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Abstract

We study the tradeoff between fundamental risk and time. A time-constrained agent
has to solve a problem. She dynamically allocates effort between implementing a risky
initial idea and exploring alternatives. Discovering an alternative implies progress that
has to be converted to a solution. As time runs out, the chances of converting it in time
shrink. We show that the agent may return to the initial idea after having left it in the
past to explore alternatives. Our model helps explain so-called false starts. To finish
fast, the agent delays exploring alternatives reducing the overall success probability.
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The people that really create the things that change this industry are both the
’thinker-doer’ in one person.
—Steve Jobs. Machine That Changed The World (1990).

1 Introduction

Problem solving under time pressure is central to many economic problems. For example,
consider an entrepreneur who has received funding for her venture. While the initial funds
cover her expenses to advance the project for some time, she requires additional financing
rounds before the venture becomes profitable.1 To raise new funds, the entrepreneur has
to achieve a milestone: build a prototype, solve a technological problem, or prove that
a promising market for the product exists. Often, the entrepreneur faces an explicit or
implicit deadline to achieve the milestone.2

Suppose that the entrepreneur proposed a particular strategy to reach a milestone—for
example, a successful launch in a particular market. While the strategy appears promising,
there is a risk that it is fundamentally flawed. However, there may be alternative ways to
prove the venture’s worth to investors. Invoking such an alternative would imply that the
entrepreneur pivots away from her initial idea to a new strategy.

A successful pivot requires preparation. First, stakeholders need to be convinced
that the change in strategy is promising (McDonald and Bremner, 2020). To this end, the
entrepreneur could, for example, conduct customer research to discover market needs, leading
to a new business strategy. When contemplating the option to pivot, our entrepreneur faces
the following tradeoff (Isenberg and DiFiore, 2020): While preparing a pivot requires scarce
time and resources, continuing with the current strategy entails the risk of failing.

When should the entrepreneur prepare a pivot? Early on, when time pressure is still
low? Or later, after she has experimented unsuccessfully with the initial idea? When—if
ever—should she abort the preparations for the pivot and set focus on the initial idea again?

In this paper, we study the novel tradeoff between fundamental risk and time in a
multiarmed, continuous-time bandit model. We consider an agent (e.g., our entrepreneur)
that has to solve a problem (e.g., achieve a milestone) by a deadline. Following the Steve
Jobs quote at the beginning, the agent can exert effort in two different ways: She can do, or
she can think.3 Doing corresponds to working on implementing her initial idea. Thinking
corresponds to preparing a pivot. While doing, a solution arrives stochastically at an ex
ante unknown rate. Instead, while thinking, progress arrives stochastically at a known rate.

1Gompers (1995) discusses the importance of staged financing for venture capital-backed startups. The
empirical analysis highlights that financing rounds are short. On average, they last just above one year.

2Running out of cash is the second most frequent reason for startup failure according to CB Insights (2021).
The entrepreneur has to achieve the milestone before her funds run out: an implicit deadline. Moreover,
Kaplan and Strömberg (2003) documents that venture capitalists use both ex ante staging—committing
to milestones that have to be achieved by a deadline—and ex post staging—liquidating the venture if the
entrepreneur’s performance is not satisfactory when the new funding round is due.

3Bolton and Faure-Grimaud (2009) consider a related but different tradeoff between thinking and doing.
Importantly, and different from us, their tradeoff does not vary over time.
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While a solution results in a fixed payment (e.g., the next round of funding), progress needs
to be converted first. Because converting progress is harder with little time remaining, the
value of progress is lower the closer the deadline is.4

A large body of literature in economics studies problem solving as the choice between
solution methods. Following Rothschild (1974) and Weitzman (1979), this literature focuses
on an exogenous set of known methods chosen over an infinite horizon.5

In reality, however, deadlines matter. Kirtley and O’Mahony (2020) document, for
example, the factors driving entrepreneurs to prepare a pivot. They show that both
time pressure and beliefs about the feasibility of the initial idea play a crucial role in an
entrepreneur’s decisions. Therefore, understanding entrepreneurial choices on pivots in light
of time pressure and risk requires explicit modeling of both a deadline and the generation
of new strategies. In particular, different from the canonical experimentation approach, our
model captures the notion that the value of progress depends on the time left to make use
of it.

Our first contribution is that we characterize the agent’s optimal policy in such a model.
The characterization is nontrivial. Due to the shortening time window, the value of progress
changes over time independent of the agent’s actions. In such a model, the optimal myopic
policy need not be dynamically optimal, and the index theorem of Gittins and Jones (1974)
does not apply.

If the agent is optimistic about her initial idea and the time window is large, then the
optimal policy is as follows. The agent starts by doing. If doing remains unsuccessful, then
the agent switches to thinking. However, if progress does not arrive in due time, then the
agent switches back to doing and, in the remainder of the time, aims for a solution via the
initial idea.

The property that the agent returns to a previously discarded arm results from three
model ingredients: the finite horizon, the fact that progress needs to be converted in a
second step, and the positive cost of effort. When any of these ingredients are dropped, the
optimal strategy becomes a classical one-time switching rule. If the arm that the agent
started with is not successful in due time, then she switches to the other but never switches
back. To develop an intuition for the incentives at play in the optimal policy, we separately
study two benchmarks—no time pressure and zero cost of effort.

If we drop time pressure, the problem becomes a standard, recursive infinite-horizon
problem.6 Thinking becomes equivalent to the safe option. Doing, the risky option, offers
a cost advantage. Therefore, the agent first approaches the problem through doing. If no

4There are several ways to model this decreasing value. Our baseline model depicts the value of progress
in an abstract reduced form. In Section 2.1, we provide several examples to microfound this reduced form.
These include, for example, safe and risky exponential bandit arms or an Ornstein-Uhlenbeck payoff stream.

5In Rothschild (1974)’s language, a method is an arm. In Weitzman (1979)’s language, a method is a
box.

6The following benchmark is analogous: Consider a classical experimentation problem with only one
arrival needed on both arms but with the thinking arm having a lower intensity rate. Both benchmarks
remove the time-varying value of progress that derives from its multistage nature and the finite horizon.
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solution arrives, she becomes pessimistic about the quality of her initial idea. She switches
to thinking. Because time pressure is absent and the time to convert progress never runs
out, the value of thinking is constant. When the agent finds it optimal to switch to thinking
at one point, the thinking arm dominates the doing arm for the remainder of the time.

If we drop the cost of effort but keep the time window finite, then the result reverses.
Thinking early on has a higher value than thinking later. Early progress leaves ample
time for conversion. The agent starts by thinking. If progress remains absent, then she
becomes pessimistic about having sufficient time left to convert progress should it arrive.
She switches to doing in the hope of an immediate solution.

Our second contribution is to use our model to explain some entrepreneurial decision-
making peculiarities that traditional bandit models cannot explain. First, we provide a
theoretical rationale for false starts. A false start describes the entrepreneur’s tendency to
act on initial ideas (doing) rather than to invest in customer research to explore alternatives
(thinking). False starts are costly, because the earlier customer research is done, the more
time and resources remain to improve the initial idea. Eisenmann (2021) argues that false
starts are one of the main reasons startups fail. Indeed, following our model, entrepreneurs
explore alternatives too late, leaving them relatively little time to convert a promising pivot
into a successful venture. In return, if they succeed with their initial idea, they succeed early.
In our model, by doing early, entrepreneurs trade off overall success probability against
saving time and the resources needed for early thinking.7

Second, an increase in the ex ante belief about the initial idea can lower the overall
success probability of the entrepreneur. A higher initial belief discourages early customer
research, thereby amplifying the false-starts problem. If the deadline is not too short, this
effect may dominate the positive effect of a higher likelihood that the initial idea can deliver
a solution.

Third, increasing time pressure can incentivize the agent to think early on. A venture
capitalist can mitigate the false start problem through tighter deadlines that crowd out
the entrepreneur’s incentive to do early. In general, early doing is attractive because it can
provide a quick solution. The entrepreneur may opt for this route if, initially, the time
pressure is not too high. By increasing the initial time pressure, the venture capitalist
discourages early acting on the initial idea. Instead, it encourages customer research when
it is most valuable.

We believe that our modeling framework also applies in other contexts. While en-
trepreneurial problem solving serves as our main application, we discuss other applications
in Section 6, our Final Remarks.

7One case in point is the Triangulate venture, as discussed in Eisenmann (2021). In a post-mortem of his
failure, the founder Sunil Nagaraj admitted that he rushed to launch the venture’s platform Wings rather
than spending time on customer research to verify the market need for an improved matching engine. He
considers that behavior as one of the main mistakes leading to the eventual failure of Triangulate.

4



Related Literature. We contribute to a large body of literature that deals with the
choice between approaches to innovation. One strand of the literature dating back to
Weitzman (1979) has considered several variants of Pandora’s box problem as a proxy for
finding the right innovation strategy (e.g., Fershtman and Rubinstein, 1997; Olszewski
and Weber, 2015; Doval, 2018). Other works have been concerned with how competition
affects the search for the right approach (e.g., Aghion et al., 2001; Akcigit and Liu, 2015;
Letina, 2016; Lemus and Temnyalov, 2019). Our contribution to this literature is that
we endogenize the available approaches by allowing the agent to explore an alternative
route. Therefore, we also endogenize the cost of finding an alternative. We capture two
aspects absent in the aforementioned literature. First, new ideas arrive stochastically, and
the cost the agent incurs to make progress on the alternative varies with the time it takes
until progress arrives. Second, and more importantly, the value of progress varies with the
time window the agent has to convert progress into a solution. Thus, the availability of an
alternative route depends on both luck and choices in the past, and the value of discovering
an alternative depends on the time window left.8

A strand of the management literature addresses issues similar to ours. An example is
Gans, Stern, and Wu (2019). However, their Test Two, Choose One result ignores the time
dimension, which is the focus of our paper. The process of how to think about alternatives
and the particularities of lean techniques are discussed in Felin et al. (2019). Our model
provides a formal, economic method for these ideas.

Technically, our model falls into the class of multiarmed bandit problems (Rothschild,
1974). Bergemann and Välimäki (2008) provides an overview of the literature. The doing
arm is a classical continuous-time exponential bandit, as used in most of the strategic
experimentation literature (Keller, Rady, and Cripps, 2005). While most models feature
infinite-horizon settings, we are interested in a time-constrained agent. Klein (2016) also
considers a time-constrained agent. The crucial difference from our model is that, in his
case, both arms are exponential bandits that differ in their intensities, not in the number of
arrivals needed.

In our case, the thinking arm is restless—the state of the arm evolves even when not
pulled. The restless feature is essential for capturing the risk-time tradeoff but makes the
model complicated (see, e.g., Fryer and Harms, 2019). The thinking arm concept is related
to the few papers in the literature that study multistage bandits (Keller and Oldale, 2003;
Hu, 2014; Green and Taylor, 2016; Wolf, 2018; Kim, 2021; Moroni, 2021).

The results in Kim (2021) appear reminiscent of ours, yet the environment and thus
the mechanism differ substantially. We study an agent’s decision whether to experiment
with a risky project or take a step back and look for a safer alternative absent agency
concerns. Kim (2021) instead abstracts from risk and focuses on the agency problem alone.

8There is a literature that studies the choice between risky, innovative approaches (see, for example,
Chen, Pan, and Zhang, 2018; Das and Klein, 2020) compared to a safe and established alternative. While
the choice set is given in these models, our focus is on the search for better alternatives because the existing
approach carries some risk. Therefore, in our model successful search mitigates the agent’s risk.
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In his model, multistage projects benefit an infinitely lived principal, as intermediate reports
provide a monitoring tool. Absent agency concerns, multistage projects are inefficient and
are never chosen. In our setting, it is a priori unknown which approach is efficient, and the
agent balances learning and managing time pressure.9

Callander (2011), Garfagnini and Strulovici (2016), Francetich (2018), Nikandrova
and Pancs (2018), and Che and Mierendorff (2019) study the problem of dynamically
distributing effort across several projects. However, none of them addresses the risk-time
tradeoff. Francetich (2018) studies the choice of allocating effort to two correlated bandits,
Callander (2011) features myopic agents, and Garfagnini and Strulovici (2016) considers a
two-period overlapping-generations model. By construction, neither reproduces the switching
dynamics we obtain. Nikandrova and Pancs (2018) model an agent who irreversibly selects
between two alternatives. The agent uses experimentation to learn about her options
beforehand. In Che and Mierendorff (2019), an agent can try to find a solution or to show
that no solution exists. At the optimum, the agent uses only one of the available routes
until she reaches an absorbing state. All five models are related in spirit, but the research
question, the modeling choices, and the results are different.

The two most closely related papers to ours are Bolton and Faure-Grimaud (2009)
and Fershtman and Pavan (2021). Most notably, however, both of their models operate
with an infinite time horizon and thus cannot produce the time-pressure dynamics of our
finite-horizon problem. In their models, the tradeoff between arms is independent of calendar
time. The available time window and associated time pressure constantly change in our
model, affecting the main tradeoff.

Bolton and Faure-Grimaud (2009) are also interested in the choice between thinking
and doing. However, thinking plays a different role in their model. It is a tool to resolve
uncertainties regarding future choices. In contrast, thinking in our model corresponds to
the development of a new, previously unavailable route.

Similar to our work, Fershtman and Pavan (2021) study a model with endogenous arms.
They consider an agent with an infinite horizon who decides whether to apply her initial
idea or to search for alternatives. Their focus is on the search process itself. The agent
can, at a cost, investigate several routes and learn about their quality. Instead, we focus
on the risk-time tradeoff that the agent faces as the available time window closes. To gain
tractability in a finite-horizon world, we abstract from some details of the search process.
We collapse it into a unidimensional object. Because different approaches to the problem
are taken, the results also differ. While Fershtman and Pavan (2021) show that in their
setting, an index policy remains optimal, we show that the same does not hold when the
risk-time tradeoff plays a role.

9The role for deadlines in Kim (2021) is therefore closer to that established in Bonatti and Hörner (2011).
A deadline provides an instrument to incentivize the agent to work. In our model, instead, deadlines affect
the agent’s tradeoff between improving the likelihood of finding a solution at all and—conditional on making
progress—having enough time to benefit from it.
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Roadmap. We set up our model in Section 2. We derive our main results in Section 3.
Section 4 describes a set of economic implications derived from our findings. In Section 5,
we discuss our modeling choices. Finally, Section 6 concludes and provides an outlook on
other applications of our framework.

2 Model

We introduce a model capturing the risk-time tradeoff between solving a problem through
doing—a fast but fundamentally risky approach—or through thinking—a slower but less
risky approach. We provide a discussion of our assumptions in Section 5.

Setting. Time is continuous and starts at t = 0. An agent has to solve a problem by
a finite deadline T < ∞ and there is no discounting over time. At each instant of time,
the agent can invest one divisible unit of effort into doing, adt , and thinking, ast , such that
adt + ast ≤ 1. Investing effort entails a flow cost of (adt + ast )c, with c > 0.

One arm, the doing arm, is risky. The arrival of a solution on that arm depends on the
unobserved binary state θ ∈ {0, 1}. The instantaneous arrival rate of the arm is θλ, where
λ > 0, which implies the following: if θ = 1, then the probability that a solution arrives
when the agent invests adt over a small time interval [t, t + dt) is λadt dt; if θ = 0, then a
solution never arrives on the doing arm. The agent’s belief that θ = 1 at t = 0 is p̄ ∈ (0, 1).
A solution delivers a payoff of B > 0 to the agent and ends the game.

The other arm, the thinking arm, has a known instantaneous arrival rate µ > 0. An
arrival on the thinking arm at time t implies progress. Progress does not provide a solution
directly. Instead, the agent has to convert progress into a solution that requires additional
time and effort. We capture this second step in reduced form. The function V (τ) describes
the agent’s continuation payoff when progress occurs with time τ = T − t remaining to
the deadline. We assume that V (·) is thrice continuously differentiable, increasing, i.e.,
that V ′(·) > 0, and sufficiently concave, i.e., that −V ′′(·)/V ′(·) ≥ p̄λ. Moreover, an
arrival on the thinking arm with no time remaining is worthless, V (0) = 0. We assume
that all derivatives have a limit as τ → ∞. Moreover, we assume (abusing notation)
V (∞) := limτ→∞ V (τ) > c/µ and limτ→∞−V ′′(τ)/V ′(τ) ≥ p̄λ.10

To streamline the intuition, we interpret progress in our main analysis as the first step
in a multistage problem. We imagine that the agent works on converting progress into a
solution after progress occurs. We provide detailed examples that microfound V (τ) for
this interpretation and others in Section 2.1. However, formally, as with the doing arm, an
arrival on the thinking arm ends the game.

Throughout this paper, we are interested in how the agent allocates effort between doing
and thinking. We focus on cases in which the agent finds it optimal to exert full effort until

10The second-to-last condition states that the expected value of progress without time pressure is larger
than the expected effort cost required to obtain progress. The last condition strengthens the concavity
assumption, assuming it is true in the limit. We need it for a few of our results.
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the end of the game. We thus consider cases in which the solution yields a high reward;
that is, we assume that B is sufficiently large. It is straightforward to show that such a
reward B exists; Appendix G provides the respective argument. A large B allows us to
restrict attention to the agent’s choice between arms, as it implies adt = 1−ast . Dropping the
superscript and denoting time variables in terms of the time remaining τ , we use aτ ≡ adT−t.

