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1 Introduction

In many collective decision processes agents can and do preemptively announce their
positions. For instance, when a parliament votes on a bill, participating politicians
often publicly disclose their stances beforehand. An example was the second im-
peachment trial of Donald Trump, where various senators spoke out in favor or
against an impeachment before the official vote even began.1 This kind of infor-
mation disclosure can affect the decision-making. It discloses information to the
other politicians about the own opinion on the bill. The other politicians can react
to this information and adjust their behavior accordingly. Additionally, voters can
anticipate this effect and may use their own vote to influence the other voters.

In this chapter, we analyze how the possibility to disclose the own action and
thereby inform the other voters can affect a voting procedure and the associated
information aggregation.2 We provide a stylized model of sequential voting with
common values, two voting periods, and endogenous timing. The voters have to
decide between two options, and every voter receives a private signal about which
option is more preferable. We model a prior announcement of the own vote as bind-
ing.3 We restrict the analysis to homogeneous preferences throughout this chapter.
The voters all agree on the best decision for each state of the world and get the same
utility, but their private information about the state have different realizations.

The main trade-off for each voter arises from the timing decision: The voter
can vote early and disclose her vote to the other voters. This informs others and
allows them to make better-informed voting decisions but the voter cannot observe
other votes herself. Alternatively, the voter can vote late and first observe the other
voters’ early votes. This provides additional information to the voter and allows her
to make a better-informed voting decision but in return she cannot inform others.
The more informative the votes are in period one, the higher is the incentive to vote
in period two.

We start by showing the existence of a welfare-optimal equilibrium. Due to the
infinite type space and the sequential voting structure, we construct a non-standard
metric on the strategy-space for this. Then, we characterize the welfare-optimal
equilibria of the two-period voting game. Similarly to simultaneous voting studied
by Duggan and Martinelli (2001), the strategies of a welfare-optimal equilibrium
follow a cutoff rule. In the first period, voters with more informative signals cast an
early vote to influence other voters in their direction. Voters with less informative

1The senators’ positions were prominently announced in the media at that time. See for example
CNN Politics (2021) or Zurcher, Anthony (2021).

2There are various other effects associated to a preemptive disclosure. For example, a prior
announcement of the own vote informs the citizens about the political agenda and increases trans-
parency. Politicians can use this for reputation-building as described by Keefer and Vlaicu (2007)
who analyze the role of credibility and reputation in democracies.

3Even though a public disclosure of the own vote is only a partial commitment, it is strong in the
sense that politicians generally care about their reputation, and deviating from an announcement
may lead to a loss of reputation.
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signals wait for period two to get more information before voting.
We show that the welfare-optimal equilibria of our sequential voting model with

endogenous timing welfare-dominate all equilibria of simultaneous voting games and
voting games with exogenously fixed voting sequences. More precisely, it is the com-
bination of the timing decision and the voting decision that conveys useful informa-
tion to the other voters.

In setups where the swing voter’s curse4 occurs, voting with endogenous timing
mitigates its negative effect on welfare, even outperforming simultaneous voting with
abstention.

Moreover, information is aggregated even under assumptions for which the si-
multaneous voting model fails to do so. In particular, even in a setting with bounded
signals and under the unanimity voting rule, the probability of the correct decision
under a welfare-optimal equilibrium of our two-period voting game converges to one
as the number of voters grows large.

Our results contrast the result of Dekel and Piccione (2000) who show that in
general if the timing is exogenous, the disclosure of the votes alone does not improve
the information aggregation of a voting procedure compared to simultaneous voting.
The reason is that learning the other agents’ votes only changes the probability of
being pivotal but not the optimal action upon being pivotal. Instead, if the timing
is endogenous, agents cannot only use the vote itself but also the timing of the vote
to convey information about the strength of the own signal to the other voters. As
a result, endogenizing timing improves the outcome of a voting procedure.

The rest of this chapter is organized as follows. Section 1.1 gives an overview
over the related literature. Section 2 lays out the model with two periods. In Sec-
tion 3, an example illustrates the model and the voter’s behavior. Section 4 contains
the main analysis and characterizes the welfare-optimal equilibria. Section 5 covers
information aggregation and Section 6 relates sequential voting to the swing voter’s
curse under the simple majority voting rule. Section 7 shows that voting with en-
dogenous timing welfare-dominates a voting procedure with a fixed voting sequence
and Section 8 concludes. The proofs of the results can be found in Appendix A.

1.1 Related Literature

Our model is related to the Condorcet Jury Theorem and information aggregation
in large elections. Condorcet (1785) suggested that for homogeneous preferences,
a decision made by a large group of “sincere” voters yields better results than a
decision made by an individual alone. This result was later reproduced for strategic
voters in simultaneous voting procedures.5

4If ties are randomly broken, less informed voters may strictly prefer to abstain rather than to
vote. See Feddersen and Pesendorfer (1996) for more details on the swing voter’s curse.

5Among others, Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1996, 1997, 1998)
and Duggan and Martinelli (2001) analyze strategic voting.
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Feddersen and Pesendorfer (1998) show that even for large electorates informa-
tion is not aggregated under the unanimity voting rule for binary signals due to the
bounded informativeness. In contrast to their result, the probability of choosing the
optimal decision converges to one in our two-period voting model with endogenous
timing.

Previous work on sequential voting has mainly focused on exogenously fixed
voting sequences. We contribute to this line of research by endogenizing the timing
decision in a sequential voting game. This work builds on Schmieter (2019), where
the welfare-optimality of cutoff rules is shown for the special case of the unanimity
voting rule.

Dekel and Piccione (2000) consider sequential voting with two alternatives where
the order of voting is exogenously fixed. In their setting, voters cast their vote in a
given order, and every voter observes all actions that have been made prior to her
vote. They show that each symmetric equilibrium of the corresponding simultaneous
voting game is also an equilibrium of any sequential voting game, regardless of the
voting sequence. Furthermore, they prove that under the unanimity voting rule, the
set of equilibria of any sequential voting game, regardless of the voting sequence, is
equal to the set of equilibria of the corresponding simultaneous voting game. An
important implication from their work is that observing the votes of the other voters
does not improve the aggregation of information. This is due to the fact that voters
condition on the event of being pivotal. Since in their model there exists exactly
one event for which a voter is pivotal, this conditioning is equivalent to observing
the other agents’ votes directly. Thus, learning the votes of other agents does not
convey useful information. In particular, learning the earlier voters’ actions does not
change the behavior of the later voters. However, except for the unanimity voting
rule, they do not show whether a new equilibrium of the sequential voting game
might welfare-dominate the equilibria of the simultaneous voting game. Also, their
equivalence result under the unanimity voting rule relies on the exogeneity of the
voting sequence.

One crucial aspect of Dekel and Piccione (2000) is that they do not allow for
any tie-breaking in their model. Instead, they restrict their analysis to np-voting
rules, where alternative one is adopted if and only if at least np voters vote for it and
alternative two is chosen otherwise. Their result does for example not carry over to a
simple majority voting rule with tie-breaking by a fair coin toss. In particular, their
analysis excludes settings where the so-called swing voter’s curse occurs: Feddersen
and Pesendorfer (1996) show that under the simple majority voting rule with an
even number of voters and tie-breaking by a fair coin toss, less informed voters
strictly prefer to abstain. As a result, allowing abstention in such simultaneous
voting settings increases welfare. We show that the welfare-optimal equilibrium
of our two-period model without abstention welfare-dominates all equilibria of the
simultaneous voting model with abstention.
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Dekel and Piccione (2014) analyze voting with an endogenous timing decision.
Compared to our model, they cover three alternatives, private values, and voters
have to decide for a voting period before they learn their preferences. In particular,
voters in their model have a conflict of interest, and, in contrast to our model,
revealing information to other voters can have a negative effect for oneself.

There are various other papers related to sequential voting. Battaglini (2005)
adds abstention and costs of voting to the model of Dekel and Piccione (2000) and
shows that even arbitrarily small voting costs can break the equivalence of equilibria.
Another strand of literature analyzes herding behavior

(
see for example Fey (1998)

)
,

where herding hinders full information aggregation. The difference to sequential
voting is that herding features an individual payoff relevant choice for each agent
instead of a collective decision. Callander (2002) relates herding to sequential voting
and shows that if voters want to vote for the winning candidate, herding occurs with
probability one. Eyster and Rabin (2005) introduce the concept of cursed equilibria,
where agents underestimate the correlation of other players’ information. Piketty
(2000) considers two-period voting, where both periods are payoff-relevant. There,
agents of different types use the first period to signal information and influence the
outcome of the second voting period. In contrast to our model, there are three
competing candidates and the voters are confronted with a coordination problem
rather than a problem of information aggregation. McLennan (1998) shows that for
common interest games, a symmetric strategy that maximizes the expected welfare
is a Nash equilibrium. We use this finding multiple times to prove our results.

2 The Model

In this section, we introduce our model of sequential voting with two voting periods.
There are N ≥ 2 jurors who vote on whether to convict or acquit a defendant.6

An unknown state ω describes whether the defendant is innocent, I, or guilty, G.
The realization of ω is randomly drawn according to a commonly known prior q :=
P (ω = I) and 1 − q = P (ω = G) with q ∈ (0, 1).

