3)

τθ
− 2

δ1
τs

= 0

Wδ2 =− (1− r)
(1− δ3)2

{
2
δ2
τy
− 2

(1− δ1 − δ2 − δ3)
τθ

}
= 0

Wδ3 =− 2(1− r)
(1− δ3)3

δ2
2
τy

+
δ3
τp
− (1− δ1 − δ2 − δ3) (δ1 + δ2)

τθ

 = 0 (75)
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Note that the last two equations simplify to a linear system in δ2,δ3, which we solve for them as a

function of δ1: From the first we get

δ2 =
τy (1− δ1 − δ3)

τθ + τy

which we plug into the second to obtain

δ3
τp
− 1− δ1 − δ3

τθ + τy
δ1 = 0

and hence

δ2 =
τy (1− δ1)

τθ + τy + τpδ1

δ3 =
δ1(1− δ1)τp
τθ + τy + τpδ1

.

Using δ2
τy

= (1−δ1−δ2−δ3)
τθ

to simplify the Wδ1 condition and plugging these two expressions in, we get

(1− r)τs
δ2
τy
− δ1 (1− δ3)2 = 0

δ1
(
τθ + τy + δ2

1τp
)τθ + τy + τpδ

2
1

τθ + τy + τpδ1

− (1− r)τs(1− δ1) = 0

and using the envelope condition we arrive at the defining equation for the efficient outcome

f ⋆(δ1) =
(
τθ + τy + δ2

1τp
)τθ + τy + τpδ

2
1

τθ + τy + τpδ1

− (1− r) 1
√
c

(1− δ1) = 0

Lemma 4. We have f ⋆
δ1

> 0 for all δ1 ∈ (0,1).

Proof of Lemma:

f ⋆δ =

[
2
(
τθ + τy + δ2

1τp
)
δ1τp

] (
τθ + τy + τpδ1

)
− τp

(
τθ + τy + δ2

1τp
)2(

τθ + τy + τpδ1
)2 + (1− r) 1

√
c

=
τp

(
τθ + τy + δ2

1τp
)

(
τθ + τy + τpδ1

)2

 (1− r)
√
c

(
τθ + τy + τpδ1

)2

τp

(
τθ + τy + δ2

1τp
) − [2δ1 − 1]

(
τθ + τy

)
+ δ2

1τp


≥

τp

(
τθ + τy + δ2

1τp
)

(
τθ + τy + τpδ1

)2

 (1− r)
√
c


(
τθ + τy + τpδ1

)2

τp

(
τθ + τy + δ2

1τp
) − [2δ1 − 1]

+ δ2
1τp


using that 1−r

τθ+τy
>
√
c. Then, from

(
τθ + τy + τpδ1

)2

τp

(
τθ + τy + δ2

1τp
) − [2δ1 − 1] ∝ τp

(
τθ + τy + δ2

1τp
)

+
(
τθ + τy + τpδ1

)2
− 2δ1τp

(
τθ + τy + δ2

1τp
)

= τp

(
τθ + τy

)
+
(
τθ + τy

)2
+ (2− 2δ1)τpδ

2
1τp > 0

we obtain the result. ▲
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By the Lemma above, there is a unique interior solution, as f ⋆ (0) =
(
τθ + τy

)
− (1− r) 1√

c
< 0 by (28)

and f ⋆(1) = τθ + τy + τp > 0. Reformulating f ⋆(δ1) = 0, we get the desired representation (42).

Proof of Proposition 10: Comparing (33) and the final equation in (41), (43) follows immediately.

Proof of Proposition 12: Since f ⋆
δ1

> 0 (Lemma 4), we know that f ⋆(δ1) < 0 implies that there is

underacquisition and f ⋆(δ1) > 0 implies that there is overacquisition. Plugging the equilibrium

δ1 and using the fact that f (δ1) = 0

f ⋆(δ1) =
(
τθ + τy + δ2

1τp
)τθ + τy + δ2

1τp

τθ + τy + δ1τp

− (1− r) 1
√
c

(1− δ1)

=
(
τθ + τy + δ2

1τp
)τθ + τy + δ2

1τp

τθ + τy + δ1τp
− 1

+χ
1
√
c

1

τθ + δ1√
c

+ τy

[1 + r(δ1 − 1)]δ2
1τp

Note that at χ = 0, this expression is negative and hence, δ1 is inefficiently low. As δ1 is increasing in

