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1 Introduction

This paper studies a one-sided matching market with search frictions, on-the-match

learning, and on-the match rematching. A continuum of ex-ante homogeneous agents

meet each other following a Poisson process and have to decide whether to form a

match or not upon meeting. Inside a match, unknown and potentially correlated

types are drawn for each agent that specify whether or not that match is beneficial for

the corresponding agent. An agent receives an unobserved and constant positive flow

payoff if her current match is beneficial for her and a flow payoff of zero otherwise.

In particular, a match can be beneficial for one of the two agents and not beneficial

for the other one. Agents whose match is not beneficial receive public bad news

about their current match according to a Poisson process.

As in the previous paper, a central assumption is that both agents in a match can

search for a new partner. This fundamentally shapes the set of possible equilibria.

Not only the payoff inside the match but also the endogenous risk of being left by

the partner are important factors for the agents’ decision-making. The rematching

behavior of the partner affects the continuation value of the current match and, as

a consequence, affects the own behavior as well. This establishes an endogenous

interest of the agents in the match value for the partner.

Possible applications for this analysis are professional relationships between busi-

ness partners, athletes who search for a duo partner, or scientists searching for a

co-author. In these applications it is plausible that a partner does not find her cur-

rent match valuable anymore and that she tries to find a more fitting partner. One

can abstract from the one-sidedness of the search market and obtain the same results

for a corresponding two-sided model. In particular, the trade-offs in this paper also

apply to applications with two market sides like job markets or marriage markets.

We analyze the agents’ rematching behavior, the market structure, and the wel-

fare effect of the speed of learning. First, we provide the existence and uniqueness

of a steady-state equilibrium. The equilibrium behavior is as follows: For single

agents and agents who received bad news about the profitability for themselves it is

a dominant strategy to search for a partner. In matches where both agents have not

received bad news, the agents do not search for a new partner as not receiving bad

news for a period of time makes their belief about their current match type more op-

timistic than the belief about a potential new match. There are three counteracting

effects that determine the equilibrium behavior of an agent whose partner received

bad news: The first effect is that the longer the match persists without receiving

bad news herself, the more optimistic is the agent about her own type. The second

effect is that the agent takes into account that her partner tries to replace her after

receiving bad news. The third effect is that due to the partner’s bad news the agent

updates her belief about her own type. This third effect can change the belief for

better or for worse: Depending on whether there is a positive or negative correlation
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between the unknown types in a pair, bad news for the partner is bad or good news

for oneself. Together, these three effects imply that even if an agent herself has not

received bad news, the bad news for the partner can cause the agent to try to replace

the partner to avoid the risk of becoming single. As a result, there are three cases of

how agents whose partners have received bad news behave in equilibrium. First, an

agent searches for a new partner if her current partner received bad news. Second,

an agent stays in the current match even if her current partner received bad news.

Third, an agent whose partner received bad news follows a cutoff strategy, i.e., she

searches for a new partner until the current match persists for a certain time and

stops searching afterward.

We use comparative statics to show that a faster learning rate is ex-ante beneficial

for the agents entering the market if the agents’ goals are aligned, i.e., if there is a

positive and sufficiently strong correlation of the unknown types in a pair. If both

agents in a match are likely to have the same type, then learning this type benefits

both of them. Conversely, if there is a sufficiently strong negative correlation, then

a faster learning rate ex-ante hurts the agents. If it is likely that there is exactly one

agent who profits from the match, then this agent is worse off by a faster learning

rate of the types and this utility loss dominates the utility gain of the partner.

In particular, with sufficiently strong negative correlation, agents in a pair would

strictly prefer that both of them would commit to never rematch if they could do

so, which would correspond to a learning rate of zero, i.e., no learning at all.

This section is concluded with an overview of the related literature. The rest of

this paper is organized as follows. Section 2 presents the model. In Section 3, we

define the equilibrium concept of a steady-state equilibrium. In Section 4, existence

and uniqueness is shown for the subclass of monotone steady-state equilibria. We

show in Section 5 that the previous restriction to monotone equilibria is without

loss. Section 6 uses comparative statics to analyze the effect of a faster learning

rate on the agents’ welfare. Section 7 concludes. The proofs can be found in the

appendix.

1.1 Related Literature

Our model builds on the search framework developed by Burdett and Coles (1997),

Shimer and Smith (2000), Smith (2006), and Kreutzkamp et al. (2021). In these

models, having a high type results in a higher flow utility for all potential partners.

In this paper, agents are ex-ante homogeneous and draw a new type each time they

form a new match. Therefore, here, a high long-term potential does not persist

outside of the current match.

The assumption of ex-ante homogeneous agents that has led to this paper was

inspired by Smith (1995) who presents a search-and-exchange market for ex-ante

homogeneous goods where the valuations for the goods are drawn independently at
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each meeting. In Smith (1995), agents who meet can exchange goods and separate

afterward while in our model matched agents form a pair, and their future utilities

also crucially depend on their partners’ rematching decisions.

On-the-job search in labor markets has been widely analyzed before. Pissarides

(1994) introduces search equilibria with on-the-job search. An important assumption

is that only workers can search for new jobs while being employed. For a survey

on search models of the labor market, see Rogerson et al. (2005). In contrast to

on-the-job search, in our model, both agents in a match can continue searching

which is central to our results. Both agents in a pair can rematch and the resulting

equilibrium strategies have to be optimal given the partner’s future rematching

decisions.

Kreutzkamp et al. (2021) features an on-the-match search model similar to this

paper. In both papers, the expected continuation payoff inside a match changes

over time. In Kreutzkamp et al. (2021), the present value of a match increases as

capital is accumulated inside a match. Here, the the absence of bad news over a

period of time mathematically has similar effects on the present value of a match as

capital accumulation has. The major differences in the models are that Kreutzkamp

et al. (2021) assumes a common ranking over heterogeneous agents with constant

productivity types and capital accumulation inside the matches, while this paper

considers ex-ante homogeneous agents whose productivity types are idiosyncratic,

initially unknown to the agents, and have to be learned over time.

