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Abstract

This paper develops a structural model of endogenous product attribute choice in the

presence of indirect network effects to study electric vehicle (EV) subsidies. Using data on

the German EV market from 2012-2018, I find that a support scheme increased EV sales

by 98% but led to strong range distortions. When designing subsidies, these distortions

create a trade-off between optimizing different policy objectives. Large purchase subsidies

maximize EV sales whereas large charging station subsidies maximize consumer and to-

tal surplus. The results suggest that policymakers should carefully weigh the benefits of

increasing EV sales against the distortions this causes.
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1 Introduction

Road transport accounts for 12% of global greenhouse gas emissions and electric vehicles
(EVs) are considered one of the most promising tools to help decarbonize this sector. As a
consequence, governments worldwide subsidize EV purchases, with total spending amounting
to AC15 billion in 2018. To aid the development of EVs, policymakers need to consider three
fundamental issues. First, widespread adoption of EVs requires the development of a network
of charging stations whose value depends on the number of EVs circulating. The presence of
these indirect network effects creates a “chicken-and-egg” problem in which neither side of the
market will develop without the other. Second, the range of EVs is lower than that of traditional
gasoline or diesel cars, making it an important dimension of quality. However, firms can adjust
the range relatively easily. Third, understanding how price and range decisions interact with
indirect network effects and affect market outcomes is crucial for evaluating EV policies.

This paper provides a framework to study subsidy design in the presence of indirect network
effects and adjustable product attributes. Doing so is challenging and requires a framework with
two innovative features. First, my framework allows for endogenous choices of both EV price
and range. This is a nontrivial contribution as the current literature studying EV subsidies holds
range, and in some cases price, decisions fixed. Second, my framework incorporates indirect
network effects and their interaction with endogenous price and range choices. Doing so is
challenging as indirect network effects can lead to electric cars acting as complements, making
it attractive for firms to lower prices to spur charging station entry. On the other hand, firms can
increase charging station entry by providing more range, which raises EV prices. As a result, I
can evaluate subsidy schemes as my framework links the price and range effects of subsidies to
market outcomes. With my framework, I can inform policy discussions and provide answers to
questions such as: How do indirect network effects affect price and product attribute decisions
of firms? How do subsidies affect EV prices and range, charging station entry, and policy
objectives?

I find important network effects on both the EV demand and the charging station entry side.
On the car supply side, indirect network effects lower EV markups by around 17% on average.
The presence of indirect network effects also has important implications for subsidy design.
Charging station subsidies generate additional EV sales and purchase subsidies spur additional
charging station entry. Concentrating subsidy spending on purchase subsidies leads to large
EV sales but causes strong range distortions as firms respond by selling cheaper, low-range
EVs. Concentrating subsidy spending on charging station subsidies generates fewer EV sales
than purchase subsidies but also causes fewer range distortions and delivers a larger charging
station network. As a consequence, policymakers face a trade-off between maximizing EV
sales, maximizing total and consumer surplus, and CO2 emissions, which are minimized when
spending is distributed between purchase and charging station subsidies. These findings suggest
that policymakers interested in maximizing EV diffusion need to carefully consider the strategic
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price and range reactions of firms when designing support schemes.
To answer my research questions, I build a structural model of car demand, car supply, and

charging station entry. The demand-side of the model builds on the canonical model of Berry,
Levinsohn, and Pakes (1995). Consumers choose between differentiated cars of different en-
gine types and exhibit preferences over EV range and the number of public charging stations.
The demand side exhibits flexible substitution patterns, which are key to evaluating how pur-
chase subsidies affect car choices. I account for the endogenous attributes with instruments
exploiting the competitive environment and variations in charging station subsidies. The car
supply–side builds on the recent literature studying equilibrium outcomes when firms can ad-
just one or more continuous product attributes (Fan, 2013; Crawford, Shcherbakov, and Shum,
2019). Firms choose the prices of their cars and the range of their EVs. The charging station
entry side links the number of charging stations to the cumulative EV base and the level of
charging station subsidies. Modeling charging station entry allows me to incorporate indirect
network effects into the car demand and supply model and study how charging station subsidies
affect market outcomes. With this model, I can study how indirect network effects interact with
endogenous price and range decisions and how these decisions affect the policy goals of EV
subsidy programs. I estimate the model using a novel state-level data set of new car purchases
and public charging station entry in Germany.

The substantial indirect network effects I find on both the EV demand and the charging
entry side make own-price elasticities larger in absolute value. Not accounting for indirect
network effects would lead to an overestimation of EV markups by 24% on average. Indirect
network effects lead to negative cross–price and positive cross–range elasticities, which has
important implications for the price and range choices of EV producers. EV sales would be
64% higher if producers internalized the effect of changing price and range on other EVs in
the market. These higher sales come through a large decrease in price and range. Firms sell
cheaper, lower–range EVs on which they earn a markup that is 61% lower on average. Charging
station entry increases only slightly on the other hand.

I use the model to perform a rich set of counterfactuals. I analyze a German program for
purchase and charging station subsidies. I find that this program led to a 98% increase in
EV sales. The program also led to cheaper, lower-range EVs on which firms collect a lower
markup. Unlike in the case of uni-dimensional pass-through to price (Bulow and Pfleiderer,
1983; Stern, 1987; Weyl and Fabinger, 2013), the direction of these effects is ambiguous and
hence an empirical question. Given the two-sided nature of this market, a logical question
to ask is whether it is better to subsidize EV purchases or to subsidize charging station entry
(Springel, 2021). I find that removing the charging station subsidy would decrease EV sales by
45% and charging stations by 44%. Removing purchase subsidies would decrease EV sales by
36% and charging stations by 3%. However, spending on charging station subsidies was larger
in Germany.

I comprehensively analyze subsidy design in the next step by finding combinations of flat
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and range–based purchase and charging station subsidies that keep subsidy spending constant
at the 2018 level. I find that the policymaker faces a trade-off between maximizing EV sales,
maximizing consumer surplus, and minimizing annual CO2 emissions from new cars. Whereas
a large flat purchase subsidy maximizes EV sales at a lower range and prices, consumer and
total surplus are maximized when the whole budget is spent on charging subsidies. A mixed
purchase subsidy with a flat- and range-based part coupled with a charging subsidy minimizes
CO2 emissions from new car sales. Firms respond to a larger flat purchase subsidy by selling
cheaper EVs at a lower range and respond to larger range–based purchase subsidies by selling
more expensive EVs with a higher range. An increase in the station subsidy induces only small
price and range distortions but still increases EV sales through the indirect network effects.
These results have important implications for policymakers. The results suggest that maximiz-
ing EV sales comes at the expense of a lower range and a smaller charging station network,
and therefore at the expense of maximizing consumer surplus. Policymakers may want to care-
fully consider the benefits from increasing EV sales against the range distortion such a strategy
causes.

This paper makes several contributions. First, I contribute to the literature on EV policies by
analyzing the role of indirect network effects in the price and range decisions of firms. This lit-
erature has studied the effects of purchase subsidies (Beresteanu and Li, 2011; Muehlegger and
Rapson, 2020; Xing, Leard, and Li, 2021), the role of charging stations and indirect network
effects (Li, Tong, Xing, and Zhou, 2017; Li, 2019; Springel, 2021; Fournel, 2021), and other
margins such as entry of new EVs (Armitage and Pinter, 2021), usage behavior (Sinyashin,
2021), and portfolio effects (Johansen and Munk-Nielsen, 2020). To the best of my knowl-
edge, this is the first paper to combine price and range responses by firms while also modeling
how these responses interact with indirect network effects. Doing so allows me to carefully
study strategic responses by firms to subsidies and how indirect network effects influence price
and range decisions. Second, I contribute to a wider literature studying environmental policies
in car markets by offering a comprehensive evaluation of the economic effects of EV subsidies.
By studying strategic supply-side responses to subsidy schemes, I contribute to a strand of this
literature that investigates supply-side effects of environmental policies (Knittel, 2011; Klier
and Linn, 2012; Reynaert, 2021; Leard, Linn, and Springel, 2019). By comparing different EV
subsidy schemes, I contribute to a strand that studies and compares the effectiveness of different
policy tools (Pavan, 2017; Grigolon, Reynaert, and Verboven, 2018; Durrmeyer and Samano,
2018). Finally, I contribute to two strands of the IO literature. First, my paper relates to
the literature on attribute provision (Spence, 1975; Sheshinski, 1976; Mussa and Rosen, 1978;
Maskin and Riley, 1984; Fan, 2013; Crawford et al., 2019) that studies how firms provide a
product attribute (quality) in imperfectly competitive markets. Second, the paper also relates to
the pass-through literature (Bulow and Pfleiderer, 1983; Stern, 1987; Kim and Cotterill, 2008;
Weyl and Fabinger, 2013) studying how firms adjust prices in response to subsidies, taxes, or
marginal cost changes. I contribute by bridging a gap between these two strands in providing a
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framework that allows for a multi-dimensional response in prices and product attributes to sub-
sidies, taxes, and marginal cost changes in imperfectly competitive markets in which network
effects are present. In this regard, my paper resembles to the approach of Gaudin (2021) who
provides a theoretical framework for predicting the directions of price and quality responses to
subsidies, taxes, or marginal cost changes.

The paper is structured as follows: Section 2 describes the car industry in general and
the EV industry in particular and the data used in the estimation. Section 3 describes the
structural model and Section 4 outlines the estimation strategy. Section 5 presents the results
form the structural model, Section 6 presents the results from the counterfactuals, and Section
7 concludes.

2 Industry Description and Data

The setting for the empirical analysis is the new car market in Germany. A special focus lies
on the electric car market including public charging stations. A predominance of combustion
engine cars using gasoline or diesel as fuel has characterized the German market for new cars
over the past decades. Simultaneously, sales of electric vehicles increased more than twenty-
fold between 2012 and 2018, and the number of charging stations has increased by a factor of
almost 15.

2.1 Industry description

The market for electric vehicles. After having been dormant for more than 100 years, elec-
tric vehicle technology came back to prominence in the late 1990s. Both the Honda Insight and
the Toyota Prius used a hybrid engine that combined fuel and electric powertrains. However,
it was not possible to plug this electric engine into an external source. Over the past decades,
two new technologies have emerged. One is the plug-in hybrid electric vehicle (PHEV), which
combines a fuel engine with an electric battery pack that can be plugged into an external power
source. The other is a pure battery electric vehicle (BEV), whose powertrain unit consists only
of a battery pack (throughout the remainder of the text, “BEV” is used synonymously with
“battery electric vehicle”, “PHEV” is used synonymously with “plug-in hybrid electric vehi-
cle” and “EV” means both “BEV” and “PHEV”). Electric vehicles have been singled out by
policymakers and firms alike as key technologies to decarbonize the transportation sector in
pursuit of the goal to contain the rise of global temperatures to below 1.5◦C. To buttress dif-
fusion, governments around the world have introduced subsidies and tax incentives for electric
vehicles. The scope and design of these subsidies vary considerably across and sometimes
even within countries. Some countries use flat subsidies, and others make subsidies depend on
characteristics such as the driving range or battery size.1. Global government spending on EVs

1For detailed overviews, see Yang, Slowik, Lutsey, and Searle (2016) and Rokadiya and Yang (2019).
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Figure 1: LIC price estimates (USD per kWh)

Source: Hsieh et al. (2019)

increased substantially from $1 billion in 2012 to $15 billion in 2018.
Another feature of the electric vehicle market is the rapid decrease in the cost of lithium-ion

cells (LICs). Numerous LICs make up the battery pack of an electric vehicle. This battery pack
propels the car, and its size is the most important determinant of the driving range. Figure 1
shows different approximations of the evolution of lithium-ion cell prices. Although there is
considerable variation in the estimates, there is a clear downward trend. This trend suggests
that providing driving range has become considerably cheaper over the past decade. Signif-
icant barriers to the mass adoption of electric vehicles exist: EVs tend to be more expensive
and have a shorter driving range than combustion engine cars. In consumer surveys, the high
cost and small range of EVs repeatedly show up as the most critical determinants of whether
to purchase an electric vehicle, together with the charging station network density (see, for in-
stance, Schoettle and Sivak 2018; Carley, Krause, Lane, and Graham 2013; Rezvani, Jansson,
and Bodin 2015). Both the low range and the low charging station network density contribute
to a low perceived quality of EVs and a low autonomy.

Electric vehicles in Germany. The automobile sector is a key industry in Germany, account-
ing for 9.8% of gross value added and employing approximately 880,000 people, with another
900,000 jobs heavily depending on the sector, for a combined share of 7.2% of total employ-
ment.2 Germany is home to three of the largest 15 car manufacturers in the world as measured
in sales and is ranked fourth in the world in terms of motor vehicle production.

