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Abstract

Our primary finding is that surprisingly small changes in assumptions

which determine the amount of net worth available in a bank panic have an

important impact on the nature of the equilibria: there may not be a bank

panic at all, or there may be several different panics of different severity.

The economic reasons for this sensitivity are clarified by transforming the

market economy into a game and studying banker best response functions.

To establish robustness to model details, we report similar quantitative re-

sults across three different model specifications and calibrations. A second,

additional result, is displayed in a three-period version of the panic model of

Gertler and Kiyotaki (2015). That model naturally suggests the idea that

welfare can be improved by imposing a restriction on bank leverage. We

compute the Ramsey-optimal leverage restriction, but find that there is an

implementation problem: the restriction can be associated with more than

one equilibrium, not just the desired one. We discuss one way to address

the implementation problem.
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1 Introduction

Beginning in the last half of 2007 there was a sharp rise in the fraction of financial firms

having difficulty rolling over their short-term liabilities, especially firms in the sector

specializing in the acquisition of mortgage-backed securities.1 Shortly thereafter, the

US economy fell into the Great Recession. Economists have been debating the question,

‘what was the cause of these events?’.

There are two types of answer. The fundamentals hypothesis posits that funda-

mentals made the crisis and recession inevitable, though precise details about timing

and other things were left to chance.2 The other hypothesis, (the panic hypothesis) is

that weakening fundamentals made the US economy vulnerable to a panic that need

not have occurred. Under this hypothesis, policy makers noticed the weakening fun-

damentals but thought that they could minimize the damages if and when a recession

occurred. Unfortunately, they were not aware of the increased vulnerability to panic

and, alas, a panic then did occur. The resulting damage to the economy was largely

a consequence of the panic and not so much a direct consequence of the fundamentals

themselves. A prominent example of the latter argument is proposed in Gertler and

Kiyotaki (2015) (GK).

We show that the panic hypothesis requires the existence of what seems like im-

plausibly high costs for equity to enter the sector of the financial system experiencing

crisis. A more conclusive assessment of whether these costs are too high requires em-

pirical estimates and obtaining these is beyond the scope of this paper. We also show

that the number of equilibria and their nature is very sensitive to assumptions made

about the entry of equity in a crisis. For example, we find that, generically, there are

three equilibria. Moreover, depending on assumptions on the entry of new bankers,

it is also possible that there are just one or two equilibria. To establish these qual-

itative features of equilibria we transform the model into a game and study banker

best response functions. As an indicator of the robustness of our conclusions, we show

that similar conclusions emerge from a model of bank panics based on very different

financial frictions from the ones in GK.

1See, for example, Gorton (2010), Bernanke (2010) and Covitz et al. (2013).
2Milton Friedman once described this view with a particular analogy. Suppose a determined

lumberjack chops down a tree. The precise moment when the tree falls, and the direction of its fall
are determined by random, seemingly non-fundamental factors like small changes in wind direction
and other such things. Still, the real ‘cause’ of the ultimate fall of the tree is the exertions of the
lumberjack. More discussion of the fundamentals hypothesis appears in footnotes 7 and 10 below.
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Our models focus on shadow banks that issue short term liabilities (deposits) to

buy long-lived assets.3 Under the ‘right’ configuration of fundamentals, shadow banks

operating outside the protection of a lender of last resort are vulnerable to a panic-

induced collapse. In a panic, each creditor believes that the other creditors will refuse

to roll over bank deposits, and that this will force the banks into fire sales of assets.

Thinking that this will wipe out the net worth of banks, panicky creditors refuse to

roll over, and their fear is self-fulfilling. We refer to a scenario in which the fire sales

are so severe that the net worth of the banks is wiped out as an annihilation run. Our

models follow the classic narrative of Diamond and Dybvig (1983), in which agents

can differentiate fundamentals from the sunspots that drive the panic component of a

crisis.4 We call a rollover crisis in such a model a pure panic run.5

We examine models in which rollover crises are pure panic runs. In these models,

it is simply assumed that banks do not have the option to issue equity during an

annihilation run. We find that the equilibria of these models are surprisingly sensitive

to allowing even a small amount of equity to enter the banking system in an annihilation

run. To understand the problem it is useful to differentiate between two effects of panic

on a shadow bank’s debt capacity.6 First, the fire-sale fall in the price of assets that

occurs as financial firms sell assets to pay off liabilities directly reduces bank net worth.

The drop in net worth per se reduces debt capacity. But, at the same time the fall

in the price of assets raises their rate of return and, other things the same, this raises

debt capacity. We find that the latter effect is enormously powerful, so much so that

even if only a tiny amount of net worth, or equity, enters the banking system during

a run, then this tiny net worth can support a lot of assets via high leverage. Thus,

by propping up asset prices, a small amount of net worth can prevent a general panic

from occurring in the first place. We quantify the assumption that other financial

institutions cannot bring equity into a crisis by computing the entry cost that would

3Shadow banks are financial institutions other than commercial banks which are part of the Federal
Reserve.

4Our models are very different from Diamond and Dybvig (1983) in the sense that we do not have
their sequential service constraint. We have not investigated whether the challenges that we discuss
in this paper apply to Diamond and Dybvig (1983).

5We differentiate a panic run from a ‘run’. For example, Gorton (2018) defines a run as “...an
information event in which holders of short-term debt no longer want to lend to banks because they
receive information leading them to suspect the value of the backing for the debt, so they run.” We
refer to this kind of run as a ‘fundamentals run’. See also Allen and Gale (1998) in which a bank run
is fundamental because it occurs when depositors realize the returns on bank investments are low (see
also Goldstein and Pauzner (2005)). For additional discussion of such a run see footnote 10.

6We interpret the term, debt capacity, as synonymous with leverage.
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prevent them from doing so.

We suspect that an economically plausible way to explain why net worth is slow

to enter a financial sector in crisis can be found in Chari and Jagannathan (1988).

This type of model is in effect a hybrid of the two hypotheses mentioned above. In

the model, agents cannot differentiate in real time whether the crisis is is due to a bad

shift in fundamentals or to a sunspot (i.e., panic). This sort of confusion has some

empirical appeal because even now there is disagreement over the role of fundamentals

in the housing market versus financial panic in causing the Great Recession.7

To build confidence in the robustness of our results, we consider three models. One

is essentially the infinite horizon model in Gertler and Kiyotaki (2015) (GK) and the

second is a three-period version of GK. The third model is the one with a very different

set of financial frictions, a version of the one proposed in Christiano and Ikeda (2016)

(CI). The household side of all three models is the same as in the model in GK. The

vision in all three models is that the financial system is segmented into various sub

sectors which specialize in different types of assets. The focus is on one particular sub

sector henceforth called the banks, which for the sake of specificity (but at some risk of

oversimplifying) could be thought of as the set of financial institutions that finance the

purchase of homes. The remainder of the financial system, as well as the rest of the

economy, is handled in a reduced form way by lumping it into a household.8 The people

in charge of the banks are uniquely endowed with the ability to make the banks’ assets

productive. Banks issue short term deposits to finance their assets which are illiquid

and long-lived (i.e., housing). When creditors to the banking industry refuse to roll

over their bank deposits, the only way banks have to honor their short term liabilities is

to sell assets. Because the crisis hits the entire banking sector, this means that bankers

must sell their assets to outsiders (in the model, households) who have less expertise

in running the assets and so are willing to only pay low prices. The consequence of

the resulting fire sales is that bankers’ net worth is wiped out as the value of their

assets drops below their liabilities. This results in the misallocation of capital away

from people (bankers) who know how to make capital productive, and towards other

7See, for example, the report of the congressional inquiry into the causes of the financial crisis,
(2011). In particular, note the difference between the conclusion of the report and the minority dissent.
The latter concluded that most of the troubles were the outcome of government housing policies
that, because they were poorly designed, led to an unsustainable rise in residential investment. For
additional discussion of other fundamentals interpretations to the panic run hypothesis, see footnote
10.

8See Gertler et al. (2020a), which places additional structure on the remainder of the financial
system.
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people who are less able to do so. The general idea that aggregate fluctuations can be

induced by economic shocks which reallocate resources away from a group of economic

agents has a long and venerable history in economics.9

There are several dimensions of the panic narrative that deserve closer scrutiny.10

However, our primary focus is on the apparent dependence of the panic scenario on

extreme assumptions about the ability to move net worth into a sector of the financial

system experiencing a crisis. As noted above, we examine these costs in several models.

For example, we find that the present value entry costs to bring $1 of net worth into a

crisis is at least $378 for the three period version of the GK model, $151 for the infinite

period version of the GK model and $7.8 dollars for the CI model.11 These costs all

9An influential example is Bernanke (1983)’s reformulation of Fisher (1933)’s debt deflation hy-
pothesis (the idea is further developed in Bernanke and Gertler (1990)). In this view, a fall in the net
worth of borrowers (say, because there is deflation and debt is fixed in nominal terms) undercuts the
people that drive investment and employment.

10There are two challenges to the GK narrative that we do not consider. The first is raised by
Acharya et al. (2013) who point to evidence that appears to diminish the role of panic and increases the
role of fundamentals in the financial crisis. According to Acharya et al. (2013) and Covitz et al. (2013,
p.845) most banks had commercial bank sponsors (in GK, these are part of the household). Sponsors
originated and securitized the assets, Asset Backed Securities (ABS), which they then sold to banks,
which paid for them by issuing short term Asset Backed Commercial Paper (ABCP). Most of the
sale contracts between sponsors and banks contained explicit liquidity guarantees which required the
commercial banks to buy back ABS at par from the banks that they sponsored, as long as assets in the
ABS had not begun to go into default. According to Acharya et al. (2013, p. 520) the precise definition
of ‘begun to go into default’ implied that if securitized assets began to deteriorate for fundamental
reasons, the liquidity guarantee remained in place long enough that ABCP “...almost always matures
before the securitized assets are declared in default”. In this way, when market participants understood
that securitized assets were deteriorating, they decided not to roll over ABCP knowing that sponsoring
banks guaranteed the liquidity required to pay off maturing ABCP. Bank creditors guessed that the
quality of securitized assets would continue to deteriorate, so that liquidity guarantees would expire on
any ABCP that was rolled over, which would then go into default. According to Acharya et al. (2013,
p. 520), “In fact, throughout the entire run, no outside investors in ABCP suffered a default under
a liquidity guarantee.” Thus, a key component of the panic scenario, that individual bank creditors
feared a liquidity crisis resulting from a general failure to rollover bank liabilities, is hard to square
with the explicit liquidity guarantees from sponsoring banks (many of which had the backing of the
FED) to banks. The second challenge to the panic narrative has to do with the assumption used
to produce fire sales during a panic. GK assume that households are ‘less efficient’ than bankers at
managing bank capital. Acharya et al. (2013) argue that the relative ‘inefficiency’ of commercial bank
sponsors is that they faced capital requirements while banks did not. Regulators designed the tax
implied by capital requirements to get commercial banks to internalize the risks on their portfolios.
When the commercial banks moved ABS off their own balance sheets and onto the balance sheets of
banks, they avoided the capital requirement tax but held onto the risk (‘regulatory arbitrage’). In
the GK model a transfer of assets from households to banks is welfare-improving because it puts the
capital in more efficient hands. However, under the regulatory arbitrage interpretation this transfer
would clearly be inefficient as long as the capital requirements are properly designed.

11See sections 2.6.2 and 3.4.2 for the three period GK and CI models, respectively. See the online
Appendix, section C.2.3 for the infinite horizon GK model.
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seem implausibly high.12

We now briefly describe the differences between the GK (running away) and CI

(hidden effort) models, which have to do with the banks. Both models share the

property that banks finance long-term assets with short term liabilities. But, that is

not enough to guarantee that a panic annihilation run can occur. As noted above, the

logic of a panic run is that a belief that aggregate deposits are zero implies that banks

must fire-sale assets to pay off past liabilities, and this wipes out banker net worth. To

guarantee that zero deposits and bankrupt banks is an equilibrium requires that the

individual depositor, contemplating this scenario, best responds by not rolling over her

own deposits. So far, we have provided no reason that a depositor would not roll over.

The loss to creditors in the fire sale is a sunk cost, and new credit could be used by the

bank to acquire new and productive assets.13 An additional financial friction, beyond

maturity mismatch, is required for a panic run to exist in equilibrium.

The financial friction adopted by the running away and hidden effort models differ.

In the case of the running away model, it is assumed that bankers have the opportunity

to divert (run away with) a fraction of bank assets. When a banker has no net worth

(assuming the appropriate conditions are satisfied) then a household knows that the

banker would run away with any deposit he gives her. The household best responds

by not providing any deposits. The CI model adopts a different financial friction.

This model assumes the banker influences the return on her assets by exerting an

effort that is not observed. This effort can be interpreted as a combination of good

vetting of projects, as well as banker control over projects already underway via the

use of income covenants on loan contracts.14 In the CI model, a run is potentially an

equilibrium because a bankrupt banker who has no skin in the game can only commit to

a minimal level of effort. As a result, potential depositors turn to other, higher-paying,

options and best respond by setting deposits in banks to zero.

Our analysis allows us to make an observation about macro prudential policy which

may be of independent interest. A feature of the models we consider is that banks do

not internalize the impact of their leverage decision on the probability of a run. This

12Jermann and Quadrini (2012) argue that equity issuance costs are very low for non-financial firms,
even during the financial crisis. However, these results do not compare directly with ours because,
among other things, their results are for non-financial firms.

13We follow GK in assuming that if a banker with zero equity issues deposits, these can be applied
to the purchase of new bank assets and no part of these deposits is used to pay off ‘old’ deposits.

14See, for example, Greenwald et al. (2019), Lian and Ma (2021) and Chodorow-Reich and Falato
(2022).
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naturally leads to considering the welfare effects of a regulatory cap on bank leverage.

We find that the Ramsey-optimal leverage restriction is associated with two equilibria,

the good (Ramsey) equilibrium and a bad equilibrium. This finding reflects the two

effects of a credit restriction: the direct effect (quantity channel) of a fall in the quantity

of assets reduces leverage but the fall in assets simultaneously reduces the price of assets

and, other things the same, that raises leverage (price channel). If the strength of the

price channel is greater for a larger fall in assets, then it is not surprising that two

equilibria could be associated with a given leverage constraint: one equilibrium in

which quantity and price fall by a small amount and another in which quantity and

price fall by a large amount. The first of these is the Ramsey equilibrium and the other

is an equilibrium in which welfare is lower than it is in the unregulated economy. Thus,

there is a non-trivial implementation problem associated with leverage restrictions. We

illustrate one way to resolve the implementation problem.

Section 2 reports our results for the three-period version of the GK model. The

infinite horizon version results are qualitative similar and so to save space we report

these in section C in the online Appendix. Section 3 reports our analysis of the CI

model. Concluding remarks appear in Section 4.

2 Rollover Crisis: Three-Period Version of Running-

Away Model

This section first describes a three-period, t = 0, 1, 2, version of the infinite-horizon

model in GK. We then look at the implications of the model for the design of macro-

prudential policy. After that, section 2.6 summarizes our findings for the fragility of

equilibria to assumptions about entry. We also explain how the infinite-horizon version

of the model, the one studied in GK, implies even greater fragility.15

The economy is populated by a representative, competitive household which con-

tains a worker and a unit measure of bankers.16 The assumption that bankers and

workers live in the same household simplifies the welfare analysis we do when we study

macroprudential policy. Moreover, the fact that a banker is atomistic relative to the

household simplifies the analysis by implying that the banker takes as given the house-

15To save space, the details for the infinite horizon model are reported in Section C in the online
Appendix.

16By a ‘competitive’ agent we mean one that takes all market prices and rates of return as given.
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hold’s intertemporal marginal rate of substitution in consumption.17 In t = 0, bankers

offer short-term (one-period) deposits and use the combination of the deposits and

their own resources to purchase long-term (three-period) assets, capital. Because the

assets are long-term and liabilities are short-term, bankers find it convenient to pay off

at least some of their short term liabilities in t = 1 by rolling over short term debt.

This arrangement can work, but it is also vulnerable to systemic collapse in t = 1 in

the scenario in which depositors refuse to roll over bank liabilities (the annihilation

run state). There is another state in period t = 1 in which banks have positive net

worth and are able to rollover their liabilities and we refer to this as the no run state.

These two states correspond to the two sunspot states analyzed in GK.18 In Section

2.6.1 below we show that there exists a third period t = 1 sunspot state, which we call

a partial run state. In this section we limit our attention to the annihilation and no

run states. All exogenous fundamentals are deterministic.

2.1 Bankers

Bankers are instructed by their households to ‘play by the rules’ and maximize the

present discounted value of profits in period 2. Alternatively, if by running away

with assets in periods t = 0, 1 the banker can bring home even more profits, the

household encourages its banker to do so. We make assumptions which guarantee

that in equilibrium, bankers choose to play by the rules. Random matching between

depositors and banks ensures that the probability a household places deposits in its

own bank is zero.

In the first section we describe notation that is common across states and dates.

Then, we discuss the banker’s only substantive decisions, which occur in periods t =

0, 1. We begin by discussing the banker problem in each of the two possible states in

period 1. Then, we consider the problem of the banker in the first period, t = 0.

17GK assume bankers are risk neutral and that they live separately from households, so we do not
study macroprudential policy in that model. However, Section C in the online Appendix shows that
our results on the fragility of equilibria are similar in the infinite and finite horizon version of the
running away model.

18In the analysis of GK the state in any particular period is composed of a sunspot as well as the
realization of an exogenous shocks to fundamentals. In this paper, fundamentals are deterministic.
Because the agents in GK can differentiate between fundamental and sunspot shocks, our assump-
tion that fundamentals are deterministic simply lets us focus on the pure panic part of a stochastic
equilibrium.
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2.1.1 Notation and Definitions

In equilibrium, each banker is identical.19 The representative banker starts each period,

t = 0, 1, 2, with assets, kbt−1, and liabilities, Rt−1dt−1, acquired in the previous period.

Here, Rt−1 denotes the period t − 1 competitively determined gross return on period

t− 1 bank deposits, dt−1.

A bank’s assets inherited from the previous period, kbt−1, are productive capital with

exogenous, deterministic marginal productivity, Zt, in period t. The model abstracts

from frictions between a banker and the firm she funds. For notational convenience we

follow GK in assuming that a banker simply operates the capital herself. For the most

part, this assumption is benign. However, the assumption complicates the empirical

interpretation of ‘bank leverage’ because here the bank is in effect a combination of a

banker and the firms she lends to.

The banker’s beginning-of-period t net worth, Nt, is as follows:

Nt = max
{

0, (Zt +Qt) k
b
t−1 −Rt−1dt−1

}
, (1)

where Qt denotes the period t competitive price of capital.20 The time t value of assets

is equal to the time t value of liabilities, including net worth:

Qtk
b
t = Nt + dt, (2)

for t = 0, 1. It is convenient to rewrite banker net worth (equation 1) in terms of

leverage, φt−1:

Nt = max
{

0,
(
Rk
t −Rt−1

)
φt−1 +Rt−1

}
Nt−1, (3)

19Actually, our analysis could accommodate the assumption that bankers are heterogeneous if we
assumed they all have the same leverage in the pre-period, t = −1. In this case we can interpret our
analysis as involving the average value of deposits, assets and net worth of bankers.