A related strand of literature has studied partnership dissolution where two

agents jointly own an asset. Cramton et al. (1987) show that an ex-post efficient

dissolution is possible if the shares of the asset are sufficiently even. Fieseler et al.

(2003) study interdependent valuations and analyze when efficient trade can oc-

cur. In recent work, Loertscher and Wasser (2019) study partnership dissolution

with interdependent values and derive optimal ownership structures. Van Essen

and Wooders (2016) introduce a dynamic auction format to dissolve partnerships.

While this strand of literature analyzes how to dissolve a partnership efficiently, we

endogenize the question of when to dissolve a partnership by modeling a search mar-

ket and embedding the partnerships into the market. Also, in our model, there is

no jointly owned asset to be divided for the dissolution of a partnership. Fershtman

and Szabadi (2020) study a related question and also consider an endogenous part-

nership dissolution. In contrast to our model, they analyze a single pair of agents

with private information about the joint desirability of the partnership who are not

ex-ante sure whether or not to dissolve their partnership.

2 The Model

We construct a one-sided search model with continuous time and non-transferable

utility where agents learn and search on-the-match. There is a continuum of ex-ante
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homogeneous agents in the market. Every agent is either single or in a match with

another agent. New agents enter the market as singles at a constant rate η > 0 and

agents in the market meet each other following a quadratic meeting technology with

parameter λ > 0, that is, each agent meets an agent from a mass m in the market

uniformly at random with Poisson rate λm. When two agents meet, both of them

have to simultaneously decide whether to accept or decline forming a new match. If

both agents agree, they form a new pair and leave their respective partners (if they

are matched) who become singles.

After two agents form a pair, a hidden binary type (h or l) is drawn for each of

them that indicates the desirability of the current match. The probabilities for the

types are phh > 0 for (h, h), phl > 0 for (l, h) and (h, l), respectively, and pll > 0 for

(l, l). This allows the types to be correlated. We call pairs where the types are (l, h)

or (h, l) mixed pairs.

An h-agent gains an unobserved constant flow utility of w > 0 while being

matched with her partner. A single agent or a matched l-agent gains a flow utility

of 0. All agents discount future payoffs at rate r. For example, an h-agent whose

match is dissolved after time t0 receives an (unobserved) aggregated payoff of∫ t0

0
w · e−rtdt =

w

r

(
1− e−rt0

)
in that match.

If the hidden type of an agent is l, then the agent will receive bad news about

the current match due to a Poisson process at rate γ. The occurrence of bad news

is publicly observable by both agents in that match. If the hidden type of an agent

is h, then the agent will never receive bad news. Therefore, bad news fully reveal

that the type of the corresponding agent is l. For a matched agent, we denote the

(public) information about whether or not bad news occured in the current match

by (S, S′) ∈ {B,U} × {B,U}, where S = B if and only if the agent has received

bad news herself and S′ = B if and only if the partner has received bad news (B

standing for “bad news” and U standing for “unknown”). For the remainder of this

paper, we use lower-case letters like i, j ∈ {l, h} for hidden types and upper-case

letters like S, S′ ∈ {U,B} for the public information.

Beliefs If an agent is in a match without receiving bad news for a period of time,

she adjusts her belief accordingly. Let P (ij|SS′, t) denote the belief that the hidden

types are ij given that the information is (S, S′) and given that the pair is together

for time t. For the information (B,B) we know that the type is ll for sure. The

other conditional beliefs of the agents about the hidden types can be calculated by
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the Bayesian rule. For the information (U,U) we get the beliefs

P (hh|UU, t) =
phh

phh + 2phle−γt + plle−2γt
,

P (hl|UU, t) = P (lh|UU, t) =
phle

−γt

phh + 2phle−γt + plle−2γt
,

P (ll|UU, t) =
plle

−2γt

phh + 2phle−γt + plle−2γt
,

and for the information (U,B) we get the beliefs

P (hl|UB, t) =
phl

phl + plle−γt
,

P (ll|UB, t) =
plle

−γt

phl + plle−γt
.

Figure 1 illustrates the change of beliefs over time.

t

1

0.5

0.2

P (i = h|UU, t)

P (i = h|UB, t)

1 2 3 4 5

Figure 1: Conditional beliefs in pairs that have not received bad news for time t are

strictly increasing. The parameters used for the graphs are γ = ln(2), phh = 0.4,

phl = 0.1, and pll = 0.4.

The beliefs for the information (B,U) are analogous to the ones for (U,B). Note

that receiving no bad news over a period of time is generally good news for the

agents, as the belief of having an h-type is increasing over time. In particular,

P (i = h|UU, t) = P (hh|UU, t) + P (hl|UU, t) and

P (i = h|UB, t) = P (hl|UB, t)

are both strictly increasing in t. Analogously, the belief that the partner has an

h-type is also increasing over time. For the remainder of this paper, when we write

that the beliefs are increasing over time, we refer to the beliefs P (i = h|UU, t),

P (i = h|UB, t), and P (j = h|UU, t) being strictly increasing in t.
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Strategies and Masses Note that the belief at time t is independent of the time

at which bad news occurred, since bad news fully reveal the state of the correspond-

ing agent and without bad news the conditional probability of having an h-type

only depends on the total amount of time without bad news. Therefore, we restrict

our attention to symmetric Markov strategies that only condition on the current

information type. A Markov strategy for an agent is a measurable function

φ :
{
∅, UU,UB,BU,BB

}
× [0,∞) → [0, 1]

where φ(SS′, t) is the probability that an agent who is in a match for exactly time

t and for whom the information in the current match is (S, S′) accepts to rematch

upon meeting another agent. Similarly, φ(∅, t) is the probability that an agent who

is single for exactly time t agrees to match.