Each agent i ∈ {1, . . . , N} receives a private signal si about ω from the closed in-
terval S := [s, s̄] ⊆ R. Conditional on the state, the signals are drawn independently
from each other, according to the cumulative distribution function F (·|I) if the de-
fendant is innocent or F (·|G) if the defendant is guilty. The distribution functions
F (·|I) and F (·|G) are absolutely continuous and have piecewise continuous densities
f(·|I) and f(·|G) which are strictly positive on S.

We assume that the likelihood ratio of the signals, f(s|I)/f(s|G), is weakly de-
creasing on S. This implies that low signals indicate innocence, while high signals

6To simplify the exposition, we frame the model as if it were about a decision at court, but
it is in no way restricted to this particular application. The notation mainly follows Duggan and
Martinelli (2001).
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are indicators of guilt. We let the signals be sufficiently informative by assuming
that both events{

s ∈ S
∣∣∣ f(s|I)
f(s|G) <

1 − q

q

}
and

{
s ∈ S

∣∣∣ f(s|I)
f(s|G) >

1 − q

q

}
occur with positive probability. That is, the likelihood ratio of a single signal can
dominate the likelihood ratio of the prior in either direction.

Preferences and Timing The defendant can be either acquitted, A, or convicted,
C. The agents have common preferences and want to match the outcome with the
state. They get a utility of 1 if C is implemented in state G or if A is implemented
in state I and a utility of 0 otherwise.

The outcome is determined by a voting procedure with two voting periods, period
one (early) and period two (late). In period one, the agents can either vote for A or C
or choose to wait, denoted by W . In period two, the agents who waited observe the
aggregated votes from period one and now have to vote for either A or C themselves.
Abstention is not allowed in period two. Agents who already voted in period one
cannot change their decision anymore and are not allowed to vote a second time.

The voting rule is parameterized by a pair (K, p) ∈ {1, 2, . . . , N − 1} × [0, 1]. If
strictly less than K voters vote for conviction, then the defendant is acquitted and if
strictly more than K voters vote for conviction, then the defendant is convicted. If
the number of C-votes is exactly K, then conviction occurs with probability p.7 This
captures all standard (anonymous) voting rules such as the unanimity voting rule,
all super-majority voting rules, and the simple majority voting rule with and without
random tie-breaking. For example, for the parameters (N − 1, 0), the defendant is
only convicted if all N voters vote unanimously for C, i.e., we have the unanimity
voting rule. With an even number of voters N , the voting rule (N

2 ,
1
2) represents the

simple majority voting rule where a tie is broken by a fair coin flip.

Histories, Strategies, and Equilibria A (public) history h specifies the past
voting actions. Let h = ∅ denote the empty history at the beginning of period one.
A history in period two can be characterized by a pair h = (nA, nC) that specifies
the number nA of early A-votes and the number nC of early C-votes. Let H be the
set of all histories.8

A mixed strategy for voter i is given by the probabilities of voting for A, waiting
W , and voting for C for every private signal s ∈ S and every history h ∈ H.

7Note that the voting rules (K, 0) and (K + 1, 1) are equivalent.
8Formally, H =

{
(nA, nC) ∈ {0, 1, . . . , N − 1}2 | nA + nC < N, nC ≤ K, nA ≤ N − K

}
∪ {∅}.
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Formally, a mixed strategy is a measurable9 function

σi : S ×H →
{
(pA, pW , pC) ∈ [0, 1]3

∣∣ pA + pW + pC = 1
}
,

with pW = 0 for every history of period two. The triple σi(si, h) = (pA, pW , pC)
specifies the probabilities pY of playing action Y for each Y ∈ {A,W,C} for every
signal si ∈ S and at every history h ∈ H. Let σi

A, σi
W and σi

C be the marginals of
σi, i.e., the maps to pA, pW and pC , respectively. For convenience, let σi(si, h) = A,
σi(si, h) = W , and σi(si, h) = C denote that the corresponding actions are played
with probability 1.

Fix a single voter i, fix a strategy σi and the strategies σ−i of the other voters.
For these strategies, the expected utility for voter i is given by

U(σi, σ−i) = qP (A|I, σi, σ−i) + (1 − q)P (C|G, σi, σ−i),

where P (Y |ω, σi, σ−i) denotes the probability of outcome Y under state ω given the
strategies σi and σ−i, i.e., the expected utility is the ex-ante probability of choosing
the correct outcome. The strategies (σ1, . . . , σN ) constitute a mixed Bayesian Nash
equilibrium if for every voter i, the strategy σi maximizes U(σi, σ−i) for fixed σ−i.
We restrict attention to symmetric strategies and omit the index i to write σ/σY

for the strategies/marginals instead of σi/σi
Y .

As the expected utility in an equilibrium is identical for every voter, we consider
welfare on a per-capita level and call it the expected welfare U(σ). A welfare-optimal
equilibrium is an equilibrium that maximizes the welfare, or equivalently, the ex-
ante probability of a correct decision. Unless stated otherwise, “equilibrium” refers
to symmetric mixed Bayesian Nash equilibrium.10

Assumptions For some results, we additionally assume that the following prop-
erties hold. Their usage is explicitly stated each time. The first assumption says
that the likelihood ratio is strictly decreasing instead of weakly decreasing. That is,
no two signals induce the same belief.

Strictly monotone likelihood ratio property (MLRP<). The likelihood ratio of the
signals, f(s|I)/f(s|G), is strictly decreasing on S.

The second assumption states that the informativeness of the signals is un-
9Let B(S) and B([0, 1]3) denote the Borel σ-algebras on S and [0, 1]3, respectively. Consider the

power set P(H), which is a σ-algebra on the finite set H. A strategy σi is required to be measurable
with respect to the product σ-algebra Σ = B(S) × P(H) and B([0, 1]3).

10We will later see that in a welfare-optimal Bayesian Nash equilibrium pσ(Y |∅, ω) ∈ (0, 1) holds
for all Y ∈ {A, W, C} and ω ∈ {I, G}, i.e., agents wait with positive probability. Therefore, all
public histories are reached with strictly positive probability, and the beliefs are determined by
Bayes’ rule. For improved readability, we omit the beliefs and consider Bayesian Nash equilibria
instead of perfect Bayesian equilibria throughout this chapter.
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bounded. This is for convenience only and ensures that all cutoffs are in the interior
of S, thus avoiding the need to consider corner cases.

Unbounded likelihood ratio (ULR). The likelihood ratio of the signals is unbounded,
i.e.,

lim
s→

¯
s

f(s|I)
f(s|G) = ∞

lim
s→s

f(s|I)
f(s|G) = 0.

Monotonicity A strategy profile is monotone if voting A or C in period one
increases the probability of the respective outcome regardless of the state ω. We
will see that this class of strategy profiles has multiple desirable properties. First, in
monotone equilibria, the agents’ votes and beliefs are aligned: If an agent knew which
outcome is correct, then she would vote for that outcome. Second, for the number of
voters being large, there are monotone equilibria that implement the correct outcome
with a probability close to one. Therefore, under the viewpoint of information
aggregation, it is without loss to restrict attention to monotone equilibria. Third,
monotone equilibria are a generalization of cutoff equilibria of the simultaneous
voting game and they will be particularly straightforward to work with.

Formally, monotonicity is defined as follows. Fix a strategy profile σ of the two-
period game. Let P (Y, ω) denote the probability that the defendant is convicted
given that the state is ω and given that a voter i votes for Y ∈ {A,W,C} in the
first stage and that the remaining N − 1 voters follow strategy σ. If voter i waits in
period one, then she also follows strategy σ in period two. Now, the strategy profile
σ is called monotone if the inequalities

P (A, I) ≤ P (W, I) ≤ P (C, I)

P (A,G) ≤ P (W,G) ≤ P (C,G)

hold, i.e., the probability of conviction is monotone increasing in the actions A, W ,
and C.

An illustration of a monotone strategy profile is the following strategy profile
where agents follow cutoff rules: Agents with a strong signal towards innocence vote
for acquittal and agents with a strong signal towards guilt vote for conviction in
period one. Agents with intermediate signals wait in period one and vote in period
two, conditioning on the own signal and the observed votes (see Figure 1).
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s s̄

early A early W early C

Figure 1: Example of a monotone strategy

Monotonicity rules out strategy profiles where the meanings of the votes are
reversed, e.g., strategy profiles where voting early for conviction actually decreases
the probability of conviction.

One example of a strategy profile that is not monotone is illustrated in Figure 2.
Voters with low/intermediate signals vote for acquittal/conviction in period one and
voters with high signals wait in period one. Voters understand waiting as a strong
signal towards guilt and vote in period two according to their updated beliefs. For
a given number of early A-votes, the lower the number of early C-votes is, the more
the agents update their beliefs towards G. Therefore, voting early for C can actu-
ally decrease the probability of C being the outcome. Depending on the parameters,
there can exist strategy profiles of this form that constitute equilibria.

s s̄

early A early C early W

Figure 2: Example of a non-monotone strategy

Note that non-monotone equilibria can only exist due to the sequential nature of
the voting procedure and are not possible in related simultaneous voting games. For
the remainder of this chapter, we restrict our attention to the class of monotone
equilibria.