χ, we are below the efficient initially, but may exceed it for χ sufficiently large. There exists a χ with

δ
χ
1 = δ⋆1 iff f ⋆(δFC

1 ) > 0 (by f ⋆
δ
> 0). We get

f ⋆(δFC
1 ) =

δ1τp

τθ + τy + δ1τp

{
2
(
τθ + τy

)
δ1 + δ3

1τp −
(
τθ + τy

)}
This is larger than zero iff

τp ≥

(
τθ + τy

)
− 2

(
τθ + τy

)
δ1

δ3
1

the cutoff given in the proposition. In particular, if we have δFC
1 ≥ 1

2 , the fully cursed agents always

overacquires. This gives the final sufficient condition

δFC
1 = 1−

√
c
(
τθ + τy

)
1− r

≥ 1
2

establishing the Proposition.

Proof of Proposition 13. Plugging the equilibrium expressions (13),(14) for δ2,δ3 into Wδ1 and using

f (δ) = 0 yields

Wδ1 = 2
(1−χ)δ3

1τp
(
τθ + τy + τs

)
(1− r)τ2

s

(
τθ + τy + τs +χδ2

1τp
)

which is zero for χ = 1.

Plugging the equilibrium expressions for δ2,δ3 into Wδ2 yields

Wδ2 =2

[
(1− r)

(
τθ + τy + τs + (1−χ)δ1τp

)
+ (1− rχ)δ2

1τp
]

(1− r)τθ
(
τθ + τy + τs

)(
τθ + τy + τs + δ2

1τp
)2

·
[
(1− r)χδ2

1τpτs + (1− r)τs
(
τθ + τy + τs

)
+ δ1

(
τθ + τy + τs

)(
τθ + τy + (1− r)τs

)
+ δ3

1τp
(
τθ + τy + (1− rχ)τs

)]
note that the final factor can be written as

(
τθ + τy + τs

)χ τs(
τθ + τy + τs

)δ2
1τp (1− r + δ1r) + δ1

(
τθ + τy + δ2

1τp
)

+ (1− r) (1− δ1)τs


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where we recognize the factor as f (δ1) = 0, whence Wδ2 (δEQ) = 0.

Plugging into Wδ3 and simplifying with heavy use of f (δ) = 0, we get

Wδ3 = −
2χ

(
τθ + τy + τs + δ2

1τp
) [
δ1

(
τθ + τy

)
− (1− r)τs

]2
(1− r)2 τ3

s

(
τθ + τy + τs +χδ2

1τp
)

which clearly is zero in the rational case.

Proof of Proposition 14: To determine the impact of cursedness, we compute

dWEQ

dχ
=

∂WEQ

∂δ1

dδ1
dχ

+
∂WEQ

∂δ2

dδ2
dχ

+
∂WEQ

∂δ3

dδ3
dχ

dWEQ

dχ
|χ=0 =

∂WEQ

∂δ1
|χ=0

dδ1
dχ
|χ=0

by Proposition 13. Therefore, we have

dWEQ

dχ
|χ=0 =

{
(1− r)

(1− δ3)2

{
2

(1− δ1 − δ2 − δ3)
τθ

}
− 2
√
c

}
dδ1
dχ
|χ=0

and applying the rational δ2,δ3, f (δ1) = 0 and the envelope condition gives

dWEQ

dχ
|χ=0 =

{
(1− r)

(1− δ3)2

{
2

(1− δ1 − δ2 − δ3)
τθ

}
− 2
√
c

}
dδ1
dχ
|χ=0

=


(
(1− r)τs + δ2

1τp
)2

(1− r)τ2
s

2

(1−r)τs−τyδ1−δ1
(
(1−r)τs+δ2

1τp
)

(1−r)τs+δ2
1τp

τθ

− 2
√
c


dδ1
dχ
|χ=0

=2


(
(1− r)τs + δ2

1τp
)

(1− r)τ2
s

δ1 −
√
c

 dδ1
dχ
|χ=0 = 2

{
δ1τpc

(1− r)

}
dδ1
dχ
|χ=0 > 0

which completes the proof for the derivative at χ = 0.