Over the past decade, the German government has implemented measures to boost sales
of electric vehicles. One such measure was the Government Program for Electric Mobility of

2https://www.iwkoeln.de/en/studies/iw-reports/beitrag/thomas-puls-manuel-
fritsch-the-importance-of-the-automotive-industry-for-germany.html
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2016. Part of this program was a support scheme that gave a subsidy ofAC 2,000 for the purchase
of battery electric vehicles and a subsidy of AC 1,500 for the purchase of plug-in hybrid electric
vehicles. The car had to have a list price below AC 60,000 to be eligible for the subsidy. In total,
the government provided AC 600 million in subsidies.3 The program also provided a total of
AC 200 million in funding for new charging stations. The amount of the subsidy depended on the
type of charging stations. Charging stations with a charging capacity of up to 22 kW are most
common and received up toAC 3,000 for installation andAC 5,000 for connection to the electricity
grid (if the charging point was connected to the medium-voltage grid the connection subsidy
was up tp AC 50,000). The plan reinforced the government’s goal to have 1 million electric cars
on the streets by 2020 and 6 million by 2030.4 The budget was forecast to be sufficient to give
subsidies until 2019. However, by June 2017, only approximately 5% of the total budget had
been used, and in 2018, the market share of battery electric vehicles was only at 1.2%, with
approximately 34,000 annual car sales. These lackluster sales numbers led the government to
increase the subsidy scheme’s scope as part of a federal climate protection act in 2019. This
act increased the government subsidy for battery electric vehicles to up to AC 3,000, depending
on the list price. The act also increased tax incentives for electric vehicles and introduced a
price of AC 10 per ton on CO2 from 2021 onward, which has since increased to AC 25 per ton on
CO2. In total, the government pledged AC 9 billion for subsidies, tax reductions, and charging
infrastructure. Finally, in response to the economic crisis caused by the COVID-19 pandemic,
the government doubled the subsidies to AC 6,000.

2.2 Data

I build a comprehensive data set of new car purchases and charging station entry in Germany
from 2012 to 2018. I do so by combining several data sources.

Car registrations. I use publicly available data from the German Federal Motor Transport
Authority (KBA). This data set contains yearly new registrations at the state level for every car
model.5 A firm-and-trim identifier (“HSN/TSN”) defined at a very granular level identifies a
model. It differs by car class, body type, engine type, kilowatts, weight, and the number of
doors. I follow the previous literature on demand estimation for car markets in treating new
registrations as sales.

3Car manufacturers pledged to match the government subsidy by granting a rebate equal to the amount of the
subsidy. The program also provided various tax benefits for buying, using, and charging electric vehicles. See
also https://www.bmwi.de/Redaktion/EN/Artikel/Industry/regulatory-environment
-and-incentives-for-using-electric-vehicles.html

4https://www.bmwi.de/Redaktion/DE/Downloads/P-R/regierungsprogramm-elektr
omobilitaet-mai-2011.pdf? blob=publicationFile&v=6

5Germany consists of 16 states (“Bundesländer”). Three of these states (Berlin, Hamburg, and Bremen) are
“city-states” whose boundaries coincide with the cities themselves. The other 13 states are larger in area, ranging
from approximately the land area of Rhode Island to approximately that of South Carolina. The population of the
16 states ranges from approximately 680,000 (roughly comparable to that of Alaska) to approximately 18 million
(roughly comparable to that of New York state).
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Car prices and characteristics. I scraped data on car prices and characteristics from the
website of the General German Automobile Club (ADAC), giving me a comprehensive data set
containing a wide range of car characteristics. These characteristics include the driving range of
cars. The data also include the list price of cars, which I use in the estimation as the transaction
price, again following the literature on demand estimation for car markets. The ADAC data
also contain the HSN/TSN identifier, allowing me to match the two data sets relatively easily,
except for some observations requiring manual matching.

EV charging stations. I obtain the number of charging stations for electric car batteries
from a publicly available data set listing all public charging stations from the Federal Network
Agency (BNetzA).6 The data set contains each station’s opening date and its location. The data
also gives information on the type of charging station (capacity in kW and the type of grid
connection).

Demographic data. I use data from the German Socio-Economic Panel (SOEP) to build
income distributions at the state-year level. To do so, I fit the mean and variance of a log-
normal distribution using the observed household income draws of the SOEP. Additional data
on population comes from the Federal Statistics Office, and CPI data are from Federal Reserve
Economic Data. I build a measure of fuel cost in AC /100 km using yearly average gas price data
from ADAC and electricity cost data from the German Economics Ministry.

The resulting data set defines a product at a very detailed level. A trade-off exists between
having a very granular product definition and a more aggregated definition for tractability. In
my final data set, I define a product at the firm/model/engine type level, with the possible engine
types being combustion (ICE), plug-in hybrid (PHEV), or battery electric (BEV) engines (e.g.,
VW Golf ICE vs. Renault Zoe BEV). In aggregating up to this product definition, I use the
price and characteristics of the most frequently sold variant at the national level. I reduce the
size of the data further by leaving out firms and models with low sales. I set the size of the
potential market equal to the number of households in a given state in a given year. In total, the
data consist of 28,288 year-state-product observations.

Figure 3 shows how the average price and range of battery electric vehicles developed
during the sample period. Prices slightly increased, and the range rose by almost 60%. It is
unclear from this picture to what extent falling LIC prices and subsidies drove these trends.
Detailed summary statistics can be found in Table 8 of Appendix A.

6In the remainder of the paper, I will use ”public charging stations” and ”charging stations” interchangeably.
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Figure 3: Evolution of price and range of battery electric vehicles (averages, base = 2012)

3 Empirical Model

3.1 Set-up

This section introduces a structural model of demand and supply for new cars and entry of
public electric charging stations. The model builds the canonical demand/supply model of
Berry et al. (1995) (BLP henceforth) and recent contributions by Fan (2013) and Crawford
et al. (2019). The charging entry side builds on Bresnahan and Reiss (1991); Gandal, Kende,
and Rob (2000) and Springel (2021). I need a model that generates realistic substitution patterns
between electric cars and combustion cars on the demand side where consumer preferences for
the number of charging stations generate indirect network effects. On the car supply side, I need
to explain how firms choose price and range taking into account the indirect network effects in
a multi-product oligopoly. The model also needs to allow me to study the impact of subsidies
and marginal cost changes in imperfectly competitive markets when firms choose the price and
a product attribute. On the charging station side, I need a framework that links the number of
charging stations to the cumulative EV base and the level of subsidies.

Consumers choose the product maximizing their indirect utility and exhibit heterogeneous
preferences over prices and product characteristics on the demand side. The supply side allows
firms to compete in terms of price and range. I assume that consumers care only about the
driving range of battery and plug-in hybrid electric vehicles and not about the driving range
of combustion engine cars. Likewise, I assume consumers only care about the electric charg-
ing station network and not about the availability of gas stations. These assumptions mirror
evidence from consumer surveys on purchase behavior and consumer preferences regarding
battery electric vehicles. Several consumer surveys have found that driving range, price, and
charging station availability are the most critical consideration in the purchase of an electric
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vehicle.7 Additionally, the driving range of combustion engine cars is sufficiently high, and
the network of gas stations is sufficiently dense. Hence, these attributes do not play a role in
consumer purchase decisions or firms’ profit maximization problems.

I further assume that firms choose prices and range simultaneously at the national level.
The rationale behind this assumption is that a firm can alter the driving range even after it
has fixed other characteristics, such as the car’s size dimensions. A battery pack is made up
of many lithium-ion cells, giving firms the flexibility to scale the battery pack’s size up or
down. Additionally, firms choose price and range at the national level because list prices and
characteristics do not vary across states. Finally, I assume that firms only choose their battery
electric vehicles’ range. This assumption is partly a consequence of the fact that I assume
consumers do not have preferences on the range of combustion engine cars. In addition, I
assume that firms do not choose the range of plug-in hybrid electric vehicles. I do so, first,
because the range of PHEVs did not change much over the sample period and, second, because
the technology involved is different.8

On the charging station side, I assume that charging stations play a complete-information
entry game in which they trade off sunk entry costs and future discounted profit streams. These
entry costs and profit streams depend on the cumulative EV base and the amount of charging
station subsidies, linking both to the amount of charging station entry. One assumption I make
on the charging station side is that charging stations are symmetric and end up with identical
market shares. Whereas different types of charging stations do exist (slow vs fast), the vast ma-
jority of charging stations built over the sample period were relatively similar in their charging
speed.

Timing. I assume that each period starts with a given number of EVs circulating. The game
then proceeds with car makers choosing the price and range. Consumers then make their pur-
chase decisions and charging stations enter. The main implication of this timing assumption is
that it makes the indirect network effects explicit in the price and range decisions of electric car
producers. I will come back to this point at the end of this section. An alternative way of mod-
eling this game would be to assume car makers and charging stations move simultaneously. In
such a set-up, the indirect network effects are no longer explicit in the price and range choices
but will still be present when performing counterfactual analyses. I will return to this point
when discussing the counterfactuals.

The model I consider here is static. Using a dynamic specification would make the model
richer and enable me to study the chicken-and-egg problem between EV adoption and charging

7See, for instance, https://www.compromisorse.com/upload/noticias/002/2794/accen
tureelectricvehicle.pdf. Specifically for Germany, see https://www.aral.de/content/da
m/aral/business-sites/de/global/retail/presse/broschueren/aral-studie-tren
ds-beim-autokauf-2019.pdf. The latter study (in German) also shows that consumers do not take range
into account when deciding on the purchase of a combustion engine car.

8The battery of a PHEV needs to work in conjunction with a combustion engine. This setup means that on
the one hand, there is less need to increase the range since the combustion engine provides enough range. On the
other hand, it is also more difficult to increase the range, given that there are more space constraints.
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station entry in more detail. Doing so is infeasible mainly for data reasons, however. Carmak-
ers tend to update their models every 7-8 years. I do not have the data necessary to look at
these kinds of long-term decisions. Likewise, consumers tend to use a vehicle for 5-6 years.
Hence, estimating a dynamic model requires a very long panel. Finally, given the importance
of cars for many consumers, it is unlikely that consumers defer car purchases in expectation of
future events but rather choose a different option. My model still captures the main channel
through which the chicken-and-egg problem manifests itself on the demand side since I model
substitution between EVs and other cars. Doing so requires taking account of endogenous
price and range choices as well as their interaction with indirect network effects and is already
challenging. Adding dynamics on top of these challenges is beyond the scope of this paper.

3.2 Car demand

A state m observed in year t defines a market. There are Mmt consumers in each market mt.
Each consumer i chooses one option j, which is either the outside option j = 0 or one of
the j = 1, . . . , J differentiated products. Choosing the outside option means that the consumer
buys a used car or does not buy a car at all. Choosing one of the “inside” products means buying
a new car. The utility that consumer i enjoys from purchasing one of the products j = 1, . . . , J

is

uijmt = βb
iBEVj + βp

i PHEVj + βrrjt + βdlog(djmt)︸ ︷︷ ︸
only EVs

−α pjt
yimt

+ xjmtβ
x
i + ξjmt + εijmt︸ ︷︷ ︸

all cars

, (1)

where BEVj (PHEVj) is an indicator equal to one if the product is a BEV (PHEV), rjt is the
range of product j, djmt is the number of charging stations available in statem in year t, pjt is its
price, yimt is the income of consumer i, and xjmt is a vector of observed product characteristics.
ξjmt is an unobserved characteristic of product j in market mt, and εijmt is a consumer-specific
unobserved taste shock assumed to be an i.i.d. type-I extreme value. The parameter vector
βx
i consists of mean tastes for characteristics and, for some characteristics, random coefficients

capturing unobserved heterogeneity in the valuation of product characteristics. For a character-
istic k, we have βk

i = βk + σkνki with νki drawn randomly from a standard normal distribution
and σk being the standard deviation of preferences. The parameter βr captures preferences for
range, βd captures preferences for the size of the charging network, and α captures price sensi-
tivity. Remember that consumers only care about the range of electric vehicles. In the model,
this translates into setting rjt = 0 for products with a combustion engine. Likewise, log(djmt)

is zero if j is a combustion car. The utility from purchasing the outside option is normalized to
ui0mt = εi0mt.
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Consumer i in market mt chooses alternative j = 0, . . . J that maximizes her utility. Each
consumer is characterized by her income yi and her vector of idiosyncratic preferences νi. In-
come yi follows a log-normal distribution whose parameters I estimate based on draws from
the observed income distribution. Remember that εijmt follows a type-I extreme value distri-
bution. This assumption enables me to derive the probability that product j yields the highest
utility across all possible alternatives by integrating over the individual-specific valuations for
characteristics:

sjmt(p, r, d, x, ξ;σ) =∫
exp(δjmt + µijmt(pjt, rjt, djmt, xjmt, ξjmt;σ))

1 +
∑J

k=1 exp(δkmt + µikmt(pkt, rkt, dkmt, xkmt, ξkmt;σ))
dF (ν)dG(y),

where F (·) is the joint CDF of the unobserved taste shocks and G(·) is the distribution of
income. Further, δjmt is the mean utility incorporating all terms from (1) that do not vary
across individuals, and µijmt = −α pjt

yimt
+

∑
k σ

kνki x
k
jmt captures individual deviations from

the mean utility. Finally, defining the observed market share as sjmt =
qjmt

Mmt
, with qjmt being

the observed quantity of product j in market mt, and stacking observed and predicted market
shares into a vector, we obtain the system of equations smt = smt(p, r, d, x, ξ;σ) for each
market mt.

3.3 Car supply

I model the profit-maximizing price and range decisions of F multi-product firms for each year
t. I assume the product portfolio of firms to be given and that firms have already chosen all
product characteristics except for the range of BEVs. Firms then maximize profits by setting
the price of all products in their portfolio as well as setting the range of their BEVs at the
national level. Firms take into account indirect network effects, which accrue to both BEVs
and PHEVs. I will defer the analysis of the role indirect network effects play in firm decisions
to after the introduction of the charging station entry side.