Derived Terms We conclude this section by defining and deriving some technical
terms for later use. Fix some strategy σi. The probability that voter i votes for
Y ∈ {A,W,C} in period one, conditional on the state ω, is obtained by integrating
the marginal σi

Y over all signals, i.e.,

pσi(Y |∅, ω) :=
∫

S
σi

Y (s, ∅)dF (s|ω).

Now, assume that waiting occurs with positive probability and consider an agent
i who waited in period one. Then, the probability pσi(Y |h, ω) of agent i voting for
Y ∈ {A,C} at history h ̸= ∅ given that the state is ω is

pσi(Y |h, ω) :=
∫

S σ
i
Y (s, h)σi

W (s, ∅)dF (s|ω)
pσi(W |∅, ω) .

9



Furthermore, let

Gσi(s|ω) :=
∫ s

¯
s σ

i
W (s′, ∅)dF (s′|ω)
pσi(W |∅, ω)

denote the conditional distribution of signals of agents who waited in period one.
Fix a state ω and a strategy profile σ. Then, the history after period one is

trinominally distributed with parameters N and pσ(Y |∅, ω) for Y ∈ {A,W,C}. More
precisely, the probability that history h = (nA, nC) occurs is

P (h|ω, σ) = N !
nA!nC !(N−nA−nC)!pσ(A|∅, ω)nApσ(C|∅, ω)nCpσ(W |∅, ω)N−nA−nC .

The period two vote count after history h is then binominally distributed with
parameters N − nA − nC and pσ(C|h, ω). The probability that after history h, the
total number of C-votes is equal to k ≥ nC is

P (k|h, ω, σ) =
(
N − nA − nC

k − nC

)
pσ(C|h, ω)k−nCpσ(A|h, ω)N−k−nA .

Taking the sum over all possible histories yields the ex-ante probability P (k|ω, σ) of
a vote count k

P (k|ω, σ) =
∑

h=(nA,nC)
P (h|ω, σ)P (k|h, ω, σ).

From this, we obtain the probability of conviction in state ω under strategy profile
σ. It is given by the sum of the probabilities of all vote counts where the defendant
is convicted

P (C|ω, σ) =
N∑

k=K+1
P (k|ω, σ) + pP (K|ω, σ).

This includes the event of exactly K votes for conviction where the outcome is a
conviction with probability p.

3 Example with Two Voters

To illustrate the model, we present an example with N = 2 voters under the voting
rule (1, 0), i.e., under the unanimity voting rule, and solve it for one and two periods,
respectively.

Let the prior be q = 1
2 and let the signals be distributed on the unit interval

[0, 1] according to the conditional density functions

f(s|I) = 2 − 2s, f(s|G) = 2s.

10



Figure 3 displays the signal distributions and the likelihood ratio.

s0 0.5 1
0

1

2 f(s|I)

f(s|G)
s0 0.5 1

0

0.5

1
F (s|I)

F (s|G)

s0 0.5 1
0

1

2

3

4

•

f(s|I)
f(s|G) = 1−s

s

Figure 3: Density functions, c.d.f.’s and likelihood ratio

The densities are symmetric in the sense that f(s|I) = f(1 − s|G) holds. However,
due to the unanimity voting rule, the setup is asymmetric in I and G. A single vote
for A suffices for acquittal, while two votes are necessary for conviction. Strategic
voters take the voting rule into account and adjust their voting behavior accordingly.

Example 1a: One Period First, consider a single voting period with simultane-
ous voting. We use the results from Duggan and Martinelli (2001) who show that in
their one-period model there is a unique responsive11 equilibrium. The equilibrium
follows a cutoff rule, i.e., there is a unique cutoff ŝ such that the strategies are almost
everywhere equal to

σ(s) =

A, for s ∈ [0, ŝ]

C, for s ∈ (ŝ, 1].

To calculate the cutoff ŝ, one has to condition on the event that a voter is pivotal,
i.e., the event that a voter’s decision could change the outcome. In this example, a
voter is pivotal if and only if the other voter votes C. Conditioning on this event, a
voter with signal ŝ is indifferent between voting for A and voting for C if and only
if

f(ŝ|I)
f(ŝ|G)

1 − F (ŝ|I)
1 − F (ŝ|G)

q

1 − q
= 1

holds. Solving this for ŝ yields ŝ = 1
3 and the ex-ante expected pay-off in this

equilibrium is U1 ≈ 0.796. Voters with low signals vote for A, while voters with
high signals vote for C. Although voters with a signal s ∈ (1

3 ,
1
2) assign a higher

probability to state I than to state G, they still vote for C in equilibrium as they
try to counteract the bias of the voting rule.

11Duggan and Martinelli (2001) call an equilibrium in their simultaneous voting model a re-
sponsive equilibrium if there is no σi that chooses one action with probability 1, i.e., for all σi,
0 <

∫
σi(s)dF (s|G) < 1 and 0 <

∫
σi(s)dF (s|I) < 1 hold.

11



The probabilities of having a signal in the respective intervals conditional on the
state are depicted in Figure 4.

s0 1ŝ = 1
3

0

1

2

f(s|I)
5
9

4
9

s0 1ŝ = 1
3

0

1

2

f(s|G)

1
9

8
9

Figure 4: Conditional probabilities for Example 1a

Example 1b: Two Periods Now, consider the same example within our two-
period model. For this setup, there exist various equilibria. We present a welfare-
optimal equilibrium. Recall that h = (0, 0) and h = (0, 1) denote the possible
histories in period two with 0 and 1 early C-votes, respectively.

Claim 1. A welfare-optimal equilibrium is given by the strategies

σ(s, ∅) =


A, for s ∈ [0, x̂]

W, for s ∈ (x̂, ẑ]

C, for s ∈ (ẑ, 1]

σ(s, (0, 0)) =

A, for s ∈ [0, ŷ]

C, for s ∈ (ŷ, 1]

σ(s, (0, 1)) =

A, for s ∈ [0, x̂]

C, for s ∈ (x̂, 1]

with the cutoffs x̂ = 1
7 , ŷ = 3

7 and ẑ = 5
7 .

The strategies are graphically illustrated in Figure 5. There, “late A/C” labels
the signals for which a voter votes either A or C in period two depending on the
other voter’s action as described below.
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0 x̂ = 1
7 ŷ = 3

7 ẑ = 5
7

1

early A early W early C

late A/C late C

Figure 5: Strategy for Example 1b

The probabilities of having a signal in the respective intervals conditional on the
state are the integrals of the corresponding densities and they are displayed in Fig-
ure 6.

s0 1x̂ = 1
7 ŷ = 3

7 ẑ = 5
7

0

1

2

f(s|I)
0.27

0.41
0.25

0.08
s0 1x̂ = 1

7 ŷ = 3
7 ẑ = 5

7

0

1

2

f(s|G)

0.02
0.16

0.33
0.49

Figure 6: Conditional probabilities for Example 1b

In this equilibrium, a voter with a signal s ≤ 1
7 immediately votes for A and

ends the game. A voter with a signal s > 5
7 votes for C in period one. This can be

understood as a message for the other agent about the strength of the private signal.
A voter i with a signal s ∈ (1

7 ,
3
7 ] waits in period one and then votes depending on

the other voter j’s behavior. If j has voted for C in period one, then i also votes for
C in period two. If j has instead waited in period one, then i votes for A. A voter
with a signal s ∈ (3

7 ,
5
7 ] always waits and then votes C in period one. This way, she

votes for C but ensures that the other voter does not misinterpret her voting as a
strong indicator of guilt.

Using this voting structure allows the agents to communicate with each other.
An agent with a strong signal votes early, and by doing so, she informs the other
voter that her signal is highly informative. A voter with a weak signal waits for the
other agent to vote and updates her beliefs depending on the outcome of period one.
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The values of the cutoffs x̂, ŷ and ẑ are determined by the likelihood ratios

f(x̂|I)
f(x̂|G)

1 − F (ẑ|I)
1 − F (ẑ|G) = 1 (1a)

f(ŷ|I)
f(ŷ|G)

F (ẑ|I) − F (ŷ|I)
F (ẑ|G) − F (ŷ|G) = 1 (1b)

f(ẑ|I)
f(ẑ|G)

F (ŷ|I) − F (x̂|I)
F (ŷ|G) − F (x̂|G) = 1. (1c)

Setting the likelihood ratios equal to 1 identifies the signal strength at which a
strategic voter, who conditions on the event of being pivotal, is indifferent between
two actions. Consider an agent i with a signal equal to the cutoff x̂ who considers
voting early A or voting late A/C. She is pivotal with her choice, if and only if the
other agent votes for C in period one. If the other agent has a signal lower than ẑ,
then i will vote for A in period two either way. Similarly, an agent with signal ŷ
is only pivotal if the other agent has a signal s ∈ (ŷ, ẑ] and an agent with signal ẑ
is only pivotal if the other agent has a signal s ∈ (x̂, ŷ]. The cutoffs are derived in
detail in the appendix.

The defendant is acquitted if at least one voter has a signal below x̂ or both
voters have signals in (x̂, ẑ] with at least one of them being in (x̂, ŷ]. Otherwise, the
defendant is convicted. As a result, with two voting periods, the ex-ante expected
payoff, which is the probability of a correct choice, is U2 ≈ 0.8265 and it is larger
than the ex-ante expected payoff with only one period. In this example, introducing
a second period results in a strict welfare improvement.