2.1 Examples of V (τ)

The crucial feature of the thinking arm is that the value of progress depends on the time
remaining until the deadline. To illustrate the model’s flexibility in the context of our
leading application—startups—, we pause here and provide a set of examples nested in
our model. We provide a formal verification that each example meets our assumptions in
Appendix D.

Implementation Phase or Delay upon Progress

In our first set of examples, progress triggers a new bandit arm that the agent can pull
following progress. One interpretation is that an entrepreneur with a minimum viable
product can move forward in two ways: Conduct customer research to determine the
optimal market for her project, or proceed immediately to launch the product without
customer research. In the context of our model, the first option corresponds to pulling the
thinking arm, the second to pulling the doing arm. We get back to this interpretation when
we discuss our model implications in Section 4.

The simplest way to model this interpretation is given by our leading example, Example 1.

Example 1. An arrival on the doing arm delivers a new Poisson bandit with a known
arrival rate ν ≥ λp. An arrival on this new arm implies a solution worth Bν to the agent,
and the cost of pulling the arm is cν .

Example 1 describes the case when successful customer research, i.e., the arrival of
progress on the thinking arm, delivers a new product design, i.e., a new approach corre-
sponding to a Poisson bandit arm, that can be marketed with certainty—given enough
time—with arrival rate ν ≥ λp. The new product design can either be an improved version
of the original idea or an entirely new product inducing a pivot of the entrepreneur. We
now present a set of related ideas also subsumed by our model.

Example 2. This example is in a similar vein. However, successful customer research
may not remove all uncertainty about the feasibility of a new product idea. Instead, the
new product may deliver better prospects than the original product, but some uncertainty
remains. The new arm is then characterized by p̄ν , the ex ante belief about the new arm’s
feasibility, and by ν, the new arm’s arrival rate. An arrival on this arm provides value Bν
and pulling it has a flow cost of cν .
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Example 3. Our model also nests cases in which successful thinking triggers a new arm that
has a time-varying intensity rate ν(t). Successful customer research suggests a product quite
different from the original idea and the entrepreneur’s experience. The time-varying intensity
can go both ways. On the one hand, there can be an increasing intensity: initially, the agent
may not be very knowledgeable about the new approach, but her knowledge improves over
time. On the other hand, there can be a decreasing intensity: the customer research may
demonstrate some immediate implications expected to work with high probability. However,
if these initial attempts fail, then it becomes harder to succeed. For concreteness, suppose
the intensity rate follows an exponential function ν(t) = νeα+βt, with α ≥ 0, β ≥ − 1

τ , and
νB > c.11

Example 4. Finally, consider a model in which customer research provides enough evidence
for the entrepreneur to raise an additional round of financing. However, it takes an unknown
amount of time to analyze and polish the data, prepare a convincing pitch, or find the right
venture capitalist. In such a model, the problem is solved by progress on the thinking arm,
but the payoff is realized only after some random delay, which follows a Poisson process
with intensity rate ν ≥ p̄λ. Suppose that the entrepreneur has to incur a flow cost of cν
until its arrival (for example, to pay her employees). Moreover, the project’s payoff is Bν if
the success arrives before the deadline and 0 if not. This example is formally equivalent to
Example 1.

Why Abandon the Doing Arm upon Progress? In the above examples, the en-
trepreneur abandons the doing arm upon progress on the thinking arm. While this is
an endogenous outcome in Example 1 and Example 4, we assume it for Example 2 and
Example 3. There are several ways to microfound this assumption: (i) The new arm
triggered by progress replaces the old arm. (ii) The belief about the new arm is sufficiently
high that the agent will never return to the old arm. (iii) The agent would have to pay a
maintenance cost to hold the old arm idle (as modeled in Forand, 2015). (iv) The agent
incurs a sufficiently high switching cost when returning to the old arm.

Payoff Stream upon Progress

An alternative model is one in which successful thinking triggers a payoff stream. For
example, instead of attempting to build a new prototype with advanced technology (i.e.,
continuing to pull the doing arm), the entrepreneur finds a way to market the product as is
without further improvements. This market opportunity generates a revenue stream until
the deadline. A possible interpretation is an entrepreneur evaluated under the scorecard
method.12 The entrepreneur can either try to improve the product (pulling the doing arm)

11While we do not restrict the sign of β to allow for both an increasing (β > 0) and a decreasing (β < 0)
intensity rate, we impose a lower bound on β ≥ − 1

τ
, which implies ν(t)B ≥ c given α ≥ 0. In particular,

α ≥ ln
(
c
νB

)
− βτ , where the right-hand side is strictly negative for all β ≥ 1/τ , as νB > c by assumption.

12See, for example, https://www.forbes.com/sites/mariannehudson/2016/01/27/scorecard-helps-angels-
value-early-stage-companies/?sh=4e8eb9c96874.
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or bring a new product to the market to increase sales (pulling the thinking arm to find the
right way to launch the product and collecting the revenue stream upon progress).

Example 5. We model the launch of a product as paying out db(t) in the interval [t, t+ dt)
and assume that the payments follow an Ornstein-Uhlenbeck process:13 db(t) = ν(Bν −
b(t))dt+ σdWt, where Wt is a standard Brownian motion and the initial value is b(0) = 0.
The payoff db(t) can be thought of as a flow profit that has Bν as its long-run expectation.
ν ≥ p̄λ is the rate of mean reversion of the profit process.

3 Analysis

In this part, we characterize the agent’s optimal policy. We begin by describing two
benchmark results. After that, we provide an interpretable necessary condition for the
agent’s optimal policy. Finally, we derive an algorithm that characterizes the unique optimal
solution under a mild technical assumption.

3.1 Benchmarks

The thinking arm has two essential features that distinguish it from the doing arm: (i) it
becomes increasingly unattractive as the deadline approaches, and (ii) its expected payoff is
different from that of the doing arm. The source of the first feature lies in the conversion
of progress into a solution. Completing the additional steps in time becomes increasingly
unlikely when less time remains. The source of the second feature is twofold. First, the
expected effort cost until progress arrives, c/µ, may be different from the expected effort cost
until a solution of a good (θ = 1) doing arm arrives, c/λ. Second, the value of progress—even
without time pressure—may be different from the value of a solution on the doing arm,
V (∞) 6= B. A reason for the latter is that the agent has to exert additional time and effort
to convert progress into a solution.

Our first benchmark (‘no time pressure’) shuts down the first channel, and our second
benchmark (‘no payoff difference’) shuts down the second channel.

No time pressure. Facing an infinite time horizon, T =∞, the thinking arm is a safe
alternative for the agent. Thinking long enough guarantees progress and thus some payoff.
The following proposition describes our first benchmark. We relegate its proof along with
all other proofs to the appendix.

Proposition 1. Suppose that the time horizon is infinite, T =∞. Then, the agent either
works first on the doing arm and eventually switches to the thinking arm or works on the
thinking arm throughout. The agent starts with doing if and only if

p̄ ≥ p̂ := c/λ

B − V (∞) + c/µ
.

13To keep the notation simple, here, we reset time to 0 once the market opportunity is used.
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She switches when pt = p̂, that is, at time t = τ1 := max
{

1
λ ln

(
p̄(1−p̂)
p̂(1−p̄)

)
, 0
}
.

Proposition 1 shows that an agent who is sufficiently optimistic about the doing arm starts
to work on it. An initial belief p̄ ∈ (0, 1) for such optimism exists if and only if the expected
payoff from a good doing arm is higher than that from thinking, B − c/λ > V (∞)− c/µ.

Two effects push the agent towards an initial doing period: lower expected cost and
larger expected benefits. The first effect is present if a solution arrives faster than progress
through thinking, λ > µ. The second effect is present if a solution provides a higher payoff
than progress even in the absence of time pressure B > V (∞). Higher payoffs from the
doing arm may, for example, result from saving the additional effort required to convert
progress.

No payoff difference. In this benchmark, we assume that in the absence of time pressure,
there is no payoff difference between (productive) arms; that is, we assume

lim
τ→∞

V (τ) = B c = 0. (C.1)

Condition (C.1) ensures (i) that absent time pressure, successful thinking delivers no better
or worse solution than doing, and (ii) that there is no difference in the expected cost of
obtaining a solution and of obtaining and converting progress. This assumption allows us
to focus exclusively on the role of time pressure. The following proposition describes the
optimal policy in this case.

Proposition 2. Suppose condition (C.1) holds. Either the agent works first on the thinking
arm and eventually switches to the doing arm, or she works on the doing arm throughout.
The agent starts with thinking if and only if the deadline T is large enough such that a
solution τ3 ∈ (0, T ] to

p̄ = µV (τ3)
B (µ+ (λ− µ)e−λτ3)

exists. In this case, the agent switches to doing when the time remaining τ3 is equal to the
smallest of the solutions.

The intuition behind Proposition 2 is the following: If the deadline is close, even if
progress arrives momentarily, then the time left to convert it is short. The payoff V (τ)
vanishes fast in τ . An arrival on the doing arm, instead, delivers a solution directly. As time
runs out, the time pressure effect on the thinking arm trumps any fundamental uncertainty
on the doing arm. The agent pulls the doing arm and throws a Hail Mary.14

14The term originates from American Football. In 1975, Dallas Cowboys quarterback Roger Staubach
threw a 50-yard pass in the final seconds of a game, desperately hoping to make the game-winning touchdown.
Staubach commented that while throwing the ball, he “closed [his] eyes and said a Hail Mary”. Since then,
throwing a Hail Mary has become synonymous with taking a risky action in desperation, often because time
is nearly expired.
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Why and when to do? Proposition 2 shows that the payoff motive in the absence of
time pressure behind Proposition 1 is not the only reason for doing: if time pressure is high,
then gambling on risk, i.e., having a good arm, is more promising than gambling on time,
i.e., managing to convert progress.

Therefore, our benchmarks offer a first insight into why the agent opts for doing: (i) to
materialize the payoff advantage of the doing arm15 and (ii) to succumb to time pressure.
Our next step is to combine the two motives considering a setting with T <∞ and c > 0
for which the optimal allocation of effort is yet to be determined.

3.2 Optimal Policy

We characterize the optimal policy in three steps. First, we state the agent’s dynamic
optimization problem. Second, we derive a set of necessary conditions for the optimal policy.
These conditions have a straightforward economic interpretation that we discuss. Third,
we state an algorithm which—under mild technical conditions—determines the uniquely
optimal policy. The third step verifies the sufficiency of the necessary conditions.

The Agent’s Problem

By construction, the agent exerts full effort until the game ends. However, she dynamically
decides whether to invest in thinking or in doing. Consider a situation in which the remaining
time is τ , and in which the agent holds a belief pτ about the doing arm. Suppose the agent
exerts effort aτ on the doing arm for a small time interval of length dt. The instantaneous
payoff of a solution is B. A solution arrives with probability aτpτλdt. Suppose the agent
exerts effort 1 − aτ into the thinking arm for a small time interval of length dt. The
instantaneous payoff of progress is V (τ). Progress arrives with probability (1− aτ )µdt.

The agent updates her belief about the doing arm according to Bayes’ rule. Denote by
Aτ :=

∫ T
τ asds the amount of effort the agent has invested in the doing arm in the past.

Then, the belief about the doing arm with time τ remaining and past effort Aτ on the doing
arm is

pτ = p̄e−λAτ

p̄e−λAτ + (1− p̄) .

If no arrival, i.e., neither a solution nor progress, occurs during the interval [τ, τ − dt),
then the payoff of progress declines to V (τ − dt)—regardless of the agent’s choice aτ .
The belief, however, declines only when the doing arm was pulled with positive intensity,
aτ > 0.16

The agent’s objective is to dynamically maximize
15Recall that this payoff advantage can derive from effort-saving motives due to a faster arrival on the

doing arm, from effort-saving motives due to not requiring an additional implementation stage, or from a
higher payoff for a solution on the doing arm rather than completed conversion of progress.

16In particular, the belief follows the standard ODE dpτ/dτ = pτ (1− pτ )aτλ, where, again, the notation
follows the time remaining rather than the calendar time.
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max
(aτ )Tτ=0

∫ T

0
e−µ(T−τ−Aτ )︸ ︷︷ ︸
P (no progress yet)

(1− p̄+ p̄e−λAτ )︸ ︷︷ ︸
P (no solution yet)

(µ(1− aτ )V (τ) + λaτpτB)︸ ︷︷ ︸
flow payoff

dt

where the mapping aτ : [0, T ] × [0, T − τ ] → [0, 1] determines the strategy with time τ
remaining and past effort Aτ on the doing arm. We use Aτ as the state variable to derive
the necessary conditions for an optimal strategy via optimal control methods. The formal
details can be found in Appendix A. We derive the following dynamic relative preference
for the agent:

γτ = e−µ(T−τ−Aτ )
((

1− p̄+ p̄e−λAτ
)
µV (τ)− p̄e−λAτλB

)
− ητ

where ητ denotes the co-state of the optimal control problem. If γτ > 0, the agent pulls the
thinking arm. If γτ < 0, the agent pulls the doing arm.

The co-state ητ is determined by the boundary condition η0 = 0 and its evolution

dητ
dτ

= e−µ(T−τ−Aτ )
(
µ(1− p̄)

(
(1− aτ )µV (τ)− c

)

− (λ− µ)e−λAτ p̄
(
(1− aτ )µV (τ) + aτλB − c

))
.

(1)

Necessary Conditions

We derive the necessary conditions for the optimal policy from Pontryagin’s principle. These
necessary conditions substantially reduce the space of the candidate strategies.

Proposition 3 (Optimal Policy—Necessary Conditions). The optimal policy takes one of
the following forms:

1. the agent exclusively uses the doing arm,
2. the agent starts by thinking and switches to the doing arm, or
3. the agent begins with the doing arm, switches to the thinking arm eventually, and

switches back to the doing arm when little time remains.

The critical insight leading to Proposition 3 is that if the agent leaves the thinking arm
once, she does not return to it. At a high level, the intuition behind this insight is the
following. If the agent decides to leave the thinking arm, then only because she considers
the value of progress to be too low due to the deadline approaching. Notably, the decline in
the value of progress does not stop—even when pulling the doing arm.

While this observation is a substantial part of the story, it falls short in one aspect:
Whenever the agent pulls the doing arm unsuccessfully, the payoff of that arm also declines
because the belief about its state deteriorates.

The precise intuition behind the horse race of the two arms is subtle. A stepwise
inspection of the effects at play is instructive. Consider the following equivalent formulation
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of the relative preference from above:

γτ = e−µ(T−τ−Aτ )
(
1− p̄+ p̄e−λAτ

) =:yτ︷ ︸︸ ︷
(µV (τ)− pτλB)︸ ︷︷ ︸

payoff difference

− ητ︸︷︷︸
effect of lower belief
on continuation value

.

The agent thinks whenever γτ > 0. We focus on the second part, yτ , and consider an
increase in the time remaining. Using the evolution of ητ (equation (1)), we obtain

dyτ
dτ

= µV ′(τ)︸ ︷︷ ︸
(i) deadline effect

+µpτλ(V (τ)−B)︸ ︷︷ ︸
(ii) payoff-on-arrival

effect

+ (µ− λpτ )c︸ ︷︷ ︸
(iii) effort-to-arrival

effect

. (2)

Observe that equation (2) is independent of the agent’s action aτ ; that is, the agent’s
action has no first-order effect on the evolution of the relative preference. Any effect that
the agent’s current action has on instantaneous payoffs is compensated by a dynamic effect
in the continuation value—a feature common in the bandit literature.17

As we increase the time to the deadline, equation (2) describes the three incentives
that determine the change in the agent’s relative preference: (i) the change in the value of
progress due to the reduced time pressure (the deadline effect); (ii) the payoff differential
between the two arms upon an arrival (payoff-on-arrival effect); and (iii) the change in the
difference in the expected effort required to reach progress or a solution (effort-to-arrival
effect).

The deadline effect is the only effect that can be signed unambiguously and is always
positive—pushing the agent towards the thinking arm. As the deadline moves further
away, obtaining progress has a higher value. The additional time makes it more likely to
convert progress before the deadline. The other two effects can be either positive or negative.
The sign of the payoff-on-arrival effect depends on the relative payoffs between arms. If
V (τ) < B, the effect is negative—pushing the agent towards doing. As the deadline moves
further away, a negative payoff-on-arrival effect pushes the agent to spend the additional
time on the doing arm. The effort-to-arrival effect measures the relative expected cost
difference of the arms. Thinking is expected to deliver an arrival faster than doing if µ > pτλ.
In this case, there is a positive effort-to-arrival effect—pushing the agent towards thinking.