Let mij,SS′(t) denote mass of agents in pairs which are together for exactly time

t ∈ [0,∞), who have type i, whose partner has type j, and whose information is

SS′. Let Θ denote{
∅, (hh, UU), (hl, UU), (hl, UB), (lh, UU), (lh,BU), (ll, UU), (ll, UB), (ll, BU), (ll, BB)

}
,

i.e., the set of all indices of matches that can occur, where ∅ denotes singles. Let

M :=
(
mθ(t)

)
t≥0,θ∈Θ

denote the vector of all masses. For θ ∈ Θ let

mθ :=

∫ ∞

0
mθ(t)dt ∈ R+

denote the aggregated mass of such agents in the market.1 The aggregated mass of

agents who accept forming a new match is given by

m0 :=

∫ ∞

0
m∅(t)φ(∅, t) dt +

∑
(ij,SS′)∈Θ\{∅}

∫ ∞

0
m(ij,SS′)(t)φ(SS

′, t) dt.

The term is derived by integrating over all masses of agents times their respective

probability of accepting. In particular, λm0 is the rate of the Poisson process with

which an individual agent meets accepting agents.

Survival Probabilities For fixed masses and for θ ∈ Θ let qθ(t0, t1) denote the

survival probability from t0 to t1. More precisely, q(ij,SS′)(t0, t1) is the probability

that an ij-pair with information (S, S′) that is together for exactly time t0 is still

together after time t1 without changing its information. Similarly, q∅(t0, t1) is the

respective probability that a single who is single for time t0 is single for time t1.

1Note that, in general, the aggregated mass could be infinite.
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Formally, the probabilities are

q∅(t0, t1) = exp
(
−
∫ t1

t0

λm0φ(∅, t) dt
)
,

q(ij,SS′)(t0, t1) = exp
(
−
∫ t1

t0

λm0φ(SS
′, t) + λm0φ(S

′S, t) +
(
1i=l1S=U + 1j=l1S′=U

)
γ dt

)
,

since agents form new matches following an inhomogeneous Poisson process with the

corresponding rate λm0φ(·, t). The term 1i=l1S=U + 1j=l1S′=U ∈ {0, 1, 2} denotes

the number of agents in the match who can still receive bad news.

Without knowing the hidden types, the expected survival probability of a match

with information (S, S′) is

qSS′(t0, t1) =
∑

i,j∈{h,l}

P (ij|SS′, t0) q(ij,SS′)(t0, t1),

where P (ij|SS′, t0) denotes the belief of the pair having types ij.

Continuation Payoffs Fix a vector of masses M and a strategy φ with m0 < ∞.

Assume for now that the masses do not change over time. Then, the expected

continuation payoffs are well-defined. Let V (∅, t0) be the expected continuation

payoff of an agent who are single for exactly time t0 and let V (SS′, t0) be the

expected continuation payoffs of an agent that is in a match for exactly time t0 and

whose information is (S, S′). In particular, V (UU, 0) is equal to the expected utility

of forming a new match.

The expected continuation payoff V (·, t0) can be constructed from the following

components: All future flow payoffs in the current match are discounted by

qSS′(t0, t)e
−r(t−t0),

i.e., by the survival rate multiplied by the discount factor for time t. The expected

flow payoff in the current match is equal to w times the belief of having an h-type:

w
(
P (hh|SS′, t) + P (hl|SS′, t)

)
.

The rate of accepting a new match multiplied by the corresponding continuation

payoff is

λm0φ(SS
′, t)V (UU, 0)

and the rate of becoming single multiplied by the continuation payoff of being single

is

λm0φ(S
′S, t)V (∅, 0).
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The term

1S=U

(
P (lh|SS′, t) + P (ll|SS′, t)

)
γV (BS, t)

describes the rate at which the agent oneself receives bad news times the continuation

payoff after that event. Similarly,

1S′=U

(
P (hl|SS′, t) + P (ll|SS′, t)

)
γV (SB, t)

is the rate at which the partner receives bad news times the continuation payoff.

Now, the expected continuation payoff V (SS′, t0) can be calculated recursively

by integrating over the expected future payoffs as follows: For all t0 ≥ 0,

V (SS′, t0) =

∫ ∞

t0

qSS′(t0, t)e
−r(t−t0)

(
w
(
P (hh|SS′, t) + P (hl|SS′, t)

)
+ λm0φ(SS

′, t)V (UU, 0) + λm0φ(S
′S, t)V (∅, 0)

+ 1S=U

(
P (lh|SS′, t) + P (ll|SS′, t)

)
γV (BS, t)

+ 1S′=U

(
P (hl|SS′, t) + P (ll|SS′, t)

)
γV (SB, t)

)
dt,

V (∅, t0) =
∫ ∞

t0

q∅(t0, t)e
−r(t−t0)λm0φ(∅, t)V (UU, 0) dt

holds.

3 Steady-State Equilibria

We split our equilibrium concept into two parts. The first part is the mutual op-

timality of the strategies. The second part requires the masses to satisfy certain

balance conditions.

We now begin with the first part, the optimality.

Definition 1. The pair (M, φ) constitutes a partial equilibrium if m0 is finite and

φ is mutually optimal taking the masses as given, i.e., if for all public information

SS′ ∈ {∅, UU,UB,BU,BB} and t ≥ 0

V (UU, 0) < V (SS′, t) ⇒ φ(SS′, t) = 0

V (UU, 0) > V (SS′, t) ⇒ φ(SS′, t) = 1

holds.