The profit in year t is then the weighted sum of profits from each statem, and firm f ’s profit
maximization problem can be written as follows:

max
p,r

πft ≡
∑
j∈Jft

(
pjt −mcjt(rjt, wjt; θs)

)
sjmt(p, r, d, x, ξ;σ)Mmt, (2)

where Jft is the product portfolio of firm f , mc(·) is the marginal cost of product j, wj is
a vector of observed cost-shifters and θs is a vector of parameters entering the marginal cost
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function. The first-order conditions with respect to price and range are then given by

∂πft
∂pjt

=
∑
m

ϕmt

{
sjmt +

∑
k∈Jft

(
pkt −mckt

)∂skmt

∂pjt

}
= 0 (3)

∂πft
∂rjt

=
∑
m

ϕmt

{
− ∂mcjt

∂rjt
sjmt +

∑
k∈Jft

(
pkt −mckt

)∂skmt

∂rjt

}
= 0, (4)

where ϕmt =
Mmt∑
m′ Mm′t

is the weight of state m. Equation (3) is the usual first-order condition
with respect to price, where firm f trades off increasing the margin on product j by increas-
ing the price against losing market share due to this price increase, adjusted by the effect of
changing j’s price on the demand of other products that firm f offers. We can rewrite (4) as

∑
m

ϕmt

{
−∂mcjt

∂rjt
sjmt︸ ︷︷ ︸

Change in markup x
market share

+
(
pjt −mcjt

)∂sjmt

∂rjt︸ ︷︷ ︸
Markup x change
in market share

+
∑

k ̸=j,k∈Jft

(
pkt −mckt

)∂skmt

∂rjt︸ ︷︷ ︸
Cannibalization effect

on other products

}
= 0

When choosing the range, firm f trades off the decrease in the markup from providing more
range (intensive margin) against the higher demand arising from this range increase (exten-
sive/switching margin) as well as the cannibalization effect on the other products in firm f ’s
portfolio. Loosely speaking, equilibrium range decreases with a higher marginal cost of range
increases (which squeezes the markup) and increases with larger values of the demand semi-
elasticity with respect to range (which increases the extensive margin).

The first-order conditions in (3) and (4) can be expressed in matrix form. I use the index
B for battery electric vehicles and I for other vehicles. I let JB,JI denote the set of either
type of vehicle and JB, JI the number of either kind of vehicle on the market. I then define the
following matrices:

∆p : JxJ matrix with entry k, l =


∑

m ϕmt
∂slmt

∂pkt
if k, l ∈ Jf

0 otherwise

∆B
r : JBxJB matrix with entry k, l =


∑

m ϕmt
∂slmt

∂rkt
if k, l ∈ Jf and k, l ∈ JB

0 otherwise

∆I
r : JBxJI matrix with entry k, l =


∑

m ϕmt
∂slmt

∂rkt
if k, l ∈ Jf , l ∈ JI and k ∈ JB

0 otherwise

The system of first-order conditions can then be expressed as
s+ (p−mc)∆p = 0 (5)

−∂mcB

∂rB
s +∆B

r (p
B −mcB) + ∆I

r(p
I −mcI) = 0, (6)
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where s is the vector of market shares, p is the vector of prices, mc is the vector of marginal
costs and r is the vector of range levels.

Marginal cost specification

I specify a marginal cost function that is log-linear. For product j, it is given by

log(mcjt(qjt, wjt; θs)) = wjtψ + ωjt︸ ︷︷ ︸
baseline

marginal cost

+(γ0 + γ1t+ ηjt)rjt︸ ︷︷ ︸
marginal cost of
providing range

, (7)

where wjt is a vector of observed cost-shifters, ωjt is a cost shock observed by firms but un-
observed by the researcher, t is a linear time trend, ηjt is a range-specific marginal cost shock
observed by firms but unobserved by the researcher, and θs ≡ (ψ, γ0, γ1) is a vector of param-
eters to be estimated. Note that the second part of (7) is zero for products that are not battery
electric vehicles since I do not model their range choices. In the case of BEVs, I assume that
the marginal cost of providing range depends on an intercept term, a linear time trend allowing
for less costly range provision over time, and an unobserved, product-specific component. The
exponential nature of fixed costs is in line with the technology facing firms: Increasing range
may be achieved by increasing the size of the battery. A kilometer of range becomes more
costly at higher range levels. One reason is that the car’s dimensions restrict the size of the
battery. Additionally, other ways of increasing range, such as achieving a higher energy den-
sity of batteries, may also be constrained by technological factors and make provision of range
costlier at higher range levels.

Having a functional form for marginal costs allows me to express the equilibrium levels
of price and range in matrix form. Let c0 ≡ w′ψ + ω and c1 ≡ (γ0 + γ1t + η). Then, the
equilibrium price and range are

p = mc+∆−1
p s (8)

r =
1

c1
log

(∆B
r (p

B −mcB) + ∆I
r(p

I −mcI)

sBc1

)
− c0

c1
(9)

We obtain the usual result of the price being equal to marginal cost plus a markup. The expres-
sion for range again makes apparent the trade-off in an increase in market share, cannibalization
of other products, and a decrease in the margin or vice versa.

Subsidies in the supply model

The supply model above can accommodate subsidies such as that introduced in Germany in
2016. Let pjt be the price paid by consumers and λjt the subsidy. Then, the price received by
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firms is pjt + λjt. The profit maximization problem of firm f then becomes

max
p,r

πft ≡∑
j∈Jft

(
pjt + λjt −mcjt(rjt, wjt; θs)

)
sjmt(p, r, d, x, ξ;σ)Mmt, (10)

and the system of first-order conditions is now given bys+ (p+ λ−mc)∆p = 0 (11)

−∂mc
∂r

s +∆B
r (p

B + λB −mcB) + ∆I
r(p

I + λI −mcI) = 0, (12)

where λ is the vector of subsidies. Expression (10) also makes apparent that the introduction
of a (flat) subsidy is equivalent to a marginal cost decrease of the firm.

3.4 Charging station entry

The exposition of this section closely follows Springel (2021). For more details, refer to her
exposition of the model. The main difference between her framework and mine is that I model a
car supply side with endogenous price and range choices in which I explicitly take into account
the effect of indirect network effects on price and range decisions.

Let h be one of dmt stations in state m in year t. A station h enjoys per-consumer profits

Dhmt(phmt, p−hmt, dmt)(phmt − chmt),

where Dhmt is the per-consumer demand for station h, phmt is the price station h charges and
chmt is the marginal cost of station h. Following Bresnahan and Reiss (1991); Gandal et al.
(2000), and Springel (2021), I assume that i) per-consumer demand functions are symmetric,
ii) marginal and sunk entry costs are constant across stations and iii) each station h gains an
equal share of the market. Under these assumptions, an equilibrium exists in which each station
charges the same price and the per-period profits upon entry are

πmt = QEV
mt

D(p(dmt))(p− c)

dmt︸ ︷︷ ︸
≡ϑ(dmt)

(13)

A station deciding to enter in year t incurs a sunk cost of entry Fmt and then earns a sequence
of yearly profits

−Fmt + ρπm,t+1 + ρ2πm,t+2 + ..., (14)

with ρ the discount rate. The fact that stations must be indifferent between entering in period t
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or in period t+ 1 in a free-entry equilibrium, coupled with equations (13) and (14) then yields

log(ϑ(dmt)) = − log(ρ)− log(QEV
mt ) + log

(
Fmt − ρFm,t+1

)
(15)

Letting ϑ(dmt) = (κdmt)
ι and assuming that log

(
Fmt−ρFm,t+1

)
is a linear function of charging

station subsidies and state fixed effects, I obtain the following estimating equation:

log(dmt) = υ1 + υ2 log(Q
EV
mt ) + υ3Subsidiesmt + υ4ϱm + ϵct (16)

3.5 Firm choices and indirect network effects

The assumed timing of the game modifies the first–order conditions of firms. In particular,
market share derivatives with respect to price and range change as firms anticipate the effect
of their actions on the charging station side. Analyzing the role of indirect network effects
in firms’ price and range choices requires some further notation. Let the partial derivative of
model k’s share with respect to model j’s price absent network effects (i.e. βn = 0 or λ1 = 0)
be given by

ηkj ≡


∫
− α

yi
sij(1− sij)dF (ν)dG(y) if k = j∫

− α
yi
sijsikdF (ν)dG(y) otherwise

and the station semi-elasticity absent indirect network effects (i.e. υ2 = 0) be given by

γj ≡ βdsj(1− sj).

Let J EV denote the set of EVs present in the market. Note that I suppress the dependence of
market shares on attributes, prices, and parameters as well as market- and time subscripts for
notational convenience. From Springel (2021), we know that we can then express the partial
derivative of the EV market share (denoted sEV ) with respect to the price of product j as

∂sEV

∂pj
=

∑
k∈JEV

ηkj +
υ2
sEV

∂s

∂pj

∑
k∈JEV

γk =

∑
k∈JEV ηkj

1− υ2
sEV

∑
k∈JEV γk

The partial derivative of product j’s share with respect to it’s price is then given by

∂sj
∂pj

= ηjj +
∂sj

∂ log d

∂ logN

∂QEV

∂QEV

∂pj

= ηjj + υ2γj

∑
k∈JEV ηkj

sEV − υ2
∑

k∈JEV γk
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We can also express this partial derivative in the following way:

∂sj
∂pj

= ηjj + ηjj
υ2γj

sEV − υ2
∑

k∈JEV γk︸ ︷︷ ︸
indirect network effects

related to own share

+
∑
k ̸=j

ηkj
υ2γj

sEV − υ2
∑

k∈JEV γk︸ ︷︷ ︸
indirect network effects
related to rival shares

(17)

Assuming that sEV − υ2
∑

k γk > 0 9 we can directly see two opposing forces acting on the
augmented partial derivative: On the one hand, the network effect directly related to the own-
product market share makes ∂sj

∂pj
more negative, because raising the price reduces sales of the

own product, resulting in lower charging stations, which in turn lowers sales further. This gives
the firm fewer incentives to increase prices. On the other hand, the network effect related to
rival product market shares makes ∂sj

∂pj
less negative, because raising the price will increase

rival-product sales, which increases the number of charging stations and in turn leads to higher
own sales. This effect gives the firm more incentives to increase prices. Since we would expect
ηjj >

∑
k ̸=j ηkj , indirect network effects will make ∂sj

∂pj
and as a consequence also the own-price

elasticity more negative.
We can similarly derive the cross-price derivatives, which become

sj
pk

= ηjk +
υ2
sEV

γj
∂s

∂pk

= ηjk + υ2γj

∑
l∈JEV ηlk

sEV − υ2
∑

l∈JEV γl
(18)

Since cars are substitutes, we have ηjk > 0. If ηjj >
∑

k ̸=j ηkj and ∂sj
∂pj

, cross-price derivatives
will become less positive or even negative, in which case EVs will act as complements.

Analogously, we can derive the own-and cross-range derivatives. The effects will be a
mirror case of the analysis on price derivatives above: Since increasing the range increases
the own-product market share, indirect network effects will make the own-range derivative
larger. Since increasing the range absent indirect network effects decreases rival EV shares,
indirect network effects will become less negative or even positive, in which case EVs will act
as complements.

4 Estimation

4.1 Instrumental variables

Car demand. Estimation of the demand side parameters suffers from the well-known endo-
geneity issue related to price and here also to range: As the demand- and supply-side shocks
realize before the price and range choices, price and range may be correlated with these un-

9This will hold if the size of the indirect network effects is ”small enough” relative to the size of the EV market.
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observables. The utility function also includes the number of charging stations available to
electric vehicles. The charging station network is itself likely to depend on the electric vehicle
base, creating an endogeneity issue (Pavan, 2017; Springel, 2021; Li, 2019). Instruments are
needed to account for this endogeneity issue. At the same time, instruments also help identify
the random coefficients, thus serving a dual role. Recent literature has pointed out that the
classic BLP instruments, consisting of simple sums of product characteristics, tend to perform
rather poorly (Reynaert and Verboven, 2014; Gandhi and Houde, 2019). This literature suggests
finding approximations for optimal instruments as in Chamberlain (1987). In my estimation,
I use differentiation IVs as introduced by Gandhi and Houde (2019). The idea is to describe
the relative position of each product in the characteristics space. I build three variants of dif-
ferentiation IVs: a local variant that counts products close in characteristic space, a quadratic

variant that sums squared differences between product characteristics, and a discrete variant for
discrete variables that counts the number of products with the same value for the characteristic:

Zk,local
jt =

∑
r∈C\{j}

1{|dkjrt| < sd(dk)}

Zk,quadratic
jt =

∑
r∈C\{j}

dk2jrt

Zk,discrete
jt =

∑
r∈C\{j}

1{|dkjrt| = 0}

where |dkjrt| is the absolute value of the difference between products j and r in characteristic
k, sd(dk) is the standard deviation of characteristic k across markets, and C is the set of prod-
ucts considered. I build four kinds of instruments of each variant: one considering own-firm
products, one considering rival-firm products, one considering own-firm products of the same
engine type (BEV, PHEV, or ICE) and one considering rival-firm products of the same engine
type.