In the fully cursed case, using Proposition 13 we know that

dWEQ

dχ
|χ=1 =

∂WEQ

∂δ3
|χ=1

dδ3
dχ
|χ=1

Plugging in the fully cursed weights δFC
1 , δFC

2 , and δFC
3 into (75) yields Wδ3 = 2

√
cδFC

1 . Therefore, we

have

dWEQ

dχ
|χ=1 =

√
cδFC

1
dδ3
dχ
|χ=1 < 0

where dδ3
dχ |χ=1 < 0 follows from

dδ3
dχ
|χ=1 =

(
∂δ3
∂δ1

∂δ1
∂χ

)
|χ=1 +

∂δ3
∂χ
|χ=1 = 0−

δ2
1τp

(
τθ + τy + τs

)
(1− r)τs

(
τθ + τy + τs + δ2

1τp
) < 0

This establishes the result about the derivative at χ = 1.
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Derivation of Formula (48): Recall that we write WEQ
χ for the equilibrium welfare with degree of

cursedness χ. Plugging the fully cursed equilibrium into W, we obtain

WEQ
1 = −

2(1− r)
√
c − c

(
τθ + τy

)
1− r

= −
√
c (1 + δ1)

In the rational case, we instead have

WEQ
0 = −

2(1− r)
√
cδR

1 + c
(
τθ + τy +

(
δR

1

)2
τp

)
1− r

= −
(1− r)

√
cδR

1 + (1− r)
√
c

1− r
= −
√
c (1 + δ1)

by using f .

Proof of Proposition 15: At χ = 0, χ = 1 we have W = −
√
c (1 + δ1). Hence, dW

dτ ∝ −
dδ1
dτ and the

comparative statics wrt τs follow immediately from Proposition 6. For costs, note that in the rational

case, direct computation yields

∂WEQ
0

∂c
= −

1− r −
√
c
(
τθ + τy

)
+
√
cδ1τp

√
c (1− r) + 2cδ1τp

< 0

which is negative by the parameter condition (28). In the fully cursed case, note that

∂WEQ
1

∂c
= − 1
√
c

 (1− r)−
√
c
(
τθ + τy

)
1− r

 = − δ1√
c
< 0

For τp = 0, the rational and (partially) cursed equilibria coincide, hence the above comparative statics

prevail, and by continuity, this extends to small but interior τp.

To see the paradoxical welfare results consider welfare in the transparent limit. The welfare

formula follows immediately by plugging δ∞ from Proposition 17 into welfare, after taking τp→∞.

It has the following comparative statics

Lemma 5. The welfare in the transparent limit is

• Decreasing in τθ ,τy if and only if r > 0 and χ ≤ 2r−1
r .

• Decreasing in cursedness ∂W∞
∂χ

< 0

• Decreasing in costs, unless r < 0, when there exists a region, χ ∈
(
√
c
τθ+τy

1−r ,
√
c (1− 2r)

τθ+τy
1−r

(
2−r+

√
c
(
τθ+τy

)) )
such that higher costs increase welfare.

Proof of Lemma: To see the comparative static, note that the coefficient of τθ +τy is 1−2r+rχ. Consider

the case where r < 0, then this expression is negative only for χ > 2, so this case is irrelevant. Instead,

with r > 0, we get that the impact of τθ ,τy is negative iff χ ≤ 2− 1
r .

Furthermore

∂W∞

∂χ
= 2
√
c

√
cr

(
τθ + τy

)
− (1− r)

(1−χr)2
≤ 2
√
c
r (1− r)− (1− r)

(1−χr)2
= −2

√
c

(1− r)2

(1−χr)2
< 0

The derivative wrt. costs is

∂W∞

∂c
∝ − χ
√
c

(1− r)2 + (1− 2r + rχ)
(
τθ + τy

)
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and

− χ
√
c

(1− r)2 + (1− 2r + rχ)
(
τθ + τy

)
≥ 0

χ
[
(1− r)2 − r

√
c
(
τθ + τy

)]
≤
√
c (1− 2r)

(
τθ + τy

)
Hence, there is two cases we need to consider. First, if (1− r)2 − r

√
c
(
τθ + τy

)
< 0: Note that this can

only be the case if r > 1
2 , since otherwise by (28)

(1− r)2 − r
√
c
(
τθ + τy

)
≥ (1− r)2 − r (1− r) = (1− 2r) (1− r) > 0.

Then, we obtain a lower bound for χ:

χ ≥
√
c (1− 2r)

τθ + τy

(1− r)2 − r
√
c
(
τθ + τy

)
but this bound rules out increasingness in costs, since

√
c (1− 2r)

τθ + τy

(1− r)2 − r
√
c
(
τθ + τy

) ≥ 1 ⇐⇒
√
c
(
τθ + τy

)
≤ (1− r)

which is guaranteed by (28).