Taking the masses and the strategies of the other agents as given and constant

over time, as well as the own strategy in the future2, fixes the continuation payoffs

2By the One-Shot Deviation Principle, it is sufficient the require pointwise optimality of the
strategies.
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V (UU, 0) for accepting to form a new match and V (SS′, t) of not accepting. If the

expected value of a new match is strictly larger than the continuation payoff of the

current state, then an agent accepts. Conversely, if the expected value of a new

match is strictly smaller, then an agent rejects.

Note that this equilibrium concept includes sequential rationality. In particular,

agents are not allowed to play non-optimal even on a measure null set or if the

partner would accept them with probability 0. When an agent is indifferent, i.e.,

at a time t with V (UU, 0) = U(SS′, t), then she can accept with any probability

q ∈ [0, 1].

In any partial equilibrium, singles and agents who received bad news always

accept to form a new match. As their current state yields a flow payoff of 0, their only

possible payoff comes from forming a new match. Consequently, as the equilibrium

strategy of an agent with bad news is constant, the corresponding partner has to

follow a monotone equilibrium strategy.

Lemma 1. In all partial equilibria φ(∅, t) = 1, φ(BU, t) = 1, and φ(BB, t) = 1 hold

for all t. Furthermore, agents who have not received bad news, but whose partners

have received bad news follow a cutoff strategy, that is, they accept to rematch until

some cutoff t∗ ∈ [0,∞] and they do not accept afterwards.

For the second part of our equilibrium concept, the masses need to satisfy balance

conditions for every state. In short, for each type θ ∈ Θ, the masses have to be equal

to the inflow times the survival probability, i.e.,

mθ(t) = Inflow(θ) · qθ(0, t)

has to hold with Inflow(θ) being the inflow of new agents into state θ due the

matching process or new market entries of singles. More precisely:

Definition 2. A partial equilibrium (M, φ) is a steady-state equilibrium if for all
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t ∈ [0,∞) the pointwise balance conditions

m∅(t) =
(
η + λm0(m0 −m∅)

)
q∅(0, t)

mhh,UU (t) = phhλm
2
0 qhh,UU (0, t)

mhl,UU (t) = 2phlλm
2
0 qhl,UU (0, t)

mll,UU (t) = pllλm
2
0 qll,UU (0, t)

mhl,UB(t) =

∫ t

0
γmhl,UU (t

′) qhl,UB(t
′, t) dt′

mll,UB(t) =

∫ t

0
2γmll,UU (t

′) qll,UB(t
′, t) dt′

mll,BB(t) =

∫ t

0
γmll,UB(t

′) qll,BB(t
′, t) dt′

hold.

The balance conditions state that the masses M together with the strategy φ

and the quadratic meeting technology imply the same masses M again. This ensures

that the masses remain stationary in equilibrium.

4 Characterization of Monotone Equilibria

The belief of having a high type as well as the belief of the partner having a high type

both increase over the time in a match. Therefore, agents become more optimistic

the longer a match persists without bad news. In the following, we analyze monotone

equilibria where agents willingness to accept to rematch decreases as their beliefs

increase. Later we will show that there exist in fact no non-monotone steady-state

equilibria. Therefore, it is without loss to restrict attention to monotone equilibria.

Definition 3. A partial equilibrium/steady-state equilibrium (M, φ) is calledmono-

tone if the acceptance probability φ(SS′, t) is weakly decreasing in t for every infor-

mation (S, S′).

Since single agents and agents who have received bad news always accept to

rematch, the only equilibrium behaviors to be specified are the ones for agents with

information UU and UB. The next lemma says that in a monotone equilibrium,

agents with information UU never accept to match with a new partner.

Lemma 2. In all monotone partial equilibria φ(UU, t) = 0 holds for all t > 0.

The reason is that the continuation payoff in a match without bad news is strictly

increasing over time as the beliefs get more optimistic and the probability of being

left by the partner is non-increasing.
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Knowing the agents’ equilibrium behavior simplifies the balance conditions. More

precisely, for a partial equilibrium to satisfy the infinite set of pointwise balance con-

ditions it is necessary and sufficient to satisfy a finite number of aggregate balance

conditions. This reduction of the balance conditions to a finite set of equations is a

substantial simplification. In particular, for any given cutoff t∗ one can obtain the

masses numerically.

Lemma 3. A monotone steady-state equilibrium satisfies (M, φ) the aggregated

balance conditions. For generic parameters3 the aggregated balance conditions are:

m∅ =
η + λm2

0

2λm0

mhh,UU = ∞

mhl,UU =
2phlλm

2
0

γ

mll,UU =
pllλm

2
0

2γ

mhl,UB,≤t∗ = phlm0

(
1 +

2λm0

γ − 2λm0
e−γt∗ − γ

γ − 2λm0
e−2λm0t

∗
)

mhl,UB,>t∗ = phlm0

( 2γ

γ − 2λm0
e−2λm0t

∗
− 4λm0

γ − 2λm0
e−γt∗

)
mll,UB,≤t∗ = pllm0

( 2λm0

γ + 2λm0
+ 2λm0e

−2γt∗ +
4γλm0

γ + 2λm0
e−(2λm0+γ)t∗

)
mll,UB,>t∗ = pllm0

( 4γλm0

(γ + λm0)(γ − 2λm0)
e−(2λm0+γ)t∗ − 2λm0(γ + 2λm0)

(γ + λm0)(γ − 2λm0)
e−2γt∗

)
mll,BB = pllm0

( γ − 2λm0

2(γ + 2λm0)
− λm0(γ + 2λm0 − 2γ2 + 2γλm0 + 4λ2m2

0)

(γ + λm0)(γ − 2λm0)
e−2γt∗

− 2γλm0(γ + 2λm0 + 2γ2 − 2γλm0 − 4λ2m2
0)

(γ + 2λm0)(γ + λm0)(γ − 2λm0)
e−(2λm0+γ)t∗

)
m0 = m∅ +mhl,UB,≤t∗ +

1

2
mhl,UB,>t∗ +mhl,UB,≤t∗ +

1

2
mll,UB,>t∗ +mll,BB

Conversely, if the aggregated masses of a monotone partial equilibrium (M, φ) satisfy

the aggregated balance conditions, then there exists a unique monotone steady-state

equilibrium (M′, φ) that has the same aggregated masses as (M, φ).