20Our equation (1) corresponds to GK(eq 11), though we use slightly different notation. In our
notation, Rt−1 corresponds to R̄t in GK (eq 5). According to GK, R̄t denotes the non-contingent
promise made in t−1 to pay gross rate of return, R̄t if no bank run occurs in period t. Like our Rt−1,
R̄t in GK is not contingent on the period t realization of shocks. The return paid to depositors in
GK in case there is a run is xtR̄t, where xt has the properties, (Zt +Qt) k

b
t−1 − Rt−1xtdt−1 = 0 and

0 ≤ xt < 1. The object, Rt in GK (eq. 11) corresponds to our Rt−1xt. Because of the property of
xt, the expression for net worth in our equation (1) coincides with GK (eq 11). In our analysis, our
representation of Nt is slightly more convenient than the representation in GK (eq 11).
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for t = 0, 1, 2, where

Rk
t ≡

Zt +Qt

Qt−1

, φt ≡
Qtk

b
t

Nt

. (4)

Because capital only generates a payoff in the following period, its price in period 2,

Q2, is zero.

At the start of periods t = 0, 1, the banker truthfully announces her deposit and

asset decisions, dt ≥ 0 and Qtk
b
t ≥ 0, subject to equation 2.21 The banker that chooses

to ‘play by the rules’ seeks to maximize the discounted profits that she transfers to her

household in period 2 (in equilibrium, all bankers ‘play by the rules’). Such a banker

attempts to make good on her obligation to repay Rtdt to depositors at the start of the

next period. A banker also has the option to run away in period t with θt of her assets,

Qtk
b
t . If the banker runs away, then the remaining (1− θt)Qtk

b
t assets are destroyed.

A banker who chooses to run away converts θtQtk
b
t into period t consumption goods in

the goods market and brings the goods home to be consumed by her household. After

running away with assets, a banker ceases to be a banker. So, the present discounted

value of absconding with assets in period t is θtQtk
b
t . Because an individual banker is

atomistic, she takes as given the household asset pricing kernel when she makes her

running-away decision.22

When depositors contemplate placing a deposit in a bank, they know the amount

of total deposits, dt, that the bank intends to take. So, the depositor can in effect

see which bank intends to run away and which does not. Depositors avoid banks that

intend to run away because households receive a zero gross return from such a bank

and households have access to a positive return by directly investing in capital (more

on this later). Thus, no depositor would place a deposit in a bank if that bank’s deposit

decision violated the following constraint:

θtQtk
b
t ≤ Vt, (5)

where Vt represents the time t value of being a banker. The fact that depositors avoid

banks which violate equation (5) implies that a decision by a banker to violate equation

21Without the assumption of truthful revelation of d0 the banker problem would not be well defined.
The banker would report a low value of d0 and then bring in unbounded revenues by setting d0 to an
unboundedly large number. In practice, the assumption of truthful revelation is not without merit
because potential creditors do (imperfectly) investigate the balance sheet of potential borrowers before
deciding how much to lend.

22We assume that the individual banker believes all other bankers play by the rules. This belief is
correct in equilibrium.
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(5) is tantamount to choosing dt = 0. The banker already has the opportunity to set

dt = 0 when it plays by the rules. So, there is no loss in simply assuming that the banker

voluntarily self-imposes equation (5), which we refer to as the incentive constraint.

2.1.2 Period t = 1 Banker Problem: Annihilation Run State

We denote values of variables in the period t = 1 annihilation run state by an asterisk,

‘*’. In this state, the price of capital, Q∗1, is so low that

(Z1 +Q∗1) kb0 −R0d0 < 0,

so that, according to equation (1), N∗1 = 0. In this case, households’ period t = 0

deposits in effect are converted into equity and the value of assets are distributed to

them. That is, depositors receive xR0d0, where x denotes the recovery rate on deposits

and

x =
R∗,k1 Q0k

b
0

R0d0

. (6)

For model parameterizations that we consider, x < 1 in the annihilation run state (see

Proposition 1 below).23

With N∗1 = 0 equation (2) implies that Q∗1k
∗,b
1 = d∗1. Let V1 (d∗1) denote the dis-

counted value of net revenues in period 2, conditional on the bank issuing deposits,

d∗1 ≥ 0 :

V1 (d∗1) = βm∗2

[
R∗,k2 −R∗1

]
d∗1.

Here, m∗2 denotes u′ (c∗2) /u′ (c∗1) where c∗2 and c∗1 denote consumption of the represen-

tative agent in the period t = 1 annihilation run state and c∗2 denotes consumption in

t = 2, after the annihilation run state.24 Because the banker is atomistic within the

household, it takes m∗2 as given. Also, β denotes the representative household’s dis-

count factor. Thus, the banker problem can be written as V1 = maxd∗1 V1 (d∗1) subject

to equation (5), or,

V1 = maxd∗1≥0 βm
∗
2

[
R∗,k2 −R∗1

]
d∗1,

s.t. θ1d
∗
1 ≤ βm∗2

[
R∗,k2 −R∗1

]
d∗1.

(7)

Consistent with equation (4), R∗,k2 ≡ Z2/Q
∗
1. The second term in equation (7) is the

banker incentive constraint (see equation (5)).

23Parameter values are discussed in subsection 2.4 below.
24Later (see equation (30) below), we show that c2 = c∗2 is an equilibrium condition of the model.
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The highest level of deposits consistent with the incentive constraint in equation

(7) is d∗1 = 0 if, and only if, θ1 > βm∗2

[
R∗,k2 −R∗1

]
, where βm∗2R

∗
1 = 1.25 Rearranging,

we find that the condition which guarantees d∗1 = 0 to be the only decision consistent

with the incentive constraint is:

R∗,k2 < (1 + θ1)R∗1. (8)

Equation (8) is satisfied for the parameter values we work with in our model.

2.1.3 Period t = 1 Banker Problem: No Run State

We now consider the period t = 1 no run state in which Q1 is high enough that N1 > 0

in equation (1). It is convenient to scale variables by N1 > 0. In particular, let φ1

denote leverage, (N1 + d1) /N1, and let ψ1 denote discounted beginning-of-period 2

profits, scaled by N1. The banker problem in the no run equilibrium is:

ψ1 = maxφ1≥1 ψ1 (φ1)

θ1φ1 ≤ ψ1 (φ1) ,
(9)

where

ψ1 (φ1) = βm2

[(
Rk

2 −R1

)
φ1 +R1

]
. (10)

Here, m2 denotes u′ (c2) /u′ (c1) where c2 and c1 denote consumption of the represen-

tative agent in the period t = 1 no run state and c2 denotes period t = 2 consumption.

The banker takes m2 as exogenous. To understand equation (9), let V1 (d1;N1) denote

unscaled discounted profits in the no run period t = 1 state. Then,

V1 (d1;N1) = βm2N1ψ1

(
N1 + d1

N1

)
= βm2

[
Rk

2 (N1 + d1)− d1R1

]
.

So, the problem in equation (9) is equivalent to the following perhaps more intuitive

representation of the banker problem: maxd1 βm2

[
Rk

2 (N1 + d1)− d1R1

]
subject to

θ1Q1k
b
1 ≤ V1 (d1;N1).

We consider model parameter values which satisfy the restriction, Rk
2 > R1, so

the banker finds it optimal to set φ1 to the maximum allowed by the participation

25In equilibrium, the volume of deposits traded is zero in the t = 1 annihilation run. However, if they
were traded, then the return on deposits, R∗1, would satisfy βm∗2R

∗
1 = 1, where m∗2 = u′ (c∗2) /u′ (c∗1)

and c∗2 is period 2 consumption given that an annihilation run occurred in t = 1.
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constraint. To ensure that this maximum is finite we also require βm2

(
Rk

2 −R1

)
<

θ1,which implies that the slope of ψ1 is not only positive, but flatter than θ1. If, in

addition, the intercept of ψ1 exceeds the intercept of the incentive function, we know

that the maximum allowed by the incentive constraint has the economically interesting

property, 1 < φ1 <∞. To ensure the intercept condition, we require βm2R
k
2 > θ1. Be-

low, we show that household optimality requires βm2 = R−1
1 (see equation (26)), which,

given Rk
2 > R1, guarantees the intercept condition. We summarize the restrictions that

guarantee 1 < φ1 <∞ as follows:

R1 < Rk
2 < (1 + θ1)R1, (11)

where the second inequality is a representation of βm2

(
Rk

2 −R1

)
< θ1, given the

household optimality condition. Under the restrictions in equation (11), we have

φ1 =
R1

(1 + θ1)R1 −Rk
2

, 1 < φ1 <∞. (12)

Figure 1: Condition for Finite Leverage

Leverage, 𝜙1

Value of bank, ψ1

Slope = 𝛽m2(Rk
2-R1)

Value of bank (per unit of net 
worth), as a function of 
leverage.

If 𝛽m2(Rk
2-R1) >  𝜽 1

then infinite leverage 
consistent with participation 
constraint.

Slope = 𝜽1

Participation constraint requires 
that bank have at least this value, 
ψ1=𝜽 1 𝜙1 , for given leverage, 𝜙1.

1

𝛽m2Rk
2

𝜽 1

Equilibrium scaled profits and leverage are not well defined in the annihilation state

considered in the previous subsection because the denominator, net worth, is zero in

that state. Still, for the banker’s t = 0 problem to be well defined, she must be able

to contemplate what would happen for off-equilibrium values of φ0. This includes the

scenario in which she sets φ0 = 1. She would want to do that if the reward of having
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positive net worth in the annihilation run state were large enough, as when P or ψ∗1

are large. When we consider the choice of φ0 in the next subsection, it is convenient

to have defined profits per unit of net worth, ψ∗1, and leverage, φ∗1, in the annihilation

state.

We adopt the following assumption:

Assumption 1. an incumbent banker with positive net worth in an annihilation run

state cannot issue deposits, but can invest its net worth with return R∗,k2 .

By the modifier, ‘incumbent banker’, we mean a banker that was operating in the

previous period. In the three-period model all bankers in period 1 are incumbent. The

modifier matters when we consider the infinite horizon version of this model in the

section C of the online Appendix. Under Assumption 1, equation 10 implies

φ∗1 = 1, ψ∗1 = βm∗2R
∗,k
2 . (13)

One interpretation of Assumption 1 follows GK(page 2024). They suppose that

when almost all banks have zero net worth, households have a hard time differentiating

any small number of bankers that may have positive net worth from the others.26

We adopt Assumption 1 because without it, we had difficulty finding an interesting

calibration for the model in which P is large. Major financial crises are rare in the US

and section 2.4 below explains why we nevertheless think it is interesting to study a

model calibrated to have a high value of P .

2.1.4 Period t = 0 Banker Problem

We only consider the equilibrium in period t = 0 in which N0 > 0. The objective of

bankers in period 0 is the present value of period t = 2 profits. Expressed as a function

26Our assumption here is slightly different from GK(page 2024). As we discuss in section C of
the online Appendix, in their infinite horizon economy a small mass of net worth enters the banking
system via ‘newborn’ bankers. GK(page 2024) assume that these newborns cannot issue deposits and
also do not invest their net worth in an annihilation state. In our three-period model we assume that
in the off-equilibrium event that some bankers have net worth in an annihilation run state, they do
invest their own net worth. We believe that this difference with GK is inessential.
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of period 0 leverage, φ0, and scaled by N0, the banker’s objective is:27

ψ (φ0) = βm1 (1− P )ψ1

[(
Rk

1 −R0

)
φ0 +R0

]
+ βm∗1Pψ

∗
1 ×max

{
0,
[(
R∗,k1 −R0

)
φ0 +R0

]}
. (14)

Here, ψ1 and ψ∗1 denote period 1 discounted profits, scaled by period 1 net worth.28

In equation (14), m1 and m∗1, are functions of consumption analogous to the definition

of m2 and m∗2 above. The banker treats these as exogenous. The objects in square

brackets in equation (14) are beginning-of-period t = 1 net worth, scaled by N0 in

the two t = 1 states. Because ψ1 and ψ∗1 are functions of market prices, the banker

views these as independent of her choice of φ0. The function, ψ : [1,∞) → R, is

piecewise linear and continuous in φ0 because of the max operator in equation (14) and

is represented by the solid line with a kink in Figure 2. The parameter values we choose

for our model imply that the equilibrium has the following (economically reasonable)

properties:

R∗,k1 −R0 < 0, Rk
1 −R0 > 0. (15)

With these properties the piecewise linear ψ function has a positive slope to the right

of the kink, and might have a negative slope to the left of the kink (see Figure 2).

27To see how Equation (14) is derived, consider the scaling of the first term after the equality:

β (1− P )m1
V1
N1

N1

N0
= β (1− P )m1ψ1

[(
Rk1 −R0

)
φ0 +R0

]
,

where equation (3) was used (taking into account that Rk1 > R0) and also, ψ1 ≡ V1/N1.
28The object, ψ1 is ψ1 (φ1) , where ψ1 (·) and φ1 are defined in equations 10 and (12), while ψ∗1 is

defined in equation (13).
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Figure 2: Period t = 0

Leverage, 𝜙!

Value of bank and incentive curve

Slope:  𝛽𝑚" 1 − 𝑃 𝜓" 𝑅"# − 𝑅!

Value of bank (per unit of net 
worth), as a function of 
leverage.

Slope = 𝜃!

Incentive curve, 𝜓 = 𝜃!𝜙!.

1

𝛽𝑚!
∗𝑃𝜓!∗𝑅!

∗,$

𝜃!

𝛽𝑚! 1 − 𝑃 𝜓!𝑅!"

Slope: 𝛽𝑚" 1 − 𝑃 𝜓" 𝑅"# − 𝑅!
+𝛽𝑚"

∗𝑃𝜓"∗(𝑅"
∗,# − 𝑅!)

.𝜙 /𝜙

𝜓( /𝜙)

Notes: (i) the piecewise linear curve with kink at φ0 = φ̂ represents the value of the bank, ψ, as a function of leverage, φ0 ≥ 1; (ii) the

intercept of ψ, ψ (1) , lies below the crossing of ψ (φ0) with the incentive curve, θ0φ0, which occurs at φ0 = φ̃; (iii) the object, φ̂, denotes
the cutoff value for φ0, below which bank net worth is positive during an annihilation run in period 1 (see equation (16)).

Next, we study the constraint on the banker’s leverage choice, θφ0 ≤ ψ (φ0) (see the

solid straight line, θφ0,in Figure 2, referred to as the incentive curve). Let φ̂ denote

the level of leverage associated with the kink in Figure 2:29

φ̂ =
R0

R0 −R∗,k1

> 1. (16)

The value of φ̂ is strictly bigger than unity because of the first assumption in equation

(15). Evaluating ψ at φ̂, we obtain:

ψ
(
φ̂
)

= βm1 (1− P )ψ1

(
Rk

1 −R
k,∗
1

)
φ̂. (17)

From equation (17) we infer that θ0φ̂ < ψ
(
φ̂
)

if

βm1 (1− P )ψ1

(
Rk

1 −R
k,∗
1

)
> θ0. (18)

If the slope of ψ for φ0 > φ̂ is less than θ0, that is,

βm1 (1− P )ψ1

(
Rk

1 −R0

)
< θ0, (19)

29The object, φ̂, is the value of φ0 that solves
(
R∗,k1 −R0

)
φ0 +R0 = 0. This object is discussed in

GK(Appendix A). Here and throughout we take for granted that gross rates of return are are positive,
as is required for equilibrium.
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then we know that ψ crosses the incentive curve at a finite point, denoted φ̃, which is

greater than φ̂. We conclude that:

Lemma 1. Let φ̃ denote the largest value of φ consistent with the banker incentive

constraint. If equations (18) and (19), and the first condition in equation (15) hold,

then

1 < φ̃ <∞.

The banker problem in t = 0 is:

ψ0 = max
φ0≥1

ψ (φ0) , subject to θφ0 ≤ ψ (φ0). (20)

Under the conditions of Lemma 1 this problem is well defined. For the model to be

economically interesting, we require that parameters be such that the banker chooses

to issue a positive amount of deposits in period t = 0, i.e., φ0 > 1 solves the banker

problem. When P or ψ∗1 are large, so that the function, ψ (φ0) , has a ‘V’ shape then,

φ0 = 1 might be the best choice of the banker (see equation 14). The restriction on

market rates of return that guarantees φ0 = φ̃ is the solution to the banker problem is

that the value of ψ at φ0 = 1 be less than ψ
(
φ̃
)

:30

βm1 (1− P )ψ1R
k
1 + βm∗1Pψ

∗
1R
∗,k
1 < ψ

(
φ̃
)
. (21)

We require that equation (21) be satisfied. Note that φ̃ > φ̂ implies that the second

argument to which the ‘max’ operator in equations (1) and (3) is applied is strictly

negative. It follows that in the annihilation state x < 1, where x is defined in equation

(6). We summarize our findings in the form of a proposition:31

Proposition 1. Suppose N0 > 0 and that the equilibrium of the model satisfies the

conditions of Lemma 1 and equations (8), (11) and (21). Then, φ0 = φ̃ is the unique

solution to the banker problem, where 1 < φ̃ <∞. Moreover, x < 1 in equation (6).

30GK(Appendix A) confront an analogous issue in the infinite horizon model and they adopt a
stronger assumption than we do, to guarantee that the analog of φ̃ is the optimal decision of the
banker. They assume that the slope of ψ is positive for φ0 < φ̂. We were not able to find an
economically interesting parameterization for our model that satisfies this constraint and implies a
value of P that is significantly greater than zero. We return to this observation in subsection 2.4 below.
For additional discussion in the infinite horizon version of the running away model, see sections C.1
and C.3 in the online Appendix.

31The proposition does not list the second restriction in equation (15) among its assumptions. This
is because the second restriction in equation (15) is implied by equation (21).

16



2.1.5 Sunspot in Period t = 1

We have described two period t = 1 states. Following GK, we denote the probability

of the annihilation run state by P. The latter probability is assumed to be a function

of X, the aggregate over all banks’ recovery ratios defined in equation (6). Then,

P = max [0, 1−X] . (22)

One interpretation of equation (22) is that it represents a behavioral assumption about

a sunspot which causes agents to coordinate on the no run or annihilation run state.

The assumption that a general run on all banks is more likely if the recovery rate in

the event of a run is low may have intuitive appeal. The fact that P is a function of

the aggregate recovery ratio is the source of a key externality in the model. Obviously,

X - and, hence, P - is a consequence of each bank’s deposit decision, yet each banker

rationally treats P as exogenous to her own decision. Another interpretation of equa-

tion (22) is that it is a reduced form representation of a global games approach. For a

discussion of this interpretation see GK(p. 2031).32

2.2 Households

Households live three periods. In periods t = 0, 1, 2 they can either make one-period

deposits in banks or they can purchase capital. In a first-best scenario, households

would not hold capital because they are inefficient at managing it. However, because

of the financial frictions in the model, it is possible that households might hold capital

anyway. The household’s lifetime utility is given by

u (c0) + βE0 [u (c1) + βu (c2)] , (23)

where ct denotes consumption in period t = 0, 1, 2, and the only uncertainty is whether

or not there is a run in period t = 1. The household’s budget constraints in periods

t = 0, 1 are:

Qt

(
kht − kht−1

)
+ ct + dt + f

(
kht
)
≤ xtRt−1dt−1 + Ztk

h
t−1 + yt, (24)

32See also Ikeda and Matsumoto (2021).
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where xt = 1 for t = 0 and in the no run state in period t = 1. In the annihilation

run state in period t = 1, x1 corresponds to x in equation (6). In equation (24) yt

denotes exogenous income in period t, and kht−1 and dt−1 denote beginning-of-period

t capital and deposits, respectively, held by the household. Also, xtRt−1dt−1 denote

the interest and principal on dt−1 paid by banks to the household in period t. Finally,

kht − kht−1 denotes the quantity of capital purchased at the competitive price, Qt, and

f
(
kht
)

denotes increasing, differentiable and convex management costs associated with

the household’s end-of-period t stock of capital. This management cost is the reason for

the fire sale drop in the price of capital in the annihilation run state.33 The household’s

budget constraint in the final period is:

c2 ≤ R1d1 + Z2k
h
1 +N2,

where N2 denotes profits transferred in lump-sum by bankers (see equation (7)).