Second, if (1− r)2 − r
√
c
(
τθ + τy

)
> 0: we get an upper bound

χ ≤
√
c (1− 2r)

τθ + τy

(1− r)2 − r
√
c
(
τθ + τy

) .
The resulting interval is nontrivial only if r < 0, as by (28)

√
c
τθ + τy

1− r
<
√
c (1− 2r)

τθ + τy

(1− r)2 − r
√
c
(
τθ + τy

)
r


√
c
(
τθ + τy

)
(1− r)

 > r ⇐⇒ r < 0. ▲

The Lemma establishes the paradox cases. By continuity, they hold for sufficiently large τp.

It remains to be shown that welfare is always increasing in τp. Note that

dW
dτp

=
∂W
∂τp

+
∂W
∂δ1

dδ1
dτp

+
∂W
∂δ2

dδ2
dτp

+
∂W
∂δ3

dδ3
dτp

+
∂W
∂τs

dτs
dτp

=
∂W
∂τp

+
∂W
∂δ1

dδ1
dτp

+
∂W
∂δ3

dδ3
dτp

Since we proved that ∂W
∂δ2

= ∂W
∂τs

= 0 for every χ. Simplifying this expression and plugging in for dδ1
dτp

,

we obtain an expression that, after removing clearly signed factors, is proportional to a sum of positive

addenda plus

cχδ4
1τ

2
p

(
1 +χ+χ2r − 3χr

)
Now, it is clear that we need

(
1 +χ+χ2r − 3χr

)
> 0, since this term is the dominant term in τp and

hence we otherwise have a negative expression as τp→∞. But this turns out to be a nice fact of life: If

χ ∈ [0,1], r ≤ 1, then h (χ, r)B 1 +χ+χ2r −3χr ≥ 0 (strictly in the interior). To see that, notice that if

r < 0, then
∂
∂χ

h (χ, r) = 1 + 2χr − 3r = 1 + r (2χ− 3) > 0
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and h (0, r) = 1 > 0. On the contrary, if r ∈ (0,1), then

1 +χ+χ2r − 3χr > r
(
1 +χ+χ2

)
− 3χr = r

(
1− 2χ+χ2

)
= r (1−χ)2 > 0,

completing the proof.

C Formal Results for Section 7 (Shrewd Agent) (For Online

Publication)

Proposition 18. The action rule of the shrewd agent is

αR
1 =

(1− (1− δ1)r)τR
s

τθ + τy + τR
s + δ2

1τp
(76)

αR
2 =

(1− (1− δ1)r)τy + δ2
(
r
(
τθ + τy + τR

s

)
− (1− r)δ1τp

)
τθ + τy + τR

s + δ2
1τp

(77)

αR
3 =

δ1 (1− (1− δ1)r)τp + δ3
(
r
(
τθ + τy + τR

s

)
− (1− r)δ1τp

)
τθ + τy + τR

s + δ2
1τp

(78)

where τR
s solves

τR
s =

αR
1√
c

(79)

with complementary slackness ensuring τR
s ≥ 0 when required.

Proof of Proposition 18: This follows immediately from shrewd observation of the derivation of the

matching coefficients and g equations. More directly, the welfare of an agent playing loadings α and

private precision τR
s while the rest of (the average of) others play δ is derived in (73). By setting

∇αW(α,δ) = 0

we find the best response coefficients as a function of others’ loadings. We get

0 =(1−α2 −α3 (δ1 + δ2)−α1 (1− δ3)− δ3 − r (1− δ1 − δ2) + δ3 (α2 + r))τs −α1(1− δ3)τθ

0 =(1−α2 −α3 (δ1 + δ2)−α1 (1− δ3)− δ3 − r (1− δ1 − δ2) + δ3 (α2 + r))τy − (α2 (1− δ3) + δ2 (α3 − r))τθ
0 =τy

[
− (δ1 + δ2) (1−α1 −α2 −α3 (δ1 + δ2)− (1−α1 −α2)δ3 − r (1− δ1 − δ2 − δ3))τp + (α3 − δ3r)τθ

]
+ 2τpτθ (δ2 (α2 (1− δ3) + δ2 (α3 − r)))

The solution to this linear system is the α in the proposition, which we can plug back in welfare to

obtain the expression

W(δ) =
(1− r)r

(1− δ3)2

δ2
2
τy

+
δ2

3
τp

+
(1− δ1 − δ2 − δ3)2

τθ

− (1− (1− δ1)r)2

τθ + τy + τR
s + δ2

1τp
− cτR

s

Differentiating this equation with respect to τR
s , we obtain the final condition.