These aggregate balance conditions are obtained by integrating the pointwise

balance conditions. As a direct consequence, the aggregate balance conditions are

necessary for the pointwise balance conditions. The last equation gives the mass

of all agents who are willing to accept a new match. The factor 1
2 of the masses

mhl,UB,>t∗ and mll,UB,>t∗ accounts for the fact that only half of the agents in such

pairs are willing to rematch. The crucial part of Lemma 3 is that the aggregate

3With generic, we here mean that γ ̸= λm0 and γ ̸= 2λm0 hold. This is without loss as the
statement of Lemma 3 also holds for non-generic parameters but with different terms for the masses.
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balance conditions are also sufficient. The proof idea is that the aggregate masses

determine the mass m0 of agents who search for a new partner and the mass m0

determines the pointwise masses.

As a consequence of Lemma 3, we get the following equations which correspond to

the more commonly known balance conditions of the form “Inflow equals Outflow”.

Corollary 1. For any (M, φ) that satisfies the aggregated balance conditions, the

equations

2phlλm
2
0 = λm0(2mhl,UB,≤t∗ +mhl,UB,>t∗)

pllλm
2
0 = λm0(2mll,UB,≤t∗ +mll,UB,>t∗ + 2mll,BB)

hold.

Corollary 1 says that the total inflow rate of agents into hl-pairs (2phlλm
2
0) is

equal to the total outflow rate (2λm0 times the the number of agents who accept

to rematch). The analogue also holds for ll-pairs while Lemma 3 shows the same

result for singles.

In a monotone steady-state equilibrium, every pair except for hh-pairs eventually

dissolves. This allows us to calculate the mass m0 of agents who accept forming a

new match, without knowing the specific equilibrium cutoff t∗.

Lemma 4. In every monotone steady-state equilibrium

m0 =

√
η

λphh

holds.

Lemma 4 uniquely determines the rate λm0 for a given choice of parameters.

Intuitively, the balance conditions imply that the inflow into the market is equal to

the rate at which agents enter an absorbing state, i.e., the rate at which hh-pairs

meet. Thus, η = phhλm
2
0 holds. Formally, adding the aggregated balance conditions

yields this result.

Our next lemma shows that for the given m0 there is a unique cutoff t∗ with a

corresponding monotone steady-state equilibrium. This gives uniqueness in the class

of monotone steady-state equilibria. When we talk about uniqueness, we formally

mean that the masses in the steady-state equilibrium are uniquely given and the the

strategies are unique up to a (finite) measure zero set of points (more precisely, in

equilibrium only the agents’ acceptance probabilities V (UU, 0) and V (UB, t∗) upon

being indifferent can be arbitrary).

Lemma 5. There exists a unique monotone steady-state equilibrium.

This uniqueness result on the class of all monotone steady-state equilibria is in

fact without loss as we will show in the next section.

12



5 Equilibrium Uniqueness

We now analyze the structure of non-monotone partial equilibria and show that

those equilibria do not satisfy the balance conditions. Therefore there can only exist

monotone steady-state equilibria and by this we get uniqueness for the class of all

steady-state equilibria.

The next proposition characterizes the non-monotone partial equilibria.

Proposition 1. In any non-monotone partial equilibrium there exists a t0 ∈ [0,∞)

with

V (UU, t) > V (UU, 0) for all t ∈ (0, t0) and

V (UU, t) = V (UU, 0) for all t ≥ t0.

Furthermore, φ(UU, t) is strictly increasing after t0.

In the first part of the proof it is shown that V (UU, t) cannot go below V (UU, 0).

The second part of the proof shows that once V (UU, t) = V (UU, 0) holds for any

t > 0, then it also holds for all larger t. A key argument for both parts is that

agents become more optimistic over time and if all other circumstances are equal for

two different points in time, then the later point needs to have a higher continua-

tion payoff. Figure 2 illustrates the continuation payoff V (UU, t) for non-monotone

partial equilibria.

t

V

V (UU, 0)
V (UU, t)

t0

Figure 2: Continuation payoff for non-monotone partial equilibria

As long as V (UU, t) is larger than V (UU, 0), agents with information (U,U) do

not accept to rematch. After t0, the continuation payoff of not accepting is equal

to the payoff of accepting. Therefore, agents follow a mixed strategy after t0 and

they mix with strictly increasing probability to keep their partners indifferent. Since

both agents in such a match would strictly prefer that both agents do not accept to

rematch, this can be interpreted as a coordination failure.

The next theorem states that a non-monotone equilibrium cannot be a steady-

state equilibrium.

13



Theorem 1. There exists a unique steady-state equilibrium and it is monotone.

This shows that our restriction to monotone equilibria and our analysis of them

are without loss of generality. In particular, in the last section, we have analyzed

the equilibrium structure of the unique steady-state equilibrium.

6 The Role of Learning

In this section, we investigate the impact of the learning rate on the agents. We use

comparative statics to analyze the welfare effects of a faster (or slower) learning rate

γ.

The following lemma considers the case of a strong positive correlation4. If phl

is close to 0, then agents have most likely the same type. In particular, bad news for

the partner is also bad news for oneself. Therefore, a faster learning rate benefits

both partners as both get the opportunity to leave an unprofitable match.

Lemma 6. Fix phh > 0 and let phl converge to 0. Then, the expected equilibrium

utility V (∅, 0) upon entering the market converges to

V ∗(∅, 0) = λm0

r + λm0
· 1− pll

r(1− pll
2γλm0

(r+2γ)(r+λm0)
)
· w.