I build the local and quadratic variants for all continuous characteristics and the discrete
variant for all discrete characteristics. I also create local and quadratic variants for a price in-
dex, obtained from regressing the observed price on demand- and cost-shifters. The range of
BEVs is endogenous, but I assume that the range of PHEVs is not. This is why I build the
local and quadratic variants for the range of plug-in hybrid vehicles. I also build the local and
quadratic variants for battery efficiency (measured in kWh/100 km), which I assume to be ex-
ogenous. I use a subset of all the instruments that I create. I account for the endogeneity of the
charging station network by including subsidies as instruments. These subsidies vary across
years as well as across states.

Car supply. On the supply side, firms choose range after they have fixed all other product at-
tributes. Range choices can thus be correlated with unobserved marginal cost shocks. I account
for this endogeneity issue by constructing differentiation IVs built on the exogenous character-
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istics entering the marginal cost function. I also include the observed exogenous characteristics
entering the baseline marginal cost, as these characteristics were chosen before range. As on
the demand side, I use a subset of the instruments that I create.

Charging station entry. Just like on the car demand side, there is a feedback loop between
the number of stations in a given period and the cumulative EV base, which includes newly
bought cars in that period. I account for this issue by instrumenting the cumulative EV base
with the gas station density in the given state in the given year. A larger density of gas stations
leads to lower gasoline prices (see Haucap, Heimeshoff, and Siekmann, 2017). Lower gasoline
prices in turn make the overall costs of combustion cars cheaper relative to electric cars, which
leads to a lower EV base.

4.2 Identification

Using the set of instruments described above allows me to pin down the estimated parameters.
I recover the mean utility parameters β and the cost parameters ϕ through a linear projection.
Variation in market shares and observed characteristics then identify β. Market share variation
exists across states (the m part of the market index) and time (the t part of the market index). In
contrast, product characteristics mainly vary across time (except for the endogenous charging
station variable). The demand-side parameters, coupled with an assumption on firm behavior,
allow me to back out implied marginal costs. Changes in the implied marginal cost and ob-
served cost-shifters then identify the vector of marginal cost parameters ϕ. In addition to using
the instruments described above, variation in the observed characteristics helps identify σ. Sim-
ilarly, variation in market shares, prices, and consumer income identify the price coefficient α.
Prices vary across time, whereas consumer income varies both across time and across states.
The parameters (γ0, γ1) governing the marginal cost of range are identified from variation in
observed range levels and the implied marginal cost of providing it, which, in turn, depends on
variation in prices and market shares. For a more elaborate discussion on the identification of
demand and supply models with differentiated products, refer to Berry and Haile (2014). The
key identifying assumption on the charging station side is that the gas station density only af-
fects charging station entry through the cumulative EV base (see Springel, 2021). Identification
would break down if gas station density grew with EV adoption in a given state. This is not the
case, however.

4.3 Zero market shares

Approximately 4% of my observations are products with strictly positive national-level sales
but zero state-level sales. Zero sales pose a problem in random coefficient demand models, as
the estimation procedure is not well defined when zero sales are present. Deleting observations
with zero sales from the sample is problematic because it alters the market structure and makes
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these products unavailable in counterfactual analyses. There exist approaches in the literature
to accommodating zero sales in random coefficient demand models.10 I follow D’Haultfœuille,
Durrmeyer, and Février (2019) and use a simple correction of market shares:

scj =
qobsj + 0.5

M
,

where qobsj is the observed quantity sold of product j in a given market and M is the market
size in that market. This correction aims to minimize the bias of log(sj) such that demand
parameters can be consistently estimated. D’Haultfœuille et al. (2019) provide an interesting
and detailed discussion on this. The zero sales problem is rather small in my sample, given
that it only affects approximately 4% of my observations. My results are robust to the use of
different corrections (such as replacing qj = 0 with qj = 1, see Appendix C), which I see as
evidence that my demand parameters are consistently estimated and lead me to believe that the
correction I use is sufficient.

4.4 Estimation of the car demand side

On the demand side, the vector of parameters to be estimated is given by θd ≡ (βx
i , β

r, α). I
allow random coefficients on characteristics for which I believe consumer heterogeneity mat-
ters: an EV dummy for battery- and plug-in hybrid vehicles and Fuel Cost, measured in AC /100
km. The random coefficient on the EV dummy allows flexible substitution between electric
cars and combustion engine cars. Obtaining such flexible substitution patterns is crucial for
studying the market outcomes of subsidy schemes, as substitution across engine types drives
these outcomes. The random coefficient on Fuel Cost allows consumers to have idiosyncratic
preferences for a characteristic that proxies the usage cost of cars. Additionally, substantial
differences across engine types exist in the fuel cost per 100 km, which renders the substitu-
tion patterns between cars of different engine types more flexible. I allow a trend in the mean
taste for range, possibly capturing taste changes for range over time. In addition, I add several
characteristics for which I only estimate the mean taste, including the number of public charg-
ing stations per 10,000 inhabitants, fuel cost, footprint, doors, dummies for electric vehicles,
a dummy if the firm has its headquarters in the state considered, and a linear time trend.11 I
also add brand, class, body, and state fixed effects. All remaining unexplained variation is then
collected in ξjmt, which is interacted with the instruments described in the previous section to
build moment conditions of the form E[zdjmtξjmt] = 0, with zdjmt as an instrument. Stacking

10Li (2019) uses a Bayesian shrinkage estimator to move market shares away from zero. Lu, Shi, and Gandhi
(2020) construct bounds for the conditional expectation of inverse demand and show that their approach works
well even when the fraction of zero sales is 95%. Dubé, Hortaçsu, and Joo (2021) use a pairwise-differencing
approach to estimate demand parameters.

11I introduce the last variable to account for the fact that car companies often register a large number of cars in
their home state. Firms do so to comply with emissions regulations or to sell these cars at a discount later. Not
accounting for this may introduce a bias, especially for products with small market shares.
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ξjmt across products and markets into a column vector ξ, I obtain the GMM objective function
to be minimized:

min
θd

ξ(θd)
′ZdW dZd′ξ(θd),

whereZd contains the instruments andW d is a positive definite weighting matrix. I use the two-
step efficient GMM estimator, where I use an approximation of the optimal weighting matrix
based on an initial set of estimates to recover the final estimated vector of parameters. The
estimation algorithm that I use is described in detail in Berry et al. (1995) and Nevo (2001). In
the estimation, I account for various numerical issues that recent literature has drawn attention
to (Dubé, Fox, and Su (2012), Knittel and Metaxoglou (2014), Brunner, Heiss, Romahn, and
Weiser (2017), Conlon and Gortmaker (2020)). First, I approximate the market share integral
with 1,000 draws using modified Latin hypercube sampling. Hess, Train, and Polak (2006)
and Brunner et al. (2017) show that this method performs very well in random coefficient logit
models and provides better coverage than the more frequently used Halton sequences. Second,
I set the tolerance level in the contraction mapping of the inner loop to 1e-14 to solve for the
demand-side unobservables. A tight tolerance prevents numerical errors from the inner loop
from propagating to the outer loop. Third, I use the low-storage BFGS algorithm of NLOPT.
Fourth, I initialize the optimization routine from many different starting values to search for a
global minimum. Finally, I check first- and second-order conditions at the obtained minimum
to ensure the optimizer did not get stuck at a saddle point.

4.5 Estimation of the car supply side

With demand estimates in hand, I can derive implied markups and marginal costs. The vector
of parameters to be estimated is θs = (ψ, γ0, γ1). I let the baseline marginal cost depend on
several observed characteristics, such as the product’s weight, footprint, fuel efficiency, and
engine power measured in kilowatts. I also include year, firm, class, and body-fixed effects.
All remaining unobserved marginal cost-shifters are then collected in ωjt.

Remember that the marginal cost of range consists of an intercept and a linear time trend to
capture the decreasing cost of the lithium-ion cells that are a crucial input for the battery pack,
the size of which, in turn, is a main determinant of range. Any unobserved, product-specific
cost of additional range is then captured by ηjt.

The first-order conditions in (5) and (6) can be solved for the pair of supply-side unob-
servable vectors ω and η. I then interact them with the instruments described in the previous
section to build moment conditions of the form E[zsjtωjt] = 0 and E[zsjtηjt] = 0. Letting ρjt =
(ωjt, ηjt) and stacking across products and markets, I then obtain the GMM objective function
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to be minimized:

min
γ0,γ1

ρ(γ0, γ1)
′ZsW sZs′ρ(γ0, γ1),

where Zs contains the instruments and W s is a positive definite GMM weighting matrix. The
baseline marginal cost parameters ψ can be concentrated out of the minimization routine, much
like the linear mean tastes in the utility function. Note that the number of observations differs
on the demand and supply sides. As firms choose price and range at the national level, I have
one national market per year t and not m state-level markets per year t on the supply side.

I take into account subsidies as outlined in (11)-(12). I do not consider rebates granted by
firms for two reasons: The first is that some firms granted larger rebates than they had pledged.
I do not observe these rebates. The second reason is that during the sample period, firms also
granted substantial rebates on gasoline and especially diesel cars, to a large extent in response
to the Volkswagen emissions scandal.12 The list prices net of government subsidies can be seen
as the maximum transaction price, as is the case in most of the literature estimating demand
and supply in new car markets.

4.6 Estimation of the charging station entry side

Estimation of the charging station side is straightforward. Once I obtain (16), I estimate υ
using two-stage least squares. In the estimation, I include national-level subsidies, state-level
subsidies, and a “Support” variable. The “Support” is equal to one if a state offers special
incentives for charging stations not easily measurable in monetary terms, such as interest-free
loans. This variable is also equal to one if a state grants subsidies that I cannot measure in
per-station terms (such as a state offering 30% of installation costs). I set the national-level
subsidies equal toAC 8,000. The vast majority of stations (around 87.5%) in my sample received
a subsidy of up to AC 3,000 for the installation and of up to AC 5,000 for the connection to the
grid.

5 Results

The estimated coefficients of key parameters are in Table 1. The first three columns show
demand estimates, and the last three columns show marginal cost estimates along with stan-
dard errors in parentheses. Table 9 in Appendix A reports first-stage regressions. Table 10 in
Appendix B reports the results when assuming firms and charging stations move simultane-
ously. Overall, the signs and magnitudes of the estimated coefficients are in line with standard
economic intuition.

12https://www.handelsblatt.com/unternehmen/industrie/studie-zum-automarkt-wo-es-die-groessten-diesel-
rabatte-gibt/22682110.html?protected=true
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Table 1: Key estimates

Demand/supply for cars Station entry

Coefficient SE Coefficient SE

Demand: Means
Range 2.364 (0.313) log(EV base) 0.715 (0.129)
Range x Trend -0.252 (0.037) Subsidies 0.105 (0.036)
log(Charging Stations) 0.768 (0.106)
Fuel Cost -0.322 (0.040)
BEV -13.933 (4.330)
PHEV -11.499 (4.050)

Demand: Interactions
Price / Income -6.338 (0.628)

Demand: St. Dev.
EV -3.603 (1.559)
Fuel Cost -0.154 (0.024)

Supply: Range provision
Intercept 0.842 (0.022)
Trend -0.096 (0.005)

Statistics
Mean own-price elasticity -3.544
Mean own-range elasticity (BEVs) 3.194
Mean markup (BEVs) (AC 1,000) 7.885

Note: Prices, subsidies deflated and in EUR 1,000. Vehicle class-, Body-, Firm- and State Fixed Effects
included on car demand- and supply side.

Consumers like greater range, all else equal. The range-specific trend is negative, meaning
that consumer preferences for range become less intense throughout the sample period. One
explanation for this could be that range anxiety has decreased over time due to consumers
learning more about electric vehicles. This learning may come from their own experience, that
of peers, or simply a greater availability of information on electric cars. Research and consumer
surveys suggest that the driving range of current battery-electric cars is sufficient for most trips.
Li, Linn, and Muehlegger (2014), for instance, report that households drive approximately 50
miles per day on average. Another explanation may be that faster battery charging has made
consumers less worried about range. A further explanation for the negative trend is that it
captures decreasing marginal utility of range as the range increases. Such an increase in the
range of electric vehicles has indeed occurred, as evidenced in Figure 3. The positive and
statistically significant sign on the Charging Station variable implies that consumers prefer
more charging stations, in line with previous studies on demand for electric vehicles (Li, 2019;
Springel, 2021). The mean range elasticity is equal to 3.223.

All else equal, consumers strongly dislike both battery and plug-in hybrid electric vehicles,
even though there is considerable heterogeneity in the population. A small share of consumers
prefers electric cars over those with a combustion engine. The results suggest that the dis-
utility from purchasing EVs decreased over the sample period since the driving range and the
number of charging stations increased. This finding also underscores the importance of range
and charging stations for the mass adoption of EVs. Overall, consumers enjoy a lower utility
from EVs compared to combustion cars. However, this utility penalty decreases with a higher
range and a larger charging station network.
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The negative and significant coefficient on price over income translates into a mean price
elasticity of -3.554, which falls within the range of figures found in the long literature on
demand estimation for new car markets. Table 13 in Appendix D shows how my estimated
price elasticity compares to those found in other papers. Unlike the sensitivity of range, price
sensitivity barely changes over the sample period. Due to slightly larger and slightly more
dispersed household income, mean price sensitivity dropped slightly from 2012 to 2018, with
the variance increasing slightly. The relative stability of price sensitivity, together with the
finding of a lower valuation of range over time, suggests that towards the end of the sample
period, consumers valued (a lower) price more relative to range than at the beginning.