The household optimality conditions associated with t = 0 and the no run state in

period 1 are:

u′ (c0) = β [(1− P )u′ (c1) + Pu′ (c∗1)x]R0 (25)

u′ (c1) = βu′ (c2)R1. (26)

Households hold no deposits in the period t = 1 annihilation run state. The optimality

conditions associated with the capital decision in period 0 is:

u′ (c0) = β (1− P )u′ (c1)

(
Z1+Q1

Q0+f ′(kh0 )

)
+βPu′ (c∗1)

(
Z1+Q∗1

Q0+f ′(kh0 )

)
+ µu′ (c0)

µkh0 = 0, µ, kh0 ≥ 0,

(27)

where µ denotes the multiplier on the non-negativity constraint on capital. The opti-

mality condition associated with capital in the no run period 1 state is:

u′ (c1) = βu′ (c2) Z2

Q1+f ′(kh1 )
+ ν × u′ (c1)

νkh1 = 0, ν, kh1 ≥ 0
(28)

33The function, f, is the reason that households are less efficient at holding capital than banks. For
a critical discussion of this assumption, see the ‘second challenge’ for the GK model in footnote 10
above.
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We include multipliers on the non-negativity constraints on capital because these con-

straints could in principle be binding in this model.

In the period 1 annihilation run state, banks sell all their capital, so that kh1 = 1.

For this to be consistent with household optimality, we require

u′ (c∗1) = βu′ (c∗2)
Z2

Q∗ + f ′ (1)
. (29)

2.3 Market Clearing and Aggregate Conditions

Total capital in the economy is fixed at unity. Some of the capital is managed by

bankers (kbt ), the rest is managed by the households directly (kht = 1 − kbt ). Total

resources available for consumption include exogenous income (yt), plus the payoff on

capital (Zt), minus the costs of managing capital faced by households (f(kht )). The

resource constraints are:

ct + f
(
kht
)

= Zt + yt : t = 0, 1

c∗1 + f (1) = Z1 + y1

c2 = c∗2 = Z2 : t = 2

(30)

The first equation describes the resource constraint in period t = 0 and the no run

state in t = 1. The second is the resource constraint in the annihilation run state in

t = 1. The third is the resource constraint in period 2. From these equations we see

that the cost of an annihilation run is that households hold ‘too much’ capital in the

period of the run, t = 1.

2.4 Competitive Equilibrium and Parameter Calibration

We define a competitive equilibrium in our model economy as follows:

Definition 1. A competitive equilibrium is a set of prices and returns,{
R0, R1, R

∗
1, Q0, Q1, Q

∗
1, R

k
1 , R

∗,k
1

}
, and quantities,{

x, P, kb0, k
∗,b
1 , kb1, c0, c1, c

∗
1, c2, c

∗
2, d0, d1, d

∗
1, N0, N1, N

∗
1 , N2, N

∗
2

}
such that

(i) the quantities solve the agents’ problems, given the probability, P , in equation (22),

as well as prices and returns

(ii) markets clear.

In the above definition, it is understood that kht = 1− kbt , for t = 0, 1.
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We now discuss our parameterization of the model. We set technology, Zt, equal to

Z in periods t = 0, 1 and treat Z as a free parameter. Similarly, we treat technology

in period t = 2, Z2, as a free parameter. In addition we set the household endowment

as follows, y0 = y1 = y and treat y as a free parameter, while y2 = 0. We treat the

initial assets and liabilities of bankers in period 0, (R−1d−1, k
b
−1), as free parameters.

The other free parameters are those governing utility, the running-away opportunity

and management costs, β, σ, θ0, θ1, α. The utility function and management cost spec-

ification are given by:

u (c) =
c1−σ

1− σ
, f

(
kh
)

=
α

2

(
kh
)2
. (31)

To ensure that the periods t = 0, 1 problems of the banker be well-defined and

economically interesting in the baseline equilibrium we choose the free parameters so

that equations (8) and (11), as well as the conditions in Proposition 1, hold. In addition,

we want the equilibrium to be characterized by a non-trivial positive value of P . In

the past century, there have been only about 3 serious financial crises in the US, so the

unconditional probability of a crisis is quite low, somewhere in the range of 3 percent.

But, consistent with the spirit of GK, we suppose that (for reasons not explained in

the model) the fundamentals, such as θt, Zt and yt, have taken on values that make

the economy vulnerable to a crisis.

We choose values for the free parameters (see Table 1) to optimize a loss function

defined over all variables and which penalizes violation of the restrictions. The loss

function specifies plausible values for the free parameters as well as for the endogenous

variables in the model equilibrium. We use the adjective, ‘plausible’, loosely. It is hard

to assess the empirical plausibility of parameter values in a three-period model, so at

best the model is useful for its qualitative implications. A list of the model variable

values appears in the first column of Table 2 (all numbers have been rounded). The

exact loss function is described in section A in the online Appendix and in the code

used for the calibration is available in the replication files for this paper.

Consider the parameter values in Table 1, reported after rounding. The discount

factor is close to unity. The risk aversion parameter on utility is slightly bigger than

log. Our values for θ0 and θ1 are somewhat higher than what is reported in the

literature.34 The share of GDP (i.e., consumption) produced by the endowment is

34Gertler and Karadi (2011) and GK use values close to 0.381 and 0.19, respectively.
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roughly 80 percent in periods t = 0, 1.

Table 1: Baseline Parameter Values

β: subjective discount rate 0.91
σ: curvature in utility function 1.37
α: household management cost 0.10
θ1: bank running away parameter, t = 1 0.50
θ0: bank running away parameter, t = 0 0.34
Z: capital productivity, t = 0, 1 0.05
Z2: capital productivity, t = 2 0.09
y: labor income, t = 0, 1 0.22
kh−1: household capital, t = −1 0.19
R−1 × d−1: bank liabilities, t = −1 0.24

Note: these are model initial conditions and parameter values chosen by a calibration procedure described in the text.

The endogenous variables of the model are reported in the first column of Table 2

(the other columns are discussed in the next subsection). There are several

interesting features to note. First, the impact of the annihilation run on the real

economy is substantial. Household consumption in the annihilation run state falls

about 17 percent compared to what it is in the no run state.35 The standard

deviation in the log of period 1 consumption, from the perspective of period 0, is

about 5.6 percent (see σC in the table). Second, the financial consequences of an

annihilation run are also substantial. The price of assets in the annihilation run is

44% of its value in the no run state. Also, depositors lose 10% of what they are owed

by banks in the annihilation run state, compared to the no run state. For the reasons

discussed above, our calibration implies a relatively high value of P, P = 0.10. The

risk premium in the period t = 0 deposit rate is 1.4%. This is the difference between

the actual deposit rate, 7.3%, and what the risk free rate of interest would be if there

were a market in one-period risk free debt.36 The gross return on capital in the

35Subject to the caveats mentioned above about comparing our model with data, it is interest to
compare this drop to the drop in consumption in the 2008 US financial crisis. In particular, from
August 2008 to April 2009, US personal consumption expenditures dropped by 4 percent. In this
sense the drop in the model is relatively large.

36The period 0 risk free interest rate is 100
[
(E0βm1)

−1 − 1
]
. For comparison, consider the TED

spread, the difference between what banks pay for loans in the interbank market over the presumably
safe rate paid by the US government. Before the 2007-2008 crisis, that rate averaged roughly 0.3
percent (APR), but rose to roughly 4% (APR) at the peak of the crisis in Fall, 2008. Given the
relatively large drop in consumption, the relatively small risk premium in the model presumably

21



annihilation run state is nearly double what it is in the no run state.

Third, the results in the first column of Table 2 provide one way of illustrating the

sense in which the existence of an annihilation run state is fragile in the three-period

model. Financial frictions underlying the incentive constraint are very weak in such a

state. This is because, absent Assumption 1, any banker with non-zero net worth has

an enormous debt capacity in an annihilation run. To see why, suppose Assumption 1

applies to all bankers except one, and that that banker finds herself in an annihilation

run with positive net worth. Evaluating equation (12) at the values of R∗1, R
∗,k
2

reported in the first column of Table 2, we find that the exceptional banker’s maximal

amount of leverage is 756 in the t = 1 annihilation run state. Exploiting this

extraordinarily high debt capacity, the per-unit-of-net-worth value of banking in the

annihilation state for the exceptional banker is equal to 375. This value is two orders

of magnitude higher than the value, ψ∗1 = 1.5, that she would enjoy if she had net

worth, but did not exploit her debt capacity at all by setting deposits to zero in the

annihilation run state.37

The value of having net worth in the annihilation run state when Assumption 1 is not

imposed is so high that the exceptional banker focuses exclusively on that state in

period t = 0. To maximize her net worth in the annihilation run state she issues zero

debt in t = 0.38 The enormous debt capacity this creates in the annihilation state

implies that the period 0 value of banking per unit of net worth is 32. This is an

order of magnitude greater than ψ0 = 1.1612, the corresponding value of banking

when Assumption 1 is imposed (see Table 2).39 Evidently, if we drop Assumption 1,

the numbers in Table 2 do not satisfy the optimality conditions of a banker and so

they do not constitute an equilibrium (see Definition 1).40 The existence of the

annihilation run state is fragile in that a small change in the model that is not

reflects the well-known difficulty of models with a utility function like ours to deliver empirically
reasonable premia.

37The object, ψ∗1 , is defined in equation (13).
38An alternative to Assumption 1 is to suppose that a banker with positive net worth in an anni-

hilation run faces convex costs for issuing new deposits in that state. Like Assumption 1, this would
reduce the profitability of net worth in an annihilation run. It would therefore also reduce the incen-
tive of a banker to cut back on deposits in t = 0 with the objective of preserving net worth in case a
run occurs in t = 1.

39For the definition of φ̃ recall Lemma 1.
40GK(Appendix A) do not adopt Assumption 1 and explain why the annihilation run state is nev-

ertheless part of an equilibrium in their infinite horizon model. Below, we argue that the annihilation
run is nevertheless fragile in their model for other reasons.
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motivated by the logic of the model itself (i.e., dropping Assumption 1), destroys the

equilibrium. We return to this theme in the material below.

Table 2: Baseline and the Alternative Leverage Restriction Equilibrium

Baseline Policy (Good) Change (%) Policy (Bad) Change (%)

φ0 3.4116 3.3434 -2.0000 3.3434 -2.0000
φ1 2.2485 2.2540 0.2453 2.5960 15.4580
ψ0 1.1612 1.1954 2.9412 1.9599 68.7785
ψ1 1.1157 1.1184 0.2453 1.2881 15.4580
c0 0.2752 0.2750 -0.0687 0.2643 -3.9652
kb0 0.9548 0.9229 -3.3475 0.5227 -45.2538
kb1 0.8091 0.8054 -0.4658 0.6204 -23.3287
c1 0.2735 0.2734 -0.0257 0.2683 -1.9030
c∗1 0.2269 0.2269 0.0000 0.2269 0.0000
c2 0.0890 0.0890 0.0000 0.0890 0.0000
Q0 0.3649 0.3623 -0.7227 0.2958 -18.9405
Q1 0.3587 0.3582 -0.1386 0.3307 -7.8202
Q∗ 0.1953 0.1953 0.0000 0.1953 0.0000
x 0.8982 0.9113 1.4641 1.0680 18.9084
P 0.1018 0.0887 -12.9170 0.0000 -100.0000
R0 1.0733 1.0746 0.1217 1.1230 4.6344
R1 0.2360 0.2361 0.0352 0.2423 2.6693
R∗1 0.3048 0.3048 0.0000 0.3048 0.0000
Rk

1 1.1292 1.1361 0.6064 1.2982 14.9671

R∗,k1 0.6815 0.6864 0.7279 0.8407 23.3662
Rk

2 0.2481 0.2484 0.1388 0.2692 8.4836

R∗,k2 0.4556 0.4556 0.0000 0.4556 0.0000
d0 0.2463 0.2343 -4.8580 0.1084 -55.9986
d1 0.1612 0.1605 -0.4089 0.1261 -21.7453
N0 0.1021 0.1000 -2.0877 0.0462 -54.7174
N1 0.1291 0.1280 -0.8470 0.0790 -38.7868
σC 5.6445 5.2985 -6.1304 0.0000 -100.0000

Risk Premium 1.3954 1.0631 -23.8131 0.0000 -100.0000
Welfare -13.8091 -13.8068 0.1417 -13.8743 -3.9311

Notes: see text for discussion of the variables.

2.5 Macroprudential Policy

We impose a leverage restriction in period 0, so that bankers must satisfy:

Qtk
b
t

Nt

≤ κ.

If κ is large enough, then the constraint is not binding because bankers already self-

impose a leverage constraint (recall equation (20)). The leverage constraint is moti-

vated by the fact that the probability of the period 1 run state, P, is determined by the
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aggregate recovery ratio, X. Individual bankers ignore the impact on P of their lever-

age choice and the purpose of the leverage constraint is to get them to internalize that

impact. A high value of P has the undesirable consequence of increasing the likelihood

that the run state occurs, resulting in a misallocation of capital between banks and

households. We set κ so that the constraint is binding and forces banks to hold 2% less

leverage than they do in the baseline equilibrium discussed in Section 2.4. Numerical

calculations suggest that this is roughly the Ramsey-optimal leverage restriction.41

2.5.1 Equilibrium with Leverage Restriction

We do a systematic search to identify all equilibria associated our leverage restriction.

To do so we vary kh0 on a fine grid, K, of equally-spaced points on the unit interval.

The grid includes kh0 = 0. For each value of kh0 we compute the equilibrium of the

economy, ignoring the household Euler equation, equation (27), associated with the kh0

decision. Figure 3 graphs an error function, g
(
kh0
)
, associated with equation (27):

g
(
kh0
)

= 1−

[
β (1− P )

u′ (c1)

u′ (c0)

(
Z1 +Q1

Q0 + f ′
(
kh0
))+ βP

u′ (c∗1)

u′ (c0)

(
Z1 +Q∗1

Q0 + f ′
(
kh0
))] . (32)

For each value of kh0 in K we use the equilibrium conditions other than equation (27)

to solve for c0, c1, c
∗
1, Q0, Q1, Q

∗
1, P. The first term, unity, on the right of the above

expression is the marginal cost (in period 0 goods units) of consumption. The term in

square brackets is the corresponding marginal benefit, also measured in period 0 goods

units. The function, g, is graphed over its domain, [0, 1] , in Figure 3. According to

equation (27) the multiplier, µ, is zero for kh0 ∈ (0, 1]. At kh0 = 0, the multiplier is

µ = g (0) and the Euler equation, equation (27), holds because µ > 0 and µkh0 = 0 (see

Figure 3).

So, the household Euler equation holds at three values of kh0 : 0, 0.08, 0.48. These

points constitute candidate equilibria for the model. However, kh0 = 0 turns out not

to be an equilibrium because kb0 = 1 − kh0 = 1 does not satisfy the bank incentive

constraint in equation (20). All banker incentive constraints are satisfied at the other

two candidate equilibria and hence these are actual equilibria of the model.

41Caveat: we only did a local search for the leverage restriction that has the best (i.e., Ramsey)
equilibrium associated with it.
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Figure 3: Euler Equation Error in t = 0, leverage restriction imposed
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Note: See equation (32) for a definition of the function, g. We explain that the household Euler equation, equation
(27), is satisfied for three values of kh0 : 0, 0.08, 0.48. However, only the second two points are consistent with the
banker problems being well-defined. kb0 = 1− kh0 = 1 violates the bank participation constraint in equation (20). The
points, kh0 = 0.08 and kh0 = 0.48 correspond to the equilibrium described in the ‘policy’ column in Table 2.

Consider the second column of numbers in Table 2. This corresponds to the lower of

the two equilibrium values of kh0 in Figure 3 (see column heading, ‘Policy (Good)’). The

third column compares the latter equilibrium with the benchmark equilibrium (‘Change

(%)’). We measure the impact of leverage on welfare as the percent increase in baseline

consumption, c0, required to equate welfare in the baseline equilibrium to welfare in the

equilibrium with the leverage constraint.42 Evidently, the leverage restriction increases

welfare by 0.14%. The table indicates that banks respond by reducing deposits by

nearly 1 percent (recall, deposits = (φ− 1)N). Bank assets, kb0, go down by 3% and

their price, Q0, falls by a small amount, roughly 1 percent. The recovery ratio rises

and the probability of crisis falls by one percentage point, from 10% to 9%. The table

indicates that there is virtually no impact on consumption of the leverage restriction

so that the primary reason that welfare increases is that P falls.

The fact that there is a second equilibrium associated with the leverage restriction

illustrates the well-known fact that unique implementation of the Ramsey equilibrium

42Let W (c0) denote discounted utility of the representative household in the baseline equilibrium,
where the notation indicates the equilibrium value of c0 (see equation (23) for the definition of wel-
fare and the first column of Table 2). Let Wp denote welfare in an equilibrium that satisfies the
leverage restriction. We define the rise (fall, if negative) in welfare by solving for ∆ in the equation,
W (c0 (1 +∆)) = Wp. The table reports 100∆.
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may be a problem. Table 2 shows (see last column) that welfare in the kh0 = 0.48

equilibrium is lower than in the baseline equilibrium. Interestingly, in this second

equilibrium P = 0, so that the financial system is completely stabilized. Because the

equilibrium results in lower welfare it also illustrates the ‘dark side’ of regulation. While

regulation might reduce risk, it may simultaneously result in an inefficient allocation

of capital.

In sum, it is apparent that there are two ways to reduce leverage by 2%. One

increases welfare and is associated with a small reduction in kb0 and Qb
0. The other

produces large reductions in kb0 and Qb
0 and reduces welfare. To gain intuition into

this result, it is convenient to focus on leverage, φ1, in the no run state in period 1,

instead of φ0. This change simplifies the intuition because we hold the period 0 values

of variables fixed at their baseline values, thus reducing the number of equilibrium

conditions that need to be considered. The period 1 Euler equation of the household

(see equation (28)) is:

Q1 = β
u′(c2)

u′(c1)
Z2 − αkh1 = βZ1−σ

2 (Z1 + y − α

2

(
kh1
)2

)σ − αkh1 . (33)

The second equality makes use of our specification of utility as well as the period

t = 1, 2 resource constraints (see equations (30)). The key thing to note about the

above expression is that Q1 is decreasing in kh1 and, most importantly, it decreases at

an increasing rate because of the convexity of management costs.43 The next important

relation is the definition of leverage:

φ1 =
Q1(1− kh1 )

N1

=
Q1(1− kh1 )

(Z1 +Q1)(1− kh0 )−R0d0

=
1

1− kh0 +
Z1(1−kh0 )−R0d0

Q1

(1− kh1 ).