At least a weak welfare improvement was to be expected since the outcome of the
equilibrium of the model with one period can also be implemented by an equilibrium
in the model with two periods. To see this claim, note that if all agents vote in period
one, then no agent has a strict incentive to wait.12 We show in the next section that
it holds generally that the introduction of the second voting period implies a strict
welfare gain for all parameters.

4 Welfare-Optimal Equilibrium

In this section, we show the existence of a welfare-optimal equilibrium, we charac-
terize the structure of welfare-optimal equilibria, and we show that there is a strict
welfare improvement to a standard voting procedure with only one period. The re-
sults hold for all (K, p)-voting rules. In particular, they also apply to the unanimity
voting rule and the simple majority voting rule.

First, we formalize the notion of a cutoff equilibrium in the two-period model.
12An agent who waits only learns whether or not she is pivotal. Since agents already condition

on the event of being pivotal, waiting does not increase the expected payoff of an agent in this
situation.
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An equilibrium is called a cutoff equilibrium if, at every history, the agents’ strategies
follow (monotone) cutoff rules. More precisely, an equilibrium σ follows a cutoff rule
in period one if there are cutoffs ŝA, ŝC ∈ [s, s̄] with ŝA ≤ ŝC such that

σ(s, ∅) =


A, for s ≤ ŝA

W, for ŝA < s ≤ ŝC

C, for s > ŝC

holds for almost all signals s ∈ S.
Fix a history h ∈ H\{∅} from period two. Then, an equilibrium σ follows a

cutoff rule at history h if there is some cutoff ŝh ∈ [s, s̄] such that

σ
(
s, h

)
=

A, for s ≤ ŝh

C, for s > ŝh

holds for almost all signals s ∈ S.
We call an equilibrium σ a cutoff equilibrium, if it follows a cutoff rule in period

one and at every history h ̸= ∅.
Our main result shows that (i) there exists an equilibrium that maximizes wel-

fare (in the class of all symmetric monotone equilibria) and (ii) all equilibria that
maximize welfare (in the class of all symmetric monotone equilibria) follow cutoff
rules. This result generalizes the findings of Duggan and Martinelli (2001) for the
simultaneous voting model to the model with two voting periods.

Theorem 1. There exists a welfare-optimal equilibrium. Under (MLRP<) and
(ULR), every welfare-optimal equilibrium is a cutoff equilibrium.

Note that there is a multiplicity of welfare-optimal equilibria. First, changing
σ on a set of measure zero does not change the welfare and does still constitute an
equilibrium. Moreover, for some parameters, there also exist welfare-optimal cutoff
equilibria with different cutoffs simultaneously. Theorem 1 uses the assumptions
(MLRP<) and (ULR) to ensure that every action A,W and C is played in period
one with positive probability. Relaxing these assumptions allows for setups where
degenerate13 equilibria can be welfare-optimal.

The first part of the theorem states the existence of a welfare-optimal equilib-
rium. This is proven by the maximality principle. While the strategy-space is not
compact under the usual metrics, we construct a specific metric on the set S of the
symmetric monotone strategy profiles. Under this metric, S is compact, and the

13Here, with “degenerate”, we mean that not all actions are used. For example, without (ULR),
there exist parameters for which it is never optimal to vote for A. Similarly, without (MLRP<),
there exist parameters for which the welfare-optimal equilibria do not use both periods (e.g. settings
with binary signals and a small number of voters). In such settings, there can exist welfare-optimal
equilibria that yield the same outcome as a degenerate cutoff equilibrium but do not follow cutoff
rules themselves.
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function Ψ : S → [0, 1] that maps a strategy profile to its induced welfare is contin-
uous. By the maximality principle, there exists a strategy profile which maximizes
welfare. McLennan (1998) shows that such a welfare-optimal strategy profile always
constitutes an equilibrium.

After having established existence, the remainder of this section is dedicated to
proving the second part of Theorem 1: First, in Lemma 1 we show that in every
welfare-optimal equilibrium, both voting periods are used. Then, in Lemma 2 and
Lemma 3 we analyze the equilibrium strategies in period one and two, respectively.

Lemma 1. Assume that (MLRP<) holds and let σ be a welfare-optimal equilibrium.
Then, agents wait with a probability strictly between 0 and 1, i.e.,

0 < pσ(W |∅, ω) < 1

holds for ω ∈ {I,G}.

The first period can be used to differentiate between agents with more infor-
mative and less informative signals. This way, any agent who waits can update
her prior accordingly and make a better-informed decision, increasing the expected
payoff. Equilibria that do not use both periods forfeit this opportunity of commu-
nication and, as a result, cannot be welfare-optimal.

For the proof, we start with an equilibrium σ in which only one period is used and
construct an equilibrium with higher welfare over several steps. First, we construct
a strategy profile σ′ with the same welfare as σ: The agents’ time of voting can be
split between both periods without changing the outcome. To do so, we let voters
with more informative signals vote in period one and voters with less informative
signals vote in period two. The resulting strategy profile σ′ is not necessarily an
equilibrium but yields the same welfare as σ by construction. Now, starting from σ′,
we construct a strategy profile σ′′ with strictly higher welfare as follows. For some
signals, there is a profitable deviation from σ′ for an individual voter in period two:
As the voting of period one reveals information about the signal strengths of the
other voters, a voter in period two can update her prior accordingly and deviate to a
more profitable strategy. By McLennan (1998), this individual profitable deviation
shows the existence of a symmetric profitable deviation σ′′ where every voter plays
the individual profitable deviation with a small probability ε. Hence we have shown
that an equilibrium in which only one voting period is used is not a welfare-optimal
(symmetric) strategy profile. For the second step, we use again an argument by
McLennan (1998) who shows that a welfare-optimal equilibrium is also a welfare-
optimal symmetric strategy profile. Since σ is not the latter, it can also not be a
welfare-optimal equilibrium.

As an immediate implication, there exists an equilibrium of the two-period voting
game that yields a strictly higher welfare than all equilibria of the voting game with
only one period.
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Corollary 1. Under assumption (MLRP<), there exists an equilibrium of the two-
period voting game that strictly welfare-dominates all equilibria of the simultaneous
voting game.

Another direct implication of Lemma 1 is that in a welfare-optimal equilibrium,
the inequalities of the monotonicity conditions are strict, i.e., the probabilities of
conviction given that one voter votes A, W , or C, respectively, cannot be equal.

Corollary 2. Under assumption (MLRP<), in any welfare-optimal equilibrium

P (A,ω) < P (W,ω) < P (C,ω)

holds for ω ∈ {I,G}.

If, in a welfare-optimal equilibrium, waiting led to the same probability of con-
viction as any other action, then the equilibrium would be outcome-equivalent to an
equilibrium without waiting. By Lemma 1, this cannot be true for a welfare-optimal
equilibrium.

Strategies in Period One Now, we analyze the equilibrium strategies in period
one. We show why agents follow cutoff strategies, and we establish equations that
characterize these cutoffs.

Fix a strategy profile σ and assume that (MLRP<) holds. Recall that P (Y, ω)
denotes the probability that the defendant is convicted given that the state is ω and
given that all voters follow strategy σ except for one voter who instead votes for
Y ∈ {A,W,C} in the first stage.

First, we focus on comparing voting C with waiting in period one. The probabil-
ity that one individual voter changes the outcome with voting C instead of waiting
is

P (C,ω) − P (W,ω).

For a given signal s, the conditional probability of being in state G is

(1 − q) f(s|G)
qf(s|I) + (1 − q)f(s|G)

and therefore, the probability of changing the outcome for the better with voting C
instead of waiting is

(1 − q) f(s|G)
qf(s|I) + (1 − q)f(s|G)

(
P (C,G) − P (W,G)

)
. (2)

Analogously, the probability of changing the outcome for the worse is

q
f(s|I)

qf(s|I) + (1 − q)f(s|G)
(
P (C, I) − P (W, I)

)
. (3)
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The net effect of voting C instead of waiting is strictly positive if and only if the
ratio of term (3) divided by term (2),

q

1 − q

f(s|I)
f(s|G)

P (C, I) − P (W, I)
P (C,G) − P (W,G) , (4)

is strictly smaller than 1. If the ratio is strictly larger than 1, then an agent stricly
prefers waiting to voting C in period one. For a fixed strategy in period two and
fixed strategies of the other voters, because of f(s|I)

f(s|G) being strictly monotone, setting
term (4) equal to 1 yields a unique cutoff ŝC for which an agent is indifferent between
voting C in period one and waiting.

For the second cutoff, ŝA, we analogously get that an agent is indifferent between
voting A in period one and waiting if and only if

q

1 − q

f(s|I)
f(s|G)

P (W, I) − P (A, I)
P (W,G) − P (A,G) = 1 (5)

holds. Note that for general strategy profiles ŝA ≤ ŝC does not need to hold. How-
ever, for welfare-optimal equilbria, agents wait with strictly positive probability and
we get that the cutoffs for the first period are ordered as in Figure 7.

s ŝA ŝC s̄

early A early W early C

Figure 7: Cutoff strategies in period one

This observation is formally derived by the following lemma.