Proposition 19. The information acquired by the shrewd agent, τR
s , has the following properties.

1. It is bounded by the precision acquired by the cursed crowd τR
s ≤ τs. It grows without bounds as costs

vanish but can be zero even when τs > 0.
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2. If τp is sufficiently large, then it is

• nonmonotonic in prior and public precision, τθ and τy , possibly with an interior activity region;

and

• nonmonotonic in costs c, possibly with an interior inactivity region.

3. It has ambiguous comparative statics w.r.t. χ as

dτR
s

dχ
∝ r − 2

√
cδ1τp

which is not uniformly signed.

Proof of Proposition 19: To derive equation (51) in the text, note that

(1− (1− δ1)r)2(
τθ + τy + τR

s + δ2
1τp

)2 − c = 0

(1− (1− δ1)r)2 = c
[
τθ + τy + τR

s + δ2
1τp

]2
using (70) on the LHS we get after rearranging

(
τθ + τy + τs

)(
τθ + τy + τs + δ2

1τp
)

τθ + τy + τs +χδ2
1τp

 =
[
τθ + τy + τR

s + δ2
1τp

]
From there, τs ≥ τR

s is immediate, since

τθ + τy + τs + δ2
1τp

τθ + τy + τR
s + δ2

1τp
= 1 +

χδ2
1τp

τθ + τy + τs
≥ 1

For the fully cursed equilibrium, the above implies that τθ +τy +τs = τθ +τy +τR
s +δ2

1τp and hence

we have

τR
s = τs − δ2

1τp =
1
√
c

1− r −
√
c
(
τθ + τy

)
1− r

− τp

1− r −
√
c
(
τθ + τy

)
1− r


2

Solving for τR
s ≥ 0, we get positive information acquisition iff τθ + τy ∈ (

(1−r)
(
1− 1

τp
√
c

)
√
c

, 1−r√
c

).

Now, for the Proposition, we have established τR
s ≤ τs. For the limit result, note that

τR
s =

(
τθ + τy + τs

)(
τθ + τy + τs + δ2

1τp
)

τθ + τy + τs +χδ2
1τp

−
(
τθ + τy + δ2

1τp
)

=

(
τθ + τy + τs

)
τs −χδ2

1τp
(
τθ + τy + δ2

1τp
)

τθ + τy + τs +χδ2
1τp

and that τs→∞ as c→ 0. From there, we have

τR
s =

(
τθ + τy + τs

)
τs −χδ2

1τp
(
τθ + τy + δ2

1τp
)

τθ + τy + τs +χδ2
1τp

→ τ2
s
τs
→∞

We have τR
s = 0 for τθ + τy ≤

(1−r)
(
1− 1

τp
√
c

)
√
c

in the fully cursed case, where τs > 0.
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To see nonmonotonicity in τθ + τy in the general case, note that as we approach the limit (28), we

have
dτR

s
dτy
|√c= 1−r

τθ+τy
=

τθ + τy
√
c
(
2τθ + τy

) dδ1
dτy
∝ dδ1

dτy
< 0

and hence, local to this value, we always get a positive τR
s . However, for τθ + τy ≤ χ1−r√

c
interior, we get

that for τp→∞

τR
s =

(
τθ + τy + τs

)
τs −χδ2

1τp
(
τθ + τy + δ2

1τp
)

τθ + τy + τs +χδ2
1τp

→−δ2
1τp < 0

which establishes the result. Interior nonmonotonicity follows by continuity.

To see nonmonotonicity in c, note that

1. dτR
s

dc < 0 in the limit (28) (
√
c = 1−r

τθ+τy
). To see this, take the representation above, plug 33, take

the derivative, set
√
c = 1−r

τθ+τy
, δ1 = 0, then we get

dτR
s

dc
|√c= 1−r

τθ+τy
→

2(1− r)4 ∂δ1
∂c(

τθ + τy

)2 ∝ ∂δ1
∂c

< 0

2. τR
s = 0 at the limit (28), as 0 ≤ τR

s ≤ τs = 0. Therefore, by (1.) and (2.), τR
s > 0 local to this upper

bound on costs.