Consumers dislike higher fuel costs, as evidenced by the negative parameter in the mean
utility. A dis-utility from higher driving costs makes sense, as these increase the overall cost
of using a car. However, consumers exhibit considerable heterogeneity in their valuation of
fuel costs. Heterogeneity in the valuation of fuel costs is also unsurprising, as factors such as
income, driving behavior, and preferences for less fuel-efficient cars play a role in shaping an
individual’s fuel cost valuation.
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Figure 4: Estimated yearly mean marginal cost of providing range

Vertical lines are 95% CIs

On the marginal cost side, I find that range is costly to provide. Range provision became
cheaper over the sample period, evidenced by the trend’s negative and statistically significant
coefficient. This trend translates into a mean decrease in the marginal cost of providing range
of approximately 64% from 2012 to 2018 (see Figure 4). This number is comparable to the
estimates of lithium-ion cell price decreases in Hsieh et al. (2019), for instance.

Figure 6 plots marginal cost curves at different range levels for 2012 and 2018. The lines
are computed using the mean estimated baseline marginal cost across BEVs and the mean
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Figure 6: Estimated marginal cost functions for 2012 and 2018

estimated marginal cost of providing range for 2012 and 2018, respectively. The curve is much
flatter in 2018 than in 2012, when range levels higher than 200 km resulted in a marginal cost
above AC 50,000. The figure suggests that it was not feasible to provide many of the range levels
observed in 2018 at a competitive price.
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Figure 7: Per-kWh cost at observed range levels against battery pack cost

To dig deeper into the validity of the marginal cost estimates, I translate the marginal cost
of providing range into a battery cost per kWh. Dividing the estimated mean marginal cost of
providing range by the battery efficiency, I obtain a cost per kWh. I then compare this per-kWh
translation of the marginal cost of providing range to estimated costs of a battery pack, taken
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from an engineering report (Steen, Lebedeva, Di Persio, and Boon-Brett, 2017). This report
provides an estimate for the battery pack cost in $ per kWh for the sample period considered,
which I convert into euros and deflate. The results are shown in Figure 7. We can see that
the estimated per-kWh cost, evaluated at observed range levels, is above the battery pack cost
coming from engineering estimates. This finding makes sense, given that the battery pack’s
size is the main but not the only determinant of providing range. Additionally, the graph shows
the per-kWh cost evaluated at observed range levels and imputed marginal cost levels. Given
the log-linear marginal cost specification, this per-kWh cost would be different at different
marginal cost and range levels. However, apart from 2012, the per-kWh cost backed out of the
model follows a similar trend to the battery pack estimate, providing evidence that my marginal
cost estimates are reasonable.

The baseline marginal cost estimates have the expected signs and magnitudes. Larger,
heavier, more powerful, and more fuel-efficient cars are more costly to produce. Battery electric
vehicles are cheaper to produce, all else equal, which is reasonable given that apart from the
costly range provision, there are many parts (gearbox, exhaust pipe, starter, injection system,
etc.) that are not necessary for the production of a BEV. The supply-side results suggest that
range provision accounts for approximately 62% of the marginal cost of producing a BEV, on
average. This finding is in line with recent engineering cost estimates (Lutsey and Nicholas,
2019), further suggesting that my marginal cost estimates are reasonable in magnitude.

The role of network effects

Table 1 suggests the presence of strong indirect network effects on both the EV demand- and the
charging station entry side. We saw in Section 3.5 that indirect network effects alter the market
share derivatives with respect to price and range and hence the price and range elasticities.
Through affecting pricing decisions, indirect network effects also affect markups. Shutting
down indirect network effects in firm decisions would lead to an over-estimation of markups
of around 24% on average. Table 2 shows the effect of indirect network effects on own-and
cross-price elasticities as well as on markups of selected BEVs in 2018. We see that the own-
price elasticities are larger when firms take account of indirect network effects. Moreover,
cross-price elasticities become negative, meaning that BEVs act as complements: Increasing
the price of a BEV will lead to lower sales of rival BEVs. We can also see that markups are
substantially lower. For instance, the markup of the Nissan Leaf is estimated to be around
AC1,600 lower when taking into account indirect network effects. Note that indirect network
effects also accrue to PHEVs, whose markups are over-estimated by 16.7% when failing to
take account of indirect network effects.
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Table 3: Mean own-and cross-range elasticities of selected BEVs in 2018

i3 Soul i.MiEV Leaf Golf up.

With indirect network effects
i3 1.7976 0.0949 0.0988 0.0942 0.0929 0.0988
Soul 0.0633 2.1950 0.0660 0.0642 0.0632 0.0659
i.MiEV 0.0005 0.0005 1.2812 0.0005 0.0005 0.0005
Leaf 0.0775 0.0794 0.0810 2.5120 0.0778 0.0808
Golf 0.1413 0.1451 0.1494 0.1446 2.1146 0.1491
up. 0.0167 0.0167 0.0168 0.0167 0.0165 1.1607

Without indirect network effects
i3 1.6758 -0.0295 -0.0263 -0.0297 -0.0298 -0.0259
Soul -0.0201 2.1149 -0.0183 -0.0196 -0.0196 -0.0181
i.MiEV -0.0001 -0.0001 1.2806 -0.0001 -0.0001 -0.0001
Leaf -0.0218 -0.0213 -0.0202 2.4119 -0.0213 -0.0200
Golf -0.0407 -0.0387 -0.0357 -0.0389 1.9333 -0.0354
up. -0.0034 -0.0036 -0.0037 -0.0036 -0.0036 1.1404

Table 2: Mean own-and cross-price elasticities of selected BEVs in 2018

i3 Soul i.MiEV Leaf Golf up. Markup

With indirect network effects
i3 -4.0878 -0.2291 -0.2321 -0.2278 -0.2248 -0.2315 8,152
Soul -0.1165 -3.7431 -0.1149 -0.1156 -0.1139 -0.1144 7,229
i.MiEV -0.0015 -0.0015 -3.2026 -0.0015 -0.0015 -0.0015 6,133
Leaf -0.1283 -0.1284 -0.1276 -3.7892 -0.1262 -0.1270 7,483
Golf -0.2883 -0.2879 -0.2867 -0.2875 -3.9293 -0.2853 7,820
up. -0.0499 -0.0492 -0.0481 -0.0492 -0.0485 -3.1849 5,623

Without indirect network effects
i3 -3.7991 0.0658 0.0644 0.0658 0.0659 0.0641 10,776
Soul 0.0296 -3.6027 0.0328 0.0312 0.0312 0.0328 9,468
i.MiEV 0.0002 0.0003 -3.2008 0.0003 0.0003 0.0003 7,841
Leaf 0.0299 0.0318 0.0335 -3.6298 0.0316 0.0336 9,121
Golf 0.0632 0.0672 0.0709 0.0669 -3.5791 0.0711 9,883
up. 0.0077 0.0089 0.0104 0.0088 0.0087 -3.1266 8,144

We can see similar patterns in Table 3 that shows own-and cross-range elasticities. When
firms take into account indirect network effects, own-range elasticities increase and the sign of
cross-range elasticities flips from negative to positive, again meaning that BEVs act as comple-
ments.

6 Counterfactuals

In this section, I use the estimated model to quantify the effect of marginal cost changes and
subsidies on battery electric vehicles by performing several counterfactual exercises. In a first
step, I analyze the impact of indirect network effects on price and range choices as well as
market outcomes. In a second step, I assess the subsidy scheme imposed in Germany. Finally,
I evaluate different subsidy schemes and compare them in terms of market outcomes. This step
allows me to describe how subsidy design affects policy objectives and the underlying substi-
tution patterns. It also allows a discussion on the compatibility of different policy objectives.
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6.1 Procedure

Having estimates of price and range semi-elasticities, a system of first-order conditions (FOCs)
for prices and range levels, and an estimate of the marginal cost of providing range, as well
as the charging station entry equation, I can compute the new equilibrium vectors of price and
range and the new equilibrium entry of charging stations. I employ an iterative algorithm to
find this new equilibrium (p, r,d). I proceed as follows:

1. I start with a vector of prices pl, ranges rl, and charging stations dl.

2. Update price and range vectors. At iteration h,

(a) Compute a new price vector using the price FOC given by equation (11). Take a
small step towards the simulated price vector: ph+1 = αp∗ + (1 − α)ph, with α
small.

(b) Update market shares and elasticities using ph+1, rh

(c) Compute a new range vector using the range FOCs given by equation (12). Take a
small step towards the simulated range vector: rh+1 = αr∗ + (1 − α)rh, with α
small.

(d) Update market shares and elasticities using ph+1, rh+1

(e) Let diffmax = max(diffhp , diffhr ), where diffhp = max |ph+1 − ph| and diffhr =

max |rh+1 − rh|. If diffmax ≥ ϵc with ϵc being some convergence criterion, go
back to step (a). If diffmax < ϵc, extract (ph+1, rh+1) to be the new equilibrium
vector of prices and range levels pl+1 and rl+1.

3. Update charging stations by iterating on equation (15) until convergence. Extract the new
charging station vector dl+1.

4. Compute difflmax = max(difflp, difflr), diffld). If difflmax >= ϵo, go back to step 2. If
difflmax < ϵo, pl+1, rl+1,dl+1 is the new equilibrium vector of prices, ranges, and charg-
ing stations.

I restrain the values that the range can take in counterfactuals. First, put a floor of 100km,
which is the lowest range I observe for BEVs throughout the sample period. Second, I bound
range from above in the following way: First, I define c1min to be the lowest marginal cost of
providing range in 2018: c1min = minj∈JBEV,2018

(c1j). I then define the maximum attainable
range in 2018 for BEV j to be rmax,j ≡

(
log(mcj) − c0j

)
/c1min. I find that this procedure

converges to the same equilibrium vector of prices levels, range levels, and charging stations
even when I start from different starting values in different counterfactual settings. I take this
feature as a sign that there exists a unique counterfactual equilibrium. Altering the ordering of
the price and range updating does not change the results, also giving me confidence that the
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counterfactual results that I find are robust to the specific details of the algorithm and different
starting values. The fact that firms choose only the range of BEVs means that the number of
additional FOCs to iterate in addition to the price FOCs is small. This factor contributes to the
good convergence properties of the algorithms. I perform all counterfactuals for 2018.

6.2 How do indirect network effects affect price and range decisions?

I find that ignoring indirect network effects leads to an over-estimation of markups by around
24% on average and that BEVs act as complements in both price and range. In the first set of
counterfactuals that I perform I take a closer look at the relationship between indirect network
effects and firms’ price and range choices. In particular, I am interested in how the complemen-
tarity between BEVs affects market outcomes. I consider two scenarios. In the first scenario, I
assume firms do not internalize the effect of their price and range choices on any other EV, not
even the EVs in their product portfolio This scenario amounts to modifying the matrices ∆p

and ∆B
r in equations (11) and (12). Specifically, I set each entry (j, k), j ̸= k in (11) and (12)

to zero if row j and row k correspond to an EV. Note that doing so is different from assuming
single-product firms as firms still internalize diverted sales towards own-firm combustion cars.
In the second scenario, I assume firms internalize the effects of their price and range decisions
on all other EVs in the market.This scenario also amounts to modifying the matrices ∆p and
∆B

r in equations (11) and (12). Specifically, I set each entry (j, k) in (11) and (12) to one if
row j and row k correspond to an EV. Note that doing so is different from assuming a complete
merger to monopoly in the car market as firms still only internalize diverted sales towards own-
firm combustion cars and not towards combustion cars produced by other firms. Given the vast
majority of new car sales still comes from combustion cars in 2018, assuming a full merger to
monopoly would likely entail large coordinated effects that would pollute the effect of merely
assuming full internalization on rival firm EVs. The results are in Table 4. We can see that in
the scenario in which firms do not internalize the effect of their price and range choices on any
other EV (column ”No internalization”), BEVs would on average be more expensive and have
a higher range. Sales of BEVs would be lower and fewer charging stations would enter. These
results suggest that complementarities in price and range choices lead to BEVs that are cheaper,
but also have a slightly lower range. These cheaper, lower-range BEVs generate a large number
of extra sales and also spur charging station entry. On the other hand, we can see in the last col-
umn that when firms internalize the effect of their price and range choices on all other EVs in
the market, BEVs are on average substantially cheaper and have a much lower range. However,
these cheap, low-range BEVs generate large additional sales and strong charging station entry.
Overall, consumer surplus would increase by around AC 254 million in this case. Interestingly,
firms have an incentive to reduce the range of their cars when internalizing indirect network
effects. One reason for this may be that consumers have a relatively low willingness to pay for
range. Another reason may be that range and charging stations are substitutes from a consumer
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Table 4: Market outcomes with different market structures

Data No internalization Full internalization

Price 34,671 +2,767 -8,310
(+63, +4,944) (-10,906, -785)

Range 259 +21 -61
(+1, +38) (-88, -16)

MC 28,483 +1,492 -4,148
(-307, +3,285) (-5,265, +234)

Markup 8,077 -614 -6,051
(-2,377, +693) (-8,019, -2,971)

Sales 34,761 -4,723 +20,651
(-10,333, +8,370) (+2,924, +51,280)

Stations 17,511 -539 +1,883
(-4,409, +13,382) (-3,275, +18,585)

Consumer surplus 48,566 -78 +254
(-2,340, +2,866) (-1,817, +3,195)

CO2 emissions 5,192,205 -38 -1,119
(-6,605, +3,139) (-13,365, +1,547)

Note: Table gives differences to observed outcomes with 90% C.I. in parentheses.

point of view. Then, an increase in charging stations may make it possible for firms to reduce
range and generate additional sales by further reducing the price.