We derive the intuition for our critical insight—the agent pulls the thinking arm in at
most one connected interval of time—from equation (2) and the illustrated effects. We
use the following construction. Suppose that the agent splits her thinking effort into two
disjoint intervals of time. Then, there has to be a doing interval that is both preceded and
succeeded by a thinking period. The existence of that interval implies that (2) is positive at
the beginning of this doing period, i.e., when τ is high. In this case, an expanding time

17In Appendix B we provide a derivation of (2) illustrating how the direct effect of the action drops out.
Note, however, that there is a second-order effect of the agent’s action through the belief pτ .
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window pushes the agent toward thinking. At the same time, (2) is negative toward the
end of the doing period, i.e., when τ is low. An expanding time window pushes the agent
toward doing.

To satisfy this property, (2) has to change signs during the doing interval from negative
to positive as τ increases; thus, (2) has to cross zero from below. Formally, the agent’s
relative preference must attain an interior minimum during the doing interval. Economically,
this implies that an increase in the time remaining—while the agent is pulling the doing
arm—must change its effect on the relative preference: from pushing the agent further
toward the doing arm to pushing her back toward the thinking arm. At such a minimum,
the three effects must exactly balance each other. In particular, the positive deadline effect
must be compensated for by the sum of the payoff-on-arrival and effort-to-arrival effects.

Observe that the deadline effect declines as the time remaining increases, V ′′(τ) < 0.
Thus, time pressure becomes less of a consideration in the agent’s decision. One force pulling
the agent to the thinking arm becomes weaker as τ increases. Recall that the supposed
strategy requires the relative preference to attain an interior minimum. For this to occur,
the payoff-on-arrival and effort-to-arrival effects combined (i) must pull the agent sufficiently
toward the doing arm to compensate for the deadline effect and (ii) must evolve sufficiently
in favor of the thinking arm to dominate the decline in the deadline effect. However, both
properties can never be satisfied simultaneously if the decline in the deadline effect is
sufficiently strong. In particular, they cannot be satisfied if V (τ) is sufficiently concave:
−V ′′(τ) ≥ pτλV ′(τ). Thus, any doing period is preceded or succeeded by a thinking period
but not both.18

Intuitively, the agent will not think twice because of the following observation: If the
agent, at some point, finds the switch doing → thinking optimal, then she cannot have
found the switch thinking → doing optimal when she had more time remaining. To see this,
note that at the switch doing → thinking, the deadline effect must be weak because the
agent found it optimal to do before that switch. However, as we move backward in time,
i.e., increase the time remaining, the deadline effect weakens. If it weakens sufficiently fast,
the agent is pulled more toward doing, the further away from the deadline. Thus, it is never
optimal for the agent to think twice. The examples introduced in Section 2.1 all satisfy this
property.

Proposition 3 therefore follows from these two observations: (i) the agent never returns
to the thinking arm and (ii) a Hail Mary is inevitable once the agent runs out of time,
which delivers Proposition 3. Either the agent starts with the Hail Mary or has at most one
thinking period that precedes the Hail Mary period.

The necessary conditions provide substantial structure as they limit the set of possible
solutions. In the following subsection, we derive an intuitive algorithm to compute the

18For the special case µ > p̄λ, observe that the effort-to-arrival effect is always positive. Moreover, the
payoff-on-arrival effect has to be negative, V (τ) < B, in any doing period that succeeds a thinking period.
Thus, (2) increases in the time remaining only if V ′(τ) +λpτV (τ) increases. Given our concavity assumption,
this is not the case. Hence, (2) is nonincreasing and yτ concave.

15



optimal policy based on the necessary conditions. Under a mild additional assumption, the
algorithm delivers the unique solution to the agent’s problem. Moreover, it provides further
intuition for the economics of the agent’s problem and comparative statics.

3.3 Characterization of the Optimal Policy

The basic intuition for the optimal policy follows from combining the two benchmarks in
the previous section: The agent may do when her belief about the doing arm is high, and
the deadline is far as in Proposition 1. Moreover, the agent will do—independent of her
belief about the doing arm—when the deadline is close as in Proposition 2.

We now construct a solution algorithm that, under the following assumption, delivers
the unique solution to the agent’s problem. Let

q̂(τ) := µ (V (τ) + cτ)
µ(B + cτ) + (λ− µ)

(
B − (1− e−λτ )

(
B − c

λ

)) .
Assumption 1.
(i) V (∞) ≤ B + c

µ .
(ii) If µ > λ, then µV ′′(τ)

(µ−λ)U ′′(τ) − q̂(τ) is monotonic.

Assumption 1 is only a sufficient condition to ensure that a unique strategy satisfies the
necessary conditions. It is a technical and by no means a necessary condition.19 The first
part of the assumption implies that the doing arm is sufficiently attractive to consider it a
valuable arm beyond the Hail Mary period.

The interpretation of the second part of the assumption is somewhat more subtle. Note
first that condition (ii) is only relevant if progress on the thinking arm is expected to arrive
faster than a solution on the doing arm conditional on the doing arm being good. In such a
case, the condition ensures that q̂(τ) is monotonic on the relevant part by requiring that
the curvature of the arms’ values is sufficiently regular.

Our algorithm constructs the optimal solution by working backward from the Hail Mary
period. As we show in the appendix, condition (ii) guarantees that the length of the Hail
Mary period is continuous and monotonic in the belief that the agent holds about the doing
arm at the beginning of that period. This observation allows us to use marginal arguments
to show uniqueness. Invoking Proposition 3, we state the optimal policy in terms of three
variables

1. the time spent in the Hail Mary period, τ3,
2. the time spent in the thinking period, τ2, and
19The crucial aspects for uniqueness are (i) that the belief at the beginning of the Hail Mary period is

monotonic in the length of that period and (ii) that the maximum length of the thinking period is monotonic
in the length of the Hail Mary period that follows. Both aspects must be true ‘in the relevant regions.’ Our
assumptions on primitives ensure that they are universally true. Moreover, uniqueness only facilitates the
computation. If it fails, then our algorithm can be straightforwardly extended to determine all candidate
solutions, which then have to be compared to determine the global solution. In particular, all solution
candidates must satisfy Proposition 3.

16



3. the time spent in the initial doing period, τ1.
We are looking for a solution to the equation τ1 + τ2 + τ3 = T . We make use of the following
expressions:

q(τ) := min(1, q̂(τ)).

ẏ(s; p, ξ) := dyξ+s
ds

∣∣∣∣
yξ=0

= µV ′(ξ + s) + pµλ(V (s+ ξ)−B) + (µ− λp)c, and

ŷ(τ ; p, ξ) :=
∫ τ

0
eµsẏ(s; p, ξ)ds.

The first, q(τ), is the agent’s belief when entering the Hail Mary period with time
τ remaining. It originates from the agent’s indifference between entering the Hail Mary
period immediately and pulling the thinking arm for an infinitesimal measure of time before
entering the Hail Mary period.

The second, ẏ(s; p, ξ), describes the change in the relative preference due to a marginal
increase in the deadline of an agent who enters a Hail Mary period with belief p and time
remaining ξ and who pulls the thinking arm during the remaining times [ξ + s, ξ) before
switching to the doing arm with time remaining ξ.

The third, ŷ(τ ; p, ξ), describes the value of the relative preference with deadline T = τ+ξ
by integrating over the survival-weighted evolution of the relative preference assuming
indifference at the start of the Hail Mary period ŷ(0; p, ξ) = 0.

We use these expressions to define the length of the initial doing period and the length
of the thinking period as a function of the length of the final doing period:

τ1(τ3) := 1
λ

ln
(

p̄

1− p̄
1− q(τ3)
q(τ3)

)
, and

τ2(τ3) :=

min τ > 0 s.t. ŷ(τ ; q(τ3), τ3) = 0, if a root for y given τ3 exists,

∞ otherwise.

The first, τ1(τ3), follows because the belief when entering the Hail Mary period is determined
by the time spent doing in the initial doing period and Bayes’ rule.

The second, τ2(τ3), follows because indifference is necessary when switching from doing
to thinking for the first time and when switching back.

We are now ready to state our algorithm that solves the fixed-point problem T =
τ1(τ3) + τ2(τ3) + τ3 and thereby characterizes the agent’s optimal strategy. We provide a
further discussion of the algorithm after stating the characterization result.20

20A MATLAB program implementing the algorithm is available from the authors.
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Figure 1: Agent’s optimal strategy and arrival probabilities. The solid line plots the probability that
the agent has made progress by time t, the dashed line the probability that the agent has found a
solution through the doing arm by t, and the dash-dotted line the probability that the agent has
neither made progress nor found a solution by t. Below we plot the time intervals in which the
agent thinks or does absent any arrival. The left panel considers the optimal strategy given deadline
T = 1.9, and the right panel considers the optimal strategy given deadline T = 4.
Parameters: B = 5, p̄ = 3/4, c = 1/2, λ = 3/4, µ = 1,V (τ) = (1− e−τ )(B − c).

Algorithm.
1. Set τ1 = τ2 = τ3 = 0.
2. Find the largest τ3 such that

∀t ∈ [0, τ3] q(τ3 − t) ≤
p̄e−λt

(p̄e−λt + 1− p̄) .

If τ3 ≥ T , set τ3 = T , τ2 = τ1 = 0 and stop.
3. If q(τ3) 6= p̄ go to 5.
4. If τ2(τ3) ≥ T − τ3, set τ3 = τ3 and τ2 = T − τ3 and stop.
5. Replace τ3 by the largest z such that

∀t ∈ [0, z] q(z − t) ≤ q(z)e−λt

q(z)e−λt + 1− q(z) .

6. Set τ3 = z, τ1 = τ1(τ3) and τ2 = τ2(τ3). If τ1(τ3) + τ2(τ3) + τ3 = T , stop. Otherwise,
reduce τ3 marginally and repeat 6.

Proposition 4 (Optimal Policy – Characterization). Under Assumption 1, the above
algorithm determines the unique optimal policy.

To build an intuition for the algorithm, recall that Proposition 3 implies that it is without
loss of generality to focus on three disjoint time intervals to characterize the solution: the
Hail Mary period of length τ3, the thinking period of length τ2, and the initial doing period
of length τ1.

The algorithm constructs the solution via backward induction. It takes advantage of the
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property that the three time periods have to sum to the total time available to the deadline
T—thereby constraining each other.

Given any length of the final doing period, τ3, we can determine the agent’s belief upon
entering the Hail Mary period. There are two cases: either (i) the agent enters the Hail
Mary period immediately with belief p̄, or (ii) she enters the Hail Mary period after at least
one time interval of thinking. If, in addition, she enters the Hail Mary period with a belief
p̂ < p̄, then she must have pulled the doing arm before she started thinking.

First, in the case of (i), we need to ensure that the agent never finds it optimal to think
for some positive measure of time until the deadline. To ensure this, the agent has to be
sufficiently optimistic about the doing arm for any remaining time τ < T . Item 2 finds the
largest deadline T = τ3 such that the agent is sufficiently optimistic about pulling the doing
arm throughout. It takes both declining beliefs and declining time windows into account. If
T ≤ τ3, then the algorithm has found a solution.

Second, in the case of (ii), we need to ensure that the agent finds it optimal to switch to
doing at the designated time τ3 and not to switch back to thinking thereafter. Thus, in
addition to satisfying q(τ) < pτ for all τ < τ3, we require q(τ3) = pτ3 . The latter ensures that
the agent is indifferent between the arms when time τ3 remains. Optimality requires that
the agent indeed prefers to think before the Hail Mary period. Using backward induction
again—conditional on switching to doing at time τ3—the agent finds it optimal to think
with remaining time τ + τ3 if and only if the expression ŷ(τ ′; q(τ3), τ3) ≥ 0 holds for all
τ ′ ∈ [0, τ ]. Conditional optimality follows because ẏ(s; q(τ3), τ3) describes the evolution of
the agent’s relative preference between the arms—derived from the necessary conditions
of the optimal control problem—assuming that she switches to the doing arm with time
τ3 remaining. Item 4 of the algorithm stops if ŷ(τ ; q(τ3), τ3) ≥ 0 for all τ ∈ [0, T − τ3]: the
agent finds it optimal to start by thinking for a period of time τ2 = T − τ3.

Third, if the agent engages in an initial doing period, we must be in case (ii). We know
that the initial doing period determines the agent’s belief for the final doing period via
Bayes’ rule as a function of the length of the initial doing period, τ1, and the agent’s ex
ante belief, p̄. The expression τ1(τ3) describes the time that the agent has to experiment
without success on the doing arm such that her belief deteriorates to q(τ3).

Fourth, the agent needs to be indifferent both after the initial doing period and when
starting the final doing period. Whenever the agent finds it optimal to spend time τ2 =
T − τ1(τ3) − τ3 in the thinking period, ŷ(τ2; q(τ3), τ3) = 0. If the expression τ2(τ3) > 0,
then that indifference is guaranteed with time remaining τ2 + τ3. If, instead, τ2(τ3) =∞,
then it is never optimal to leave the initial doing period with a belief q(τ3). Item 6 of
the algorithm stops only if all conditions are met and thus determines the fixed point
T = τ1(τ3) + τ2(τ3) + τ3.
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4 Application: Entrepreneurial Problem Solving

Our model highlights the tradeoff that an agent faces under time pressure: should she try
to apply an uncertain method ready at hand, or should she take a step back and develop
a different method that involves less fundamental uncertainty? The optimal strategy is
a function of both the time horizon and her belief about the initial method. Our results
emphasize how learning and time pressure interact.

We now apply our findings to our motivating application—an entrepreneur’s decision to
meet a target to secure follow-up financing by a deadline. We first relate the model to the
specific context of entrepreneurs who need to achieve a milestone to obtain the next round
of funding. After that, we derive implications from our main theoretical results regarding
the application considered and relate it to empirical phenomena.

4.1 Entrepreneurial Problem Solving

Consider an entrepreneur who has raised funding for her venture. She has to prove the busi-
ness’s prospects by some deadline. Deadlines are ubiquitous in innovative entrepreneurship.
Among many other reasons, they may come from (i) funders explicitly setting deadlines
(e.g., via staged contracts, see Kaplan and Strömberg, 2003), (ii) the need to raise new funds
before the startup runs out of cash,21 or (iii) implicitly, according to the expectation that
the market moves on after some time either by changing focus or by adopting a competitor’s
product.22

The flow cost of working on the problem, c, has two interpretations in the context of
startups. The first interpretation is literal and derives from what is called the startup’s burn
rate. Each period, the startup has to pay its employees, rent an office or lab space, purchase
equipment, etc. If the startup has access to initial funds C, then the burn rate implies an
implicit deadline T = C/c by which it has to have raised new funds.23 The entrepreneur
wants to complete the task with funds remaining in her pocket under this interpretation.
She can invest these leftover funds in later stages. The second interpretation is to consider
c as the agent’s (linear) time cost. Such an interpretation is proposed by Eisenmann (2021).
He argues that entrepreneurs have a direct time cost in the form of an action bias and prefer
to get things done as quickly as possible.

21See CB Insights (2021)—running out of cash is the most frequent reason startups fail based on CB
Insights’ analysis of startup failure post-mortems.

22The drone analytics provider, Airware, went out of business because, initially, they bundled their
software with a self-engineered drone. However, once they were ready to launch the bundled product, cheaper
alternative drones were already available. They pivoted to focusing on software development only but ran
out of money and eventually ceased operations. Perhaps more famously, despite being a corporate favorite,
Blackberry failed to innovate until it missed its deadline and the market had moved to iOS and Android.
See also the discussion in Gans, Scott, and Stern (2018).

23The fact that we use continuous time with a bounded per-unit effort strengthens this interpretation.
Instead of seeing the deadline as a clock ticking, we could interpret T as the total effort budget available.
Investing cdt units of effort on doing or thinking from this budget implies an arrival with rates pτλdt and
µdt, respectively. The value of progress depends on the effort remaining within the budget. Having invested
T without a solution makes the agent perish.
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Our focus is on the entrepreneur’s approach in trying to meet the requirements before a
deadline, for example, successfully launching a product, developing a new product, improving
an existing product, or meeting a revenue threshold. We assume that the entrepreneur
has an initial idea that she is not fully sure is suitable for completing the next step. The
entrepreneur can try to go to the next step without further ado—she pulls the doing arm.
Alternatively, she can attempt to pivot. To prepare the pivot, she searches for a better
approach to meet the target—she pulls the thinking arm. Investing time and effort into
a change of the startup’s strategy is commonly observed (see, for example, Kirtley and
O’Mahony, 2020) but has received little theoretical attention.

Our model of the doing arm resembles the standard experimentation approach. It is
commonly used in modeling entrepreneurial strategy (for an overview, see Kerr, Nanda, and
Rhodes-Kropf, 2014). The thinking arm captures that the value of new ideas depends on the
resources and time available to convert them into solutions. To make the difference between
fundamental risk and time risk clear, Example 1, assumes no fundamental uncertainty
about the thinking arm. However, that assumption is not crucial and the other examples
introduced in Section 2.1 share the same qualitative features.