3. τR
s →∞ as c→ 0, as shown above.

4. For any c satisfying the existence of a transparent limit equilibrium (
√
c ≤ χ 1−r

τθ+τy
), there exists

a τp sufficiently large such that
(
τR
s

)FOC
< 0. To see this, pick an interior c. Then, δ∞1 > 0 and as

τp→∞ (
τR
s

)FOC
→−δ2

1τp < 0

This establishes nonmonotonicity, as τR
s is large for small c, zero for intermediate c, but nonzero local

to
√
c = 1−r

τθ+τy
.

To analyze the derivative in χ, we compute

dτR
s

dχ
∝ r − 2

√
cδ1τp

It is apparent that τR
s is decreasing for r ≤ 0 and that it is increasing as r→ 1−

√
c
(
τθ + τy

)
when this

is positive, as then δ1→ 0. To see that we can have a hump shape, note that δ1 is increasing in χ and

hence
d2τR

s
dχdχ

∝ −dδ1
dχ
≤ 0

around dτR
s

dχ = 0, which establishes a hump-shape (but, importantly, not necessarily concavity!). Clearly,

all these comparative statics only apply for interior solutions, otherwise τR
s ≡ 0 locally.

Remark (The Shrewd Agent in the Transparent Limit). Consider the limit as τp →∞. Since δ∞1 > 0

whenever a limit equilibrium exists, the rational agent can exactly infer the state. Therefore, he does

not acquire or use private information35 and relies solely on the aggregative signal for information

αR
1 → 0, τR

s → 0, αR
2 →

− (1− r)
√
cτy

1− r −
√
c
(
τθ + τy

) < 0, αR
3 →

1− r −
√
c
(
τθ + τy

)
r

1− r −
√
c
(
τθ + τy

) > 0 (80)

35Indeed, notice that the interval (53) vanishes as τp→∞.
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The apparent anti-imitation in αR
2 < 0 allows the shrewd agent to filter out the over-reliance of the

cursed crowd on the public signal.

Proposition 20. Suppose parameters are such that τR
s > 0.

• If r ≤ 0, then
dWR

χ

dχ

∣∣∣∣∣∣
χ=1

≥ 0. However,

• for r sufficiently large,
dWR

χ

dχ

∣∣∣∣∣∣
χ=1

≤ 0.

Proof of Proposition 20. For χ, we plug the general δ into the welfare expression, take derivative wrt χ,

set χ = 1, δ1 = δFC
1 and we get

dWR
χ

dχ
= −

2
√
c (1− r)τp

(
1− r −

√
c
(
τθ + τy

))2 [
r
(
τθ + τy + τR

s + τp

)
− τp

(
1−
√
c
(
τθ + τy

))](
1− r

(
1 +
√
c
(
τθ + τy

)))2

[·]2
[
1 +
√
cτp

(
1−
√
c
(
τθ + τy

))2
+ r2

(
1 +
√
c
(
τθ + τy + τp

))
− r

(
2− 2cτp

(
τθ + τy

)
+
√
c
(
τθ + τy + 2τp

))]
∝ −

2
√
cτpδ

2
1 (1− r)3

[
r
(
τθ + τy + τR

s + τpδ1
)
− τpδ1

]
1 +
√
cτp

(
1−
√
c
(
τθ + τy

))2
+ r2

(
1 +
√
c
(
τθ + τy + τp

))
− r

(
2− 2cτp

(
τθ + τy

)
+
√
c
(
τθ + τy + 2τp

))
(81)

Consider first the case of r > 0, which implies that 1−
√
c
(
τθ + τy

)
> 0. As r→ 1−

√
c
(
τθ + τy

)
, we have

for the above expression

→−2τp
(
τθ + τy

)√
c
(
1−
√
c
(
τθ + τy

))
δ2

1 ≤ 0

This converges to zero from below since δ1 → 0 as r → 1 −
√
c
(
τθ + τy

)
. Therefore, for large χ, the

shrewd agent prefers a less cursed environment if r is big.