6.3 What was the impact of the German subsidy scheme?

In the next step, I evaluate the effect of the German support scheme. The scheme consisted
of a AC 2,000 purchase subsidy for BEVs introduced in 2016 and an AC 8,000 subsidy for the
installation and connection of a public charging station introduced in 2017. The goal was
to increase EV sales to have 1 million electric cars on the streets by 2020 and 6 million by
2030. In this section, I quantify the impact of the introduction of this support scheme. To do
so, I re-compute the market equilibrium in 2018 without the scheme. To look at the relative
importance of purchase- and charging station subsidies, I also consider scenarios where I either
remove the purchase subsidy only or the charging station subsidy only. In all scenarios, I leave
the subsidies for PHEVs unchanged. Likewise, I leave any state-level subsidies in place. Table
5 shows the outcomes for these three scenarios. Column 3 shows outcomes when the whole
scheme is removed and columns 4 and 5 show outcomes when only the purchase subsidy and
only the station subsidy are removed, respectively.

Removing the whole support scheme would have resulted in more expensive BEVs with a
higher range. Firms would have collected a larger markup on these BEVs. When comparing
the first four rows across columns 3-5, we see that the strategic price and range reactions are
mainly due to the purchase subsidy. Note that this purchase subsidy is equivalent to a reduction
in the marginal cost from the point of view of firms. In Appendix E I show that the direction of
firms’ price and range reactions is unclear a priori.13 Figure 8 shows that the direction of price

13Gaudin (2021) shows that the direction of such strategic reactions are ambiguous even in simpler models
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and range effects goes into the same reaction for all subsidized BEVs. The only BEV whose
price and range increase in response to the subsidy is Tesla’s Model S which did not qualify
for the subsidy. When only the charging station subsidy is removed, strategic price and range
reactions are small.

Table 5: Market outcomes without subsidy

With subsidy Neither subsidy No BEV subsidy No station subsidy

Price 34,671 +6,374 +6,034 +817
(+4,218, +7,701) (+4,053, +7,236) (-513, +1,700)

Range 259 +44 +40 +8
(+24, +76) (+21, +69) (-2, +19)

MC 28,483 +3,443 +3,119 +684
(+1,827, +4,378) (+1,569, +4,069) (-390, +1,352)

Markup 8,077 +1,042 +1,026 +133
(+529, +1,353) (+565, +1,306) (-165, +348)

Sales 34,761 -17,069 -9,004 -11,149
(-18,954, -12,414) (-13,358, +743) (-13,966, -6,275)

Stations 17,511 -7,946 -891 -7,939
(-7,951, -4,903) (-4,676, +12,498) (-7,951, -4,381)

Government spending 130.62 -131 -74 -85
(-104, +33) (-91, -76)

Consumer Surplus 48,566 -374 -125 -306
(-2,648, +2,463) (-2,357, +2,843) (-2,582, +2,534)

CO2 emissions 5,192,205 +5,682 +2,015 +4,413
(+1,785, +11,682) (-3,070, +5,176) (+1,223, +8,983)

Note: Table gives differences to observed outcomes with 90% C.I. in parentheses.

When looking at rows 5-8, we see first that EV sales almost and station entry more than dou-
bled due to the support scheme. Consumer surplus increased by around AC 374 million whereas
the scheme cost AC 131 million. The role of indirect network effects also becomes obvious:
Removing the purchase subsidy leads to lower charging station entry. Likewise, removing the
charging station subsidy leads to lower BEV sales. In fact, the charging station subsidy seems
to have generated more BEV sales than the direct purchase subsidy. Removing it would also
lower consumer surplus by more than twice the amount when removing the purchase subsidy.
One reason for this result is that the charging station subsidy generates strong feedback loops
without causing large distortions in BEV price and range levels.

From this exercise, it seems like station subsidies generate larger gains in EV sales and
consumer surplus than purchase subsidies. However, the exercise above did not hold subsidy
spending constant. Spending on station subsidies was higher than spending on purchase sub-
sidies. To really assess the effectiveness of the different subsidies, we should compare them
holding expenditure levels constant, which is what I do in the next step.

assuming symmetry and single-product firms.
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Figure 8: Percentage changes of price and range due to introduction of subsidy

6.4 Designing EV subsidy schemes

In this section, I investigate the effectiveness of different subsidy schemes in more detail. To
do so, I allow for different levels of purchase and charging station subsidies at constant budget
levels. Moreover, I allow purchase subsidies to depend on the range. The reasons for doing so
are twofold. First, policymakers in some countries use attribute-based subsidies. For instance,
the total subsidy in California and China is or was a function of the driving range or the size
of the battery pack (Rokadiya and Yang, 2019). Second, doing so gives the policymaker the
choice between subsidizing two attributes that enhance BEV quality, creating an interesting
choice: On the one hand, the policymaker can directly incentivize range provision and steer
consumers towards higher-range cars. On the other hand, she can incentivize charging station
entry which will benefit all BEVs and their buyers equally.

In particular, I consider different combinations of λ ≡ (λ1, λ2, λ3), where λ1 is the flat
part of the purchase subsidy, λ2 is the range-based part of the purchase subsidy, and λ3 is the
charging station subsidy. The purchase subsidy for a BEV with range rj is then λj = λ1+λ2rj .
Note that while simple, this scheme nests both the case of a flat subsidy and a purely range-
based subsidy. When λ2 is zero, we recover a simple flat subsidy of the form implemented in
Germany. When λ1 is zero, the subsidy depends purely on the range. In that case, the subsidy
is equivalent to a decrease in the marginal cost of providing range. On the other hand, a flat
subsidy is equivalent to a general marginal cost decrease. In other words, a flat subsidy lets
firms choose how to “interpret” the marginal cost decrease: They can treat it as making range
provision cheaper or as reducing the total marginal cost of producing the product. By contrast,
a pure range-based subsidy forces firms to treat the subsidy as a decrease in the marginal cost
of providing range. One can interpret the intermediate cases where both λ1 and λ2 are non-zero
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as putting weights on a general and a range-specific marginal cost decrease.
To find the budget-equivalent values for λ, I use the following procedure: At a given budget

B, I search for values of λ that satisfy the budget constraint. I employ a grid search where at
each candidate value λ̃, I solve for the counterfactual equilibrium vector of prices and ranges
as outlined in 6.1 and compute the total cost of the scheme. If the cost is either above or below
B, I discard the candidate value, and if the cost is equal to B (up to a small tolerance), I keep
it. For each candidate point, I compute the mean price and range of BEVs, the quantity sold
of BEVs, consumer surplus14, and fleet emissions. To calculate fleet emissions, I rely on data
that gives me the average distance driven by fuel type coming from a survey conducted by
the German Federal Highway Research Institute (Bäumer, Hautzinger, Pfeiffer, Stock, Lenz,
Kuhnimhof, and Köhler, 2017).15

Note that in the computation of fleet emissions, I assume that BEVs’ CO2 emissions are
equal to zero. Of course, this assumption is only true if they run exclusively on electricity gen-
erated from renewable sources. The assumption is unrealistic in a country such as Germany,
where an important part of electricity generation comes from CO2-intensive coal-fired plants.
However, there are three reasons why this approach is justified. The first is that it serves as
a useful benchmark since it measures the maximum amount by which fleet emissions can de-
crease. The second is that the main reason why policymakers see electric vehicles as a key
instrument in making the transport sector emission-free is that electricity generation itself is
being decarbonized. Decarbonized electricity generation means that BEVs will eventually be
emission-free, making it a useful benchmark to think of them as zero-emission vehicles. The
third reason is that assuming non-zero CO2 emissions from BEVs requires ad hoc assumptions
on the electricity mix used and driving behavior.

I focus on three outcomes in this section: First, I look at CO2 emissions from new car
sales. Focusing on this target makes sense, as the ultimate goal of subsidizing BEVs is to
decarbonize the transport sector. The fewer vehicles emitting CO2 sold, the lower are the CO2
emissions from the existing vehicle stock. Second, I focus on diffusion. This target makes sense
for two reasons. First, many governments have introduced explicit sales targets for electric
vehicles. A diffusion-maximizing approach ensures the achievement of these sales targets.
Second, a strategy focusing on maximizing diffusion can also be a static approximation to a
dynamic optimization problem: A policymaker quickly wants to move down a learning curve.
A diffusion-maximizing strategy can approximate well the desire to move down the learning
curve swiftly in the early phase of adoption. An interpretation of sales targets can be that
the policymaker simplifies the complicated dynamic optimization problem by defining short-
and medium-run sales targets that allow the industry to move down the learning curve quickly.
Third, I look at consumer surplus, as well as total surplus. When calculating total surplus I take

14Consumer surplus is computed using the log-sum formula: CSt =
∑

m ϕmt

∑
i wi

log(1+
∑

j exp(δjmt+µijmt))

αi
.

15I compute fleet emissions as
∑

j CO2j qj usagej , with CO2j being the CO2 emissions of car j, measured in
g/km, qj being the quantity sold of car j, and usagej the annual amount driven in km.
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Table 6: Comparison of subsidy schemes

Scheme Price Range Sales Stations CO2 CS TS
(λ1, λ2, λ3), in KAC in AC in km in t in MAC in MAC

(0, 0, 0) 41,078 303 17,429 9,567 5,198,447 48,224 77,281

(2, 0, 8) -6,408 -44 +17,332 +7,944 -6,242 +342 +472

(0, 0, 10.28) -687 -7 +12,839 +12,714 -5,148 +429 +582

(1, 0.55, 7.4) -2,612 +4 +15,151 +6,653 -6,481 +330 +450

(2.7, 0, 6.75) -8,229 -56 +17,995 +5,696 -6,134 +286 +400

account of the social cost of carbon, which I assume to be AC75/t.
In Table 6, I present the schemes that maximize different policy objectives, as well as the

observed scheme (λ = (2, 0, 8)).16 We can see that different schemes maximize different
policy objectives. By increasing the (flat) purchase subsidy and decreasing the charging station
subsidy, the policymaker can maximize BEV sales. By decreasing the flat part of the purchase
subsidy and the charging station subsidy to introduce a range-based purchase subsidy, she can
minimize CO2 emissions from new car sales. By purely subsidizing charging stations, the
policymaker can maximize consumer surplus as well as total surplus.17 We can also see that
schemes that employ purchase subsidies lead to strong price and range reactions by firms.
Consumers seem to have strong preferences for both higher range and a large charging station
network. On the other hand, a high flat purchase subsidy incentivizes firms to sell cheaper,
lower-range BEVs. Consequently, consumer surplus (as well as total surplus) maximization
requires a scheme causing small price and range reactions by firms and a large amount of
charging station entry, which happens when only subsidizing the charging station side. In that
case, fewer consumers buy a BEV, but the BEVs sold have a high range and profit from a
large charging station network. Note that the environmental benefits from purely subsidizing
charging stations may be understated to the extent that more range and a larger charging station
network may induce consumers who own both an EV and a combustion car to drive the EV
more and the combustion car less (Sinyashin, 2021).

Table 7 reports substitution patterns across the different schemes. Columns 2 and 3 report
where substitution comes from and columns 4 and 5 report where substitution goes to. Note
that since PHEVs also benefit from a larger charging station network, their sales numbers also
increase. We can see that around 75% of the substitution towards EVs comes from the out-
side option, meaning that the new car market overall expands. Substitution from the outside
option can come from consumers who otherwise would have bought a used car or consumers
who would not have bought a car at all. To the extent that the subsidy generates substitution
from the used car market, the environmental benefits of the subsidy scheme are higher than
reported as used cars in 2018 were predominantly combustion cars. Substitution from con-

16Table 11 in Appendix B reports the results when assuming firms and charging stations move simultaneously.
17Note that only subsidizing charging stations also maximizes total surplus when considering a higher or lower

social cost of carbon emissions (such as AC200 or AC25).
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Table 7: Substitution patterns across subsidy schemes

Scheme Substitution from: Substitution to

ICE Outside option BEV PHEV

(0, 0, 0) 0 0 0 0

(2, 0, 12) 5,813 18,911 17,332 7,392

(0, 0, 10.28) 6,917 18,670 12,839 12,748

(1, 0.55, 7.4) 5,496 16,025 15,151 6,370

(2.7, 0, 6.75) 4,991 17,977 17,995 4,972

sumers who would not have bought a car at all lowers the effectiveness of the subsidy scheme
as its main stated goal is to electrify private transport and not expand car ownership.18 This
table also explains why the scheme λ = (1, 0.55, 7.4) minimizes CO2 emissions from new
car sales. Doing so requires two conditions to be met: First, a large part of the substitution
towards EVs should go towards BEVs. Second, minimizing CO2 emissions entails a trade-off
between generating as much substitution from combustion cars as possible on the one hand and
generating substitution from very polluting cars on the other hand. While the scheme that only
subsidizes charging stations generates both the largest amount of substitution from combustion
cars and also generates substitution from more polluting cars, almost half of the substitution
goes towards PHEVs that are not zero-emission. The large amount of substitution towards
PHEVs is the reason why this scheme does not minimize CO2 emissions from new car sales.
The observed scheme (λ = (2, 0, 8)) generates more substitution from combustion cars than
the emission-minimizing one. However, at the observed scheme, BEVs are cheaper and have a
lower range, generating substitution mainly from smaller, less polluting combustion cars.