For phl sufficiently small, V (∅, 0) is strictly increasing in γ.

In contrast to the previous lemma, now consider the case of a strong negative

correlation, i.e., phl being close to 1
2 . Then, there is most likely one “winner” with an

h-type and one “loser” with an l-type in each match. Learning who has a low type

in a match allows that agent to find a new match but imposes a negative externality

on the partner. We show that the negative externality on an h-agent is larger than

the gain of rematching for an l-agent. More precisely, upon forming a match, the

two partners would increase their ex-ante expected payoff if they could commit to

never leaving. As a consequence, a faster learning rate γ decreases the expected

utility in equilibrium, and agents would be better of by learning at a slower pace,

or not learning at all.

Lemma 7. Fix phh > 0 and let pll converge to 0. Then, the expected equilibrium

utility V (∅, 0) upon entering the market converges to

V ∗∗(∅, 0) ≈ λm0

r + λm0
·

phh
r + phl

r+λm0+γ
(r+γ)(r+λm0)

1− phl
γλ2m2

0
(r+γ)(r+λm0)2

− phl
γλm0

(r+γ)(r+λm0)

· w.

4We consider the correlation between the hidden types in a match conditional on being in an
non-obsorbing state hl, lh, or ll. In our limit analysis, to prevent the equilibrium mass m0 of agents
who search for a match from diverging to ∞, we fix the probability phh > 0 of entering an absorbing
state.
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For pll sufficiently small, V (∅, 0) is strictly decreasing in γ.

As a result, the effect of a faster learning rate is ambiguous. It depends on the

correlation, whether faster learning increases or decreases the welfare of agents. If

the agents’ goals are aligned (strong positive correlation), then faster learning is

beneficial. In contrast, with a strong negative correlation, slow learning is more

beneficial as the agents prefer not to know who wins and who loses in a match, to

prevent the match from being dissolved.
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7 Conclusion

In this paper, we analyze a search model with on-the-match search and on-the-match

learning. While being matched, agents learn about the idiosyncratic value of the

current match. Not only the own valuation but also the partner’s valuation of the

match are of importance for an agent as the partner’s rematching behavior affects

the present value of a persisting match. This leads to an endogenous interest in the

match being profitable for the partner.

We show the existence and uniqueness of a steady-state equilibrium. In equilib-

rium, agents follow cutoff strategies. Further, we provide an infinite set of pointwise

balance conditions that ensures the stationarity of the masses for each time t that

a match persists and we prove the equivalence to a finite set of aggregate balance

conditions. For the welfare effects of learning, the correlation between the types in a

match is of importance. With a strong positive correlation, faster learning increases

the ex-ante expected payoff while with a strong negative correlation, the ex-ante

payoff decreases with a faster learning rate. In the latter case, committing together

to never dissolve a match is ex-ante preferred by both agents.

An interesting direction of further research would be the extension to other in-

formation structures. For instance, if h-agents received good news over time, instead

of l-agents receiving bad news, then the beliefs inside a match grow more pessimistic

the longer a match persists without news. This would change the rematching behav-

ior of agents in a sense that agents in newly formed matches immediately search for

a new partner as even an ε of time without good news decreases the present value

of the current match below the value of a newly formed match. For more general

information structures, like the occurrence of multiple different types of news, or the

beliefs following a Brownian motion, the drift of the belief would be of importance

to the agents’ equilibrium behavior.
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A Proofs

A.1 Proofs for Section 3

Proof of Lemma 1. For single agents and agents with bad news it is a dominant

strategy to always accept. An agent in a pair could copy the strategy of a sin-

gle/agent with bad news and receive a strictly higher payoff.

For the equilibrium behaviour of an agent with information (U,B), note that the

partner always accepts to rematch, i.e., her acceptance probability is constant over

time. Since the belief P (hl|UB, t) is strictly increasing in t, the continuation payoff

V (UB, t) is also strictly increasing in t. Thus, V (UB, t) crosses V (UU, 0) at most

once.

A.2 Proofs for Section 4

Proof of Lemma 2. The equilibrium behavior of agents with information (U,U) fol-

lows from the fact that at t = 0 an agent is indifferent between accepting to rematch

and staying in the current match. By monotonicity, the acceptance probability of

the partner is non-increasing. Therefore, the continuation payoff V (UU, t) is strictly

increasing over time. Since the continuation payoff at time t = 0 is identical to the

continuation payoff of accepting, agents with information (U,U) never accept for

t > 0.

Proof of Lemma 3. Integrating the pointwise balance equation for singles

m∅(t) =
(
η + λm0(m0 −m∅)

)
e−λm0t

over t yields

m∅ =
(
η + λm0(m0 −m∅)

)
· 1

λm0
,

which is equivalent to

m∅ =
η + λm2

0

2λm0
.

Integrating the pointwise balance equation for hh-pairs

mhh,UU (t) = phhλm
2
0 · 1

over t yields

mhh,UU = ∞.
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Integrating the pointwise balance equation for mhl,UU

mhl,UU (t) = 2phlλm
2
0e

−γt

over t yields

mhl,UU =
2phlλm

2
0

γ
.

Integrating the pointwise balance equation for mll,UU

mll,UU (t) = pllλm
2
0e

−2γt

over t yields

mll,UU =
pllλm

2
0

2γ
.