Consider now r ≤ 0. Note that the numerator in (81) is always negative. Furthermore, note that

the denominator v(r) is positive for r = 0. We will show that it is positive for all r ≤ 0 and hence the

expression is positive for all r ≤ 0. First, note that v is a convex quadratic function in r. Minimizing,

we find that the minimizer and minimum, resp., are given by

r∗ ∝ 2− 2cτp
(
τθ + τy

)
+
√
c
(
τθ + τy + 2τp

)
v∗ ∝ −1 + 4cτp

(
τθ + τy

)
If v∗ > 0, we are done. If it is negative, it is easy see that r∗ must be positive. But then, the fact that

v(0) > 0 implies that v(r) > 0 for all r ≤ 0.

Proposition 21. The welfare of a shrewd agent in a fully cursed population,WR
1 , has the following properties.

1. It is strictly increasing in τp.

2. It has ambiguous comparative statics with respect to τy . In particular,

• At the boundary of the activity region, (i.e. τy =
(1−r)

(
1− 1

τp
√
c

)
√
c

− τθ), we have
dWR

1
dτy

< 0,

• for τy large (i.e. local to the nontriviality limit τy = (1−r)√
c
− τθ), we have

dWR
1

dτy
> 0.

3. It is decreasing in c whenever τR
s > 0, but it has ambiguous comparative statics with respect to c if

τR
s = 0. In particular,

• If τp ≥ 1√
c

and r sufficiently negative, then
dWR

1
dc > 0.
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Proof of Proposition 21: To obtain the welfare of the shrewd agent in the fully cursed equilibrium, we

simply plug action rule (76)-(50) and the equilibrium δs into the welfare equation to obtain, for the

unconstrained case

W
R,τR

s >0
1 = −2

√
c+
−2c3/2 (1− r)τp

(
τθ + τy

)
+ c2τp

(
τθ + τy

)2
+ c (1− r)

(
τθ + τy + (1− r)τp

)
(1− r)2

as well as for the constrained case, where we leave the expression in general form both for compactness

and ease of analysis

W
R,τR

s =0
1 = −

(1− r)rδ2
2

τy
− (1− r)r (1− δ1 − δ2)2

τθ
− (1− (1− δ1)r)2

τθ + τy + δ2
1τp

For transparency, we obtain by direct computation for an interior solution
∂W

R,τR
s >0

1
∂τp

= c

(
1−r−

√
c
(
τθ+τy

))2

(1−r)2 =

cδ2
1 > 0, and through an envelope argument from the general expression, we get form corner solutions

∂W
R,τR

s =0
1
∂τp

=
δ2

1(1−(1−δ1)r)2(
τθ+τy+δ2

1τp
)2 > 0.

For τθ ,τy : Consider the derivative of W
R,τR

s >0
1 and let τθ + τy →

(1−r)
(
1− 1

τp
√
c

)
√
c

. Then, we get

∂W
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s >0
1
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cτp + 2cτp

(
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)
(1− r)2

=
c

1− r
(
1− 2

√
cτpδ

FC
1

)
= − c

1− r
< 0

Note that this result also holds for W
R,τR

s =0
1 , as the value function is C1. Taking instead the limit as

τθ + τy →
(1−r)√

c
(where we always are at an interior solution), we have

∂W
R,τR

s >0
1
∂τy

→ c
1− r

(
1− 2

√
cτpδ

FC
1

)
=

c
1− r

For c, let us first demonstrate a setting where an increase in costs is beneficial for the shrewd agent.

Consider constrained welfare, let r→−∞ and hence δ1 = 1−
√
c
(
τθ+τy

)
(1−r) → 1, δ2 =

√
c

1−r τy → 0. Then

W
R,τR

s =0
1 →−

rcτy
(1− r)

− rτθc
(1− r)

−

(
1−
√
c
(
τθ+τy

)
(1−r) r

)2

τθ + τy + τp
→ cτθ + τyc −

(
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√
c
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τθ + τy

))2

τθ + τy + τp

and

∂
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c

τθ + τy + τp

 > 0

since we consider the case τR
s = 0, and therefore τp > 1√

c
.
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Generally, we can also have ∂
∂c

WR
1 < 0. To see this, consider the case of r = 0. Then

WR|r=0 = max
τR
s ≥0
− 1

τθ + τy + τR
s + δ2

1τp
− cτR

s

where we may or may not have a corner solution. In either case, welfare is decreasing in c because δ1

is decreasing in c and an envelope argument.

At an interior solution (which occurs for τp < 1
δ1
√
c
), we get

∂
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W
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1 = − 1

√
c

+
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√
c (1− r)τp
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which is always negative by condition (28) if δ1 ≤

√
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(1−r) . If this is violated, we have

(
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concluding the proof.
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