(34)

The first equality uses the definition of bank leverage and the fact that kb1 = 1 − kh1 .

The second equality uses the law of motion of period t = 1 net worth. The term,

Z1(1 − kh0 ) − R0d0, is what net worth would be in period t = 1 if the value of capital

were zero in that period. This term is negative in both the annihilation run and no

run states.

Equation (34) shows that an increase in kh1 (i.e., decrease in kb1) has two effects on

leverage: a direct effect (the quantity channel) holding Q1 constant and an indirect

43Note from equation (33)) that dQ1/dk
h
1 < 0 increases in absolute value as kh1 increases.
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effect (the price channel) which operates via the change in Q1 induced by a change in

kh1 .44 The quantity channel clearly reduces leverage, φ1. The price channel operates

because a rise in kh1 requires that Q1 be lower (equation (33)). The price channel

implies that, other things the same, a fall in Q1 drives φ1 up (equation (34)).45

The convexity of management costs amplifies the price channel when kh1 is high and

reduces it when kh1 is small. To see why this nonlinearity can contribute to multiplicity

of equilibria under a leverage constraint, consider Figure 4. This displays the values

of φ1 corresponding to a range of values of kh1 . Suppose that in the absence of policy,

kh1 takes on a low value, say 0.05. Suppose a leverage restriction leads to a reduction

in bank assets, and an increase in kh1 . Note that while kh1 is still small the quantity

channel initially dominates the price channel, so that the fall in kb1 leads to a fall in

φ1. As kh1 increases further, however, the price channel dominates and φ1 begins to

rise. Thus, there are two ways that one can obtain a given decline in φ1 starting from

kh1 = 0.05. One is via a small rise in kh1 (i.e., a small fall in kb1) and the other is via a

large rise in kh1 (a larger fall in kb1). This pattern is similar to what we see in Table 2

which displays the impact on equilibrium of a binding restriction on φ0. In that table

there are two equilibria: in one, kb0 falls a small amount and in the other kb0 falls a

large amount. Consistent with the simple intuition described here, the impact on Q0

is smaller in the first case than it is in the second.

44Note that a change in the value of kh1 directly affects Q1 via equation (33). Then, kh1 and Q1

jointly affect φ1 via equation (34). Recall that we hold the period 0 variables fixed at their t = 0
values in the baseline equilibrium.

45Here, we use the fact that
(
Z1(1− kh0 )−R0d0

)
< 0 in the third equality in equation (34).
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Figure 4: φ1 as a function of kh1
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Notes: (i) φ1 is determined by solving equations (33) and (34) for a range of values of kh1 ; (ii) see footnote 44 and text
for discussion.

2.5.2 Implementation

In our example, a leverage restriction can induce a bank to internalize the effect of

banker leverage on the fragility of the system. In the ‘good’ equilibrium that satisfies

the leverage restriction, deposits are slightly lower and welfare increases. However, the

same leverage restriction is also consistent with a ‘bad’ equilibrium, in which deposits

fall significantly and households hold a much higher level of capital, which lowers welfare

because of increasing management costs.46 The objective of good macro prudential

policy is not only to identify the Ramsey optimal policy, but also to design policy in

a way that ensures that the Ramsey equilibrium is the only equilibrium. In our model

this implementation problem can be achieved by coupling the leverage restriction with

a particular tax on household capital holdings. Households pay τ ×
(
kh0 − k̄

)
, where

k̄ denotes capital holdings in the desired equilibrium. The proceeds of the tax are

redistributed back to the household in the form of a lump-sum transfer. Figure 5 plots

the Euler equation errors for three levels of tax. A 12.5% tax on household capital

holdings achieves a unique good equilibrium. Note that with τ = 0 we reproduce the

multiple equilibrium result in Figure 3. As τ increases, the Euler error function rotates

and eventually the curve cuts the zero line only once. With this tax, we eliminate the

46It would be interesting to systematically explore whether there are other simple policies which
encourage banks to internalize externalities and which are not associated with more than one equilib-
rium.
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‘bad’ equilibrium.47

Figure 5: Euler Equation Error in t = 0, leverage restriction imposed
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Notes: (i) for discussion, see subsection 2.5.2; (ii) the τ = 0 curve coincides with the curve in Figure 3.

2.6 Fragility of Equilibrium to Entry Costs in the Running

Away Model

This section reports two results. First, generically there are three states in t = 1.

In addition to the annihilation and no run states, there is also a partial run state in

which the net worth of the banking system is only partially wiped out. The economic

intuition for this finding is made transparent by transforming the model into a game.

Second, we show that the annihilation run equilibrium is very sensitive to assumptions

made about entry. The model assumes that entry is not possible during annihilation

run, and we show this requires what appears to be implausibly large entry transactions

costs. Thus, in this model the no-entry assumption appears implausible. However,

if the no-entry assumption is dropped, then the annihilation run does not occur in

equilibrium.

47Our policy emphasizes a second potential pitfall associated with implementing a Ramsey equilib-
rium that was emphasized in Diamond and Dybvig (1983) and generalized by Bassetto (2005) (see
also Atkeson et al. (2010)). In particular, the tax policy that the government uses to nudge the econ-
omy towards the good equilibrium must be feasible in case the bad equilibrium allocations were to
occur. Diamond and Dybvig (1983)’s discussion illustrates this point in a particularly simple way:
for deposit insurance to successfully rule out a run equilibrium, the deposit insurance program must
have sufficient funds in case a run were to occur. Our policy for uniquely implementing the Ramsey
equilibrium is feasible in all states of the world and so does not exhibit the second potential pitfall
discussed here.
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The findings just summarized apply to the calibrated three-period version of the

running away model. Calibration of a three-period model is always problematic, and

so it is natural to ask whether similar results apply in the infinite horizon version of

the model calibrated in GK. The answer is, ‘yes’. In fact, in the infinite horizon model

fragility even greater than what we find in the three period model. This is because in

the infinite horizon one has to assume that new bankers (‘newborns’) arrive in each

period to replace a small fraction of incumbent bankers who are removed. In GK it

is assumed that newborns who arrive when there is an annihilation run, do not enter

banking for one period. Consistent with our finding about the importance of entry in

the three period model, we show that if the no-entry assumption is dropped and new-

borns can enter during an annihilation run, then that run cannot be an equilibrium. In

addition, given our game-theoretic approach we can examine alternative assumptions

about newborns: how many newborns enter and under precisely what circumstances

do they enter? We find that, depending on the assumptions made, a large range of

equilibria is possible. As in the three-period model one can have three states: an anni-

hilation run state, a partial run state and a no run state. There are other possibilities

too. These include that there is no annihilation run, and only partial runs of varying

intensity. Since the infinite-horizon model has many details, and the basic findings

about fragility are similar to what we find in the three-period model, we save space by

reporting the results of the infinite-horizon model in section C in the online Appendix.

2.6.1 Partial Run

An individual banker’s period t = 1 deposit decision is a function of her net worth,

N1, while the key determinant of N1 is the price of capital, Q1.
48 But, Q1 must clear

the capital market and so is determined by the collective deposit decision of the mass

of other bankers. Because all bankers make their deposit decision simultaneously and

without communication, no individual banker can actually see Q1. Instead, they must

form a belief about Q1, which is tantamount to forming a belief about the deposit

decision of other bankers.49 In this way, an individual banker’s deposit decision, d1,

can be represented as a best response to D1, the decisions of all the other bankers. This

48The other variables, Z1, k
b
0, R0d0, required to determine N1 are predetermined in t = 1.

49In the market equilibrium of the model in Definition 1 it is simply assumed that agents know
objects like Q1, while sidestepping the question of how agents come to have this knowledge. There is
a voluminous literature on this question and our analysis proceeds in the spirit of the strand started
in macroeconomics by Guesnerie (1992).
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is how a banker making her period t = 1 deposit decision before the market for deposits

and capital has met and cleared, might find herself in the position of a player in a large,

simultaneous-move, non-cooperative game against the mass of other bankers.

We take as given the date t = 0 variables. Given a decision, d1, by an individual

banker and the average decision, D1, by the other bankers, there is a well-defined payoff

for the individual banker. This payoff is determined by the values of Q1, N1, R
k
2 and R1

in the continuation equilibrium implied by each value D1.
50 To determine the values of

Q1, N1, R
k
2 , R1, the individual banker performs computations conditional on the given

values of the period t = 0 variables, as well as D1. In particular, the banker computes

all aggregate variables that, with one exception, solve the t = 1, 2 market equilibrium

conditions. The exception is that the list of equilibrium conditions imposed does not

include the condition associated with D1 itself (i.e., the incentive constraint). In effect

the individual banker asks a series of ‘what if’ questions: ‘what would my best response

be if D1 were to take on this value or that value?’

In contemplating what her best response to a particular value ofD1 is, the individual

banker does not ask why other bankers would choose that value of D1.51 Relatedly,

we also assume that if the continuation equilibrium given D1 causes other bankers’

incentive constraints to be violated, the other bankers do not run away with their

assets. Market rates of return adjust so that the markets clear in the continuation

equilibrium and households supply D1 deposits.

In determining her own best response to D1 the individual banker asking the ‘what

if’ question carefully pays attention to her own incentive constraint. In a Nash equi-

librium (i.e., D1 such that d1 (D1) = D1) all bankers satisfy their incentive constraint.

Let d1 (D1) denote the banker’s best response to D1. According to equation (12):

d1 (D1) =
Rk

2 (D1)− θR1(D1)

(1 + θ)R1(D1)−Rk
2 (D1)

N1 (D1) , (35)

where ζ (D1) denotes the value of ζ in the continuation equilibrium, for ζ = Rk
2 , R1, N1.

Here, the incentive constraint, equation (11), requires that the numerator and denom-

inator are both positive. Below, we verify that these incentive constraints are satisfied

50We make heavy use of the concept of a continuation equilibrium. This concept coincides with the
one used in Atkeson et al. (2010)’s definition of concept of a sophisticated equilibrium.

51However, with her best response function in hand a banker can potentially use rationality and
common knowledge to determine that some values of D1 can be deleted from further consideration
by the individual banker on the grounds of not being ‘rationalizable’ (see, e.g., Bernheim (1984) and
Pearce (1984)).
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in our numerical example for all D1 considered. The Nash equilibria of the game

correspond to equilibria of the market economy.52

The 1,1 panel of Figure 6 plots the best response function of an individual banker.53

Best response functions cross the 45-degree line at three distinct points. Two of the

points coincide with the time t = 1 no run and annihilation run equilibria in the

baseline model.54 The complementarity between bankers’ deposit decisions can be

seen in the positive slope of the best response function in the 1,1 panel of Figure 6.

This complementarity operates via the positive response of Q1 and N1 to an increase

in D1 (see panels 1,2 and 1,3).

52The reason for this is that the one equilibrium condition that is ignored in the continuation
equilibrium associated with D1 is the first order condition for deposits. For D1 with the property,
D1 = d1 (D1) , that first order condition is satisfied.

53By assumption, each banker has the same amount of net worth, so it makes no difference which
banker we look at.

54See, e.g., the first column of numbers in Table 2.
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Figure 6: Individual Banker Best Response Function
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Notes: (i) For discussion, see subsection 2.6.2. (ii) The 1,1 panel describes the best response function, d1 (D1). The

function, d1 (·), is continuous throughout the range of values of D1 displayed. We document this by displaying dots on

a very fine grid of D1’s. Note the small number of visually distinct dots in the neighborhood of the partial run state

(the middle crossing), indicating that the curve is continuous there, though very steep. (ii) The 2,2 panel had to be

truncated for scale reasons. (iii) The stars indicate the Nash equilibria, which correspond to market equilibria which

are, from left to right: the annihilation run, the partial run and the no run states. (iv) Model parameter values are

reported in Table 1 and endogenous variables in the annihilation run and no run states are reported in the first column

of Table 2.

The third Nash equilibrium in Figure 6 is what we call a partial run state, where the

price of capital is low, but not so low that banker net worth is wiped out. In the partial

run state, bankers cannot pay off all of R0d0 by rolling over their deposits so they must

also sell some of their capital. The partial run state is part of a general equilibrium

of the three-period model in the sense of Definition 1 if we assign it a zero probability

from the perspective of period t = 0. By continuity, the equilibrium allocations would

be similar if the probability of a partial run were positive, but sufficiently small.

Crucial features of the model that account for the third crossing of d1 (D1) with

the 45o line are (i) the continuity of the best response function, (ii) the fact that in

our baseline equilibrium x < 1 and (iii) the convexity of the household management

costs (see equation (31)). Condition (ii) explains why the best response function is
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flatter than the 45o line for D1 small: a substantial rise in Q1 is required for bankers

to have positive net worth, so that as D1 increases a small amount above zero, net

worth remains zero and the individual banker continues to best respond by setting

d1 = 0. Condition (iii) explains why the best response function cuts the 45o line from

above at the no run equilibrium. As households hold a smaller fraction of the stock

of capital (panel 2,1), the convexity of management costs imply that those costs exert

a vanishingly small effect on the market price, Q1 (see the concavity in Q1 in panel

1,2).55 As a result, further increments in D1 lead to only a small increase in Q1 and

N1 and, hence, d1. Finally, since the best response function lies below the 45o line for

low D1 and that function crosses from above the 45o line for high D1, (i) then implies

that there must be a middle crossing, as we see.

The discussion in the previous paragraph provides an indirect explanation for the

existence of the third, middle equilibrium. Two features of the model provide a direct

explanation for why d1 (D1) rises so sharply for values of D1 just barely large enough

that banker net worth becomes positive. First, the sharp rise can be explained in part

by condition (iii). When D1 is low and households hold a large proportion of the capital

stock the convexity in management costs plays a big role by making Q1 very sensitive

to D1.56 The sensitivity of Q1 to D1 implies that N1 is also sensitive to D1, which in

turn helps explain why d1 (D1) is steeper than the 45o line in a neighborhood of the

partial run equilibrium.

The second model feature that directly explains the existence of the middle equilib-

rium in the 1,1 panel of Figure 6 is the nonlinearity in the leverage decision of bankers,

equation (12). With a fall in D1, Rk
2 rises because Q1 falls, as noted above and reported

in panel 1,2. According to the 2,3 panel in Figure 6, Rk
2 rises towards (1 + θ)R1 as D1

falls, so that leverage is extremely high for small D1 (see the 2,2 panel).57 Of course,

if net worth is zero this does not translate into a high level of borrowing by banks.

However, as soon as N1 becomes positive, the fact that leverage is so high ensures that

bank borrowing rises sharply.

55See Footnote 43
56See Footnote 43 and recall the concavity of Q1 in panel 1,2 of Figure 6.
57The 2,2 panel had to be truncated for scale reasons, for low values of D1.
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2.6.2 Interpreting the No Entry Assumption in Annihilation Run as an

Entry Cost

Recall that we imagine ‘banks’ in the model are just one sector of the financial system

and that ‘households’ in the model are a reduced form combination of both actual

households as well as all the other sectors in the financial system. Suppose the banks

experience an annihilation run and consider a financial institution from another sector

of the financial system which is well known and easily distinguished from the banks

experiencing the rollover crisis. In addition, we might suppose that that financial

institution is from a sector of the financial system that is ‘close’ to the one experiencing

the run, in the sense that expertise in one sector of the financial system is reasonably

transferrable to the other.58

In our model entry into a sector of the financial system experiencing a rollover crisis

is ruled out by assumption. In this section we calculate the entry cost which would

rationalize our no-entry assumption. We find that the entry cost is very large, possibly

orders of magnitude larger than what is empirically plausible.

Recall from the discussion in section 2, that financial frictions are very weak in an

annihilation run. In particular, a banker with positive net worth that enters an industry

experiencing a rollover can obtain an enormous amount of leverage, φ∗1 = 756.59 Net

worth in the no run equilibrium is N1 = 0.129,60 and suppose that just 0.3 percent of

that amount of net worth enters in the annihilation run. That small amount of net

worth could support roughly the assets held by banks in the no run equilibrium.61 In

particular,

net worth in no run equilibrium︷ ︸︸ ︷
0.129 ×

fraction of no run equilibrium net worth entering︷ ︸︸ ︷
0.003 ×

leverage︷︸︸︷
756 = 0.29,

which, after rounding, comes close to d1 + N1 in the no run equilibrium (see Table 2,

first column).

That the annihilation run could be destroyed by such a small change in assumption

58An example of two sectors of the financial system that may be ‘close’ may be the sector that deals
in car loans and the sector that deals in home mortgages.

59To obtain this value of φ∗1 we evaluate equation (12), replacing R1 and Rk2 with R∗1, R
∗,k
2 , respec-

tively, from Table 2 column 1.
60See N1 in the first column of Table 2.
61In the model, the net worth could be injected by giving it to one of its bankers.
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about entry poses a severe challenge for this environment as a theory of rollover crisis.

The return on equity in a period 1 annihilation run is ψ∗1 = θ1φ
∗
1 by the incentive

constraint evaluated at equality (see equation (13)). Thus, with θ1 = 0.5, we have that

the rate of return per dollar of equity in the annihilation run is extremely high:

ψ∗1 = 0.5× 756.

That is, if a banker enters an annihilation run with $1 of equity, that dollar generates

a return, in present value terms, of ψ∗1 = $378. So, the cost of entry would have to

be $378 or more, per one dollar of equity issued, in order to rationalize the no entry

assumption. We suspect that this is implausibly large, by orders of magnitude.6263

If the new entering banker had little expertise in banking because they come from a

sector not very ‘close’ to the sector experiencing the annihilation run, that banker’s

lack of expertise would have to be extreme.

3 Rollover Crisis: Hidden Effort Model

In the model of Section 2, the assumption that the banker can run away with assets

limits the amount of credit she receives. This section considers the Christiano and Ikeda

(2016) (CI) model in which bankers exert costly effort to improve the performance of

their balance sheets. The financial friction stems from the assumption that that effort

is unobservable. This friction provides an alternative reason why a banker’s net worth

limits the amount of credit it receives.

We exploit a feature of the analysis in Section 2 to sharply narrow our focus here.

In section 2.5, we studied two leverage questions: do leverage restrictions improve wel-

fare? If ‘yes’, then how do we implement the desired equilibrium with lower leverage?

Answering these questions required computing the entire equilibrium for all three pe-

riods, because we wanted to study the effects of a leverage restriction put in place in

‘normal times’ before a rollover crisis has occurred. Section 2.6 studied rollover crisis

questions : when banks use short term liabilities to finance long term assets, are there

multiple equilibria in which lenders supply various amounts of credit and how do these

62To obtain the $1 of equity from a household would require paying the household’s opportunity
cost, R∗1 = 0.3048. So, technically the return on issuing equity is $378−$0.3048 ' 378, after rounding.

63Our analysis is consistent with the findings in Gertler et al. (2020b). They do allow banks to issue
equity, but not during a run (see their equation 23).
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equilibria depend on assumptions about banker entry?

We do not explore the leverage questions in the hidden effort model considered here.

In part this is because the desirability of leverage restrictions in the hidden effort model

has already been shown in CI.64 Instead, we explore only the rollover crisis questions.

We show that the conclusions of the previous section are robust to the different financial

friction that we work with here (unobserved banker effort). In particular we find that:

(i) generically, there is an odd number of equilibria in which there is not only an

annihilation and a no run equilibrium, but there is also a partial run equilibrium;

and (ii) whether there is any equilibrium apart from the no run equilibrium depends

delicately on what one assumes about banker entry during an annihilation run.