Lemma 2. Under (MLRP<) and (ULR) for every monotone equilibrium σ with a
probability of waiting strictly between 0 and 1, the equilibrium follows a cutoff rule
in period one.

Strategies in Period Two We continue by analyzing the equilibrium strategies in
period two. To understand the equilibrium behavior, first, note that every history h
in period two induces a single-period game for all agents who waited. In the induced
game, the votes of all agents who voted in period one are observed by the remaining
agents and thus result in an updated prior.

Fix an equilibrium σ in which agents wait with probability strictly between 0
and 1. Then, the updated prior at history h = (nA, nC) is given by

ρσ,h = q

1 − q

(
pσ(A|∅, I)
pσ(A|∅, G)

)nA
(
pσ(C|∅, I)
pσ(C|∅, G)

)nC
(
pσ(W |∅, I)
pσ(W |∅, G)

)N−nA−nC−1
. (6)
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It consists of the ex-ante prior q
1−q , the likelihood ratio of nA agents voting for A in

period one, (
pσ(A|∅, I)
pσ(A|∅, G)

)nA

, (6a)

the likelihood ratio of nC agents voting for C in period one,(
pσ(C|∅, I)
pσ(C|∅, G)

)nC

, (6b)

and the likelihood ratio of the remaining N − nA − nC − 1 voters waiting in period
one,

(
pσ(W |∅, I)
pσ(W |∅, G)

)N−nA−nC−1
(6c)

(excluding one voter, since every voter knows her own signal).
At history h, the one-period game is played with the induced conditional distri-

bution function

Gσ(s|ω) =
∫ s

¯
s σW (s′, ∅)dF (s′|ω)

pσ(W |∅, ω)

replacing F (s|ω) and with the updated prior ρσ,h replacing the ex-ante prior q
1−q .

We call this the at h induced game Gh and use σGh
for the strategy profile played

at Gh that is induced by σ.
Under voting rules without tie-breaking14 and with the assumption of a suffi-

ciently weak prior, Duggan and Martinelli (2001) show that in the simultaneous
voting model, there is an almost everywhere unique responsive equilibrium15 and it
follows a cutoff rule.

However, in the two-period voting game, the updated prior ρσ,h is an endogenous
object. For fixed parameters, there may be some histories for which the prior is
sufficiently weak and other histories for which it is not. Therefore, there can exist
induced games Gh with a responsive equilibrium and other induced games without
one. Our next result characterizes the period two equilibrium strategies of a welfare-
optimal equilibrium. To calculate the cutoffs, we first need the likelihood ratio of
being pivotal. If the (K, p)-voting rule allows for tie-breaks, i.e., p ∈ (0, 1), then
there are two events where a single voter is pivotal. In the first event, the voter
changes the outcome from A to a tie-break, and in the second event, the voter
changes the outcome from a tie-break to C. Without random tie-breaks, i.e., with
p ∈ {0, 1}, exactly one of these events can occur. For a general (K, p)-voting rule,

14In our model, these are voting rules of the form (K, 0) or (K, 1).
15An equilibrium of the one-period voting game is called responsive if both actions, A and C, are

played with positive probability.
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the likelihood ratio lh(ŝh) of a single voter to be pivotal at history h is

pGσ(ŝh|I)(N−K)−nA
(

1 − Gσ(ŝh|I)
)K−nC −1

+ (1 − p)Gσ(ŝh|I)(N−K)−nA−1
(

1 − Gσ(ŝh|I)
)K−nC

pGσ(ŝh|G)(N−K)−nA

(
1 − Gσ(ŝh|G)

)K−nC −1
+ (1 − p)Gσ(ŝh|G)(N−K)−nA−1

(
1 − Gσ(ŝh|G)

)K−nC
,

(7)

if all other voter follow a cutoff rule with cutoff ŝh.
Now, we are ready to characterize the period-two strategies in a welfare-optimal

equilibrium.

Lemma 3. Assume that (MLRP<) and (ULR) hold and fix a welfare-optimal equi-
librium σ of the two-period voting game. Then, at every history h ∈ H\{∅}, σ
follows a cutoff rule with a cutoff ŝh which is equivalent16 to the unique solution for
s′ of the equation

ρσ,h · f(s′|I)
f(s′|G) · lh(s′) = 1. (8)

Equation (8) consists of the updated prior ρσ,h, the likelihood ratio of the own
signal f(s′|I)

f(s′|G) , and the likelihood ratio of the event of being pivotal in period two
conditional on the observations in period one. A voter in period two is indifferent
between voting for A or C if and only if the product of these three is equal to 1. If
the product is strictly larger than 1, then conditioning on the event of being pivotal,
the voter reasons that the state is more likely to be I and, therefore, strictly prefers
voting for A in period two. Analogously, if the product is strictly smaller than 1,
then the voter strictly prefers voting for C.

We have now seen that the voters follow cutoff strategies in both periods and
how these cutoffs are calculated. This concludes the analysis of the structure of the
welfare-optimal equilibria.

5 Information Aggregation

We now show that the two-period voting procedure aggregates information when
the number of voters grows large. Consider a sequence (aN )N∈N of voting setups
where every aN has exactly N voters. We say that (aN )N∈N allows information
aggregation if there exists a sequence of equilibria σN for aN , respectively, such that
the probability of the correct decision under σN converges to 1 as N tends to infinity.

We show that our model with two periods allows for information aggregation even
in settings where simultaneous voting and sequential voting with an exogenous voting
sequence fail to do so. Feddersen and Pesendorfer (1998) analyze the unanimity
voting rule in a simultaneous voting model with binary signals. They prove that

16More precisely, if s′ lies between the first-period cutoffs ŝA and ŝC , then the cutoff ŝh is equal
to s′. If s′ is smaller than ŝA or larger than ŝC , then the induced game Gh has an unresponsive
equilibrium that maximizes its welfare and every cutoff ŝh < ŝA or ŝh > ŝC , respectively, yields the
same outcome.
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even for large electorates, the probability of the correct decision is bounded away
from 1. There, an increase in the jury size does not lead to information aggregation.
Dekel and Piccione (2000) show that in a sequential voting model with exogenous
timing, the equilibria are equivalent to the equilibria of the simultaneous voting
model. Therefore, an exogenous voting sequence does also not allow for information
aggregation under the unanimity voting rule as long as the likelihood ratio of the
signals is bounded. In our two-period voting model, this observation does not hold
anymore. Theorem 2 shows that, even with only binary signals, information is
aggregated for a large jury size regardless of the voting rule.

Theorem 2. Fix a sequence (aN )N∈N of voting setups that share the same param-
eters and only differ in the number of voters N and the voting rule (K, p). Then,
regardless of the voting rules along the sequence, there exists a sequence of equilibria
for which the probability of a correct decision converges to 1.

The idea of the proof is to construct a strategy profile σ as follows. For every
voting rule there is at least one of the two alternatives that needs a vote share
of at least 1

2 to win. Without loss of generality, let it be C. Fix a cutoff z with
F (z|I) + F (z|G) = 1 and let voters with signals above the cutoff z vote early for
C and the remaining voters wait for period two. The weakly monotone likelihood
ratio implies that F (z|I) > 1

2 and F (z|G) < 1
2 hold. By the strong law of large

numbers, the realized vote share of C-votes converges to the expected vote share.
The probability that the game ends in period one with a wrong decision converges
to 0. The expected vote share of early C-votes is different for both states, and
therefore, the late voters learn the correct state with probability converging to 1.
Thus, we have constructed a sequence of strategy profiles for which the probability
of a correct decision converges to 1. Now, the result of Theorem 2 follows by using
an argument by McLennan (1998) that says that under homogeneous preferences,
the welfare-optimal symmetric strategy profile is an equilibrium. Therefore, for a
sequence of welfare-optimal equilibria, the probability of the correct decision also
converges to 1.

Assumptions (MLRP<) and (ULR) are not needed for Theorem 2. The result
also holds if the informativeness of the signals is bounded. In particular, Theorem 2
also applies to the setup of Feddersen and Pesendorfer (1998) who consider a binary
signal space.

We conclude this section with Lemma 4 giving a bound on the speed of conver-
gence.

Lemma 4. The rate of convergence of the probability of a correct decision in the
welfare-optimal equilibrium of the two-period game is at least N−1.
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6 The Swing Voter’s Curse

In this section, we analyze the so-called swing voter’s curse, which occurs under the
simple majority voting rule for an even number of voters.17 In this situation, in
the simultaneous voting game, less informed voters strictly prefer to abstain rather
than to vote

(
see Feddersen and Pesendorfer (1996)

)
. The reason for this swing

voter’s curse is that there exist two different voting situations where a single voter
i’s decision is pivotal. That is, if the aggregated number of A-votes of the other
voters is either one vote more or one vote less than the aggregated number of C-
votes of the other voters. In a simultaneous voting game, the swing voter’s curse
reduces welfare because less informed agents who strictly prefer not to vote have to
vote and may be pivotal, changing the outcome to the wrong alternative.

In the simultaneous voting game, this effect can be mitigated, and the welfare
can be improved by allowing agents to abstain. However, this way, the information
of the less informed voters is lost. We show that the introduction of a second voting
period (without allowing for abstention in period two) can utilize the information
of such voters and leads to a greater welfare improvement than the possibility to
abstain.