In this section, we have seen that a policymaker faces a trade-off between maximizing BEV
sales, minimizing CO2 emissions from new car sales, and maximizing consumer and total sur-
plus. The main drivers behind this finding are strategic price and range reactions to subsidies
by firms that interact with indirect network effects. Firms react to flat purchase subsidies by
decreasing both the price and range of BEVs that generate large sales and important indirect
network effects and to range-based subsidies by lowering the price and increasing the range of
BEVs that generate fewer sales and indirect network effects but lead to lower CO2 emissions
from new car sales. Since consumers have strong preferences for both range and charging sta-
tions, they prefer a scheme that delivers both high-range BEVs and a large station network. To
achieve this outcome, the policymaker needs to minimize price and range reactions by shutting
down the purchase subsidy. Note that the policymaker can always achieve a combination of
higher BEV sales, lower CO2 emissions from new car sales, and higher consumer and total
surplus. In fact, the observed scheme, while not optimizing any policy goals, actually delivers
the second-highest EV sales, consumer and total surplus, and the second-lowest CO2 emis-

18In addition, more cars overall create further negative externalities, such as local pollution from breaking and
accelerating and road congestion.
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sions.

7 Conclusion

In this paper, I study subsidy design in the presence of indirect network effects and adjustable
product attributes. In particular, I analyze how indirect network effects affect price and product
attribute decisions of firms and how subsidies affect EV prices and range, charging station
entry, and policy outcomes.

I develop a structural model of endogenous product attribute choice in the presence of
indirect network effects and estimate it using a novel data set on state-level new car sales
in Germany. On the demand side, consumers choose between differentiated cars of different
engine types. The demand side allows for flexible substitution patterns that are key to evaluating
how purchase subsidies affect car choices. On the car supply side, firms make endogenous price
and EV range choices, allowing me to study their interaction with indirect network effects
and subsidies. The charging station entry side links the number of charging stations to the
cumulative EV base and the level of charging station subsidies. The model allows me to study
how indirect network effects interact with endogenous price and range decisions and how these
decisions affect policy objectives of EV subsidy programs.

I find important indirect network effects both on the EV demand- and on the charging en-
try side. As a result, own-price elasticities are larger in absolute value when taking indirect
networks effects into account. Not accounting for these effects would also lead to an overesti-
mation of EV markups by 24% on average. Indirect network effects lead to positive cross-price
and negative cross-range elasticities, which has important implications for the price and range
choices of EV producers. I also find that consumers have strong preferences for range, which is
costly to provide. On the supply side, I find that the marginal cost of providing range decreased
by around 60% from 2012 to 2018.

I analyze a German program for purchase and charging station subsidies. I find that this
program led to a 98% increase in EV sales. The program also led to cheaper, lower-range
EVs on which firms collect a lower markup. Compared to the scenario in which firms fully
internalize effects on rival EVs, price, range, and markups are higher and the charging station
network substantially larger under the subsidy. I find that removing the charging station subsidy
would decrease EV sales by 45% and charging stations by 44%. Removing purchase subsidies
would decrease EV sales by 36% and charging stations by 3%.

To comprehensively analyze subsidy design, I allow for range-based purchase subsidies and
allow the policymaker to freely choose the amount of flat and range-based purchase subsidies
and charging station subsidies while holding the budget constant at the observed subsidy cost in
2018. I find that the policymaker faces a trade-off between maximizing EV sales, maximizing
consumer surplus, and minimizing annual CO2 emissions from new cars. Whereas a large flat
purchase subsidy maximizes EV sales at a lower range and prices, consumers prefer the whole
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budget being spent on charging subsidies. A mixed purchase subsidy with a flat- and range-
based part coupled with a charging subsidy minimizes CO2 emissions from new car sales. The
subsidy maximizing total surplus coincides with the scheme maximizing consumer surplus.

The results have implications for policymakers. It is crucial to understand substitution
patterns and strategic firm reactions generated by different subsidy schemes, as they shape
the effects of subsidies. Consumers prefer subsidy schemes that lead to only small strategic
reactions by firms and deliver high-range BEVs and a large charging station network.

My paper leaves scope for future work. First, I do not directly explore dynamic incentives
that may exist due to learning effects. Second, there exists a dynamic angle to the chicken-
and-egg problem: Charging station providers and firms may wait on one another to enter the
market, stalling the development of the EV industry absent coordination or some other kind of
intervention.
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Appendix

For Online Publication

A Additional Figures and Tables

Table 8: Summary statistics

Mean values of key characteristics

Variable 2012 2013 2014 2015 2016 2017 2018

BEV
Price 30,490 31,295 35,392 32,569 37,104 37,200 34,671
Range (in km) 168 173 202 196 213 246 259
Fuel Cost 4.02 4.34 4.37 4.19 4.24 4.28 4.21
Acceleration 2.8 2.98 3.19 2.96 3.31 3.26 2.94
Weight 1,581 1,662 1,797 1,797 1,867 1,902 1,841
Footprint 6.01 6.4 6.78 6.78 7.03 7.13 6.97
Doors 4.5 4.7 4.85 4.85 4.86 4.88 4.89
Number of Products 6 10 13 13 14 16 18
Sales 2,100 5,517 9,044 13,234 12,201 25,593 34,629

PHEV
Price 43,288 48,472 44,265 56,007 57,479 54,651 57,126
Range (in km) 54 53 52 44 40 45 45
Fuel Cost 5.29 5.64 5.76 5.77 5.57 5.58 5.89
Acceleration 4.58 5.16 5.02 5.81 5.82 5.81 5.95
Weight 1,988 2,160 2,143 2,408 2,476 2,425 2,449
Footprint 7.93 8.17 8.04 8.53 8.66 8.66 8.74
Doors 5 5 5 5 4.87 4.86 4.79
Number of Products 2 3 6 11 15 22 24
Sales 1,148 1,079 2,671 8,248 10,614 25,374 25,841

ICE
Price 32,582 32,873 33,914 33,881 34,653 33,669 33,652
Range (in km) 995 1,018 1,039 1,057 1,063 1,023 997
Fuel Cost 10.06 9.32 8.62 7.6 6.98 7.47 8.01
Acceleration 5.29 5.32 5.41 5.44 5.62 5.76 5.74
Weight 2,023 2,035 2,044 2,043 2,031 2,008 2,017
Footprint 8 8.04 8.07 8.08 8.1 8.09 8.12
Doors 4.43 4.48 4.52 4.55 4.52 4.58 4.63
Number of Products 233 233 227 222 214 213 215
Sales 2,739,581 2,569,876 2,651,415 2,767,185 2,855,922 2,864,409 2,819,762

Stations
Number of Charging Stations 1,116 1,466 2,243 3,530 6,053 9,803 16,307
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Table 9: First Stage Estimates

. Price Range Range x Trend Stations

Coefficient SE Coefficient SE Coefficient SE Coefficient SE

Exogenous Charac.
Fuel Cost -0.910 (0.029) 0.003 (0.001) 0.001 (0.003) 0.002 (0.001)
Footprint 9.472 (0.089) 0.049 (0.002) 0.204 (0.010) 0.000 (0.001)
Acceleration 3.599 (0.046) -0.014 (0.001) -0.060 (0.005) 0.000 (0.001)
Doors 0.091 (0.062) -0.020 (0.001) -0.095 (0.006) 0.001 (0.001)
BEV 22.961 (3.036) 1.525 (0.160) -1.446 (0.774) -0.430 (0.213)
PHEV 21.685 (2.716) 0.185 (0.158) 6.075 (0.729) -0.352 (0.198)
Own State 2.324 (0.346) 0.009 (0.012) -0.005 (0.061) 0.093 (0.014)
Trend -0.293 (0.034) 0.004 (0.002) 0.086 (0.008) -0.006 (0.002)

PHEV
Range x PHEV -7.376 (0.897) 1.369 (0.049) 4.061 (0.254) -0.157 (0.102)

Cost shifters
Station Subsidies 0.022 (0.036) 0.006 (0.003) 0.156 (0.014) 0.101 (0.005)

Differentiation IVs
BEV count-local-rival 0.270 (0.106) 0.089 (0.006) 1.280 (0.042) 0.003 (0.006)
EV efficiency-local-own -2.681 (0.115) -0.131 (0.012) -0.621 (0.071) 0.012 (0.012)
EV efficiency-local-rival 0.054 (0.013) 0.001 (0.001) 0.029 (0.003) -0.002 (0.001)
EV efficiency-local-own-nest 2.464 (0.111) 0.137 (0.012) 0.666 (0.071) -0.015 (0.012)
Footprint-local-own 21.849 (1.188) 1.073 (0.050) 5.017 (0.280) 0.047 (0.043)
Footprint-local-rival -0.697 (0.363) -0.049 (0.006) -0.221 (0.026) -0.006 (0.005)
Price-local-own -11.969 (1.436) -1.323 (0.097) -5.372 (0.459) -0.007 (0.067)
Price-quadratic-own 0.235 (0.009) -0.005 (0.000) -0.020 (0.002) 0.000 (0.000)
Weight-local-rival -11.758 (0.346) 0.020 (0.003) 0.061 (0.011) 0.002 (0.003)
Fuel efficiency-quadratic-rival 0.321 (0.108) -0.005 (0.001) -0.008 (0.004) -0.002 (0.001)

Firm FE X X X X
Class FE X X X X
Body FE X X X X
State FE X X X X
SW F-Stat 319.954 368.319 223.939 128.393
Observations 28288 28288 28288 28288

Note: This table presents first stage estimates for each of the endogenous charateristics. The Sanderson-Windmeijer multivariate F-test
is reported for each endogenous vairable.

B Results under simultaneous moves
This section presents results for estimation and subsidy design when assuming a simultaneous
move game. In that case, firms just best respond to the charging station side, meaning that we
fall back to the standard market share derivatives with respect to price and range. Table 10
holds the estimation results. As outlined in Section 5, elasticities and markups change. Also,
the supply-side results change, even though we can see that they do so only slightly. We still
recover the drop in the marginal cost of providing range. Table 11 holds the results for the
grid search under simultaneous moves. Akin to Table 6, I report the subsidy schemes that
optimize different policy objectives, along with the observed scheme and the case in which
there are no subsidies. Table 11 suggests that the results are robust to using this alternative
timing assumption. Results in the simultaneous move game are similar to the ones found in
Section 6.4. The exact amounts of the subsidies as well as the effects on range, prices, and
policy objectives only change slightly. Overall, the conclusions we could draw from Section
6.4 go through.
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Table 10: Estimation results

Demand/supply for cars Station entry

Coefficient SE Coefficient SE

Demand: Means
Range 2.364 (0.313) log(EV base) 0.715 (0.129)
Range x Trend -0.252 (0.037) Subsidies 0.105 (0.036)
log(Charging Stations) 0.768 (0.106)
Fuel Cost -0.322 (0.04)
BEV -13.933 (4.33)
PHEV -11.499 (4.05)

Demand: Interactions
Price / Income -6.338 (0.628)

Demand: St. Dev.
EV -3.603 (1.559)
Fuel Cost -0.154 (0.024)

Supply: Range provision
Intercept 0.929 (0.024)
Trend -0.109 (0.005)

Statistics
Mean own-price elasticity -3.544
Mean own-range elasticity (BEVs) 3.028
Mean markup (BEVs) (AC 1,000) 9.510

Note:
Prices, subsidies deflated and in EUR 1,000. Vehicle class-, Body-, Firm- and State Fixed Effects included.

Table 11: Comparison of subsidy schemes (simultaneous moves)

Scheme Price Range Sales Stations CO2 CS TS

(0, 0, 0) 40,793 298 17,282 9,567 5,197,762 48,207 77332

(2, 0, 8) -6,122 -39 +17,479 +7,944 -5,558 +359 +538

(0, 0, 10.285) -685 -6 + 12,981 +12,686 -4,183 438 +643

(1.5, 0.5, 6.85) -3,569 -2 +15,828 +5,712 -5,757 +317 +476

(2.85, 0, 6.4) -8,250 -53 +18,174 +5,131 -5,596 +289 +440

C Robustness to alternative corrections
Table 12 shows estimates of key demand parameters under different corrections for observa-
tions with zero market shares. The column Min bias holds the results from the correction
employed in the paper that follows D’Haultfœuille et al. (2019). The second column (Laplace)
uses a correction based on Laplace’s rule of succession that is used in Gandhi, Lu, and Shi
(2013). It consists of replacing market shares by ˜sjmt =

Mmtsjmt+1

Mmtsjmt+Jmt+1
, with Jmt the number

of products in market mt. Finally, column 3 (Naive) uses a naive correction where quantities of
zero sales observations are assumed to be 1. We can see that the estimates barely differ across
the different corrections, leading me to conclude that the prevalence of zero sales do not pose a
serious threat in my estimation.
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Table 12: Estimates of key parameters under alternative corrections for zero market shares

Min bias Laplace Naive

Mean Utility
Range 2.364 2.206 2.337

(0.313) (0.287) (0.305)
Range x Trend -0.252 -0.231 -0.245

(0.037) (0.033) (0.036)
Charging Stations 0.768 0.684 0.746

(0.106) (0.107) (0.106)
Fuel Cost -0.322 -0.318 -0.326

(0.040) (0.038) (0.039)
BEV -13.933 -12.167 -13.481

(4.330) (4.257) (4.235)
PHEV -11.499 -9.949 -11.124

(4.050) (3.985) (3.952)
Interactions

Price / Income -6.338 -5.896 -6.392
(0.628) (0.586) (0.618)

Standard Dev.
EV 3.603 3.129 3.479

(1.559) (1.598) (1.534)
Fuel Cost 0.154 0.153 0.155

(0.024) (0.022) (0.023)

Note: Standard errors in parentheses.