Integrating the three remaining pointwise balance conditions over t yields the inte-

grals

mhl,UB,≤t∗ = γ2phlλm
2
0

∫ t∗

0

∫ t

0

exp
(
− γt′ − 2λm0(t− t′)

)
dt′dt

mhl,UB,>t∗ = γ2phlλm
2
0

∫ ∞

t∗

∫ t

0

exp
(
− γt′ − λm0(t− t′)− λm0 max(t∗ − t′, 0)

)
dt′dt

mll,UB,≤t∗ = 2γpllλm
2
0

∫ t∗

0

∫ t

0

exp
(
− 2γt′ − (2λm0 + γ)(t− t′)

)
dt′dt

mll,UB,>t∗ = 2γpllλm
2
0

∫ ∞

t∗

∫ t

0

exp
(
− 2γt′ − (λm0 + γ)(t− t′)− λm0 max(t∗ − t′, 0)

)
dt′dt

mll,BB = 2γ2pllλm
2
0

∫ ∞

0

∫ t

0

∫ t′

0

exp
(
− 2γt′′ − (λm0 + γ)(t′ − t′′)− λm0 max(min(t∗, t′)− t′′, 0)

− 2λm0(t− t′)
)
dt′′dt′dt,

where the survival functions qij,SS′(t′, t) are substituted by the corresponding expo-

nential functions given by the equilibrium strategies:

qhl,UB(t
′, t) = exp

(
− λm0(t− t′)− λm0max(min(t∗, t)− t′, 0)

)
qll,UB(t

′, t) = exp
(
− (λm0 + γ)(t− t′)− λm0max(min(t∗, t)− t′, 0)

)
qll,BB(t

′, t) = exp
(
− 2λm0(t− t′)

)
.
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Solving these integrals gives the aggregate balance conditions

mhl,UB,≤t∗ = phlm0

(
1 +

2λm0

γ − 2λm0
e−γt∗ − γ

γ − 2λm0
e−2λm0t∗

)
mhl,UB,>t∗ = phlm0

( 2γ

γ − 2λm0
e−2λm0t∗ − 4λm0

γ − 2λm0
e−γt∗

)
mll,UB,≤t∗ = pllm0

( 2λm0

γ + 2λm0
+ 2λm0e

−2γt∗ +
4γλm0

γ + 2λm0
e−(2λm0+γ)t∗

)
mll,UB,>t∗ = pllm0

( 4γλm0

(γ + λm0)(γ − 2λm0)
e−(2λm0+γ)t∗ − 2λm0(γ + 2λm0)

(γ + λm0)(γ − 2λm0)
e−2γt∗

)
mll,BB = pllm0

( γ − 2λm0

2(γ + 2λm0)
− λm0(γ + 2λm0 − 2γ2 + 2γλm0 + 4λ2m2

0)

(γ + λm0)(γ − 2λm0)
e−2γt∗

− 2γλm0(γ + 2λm0 + 2γ2 − 2γλm0 − 4λ2m2
0)

(γ + 2λm0)(γ + λm0)(γ − 2λm0)
e−(2λm0+γ)t∗

)
.

Thus, if the pointwise balance conditions are satisfied, so are the aggregated balance

conditions.

The final equation

m0 = m∅ +mhl,UB,≤t∗ +
1

2
mhl,UB,>t∗ +mhl,UB,≤t∗ +

1

2
mll,UB,>t∗ +mll,BB,

follows from the fact that the set of all agents who want to rematch consists of

the following: All singles, all agents who received bad news, and all agents whose

partner has received bad news and who are in match for a time less than t∗. For

t > t∗, only half of the agents in pairs with information UB are willing to rematch,

which implies that only half of the masses mhl,UB,>t∗ and mll,UB,>t∗ counts towards

m0.

It remains to show that the aggregate balance conditions are sufficient for the

pointwise balance equations. For this, we construct pointwise masses M as follows:

First, the aggregate masses uniquely determine the masses m0 of agents who search

for a new partner. Second, the masses m0, m∅ and the strategies uniquely determine

the pointwise masses

m∅(t) =
(
η + λm0(m0 −m∅)

)
q∅(0, t)

mhh,UU (t) = phhλm
2
0 qhh,UU (0, t)

mhl,UU (t) = 2phlλm
2
0 qhl,UU (0, t)

mll,UU (t) = pllλm
2
0 qll,UU (0, t).
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Finally, the remaining pointwise masses are uniquely determined by

mhl,UB(t) =

∫ t

0
γmhl,UU (t

′) qhl,UB(t
′, t) dt′

mll,UB(t) =

∫ t

0
2γmll,UU (t

′) qll,UB(t
′, t) dt′

mll,BB(t) =

∫ t

0
γmll,UB(t

′) qll,BB(t
′, t) dt′.

Therefore, there exists a unique (M′, φ) that has the same aggregated masses as

(M, φ) and satisfies the pointwise balance conditions.

Proof of Corollary 1. This corollary follows from summing the aggregate balance

conditions together. Adding two times

mhl,UB,≤t∗ = phlm0

(
1 +

2λm0

γ − 2λm0
e−γt∗ − γ

γ − 2λm0
e−2λm0t∗

)
plus

mhl,UB,>t∗ = phlm0

( 2γ

γ − 2λm0
e−2λm0t∗ − 4λm0

γ − 2λm0
e−γt∗

)
yields

2mhl,UB,≤t∗ +mhl,UB,>t∗ = 2phlm0.

Multiplying this by λm0 yields the first equation. Analogously, adding two times

mll,UB,≤t∗ = pllm0

( 2λm0

γ + 2λm0
+ 2λm0e

−2γt∗ +
4γλm0

γ + 2λm0
e−(2λm0+γ)t∗

)
plus

mll,UB,>t∗ = pllm0

( 4γλm0

(γ + λm0)(γ − 2λm0)
e−(2λm0+γ)t∗ − 2λm0(γ + 2λm0)

(γ + λm0)(γ − 2λm0)
e−2γt∗

)
plus two times

mll,BB = pllm0

( γ − 2λm0

2(γ + 2λm0)
− λm0(γ + 2λm0 − 2γ2 + 2γλm0 + 4λ2m2

0)

(γ + λm0)(γ − 2λm0)
e−2γt∗

− 2γλm0(γ + 2λm0 + 2γ2 − 2γλm0 − 4λ2m2
0)

(γ + 2λm0)(γ + λm0)(γ − 2λm0)
e−(2λm0+γ)t∗

)
yields

2mll,UB,≤t∗ +mll,UB,>t∗ + 2mll,BB = pllm0.