4.2 Implications

Both beliefs and the time horizon matter for entrepreneurs when contemplating how to invest
resources in their venture (see, for example, Kirtley and O’Mahony, 2020; Rahmani and
Ramachandran, 2021). Moreover, entrepreneurs have a tendency to do early to “get things
done” (see, for example, Gans, Scott, and Stern, 2018; Eisenmann, 2021). Translated to our
model, entrepreneurs take risks early on to arrive at a solution quickly. This observation is
in line with our finding that the agent starts by doing if she is sufficiently optimistic about
her initial approach and the time pressure is not too high initially (see Proposition 3).

However, this strategy comes at a cost: The entrepreneur reduces the expected time
to solve the current problem by doing early. At the same time, this strategy reduces
the probability of solving the problem in time. The reason is that hoping for an early
solution produces a false start (Eisenmann, 2021): Doing early delays thinking about a
pivot—e.g., shifting business to accommodate a different market—yet pivots occur with
positive probability. If the entrepreneur ends up pivoting, she suffers from the shrunk time
window.

We put structure on the thinking arm to address false starts formally. We wish to
compare how the agent trades off the expected effort cost against the probability of finding
a solution. Therefore, we need to take a stance on how the agent converts progress into a
solution. For clarity, here, we restrict attention to Example 1: An arrival on the thinking
arm delivers a new bandit with a known arrival rate ν ≥ λp. To simplify further, we assume
Bν = B and cν = c. The properties of Example 1 resemble the discussion in Eisenmann
(2021), in particular, the discussion of the Triangulate venture and the choices of its founder.
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Figure 2: Solution probability vs. cost reduction. The left panel plots the ex ante probability of
finding a solution against the ex ante deadline length.
The right panel plots the expected time the agent works.
Solid lines represent these under the agent-optimal strategy, and dashed lines represent these using
the same total amounts of doing and thinking but backloading all doing. For deadlines shorter than
the depicted range, the agent enters the Hail Mary period immediately, and the two curves coincide.
Parameters: B = 5, p̄ = 3/4, c = 1/2, λ = 3/4, µ = ν = 1.

As a first result, we see that thinking early and backloading doing improves the ex ante
probability of obtaining a solution in Example 1.

Proposition 5. Consider Example 1 with Bν=B, cν=c. For any potential strategy inducing
τ1 > 0, τ2 > 0, and τ3 > 0, backloading all effort on the doing arm, i.e., choosing τ ′1 =
0, τ ′2 > τ2, and τ ′3 = τ1 + τ3, increases the probability that a solution is found by the deadline.

Proposition 5 gives a theoretical foundation for the empirical phenomenon of false
starts—the delay or entire absence of customer research before launching a minimum viable
product. Whenever the entrepreneur starts with her initial idea right away, i.e., does early
on, she sacrifices success probability—unless the initial deadline is very short. To see why
this occurs, observe that it is straightforward to rewrite the agent’s problem as

max
a:=(at)Tt=0

Pa [solution before T ]B − Ea [time worked] c.

This rewriting makes it apparent that the agent wants to balance the probability of success
against the expected time to solve the problem.

Within our model, the agent aims to reduce the expected effort because it is costly.
In reality, there are multiple underpinnings for such effort cost: among these is a direct
disutility of effort, the desire to save funds for the future, or a bias for moving forward fast
with the venture. Figure 2 highlights the consequences. The larger the time horizon is,
the more the agent saves on her expected effort. Perhaps surprisingly, the time the agent
expects to work can decline in the deadline length. The reason is straightforward: the agent
adjusts her strategy to do early. If doing is successful, then she finishes earlier, which, in
turn, reduces the expected effort invested. However, the agent’s investment choices come at
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Figure 3: Time spent in different periods (left), and probability of a solution by period (right) for
different ex ante deadlines T . The left panel plots the time spent in different phases under the
optimal strategy against the initial time horizon: initial doing (dotted), thinking (solid), and Hail
Mary (dashed). The dash-dotted line depicts the maximum time spent on the doing arm.
The right panel plots the ex ante probabilities of obtaining a solution by phase against the initial
time horizon: initial doing (dotted), Hail Mary (dashed), and thinking—progress & conversion (thick
solid). The thin solid line is the aggregate probability that a solution occurs (the sum of the other
three curves).
Note: This figure compares different ex ante time horizons and must not be confused with the agent’s
decision over time. Parameters: B = 5, p̄ = 3/4, c = 1/2, λ = 3/4, µ = ν = 1.

the cost of reducing the expected probability of succeeding at all.
From a venture capitalist’s perspective, the return of marginally expanding the en-

trepreneur’s deadline may thus not fully translate into an increase in the probability of
finding a solution—even though we expect the agent to work absent a solution. Instead,
the entrepreneur may sacrifice some of the extra potential to arrive at a solution faster.

Proposition 6. The length of the initial doing period, τ1, and the length of the thinking
period, τ2, are nondecreasing in T . As T →∞, τ2 →∞.

Proposition 6 shows that in the beginning, the agent never decreases the time devoted to
doing. As the left panel of Figure 3 suggests, the frontloading of doing and thus false starts
become a larger problem with longer deadlines. Therefore, an increase in the deadline can
not improve the induction of false starts. However, once the deadline offered is long enough,
the problem becomes second-order: τ2 becomes arbitrarily large, and the probability of
obtaining some solution converges to 1.

Depending on the product at hand, the venture capitalist may not only care about the
entrepreneur finding a solution but also benefit from potential externalities depending on
the solution method. For example, venture capitalists may benefit from customer research
for other projects. In particular, if—as Gompers (1995) and Kaplan and Strömberg (2003)
suggests—the entrepreneur’s motivation within a financing stage comes mainly from meeting
the explicit requirements, i.e., from solving the problem in time, the venture capitalist’s
primary instrument is to expand or tighten the duration of the stage.
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As we see in the right panel of Figure 3, tightening the entrepreneur’s deadline may
increase the probability that she finds her solution using customer research. The reason
is that with low time pressure, the entrepreneur spends large portions of the extra time
gambling on a quick and successful launch of her initial minimum viable product. Even if
she fails initially, she remains confident that there is enough time to generate and convert
insights from customer research. With a tighter deadline, the same entrepreneur engages in
customer research earlier.

A direct consequence of this observation is that a venture capitalist may provide
deadlines that are shorter than his actual time horizon to induce—perhaps surprisingly—a
more thorough approach by the entrepreneur. The deadline discourages the entrepreneur
from gambling on quick successes and incentivizes her to begin the project with customer
research.24

Unsurprisingly, the agent’s time spent on each approach is a function of the agent’s
initial belief. For example, suppose the entrepreneur is pessimistic that a launch will succeed
without additional insights from customer research. In this case, she is unwilling to launch
it—unless the time window is small—and rather engages in customer research first. Instead,
if the entrepreneur is optimistic, she tries launching first to save her effort on customer
research.

Indeed, as the following proposition shows, if the initial belief p̄ is large, then—independent
of the deadline—the agent never begins by thinking. At the same time, if the initial belief
is low, then the agent only starts with doing when under immediate time pressure.

Recall p̂ from Proposition 1,

p̂ = c/λ

B − (V (∞)− c/µ) = µν

λ(µ+ ν)

which, in Example 1, is independent of B and c.25

Proposition 7. Consider Example 1 with Bν=B, cν=c. Fix B, c, λ, µ, and V such that
Assumption 1 holds. Independent of the time horizon T , the following statements hold:

1. there is a p̃ such that if p̄ > p̃, then the agent begins with a doing period and p̃ solves

p̃ = V ′(q−1(p̃)) + c

λ(B + c/µ− V (q−1(p̃)) ;

2. if p̄ < p̂, then the agent switches arms at most once and only from thinking to doing;
24Interestingly, external risk, described as risks equally uncertain to both the venture capitalist and

the entrepreneur—e.g., future demand for an undeveloped product—significantly lowers the time until the
subsequent financing round in Kaplan and Strömberg (2003). Our results provide one mechanism that can
rationalize this observation: when external risk is high, the value of customer research is high. Venture
capitalists can encourage early customer research with intermediate deadlines: long enough to prevent an
immediate Hail Mary but short enough to discourage a false start.

25The proof of Proposition 7 also makes the proposition applicable outside of Example 1.

24



3. if p̄ ≥ p̂, then the agent’s belief never falls below

p̌ := p̂e−λq
−1(p̂)

p̂e−λq−1(p̂) + 1− p̂
≥ p̄e−λT

p̄e−λT + 1− p̄ .

Proposition 7 provides insights into the potential for the venture capitalist who receives
a payoff Π > 0 if the entrepreneur successfully launches the product in some way before a
deadline T V C .

Note that the venture capitalist’s first best is identical to that derived in Proposition 2.
The venture capitalist does not incur the entrepreneur’s cost. Whether he can implement his
first best depends on whether he can design a contract (B, T ) such that the agent switches
once and at the right time.

It is trivial that the venture capitalist can induce his first best if his preferred strategy
is to throw the Hail Mary throughout, i. e., if his own deadline T V C is relatively short.
However, for larger deadlines, he has to find a payment B such that the entrepreneur’s
optimal switching time q−1(p̄) coincides with his optimal switching time τV C . It turns out
that such a payment may not exist. For example, for the case µ ≥ λ = ν = 1, no such B
exists for any p̄, B > 0, and c > 0.26

If the venture capitalist cannot control B, for example, because the entrepreneur is
motivated by success rather than by payments from the venture capitalist and does not face
immense time pressure, then obtaining the venture capitalist’s first best reduces at most to
a nongeneric coincidence. Whenever the belief about the entrepreneur’s initial idea is too
high, p̄ > p̃, then achieving it within any deadline is impossible.

Proposition 7 admits the following corollary, which has further implications on how
venture capitalists can use time pressure to induce entrepreneurs to exert desired actions.

Corollary 1. The agent’s belief during the thinking phase is larger than min{p̂, p̄}. If p̄ ≤ p̂,
then the probability that the agent solves the problem through the doing arm is maximized
with deadline T1 = q−1(p̄).

The corollary states that the agent is constrained in the amount of experimentation she
is willing to exert by her option to think instead.

The corollary is, for example, relevant in the following setting. Suppose that doing
corresponds to the entrepreneur trying to launch a product in a particular business-to-
business (B2B) context. In contrast, thinking corresponds to exploring potential direct-
to-consumer (D2C) markets where the entrepreneur can pivot with her product. Suppose
further that it is known that B2B is not the ideal market so the feasibility of a successful
launch is uncertain. However, it is also uncertain which D2C market is the right market. To
resolve this uncertainty, the entrepreneur needs to carry out customer research. However, the

26The venture capitalist’s switching time, τ , solves p̄ = µV V C(τ)
Π(µ+(λ−µ)e−ντ) = µ(1−e−ντ )

(µ+(λ−µ)e−λτ ) ;

the entrepreneur’s switching time, τ , solves p̄ = µ((1−e−ντ )(B−c/ν)+cτ)
µ(B+cτ)+(λ−µ)(B−(1−e−λτ )(B−c/λ)) . If c > 0, for example,

then both equations cannot hold for any B if µ ≥ ν = λ = 1.
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Figure 4: Solution probability for different initial beliefs p̄ against the initial time horizon.
Parameters: B = 5, p̄ = 3/4, c = 1/2, λ = 3/4, µ = ν = 1.

venture capitalist may be interested in entering the B2B market to establish his reputation
and therefore may have the preference (subject to success) that the entrepreneur launches
in the B2B market.

Because the entrepreneur can pivot, she is not exploring all the options to launch in the
B2B market. By imposing time pressure on the entrepreneur, the venture capitalist can
maximize the chances of entering the B2B market.27

Although one may conjecture that higher initial beliefs p̄ always increase the ex ante
probability of obtaining a solution, this need not be the case. A higher initial belief may
push the entrepreneur toward increasing her initial efforts to obtain a solution through the
doing arm and to save on the cost of effort. Such a choice, in turn, may lower the probability
of obtaining a solution in the given time frame. See Figure 4 for an example.28

We want to stress that our findings in this section are in stark contrast to those from a
classical infinite horizon two-armed bandit model in which both arms have time-independent
payoffs, and one arm has a lower arrival rate. False starts would not arise in the canonical
model. There, for any given sequence of actions, changing their order does not influence
the overall success probability. Moreover, in the canonical model, the agent pulls the risky
arm until the arms’ instantaneous arrival rates are equal. However, the false-start notion
builds on the idea that the agent conducts customer research too late. The canonical model
unambiguously predicts nondecreasing probabilities of solving the task with a particular arm
for increases in both the deadline and the initial belief. In contrast, our model highlights
a significant economic incentive that is absent in a model that does not feature a time
dependence of the thinking arm’s payoff: the deadline regulates not only the overall success
probability but also how success is achieved.29

27Although the possibility result stated in Corollary 1 relies on the fact that a pessimistic entrepreneur is
not going to have an initial doing phase, it is often the case that even if an infinite deadline involves an
initial doing phase, the likelihood of obtaining a solution through the doing arm is maximized with T = T1;
see, e.g., the configuration in the left panel of Figure 3: Even as T →∞, the dash-dotted line will not be
higher than at the interior maximum.

28We cannot derive meaningful conditions for when that nonmonotonicity occurs, but numerically it
appears relatively robust.

29Indeed, it may also happen that an increase in the deadline reduces the probability of a solution through
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5 Discussion of Modeling Choices

In this section, we discuss the motivation behind our modeling choices and their direct
consequences on a more abstract level. We specifically want to emphasize the role of three
model ingredients: (i) the model includes a deadline but excludes exponential discounting;
(ii) the value of successful thinking diminishes and does so at a sufficiently increasing rate;
and (iii) the value of successful thinking is independent of the belief about the doing arm.

Time Cost. Our choice not to include standard exponential discounting is motivated
by our focus on the changing time pressure. The implicit assumption in (infinite-horizon)
exponential discounting models is that time pressure is constant at any point in time—e.g.,
because the risk of an exogenous termination of the game is constant. However, with a
deadline in mind, this form of time pressure becomes less relevant—at least close to the
deadline. Instead, the agent fears that she has insufficient time to finish her task before the
game ends with certainty.

In our applications, deadlines are foreseeable dates on the time horizon, and time pressure
increases as agents move closer to the deadline. Therefore, to ensure a transparent and
tractable discussion of the effect of changing time pressure, we abstract from additional
exponential discounting.

However, it should become clear from the analysis that including exponential discounting
would not alter the economic effects of our model but would come at a substantive loss of
tractability.30 We focus on a world in which the agent has no incentive to shirk. As we see,
e.g., in Figure 2, the agent has an incentive to obtain results early, even absent exponential
discounting: the agent incurs the cost of experimentation.

Diminishing Value of Progress. We assume that the returns to thinking diminish at
an increasing rate as the deadline approaches. This assumption captures the idea that
successful thinking implies progress but not a solution. When progress arrives, the closer
the deadline is, the less time remains to convert the progress made—the return shrinks.

In light of our application, the simplest interpretation of this assumption is to think
of progress as triggering a random process determining ex post payoffs. Thus, the greater
the time remaining is, the more likely the agent can succeed in time despite a sequence
of adverse shocks. That notion of progress differs from one in which a solution arrives
deterministically with some delay. In the latter world, the value of progress is a positive
constant until it drops to zero once the remaining time falls below a threshold.

In our model, any decrease in the time remaining upon the arrival of progress reduces

the doing arm—see, e.g., the left panel of Figure 3. Thus, an increase in the deadline—holding the initial
belief about the doing arm fixed—increases the probability of a pivot.

30Indeed, it is straightforward yet cumbersome to adjust our key lemmata to include exponential
discounting and to verify that Proposition 3 continues to hold. The same holds when deadlines arrive
stochastically but become more and more likely as time progresses.
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its value: there is less time to convert progress into a solution. Hence, the agent faces a
crucial time tradeoff: delaying thinking reduces the expected time remaining when progress
arrives and thus makes it less valuable.

Relative Concavity of the Value of Progress. The primary assumption that leads to
Proposition 3 is that the relative concavity of the value of progress is sufficiently high. This
assumption implies that the evolution of the deadline effect dominates the other effects on
the agent’s preference as the time remaining increases. This assumption helps to focus on
the main tradeoff between risk and time pressure. However, we could weaken the assumption
without losing tractability. The main difference is that we may obtain two disjoint intervals
in which the agent pulls the thinking arm and two disjoint intervals in which the agent pulls
the doing arm. The underlying economic reason is that once the time pressure has become
relatively weak, the thinking arm may have a payoff advantage over the doing arm.

Example 6. Consider a variant of Example 1 in which ν < p̄λ; that is, the arrival of progress
triggers a new bandit arm that has a relatively low arrival rate. It follows that the change
in the deadline effect, V ′′(τ), will be dominated by the change in the payoff-on-arrival effect,
pτλV

′(τ), when pτ—and thus the weight on the payoff on the arrival effect—is relatively
high.

In particular, to further simplify this example for illustrative purposes, assume that
Bν = B + c

µ and cν = 0. Once the belief has sufficiently deteriorated such that pτλ = ν,
the continuation game is nested by our model. Proposition 3 applies. We show numerically
that the optimal policy may have the following structure: the agent (i) starts thinking, (ii)
switches to doing, (iii) switches back to thinking, and (iv) and returns to the doing arm for a
Hail Mary. For an intuition of the resulting changes and additional details, see Appendix E.