First, note that voters in the two-period voting game can mimic abstention of the
simultaneous voting model. Voters can effectively abstain by waiting in period one
and then voting for the majority outcome from period one in period two (or random-
izing with probability 1

2 if the outcome of the first period is a tie). Therefore, the
two-period voting game can achieve the welfare of the welfare-optimal equilibrium
of the simultaneous voting game with abstention. The following theorem states that
there even exists a strict welfare improvement.

Theorem 3. Assume that N is even and that (MLRP<) and (ULR) hold. Then,
under the simple majority voting rule, the welfare-optimal equilibrium of the model
with two periods (without abstention) strictly welfare-dominates all equilibria of the
simultaneous voting game with abstention.

The first part of the proof is to construct a strategy profile of the two-period
voting game that yields the same welfare as the welfare-optimal equilibrium of the
simultaneous voting game with abstention. Then, we show that there is a profitable
deviation in the two-period voting game. Using McLennan, 1998, this shows that
there is an equilibrium in the two-period voting game, which yields a strictly higher
welfare than the simultaneous voting game with abstention.

As a result, the welfare of the welfare-optimal equilibria in the different voting
17We follow the literature by concentrating our analysis on the swing voter’s curse under the

simple majority voting rule. Note that the swing voter’s curse occurs in our setup also under other
voting rules as long as random tie-breaks can occur.
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procedures can be ranked as follows:

USimultaneous ≼ UAbstain ≼ UTwoperiods (9)

If (MLRP<) and (ULR) hold, then the inequalities are strict. Without these assump-
tions, there exist parameters for which the welfare of all three voting procedures is
equal: A voting setting with binary signals, symmetric likelihood ratios, and a prior
of 1

2 is an example.

7 Endogenous Timing Compared to a Fixed Sequence

In this section, we compare our voting model with endogenous timing to a voting
procedure with an exogenously fixed voting sequence. More precisely, we compare it
to a setup with two voting periods where for each voter it is exogenously given (and
common knowledge) in which period this voter casts her vote. For a more detailed
analysis of voting with an exogenously fixed sequence, see Dekel and Piccione (2000).

One substantial difference between an exogenously fixed voting sequence and
voting with endogenous timing is the asymmetry between voters that is induced by
the fixed timing of voting. Naturally, voters that vote in period one and voters that
vote in period two are not ex-ante equal. We show that if we allow for asymmetric
strategies in our voting model with endogenous timing, a strict welfare improvement
is gained over voting with a fixed sequence.

Theorem 4. Under assumptions (MLRP<) and (ULR), there exists a (potentially)
asymmetric equilibrium of the two-period voting game with endogenous timing that
strictly welfare-dominates all equilibria of the two-period voting game with an exoge-
nously fixed voting sequence.

The strict welfare gain is obtained by constructing a profitable deviation. We
start with a welfare-optimal equilibrium of the voting game with a fixed sequence.
The outcome of this equilibrium can be replicated with endogenous timing. Now,
we let a single voter in period one deviate and instead vote in period two with a
positive probability. This discloses additional information to the voters in period
two and subsequently allows for a profitable deviation. Therefore, an endogenous
timing decision yields a strict welfare improvement over a fixed voting sequence.

8 Conclusion

In this chapter, we explore a voting model with an endogenous timing decision.
We show the existence and characterize the structure of welfare-optimal equilibria.
We generalize the well-known result from simultaneous voting models that respon-
sive strategies follow cutoff rules. Moreover, the welfare-optimal equilibria of our
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model with endogenous timing welfare-dominate the equilibria from simultaneous
voting models and voting procedures with a fixed voting sequence. Information is
aggregated even with bounded informativeness of the signals under the unanimity
voting rule. In the case of a possible random tie-break, sequential voting mitigates
the swing voter’s curse more effectively than abstention. The endogenous sorting
into the two voting periods allows the voters to convey the strength of their private
information to each other and ultimately make a better-informed collective decision.

There are various extensions to our model that can be pursued for future re-
search. First, the two periods can be generalized to an arbitrary finite number or
a countable infinite number of periods. Adding more periods makes the informa-
tion transmission of the agents more efficient, resulting in a higher probability of
choosing the correct outcome. However, we have shown in this chapter that even
under the unanimity voting rule with bounded signals, two voting periods suffice for
information aggregation.

Another possible extension is the generalization to a continuous time interval.
Going from two periods to continuous time allows for finer communication between
the voters. Depending on the modeling of the strategies, continuous time can allow
the agents to perfectly communicate their signals and solves the collective coordina-
tion problem completely. Note that allowing the set of possible voting times to be
as rich as a real interval is a particularly strong assumption.

Possible other extensions in this line of research could be the addition of voting
costs that induce a free-riding problem, making waiting costly, or considering a
private value component such that the voter’s interests are not perfectly aligned
anymore.

A Proofs

A.1 Proofs for Section 3

Proof of Claim 1. First, we show that if an equilibrium follows such cutoff rules,
then the cutoffs x̂, ŷ, and ẑ solve the following system of equations:

2x̂+ ẑ = 1 (10)

2ẑ − ẑ2 − 2ŷ − 2ŷẑ + 3ŷ2 = 0 (11)

2ŷ − ŷ2 − 2x̂+ x̂2 − 2ẑŷ + 2ẑx̂ = 0. (12)

Solving the system numerically then yields the unique solution x̂ = 1
7 , ŷ = 3

7 and
ẑ = 5

7 .
Equation (10) is given by setting a voter with signal x̂ to be indifferent between
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voting A and waiting for period two:

f(x̂|I)
f(x̂|G)

P (PivAW |I)
P (PivAW |G) = 1

⇐⇒ f(x̂|I)
f(x̂|G)

1 − F (ẑ|I)
1 − F (ẑ|G) = 1

⇐⇒ 2 − 2x̂
2x̂

1 − 2ẑ + ẑ2

1 − ẑ2 = 1

⇐⇒ (1 − x̂)(1 − ẑ) = x̂(1 + ẑ)

⇐⇒ 1 − x̂− ẑ + x̂ẑ = x̂+ x̂ẑ

⇐⇒ 1 = 2x̂+ ẑ,

where P (PivAW |ω) is the probability of being pivotal with the decision of voting A
or waiting. It is equal to the probability that the other voter votes C. If the other
voter votes A or waits, then A will be the outcome even if i waits.

Equation (11) is given by setting a voter with signal ŷ who waited to be indifferent
for the case that the other voter also waited. Let P (PivAC) be the probability that
a voter is pivotal with deciding between voting late A or C. Then, one gets

f(ŷ|I)
f(ŷ|G)

P (PivAC |I)
P (PivAC |G) = 1

⇐⇒ f(ŷ|I)
f(ŷ|G)

F (ẑ|I) − F (ŷ|I)
F (ẑ|G) − F (ŷ|G) = 1

⇐⇒ 2 − 2ŷ
2ŷ

2ẑ − ẑ2 − 2ŷ + ŷ2

ẑ2 − ŷ2 = 1

⇐⇒ (1 − ŷ)(2ẑ − ẑ2 − 2ŷ + ŷ2) = ŷ(ẑ2 − ŷ2)

⇐⇒ 2ẑ − ẑ2 − 2ŷ + ŷ2 − 2ŷẑ + ŷẑ2 + 2ŷ2 − ŷ3 = ŷẑ2 − ŷ3

⇐⇒ 2ẑ − ẑ2 − 2ŷ − 2ŷẑ + 3ŷ2 = 0.

Equation (12) is given by setting a voter with signal ẑ to be indifferent between
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waiting and voting early C:

f(ẑ|I)
f(ẑ|G)

P (PivW C |I)
P (PivW C |G) = 1

⇐⇒ f(ẑ|I)
f(ẑ|G)

F (ŷ|I) − F (x̂|I)
F (ŷ|G) − F (x̂|G) = 1

⇐⇒ 2 − 2ẑ
2ẑ

2ŷ − ŷ2 − 2x̂+ x̂2

ŷ2 − x̂2 = 1

⇐⇒ (1 − ẑ)(2ŷ − ŷ2 − 2x̂+ x̂2) = ẑ(ŷ2 − x̂2)

⇐⇒ 2ŷ − ŷ2 − 2x̂+ x̂2 − 2ẑŷ + 2ẑx̂ = 0.

The probability P (PivW C |ω) of being pivotal between waiting and voting C in
period one is given by the probability that the other voter has a signal in the interval
(x̂, ŷ], which means that for voter i voting C early changes the outcome compared
to waiting.

To finish the proof of Claim 1, it is left to show that there exists a welfare-
optimal equilibrium that follows cutoff strategies. This part is deferred to Section 4,
Theorem 1, which shows for the two-period voting model that there is an equilibrium
that maximizes welfare and follows such cutoff rules.

A.2 Proofs for Section 4

Proof of Theorem 1. First, we show the existence of a welfare-optimal equilibrium.
We construct a metric dS on the set S of the symmetric monotone strategy profiles.
Let Z := H×{A,W,C}×{I,G}. The distance of two strategies under dS is given by
the sum of the differences of the induced ex-ante probabilities pσ(Y |h, ω) of playing
certain actions:

dS(σ1, σ2) =
∑

(h,Y,ω)∈Z

∣∣pσ1(Y |h, ω) − pσ2(Y |h, ω)
∣∣.