In the previous section, we found that the essence of (i) and (ii) can be studied

simply by considering period 1 before that period’s price of capital is determined.

We take as given the assets and liabilities of banks inherited from period 0, without

discussing how they were determined. In this way, we are able to discuss the rollover

crisis arising from a maturity mismatch on bank balance sheets in what is effectively

a static model. The essence of the maturity mismatch is captured by the assumption

that the value of a bank’s assets is determined simultaneously with the bankers’ deposit

decision.

The following subsection describes the banker problem in the model. Subsection

3.2 briefly reviews the households and market clearing conditions, which are similar

to those conditions in the running away model in subsection 2. In subsection 3.3 we

provide the definition of equilibrium, discuss our calibration of the model parameters

and display the three equilibria of the model: annihilation run, partial run and no-

run. Subsection 3.4 discusses the economics of the three equilibria by transforming the

market equilibria into the Nash equilibria of a game. That allows us to make points

(i) and (ii).

3.1 Bankers

The first subsection describes how the banker selects a credit contract in a competitive

market. The second subsection summarizes the properties of the contract chosen by

the banker, across a range of values for net worth and other variables outside of the

banker’s control.

64CI do not consider rollover crises, so the case for leverage restrictions when a rollover crisis is
presumably greater in their model.
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3.1.1 The Banker’s Problem

We assume that a unit mass of bankers lives in a representative household. At the start

of period t = 1, the representative household averages the net worth of all its bankers

that were operating in t = 0 and distributes the proceeds equally to each banker.

Bankers interact in competitive markets with mutual funds, where they receive a loan

contract. The period t = 1 net worth, N, of a banker is the analog of equation (1):

N = max
{

0,
(
Ẑ +Q

)
kb0 − L0

}
, (36)

where L0 corresponds to the beginning-of-period t = 1 liabilities of bankers. Also,

Ẑ denotes the average, across bankers, of the productivity of t = 0 capital, kb0. The

details of how the liabilities, L0, break down into deposits and interest are immaterial

here. The variables, Ẑ, kb0 and L0, are state variables at time t = 1 and are the same

for each banker because of the way net worth is distributed at the start of the period.

In this section we avoid notational clutter by deleting the time subscript when t = 1.

Bank assets in t = 1 can either be highly productive and have gross return, egZ, or

be less productive and have gross return, ebZ, where g > 0 > b. By exerting an effort,

e, bankers are able to increase the probability, p (e) , that the bank’s capital is highly

productive, where

p(e) = ā+ b̄e, 0 ≤ e ≤ 1− ā
b̄
− ε. (37)

We use lower case p to differentiate the probability in equation (37) (which refers to a

random variable that is idiosyncratic to an individual bank) from the probability, P,

of a run in the running away model. Because we do the analysis in period t = 1, there

is no aggregate uncertainty. In equation (37), 1 − ā, ā, b̄ > 0 and ε > 0, but small.

Although capital is long-lived, effort in a particular period affects the productivity of

all the bank’s capital in that period, including any part, kb0, of the bank’s capital that

it still owns in period t = 1. We interpret e as a combination of skill in discriminating

between good and bad entrepreneurs, as well as the ability of the bank to exert on-going

influence over the operations of the entrepreneur via various types of covenants. These

factors are captured in a reduced-form way in the model which uses the analytically

convenient device of supposing that the banker itself operates projects. In the latter

respect, the model takes the approach in the running away model in the previous
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section.

According to equation (37), the banker does not have the ability to set p = 1.

This ensures that, regardless of the (feasible) level of e chosen, the performance of the

banker’s project does not reveal e. A banker’s disutility of making effort, (N + d)e2/2,

is increasing and convex in e, as well as proportional to the amount of assets under

management.

The banker receives a contract,
(
d,Rg

d, R
b
d

)
, from a mutual fund, where d ≥ 0.

Here, Rx
d denotes the gross interest rate conditional on the realized idiosyncratic state,

x = g, b. The contract must satisfy three constraints. First, it must be feasible for the

bank to repay the mutual fund in each idiosyncratic state:

(N + d)Rg ≥ Rg
dd (38)

(N + d)Rb ≥ Rb
dd, (39)

where

Rx = exZ/Q, (40)

for x = g, b and

N + d = Qkb. (41)

Second, the interest rates, Rg
d, R

b
d, must be consistent with (perfectly diversified) com-

petitive mutual funds making zero profits:

R = p(e)Rg
d + (1− p(e))Rb

d, (42)

where R is a gross interest rate taken as given by mutual funds. Since equation (42)

depends on the value of e, the latter plays a role in the contract. This brings us to the

third constraint, the incentive constraint. Because e is not observable to creditors, the

contract takes for granted that the banker will make the level of effort that is privately

optimal conditional on the contract terms,
(
d,Rg

d, R
b
d

)
. For a specified value of these

terms, the banker’s objective is a simple quadratic polynomial in e:

βmp(e) [(N + d)Rg −Rg
dd] + βm (1− p(e))

[
(N + d)Rb −Rb

dd
]
− 1

2
(N + d)e2, (43)

where βm is the rate at which the banker discounts period 2 returns. At an interior
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optimum, e takes on the value:

e = βmb̄

[(
Rg −Rb

)
−
(
Rg
d −R

b
d

) d

N + d

]
. (44)

It is convenient to substitute out for Rb
d, R

g
d in equation (43) using equation (42). Doing

so, the banker objective can be written, after some rearranging, in the following form

βmNπd (e) + βmd [πd (e)−R] , (45)

where

πd (e) = p(e)Rg + (1− p(e))Rb − 1

2βm
e2. (46)

Let V (N) denote the value of equation (45) at the optimizing choice of d,Rg
d, R

b
d,

subject to the following constraints: (i) the incentive constraint, equation (44);65 (ii)

the banker zero profit condition, equation (42); and (iii) the cash constraints, equations

(38) and (39). The banker has an outside option to simply deposit its net worth in the

mutual fund, in which case it earns, in present value terms, βmNR = N . The latter

equality uses the household optimality condition discussed in equation (48) below. The

formal definition of the banker problem is:

Definition 2. The banker’s loan contracting problem under unobservable effort is to

choose d,Rg
d, R

b
d to maximize equation (45) subject to (i)-(iii), and then choose to be a

banker if V (N) ≥ N. Otherwise the banker simply deposits N in a mutual fund.

In our computations we have not encountered a case in which the banker would

choose to deposit her net worth in a mutual fund. Obviously, this cannot occur in an

equilibrium. But, it might in principle have occurred out of equilibrium such as when

we display the banker’s ‘demand for deposits’ curve in Subsection 3.1.2 or when we

analyze the model in its game representation in Subsection 3.4.

After receiving d from the mutual fund, the banker purchases (or sells) capital so

that equation (41) holds.66 In period t = 2 the banker transfers the quantities in square

65Equation (44) assumes interiority of the optimal value of e. We make this assumption in the
manuscript to avoid complicating the notation, but in the computations we impose the upper and
lower bound constraints on e, which are sometimes binding.

66Equation (41) is not to be interpreted as suggesting that the firm purchases all its capital, kb, with
N + d. The purchases of the bank can be seen by examining its sources and uses of funds in period 1.
These are Ẑkb0 + d and Q

(
kb − kb0

)
+ L0, respectively. Equating sources and uses of funds and using

equation (36), we obtain equation (41). Note that only kb−kb0 units of capital are purchased (or sold,
if negative) in period 1.
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brackets in equation (43) to the household depending on whether its project turns out

good or bad.

3.1.2 The Banker Demand for Deposits

Conditional on values of N,m it is possible to define a banker’s demand for d, condi-

tional on R. In effect, this requires substituting out for Rg
d, R

b
d, e in the solution to the

banker’s loan contracting problem.

A useful benchmark for understanding the solution to the banker’s problem is to

compare it to the solution to the contracting problem when effort is observable. In

this case, the contract parameters are
(
e, d, Rg

d, R
b
d

)
. The banker’s problem when e is

observable corresponds to the problem in which effort is not observed, minus restriction

(i) after equation (46). In this case, Rg
d, R

b
d play no role in the banker’s choice of e and

d.67 The banker with observable effort sets e to e∗, the value of e that optimizes πd (e) :

e∗ = βmb̄
(
Rg −Rb

)
. (47)

This level of effort is optimal independently of N ≥ 0 and the choice of d. Interest-

ingly, with the level of effort, e∗, the banker’s marginal cost of effort is equated to the

associated social marginal gain. This gain corresponds to the value of the marginal

shift in probability towards the good state. Second, from equation (45) we see that

optimization of d implies

d =

0 R > πd (e∗)

∞ R < πd (e∗)
,

with the banker indifferent over d ≥ 0 when R = πd (e∗) . Thus, when effort is ob-

servable, the banker’s demand for deposits is infinitely elastic at R = πd (e∗). In the

observable effort case, Rg
d, R

b
d, are simply chosen to satisfy the banker zero profit con-

dition, as well as the good and bad-state cash constraints. In sharp contrast to the

important role played by these variables in our model, Rg
d, R

b
d play no allocative role

when effort is observable.

To understand the solution to the banker problem, consider Figure 7, which displays

67To see this, condition (ii) has already been imposed on the banker objective, equation (45). So,
absent condition (i), a banker with observable effort would choose a contract in which e and d optimize
equation (45) without any restrictions. After solving for e and d, Rgd, R

b
d can always be chosen to satisfy

condition (iii). This is why condition (iii) is non-binding in the observable effort case.
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numerical results based on the model parameterization discussed in subsection 3.3.68

Consider first the dashed line. For any R this line displays the highest level of deposits,

d (R) , such that the banker can just barely insulate creditors (the mutual fund) from

losses in the bad state. That is, it is possible to set Rg
d = Rb

d = R while satisfying the

good and bad state cash constraints. Specifically, d (R) is the value of d that solves

dR = (N + d)Rb. Points in the figure to the right of the dashed line have the property,

Rb
d < R < Rg

d. In this case, the loan contract in effect imposes a tax on banker effort,

so that e < e∗.69 We see this tax in equation (44) which shows that for given d the tax

is smaller the smaller is the spread, Rg
d −Rb

d. Also, for a given spread and d, the tax is

smaller the larger is net worth, N .

The solid line with the kink is the demand for deposits for the banker with unob-

served effort, who has N > 0.70 The horizontal segment of that demand curve overlaps

with the demand for deposits when effort is observed. The argument we made before

about why a banker with observed effort would set d = 0 for R > πd (e∗) applies in the

unobserved effort case as well.

We can already see the distortionary effects of the hidden effort assumption when

R = πd (e∗) . When effort is observable, the banker is indifferent over all d ≥ 0, but when

effort is not observable the banker will not go beyond the kink point. This is because

such points lie to the right of the dashed line, which intersects the demand for deposits

precisely at the kink. At levels of deposits to the right of the dashed line the banker

must share losses with her creditor and this necessarily implies πd (e) < πd (e∗) .71 The

banker prefers d = 0 over d beyond the kink point because net revenues on deposits

are negative for such values of d (see equation (45)).

For R < πd (e∗) the banker can borrow more than d (R) while still making profits on

deposits. But, the amount the banker is willing to borrow is limited because moving to

the right of the dashed line results in a reduction in πd (e). The solid line indicates how

far the banker is willing to go in borrowing for each R. Note that the dashed line is very

steep compared to the banker deposit demand curve. This indicates that at low values

68Model parameter values appear in Table 3. Variables that are exogenous to the banker but
endogenous in the model, such as Q and N , are taken from the first column of Table 4.

69It is straightforward to verify that, conditional on N, for d such that dR > (N + d)Rb then the
solution to the banker contracting problem has the property that the banker is wiped out in the bad
state, i.e., dRbg = (N + d)Rb. A simple proof-by-contradiction argument establishes this result.

70The particular value of N used for deriving the banker deposit demand curve is the one discussed
in footnote 68.

71It is evident from the definition of e∗ and the structure of πd that πd is strictly increasing in e for
e < e∗.
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of R the financial friction is more pronounced, and projects are run less efficiently.

Again, the force of the hidden effort assumption is on display: for R < πd (e∗) the

banker with hidden effort borrows a finite amount whereas if the banker’s effort were

observable she would want to take an unbounded level of deposits.

It is important to emphasize that the demand curve is drawn by varying the value of

R, while holding m and the current and future prices of capital fixed (the current price

is Q and the t = 2 price is zero). Under these circumstances, a fall in R increases the

cross-sectional variance on the performance of banker assets.72 We know of no empirical

evidence that can be used to assess this implication. For example, Gertler and Karadi

(2011) argue that interest rate spreads decrease after a reduction in Federal Reserve’s

policy interest rate. However, Q (and, hence, N,Rg−Rb) probably also respond to their

monetary shock, and we do not know what our model would predict for cross-sectional

banker variation if Q were adjusted simultaneously with a fall in R. Our purpose here

is only to shed light on the model properties and the relation of the model to empirical

evidence of the type in Gertler and Karadi (2011) is left for future research.

Interestingly, the shape of the banker’s demand for deposits in the hidden effort

model bears a strong resemblance to the analogous object in period 1 of the running

away model. The demand for deposits in that model is also horizontal at a high value

of R for low values of d. Like in our model, in that model the horizontal line extends

all the way to infinity in the absence of the assumption that the banker can run away

with a fraction of the assets. With the running away assumption, the demand for

deposits has a kink and becomes downward sloped, as in the hidden effort model. In

both models the kink occurs further to the right the larger is banker net worth.73

We can also consider the case in which the banker has no net worth, so that N = 0.

In this case the demand for deposits is infinitely elastic at R0 = πd (0). For R > R0 the

banker sets d = 0. For R = R0 the banker sets e = 0 and is indifferent over d ≥ 0. For

R < R0 the banker’s demand for deposits is unbounded above. This demand curve is

displayed as the dotted line in Figure (7). Note that the demand curve for N > 0 (solid

72The variance of the (undiscounted) rate of return on a unit of bank assets from the perspective

of the beginning of t = 1 is p (e) (1− p (e))
(
Rg −Rb

)2
. In the text we show that, holding Q fixed, a

cut in R reduces p (e) by reducing e. This reduces the above variance when p (e) > 1/2, as is the case
in our no run equilibrium. If the higher d issued when R is lower resulted in an increase in Q, then
this would raise e and reduce Rg − Rb (for the latter, recall equation (40)). So, the total effect on
variance of a drop in R is ambiguous. In addition, a cut in R would, in a multi-period context, also
be expected to affect future asset prices that too would feed back onto variance.

73See Figure 5.2 in Christiano and Ikeda (2013) for a graph of the banker demand for deposits in a
static version of the running away model. The derivation can also be found on page 25, here.
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line) is declining towards the dotted line. Intuitively, this is not surprising because as

d becomes large enough for given N, N becomes a vanishingly small portion of total

assets. We computed the demand curve for d up to as far as d = 30 and found it to

be approaching the dotted line from above. Later, we will see that R0 is below the

household’s outside option so that the quantity of deposits demanded is zero when

N = 0.

Figure 7: Bank Demand for Deposits
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Notes: Solid line with kink - banker demand for deposits when effort is not observable; dot-dashed line - banker demand
for deposits when effort is observable; dotted line - banker demand for deposits when net worth is zero and effort is not
observable; dashed line - values of R and d such that banker cash constraint is satisfied as a strict equality in the bad
state with Rbd = R, i.e., R = (N + d)Rb/d, where Rb is defined in equation (40). Model parameters are reported in

Table 3 and the value of Q (which determines Rb) and N are as reported in the first column of Table 4.

44



3.2 Households, Market Clearing and Aggregate Conditions

The representative household is the same as the one in section 2.2, except that we start

the analysis of the household in period t = 1, before Q is determined. At that time,

the household’s state variables are Z, L0 = R0d0 and kh0 = 1 − kb0. The household’s

objective is u (c) + βu (c2), where c, c2 denote periods t = 1 and t = 2 consumption,

respectively (recall the convention in this section that the time subscript is deleted

when t = 1). The household’s budget constraints for t = 1 and t = 2 are given by

equation (24). Households that hold capital obtain marginal productivity Z in t = 1

and Z2 in period t = 2. They do not have the ability to raise the productivity of capital

by exerting effort. As in the running away model, the household pays a management

cost, f(kh), for its end-of-period t = 1 capital holdings, kh. We define

R = 1/ (βm) , (48)

where m = u′ (c2) /u′ (c). When deposits are positive, d > 0, then equation (48) is the

household’s optimality condition for deposits. In an annihilation run, deposits are zero

and in this case we take equation (48) as the definition of R. In the annihilation run,

R coincides with the gross rate of return on capital.74

The capital market clearing condition in period t = 1 is kh + kb = 1. The resource

constraint in period t = 1 is:

c+ f
(
kh
)

= Zkh0 + Ẑkb0 + y (49)

where y denotes an exogenous component of household income in period t = 1.75 The

resource constraint in t = 2 is76

c2 = Z2k
h + Ẑ2k

b, (50)

74Below, we consider the possibility that a small mass of individual bankers deviate from an anni-
hilation run equilibrium by taking loan contracts from a mutual fund and the R that the mutual fund
would have to pay households for those funds is the one given by equation (48).

75We can also obtain equation (49) by Walras’ law. Here that requires that the sum of purchases
by households and banks in period 1 equal the sum of their income. The purchases and income of
households in period 1 are given in equation (24). The uses (i.e., expenditures) and sources (i.e.,
income) of funds for the banks are discussed in Footnote 66.

76As usual, this expression can also be derived using Walras’ law. In this case, we use equation (40)
to substitute out for Rx, x = g, b.
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where

Ẑ2 =
[
p (e) eg + (1− p(e)) eb

]
Z2.

3.3 Competitive Equilibrium and Parameter Calibration

We define an equilibrium as follows:

Definition 3. A competitive equilibrium is
{
Rg
d, R

b
d, R, d,N,Q, e, k

h, kb, c, c2

}
which

(i) solve the banker contracting problem (see Definition 2) and the household problem

and (ii) satisfy the t = 1, 2 resource constraints and market clearing conditions.

The parameters of the model are:

α, β, σ, g, b, ā, b̄, L0, k
b
0, Ẑ, Z, Z2, y,

where α and σ are the management function and utility function parameters discussed

in the previous section (see equation (31)). Similarly, β is the household’s discount

rate.

Table 3 lists the parameters and exogenous variables in the baseline model. We

parameterize the model to guarantee that the annihilation run exists; the financial

constraint (equation (39)) binds in the bad state; e is interior and non-negativity con-

straints on c, c2, k
b, kh are non-binding in the no run equilibrium. In selecting param-

eters we also made sure that standard parameters like the discount rate, did not take

on unreasonable values.77

77We did not use a formal loss function approach in this case, as we did in section 2.4.
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Table 3: Baseline Parameters

α: household management cost 0.0610
β: subjective discount rate 0.9700
σ: curvature in utility function 1.4951
g: good project productivity 0.2300
b: bad project productivity -0.3000
ā: project probability parameter 0.2500
b̄: project probability parameter 0.7500
L0: bank liabilities, t = 0 0.4239
kb0: bank capital, t = 0 0.7300
Z: household productivity, t = 1 0.1263

Ẑ: banker productivity, t = 1 0.1263
Z2: banker productivity, t = 2 0.1000
y: household labor income, t = 1 0.2000

Notes: parameter values for period t = 1, 2 in hidden effort model; the two t = 0
variables are state variables in t = 1.