Value of Progress Independent of the Belief about the Doing Arm. We assume
that the belief about the doing arm has no direct consequences on the payoff of the thinking
arm. With time τ remaining, the agent attaches the same value to the thinking arm if she
is almost certain that the state of the world is θ = 0 or if she is almost certain that it is
θ = 1. While we show a set of examples in Section 2.1 that satisfy this assumption, it is
nevertheless restrictive. We impose it, as it tremendously simplifies the analysis.

However, this assumption is not crucial for our results. The following example—a version
of Example 2—provides a setting in which the value of progress depends on the belief, yet
our main result remains unchanged.

Example 7. As in Example 2, progress implies a new risky arm with intensity ν, but
suppose now that switching back to the initial doing arm is costless. Suppose further that
ν = λ = 1, p̄ ≤ 2/3, and B > 2c. In this case, the entrepreneur will split her effort equally
between the two arms once pντ = pτ .31

31Note that upon arrival of a new arm with pν > pτ , the entrepreneur will first only pull the new arm.
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In Appendix F we provide the formal analysis for a model in which the value of progress
depends on the agent’s belief about the doing arm that nests Example 7. In addition, we
derive and discuss a condition that ensures that Proposition 3 remains valid.

The only change in the generalization in Appendix F is that we formulate the value of
progress as a function of both the time remaining and the belief that the agent holds at the
time of progress. The condition we derive is directly on this value of progress. Therefore, the
model outlined in Appendix F also captures other extensions to the baseline case. One such
extension is a world in which the value of progress correlates directly with the underlying
state θ. Such correlation is relevant, for example, if the absence of success is informative
about the problem’s difficulty rather than about the quality of the doing arm.

6 Final Remarks

We address a time-constrained agent’s dynamic decision when to do—address a problem
using an initial idea—and when to think about an alternative, less risky method. We show
that she should think neither too early nor too late. Overall, the agent never thinks twice.
Once she stops thinking and moves to her initial idea, she abandons thinking for good.

We can use the specification of our model from Section 4 to predict the time an agent
needs to find a solution as a function of her initial deadline. Depending on the expected
speed of the various arms, perhaps counterintuitively, we may see that the average time an
agent needs to find a solution decreases in her initial deadline. Such a prediction is—in some
settings—directly testable. For example, suppose that the thinking and conversion process
is sufficiently fast in a field of research. In this case, we would expect that researchers who
undergo evaluation after an intermediate tenure clock would take on average longer to fulfill
the tenure requirements than those with longer or shorter tenure clocks. The mechanism is
the following: those with shorter tenure clocks fail more often: the late bloomers drop out
and the average time conditional on making tenure is shorter. Those with longer tenure
clocks work first on converting their job market papers to influential publications and begin
to branch only upon failure. Since some succeed, they need considerably less time to fulfill
the requirements—they outpace their counterparts with intermediate clocks who branch
from the beginning.32

In addition, our result from Proposition 5 can serve as a cautionary tale regarding
the efforts by politicians to meet specific pre-committed goals. For example, consider the
Paris agreement. Many countries aim to target their goals through small-scale efforts
such as incentivizing the use of electric cars. However, potentially, there is an action bias.
Governments prefer implementing measures that are directly at hand—even at the risk of
these being insufficient—instead of investing in “transformational change” that is warranted,

Thus, its belief will decline while the other arm’s belief remains constant until the beliefs on both arms are
equal.

32We want to emphasize that this result does not hold under arbitrary arrival rates. Therefore, to test
these predictions, one must understand the arrival rates in place.
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e.g., by IPCC (2018). Only if it becomes imminent that small-scale effort will not be
sufficient will governments pivot to thinking about transformation. The late pivot is optimal
from the government’s perspective. Nevertheless, it occurs too late on a larger scale: the
chances of meeting the goals in time decline.
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A The Optimal Control Problem

A.1 Notation

Variable Description

p̄ Ex ante probability that θ = 1.
B Benefit of arrival on the doing arm.

V (τ) Value of progress with time τ remaining.
c Flow cost of effort.

τ := T − t Time until the deadline.

aτ
Relative intensity of pulling the doing arm
with τ periods remaining.

Aτ :=
∫ T
τ asds

Total amount of time spent pulling the doing
arm in the past. The state.

pτ := p̄e−λAτ

p̄e−λAτ+1−p̄
Likelihood that the doing arm is suitable
with τ periods remaining.

U(τ) := (B − c/λ)(1− e−λτ ) Value of pulling an arm with known inten-
sity λ for time τ .

γτ := −dHτ (aτ ;Aτ )
daτ

Relative preference for thinking with τ pe-
riods remaining.

ητ Co-state with τ periods remaining.

Zd(p, τ) := pU(τ)− (1− p)cτ
Expected value from pulling the doing arm
throughout with time τ remaining when the
belief is p.

Zt(ε; p, τ) := (µV (τ)− c) ε
+(1−µε)Zd(p, τ−ε)
+o(ε)

Expected value from pulling the thinking
arm for a small measure of time ε and
pulling the doing arm for the remaining
time with time τ remaining when the belief
is p.

A.2 Necessary Conditions for Optimality

Much of our arguments rely on the necessary conditions from Pontryagin’s maximum
principle. The existence of an optimal control follows from standard arguments.33 We verify
the sufficiency of the necessary conditions in the proof of Proposition 4 by showing that
there is a unique solution to the necessary conditions.

Using the notation from Appendix A.1 the agent’s objective is to maximize∫ T

0
e−µ(T−τ−Aτ )(1− p̄+ p̄e−λAτ )J(pτ , τ, aτ )dτ

with J(aτ , Aτ , τ) := µ(1 − aτ )V (τ) + λaτpτB − c the expected flow payoff at time
τ := T − t.

33See, for example, Clarke (2013). The evolution of the state is continuous and bounded, the control is
bounded, the agent’s value is finite, the running cost is convex in the control, and the set of admissible effort
paths is nonempty.
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Using Aτ as the state, the Hamiltonian at time τ is thus

Hτ (aτ ;Aτ ) :=e−µ(T−τ−Aτ )(1− p̄+ p̄e−λAτ )J(pτ , τ, aτ ) + aτητ ,

=e−µ(T−τ−Aτ )(1− p̄) ((1− aτ )µV (τ)− c)
+ e−µ(T−τ−µAτ )p̄e−λAτ ((1− aτ )µV (τ) + aτλB − c) + aτητ

(3)

where η is the co-state. It has terminal condition η0 = 0 and evolves according to34

dητ
dτ

:=dHτ (aτ ;Aτ )
dAτ

=e−µ(T−τ−Aτ )
(
µ(1− p̄)

(
(1− aτ )µV (τ)− c

)

− (λ− µ)e−λAτ p̄
(
(1− aτ )µV (τ) + aτλB − c

))
.

(4)

Conditional on no arrival, the relative preference of thinking is determined by

γτ = −dHτ (aτ ;Aτ )
daτ

= e−µ(T−τ−Aτ )
((

1− p̄+ p̄e−λAτ
)
µV (τ)− p̄e−λAτλB

)
− ητ .

If γτ < 0, then the agent strictly prefers to do, aτ = 1; if γτ > 0, then she strictly prefers
to think, aτ = 0.

B Key Lemmata
We state and prove four key lemmata. Combining these delivers most of our results up to
and including parts of the characterization in Proposition 4. The first, Lemma 1, states that
the agent prefers to pull the doing arm close to the deadline independent of her belief about
its quality. The second, Lemma 2, states the evolution of the agent’s relative preference
between the arms over time. Because the Hamiltonian is linear in the agent’s action, the
evolution of the relative preference is independent of the agent’s action. The third, Lemma 3,
states that the agent’s relative preference has no interior minimum. This implies that the
agent never returns to the thinking arm if she stopped thinking without progress. The
fourth, Lemma 4, determines a condition such that the strategy “doing throughout” is
dominated by the strategy “think for a measure of time dt before doing for the remainder
of the time.”

Lemma 1. Suppose that the agent has not observed an arrival on either arm and holds
belief p ∈ (0, 1) on the doing arm at the deadline. There is a remaining time τ̂ such that for
the entire interval τ ∈ [0, τ̂), the agent strictly prefers to pull the doing arm over pulling the
thinking arm.

Proof. γτ is continuous in τ , and η0 = 0. The value of a success on the thinking arm is
continuous, and when τ = 0 it is V (0) = 0. Thus, the terminal value of γ is

γ0 = −e−µ(T−Aτ )pe−λAτλB < 0.
34Note that because we take the derivative with respect to time remaining, the sign on the partial of the

Hamiltonian is positive instead of negative.
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By the continuity of γτ , there exists for any strategy (aτ )Tτ=0 a remaining time τ̂ > 0 such
that γτ < 0 for τ < τ̂ , which proves the claim.35

Lemma 2. A marginal increase in the time to the deadline τ changes the agent’s policy
function γτ by

dγτ
dτ

= e−µ(T−τ−Aτ )(1− p̄+ p̄e−λAτ )
(
µV ′(τ) + pτµλ(V (τ)−B) + (µ− λpτ )c

)
. (5)

The change is independent of the agent’s decision aτ .

Proof. First, recall that Hτ (aτ ;Aτ ) is affine in aτ , and note that for a function affine in x,
f(x; θ) = t(θ) +m(θ)x, it holds that

d2f(x; θ)
dxdθ

x = m′(θ)x = df

dθ
− df

dθ
|x=0.

Second, recall that dητ
dτ = dHτ (aτ ;Aτ )

dAτ
and that −dA(τ)

dτ = aτ , which yields (using γτ = − dH
daτ

)

dγ

dτ
= −d

2Hτ (aτ ;Aτ )
daτdτ

= −d
2J(aτ ;Aτ , τ)
daτdτ

− dη

dτ
= − ∂

∂τ

dJ(aτ ;Aτ , τ)
daτ

− dη

dτ

∣∣∣∣
aτ=0

(6)

where we used that the law of motion of the state is independent of the state itself,
d2J
daτdτ

= ∂
∂τ

dJ
daτ
− d2H

dAτdaτ
aτ and dη

dτ −
d2H

dAτdaτ
aτ = dη

dτ |aτ=0 based on the Hamiltonian being
affine in aτ .

Third, from (4) we obtain

dη

dτ

∣∣∣∣
aτ=0

= e−µ(T−τ−Aτ )(1− p̄+ p̄e−λAτ ) (µV (τ)− c) (µ− λpτ ) . (7)

Moreover,

− ∂

∂τ

dJ(aτ ;Aτ , τ)
daτ

= e−µ(T−τ−Aτ )(1− p̄+ p̄e−λAτ )
(
µV ′(τ) + µ (µV (τ)− pτλB)

)
which implies

dγ

dτ
= e−µ(T−τ−Aτ )(1− p̄+ p̄e−λAτ )

(
µV ′(τ) + µ (µV (τ)− pτλB)

)
− e−µ(T−τ−Aτ )(1− p̄+ p̄e−λAτ ) (µV (τ)− c) (µ− λpτ )

= e−µ(T−τ−Aτ )(1− p̄+ p̄e−λAτ )
(
µV ′(τ) + µpτλ (V (τ)−B) + (µ− λpτ ) c︸ ︷︷ ︸

=:dyτ/dτ

)
.

(8)

Note that the sign of dγτ/dτ is determined by the sign of dyτ/dτ only.

The last line of (8) implies that the agent’s action has no first-order effect on the
evolution of the switching function yτ . Any direct effect of the action on the instantaneous
payoffs is counteracted by an effect on the continuation value. It is important, however,
to keep in mind that the action has a second-order effect on yτ through its effect on the
evolution of the belief.

35For any initial belief p̄ ∈ (0, 1) and any strategy (aτ )Tτ=0, the agent’s terminal belief is in (0, 1).
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Lemma 3. Any minimum of γτ is either at τ = T or at τ = 0. Moreover, yτ is strictly
concave whenever aτ = 0.

Proof. Since ητ is continuously differentiable in τ and defined for any τ ∈ R+, so is yτ . To
prove Lemma 3, we use that any interior (local) minimum has to be a critical point. From
equation (8) we know that

dγ

dτ
= e−µ(T−τ−Aτ )(1− p̄+ p̄e−λAτ )︸ ︷︷ ︸

f(τ)

(
µV ′(τ) + pτµλ(V (τ)−B) + (µ− λpτ )c

)︸ ︷︷ ︸
dyτ
dτ

=:g(τ)

.

If a critical point constitutes a local minimum, then it satisfies

f(τ)g(τ) = 0 and f ′(τ)g(τ) + f(τ)g′(τ) > 0

because f(τ) > 0 for all τ < ∞, which implies g(τ) = 0, and any local minimum also
requires g′(τ) = d2yτ

dτdτ > 0. To show that such a local minimum cannot exist, we show that
g(τ) = 0 and g′(τ) > 0 cannot be satisfied at the same time. It follows from g(τ) = 0 that

µλ(V (τ)−B) = −µV
′(τ) + (µ− λpτ )c

pτ
.

Differentiating g(τ) yields

d2yτ
dτdτ

= dpτ
dτ

(µλ(V (τ)−B)− λc) + µ
(
V ′′(τ) + λpτV

′(τ)
)

and plugging in for g(τ) = 0 yields

d2yτ
dτdτ

| dyτ
dτ

=0 = −dpτ
dτ

µ

pτ

(
V ′(τ) + c

)
+ µ

(
V ′′(τ) + λpτV

′(τ)
)
≤ 0

where the inequality follows as dpτ
dτ ≥ 0, V ′(τ) > 0 and −V ′′(τ)

V ′(τ) ≥ pτλ as pτ ≤ p0.
The concavity of yτ while the agent thinks follows straightforwardly by observing that

dpτ
dτ = 0 in this case.

To state Lemma 4, we define:

Zd(p, τ) := p

∫ τ

0
e−λt(λB − c)dt− (1− p)

∫ τ

0
cdt = pU(τ)− (1− p)cτ,

and

Zt(ε; p, τ) :=
∫ ε

0
e−µt(µV (τ − t)− c)dt+ e−µεZd(p, τ − ε)

= (µV (τ)− c) ε+ (1−µε)Zd(p, τ−ε)+o(ε)

where the expression follows from a Taylor expansion around 0.
The first, Zd, describes the value absent a success of the strategy “pull the doing arm

from now until τ = 0”, given the belief p and the time remaining τ . The second, Zt,
describes the value absent a success of the strategy “pull the thinking arm for a small
measure of time ε > 0, then pull the doing arm until τ = 0”, given the belief p and the time
remaining τ .

34



Lemma 4.
lim
ε→0

Zt(ε; p, τ)− Zd(p, τ) > 0

if and only if
q̂(τ) := µ (V (τ) + cτ)

µ (B + cτ) + (λ− µ) (B − U(τ)) > p.

Moreover for any q ∈ (0, 1) there is a τ such that q̂(τ) = q.

Proof.

lim
ε→0

Zt(ε; p, τ)− Zd(p, τ) > 0

⇔ lim
ε→0

(µV (τ)− c) ε+ (1−µε)Zd
(
(p, τ−ε)− Zd(p, τ)

)
+ µεZd(p, τ) > 0

⇔ µV (τ)− c− µZd(p, τ)− lim
ε→0

(Zd(p, τ)− Zd(p, τ − ε))
ε

− > 0

⇔ µV (τ)− c− µZd(p, τ)− ∂Zd(p, τ)
∂τ

> 0

⇔ µV (τ)− pU ′(τ)− pc− µpU(τ) + (1− p)µcτ > 0

which is equivalent to

q̂(τ) := µ (V (τ) + cτ)
µ(U(τ) + cτ) + U ′(τ) + c

= µ (V (τ) + cτ)
µ(B + cτ) + (λ− µ)(B − U(τ)) > p. (9)

The last claim follows because q̂(0) = 0, limτ→∞ q̂(τ) = 1 and q̂ is continuous.
The limit τ →∞ follows using L’Hôpital’s rule,

lim
τ→∞

q̂(τ) = lim
τ→∞

µ(V ′(τ) + c)
µ(U ′(τ) + c) + U ′′(τ) = 1

where the last equality follows from limτ→∞ U
′′(τ) = limτ→∞ U

′(τ) = 0 and limτ→∞ V
′(τ) =

0 because on an unbounded support any strictly concave, increasing, yet bounded function
has to have a slope converging to zero if the limit of its derivative exists, which holds by
assumption.

C Proofs of Statements in the Main Text

C.1 Proof of Proposition 1

Proof. When T =∞, the value of an arrival on the thinking arm, V (∞), is constant over
time. We can apply the standard dynamic programming approach for exponential bandits.
The value function u(p) given belief p prior to termination satisfies36

u(p) = max
a∈[0,1]

(apλB + (1−a)µV (∞)−c)dt+ 1−(apλ+ (1−a)µ)dtu(p)−p(1−p)λadtu′(p).