Next, we show that the metric space (S, dS) is compact. To show sequentially
compactness, we start with a sequence (σn)n∈N of symmetric monotone strategy
profiles. Let φ denote the function that maps such a strategy into the space of
induced ex-ante probabilities, i.e.,

φ : S → [0, 1]6|H|

σ 7→
(
pσ(Y |h, ω)

)
(h,Y,ω)∈Z

Then, as [0, 1]6|H| together with the taxicab distance d1 is a compact space, the
sequence of the induced probabilities (φ(σn))n∈N has a convergent subsequence
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(φ(σnk
))k∈N. Its limit is induced by a strategy profile σ∗.18 By construction, the

subsequence (φ(σnk
))k∈N converges to σ∗. Therefore, in S, every sequence has a

converging subsequence and (S, dS) is a compact metric space.
Now, the function φ is continuous with respect to the metrics dS and d1. Fur-

thermore, the function that maps the probabilities of actions to the expected welfare

ψ : [0, 1]6|H| → [0, 1](
pσ(Y |x, ω)

)
(h,Y,ω)∈Z

7→ U

is continuous with respect to the metrics d1 on [0, 1]6|H| and d1 on [0, 1].
By the continuity of the composition ψ ◦ φ and the compactness of the strategy

space, there exists a welfare-optimal symmetric strategy profile. McLennan (1998)
shows that such a welfare-optimal strategy profile constitutes an equilibrium.

The second statement of the theorem says that all welfare-optimal equilibria
follow cutoff rules. We prove this through the other results established in Section 4.
The overview is as follows: First, we fix a welfare-optimal equilibrium. Lemma 1
shows that in a welfare-optimal equilibrium, both periods are used. Lemma 2 shows
that agents in a welfare-optimal equilibrium follow cutoff strategies in period one for
almost all signals. Lemma 3 shows that agents follow a strategy in period two that is
equivalent to a cutoff strategy. Together, these results show that in a welfare-optimal
equilibrium, agents follow a cutoff strategy for all signals except for a subset with
probability measure zero. Therefore, every welfare-optimal equilibrium is almost
everywhere equal to a cutoff equilibrium.

Proof of Lemma 1. Every equilibrium σ with pσ(W |∅, I) = 1 yields the same payoff
as a corresponding equilibrium with pσ(W |∅, I) = 0, i.e., it is of no importance
whether all agents wait or no agent waits. Thus, it suffices to fix an equilibrium σ

with pσ(W |∅, I) = 0, which is optimal in the class of such equilibria and to show
that there exists an equilibrium with higher welfare. We show that there exists
an equilibrium with higher welfare by dividing the agents who vote for one action
such that some agents with specific signals vote in period one and the agents with
other signals vote in period two. Then, a single agent can profitably deviate due
to her updated information. Using a result by McLennan (1998), the existence of
a welfare-better strategy profile implies the existence of an equilibrium with higher
welfare.

First, we construct an equilibrium with pσ(W |∅, I) = 0 that is optimal in the
class of all such equilibria. As an equilibrium with pσ(W |∅, I) = 0 is equivalent to an

18To construct such a strategy profile σ∗ for a given limit, define the strategy separately for every
history h. For a given h, start with cutoff strategies that induce the correct probabilities for state
ω = I. Then, adjust the strategy by shifting the probability mass between the actions to obtain the
probabilities for state ω = G without changing the probabilities for ω = I. As the probabilities are
the limit probabilities induced by monotone strategy profiles, the limit strategy profile σ∗ is also
monotone.
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equilibrium of the simultaneous voting model, we can apply the results from Duggan
and Martinelli (2001) to our (more general) (K, p)-voting rule. A welfare-optimal
equilibrium is given by the strategy profile

σ(s, h) =

A, for s ∈ [s, ŝ]

C, for s ∈ (ŝ, s̄]

with ŝ being the solution of the equation

q

1 − q

f(ŝ|I)
f(ŝ|G) lh(ŝ) = 1

where lh(ŝ) denotes the term

pF (ŝ|I)N−K
(
1 − F (ŝ|I)

)K−1 + (1 − p)F (ŝ|I)N−K−1(1 − F (ŝ|I)
)K

pF (ŝh|G)N−K
(
1 − F (ŝ|G)

)K−1 + (1 − p)F (ŝ|G)N−K−1(1 − F (ŝ|G)
)K ,

which is the likelihood ratio of being pivotal if all other voters follow the cutoff
rule with cutoff ŝ. Now, we modify the strategies without changing the outcome
by letting a small part of C-voters vote in period two instead of period one. Fix a
positive ε < 1 − ŝ and define a new strategy profile σ′ by

σ′(s, ∅) =


A, for s ∈ [s, ŝ]

W, for s ∈ (ŝ, ŝ+ ε]

C, for s ∈ (ŝ+ ε, s̄]

σ′(s, h) =

A, for s ∈ [s, ŝ]

C, for s ∈ (ŝ, s̄]
, for all h ̸= ∅.

Now, we fix an agent i, the threshold ŝ and the strategies of all other agents. For
the case p ̸= 1, we construct a payoff increasing strategy profile σ′′

i for agent i
by letting her wait in period one and updating her prior at one particular history
h = (N −K − 1,K). At any other history, i follows the strategy σ. This is given by

σ′′(s, ∅) = W

σ′′(s, (N −K − 1,K)) =

A, for s ∈ [s, ŝ′]

C, for s ∈ (ŝ′, s̄].

σ′′(s, h) =

A, for s ∈ [s, ŝ]

C, for s ∈ (ŝ, s̄].
for all h ̸= ∅, h ̸= (N −K − 1,K)
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with ŝ′ being the unique solution of the equation

q

1 − q

f(ŝ′|I)
f(ŝ′|G)

(
F (ŝ|I)
F (ŝ|G)

)N−K−1 ( 1 − F (ŝ+ ε|I)
1 − F (ŝ+ ε|G)

)K

= 1. (13)

Duggan and Martinelli (2001) show that the inequality

1 − F (ŝ|I)
1 − F (ŝ|G) >

1 − F (ŝ+ ε|I)
1 − F (ŝ+ ε|G)

follows from (MLRP<). As an immediate consequence, the likelihood ratio of being
pivotal is different for ŝ and ŝ′. This implies that

ŝ′ < ŝ

holds, i.e., the cutoffs of σ′ and σ′′ are different at history h = (N−K−1,K). Since
ŝ′ solves equation (13), it is the optimal strategy for agent i given that she observes
that exactly K voters vote C in period one. Hence, σ′′ is a profitable deviation for
player i. For the case p = 1, the analogue construction for history h = (N−K,K−1)
instead of h = (N −K − 1,K) yields the same result.

By a result of McLennan (1998), this implies that there exists a symmetric
equilibrium with higher welfare.

Proof of Corollary 1. Every equilibrium of the simultaneous voting game is outcome-
equivalent to an equilibrium of the two-period model with pσ(W |∅, I) = 0. By
Lemma 1, there exists an equilibrium with strictly higher welfare.

Proof of Corollary 2. Suppose for contradiction that there exists a welfare-optimal
equilibrium σ∗ with one of the inequalities being an equality. Without loss of gen-
erality, let

P (A,ω) = P (W,ω)

be true. Then, the strategy profile where in the first period all probability mass
from waiting is put onto A instead, yields the same expected welfare. By Lemma 1,
there exists an equilibrium with strictly higher welfare, which contradicts welfare-
optimality of σ∗.

Proof of Lemma 2. We show that the best response to any symmetric strategy pro-
file σ follows cutoff rules in period one. Recall that P (Y, ω) is the probability that
the defendant is convicted given that the state is ω and given that one voter votes
for Y ∈ {A,W,C} in the first period and all other voters follow strategy σ. The
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expected payoff of voting A early after receiving signal s is now given by

U(A, s) = f(s|I)
f(s|I) + f(s|G)

(
1 − P (A, I)

)
+ f(s|G)
f(s|I) + f(s|G)P (A,G). (14)

Similarly, let

U(W, s) = f(s|I)
f(s|I) + f(s|G)

(
1 − P (W, I)

)
+ f(s|G)
f(s|I) + f(s|G)P (W,G) (15)

and

U(C, s) = f(s|I)
f(s|I) + f(s|G)

(
1 − P (C, I)

)
+ f(s|G)
f(s|I) + f(s|G)P (C,G) (16)

denote the respective expected payoffs. To see when a voter is indifferent between
two options, let x, al < ah and bl < bh be real numbers and consider the equation

xah + (1 − x)bl = xal + (1 − x)bh, (17)

which is uniquely solved by

x = bh − bl

(ah − al) + (bh − bl)
∈ [0, 1].

Set any two of the three utility functions (14) , (15) and (16) equal to each other.
Then, the resulting equation has the form of equation (17) with x = f(s|I)

f(s|I)+f(s|G) .
Thus, for every pair of utility functions this gives a unique solution for

f(s|I)
f(s|I) + f(s|G) ∈ [0, 1].

Furthermore, we know that it lies in the interior (0, 1) by Corollary 2.
Let xAW denote the value obtained by setting U(A, s) and U(W, s) to be equal.