As in the running away model, we found three equilibria. This is not surprising

since in the hidden effort model it is also true that there is strategic complementarity

in the deposit decision of banks, which operates via the market-clearing price, Q,

of capital. The three equilibria are reported in Table 4 as the no run equilibrium, the

partial run equilibrium and the annihilation run equilibrium. Note that in the last case,

N = d = e = 0, as expected. As we go from the annihilation equilibrium to the no run

equilibrium, net worth increases, banks issue more deposits and buy more capital at a

higher price. Note that the efficiency of banking also improves as e increases across the

equilibria and the amount of capital held by banks increases. Consumption in period

1 increases while c2 is essentially constant. So, we see that welfare is increasing as we

go from the annihilation run equilibrium to the no run equilibrium.

47



Table 4: Three Equilibria in Hidden Effort Model

No-run Partial run Annihilation run

kh 0.5709 0.8884 1.0000
e 0.3590 0.1907 0.0000
p(e) 0.5193 0.3930 0.2500
R 0.1854 0.1955 0.2037
Q 0.5046 0.4574 0.4299
N 0.0366 0.0022 0.0000
d 0.1799 0.0488 0.0000
c 0.3164 0.3022 0.2958
c2 0.1004 0.0994 0.1000
V 0.0399 0.0042 0.0000

VSave 0.0366 0.0022 0.0000
Note: V corresponds to V (N) , the present value attained by the banker in the unobserved effort case (see Definition
2). Vsave = N corresponds to present value of the banker’s outside option, which is to deposit its net worth in a mutual
fund. Banker optimization requires Vsave ≤ V (N).

Figure 8 displays the bank demand curves for deposits in each of the three equilibria.

The solid line corresponds to the no run equilibrium and coincides with the bank

demand curve in Figure 7. The dashed and dotted lines correspond to the demand

curves in the partial and annihilation runs, respectively. The stars indicate the location

of the supply of deposits by households, i.e., the general equilibrium point.

Consider the case of an annihilation run, in which case market clearing deposits

are zero because the marginal value of deposits to households (i.e., their outside option

of holding capital directly) lies above the banker demand curve for deposits. Because

deposits are zero in this equilibrium, the net worth of banks is zero, N = 0. Note that

in the partial and no run equilibria, the financial friction is binding because in each

case the star lies below the horizontal segment of the corresponding demand curve for

deposits (recall the discussion in Subsection 3.1.2). In the annihilation run, the friction

is so binding that the banking system shuts down altogether.

Note that the horizontal segment of the demand curve in the partial run equilibrium

is much shorter than it is in the no run equilibrium. This is because net worth is

relatively small in the former equilibrium. It is also interesting that the demand curve

is shifted up in the partial run equilibrium. That reflects the endogeneity of Rg and

Rb, which rise with the lower Q in the partial run equilibrium.78

78Recall the definition of Rx, x = g, b in equation (40). Also, recall the discussion in Subsection
3.1.2, which shows that the horizontal component of the banker demand for deposits corresponds to
R = πd (e∗) , where πd(e) is defined in equation (46) and e∗ is defined in equation (47).
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Figure 8: Bank Demand Curves
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Notes: The graph contains three banker deposit demand curves for each of the equilibria indicated in the legend. Stars
correspond to the general equilibrium points reported in Table 4.

3.4 Fragility of Equilibria to Entry Costs in the Hidden Effort

Model

Here, we show that the hidden effort model also displays the fragility of equilibrium

reported for the three period running away model in Section 2.6.

3.4.1 Partial Run

To understand the three equilibria identified in Subsection 3.3, it is useful to apply

the same device used in Subsection 2.6 for the running away model. In particular, we

convert the market equilibrium into a game between a representative individual bank
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and all the other banks. The individual bank conjectures that the other banks issue D

deposits on average and then computes the associated continuation equilibrium. This

continuation equilibrium conditional on D is a set of values for the other endogenous

variables which solve all of the market equilibrium conditions except one, the bankers’

first order condition for deposits.79 By leaving out the latter equation the individual

bank in effect asks ‘what if everyone else set deposits on average to D?’ without asking

whether the value of D is optimal for the other bankers. In the continuation equilib-

rium conditional on D, variables crucial for solving the individual banker’s contracting

problem, including d, are determined. The mappings from D ∈ [0, .3] to a subset of

the variables in the continuation equilibrium, as well as to d are displayed in Figure 9.

The mapping from D to d is the individual banker’s best response function. The three

locations marked by a ‘*’ correspond to Nash equilibria. These in turn correspond to

the annihilation run, the partial run and the no run market equilibria.

79A discussion of how we computed best responses in the Hidden Effort model appears in Section
B of the online Appendix. The code for computing the best responses is included in the replication
files.
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Figure 9: Best response function: Hidden effort model
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Note: (1) Apart from the 2,1 and 3,1 panels, the convention is as follows. Solid lines - individual bank best response to
aggregate bank deposits, D. A vertical solid line indicates a set of values in the 1,1 and 1,2 panels. At the associated
value of D, d and kb are set-valued (for explanation, see text), so that the best responses for d, kb, e in panels 1,1, and
1,2, respectively, are set-valued at one value of D. This value of D is the one in which πd (e∗) = R in panel 2,1. Dashed
lines - continuation equilibrium for aggregate variables associated with D. (2) In the 3,1 panel: solid line is risk free
interest rate, upper dotted line is Rgd and lower dotted line is Rbd, while upper and lower dashed lines correspond to Rg

and Rb, respectively. All the variables in the 3,1 panel are features of the continuation equilibrium conditional on D.
The continuation equilibrium conditional on D is the set of equilibrium variables that solve all equilibrium conditions,
except the equilibrium condition for D.

Consider the 1,1 panel in the figure. That displays the individual banker’s best

response to D (see the solid line). When D = 0 banks buy little capital. With the

market for capital dominated by households who assign a lower value to it, Q is low.

The latter price is a part of the continuation equilibrium associated with D and appears

in the 3,2 panel (except in panel 3,1, the dashed line corresponds to the continuation

equilibrium). With the low value of Q when D = 0, the net worth of bankers is zero (see

panel 3,3). Given the relatively high outside option of the household in the annihilation
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run, the individual banker best responds by setting d = 0.80 As D rises, the price of

capital, Q, increases, as well as net worth, N . But, N remains at zero until Q is large

enough (see equation (36)). So, d remains at zero too.

Another way to see why the individual bank’s best response function lies below

the 45o line for small D is to look at the features of the continuation equilibrium

displayed in panel 3,1. In this panel, the dashed line corresponds to Rg, Rd, the dotted

line corresponds to Rg
d, R

b
d and the solid line corresponds to R, all in the continuation

equilibrium.81 In panel 3,1 we see that for D > 0 but small, Rg
d > Rg and Rb

d = Rb.82

Here, Rg
d, R

g
d, R satisfy the zero profit condition and bad state cash condition of banks

given D. Under these circumstances, the pecuniary return on deposits, D, are negative

for all e. The individual banker best responds by choosing d = 0.

Thus, the banker’s best response function is flat compared to the 45o line (panel

1,1) in a neighborhood of D = 0. As D increases, Q eventually rises by enough that

net worth becomes positive. Then, the banker best responds with d > 0 (see panel

1,1). The individual banker’s d rises sharply with D and cuts the 45o line from below.

This crossing corresponds to the partial run equilibrium. Eventually, the best response

function flattens out and cuts the 45o a third time, at the no run equilibrium.

There are several interesting features of the individual bank best response function

displayed in the 1,1 panel. First, when D is large enough that d > 0 then deposits

are strategic complements and the best response function is upward-sloped. This is

consistent with the simple intuition that when D is bigger then banks buy more capital,

driving Q and, hence, N , up. The individual banker best responds to the rise in N by

issuing more d. This pattern continues as D reaches the no run equilibrium. Afterward,

the mapping is single-valued over almost all values of D displayed, with one exception.

The exception is the value of D when the best response of d is set-valued. This set

corresponds to the vertical solid lines in the 1,1 and 1,2 panels of Figure 9. For higher

80Recall the discussion in subsection 3.3. The household’s outside option is indicated by the star on
the vertical axis in Figure 8. The bank’s demand curve in the annihilation run is the infinitely elastic
horizontal dotted line.

81Only the first order condition for D is ignored in these computation of the continuation equilib-
rium. The other equations associated with the loan contract problem of other bankers are used to
determine Rgd and Rbd in their loan contracts associated with D. For values of D where the best re-
sponse function does not intersect the 45o line, the level of D violates the banker first order condition
for deposits.

82The bad state cash constraint is binding for all D up to a little above the no run equilibrium.
This can be seen from the dashed line in panel 1,3, which shows that e < e∗, where e∗ is indicated
by the dotted line. The appendix shows that when the bad state cash constraint is binding, then
Rbd = Rb (N +D) /D so that Rbd = Rb when N = 0.
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values of D, the individual banker best responds by setting d = 0. The reason for

these findings can be seen by looking at the 2,1, and 1,3 panels. The first of these

panels displays πd (e∗) (solid line) and R (dashed line) as a function of D.83 Consistent

with the discussion in Subsection 3.1.2, panel 1,3 shows that e = e∗ for the value of D

where R = πd (e∗). So, in the continuation equilibrium associated with this value of

D the individual bank is indifferent over values of d in an interval (see, for example,

the horizontal portion of the solid line in Figure 7). The vertical line in the 1,1 panel

is the corresponding interval of values of d. Associated with those values of d are

the quantity of assets, kb, indicated by the vertical line in the 1,2 panel.84 The best

response of deposits drops to zero when πd (e∗) < R because the banker makes negative

revenues on deposits in that case. This is true in general because πd (e) ≤ πd (e∗) and

because panel 1,3 indicates that e = e∗ over this range of D’s.

Finally, consider the open circle on the y-axis in panel 1,1, which sheds light on a

central theme of the paper. That circle corresponds to the open circle in Figure C1a

of the online Appendix for the infinite horizon GK model. We computed ξ, the ratio

of the total net worth brought into banking by newborns in the GK model to the net

worth of all bankers in the no run Nash equilibrium in Figure C1a. The value of ξ

is (not surprisingly) very small, at ξ = .0384.85 We then computed N, the net worth

of bankers in the no run Nash equilibrium in the 1,1 panel of Figure 9. The quantity

of net worth, ξN, for the hidden effort model is thus comparable to the net worth of

newborns in the GK model. The open circle is the amount of deposits that can be

supported by the ξN units of net worth in an annihilation run. Because the rate of

return on assets is high in that state, leverage is high, at 255. This is a similar order

of magnitude for analogous concept in the three-period and infinite period versions of

the GK model.86 Banks with ξN units of net worth can issue an amount of deposits

83Recall that πd (e) is the expected revenues on one unit of deposits, net of the utility cost of
effort, conditional on e (see equation (45)). Also, e∗ is the value of e that maximizes πd and πd (e) is
increasing for all e < e∗.

84The individual bank’s capital, kb, does not drop to zero because that is funded by the positive
and growing bank net worth as D increases.

85In section C.2.3 of the online Appendix, we report that the net worth brought in by newborns in
the infinite horizon GK model is 0.000676. Also, we report that leverage in the no run state is 21 in a
period when the most recent run was 10 periods in the past. Also, the total assets held by the banks
in that state is 0.37. So, the net worth of all bankers in the no run state is 0.37/21 = 0.0176. Then,
0.000676/0.0176 = 0.0384 after rounding. For more details see section C in the online Appendix.

86Recall that the relevant leverage number in the three period model is 756 (see section 2.6.2). The
relevant leverage number in the infinite horizon GK model is while it is 782 (see section C.2.3 in the
online Appendix).
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corresponding to the open circle. Note that this is roughly two times the deposits that

are issued in the no run state. This is another example of how a small amount of

net worth introduced into an annihilation run can cause that run not to be a Nash

equilibrium.

3.4.2 Interpreting the No Entry Assumption in Annihilation Run as an

Entry Cost

In this section, we calculate the entry cost that would rationalize the no-entry assump-

tion in an annihilation run. Consistent with our results for the running away model,

we find that that entry cost is very high.87

To do the entry cost calculation for the hidden effort model, we require the analog

of ψ∗1 in the three period running away model (see equation (13)). Recall that the

optimized present discounted value of profits (net of borrowing costs) for a banker with

net worth, N , is V (N) .88 It is easy to verify that, as in the case of ψ∗1, V (N) /N well-

defined and independent of N for N > 0. As it turns out, the only variables required in

the annihilation equilibrium are Rg, Rb and R. 89 The values of these market variables

87The calculations for the three-period running away model are reported in Section 2.6.2. That
section also summarizes the results for the infinite horizon version of the running away model (see
section C.2.3 in the online Appendix for details).

88See discussion after equation (46).
89To see the two results just described and to explain how we compute the findings reported in the

text, let V
(
d,Rgd, R

b
d;N

)
denote the expression in equation (45). Recall that we define, after equation

(45), V (N) ≡ maxd,Rg
d,R

b
d
V
(
d,Rgd, R

b
d;N

)
= Nβmmaxe,φ,Rg

d,R
b
d
v
(
e, φ;Rg, Rb, R

)
, where βm = R−1

by household optimization and R is the cost of funds to the mutual fund. The maximization is subject
to the incentive constraint, the cash constraints and the zero profit condition of mutual funds (see
Definition 2), and recall that we suppose N > 0. The object, φ, denotes leverage, φ = (N + d) /N .
Also, v

(
e, φ;Rg, Rb, R

)
= πd (e) + [(φ− 1) /φ] [πd (e)−R] and πd is defined in equation (46). Note

that in going from V to v, Rgd, R
b
d have been replaced by Rg, Rb, R, where all three variables are

exogenous to the banker. This reflects that we have substituted out the zero profit condition in the
banker objective (see equation (42)). We substitute out for Rgd, R

b
d in the incentive constraint by using

the zero profit condition as well as cash constraints. In the case of the cash constraints, we use the
implication derived in Footnote 69, that an optimizing banker who chooses to issue so much leverage
that she must share risk with creditors, will choose a contract that wipes out her net worth in the bad
state. These considerations allow us to substitute out for Rgd, R

b
d in the banker incentive constraint,

which reduces to:

e− βmb̄

(Rg −Rb)− max
{

0, φ−1φ R−Rb
}

p (e)

 = 0.

The banker problem is now simply to solve maxφ,Rg
d,R

b
d
v
(
φ,Rgd, R

b
d

)
subject to the above constraint.

Note that the value of N does not appear in this problem, which coincides with the unscaled version
of the problem as long as N > 0. This establishes that V (N) /N is independent of N for N > 0. We
use standard methods to solve a Lagrangian representation of the above banker problem (in practice,
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can be deduced from the variables reported in the third column of numbers in Table 4.

There, we find that R = 0.2037, e = 0.082, p (e) = 0.311, φ = 255. Also, combining the

value of Q in that table with b and g in Table 3, we obtain Rg = 0.293 and Rb = 0.172.

These results imply V (N) /N = 7.8.

Note that, as in the other two models, leverage is a very high value of 255 for a

banker with net worth who enters when there is an annihilation run. Also, that banker

earns $7.8 dollars per $1 of net worth brought into an annihilation run. This number

is two orders of magnitude smaller than the corresponding result for the three period

and infinite period running away models, which are $378 (see section 2.6.2) and $151

(see online Appendix, section C.2.3), respectively. Still, the notion that it costs $7.8 to

issue $1 of equity to rationalize the no entry assumption seems implausibly high by an

order of magnitude. We suspect that the reason the required entry costs are relatively

‘small’ in the hidden effort model reflects that high leverage in that model implies low

banker effort.

4 Conclusion

We show that a pure banking panic contains within it the seed of its own undoing. In

a pure panic, expected returns are very high so that there is a huge incentive for equity

to come into the banking system at that time. Equity could be injected by outsiders.

Even insiders can preserve equity for a run by not issuing deposits in periods before a

run. To preserve the existence of a bank run state, ad hoc assumptions are required to

prevent these types of equity injections that would otherwise undo a banking panic.

We also find that the number and nature of equilibria is sensitive to assumptions

about equity injections. For example, we find that, generically, there is a second run

state in which the net worth of banks is not completely wiped out. We also display

an example in the online Appendix (see Figure C1c) in which there are two run states

and both have the property that the net worth of banks is not wiped out.

Our paper reports a second result that is of interest. Not surprisingly, we show

that a leverage restriction can raise social welfare. But, it can also be associated with

a second equilibrium in which welfare is reduced. We display this result in the three-

period version of the GK model. The intuition is very simple and so we expect that

the result generalizes to other models as well.

we also include Lagrange multipliers to ensure that e satisfies equation (37))).
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Online Appendix

The first section below discusses our loss-function based method for calibrating the

parameter values for the three period running away model in Section 2. The second

subsection reviews the details of our analysis of the infinite-horizon running away model

in GK.

A Calibrating the Values of the Parameters in the

Three-Period Running Away Model in Section 2

Here, we flesh out the details of the calibration strategy sketched in subsection 2.4.

This calibration turned out to be challenging. First, we are uncertain about the precise

meaning of parameter values for a three-period model. Second, it is not straightforward

to find model parameter values for which there is an interior equilibrium and the banker

problems are interesting in the sense that all banker incentive constraints (i.e., the

assumptions of Proposition 1) are satisfied. To address these challenges we develop the

quasi-Bayesian strategy described below. All the codes are available in the replication

files.

A.1 Strategy

The 10 exogenous parameters of the model are listed in Table 1 and reproduced here

for convenience:

σ, β, Z, Z2, α, θ1, k
h
−1, R−1d−1, y, θ0. (A.1)

An equilibrium (see Definition 1) corresponds to a list of values for the following 15

variables:

Q0, Q1, Q
∗
1, c0, c1, c

∗
1/c1, c2, P, ψ1, ψ

∗
1, R0, R1, R

∗
1, k

h
0 , k

h
1 . (A.2)

The actual list endogenous variables in Definition 1 is much longer, but the missing

variables can be obtained trivially from the above list. For example, equation (30)

implies c∗2 = c2 and similarly, kbt can be recovered from the fact, kbt + kht = 1.

We find it convenient to replace the exogenous variables, θ1, α, in equation (A.1)

with the endogenous variables, c∗1/c1, P. We denote the resulting list of ‘adjusted ex-

ogenous variables’ by χ. Similarly, the variables c∗1/c1, P in equation (A.2) are replaced
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by θ1, α and we denote the resulting vector of ’adjusted endogenous variables’ by ς.

For a given setting for the variables in χ we may be able to compute a corresponding

set of variables, ς, that satisfy:

ς = g (χ) , (A.3)

where g denotes the 15 equilibrium conditions of the model.

Our calibration strategy proceeds in four steps. In the first step we draw n values

of χ from a ‘prior distribution’. The priors on each variable in χ are independent and

reported in Table A1. We then evaluate ςi = g (χi) , i = 1, ..., n. For some values of

χ, we did not find a satisfactory solution to g. That was either because no ς could be

found that satisfies the equilibrium conditions and simple non-negativity constraints, or

because the solution violated one of the banker incentive constraints, i.e., the conditions

of Proposition 1. In step 2, we delete the unsatisfactory χi’s and instead continue

working with the subset, n1, of values of χi for which we found a satisfactory solution

to equation (A.3). With a slight abuse of notation, denote the resulting satisfactory

set of χ′is by χ1, ..., χn1 . Next, we define a continuous loss function over both ς and χ:

L (ς, χ) .