Letting dt go to zero, dropping second-order terms and rearranging, we obtain the
36We obtain the expression using Taylor approximations for the success probabilities when dt is small

and using the ODE dp/dt = p(1− p)aτλ. We do not require discounting as a single breakthrough on any
arm ends the problem generating a finite payoff. Hence, the value is bounded even without discounting.
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Bellman equation

0 = max
a∈[0,1]

(apλB + (1− a)µV (∞))− c)− (apλ+ (1− a)µ)u(p)− p(1− p)λau′(p)

where the maximand is linear in a. Whenever pulling the thinking arm is optimal at some
time t, the agent chooses at = 0, and it will remain optimal to pull at′ = 0 for all t′ > t as
the belief remains constant. Thus, u(p) =

∫∞
0 e−µt(µV (∞)− c)dt = V (∞)− c

µ whenever
a = 0. Whenever, pulling the doing arm is optimal, we can rewrite the Bellman equation as

0 = pλB − c− pλu(p)− p(1− p)λu′(p)

and solving this differential equation yields

u(p) = B − c

λ
− (1− p)

(
C + c ln

(
p

1− p

))
where C is a constant of integration. Using the value matching condition that the agent is
indifferent between thinking and doing at p = p̂, u(p̂) = V (∞)− c

µ , and the smooth pasting
condition, u′(p̂) = 0, we can obtain the constant of integration as well as p̂, which are

p̂ = µ

λ

c

c+ µ(B − V (∞))

C = B − c

λ
ln
(

p̂

1− p̂

)
−
(
V (∞)− c

µ

)
.

C.2 Proof of Proposition 2

Proof. We make use of dyτ/dτ as defined in the proof of Lemma 2. By Lemma 3, the policy
function γτ is twice continuously differentiable and has no interior minimum in τ . This
implies that if dyτ/dτ ≥ 0 for some τ , then dyτ/dτ ≥ 0 for all τ ′ ∈ [0, τ ]. Because condition
(C.1) holds, we obtain that for all τ ≥ 0

dyτ
dτ

= µ
(
V ′(τ)− p̄λ(B − V (τ))

)
≥ 0

as V (τ) ≤ B and V ′(τ) ≥ 0. Thus, yτ is increasing in the time remaining τ throughout. The
agent pulls the doing arm close to the deadline by Lemma 1. What remains to be shown is
if and when the agent switches from thinking to doing. Invoking Lemma 4 assuming c = 0
yields that the agent never thinks (i.e., γτ < 0) if an only if ∀τ ≤ T

q̂(τ |c = 0) := µV (τ)
U ′(τ) + µU(τ) < p̄.

Otherwise, she starts thinking and switches to doing with time τ3 remaining, where τ3 is
the smallest solution to q̂(τ3|c = 0) = p̄.

C.3 Proof of Proposition 3

Proof. The result follows from Lemmata 1 to 3.
By Lemma 1, the agent pulls the doing arm shortly before the deadline whenever the

game has not yet terminated. Lemma 2 shows that yτ is strictly concave at any critical
point. Thus, yτ 6= 0 almost everywhere; i.e., the agent is generically not indifferent. Finally,
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by Lemma 3, yτ has no interior minimum: once the agent abandons the thinking arm, she
does not return to it. Only the three strategies in Proposition 3 remain possible.

C.4 Proof of Proposition 4

Proof. First, we show that any solution provided by the algorithm satisfies the necessary
condition of the agent’s optimal control problem. Second, we show that the algorithm
provides a solution. Third, we show that there is a unique solution to the necessary
conditions of the optimal control problem under Assumption 1.

Step 1. The algorithm’s solution is a candidate. Here, we show that any solution to
the algorithm satisfies the necessary conditions of the optimal control problem. We consider
the different termination cases of the algorithm.

1a. The algorithm stops in item 2. In this case, the algorithm’s solution implies
that the agent pulls the doing arm throughout. By Lemma 4, it is optimal for the agent to
follow this strategy as the agent will never be indifferent between thinking and doing.

1b. The algorithm stops in item 4. Lemma 4 implies that it is optimal for the
agent to pull the doing arm for the final remaining time τ < τ3 when she holds belief p̄ at
τ3. The function ẏ(τ ; q(τ3), τ3) has the same sign as the slope of the agent’s policy function
from Lemma 2 when pulling the thinking arm conditional on the agent pulling the doing
arm for any remaining time τ < τ3. The next Lemma shows that ẏ(τ ; q(τ3), τ3) ≥ 0.

Lemma 5. Suppose that it is optimal for the agent to switch from pulling the thinking arm
for a positive measure of time to pulling the doing arm with time τ3 remaining. Then

ẏ(0; q(τ3), τ3) > 0.

Proof. To the contrary, assume that ẏ(0; q(τ3), τ3) ≤ 0. Because switching to the doing
arm is optimal with time τ3 remaining, by Proposition 3 and γτ being a continuously
differentiable function, we must have that γτ3 = 0. With ẏ(0; q(τ3), τ3) < 0, this implies
that there is an ε such that γτ3−ε > 0 for all ε ∈ (0, ε), which implies (strict) optimality of
thinking with time τ3 − ε remaining, a contradiction to switching to the doing arm with
time τ3 remaining. With ẏ(0; q(τ3), τ3) = 0, the agent would pull the doing arm immediately
again for τ > τ3, as any critical point corresponds to a strict local maximum, which is a
contradiction to thinking for a positive measure of time before τ3.

By Lemma 5, there is a ∆ > 0 such that for all τ ∈ (τ3, τ3 + ∆], ŷ(τ ; p̄, τ3) > 0, as ŷ
is continuous in τ . Thus, τ2(τ3) is defined, and for any time horizon T < τ2(τ3) + τ3, it is
optimal for the agent to start thinking before switching to the doing arm for the remaining
time.

1c. The algorithm stops in item 6. The continuation game with time τ2(τ3) + τ3 is
identical to one in which the agent starts out with belief p̄ = q(τ3) and deadline T = τ2(τ3)+τ3.
Moreover, τ1(τ3) describes the length of the initial doing period to arrive at this continuation
game. By construction, at τ2(τ3) + τ3, the agent’s policy function γ must be increasing,
as it coincides with ŷ multiplied by a positive constant. By Lemma 3, γτ cannot have an
interior minimum and, therefore, must be negative for all τ ∈ (T − τ2(τ3)− τ3, T ].
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Step 2. The algorithm finds a solution. Here, we show that the algorithm always
provides a solution. First, we state a lemma that will be useful for the remainder.

Lemma 6. Under Assumption 1, the following monotonicity statements hold.
(i) q(τ3) is monotonically increasing in τ3.
(ii) τ1(τ3) is monotonically decreasing in τ3.
(iii) τ2(τ3) is monotonically decreasing in τ3.

Proof. We prove each statement separately. Recall that q(τ) = min{1, q̂(τ)}.

Statement (i). To simplify exposition, we use the notation q̂(τ) = x
z , with x = µ(V (τ)+cτ)

and z = µ(U(τ) + cτ) + U ′(τ) + c. Note that q(τ) is continuous and that q̂′(τ = 0) > 0.
Thus, if q̂(τ) ever decreases a local maximum must exist. Moreover, limτ→∞ q̂(τ) = 1. Thus,
if q(τ) ever decreases, q̂(τ) must have a local minimum with q̂(τ) < 1. We will show that
q(τ) cannot be decreasing by showing that q̂(τ) has no local minimum with q̂(τ) < 1.

Case 1: µ ≤ λ. Consider µ ≤ λ. If q̂(τ) is ever decreasing at least one local maximum
exists such that q̂′(τ) = 0 and q̂′′(τ) < 0. At this maximum we thus have,

V ′(τ) + c

V (τ) + cτ
= (µ− λ)U ′(τ) + µc

µ(U(τ) + cτ) + U ′(τ) + c
(10)

and
V ′′(τ)

V ′(τ) + c
<

(µ− λ)U ′′

(µ− λ)U ′(τ) + µc
, (11)

where we have used U ′′ = −λU ′ and that q̂′(τ) = 0 implies x′

x = z′

z . A critical point requires
x′

x = z′

z , and since x′, x and z are trivially greater than zero, so is z′. It follows that whenever
µ < λ, the right-hand side of (11) is positive, implying that any critical point must be a
local maximum. Indeed, the right-hand side is positive: The numerator is positive, because
U ′′(τ) < 0 and µ ≤ 0 and the denominator is positive as well by the above argument that
z′ > 0. Because limτ→∞ q̂(τ) = 1, any local maximum at τ̂ with q̂(τ̂) < 1 would imply
the existence of a local minimum for some τ̌ > τ̂ . Hence, if q̂(τ) is decreasing for some τ ′
we must have that q̂(τ) > 1 for all τ ≥ τ ′, implying that q(τ) = 1 for all τ ≥ τ ′ proving
monotonicity of q(τ).

Case 2: µ > λ. Consider µ > λ. Recall that whenever q̂′(τ̌) < 0 and q̂(τ̌) < 1, there
must be some local minimum; denote the time remaining at the local minimum by τ̌2. As
q̂′(0) > 0, there must be a local maximum of q̂(τ) first; denote the time remaining at the
local maximum by τ̌1, with τ̌1 < τ̌2. Moreover, as limτ→∞ q̂(τ) = 1, there must be either
another local maximum, the time remaining of which is denoted by τ̌3, or there is some τ̃
such that for all τ > τ̃ , q̂′′(τ) < 0. Define ϕ(τ) := x′′z − z′′x.

These three observations imply the following: ϕ(τ̌1) < 0; ϕ(τ̌2) > 0; if τ̌3 exists, then
ϕ(τ̌3) < 0; and if τ̌3 does not exist, then there must be some ˜̃τ such that ϕ(˜̃τ) < ϕ(τ̌2).
The latter conclusion follows by the observation that q̂′′(τ) < 0 whenever q̂(τ) converges
from below to 1. q̂′′(τ) < 0 implies that ϕ(τ) < 2 z′z (x′z − xz′), where the right-hand side
converges to 0 as τ → 1.

Thus, we know that as τ moves from τ ≤ τ̌1 to ∞, φ(τ) is strictly negative (at τ̌1),
strictly positive (at τ̌2) and arbitrarily small as we approach τ = ∞. Thus, φ(τ) has to
be nonmonotonic. Part (ii) of Assumption 1 rules nonmontonicity out. Thus, no local
minimum of q̂(τ) with q̂(τ) < 1 exists, and q(τ) is monotonic.
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Statement (ii). The monotonicity of τ1 follows by the monotonicity of q(τ3) and the
observation that τ1(τ3) decreases in q(τ3).

Statement (iii). To see that τ2(τ3) decreases, recall that τ2 is determined via the root of
ŷ(τ ; q(τ3), τ3) whenever this root exists for some τ > 0. In this case, we require by definition
of τ2(τ3)37

dŷ(τ2(τ3); q(τ3), τ3)
dτ3

=∂ŷ(τ2(τ3); q(τ3), τ3)
∂τ3

+ ∂ŷ(τ2(τ3); q(τ3), τ3)
∂q(τ3)

∂q(τ3)
∂τ3

+ ∂ŷ(τ2(τ3); q(τ3), τ3)
∂τ2

∂τ2(τ3)
∂τ3

= 0.
(12)

Note that under Assumption 1, d
dτ3
ẏ(s; q(τ3), τ3) < 0 because

dẏ(s; q(τ3), τ3)
dτ3

= µV ′′(s+ τ3) + µλ

(
q(τ3)V ′(s+ τ3) + dq(τ3)

dτ3

(
V (s+ τ3)−B − c

µ

))
which is negative for all s, as −V ′′(τ3 + s)/V ′(τ3 + s) ≥ p̄λ ≥ q(τ3)λ and V (τ3 + s) ≤ B + c

µ
by assumption while q(τ3) is increasing in τ3.

Hence, we know that

∂ŷ(τ2(τ3); q(τ3), τ3)
∂τ3

+ ∂ŷ(τ2(τ3); q(τ3), τ3)
∂q(τ3)

∂q(τ3)
∂τ3

< 0

and, moreover, that ∂ŷ(τ = τ2; p, τ3)/∂τ < 0 because τ2 is the root and ŷ(τ ; p, τ3) > 0 if
τ < τ2 by construction. Thus, to satisfy (12), we need ∂τ2(τ3)/∂τ3 < 0.

Second, we show that if there is a solution without an initial doing period, then the
algorithm always returns such a solution.

If such a solution exists, then there exists a τ3 such that p̄ = q(τ3), as limτ→∞ q(τ) =
1 > p, which item 2 of the algorithm will detect because q is monotonic by Lemma 6. If the
solution is such that only a Hail Mary period is possible, then item 2 ensures that τ3 = T , as
the solution detected τ3 > T . If a solution in which the agent starts by thinking is possible,
then item 4 detects one such solution, i.e., if τ3 < T from item 2 and q(τ3) = p. Neither
item 2 nor item 4 returns a solution only if any policy that involves only a single doing
period does not satisfy the necessary conditions of the optimal control problem.

Third, we show that if all solutions involve an initial doing period, then item 6 of the
algorithm finds such a solution.

If an initial doing period exists, then the belief held at the beginning of the Hail Mary
period must satisfy q(τ3) < p̄. At the same time, by Lemma 1, q(τ3) > 0, and

q(τ3 − t) ≤
q(τ3)e−λ(τ3−t)

q(τ3)e−λ(τ3−t) + 1− q(τ3)

for all t ∈ [0, τ3] such that Lemma 4 does not imply any additional switches for any time
remaining τ < τ3.

By Lemmata 2 and 3, any solution with an initial doing period implies the existence of
two roots of the policy function γτ . Because ŷ(τ ; q(τ3), τ3) = 0 determines the smallest root
τ > 0 of γτ conditional on a Hail Mary period of length τ3, the algorithm detects that root

37Recall that because p̄ < 1, q(τ) is differentiable in the relevant part.
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if it exists. Finally, because q(τ3) < p̄ and beliefs are constant while thinking, the length of
the initial doing period is determined by Bayes’ rule and the belief conditional on reaching
the Hail Mary period q(τ3) = p̄e−λt/(p̄e−λt + 1− p̄), which results in τ1(τ3).

Item 6 of the algorithm considers all possible combinations of τ1(τ3), τ2(τ3) and τ3 until
a solution is found that satisfies the necessary conditions. If a solution exists, the algorithm
converges.

Fourth and finally, a solution to the optimal control problem exists because the evolution
of the state is continuous and bounded, the control is bounded, the agent’s value is finite,
the running cost is convex in the control and the set of admissible effort paths is nonempty
(see, e.g., Clarke (2013) for details). By Proposition 3, any solution is of one of the three
types the algorithm considers. Thus, the algorithm determines a candidate solution.

Step 3. The algorithm’s solution is the unique candidate. Finally, we show that
the algorithm identifies the uniquely optimal policy. To show uniqueness, we have to show
that given a solution τ3, there is no other τ ′3 6= τ3 that solves the fixed point problem.

Any two solutions in which the agent pulls the doing arm for only one time interval are
identical on any positive measure of time. This is immediate because if the agent pulls the
doing arm on only one interval, then she has to pull it in the end. Either the agent pulls
only the doing arm in which the strategy is trivially unique and q(τ) < pτ for any τ ∈ [0, T ]
or she begins by pulling the thinking arm. In the latter case, she switches when the time
remaining is q−1(p̄), which has a unique solution by Lemma 6, as p̄ < 1.

Thus, if there are two candidate strategies satisfying the necessary conditions, then the
agent needs to split the time spent on the doing arm between two disjoint intervals in at
least one of those strategies. If the agent splits her time doing in at least one solution and
the two solutions differ on a positive measure of time, then there must be two different
lengths of the Hail Mary period, τ ′3 and τ3, both of which satisfy the necessary conditions.
Assume without loss of generality that τ ′3 > τ3. Both τ ′3 and τ3 have associated terminal
beliefs, p′ and p. The terminal belief is the agent’s belief at the deadline conditional on
failing to find any solution. Note that for the case of τ3, the agent’s strategy must involve
two distinct doing periods. We proceed by cases and derive a contradiction for each of them.

Assume p > p′. Consider the agent’s belief with τ3 periods remaining, and assume
that she pulled the doing arm in the interval [τ ′3, τ3) with initial belief q(τ ′3). Since p > p′,
the agent has to hold a belief p̃(τ3) < q(τ3) with τ3 periods remaining. However, then the
agent prefers to pull the thinking arm with τ3 periods remaining by Lemma 4, which is a
contradiction.

Assume p = p′ . Consider the agent’s policy function under the strategy that implies
the last switch to occur at τ ′3: γ′τ . The necessary conditions imply that γ′τ ′3 = 0. Because
the terminal beliefs coincide, the policy function and hence the strategy in the continuation
game for τ < τ3 coincide with the policy function and the strategy corresponding to a Hail
Mary period of length τ3 only—as the terminal condition γ0 depends only on the terminal
belief. In turn, this observation implies that γ′τ3 = γτ3 = 0. However, by construction,
the agent pulls the doing arm with time remaining τ = [τ ′3, τ3], implying that γ′τ ≤ 0 on
this interval. As a consequence, γ′τ has to have a critical point at τ3. The arguments in
the proof of Lemma 3 imply that γ′τ is strictly concave at any critical point, and thus, γ′τ
attains a maximum at τ3. As the beliefs coincide at τ3, the policy functions under both
strategies attain a maximum at τ3. By Lemma 3, none of the policy functions will attain a
maximum, and thus, the agent pulls the doing arm throughout under both policy functions,
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contradicting the assumption that the strategies differ and that there is a switching time
τ ′3 > τ3.