Then, the utility of voting for A is strictly higher than the utility of voting for
W for all signals s with f(s|I)

f(s|I)+f(s|G) > xAW and strictly lower for all signals s
with f(s|I)

f(s|I)f(s|G) < xAW . In particular a voter is indifferent with a signal s with
f(s|I)

f(s|I)+f(s|G) = xAW . The same holds for xW C and xAC , which are defined the same
way.

By monotonicity, one can rewrite

P (W, I) = P (A, I) + ε1

P (C, I) = P (A, I) + ε1 + ε2

P (W,G) = P (A, I) + δ1

P (C,G) = P (A, I) + δ1 + δ2
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for ε1, ε2, δ1, δ2 > 0. Thus, one gets

xAW = δ1
ε1 + δ1

xAC = δ1 + δ2
ε1 + ε2 + δ1 + δ2

xW C = δ2
ε2 + δ2

.

In particular, xAC is a convex combination of xAW and xW C . By (MLRP<), the
term f(s|I)

f(s|I)+f(s|G) is strictly decreasing in s. By (ULR), for all x ∈ (0, 1) there exists
a unique

sx = sup
s

{ f(s|I)
f(s|I) + f(s|G) ≤ x

}
.

Now, exactly one of the three (in-)equalities

sxAW < sxAC < sxW C , (18)

sxAW > sxAC > sxW C , (19)

sxAW = sxAC = sxW C (20)

holds. If either (19) or (20) holds, then the equilibrium cannot be welfare-optimal
by Lemma 1 since there is no set of signals with a positive measure for which W

is a strictly best response. Thus, inequality (18) holds, which implies that the
equilibrium follows a cutoff rule in period one.

Proof of Lemma 3. Consider the history h = (nA, nC) in period two after nA voters
voted early A and nC voters voted early C. Let

Aσ,n =
{
s

∣∣∣∣ ( f(s|I)
f(s|G)

)N

>
1
ρσ,n

}

denote the set of all signals s such that the likelihood ratio raised to the power of
N overcomes the updated prior. Similarly, define

Bσ,n =
{
s

∣∣∣∣ f(s|I)
f(s|G) <

1
ρσ,n

}

to be the set of all signals whose likelihood ratio is smaller than the updated prior.
Taking the idea from the proof of Lemma 2 in Duggan and Martinelli (2001), there
exists a responsive equilibrium in the induced game Gh if and only if the inequalities∫

Aσ,n

σW (s|∅)µ(ds) > 0

31



and ∫
Bσ,n

σW (s|∅)µ(ds) > 0

hold, i.e., if the probability that an agent has a signal which is stronger than the
prior in either direction is positive.

Consider now the case that this condition is satisfied at h. Even though as-
sumption (A4) in Duggan and Martinelli (2001) does not necessarily hold in our
two-period model, the assumptions necessary for their Theorem 1 are fulfilled and
its conclusion applies to the induced game Gh. Hence, there exists an almost every-
where unique responsive strategy profile that is an equilibrium of Gh with cutoff s′

given as the solution of

ρσ,h · f(s′|I)
f(s′|G) · lh(s′) = 1.

By Lemma 1 all histories are reached with positive probability. As an unresponsive
equilibrium in a one-period voting game yields a lower welfare than the unique
responsive equilibrium, we get that in a welfare-optimal equilibrium, the unique
responsive equilibrium is played in every induced game of periode two where one
exists.

At the histories where no responsive equilibrium exists, the welfare-optimal un-
responsive equilibrium is played in period two, i.e., either all voters vote A or all
voters vote C.

A.3 Proofs for Section 5

Proof of Theorem 2. As a consequence of McLennan (1998), it is sufficient to show
that there exists a sequence of strategy profiles for which the probability of a correct
decision converges to one.

For our construction, let z be a cutoff with the symmetric property F (z|I) +
F (z|G) = 1. By the intermediate value theorem, such a z exists. Let r := F (z|I) =
1 − F (z|G). Intuitively, treating the two intervals [0, z] and (z, 1] like two discrete
signals that indicate innocence/guilt, respectively, r is the probability that an agent
receives a correct signal. The number of correct signals is binomially distributed
with parameters N and r. Note that r > 1

2 holds as the likelihood ratio is weekly
decreasing and not everywhere constant.

For each N , we now construct a strategy profile σN . Fix a setup aN with voting
rule (K, p). At least one of the two alternatives needs at least half of the votes to
be implemented with positive probability. First, consider the case that this C needs
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at least N/2 votes, i.e., K ≥ N/2 holds. Define the strategy profile σN by

σN (s, ∅) =

W, for s ≤ z

C, for s > z

σN (s, h) = A, for all h ̸= ∅ with nC < N/2

σN (s, h) = C, for all h ̸= ∅ with nC ≥ N/2.

The outcome of σN is C if and only if at least N/2 voters receive a signal s ∈ (z, 1].
Now, consider the second case that A needs at least N/2 votes to be implemented

with positive probability. Analogously, we construct σN by

σN (s, ∅) =

A, for s ≤ z

W, for s > z

σN (s, h) = A, for all h ̸= ∅ with nA ≥ N/2

σN (s, h) = C, for all h ̸= ∅ with nA < N/2.

Again, the outcome of σN is C if and only if at least N/2 voters receive a signal
s ∈ (z, 1]. For both cases and for both states, the probability of a wrong decision
is bounded above by the probability that a binomially distributed random variable
X(N,r) with parameters N and r takes a value less or equal to N/2 (i.e., at least half
of the voters receive the wrong signal).

By the weak law of large numbers, the realized vote share of C-voters in period
one converges to the expected vote share 1 − F (z|ωN ) in probability, which implies
that the correct outcome is implemented with probability approaching 1. Thus, we
have constructed a sequence (aN )N∈N of strategy profiles such that, regardless of
the sequence of voting rules along the setups, the probability of an incorrect choice
converges to 0 as N converges to infinity.

Proof of Lemma 4. Consider our construction for the proof of Theorem 2. The
probability of a wrong decision is bounded above by the probability that a binomially
distributed random variable X(N,r) with parameters N and r takes a value less or
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equal N/2. By Chebyshev’s inequality this probability is at most

P

(
X(N,r) ≤ N

2

)

≤ P

(∣∣X(N,r) − rN
∣∣ ≥ N

(
r − 1

2
))

≤ r(1 − r)N
N2(r − 1

2
)2

= r(1 − r)(
r − 1

2
)2 · 1

N

= O(N−1).

Thus, we have constructed a bounding sequence that converges to zero at rate N−1.
Therefore, for the probability of a wrong decision under the strategy profiles (σN ),
the rate of convergence is at least N−1. As the probability of a wrong decision is
even smaller in a welfare-optimal equilibrium, this constitutes a bound for the rate
of convergence of the probability of a correct decision for the sequence of welfare-
optimal monotone equilibria.

A.4 Proofs for Section 6

Proof of Theorem 3. Consider the welfare-optimal equilibrium of the simultaneous
voting game. Feddersen and Pesendorfer (1996) show that this equilibrium follows
a cutoff rule. The probability of a single voter abstaining is non-zero. Hence, for a
fixed N , there is a positive probability that all voters abstain. For the sequential
voting game, construct the strategy profile σ as follows. In the first period, the
strategy is given by the strategy profile of the simultaneous voting game, except that
agents wait instead of abstaining. In period two, all agents vote for the outcome
that gained a simple majority in period one. If the result of the first period results
is a tie, all agents who waited then vote for each alternative with equal probability.
This strategy profile is outcome-equivalent to the welfare-optimal equilibrium of the
simultaneous voting game.

Now, change the voting strategies such that at the history h = (0, 0) where every
agent waited, the welfare-optimal cutoff strategy of the induced game Gh is played.
This event occurs with positive probability, and the welfare-optimal equilibrium of
the induced game in period two yields a strictly higher welfare than a coin flip. Since
this strictly increases the probability of the correct decision, there exists a strategy
profile of the two-period model with strictly higher welfare than all equilibria of the
simultaneous voting model. By McLennan (1998), there also exists an equilibrium
with strictly higher welfare.
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A.5 Proofs for Section 7

Proof of Theorem 4. Consider a welfare-optimal equilibrium of the two-period vot-
ing game with a fixed voting sequence. The outcome of this equilibrium can be
replicated by an asymmetric strategy profile σ of the two-period voting game with
endogenous timing. If all voters vote in the same voting period, then the same ar-
gument as in Corollary 1 implies the existence of a profitable deviation. Therefore,
we consider the situation that there is at least one voter in each period.

Fix a single voter i who votes in period one. Let ε > 0 be sufficiently small
and define a deviation for voter i as follows: For a signal s with σ(s) = A and
F (s|I), F (s,G) ≤ ε, voter i waits in period one and votes for A in period two
instead. If the other voters in period two observe a history h where this event
occurred, they play the welfare-optimal equilibrium of the induced simultaneous
voting game. By the assumptions (MLRP<) and (ULR), the induced prior at h is
different compared to the induced prior where i votes early. Thus, the equilibrium
of the induced simultaneous voting game yields a strict welfare gain.

Note that the existence proof for Theorem 1 for a welfare-optimal symmetric
equilibrium also shows the existence of a welfare-optimal asymmetric equilibrium as
the number of voters is finite, and the space of all asymmetric strategy profiles is
therefore also compact.
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