In step 3, for each i = 1, ..., n1 we locally optimize, by choice of χi,
90

L (g (χi) , χi) .

The set of local optimizers is denoted by Li, χ̂i, ς̂i, i = 1, ..., n1. The calibrated values

of χ and ς are denoted by χ̂ and ς̂ , and are obtained in the final and fourth step:

χ̂ = χ̂i′ , ς̂ = ς̂i′ , (A.4)

where i′ has the property, Li′ ≥ Li, for i = 1, ..., n1.

90We used the optimizer, fminsearch, in MATLAB.
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Table A1: Priors for estimation

Variable Distribution Mean β α

P Beta 0.15 15 2.65
θt, t ∈ {0, 1} Beta 0.3 40 17

c∗1
c1

Beta 0.8 5 20

β Beta 0.9 9 81
kht , t ∈ {−1, 0, 1} Beta 0.2 60 15

σ Inverse Gamma 1 1 2
Z Beta 0.15 10 1.76
Z2 Beta 0.15 10 1.76

R−1d−1 Beta 0.15 15 2.65
y Beta 0.15 10 1.76

Note: in the case of the Beta distribution, α and β are ‘scale’ parameters. In the case of Inverse Gamma, α is a ‘shape’ parameter and β
is a ‘scale’ parameter.

A.2 Constructing the Loss Function

We now describe how we constructed the loss function, L. This loss function is addi-

tively separable across the values assigned to a subset of the variables ς and χ and also

includes penalties for violating bank incentive constraints. The subset of the variables

in ς and χ whose values are directly penalized in L is (σ, θ1, β,
c∗1
c1
, P, kh−1, k

h
0 , k

h
1 ). Val-

ues of the variables, α,Z, Z2, which violate their sign constraint are penalized using an

indicator function. The other variables are indirectly penalized via their impact on the

incentive constraints.

We first discuss the variables, (σ, θ1, β,
c∗1
c1
, P, kh−1, k

h
0 , k

h
1 ). Any variable in this vector

which also appears in Table A1 enters L via the prior density exhibited in that table.

Variables in the previous vector which do not appear in Table A1 are introduced into

L via an inverse Gamma distribution or Beta distribution, depending on whether we

want the variable to be positive or inside the [0, 1] interval. We use the actual density

rather than its log to avoid numerical problems associated with computing the log of

zero. This creates a problem when the optimization routine attempts to take a variable

outside the support of its distribution. In cases like this, we smoothly extended the

density function to apply a substantial (though smooth) penalty for leaving the support.

Specifically, we define the following objects:
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bL,σ =

−σ103 σ ≤ 0

fIG(σ, ασ, βσ) σ > 0

bL,θ1 =

−θ1108(θ1 − 0.5)2 θ ≥ 1

fβ(θ1, αθ1 , βθ1) θ < 1

bL,β =

1− β100 β ≥ 1

fβ(β, αβ, ββ) β < 1

bL,c∗1/c1 = fβ(
c∗1
c1

, αc∗1/c1 , βc∗1/c1)

bL,P = 4× fβ(P, αP , βP )

bL,kht =

fβ(0.3, αk, βk)− 104(kht − 0.3)2 kht > 0.3

fβ(kht , αk, βk) kht ≤ 0.3
,

for t = −1, 0, 1. Here, f% denotes a two-parameter distribution, where % = IG corre-

sponds to the inverse Gamma distribution and % = β corresponds to the Beta distri-

bution. Also, αx, βx are the parameters of the associated distribution, where, with one

exception, x corresponds to the elements of (σ, θ1, β,
c∗1
c1
, P, kh−1, k

h
0 , k

h
1 ).91 The exception

is that in the case of x = k, the same Beta distribution parameter values were used in

each of kh−1, k
h
0 , k

h
1 .

Now we turn to the incentive constraints. We include a subset of those constraints,

namely seven, as follows:

91In the case of the Beta distribution, the two parameters are the ‘scale’ parameters. In the case of
the inverse Gamma distribution the two parameters are the shape and scale parameters.
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b0 = 109
(
βm1(1− P )ψ1(Rk

1 −R0)/θ0 − 1
)

b1 = 109
(
βm1 (1− P )ψ1R

k
1 + βm∗1Pψ

∗
1R
∗,k
1 − ψ0

)
b2 = 109

(
Rk,∗

2 − (1 + θ1)R∗1

)
b3 = 109

(
Rk

2 − (1 + θ1)R1

)
b4 = 109

(
R1 −Rk

2

)
b5 = 109(R0 −Rk

1)

b6 = 0.2× 103
(
Zkb−1 −R−1d−1

)
.

Finally, L penalizes large deviations between c0, c1, and c2.

We construct the penalty function as follows:

L =
∑

x∈{σ,θ1,β,c∗1/c1,P ) 0.2bL,x −
∑

x∈{α,Z,Z2) 0.21(x<0)|x|+
∑1

t=−1 bL,kt

−
∑6

j=0 1(bj>0)bj − 0.2
(
(c0 − c1)2 + (c1 − c2)2) , (A.5)

where |x| indicates the absolute value of the scalar, x and 1(condition) is the indicator

function which is unity if condition is satisfied.

The penalty function does not include all the incentive constraints in Proposition 1.

At the end of the calibration analysis, we verify that the final parameters in equation

(A.4) satisfy all the incentive constraints. So, some constraints play no role in the

computation of Li, χ̂i, ς̂i, i = 1, ..., n1. However, all the incentive constraints play a role

in step 2 of the calibration procedure and in the final results.

B Computing Best Responses in the Hidden Effort

Model

We use the best response function method to find all possible equilibria at period

1. Specifically, we compute an individual bank’s best response
{
kb, e∗

}
for given the

other’s choice Kb by the following three steps. For notational simplicity, we use the

lower-case to denote the individual banker’s choice, while the upper-case to denote

aggregate variables.

First, for given Kb, for each possible e ∈ [e, e], we compute the other aggregate
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variables by the following algorithm

Kh
(
Kb, e

)
= 1−Kb,

C
(
Kb, e

)
= Z1 + y1 −

α

2

(
Kh
)2

,

C2

(
Kb, e

)
= Z2K

h + Z2

[
P (e) eg + (1− P (e)) eb

]
Kb,

R
(
Kb, e

)
=

(
β
U
′
(C2)

U ′(C)

)−1

,

Q
(
Kb, e

)
=
Z2

R
− αKh,

N
(
Kb, e

)
= max

{(
Zb +Q

)
Kb − L0, 0

}
,

D
(
Kb, e

)
= Q1K

b
1 −N,

and the banker’s incentive constraint error

er
(
Kb, e

)
= e− b

R

(
Rg −Rb −

D
D+N

R−Rb

P (e)

)
= 0.

So the banker’s optimal effort e
(
Kb
)

solves er
(
Kb, e

)
= 0. We also consider the

following scenarios where the banker’s optimal effort is a corner solution. If er
(
Kb, e

)
<

0 for any possible e ∈ [e, e], we choose e
(
Kb
)

= e. If er
(
Kb, e

)
> 0 for any possible

e ∈ [e, e], we choose e
(
Kb
)

= e.

Second, the individual banker choose the best response taking the above aggregate

variables as given. For given aggregate variables Kb, for each possible banker’s capital

decision kb ∈
[
N
Q
, 1
]
, for each possible banker’s effort decision e∗ ∈ [e, e], we compute

the following two errors (first order conditions in the individual banker’s contracting

problem),

d = Qkb −N,

er1

(
kb, e∗

)
= e∗ − b

R

[
Rg −Rb −min

{
0,

d
N+d

R−Rb

P (e∗)

}]
,

η =
e∗ − b

R

(
Rg −Rb

)
1− 1

R

(
b

P (e∗)

)2 [
d

N+d
R−Rb

] ,
er2

(
kb, e∗

)
=

1

R

[
P (e∗)Rg + (1− P (e∗))Rb −R

]
− 1

2
(e∗)2 + η

b

P (e∗)

d

N + d
.
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For each possible kb, we first compute the individual banker’s optimal effort e∗
(
kb
)
,

which solves er1

(
kb, e∗

)
= 0. Then kb is obtained by solving er2

(
kb, e∗

(
kb
))

= 0.

We also consider the following scenarios where the banker’s choice on kb is a corner

solution. If er2

(
kb1, e

∗
1

(
kb1
))

> 0 for any possible kb ∈
[
N
Q
, 1
]
, we choose kb = 1. If

er2

(
kb, e∗

(
kb
))
< 0 for any possible kb, we choose kb = N

Q
.

Lastly, we compute the individual banker’s net profit in the optimal contract

V
(
kb, e∗

)
=

1

R

[(
P (e∗)2Rg +

(
1− P (e∗)2)Rb

)
(N + d)−Rd

]
− 1

2
(N + d) (e∗)2 ,

and the value of the banker’s outside option VSave,

VSave =
1

R

[
P (ẽ∗)Rg + (1− P (ẽ∗))Rb

]
N − 1

2
Nẽ∗2.

where ẽ∗ is the banker’s effort in the outside option, i.e. ẽ∗ = min
{
b
R

(
Rg −Rb

)
, e
}

.

Therefore, if V
(
kb, e∗

)
> VSave, the banker will choose to invest by borrowing from the

mutual funds, and the best response function is kb
(
Kb
)

= kb, e∗
(
Kb
)

= e∗. Otherwise,

the banker will only invest with his own net worth N and not borrowing, and the best

response function is kb
(
Kb
)

=
N(Kb)
Q(Kb)

, e∗
(
Kb
)

= ẽ∗.

C Analysis of Infinite-Horizon, Running Away Model

Here, we show that the implications of the infinite horizon GK model are qualitatively

similar to those of three-period model discussed in subsection 2.6.1. In the first sub-

section below we sketch the market equilibrium of the model. In the second subsection

we transform the model into a game and report our results.

C.1 The Market Equilibrium of the Model

The equilibrium of the GK model can be characterized as a Markov chain in which the

states, X (s) , are indexed by s = 1, 2, ... .92 The elements of X (s) include consumption,

bank deposits, banker net worth, the share of capital held by households and banks,

the interest rate on bank deposits, the price of capital and the probability that there

92Here, the vector, X (s), should not be confused with the aggregate leverage ratio in equation (22).
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will be a run in the next period, P (s) .93 In the equilibrium, s = 1 indexes the state in

which an annihilation run occurs. For s > 1, s − 1 represents the number of periods

since the last annihilation run.

When s = 1, the system moves to s = 2 with probability 1. It is impossible to

have two consecutive annihilation runs because no liabilities are issued in state s = 1.

For s ≥ 2 the equilibrium has the property that with probability P (s) the state moves

from s to s = 1 in the next period and with probability 1−P (s) the state moves from

s to s + 1 in the next period. The function, P (s) is decreasing in the aggregate loan

recovery rate in the event that s = 1 in the next period, as in the three-period model

(see equation (22)). As in the three-period model, there is no uncertainty in the model

other than the possibility of a run.94

The sequence of events in a state, s > 2, is as follows:

• The only way to be in state s > 2 in the current period is to have been in state

s−1 in the previous period. Among the unit-measure of bankers working in state

s− 1, 1− σ die at the start of s and σ survive to remain bankers in s.

• Newborn bankers in state s replace the 1− σ bankers which die in s. The 1− σ
newborns receive a small transfer of net worth denominated in the units of the

numeraire good.

• Incumbent bankers pay off liabilities issued in s−1. The net worth of all bankers,

N (s) , working in state s (i.e., the σ surviving incumbent bankers plus the 1− σ
newborns) is determined. Net worth across bankers is heterogeneous because

they have different ages.

• State s working bankers make their deposit decision. All bankers then buy capital

at the price, Q (s) . The 1 − σ bankers that die at the start of state s consume

their net worth in s and then exit the economy.

• A random draw from a binary distribution determines whether the system moves

from s to s = 1 or s+ 1 in the next period.

93In practice, lims→∞X (s) converges in the (small probability) event that s → ∞. GK point out
that this allows one to approximate the equilibrium by choosing a large positive integer, S, and setting
X (s) = X (S) for all s > S. This reduces the number of equilibrium objects that must be computed
to a manageable size. For details of what we did, see the Online Appendix. One of the variables in
X (s) , P (s) , is dependent upon the price of capital, Q (1) , in the run state. This is an element of
X (1).

94Gertler and Kiyotaki (2015) allow for a technology shock, but we set that to the unconditional
mean implied by their parameterization.
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GK assume that in the run state, s = 1, newborns do not enter and they instead wait

until the next state, s = 2. Thus, the number of newborns entering in state s = 2 is

the sum of the σ (1− σ) newborns that enter in the run state and survive into the next

period, plus the new (1− σ) newborns.95 Apart from the quantity of new entrants in

s = 2, the sequence of events in s = 2 is the same as for s > 2. A Markov chain

equilibrium is a sequence, X (s) , for s = 1, 2, ..., such that (i) the quantities in this

sequence solve agents’ problems given the prices and probabilities and (ii) markets

clear. This definition of equilibrium is the analog of Definition 1 in our three-period

running away model. We find a unique equilibrium that is essentially the same as the

one reported in Gertler and Kiyotaki (2015).

Our model and the specified values of the parameters are identical to the specifica-

tion in GK(table 1), with two exceptions. First, we set the technology shock to a fixed

value that corresponds to the unconditional mean of the stochastic technology shock

used in GK. With this change, there is an equilibrium in which bankers issue deposits

in each s > 1. However, the resulting equilibrium also has the property that P (s) is

small in the sense that P (s)→ 0 as s→∞. In order to ensure that P (s) > 0 for all s,

we reduced the size of the endowment given to newborns by a factor of 1.7. But then,

we found that the positive deposit decisions of banks, while still locally optimal, were

dominated by setting deposits to zero in order to preserve net worth in the case of an

annihilation run. This is same phenomenon we found in the three-period model (see

section 2.4). As in that discussion, we found that introducing Assumption 1 reduces

the attractiveness of hoarding net worth in a non run state. As a result an equilibrium

that resembles the one in GK is preserved except that P (s) is positive for all s. This

illustrates the robustness of the fragility observation in section 2.4. There, we argued

that the existence of the annihilation run state is fragile and depends on exogenous

assumptions that directly control the amount of net worth in the hands of bankers

in an annihilation run. For a more detailed discussion of the model, see the Online

Appendix.96

95The net worth of bankers born in s = 1 and who survive into s = 2 is storable from s = 1 to
s = 2. Newborns in s = 1 who die in s = 2 have zero consumption.

96This appendix graphs the equilibrium X (s) , s = 1, .... It also reports stochastic simulations of
the model to show the frequency of crisis, as well as the average time required to respond to a crisis.

A-9

https://faculty.wcas.northwestern.edu/~lchrist/course/China_SAIF_2019/GK_Rollover_handout.pdf
https://faculty.wcas.northwestern.edu/~lchrist/course/China_SAIF_2019/GK_Rollover_handout.pdf


C.2 Representing the Model as a Game

To represent the model as a game we need well-defined best response functions for the

players, which we take to be the bankers in a particular state, s̃. We describe the

key ingredient of the best response function, a continuation equilibrium, in the first

subsection below. We then perform our game-theoretic analysis on the GK model. We

show that the annihilation and no run equilibria reported by them correspond to the

two Nash equilibria of the game representation of the model. The third subsection uses

the game representation of the model to show how sensitive the model properties are

to alternative assumptions about entry into banking. These results demonstrate the

robustness of the findings for the three-period model in subsection 2.6.1.

C.2.1 The Continuation Markov Chain Equilibrium

Overview

We do the analog of what we did in our three-period model. There, we started the

analysis in period t = 1 taking what happened in period t = 0 as given. Here, we start

in a particular state, s̃ = 10, and we take as given the liabilities and assets acquired

by households and banks in state s̃ − 1.97 In the Markov chain equilibrium, only the

no run equilibrium is possible in s̃. For example the two elements, Q (s̃) and N (s̃) , of

X (s̃) are the given equilibrium prices of capital and value of net worth in state s̃ of

the Markov chain equilibrium. As in any market equilibrium concept, in the Markov

equilibrium agents do not need to form beliefs about what prices and net worth are. The

Markov chain equilibrium concept incorporates the rational expectations assumption

that people simply know what those objects are, and sets aside the question of how

people arrive at such knowledge. As in section 2.6.1 we take a single step away from

the rational expectations assumption. We do so in state s̃ for one period only. In all

later dates and states, including times when s̃ is visited again, agents are assumed to

have rational expectations.

In state s̃ banks find themselves having to make a guess about Q and N (to simplify

notation, we do not include the state index here). The problem of bankers is the same

as in subsection 2.6.1 above. In particular, all the bankers make their deposit decisions

simultaneously and without coordinating. Because we temporarily drop the rational

expectations assumption in state s̃, all the individual banker knows is that the current

97These include kb (s̃− 1) , R (s̃− 1) d (s̃− 1) ,which are elements of the vector X (s̃− 1) .
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price of capital, Q, is determined by market clearing and this depends, in part, on the

average deposit decision, D, of the other bankers. Conditional on D, the individual

banker can compute the continuation equilibrium. This is a sequence, X (s;D) for

s = s̃, s̃ + 1, ... that satisfies all equilibrium conditions except the one associated with

D itself. When we consider values of D different from the one in the Markov chain

equilibrium, the sequence, X (s;D) for s = s̃, s̃+ 1, ... does not coincide with X (s) for

s = s̃, s̃+ 1, ... .

The analysis is simplified by the fact that lims→∞X (s;D) coincides with analogous

limit in the Markov chain equilibrium.98 Constructed in this way, the system eventually

must revert to the Markov chain equilibrium for any D. It either reverts as soon as an

annihilation run occurs or in the (zero probability) event that an annihilation run never

occurs, s → ∞.99 The Markov chain equilibrium is stationary. For D not equal to 0

or D (s̃) , the deviation from the Markov equilibrium explored here is not stationary,

though eventually it converges back to the Markov chain equilibrium.

Details of the Computations

We compute banker best responses in a way that is analogous to the three-period

analysis in subsection 2.6.1. In particular, we choose a specific state, s̄ = 11. That is

the analog of period 1 in the three-period model. We then fix the value of D, one of

the elements of X (s̄). We drop the equation in the state s̄ that determines D, so that

the state s̄ equilibrium conditions are given by:X (s)

v̄
(
X (s̄− 1) , X̄D (s̄;D) , X̄D (s̄+ 1;D) ;Q (1)

)
= 0. (C.1)

Here, X̄ (s;D) denotes the value X (s) in the continuation equilibrium associated with

D occurring in state s̄ and v̄ replaces v in s̄ one time only. In all subsequent periods

98To compute the continuation equilibrium, X (s;D) for s = s̃, s̃+ 1, ... , we make use of the same
approximation described in footnote 93. For D > 0, in each state, s = s̃, s̃+ 1, ... agents believe that
in the next state there can only be a run equilibrium, s = 1, or a no run equilibrium, just like in
the Markov Chain equilibrium. So, what happens in a run equilibrium matters for each X (s;D) for
s = s̃, s̃ + 1, ... . As noted above, we take X (s) , s = 1, ..., s̃ − 1 as given. For D = 0, X (s̃+ j;D) =
X (1 + j) , j ≥ 0. For D = D (s̃) , its value in the Markov Chain equilibrium, X (s̃+ j;D) = X (s̃+ j) ,
j ≥ 0.