Assume p < p′. In this case, the agent’s overall time spent on the doing arm must be
smaller with switching time τ ′3 than with τ3. This implies that both strategies involve two
distinct doing periods. Moreover, τ2(τ ′3) > τ2(τ3) for both τ3 and τ ′3 to be a solution to the
fixed point problem. By Lemma 6, τ2 decreases in τ3, which is a contradiction.

C.5 Proof of Proposition 5

Proof. The probability that the agent obtains a success before the deadline for any τ1, τ2,
and τ3 is

P (τ1, τ2, τ3;T ) = p̄(1− e−λτ1) + (p̄e−λτ1 + 1− p̄) (13)

·
(

1− e−µτ2 − e−νT − e−µτ2−ν(T−τ2)

µ− ν
+ e−µτ2

p̄e−λτ1

p̄e−λτ1 + 1− p̄(1− e−λτ3)
)
(14)

where τ3 = T − τ1 − τ2. Consider the derivative of P (τ1, τ2, τ3;T ) with respect to τ1, which
is

e−ν(T−τ1)−µτ2−λτ1 e
µτ−2 − eντ2
µ− ν

µ(p̄(λ− ν)− (1− p̄)eλτ1ν). (15)

Its sign is determined by the sign of the last term, which is negative whenever ν ≥ pτ1λ.
This condition is satisfied by our assumptions; in particular, it is a consequence of the
relative concavity assumption.

C.6 Proof of Proposition 6

Proof. Suppose towards a contradiction that τ1 decreases in T . In particular, consider two
scenarios: (i) deadline T and (ii) deadline T ′ > T . Moreover, suppose that the associated
initial doing periods are such that τ ′1 < τ1.

The belief q(τ ′3) that the agent holds during the thinking period in scenario (ii) is larger
than the belief q(τ3) the agent holds in scenario (i). By Lemmata 4 and 6, q(·) is monotonic
and increasing in τ3, which implies τ ′3 > τ3.

Consider both scenarios with time τ3 remaining. In scenario (i), the agent is indifferent
between thinking and doing by construction and prefers doing for the remainder of the
time. In scenario (ii), she prefers doing at τ3 and for the remainder of time because τ ′3 > τ3.
This implies for the corresponding beliefs at remaining time τ3 that p′τ3 ≥ pτ3 = q(τ3). For
any subsequent period, the agent pulls the doing arm in both scenarios. It follows that the
terminal beliefs are p′ ≥ p.

Because in both scenarios the agent starts with a belief p̄, a larger terminal belief in
scenario (ii) implies that the maximum time the agent pulls the doing arm decreases in
this scenario compared to scenario (i); i.e., τ1 + τ3 ≥ τ ′1 + τ ′3. Because T ′ > T , it follows
that τ ′2 > τ2. By Lemma 6, τ ′3 ≥ τ3 implies τ ′2 ≤ τ2. In addition, dẏdp < 0, implying that τ2
decreases in the belief as well. Thus, τ ′3 ≥ τ3 and q(τ ′3) ≥ q(τ3) imply τ ′2 ≤ τ2, which is a
contradiction.

The length of the Hail Mary period increases in T if the agent immediately enters
this period and is constant whenever the agent starts by thinking. Finally, because τ1 is
nondecreasing, it follows that q(τ3) is nonincreasing, and thus, by Lemma 6, τ3 nonincreasing.
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Whenever the agent has no initial doing period, τ2 is trivially nondecreasing in T .
Because τ3 is nonincreasing when τ1 > 0, it follows from Lemma 6 that τ2 weakly increases.
Finally, τ1 + τ3 is bounded because q−1(τ3) is bounded by p̂ > 0 defined in Proposition 1,
which in turn implies that both τ1 and τ3 are bounded. However, then, because a solution
exists for every T , we must have that τ2 →∞ as T →∞.

C.7 Proof of Proposition 7

Proof. We prove each item separately. At several points in the proof, we invoke Lemmata 5
and 6, which can be found in Appendix C.4 Proof of Proposition 4.

Proof of item 1. p̃ is constructed such that ẏ(0, p̃, q(p̃)) = 0. Thus, if p̄ > p̃, then

µV ′(q−1(p̄))− p̄λµ(B − V (q−1(p̄))) + (µ− λp̄)c︸ ︷︷ ︸
=ẏ(0,p̄,q(p̄))

< 0,

because q−1(p) is monotonic for p ∈ (0, 1) and the LHS is decreasing since −V ′′(τ)/V ′(τ) >
λp̄ by the relative concavity assumption. Using Lemma 5, this implies that it cannot be
optimal to switch from thinking to doing with q−1(p̄) remaining or, equivalently, with a
belief p̄ > p̃.

Proof of item 2. Observe that the sign of function ẏ(s; p, ξ) is the same as the sign of
function dγτ

dτ conditional on γξ = 0 and an agent that thinks with time remaining τ ∈ [ξ, s+ξ].
A necessary condition for an initial doing period is that there exists a τ2 > 0 such that
y(τ2; q(τ3), τ3) = 0 with τ3 = q−1(p) and p < p̄ the belief held during the thinking period.
Because the agent (i) is indifferent with time τ2 + τ3 remaining, (ii) pulls the doing arm
for a positive measure of time before that and (iii) expects to pull the thinking arm for
a positive measure of time thereafter, ẏ(τ2; p, τ3) < 0 by the same arguments that proved
Lemma 5. Because −V ′′(τ)/V ′(τ) > pλV ′ by assumption, ẏ(·) decreases in τ2. Thus, if
limτ2→∞ ẏ(τ2; p, τ3) ≥ 0, then there is no second root of y(τ2; p, τ3) for any τ2 > 0. It follows
that if p̄ < p̂, then

lim
τ2→∞

ẏ(τ2; p, τ3) ≥ 0⇔ p <
V ′(τ2 + τ3) + c

λ
(
B + c

µ − V (τ2 + τ3)
) = c

λ
(
B + c

µ − V (∞)
) = p̂.

Proof of item 3. First, we show that if p̄ ≥ p̂, then the agent enters the Hail Mary period
with a belief pτ3 ≥ p̂. Suppose towards a contradiction that the agent switches to the Hail
Mary period with time τ3 remaining and a belief pτ3 < p̂. Because p̄ ≥ p̂, there has to be a
continuation game with time τ remaining at which the agent is in the initial doing phase
and holds a belief pτ < p̂. By item 2 such a continuation game cannot exist.

Second, observe that if the agent enters the Hail Mary period with a belief p̂, then her
terminal belief at the end of an unsuccessful Hail Mary period is p̌.

Third, suppose that the terminal belief was smaller than p̌. Then, it must be true that
with time q−1(p̂) remaining, the agent is in the Hail Mary period because the agent enters
the final doing period with a belief weakly greater than p̂ and because q−1(p̂) is the time
length of pulling the doing arm required to deteriorate a belief of p̂ to p̌. However, that the
terminal belief lies below p̌ implies that with time q−1(p̂) remaining, the agent’s belief is
less than p̂. However, this contradicts the necessary conditions for an optimal strategy, as
q(q−1(p̂)) > pq−1(p̂), which implies that the agent is not in the Hail Mary period.

42



Aghion, P., C. Harris, P. Howitt, and J. Vickers (2001). “Competition, Imitation and Growth
with Step-by-Step Innovation”. Review of Economic Studies 68 (3), pp. 467–492.

Akcigit, U. and Q. Liu (2015). “The role of information in innovation and competition”.
Journal of the European Economic Association 14 (4), pp. 828–870.

Bergemann, D. and J. Välimäki (2008). “Bandit problems”. The New Palgrave Dictionary
of Economics: Volume 1–8, pp. 336–340.

Bolton, P. and A. Faure-Grimaud (2009). “Thinking Ahead: The Decision Problem”. The
Review of Economic Studies 76 (4), pp. 1205–1238.

Bonatti, A. and J. Hörner (2011). “Collaborating”. American Economic Review 101 (2),
pp. 632–63.

Callander, S. (2011). “Searching and Learning by Trial and Error”. American Economic
Review 101 (6), pp. 2277–2308.

CB Insights (2021). The Top 12 Reasons Startups Fail. available at: https : / / www .
cbinsights.com/research/startup-failure-reasons-top/.

Che, Y.-K. and K. Mierendorff (2019). “Optimal Dynamic Allocation of Attention”. American
Economic Review 109 (8), pp. 2993–3029.

Chen, Y., S. Pan, and T. Zhang (2018). “Patentability, R&D direction, and cumulative
innovation”. International Economic Review 59 (4), pp. 1969–1993.

Clarke, F. (2013). Functional analysis, calculus of variations and optimal control. Vol. 264.
Springer Science & Business Media.

Das, K. and N. Klein (2020). “Inefficient Duplication of Efforts in Patent Races”.

Doval, L. (2018). “Whether or not to open Pandora’s box”. Journal of Economic Theory
175, pp. 127–158.

Eisenmann, T. (2021). “Why Start-Ups Fail”. Harvard Business Review.

Felin, T., A. Gambardella, S. Stern, and T. Zenger (2019). “Lean startup and the business
model: Experimentation revisited”. Long Range Planning, p. 101889.

Fershtman, C. and A. Rubinstein (1997). “A simple model of equilibrium in search proce-
dures”. Journal of Economic Theory 72 (2), pp. 432–441.

Fershtman, D. and A. Pavan (2021). “Searching for Arms: Experimentation with Endogenous
Consideration Sets”. mimeo.

Forand, J. G. (2015). “Keeping your options open”. Journal of Economic Dynamics and
Control 53, pp. 47–68.

Francetich, A. (2018). “Efficient multi-agent experimentation and multi-choice bandits”.
Economics Bulletin 38 (4), pp. 1757–1761.

43

https://www.cbinsights.com/research/startup-failure-reasons-top/
https://www.cbinsights.com/research/startup-failure-reasons-top/


Fryer, R. and P. Harms (2019). “Two-Armed Restless Bandits with Imperfect Information:
Stochastic Control and Indexability”. Mathematics of Operations Research 43 (2),
pp. 399–427.

Gans, J., E. L. Scott, and S. Stern (2018). “Strategy for start-ups”. Harvard Business Review
96 (3), pp. 44–51.

Gans, J. S., S. Stern, and J. Wu (2019). “Foundations of entrepreneurial strategy”. Strategic
Management Journal 40 (5), pp. 736–756.

Garfagnini, U. and B. Strulovici (2016). “Social Experimentation with Interdependent and
Expanding Technologies”. Review of Economic Studies 83 (4), pp. 1579–1613.

Gittins, J. and D. Jones (1974). “A dynamic allocation index for the sequential allocation
of experiments”. Progress in statistics, pp. 241–266.

Gompers, P. A. (1995). “Optimal Investment, Monitoring, and the Staging of Venture
Capital”. The Journal of Finance 50 (5), pp. 1461–1489.

Green, B. and C. R. Taylor (2016). “Breakthroughs, Deadlines, and Self-Reported Progress:
Contracting for Multistage Projects”. American Economic Review 106 (12), pp. 3660–
99.

Hu, Z. (2014). “Financing Innovation with Unobserved Progress”. mimeo.

IPCC (2018). Global Warming of 1.5°C.An IPCC Special Report on the impacts of global
warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission
pathways, in the context of strengthening the global response to the threat of climate
change, sustainable development, and efforts to eradicate poverty. available at: https:
//www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_
Res.pdf.

Isenberg, D. and A. DiFiore (2020). “You Don’t Have to Pivot in a Crisis”. Harvard Business
Review.

Kaplan, S. N. and P. Strömberg (2003). “Financial Contracting Theory Meets the Real
World: An Empirical Analysis of Venture Capital Contracts”. The Review of Economic
Studies 70 (2), pp. 281–315.

Keller, G. and A. Oldale (2003). “Branching bandits: a sequential search process with
correlated pay-offs”. Journal of Economic Theory 113 (2), pp. 302–315.

Keller, G., S. Rady, and M. Cripps (2005). “Strategic Experimentation with Exponential
Bandits”. Econometrica 73 (1), pp. 39–68.

Kerr, W. R., R. Nanda, and M. Rhodes-Kropf (2014). “Entrepreneurship as Experimenta-
tion”. Journal of Economic Perspectives 28 (3), pp. 25–48.

Kim, Y. (2021). “The Direct vs. the Sequential Approach in Project Management”. mimeo.

Kirtley, J. and S. O’Mahony (2020). “What is a pivot? Explaining when and how en-
trepreneurial firms decide to make strategic change and pivot”. Strategic Management
Journal, pp. 1–34.

44

https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_Res.pdf
https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_Res.pdf
https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_Res.pdf


Klein, N. (2016). “The importance of being honest”. Theoretical Economics 11 (3), pp. 773–
811.

Lemus, J. and E. Temnyalov (2019). “Diversification and Information in Contests”. mimeo.

Letina, I. (2016). “The road not taken: competition and the R&D portfolio”. RAND Journal
of Economics 47 (2), pp. 433–460.

Machine That Changed TheWorld, T. (1990). The Paperback Computer. Interview with Steve
Jobs. Available at: http://openvault.wgbh.org/catalog/V_AD9E0BC353BF435E83F28DEF165D4F40.

McDonald, R. and R. Bremner (2020). “When It’s Time to Pivot, What’s Your Story?”
Harvard Business Review.

Moroni, S. (2021). “Experimentation in Organizations”. Theoretical Economics forthcoming.

Nikandrova, A. and R. Pancs (2018). “Dynamic project selection”. Theoretical Economics
13 (1), pp. 115–143.

Olszewski, W. and R. Weber (2015). “A more general Pandora rule?” Journal of Economic
Theory 160, pp. 429–437.

Rahmani, M. and K. Ramachandran (2021). “Delegating Innovation Projects with Deadline:
Committed vs. Flexible Stopping”. Management Science 67 (10), pp. 5969–6627.

Rothschild, M. (1974). “A two-armed bandit theory of market pricing”. Journal of Economic
Theory 9 (2), pp. 185–202.

Weitzman, M. L. (1979). “Optimal search for the best alternative”. Econometrica 47 (3),
pp. 641–654.

Wolf, C. (2018). “Informative Milestones in Experimentation”. mimeo.

Part I

Supplementary Material
In this part, we verify that the examples considered in the main text satisfy our assumptions,
consider the extension to the value of progress being dependent on the state Aτ , consider an
example in which the relative concavity assumption does not hold, and provide a sufficient
condition such that the agent never wants to shirk.

D Verification of Assumptions for Examples
In this part, we verify that the examples discussed in Section 2.1 satisfy the assumptions of
our model.
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D.1 Verification of Example 1 & Example 4

The value of such an arm given remaining time τ is

V (τ) = (1− e−ντ )
(
Bν −

cν
ν

)
,

with

V (0) = 0, V ′(τ) = e−ντ (νBν − cν) , V ′′(τ) = −νe−ντ (νBν − cν) , −V
′′(τ)

V ′(τ) = ν.

D.2 Verification of Example 2

As with any risky bandit, the agent would have an incentive to eventually stop pulling the
arm if her time were unlimited. Assume that this occurs after pulling the arm for t̂ periods.

V (τ) =
{
p̄ν(1− e−ντ )

(
Bν − cν

ν

)
− (1− p̄ν)cντ , if τ ≤ t̂

p̄νBν − cν
ν (1 + (1− p̄ν)t̂) , if τ ≥ t̂,

where t̂ is the time at which an agent with initial belief p̄ν would stop experimenting
on the new arm. Such an arm satisfies our desired conditions when the initial belief is
sufficiently high given the deadline, i.e., whenever τ ≤ t̂:38

V (0) = 0
V ′(τ) = p̄νe−ντ (νBν − cν)− (1− p̄ν)cν
V ′′(τ) = −νp̄ν(e−ντ ) (νBν − cν)

−V
′′(τ)

V ′(τ) = ν
p̄ν(e−ντ ) (νBν − cν)

p̄νe−ντ (νBν − cν)− (1− p̄ν)cν
> ν.

D.3 Verification of Example 3

In this version of the model, the value does not have a closed form solution, but we can
verify that our assumptions are satisfied whenever β < β̂ := eαν + p̄λ

ν
ce−α−νB

νB − c
B .

39

V (τ) =
∫ τ

0
e−
∫ t

0 νe
α+βsds

(
νeα+βtB − c

)
dt < B

V (0) = 0

V ′(τ) = e−νe
α+βτ τ

(
νeα+βτB − c

)
> 0

V ′′(τ) = −νeα+βτ−eα+βτ ((1 + βτ)(νeα+βτB − c− βB)
)
< 0

−V
′′(τ)

V ′(τ) = eα+βτ (1 + βτ)− β νBeα+βτ

νBeα+βτ − c
> p̄λ.