D Estimated price elasticities in selected papers
Table 13 presents estimates of price elasticities from several papers using a similar structural
model of demand to mine.

Table 13: Estimated price elasticities of selected papers

Author(s) Price elasticity

Beresteanu and Li (2011) -10.91

Berry et al. (1995)1 -3.928

Berry et al. (1995)2 -3.461

Li (2019) -2.732

Klier and Linn (2012) -2.6

Pavan (2017) -2.85

Reynaert and Sallee (2021) -5.45

Springel (2021)3 [-1, -1.5]

Thurk (2018) -3.6

Own estimated price elasticity: -3.544
1 Conlon and Gortmaker (2020) replication
2 Conlon and Gortmaker (2020) own proce-
dure
3 Range of elasticities for EVs

E A model of quality provision

E.1 Monopoly
In this section, I outline a model of quality provision by a monopolist. This model helps
to understand the forces that determine how price and quality adjust to the introduction of a
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subsidy or a decrease in the marginal cost of quality provision. Note that what I call quality in
this model can, in principle, be any product characteristics, such as driving range.

Set-up

Let us consider a monopolist who chooses price (p) and quality (q) of a single product sold
to final consumers.19 In my application, q would be the driving range of a car. The demand
function s(p, q) is increasing in quality, decreasing in price, and twice differentiable. Cost is
an increasing function of quality and is denoted c(q)s(p, q). A social planner subsidizes the
product with a subsidy denoted by λ, possibly to increase the diffusion of the product. This
scheme mirrors the type of subsidy for electric vehicles employed in countries such as Germany.

Quality choice

The monopolist maximizes its total profits given by π(p, q). His optimization problem is given
by

max
p,q

π(p, q) ≡ (p+ λ− c(q)) s(p, q)

and the first-order conditions of the monopolist are given by

[p]: πp ≡ s(p, q) + (p+ λ− c)
∂s(p, q)

∂p
= 0

[q]: πq ≡ −cqs(p, q) + (p+ λ− c)
∂s(p, q)

∂q
= 0.

For the price, we recover the standard optimal markup formula. For quality, the formula looks
similar. The firm faces a trade-off: It can increase quality to expand sales. However, doing so is
costly and leads to a smaller margin. To see how the monopolist chooses quality in equilibrium,
we can plug the price FOC into the quality FOC and re-arrange to find

cq =
∂s(p, q)/∂q

|∂s(p, q)/∂p|
, (19)

where cq is the marginal cost of providing quality ∂c(q)
∂q

The monopolist sets quality such that the
marginal cost of providing quality is equal to the absolute value of the ratio of semi-elasticities
of quality and price. The larger the fraction on the right-hand side of equation (19), the larger
the level of quality provided in equilibrium.

The effect of a subsidy

What happens when the policymaker introduces a subsidy? If quality cannot adjust, we expect
the monopolist to pass on the subsidy by lowering the price. The extend of this pass-through
depends on the curvature of the demand curve. The more elastic the demand curve, the higher
the amount of pass-through. If both the price and quality can adjust, there is no clear-cut answer

19The set-up slightly differs from Spence (1975) and Sheshinski (1976) where the monopolist’s choice variables
are quality and quantity.
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to how the monopolist will react. Differentiating the system of first–order conditions gives[
dp
dλ
dq
dλ

]
=

[
πpp πpq
πpq πqq

]−1 [−πpλ
−πqλ

]
,

where πmn denotes the second order derivative of the monopolist’s profit function respect to m
and n, with m,n ∈ {p, q} and where

πpp = 2sp + spp(p+ λ− c)

πqq = −cqqs− 2cqsq + sqq(p+ λ− c)

πpq = sq + (p+ λ− c)spq − cqsp

πpλ = sp, πqλ = sq.

This gives

dp

dλ
=

1

∆

(
πpqπqλ − πqqπpλ

)
dq

dλ
=

1

∆

(
πpqπpλ − πppπqλ

)
,

where ∆ ≡ πppπqq − π2
pq > 0 from the second order conditions of having a global maximum.

The SOCs further require πpp < 0 and πqq < 0. Note that we also have πpλ < 0 and πqλ > 0.
If πpq < 0, meaning price and quality are strategic substitutes, we have dp

dλ
< 0 and dq

dλ
> 0.

In the case where πpq > 0, things become more ambiguous. Note that we can write

dp

dλ
=

1

∆

(
πpqsq − πqqsp

)
dq

dλ
=

1

∆

(
πpqsp − πppsq

)
,

We can then conclude that

sign
(dp
dλ

)
= sign

( ∣∣∣∣ sqπqq
∣∣∣∣− ∣∣∣∣ spπpq

∣∣∣∣ )
sign

(dq
dλ

)
= sign

( ∣∣∣∣ spπpp
∣∣∣∣− ∣∣∣∣ sqπpq

∣∣∣∣ )
The effect of a subsidy on quality and price depends on the relative magnitudes of the price and
quality semi-elasticities, sp and sq, and the marginal cost of providing quality cq. Moreover,
we can rule out the case πpλ > 0 and πqλ < 0. To see see why, note that this case would imply
πpq

πpp
< sq

sp
< πqq

πpq
which violates the second order conditions.

E.2 Multi-product oligopoly
In this section I show how the main insights obtained in the monopoly case generalize to a
multi-product oligopoly setting. The fact that there are cannibalization effects within a firm’s
product portfolio and the fact that products are differentiated within and across the product
portfolio will influence the effect of a subsidy on price and quality but not alter the main con-
clusions. To see why, let us consider the following setting: There are j = 1, . . . J products
in a market. Consumers care about the quality of a subset of products j ∈ B and do not have
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any preferences over the quality of the remaining products j ∈ I.20 The social planner puts a
subsidy on products in B but not on those in I. Let us look at the firm f ’s profit maximization
problem:

max
pf ,qf

πf =
∑

k∈Jf∩k∈B

(pk + λ− c(qk))sk(p, q) +
∑

l∈Jf∩k∈I

(pl − c(ql))sl(p, q),

where pf and qf denote the own-firm vectors of price and quality, respectively, p and q the price
and quality vectors of all firms in the market and Jf the portfolio of firm-f products. The FOCs
for product one are then given by

[p1]: πfp1 ≡

s1 +
∑

k∈Jf∩k∈B

(pk + λ− c(qk))
∂sk
∂p1

+
∑

l∈Jf∩k∈I

(pl − c(ql))
∂sl
∂p1

= 0

[q1]: πfq1 ≡

− cq1s1 +
∑

k∈Jf∩k∈B

(pk + λ− c(qk))
∂sk
∂q1

+
∑

l∈Jf∩k∈I

(pl − c(ql))
∂sl
∂q1

= 0

The second-order derivatives of the profit function will depend not only on the effect of own
price and quality on own demand, but also on the demand of the other own-firm products.
Finally, they depend on rival product prices and quantities through the demand function.

Increase of subsidy for a single product

In the case where the subsidy is only increased for a single product product, say product 1, we
get

dp1
dλ

=
1

∆

(
πfp1q1πfq1λ − πfq1q1πfp1λ

)
dq1
dλ

=
1

∆

(
πfp1q1πfp1λ − πfp1p1πfq1λ

)
,

meaning that the general results from the previous section go through: The signs of dp1
dλ
, dq1
dλ

depend on whether p, q are strategic substitutes or complements. They also still depend on the
marginal cost of providing quality as well as the relative magnitudes of πfp1λ and πfq1λ that
themselves still depend on sp and sq.

Increase in the subsidy for all products in B
Things become more complicated when we consider an increase on the subsidy of all products
in B. We now need to differentiate J + JB first–order conditions (JB being the cardinality of
B). In essence, the effect of price and quality on the FOC of all other products now needs to be
taken into account as well.
Let J denote the cardinality of all products, JB the cardinality of those products with endoge-
nous quality and f(j) the firm of product j. Then, we have the following system of FOCs with

20Think of the market for cars: The range of electric cars is a proxy for quality and costly to provide. Consumers
do not care about the range of diesel or gasoline cars as it is sufficiently high and firms do not give it first-order
importance when making their strategic decisions.
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J + Jq equations:

[p1]: πf(1)p1 ≡ s1 +
∑

k∈Jf(1)∩k∈B
(pk + λ− ck)

∂sk

∂p1
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂sl

∂p1
= 0

...

[pJ ]: πf(J)pJ
≡ sJ +

∑
k∈Jf(1)∩k∈B

(pk + λ− ck)
∂sk

∂pJ
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂sl

∂pJ
= 0

[q1]: πf(1)q1 ≡ −cq1s1 +
∑

k∈Jf(1)∩k∈B
(pk + λ− ck)

∂sk

∂q1
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂sl

∂q1
= 0

...

[qJB ]: πf(JB)qJB
≡ −cqJB

sJB +
∑

k∈Jf(JB)∩k∈B
(pk + λ− ck)

∂sk

∂qJB

+
∑

l∈Jf(J)∩l∈I
(pl − cl)

∂sl

∂qJB

= 0

The total differentiation of this system yields



dp1
dλ
...

dpJ
dλ
dq1
dλ
...

dqJB
dλ


=



πf(1)p1p1 . . . πf(J)pJp1 πf(1)q1p1 . . . πf(JB)qJBp1

...
...

...
...

πf(1)p1pJ
. . . πf(J)pJpJ

πf(1)q1pJ
. . . πf(JB)qJBpJ

πf(1)p1q1 . . . πf(J)pJq1 πf(1)q1q1 . . . πf(JB)qJB q1

...
...

...
...

πf(1)p1qJB
. . . πf(J)pJqJB

πf(1)q1qJB
. . . πf(JB)qJB qJB



−1 

−πf(1)p1λ

...
−πf(J)pJλ

−πf(1)q1λ

...
−πf(JB)qJBλ


, (20)

where for instance

• πf(1)p1p1 = 2
∂s1

∂p1
+

∑
k∈Jf(1)∩k∈B

(pk + λ− ck)
∂2sk

∂p21
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂2sl

∂p21

• πf(J)pJp1 =
∂sJ

∂p1
+

∂sJ

∂p1
1{1,J∈f(J)}+

∑
k∈Jf(J)∩k∈B

(pk + λ− ck)
∂2sk

∂pJ∂p1
+

∑
l∈Jf(J)∩l∈I

(pl − cl)
∂2sl

∂pJ∂p1

• πf(1)p1q1 = −cq1
∂s1

∂p1
+

∂s1

∂q1
+

∑
k∈Jf(1)∩k∈B

(pk + λ− ck)
∂2sk

∂p1∂q1
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂2sl

∂p1∂q1

• πf(1)p1qJB
= −cqJB

∂sJB

∂p1
1{1,JB∈f(1)}+

∂s1

∂qJB

+
∑

k∈Jf(1)∩k∈B
(pk + λ− ck)

∂2sk

∂p1∂qJB

+
∑

l∈Jf(1)∩l∈I
(pl − cl)

∂2sl

∂p1∂qJB

• πf(1)q1q1 = −cq1q1s1 − 2cq1
∂s1

∂q1
+

∑
k∈Jf(1)∩k∈B

(pk + λ− ck)
∂2sk

∂q21
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂2sl

∂q21

• πf(1)q1qJB
= −cqJB

∂sJB

∂q1
1{1,JB∈Jf} − cq1

∂s1

∂qJB

+
∑

k∈Jf(1)∩k∈B
(pk + λ− ck)

∂2sk

∂q1∂qJB

+
∑

l∈Jf(1)∩l∈I
(pl − cl)

∂2sl

∂q1∂qJB

• πp1λ =
∑

k∈Jf(1)∩k∈B

∂sk

∂p1

• πq1λ =
∑

k∈Jf(1)∩k∈B

∂sk

∂q1

It is no longer possible to simply pin down the effects of the subsidy on whether or not p, q
are strategic complements, nor on the relative magnitudes of πfp1λ and πfq1λ and the marginal
cost of providing quality. First off however, the entries πfpjpj and πfqjqj in the matrix to be
inverted in 20 are likely to dominate the entries πfpjpk and πfqjqk , k ̸= j. Hence the signs and
magnitudes of these own second-order derivatives will play an important role in determining the
effect of the subsidy. Secondly, the system in 20, while too opaque to be solved analytically, can
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be solved numerically if estimated profits and semi-elasticities can be recovered and prices as
well as qualities are known. I can do so in my empirical setting below. In principle, this system
can also be obtained to measure pass-through of a change in marginal cost. The difference is
then that the system of first–order conditions will be differentiated with respect to the change
in marginal cost. Finally, the case where several multi-product firms produce products with
endogenous quality that are subsidized and products with fixed quality that are not subsidized.
Note that a similar system can be obtained to analyze pass-through of a shock to the marginal
cost of providing quality.
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