99There is a (large) equal number of equations and unknowns to solve for X (s;D) for s = s̃, s̃+1, ....
For this, we adapt the same algorithm used in GK. Replication files for the computations are available.
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the equilibrium conditions are again given by v, so that

v
(
X̄D (s− 1) , X̄D (s) , X̄D (s+ 1) ;Q (1)

)
= 0,

for s > s̄. In those periods, we impose the feature of the baseline equilibrium that the

system in state s moves to s = 1 with probability P (s) and that s moves to state s+ 1

with probability 1−P (s), where P (s) is the probability of a run assigned by X̄ (s;D).

In the (zero probability) event that the system never experiences a run, then,

lim
s→∞

X̄D (s) = X∞ (Q (1)) . (C.2)

Here, X∞ (Q (1)) is the solution to equation (C.5) used in computing the baseline

equilibrium and Q (1) is the baseline equilibrium price of capital in the state s = 1.

For the no run value of D the continuation equilibrium coincides with the baseline

equilibrium itself. However, for other values of D the continuation equilibrium returns

to the baseline equilibrium as soon as an annihilation run occurs or, if one never occurs,

then the system converges according to equation (C.2).

In effect, we study an ‘MIT shock’ that occurs in a particular date when the state

is s̄. In the preceding state, s̄ − 1, no one expected any value of D other than its no

run value assigned in the baseline equilibrium by X (s̄). When the system eventually

arrives at s = s̄ again, then the variables simply take on the value of X (s̄) assigned in

the baseline equilibrium. Thus, the stochastic process eventually ‘returns’ to where it

would have been in the absence of the MIT shock.

C.2.2 Best Response Function in State s̃ : the GK Case

Given a belief, D, and with the implied continuation equilibrium, X (s;D) for s =

s̃, s̃ + 1, ... in hand, the individual banker has the information necessary to solve its

deposit decision, d. Our baseline analysis adopts GK’s (p. 2024) assumption that if

an annihilation run occurs, D = 0, newborn bankers do not enter because they fear

that households will not be able to differentiate them from the σ other banks whose

net worth is zero. For positive values of D, newborns do enter.

We seek a single level of deposits, d (D), as a ‘best response’ to D. We accommodate

the fact that bankers in the model are heterogeneous by computing the average best
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response deposit decision of bankers, conditional on D :

d (D) = (φ (D)− 1)N (D) . (C.3)

Here, N (D) denotes average net worth across all operating banks in state s̃, in the

continuation equilibrium conditional on D. Also, φ (D) denotes the best leverage re-

sponse of a banker in the continuation equilibrium conditional on D.100 Bankers are

not cooperative, so each of the unit measure of bankers underlying equation (C.3) be-

lieves that it is atomistic in that it ignores any impact of its deposit decision on prices

and rates of return.

The best response function, d (D) , is reported in Figure C1a for a range of values of

D that includes D = 0. The best response function is the solid line, while the dashed

line is the 45o line. By construction of d (D) , values of D such that D = d (D) are

Nash equilibria and correspond to equilibria of the underlying market economy.101

Note that the best response function, d (D), crosses the 45o line at roughlyD = 0.35,

which corresponds to the no run equilibrium in the Markov chain equilibrium with s =

s̃. The best response is generally upward-sloping, reflecting strategic complementarity

among bankers. As D increases, the net worth of bankers increases and individual

bankers best respond by demanding more deposits. This reflects the fact that with

higher D, Q (D) increases and this effect on price operates on banker deposits through

two channels. First, net worth is increasing in Q and second, leverage is decreasing in

Q as a rise in the price of capital drives down its rate of return. Evidently, the net

worth channel dominates the leverage channel on the upward-sloping portion of the

best response function.

Note the kink just below D = 0.05. That kink is the largest value of D where

incumbent bankers’ net worth is zero. Those bankers best respond by demanding zero

deposits for all D at the kink and smaller. As D falls below the kink point, the only

bankers in business are the 1 − σ newborns who are assumed to enter with a level of

100Because of the linearity in the model, φ is the same for all bankers with positive net worth.
However, for a banker with zero net worth, φ is not well-defined. Such a banker sets d = 0, a result
that we verify when we do the computations. Recall that equation (C.3) is the integral of best response
functions, across the unit measure of bankers. So, that integral is correct if we set φ = x where x is
any finite number, for bankers with zero net worth. In practice, we set φ in equation (C.3) to its value
for bankers with positive net worth.
101Recall that for D = D (s̃) , where D (s̃) > 0 is the value of deposits in the Markov Chain equi-

librium, D (s̃) = d (D (s̃)) and the continuation equilibrium has the property, X (s;D (s̃)) = X (s),
for s = s̃, s̃+ 1, ... . Also, recall that for D = 0 the continuation equilibrium is X (s̃;D) = X (1) and
X (s;D) = X (s) for s ≥ 2.
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net worth independent of the value of D > 0.102 It is not surprising that deposits are

strategic substitutes among newborns, since for them the net worth channel described

in the previous paragraph is shut down. With a reduction in D, the price of capital

in the continuation equilibrium is lower, raising the rate of return on capital and thus

relaxing financial frictions on newborns. This is why it is that to the left of the kink, the

best response function has a negative slope. As D converges to zero, the best response

rises sharply and approaches the open circle on the vertical axis. When D = 0 the best

response discontinuously drops to the origin reflecting that newborns are assumed not

to enter in that case.103 Evidently, there are two Nash equilibria, consistent with the

conclusion of the market-based analysis reported in GK.104

102For D to the left of the kink point in Figure C1a, N (D) = (1− σ)ωb, where ωb denotes the
quantity of net worth transferred to each newborn.
103Computation of the open circle in Figure C1a is straightforward and closely mirrors the compu-

tations surrounding the t = 0 banker problem in the three-period running away model (see equation
(20)). The problem of a newborn with net worth, N1 = ωb > 0, who enters in state s = 1 is
V1 = maxd1 [β (1− σ)N2 + βσV2] subject to the incentive constraint: θQ1k

b
1 ≤ V1. Here, Vs denotes

the value of being a banker in state s, s = 1, 2. In defining the banker’s objective we have taken
into account that P (1) = 0 and that with probability 1 − σ the newborn dies and consumes its net
worth, N2, in the next period (an inessential difference with our three-period model is that bankers in
this model live separately from the household, are risk neutral and only consume at the date of their
death). After scaling by N1, the problem reduces to maxd1 ψ1 (φ1) subject to θφ1 ≤ ψ1(φ1), where
ψ1 (φ1) = [β (1− σ) + βσψ2]N2/N1, and N2/N1 = φ1

Z+Q2

Q1
− (φ1 − 1)R1. The latter expression is

discussed in footnote 27 and the scaled notation corresponds to that used in subsection 2.1. Also
R1 = Ch2 /

(
βCh1

)
, where Chs denotes the consumption of the household in states s = 1, 2. It can be

verified that the incentive constraint puts an upper bound on φ1 and that that upper bound optimizes
the newborn banker’s constrained optimization problem. Thus, we solve for the unique value of φ1
that satisfies ψ1 (φ1) = θφ1. The empty circle in Figure C1a is (φ1 − 1) (1− σ)N1. The required
numbers are Q1 = 0.8870, Q2 = 0.9316, R1 = 1.0550, Ch1 = 0.0536, Ch2 = 0.0560, ψ2 = 19.7806,
(1− σ)ωb = 0.0011487/1.7, σ = 0.95, θ = 0.1934, β = 0.99. These imply φ1 = 781.6647, so
(1− σ) (φ1 − 1)ωb = 0.53 as shown in Figure C1a.
104GK do not take a stand on what newborns would do out of equilibrium. So, there another

interpretation of their model in which the best response function drops to zero discontinuously at
the kink point. This would not change the result that there are only two equilibria. The reason we
adopt our particular interpretation of GK is that it is more convenient from the point of view of the
subsequent discussion.
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Figure C1: Best Response Analysis in the Infinite Period Model

(a) All Newborns Stay Out When D = 0
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(b) 40% of Newborns Stay Out When D = 0
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(c) 90% of Newborns Stay Out When D = 0
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(d) 100% of Newborns Stay Out When D = 0
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Notes: (i) these figures display the best response, d (D) ,defined in equation (C.3). (ii) Figure C1a displays a best response that is
consistent with the analysis in GK: there are two Nash equilibria with a discontinuity at D = 0 because at that point newborns do not
enter (the open circle is the limit of the best response function as D → 0). At D = 0,the best response is the closed circle at the origin.
In terms of footnote 105, ϕ (0) = 0 and ϕ (x) = 1 for x > 0. (iii) Figure C1b displays the best response when ϕ (x) is as defined in
footnote 105 with z = 0.6 , so that 60% of newborns enter when D = 0. (iv) Figure C1c displays the best response with z = 0.1, so that
10% of newborns enter when D = 0. see text for discussion. (v) Figure C1d displays the best response with z = 0 so that zero newborns
enter during a run. The shape of the best response function for D ≤ D∗ reflect the gradually rising function, ϕ (x).

C.2.3 Best Response Function in State s̃ : Alternative Treatments of New-

borns

The panels in Figure C1 make it transparent that the treatment of newborns has a

profound impact on the nature of the equilibria. For example, the small open circle

on the vertical axis of figure C1a shows how many deposits newborns would issue if

they entered when D = 0. Given the high returns in an annihilation run, the financial

frictions on newborns are very weak and they can obtain leverage roughly equal to 782,
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almost identical to the leverage of 756 reported for our three-period model in section

2.4. The aggregate net worth of newborns is 0.000676, so if they entered, they would

issue 0.53 deposits and hold 0.53 assets, after rounding. To evaluate the magnitude of

assets held by newborns that enter when D = 0, it is useful to compare the quantity of

those assets with the assets held by all banks in the no run Nash equilibrium in state s̃.

Leverage in that state is 21 and the total assets held by the banks in that equilibrium

is 0.37. Thus, the newborns alone can hold 40 percent more assets if they enter the

during the annihilation run state than are held by the entire banking system in the no

run equilibrium. Evidently, the rollover crisis property of the model is not at all robust

to assumptions about entry.

We can translate the fact that newborns cannot issue equity (net worth) in an

annihilation run into a transactions cost they have to pay to enter. If a newborn

banker had $1 of equity during a run, they would earn a present discounted value of

ψ∗ = θ × 782 = 0.1934× 782 = $151 (we use the value of θ used in GK, see below). A

way to interpret that newborns do not enter in an annihilation costs is that they face

a transactions cost slightly higher than $151 per $1 of equity issued in order to deploy

their equity in a run. As in the three-period model adjustment costs of that magnitude

seem implausibly large.

So far we have only considered alternative assumptions about the entry of newborns

when D = 0. With D > 0 we assume all newborns enter. In panels (b)-(d) of Figure

C1 we assume that the fraction of newborns that enter, ϕ (D) , is continuous in D ≥ 0.

We parameterize this function so that ϕ (0) = z < 1 and ϕ (D) = 1, for D ≥ D∗, where

D∗ corresponds to the kink point in Figure C1a. The function, ϕ (D), is continuous,

increasing and convex over the range, D ∈ [0, D∗].105

We just considered case when 0% of newborns stay out of the market when D = 0.

Using the function ϕ we can ask what happens if the fraction of newborns that stay out

rises above 0% during an annihilation run. The best response function in this case is

displayed in Figure C1b, where the fraction of newborn staying out of the market is 40%

when D = 0 and falls continuously as D increases.106 In this case too, we see that the

annihilation run state is not a Nash equilibrium, so it also is not a market equilibrium.

By further increasing the fraction of newborns that stays out of the market we in effect

105We use ϕ (x) = min {F (x;µ, σ) /F (.1;µ, σ) + z, 1} ,where µ = 6, σ = 1 and F is the cumulative
distribution function of the lognormal distribution. Various values of z are used, as indicated in the
panels of Figure C1.
106The fraction, 1− ϕ (D) , enter in state s = 2.
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shift the best response function down. The overall shape of the best response function

is preserved and it is therefore not surprising that as the best response function shifts

down, at some point two new Nash equilibria make an appearance (see Figure C1c).

Interestingly, none of these two equilibria are an annihilation run. We continued to

reduce ϕ (D) and Figure C1d shows what happens when ϕ (0) = 0, so that no newborns

enter when D = 0 and a very small number enter for D > 0. Now, there are the three

equilibria we saw in the three-period model in subsection 2.6.1.107 Overall, Figure C1

shows that the set of equilibria is very sensitive to assumptions about entry.

C.2.4 Computation of Best Response Function

Under our assumption (verified ex post) about the convergence of X (s) in s we have

that for a sufficiently large value of S, that the equilibrium is well-approximated as

solving

v (X (s− 1) , X (s) , X (s+ 1) ;Q (1)) = 0, ṽ (X (2) , X (3) ;Q (1)) = 0 (C.4)

for s = 3, 4, ..., S + 1. In equation (C.4), X (S + 2) ' X∞ = lims→∞X (s). Also,

v is a set of equilibrium conditions for the model variables, X (s), for s > 2. The

equilibrium conditions in state s = 2, ṽ, are slightly different than those for s > 2 in

part because the equilibrium conditions do not look back at the elements inX (1) , apart

from Q (1). The notation makes explicit the dependence of each equilibrium condition

on the price of capital in the annihilation run state, Q (1). The price of capital in

the annihilation run equilibrium appears in each equilibrium condition because, for

each s ≥ 2, it is possible that the subsequent period is an annihilation run period.

In principle, household consumption in s = 1 is also required for each s, but in the

model equilibrium household consumption in the run state turns out to be a function

107In the case of Figures C1c and C1d it is interesting to know whether any of the equilibria could be
eliminated on the basis of some kind of stability concept. Angeletos and Sastry (2021) define a rational
expectations equilibrium as (locally) ‘well behaved’ if the associated Nash equilibrium in the game form
of the model is locally eductively stable, i.e., the best response function crosses that Nash equilibrium
with a slope less than unity in absolute value. The appeal of local eductive stability is that, under
certain representations of bounded rationality, if agents believe the economy is in a neighborhood of
an equilibrium (and, this belief is common knowledge, CK), then as more mental reasoning is applied,
they will coordinate arbitrarily closely on the equilibrium. If a rational expectations equilibrium is
ill-behaved, then if boundedly rational agents believe the economy is in a neighborhood of a particular
equilibrium (and this is CK), then rationality has no prediction for which belief agents will adopt in
that neighborhood, no matter how intense their mental reasoning is. See Evans and Guesnerie (2005)
and Evans et al. (2018) for more extended discussions of local eductive stability.
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of exogenous parameters. In equation (C.4), X∞ (Q (1)) solves

v (X∞ (Q (1)) , X∞ (Q (1)) , X∞ (Q (1)) ;Q (1)) = 0. (C.5)

In the run state the household holds all the economy’s capital, which (as in GK) we

assume to be unity. The household’s Euler equation for capital in s = 1 is, analogous

to our equation (29) and (31),

β
Q (2) + Z

Q (1) + α
=
C (2)

C (1)
. (C.6)

Here, C (s) denotes household consumption in state s = 1 and 2, Z denotes the marginal

product of capital, α is the household capital management parameter and β its the

household’s discount rate. The fact that it is consumption growth that is equated

to the rate of return on capital (inclusive of marginal management costs) reflects the

assumption of log utility in consumption.

We use the numerical algorithm proposed in GK to solve for X (1) , ..., X (S + 2) .

In particular, let Q (1) be an initial guess about the price of capital. Then, compute

X∞ (Q (1)) to solve equation (C.5). Then, solve for the S objects, X (2) , ..., X (S + 1),

using the S equations in (C.5). After this, use equation (C.6) and C (2) and Q (2) from

X (2) to obtain a new value for Q (1) that solves (C.6). (Recall that C (1) is a function

of exogenous parameters.) Finally, iterate on this mapping from Q (1) to a new value

for the price of capital until convergence, Q∞. Then, X∞ ≡ X∞ (Q∞) . See subsection

C.3 below for more information about this mapping.

Definition 4. A baseline (approximate) equilibrium is a set, {X (1) , ..., X (S + 1) , X∞} ,where

X (s) solve equations (C.4) and (C.6) for s = 1, ..., S+1,and X∞ solves equation (C.5).

The definition provides an approximate equilibrium because S < ∞. We use S =

120 and have found that X (s) converges at about s = 70. The bottom arc of ‘balls’ in

Figure C2 corresponds to the equilibrium elements of X (s).
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Figure C2: Baseline Equilibrium and Continuation Equilibrium, Given D

𝐷

𝑠 = ҧ𝑠

ҧ𝑠 + 1

…

Run
s=1

s=2

s=3

𝑠 = ҧ𝑠

…

Steady State
s=S+2,…,

Note: The bottom arc of balls correspond to the baseline equilibrium, characterized by s = 1, ..., S + 2 and discussed
in Subsection C.1. The bottom arc is a stationary Markov chain stochastic process: the values of the economic
variables are always the same whenever the process visits a given state, s. The upper arc corresponds to the
continuation equilibrium associated with a perturbed value of deposits, D, that (potentially) deviates from its baseline
value in state s̄ one time only. This case is discussed in Subsection C.2.1. In both cases, the state advances from s to
s+ 1 with probability, P (s), and it advances to state s = 1 (the annihilation run state) with probability, 1− P (s).
The top arc of balls is the response to an ‘MIT shock’ (completely unanticipated in the previous state) in which D is
arbitrary and replaces its value in the baseline equilibrium, X (s̄) . The upper arc describes a nonstationary Markov
chain stochastic process, though for every possible sequence of states, that process converges to the baseline stochastic
process. This can be seen in the above diagram, which shows that in the upper arc, the system can jump to s = 1,in
which case it goes back to the baseline equilibrium Markov chain. In the (zero probability) even that the system never
encounters s = 1 then it converges to X∞ where it also rejoins the baseline stochastic process.

In our analysis, we assign the following values to the parameters:

α = 0.00797, θ = 0.1934, σ = 0.95, β = 0.99,

W h = 0.045, W b = 0.0011487/1.7, Z = 0.0126.

These are taken from GK (except W b, which is their number is divided by 1.7 to ensure

P∞ > 0 while still ensuring that the banker incentive constraint is compatible only with

bankers setting deposits equal to zero in an annihilation run). The properties of X∞

in this case are:
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Q (1) = 0.89, Q∞ = 0.98, Kh
∞ = 0.30, D∞ = 0.62

Φ∞ = 11.1, P∞ = 0.0031,

Ch (1) = .054, Ch
∞ = 0.055, Cb

∞ = 0.0031, N∞ = 0.061,

Rf
∞ = 1/β − 0.95/10000,

R̄∞

Rf
∞
− 1 = 0.41/10000.

The risk free rate, Rf
∞, is slightly lower than 1/β, reflecting the precautionary saving

motive in the presence of a (very small) probability of an annihilation run in s =

∞. The upper arc of balls in Figure C2 corresponds to the continuation equilibrium

associated with a particular value of D in state s = s̄.

C.3 Detailed Parametric Discussion of Infinite Horizon Model

We provide the following discussion in the form of a set of presentation slides. These

go into the deepest possible detail about the specification of the baseline model and

the various incentive constraints on the banker.
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