To see the sign of V ′′(τ), note that the term in parentheses is increasing in τ and positive
for τ = 0, which determines the sign of the second derivative of the value. To see the sign

38Note that t̂ increases in p̄v and converges to ∞ as p̄v → 1, the case in which Example 2 converges to
Example 1.

39Depending on parameters, this bound can be either positive or negative. In particular, it is strictly
positive whenever ν is sufficiently high.
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of −V ′′(τ)
V ′(τ) , note that this expression is also increasing in τ . Evaluating −V ′′(0)

V ′(0) delivers the
desired expression for β̂, which ensures that our conditions are satisfied.

D.4 Verification of Example 5

The expected value at time τ of b(t), where b(t) follows an Ornstein-Uhlenbeck process,
yields the benefit of triggering this payoff stream

V (τ) = b(0)e−ντ +Bν(1− e−ντ )
= Bν(1− e−ντ ).

Thus, we obtain

V (0) = 0, V ′(τ) = νBνe
−ντ , V ′′(τ) = −ν2Bνe

−ντ − V ′′(τ)
V ′(τ) = ν.

E Discussion of Example 6
Consider the model of Example 6. Note that whenever pτ is such that ν = pτλ, the
continuation game satisfies our assumptions, and therefore, Proposition 3 applies to the
continuation game.

Assume that for some time remaining τ < T , the belief is indeed such that pτλ = ν and
that pτ < p̄. If in addition γτ < 0, then we know by the continuity of γτ that there is a
neighborhood of remaining time τ + ε > τ such that Proposition 3 continues to hold in this
neighborhood too.

However, in this neighborhood, pτ+ελ > ν, which violates the assumption on relative
concavity. Thus, in particular, Lemma 3 may be violated, which, in turn, implies that—once
said neighborhood becomes large—eventually γτ+ε may be increasing and may become
positive. As a consequence, the agent may engage in an initial thinking period before
returning to the path described by Proposition 3. A numerical solution of Example 6 for
various deadline lengths is provided in Figure 5. As we see, once T is large enough, the
optimal policy adds an initial thinking period.

It is apparent from Figure 5 that if the time horizon is long enough, then the agent will
indeed start by thinking before reverting to our doing-thinking-doing pattern. The reason
is as follows: once ν < p̄λ and there is plenty of time remaining, the deadline effect and
hence the time pressure is not the agent’s primary concern. Instead, in this example, the
payoff of successful thinking with a sufficiently long deadline is higher than the payoff of
successful doing. Thus, with low time pressure, thinking has a payoff advantage over doing
and is preferred until the time pressure deteriorates the value of progress on the thinking
arm. Once the value of progress is low enough, the intuition and, eventually, the formal
analysis of our main model apply again.

F Belief-Dependent Continuation Value

In this part, we show how the key lemmata (Lemmata 1 to 3) that lead to Proposition 3
extend to the case in which the continuation value of an arrival on the thinking arm also
depends on the belief about the doing arm. Moreover, we verify that Proposition 3 also
holds for the example of a risky new arm without a switching cost.
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Figure 5: Interval length by deadlines without relative concavity assumption. The figure shows a
numerical solution of the time spent in each interval using a particular approach as a function of the
deadline.
Parameters: B = 9, p̄ = 0.8, c = 0.5, λ = 1, µ = 0.4, ν = 0.5.
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Modified optimal control problem. When the continuation value also depends on
Aτ , denote by V (τ,Aτ ) the value of an arrival on the thinking arm. The Hamiltonian
corresponding to the modified optimal control problem becomes

Hτ (aτ ;Aτ ) :=e−µ(T−τ−Aτ )(1− p̄+ p̄e−λAτ )J(pτ , τ, aτ ) + aτητ ,

=e−µ(T−τ−Aτ )(1− p̄) ((1− aτ )µV (τ,Aτ )− c)
+ e−µ(T−τ−µAτ )p̄e−λAτ ((1− aτ )µV (τ,Aτ ) + aτλB − c) + aτητ

and the co-state evolution becomes

η̇τ = e−µ(T−τ−Aτ )(p̄e−λAτ + 1− p̄)

·
(
pτλ(µ− λ)aτB + µ(1− aτ )

(
(µ− λpτ )V (τ,Aτ ) + VA(τ,Aτ )

)
− (µ− pτλ)c

)
.

Corresponding Lemma 1. Lemma 1 holds trivially because limτ→0 V (τ,Aτ ) = 0 in
this case as well and the boundary condition of the optimal control problem is unchanged,
ητ=0 = 0.

Corresponding Lemma 2. The resulting switching function is

γτ = e−µ(T−τ−Aτ )(p̄e−λAτ + 1− p̄)(µV (τ,Aτ )− pτλB)− ητ

with evolution

γ̇τ = e−µ(T−τ−Aτ )(p̄e−λAτ + 1− p̄)
(
pτλµ(V (τ,Aτ )−B) + µ(Vτ (τ,Aτ )− VA(τ,Aτ )) + (µ− pτλ)c

)
.

Corresponding Lemma 3. The derivative with respect to τ of the analogue of g(τ) in
the switching function, as in Lemma 3, is

γ̈τ = µ

(
dpτ
dτ

λ

(
B − V (τ,Aτ ) + c

µ

)
+ λpτ (Vτ (τ,Aτ ) + aτVA(τ,Aτ )) + aτ (aτVA,A(τ,Aτ ) + 2Vτ,A(τ,Aτ )− Vτ,τ (τ,Aτ ))

)
.

Observe that γ̈τ is negative for all aτ if V (τ,Aτ ) ≤ B + c
µ and40

−
d2

dτ2V (τ,Aτ )
d
dτ V (τ,Aτ )

≥ pτλ

as dpτ
dτ ≥ 0.
Thus, no interior local minimum can exist under these assumptions, which are analogous

to those in the main text.41

Corresponding Proposition 3. The proof of the analogous result as in Proposition 3
follows directly by combining the corresponding Lemmata 1 to 3.

40Where the total derivative with respect to time is ∂τV (τ, Aτ )− ∂AV (τ, Aτ )aτ .
41Note that we could dispense with the assumption V (τ, Aτ ) ≤ B + c

µ
by plugging γ̇τ = 0 into γ̈τ , as in

the proof Lemma 3.
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F.1 Verification of Example 7

We next verify that a simple risky new arm satisfies our assumptions when there is no cost
of switching between doing arms and the agent may mix continuously between the two
arms. To save on notation and case distinctions, we assume that p̄ν > p̄ and p̄ ≤ 2/3 and
set λ = 1 for both arms.

Lemma 7 constructs the reduced form V (τ ;Aτ ) for this example. Lemma 8 shows that
the constructed V (τ ;Aτ ) satisfies the condition required for the Corresponding Proposition 3,(
− d2

dτ2V (τ,Aτ )
)
/
(
d
dτ V (τ,Aτ )

)
≥ pτλ.

Lemma 7. While holding a belief pτ = p̄e−λAτ /(p̄e−λAτ + 1− p̄) on the initial doing arm
with time remaining τ , the value of having access to a new risky doing arm with initial belief
p̄ν is

V (τ,Aτ ) = p̄ν(1− e−min{t̂(Aτ ),τ}) (B − c)− (1− p̄ν)cmin{t̂(Aτ ), τ}

+ (1− p̄ν) pτ
1− pτ

(
(B − c)

(
p2
τ (1− e−τ̂ ) + 2pτ (1− pτ )(1− e−

1
2 τ̂ )
)

−c
(
2pτ (1− pτ )(1− e−

1
2 τ̂ ) + (1− pτ )2τ̂

))
,

where t̂(Aτ ) = ln
(

p̄ν

1−p̄ν
1−pτ
pτ

)
, which is the time at which after discovering the new arm, the

agent switches from pulling the new arm exclusively to mixing between both arms whenever
τ > t̂(Aτ ).

Proof. During the time in which the agent exclusively uses the new arm, i.e., for the periods
t ∈ [0,min{t̂(Aτ ), τ}], the agent’s payoff is

V new(τ ;Aτ ) := p̄ν(1− e−min{t̂(Aτ ),τ}) (B − c)− (1− p̄ν)cmin{t̂(Aτ ), τ}.

With probability 1−p̄ν
1−pτ , the agent does not obtain a success before min{τ, t̂}. In this event,

the agent will mix for the remaining time τ̂ := min{0, τ − t̂}. Because the agent mixes
between the two arms instead of using a single arm at a full rate, the beliefs decline at
a lower rate on each arm, while the instantaneous success rate at time τ is still pτ . In
particular, both arms are pulled with the same intensity aτ = 1

2 , which implies that

ṗντ = ṗτ = 1
2pτ (1− pτ ).

Solving for the agent’s value upon mixing for the remaining time τ̂ , we obtain

V mix(τ̂ ;Aτ ) :=
∫ τ̂

0
e−pτ (pτB − c) dτ

= (B − c)
(
p2
τ (1− e−τ̂ ) + 2pτ (1− pτ )(1− e−

1
2 τ̂ )
)

− c
(
2pτ (1− pτ )(1− e−

1
2 τ̂ ) + (1− pτ )2τ̂

)
.

Putting the pieces together delivers the result.

Finally, we have to ensure that the relative concavity assumption is satisfied. Note that
the maximal time remaining such that the agent uses any of the two arms is bounded from
above, as eventually the beliefs would become too low to generate a positive expected payoff.
Denote this upper bound, which we explicitly define below, by τ .
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Lemma 8. Under the assumptions that p̄ν > p̄, p̄ ≤ 2/3, and λ = 1, V (τ,Aτ ) satisfies

−
d2

dτ2V (τ,Aτ )
d
dτ V (τ,Aτ )

≥ pτ .

Proof. Note that varying the time remaining has different effects on V (τ,Aτ ) depending on
whether the agent thinks or does. If she does, Aτ and τ vary both, affecting the value of a
thinking success. If she thinks, only the change in τ affects the value of a thinking success.

To verify our assumptions, note that42

d

dτ
V (τ, pτ ) =∂V

∂τ
+ ṗτ

∂V

∂p

d2

dτ2V (τ, pτ ) = ∂2V

(∂τ)2 + 2 ∂
2V

∂τ∂p
ṗτ + ṗ2

τ

∂2V

(∂p)2 + p̈τ
∂V

∂p
.

Moreover, V (τ, pτ ) = V new + 1−p̄ν
1−pτ V

mix.
If the deadline is too close when thinking is successful, then we are in the case of

Example 2, and our assumptions are satisfied. The domain of time remaining under which
mixing is relevant is τ ∈ [τ , τ ], where τ := ln

(
p̄ν

1−p̄ν
1−pτ
pτ

)
+ 2 ln

(
pτ

1−pτ
B−c
c

)
is the time at

which the agent would prefer shirking over working on either, as both beliefs have declined
too much, and where τ := ln

(
p̄ν

1−p̄ν
1−pτ
pτ

)
is the time at which the belief about the new arm

has declined to the current belief of the doing arm.
To simplify the notation, define V p−mix := 1−p̄ν

1−pτ V
mix, and note that for b, d > 0, if

a
b ≥ x and c

d ≥ x, then
a+c
b+d ≥ x.

43 Thus, it is sufficient to show that (a) −
d2
dτ2 V

new

d
dτ
V new

> pτ and

(b) −
d2
dτ2 V

p−mix

d
dτ
V p−mix

≥ pτ .
It is straightforward to see that (a) is satisfied as

−d2V new

dτ2

dV new

dτ

=
pτ (B − c)1−p̄ν

1−pτ
(pτB − c)1−p̄ν

1−pτ
> pτ .

Next, we show (b), i.e., that −
d2
dτ2 V

p−mix

d
dτ
V p−mix

≥ pτ . Note that both the numerator and denom-
inator are positive. Hence, a lower bound for the fraction is given by dividing the lower
bound of − d2

dτ2V
p−mix by the upper bound of d

dτ V
p−mix. We obtain the bounds by showing

that for any feasible parameter constellation, (i) the smallest numerator is attained for τ .44
and (ii) the greatest numerator is attained for τ .45

To see (i), observe that

d2

dτ2

(
− d2

dτ2V
p−mix

)
= − pτ p̄

ν√
p̄ν

1−p̄ν
1−pτ
pτ

(
(B − 2c)e

τ
2 (1− pτ )2 + (B − 2c)pτ (3− 2pτ )

√
p̄ν

1− p̄ν
1− pτ
pτ

)

< 0.
42We simplify notation by supressing arguments whenever it should not cause confusion. Moreover, we

use the belief as the state variable, which is equivalent to using Aτ .
43Observe that a

b
≥ x and that c

d
≥ x imply a > bx and c > dx; thus, a+ c > (b+ d)x.

44This is the upper bound on the deadline such that the agent is willing to exert effort for any parameters
and time remaining.

45This is the lower bound on the deadline such that the mixing phase is reached.
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Hence, the derivative of
(
− d2

dτ2V
p−mix

)
is decreasing. Next, note that

lim
τ→τ

d

dτ

(
− d2

dτ2V
p−mix

)
= (1− p̄ν)(1− pτ )pτ

pτBc

B − c
> 0

and therefore that − d2

dτ2V
p−mix is increasing for all τ on the relevant domain. Hence, its

lower bound is attained at τ = τ and is given by

lim
τ→τ

(
− d2

dτ2V
p−mix

)
= 1− p̄ν

1− pτ
pτ

B − c

(
B2(pτ (pτ (2pτ − 5) + 4)− 2) + 2Bc(3− 2pτ )p2

τ

−2c(1− pτ )2(1− 2pτ )(B − c) ln
(
pτ (B − c)
c(1− pτ )

)
− c2(4(2− pτ )pτ − 3)

)
.

To see (ii), observe that

d2

dτ2

(
d

dτ
V p−mix

)
= −pτ p̄

ν

2 e−τ

(pτ − 1)e
τ
2 (B − 2c)√

(pτ−1)p̄ν
pτ (p̄ν−1)

− 2Bpτ + 2cpτ

 > 0

which implies that d
dτ

(
d
dτ V

p−mix
)
is increasing. At the upper bound, limτ→τ

d2

dτ2

(
d
dτ V

p−mix
)

=
0. Hence, the first derivative of d

dτ V
p−mix with respect to τ is negative throughout, and the

upper bound is attained at τ → τ , with

lim
τ→τ

d

dτ
V p−mix = 2(1− p̄ν)(Bpτ − c)

1− pτ
> 0.

We therefore obtain that

− d2

dτ2V
p−mix

d
dτ V

p−mix

>
B2(pτ (pτ (2pτ − 5) + 4)− 2) + 2Bc(3− 2pτ )p2

τ

Bc(1− pτ )2

−
2(1− pτ )2(1− 2pτ )(B − c) ln

(
pτ (B−c)
c(1−pτ )

)
− c(4(2− pτ − 2)pτ − 3)

Bc(1− pτ )2 .

Finally, we need to verify that the right-hand side of the last expression is greater than
pτ . To see this, we compute a lower bound of it using the fact that it is decreasing in c (see
below). As mixing requires that pτB ≥ c, a lower bound is attained for c = pτB.

To see that the term is decreasing in c, observe that it is convex in c, as its second
derivative is

2B(B(pτ (pτ (5− 2pτ )− 4) + 2)− c)
c3(1− pτ )2(B − c)

which is positive, as B > 2c and pτ < 2/3. Thus, the first derivative is increasing, and at
the upper bound of c, it reduces to

− 2
B(1− pτ )p2

τ

< 0.
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Hence, a lower bound of the fraction under consideration is attained for c = pτB, which is
2/pτ , which is strictly larger than pτ .

G No-Shirking Condition
In the text, we assume that B is high enough such that the agent never shirks if she has not
yet found a solution. Here, we show that such a B always exists and is finite. Moreover, we
provide an (implicit) construction. It is sufficient to show that the agent has an incentive to
pull an arm at the deadline. The agent does not shirk if her terminal belief p ≥ c

λB . For any
p > 0 and T <∞, there is a B <∞ such that the above condition holds for any B ≥ B.
For any T <∞, the terminal belief is weakly larger than

pmin = p̄e−λT

p̄e−λT + 1− p̄ > 0.

By Lemma 4, for any B, there is a T̄ <∞ such that p > pmin for T > T̄ . Thus, there is a
B <∞ such that the agent never shirks for any deadline, including the limit T →∞.

53


	Introduction
	Model
	Examples of Progress

	Analysis
	Benchmarks
	Optimal Policy
	The Agent's Problem
	Necessary Conditions

	Characterization of the Optimal Policy

	Application: Entrepreneurial Problem Solving
	Entrepreneurial Problem Solving
	Implications

	Discussion of Modeling Choices
	Final Remarks
	The Optimal Control Problem
	Notation
	Necessary Conditions for Optimality

	Key Lemmata
	Lemma 1
	Lemma 2
	Lemma 3
	Lemma 4

	Proofs of Statements in the Main Text
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Lemma 5
	Lemma 6

	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7

	I Supplementary Material
	Verification of Assumptions for Examples
	Verification of Example 1 & Example 4
	Verification of Example 2
	Verification of Example 3
	Verification of Example 5

	Discussion of Example 6
	Belief-Dependent Continuation Value
	Verification of Example 7

	No-Shirking Condition