20



Multiplying by λm0 yields the second equation.

Proof of Lemma 4. For the proof, we substitute the masses by the aggregate balance

conditions in the term that specifies m0: First, we multiply

m0 = m∅ +mhl,UB,≤t∗ +
1

2
mhl,UB,>t∗ +mhl,UB,≤t∗ +

1

2
mll,UB,>t∗ +mll,BB

from Lemma 3 by 2λm0 to obtain

2λm2
0 = 2λm0m∅ + λm0(2mhl,UB,≤t∗ +mhl,UB,>t∗)

+ λm0(2mhl,UB,≤t∗ +mll,UB,>t∗ + 2mll,BB).

Now, substituting the aggregate balance conditions

2λm0m∅ = η + λm2
0

2phlλm
2
0 = λm0(2mhl,UB,≤t∗ +mhl,UB,>t∗)

pllλm
2
0 = λm0(2mll,UB,≤t∗ +mll,UB,>t∗ + 2mll,BB)

from Lemma 3 and Corollary 1 yields

2λm2
0 = η + λm2

0 + 2phlλm
2
0 + pllλm

2
0.

By phh = (1− 2plh − pll), we get that

η = phhλm
2
0

holds and therefore, the aggregate balance conditions imply that m0 has to be

m0 =

√
η

λphh
.

Proof of Lemma 5. First, we show the existence of a monotone steady-state equilib-

rium. As shown before, accepting is optimal for singles and agents with bad news.

Furthermore, φ(UU, t) = 0 is not only necessary for all monotone partial equilib-

rium, but also a best response to itself. For the existence, it remains to show that

there exists a cutoff t∗ ∈ [0,∞] and a corresponding steady-state equilibrium such

that it is optimal for agents with information (U,B) to accept to rematch until cutoff

t∗ and reject to rematch afterwards. Let

W (t) := V (UB, t)− V (UU, 0)

denote the difference in the expected utility of staying in the current match minus
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rematching given that all agents follow such a monotone strategy with cutoff t. The

difference W (t) is continuous by construction, strictly increasing in t, and bounded.

It converges to W (∞) := limt→∞W (t). If W (t) ≥ 0 for all t, then it is never optimal

to accept to rematch for an agent with information (U,B) and the cutoff t∗ = 0 is

optimal. If W (t) ≤ 0 for all t, then it is always optimal to accept to rematch for

an agent with information (U,B) and the cutoff t∗ = ∞ is optimal. If neither of

these two cases holds, then there exist t0 < t1 with W (t0) < 0 < W (t1). By the

intermediate value theorem, there is an interior cutoff t∗ ∈ (0,∞) with W (t∗) = 0,

i.e., agents are indifferent at the cutoff, they strictly prefer to rematch for all t < t∗

and strictly prefer to stay in the current match for all t > t∗. Thus, there always

exists a monotone steady-state equilibrium.

For uniqueness, suppose for contradiction that there are two monotone steady-

state equilibria with different cutoffs t∗1 < t∗2. Consider a single agent and take the

other agents’ strategies as given. In particular, the cutoff t∗ of the other agents has

no influence on the own continuation payoff, since m0 is the same in both equilibria

and the agents with bad news receive the same continuation payoff as a single agent.

The continuation payoff V (UU, 0) of forming a new match cannot be the same in

both equilibria. Otherwise, the continuation payoff for all future matches would be

equal in both equilibria and since V (UB, t) is strictly increasing in both equilibria,

this contradicts t∗1 ̸= t∗2. Thus, we get that V (UU, 0) is different in both equilibria

and since the cutoff choice t∗ of the other agents does not change the own expected

payoff, in at least one of the two equilibria the own choice of the cutoff is not

optimal.

A.3 Proofs for Section 5

Proof of Proposition 1. For this proof, we first need the following lemma that shows

that the continuation payoff at time t1 is higher than at time t0 if the following three

conditions are all satisfied: (1) the continuation payoff is higher at t1 + ε than at

t0+ ε for some ε > 0, (2) the partner rematches less often after t1 than after t0, and

(3) t1 > t0, i.e., the beliefs are more optimistic at t1.

Lemma 8. Fix any partial equilibrium and two points in time t0 < t1. If there

exists an ε > 0 with

V (UU, t0 + ε) ≤ V (UU, t1 + ε)

such that for almost all ξ ∈ (0, ε)

φ(UU, t0 + ξ) ≥ φ(UU, t1 + ξ)

holds, then we get

V (UU, t0) < V (UU, t1).
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t

V

V (UU, 0)

V (UU, t)

t0 t0 + ε t1 t1 + ε

Figure 3: Continuation payoff for Lemma 8

Proof. Fix a partial equilibrium. The continuation payoff at time t can be expressed

as a function of the continuation payoff at time t+ε, the own strategy, the partner’s

strategy, and the belief (which affects the expected rate at which bad news arrive).

The continuation payoff is decreasing in the acceptance probability of the partner

and it is increasing in the future continuation payoff at time t+ ε. Furthermore, the

continuation payoff strictly increases as agents become more optimistic over time.

Therefore, V (UU, t0) < V (UU, t1) holds.

Now, to prove Proposition 1, fix a non-monotone partial equilibrium. In the

following we use Lemma 8 to systematically exclude various cases of how V (UU, t)

might behave until only one possible equilibrium type remains. Then, we conclude

that all non-monotone partial equilibria must be of the form as described in Propo-

sition 1.

The first claim shows that the continuation payoff cannot go below V (UU, 0)

without going up again.

Claim 1. There is no t0 with V (UU, t) < V (UU, 0) for all t > t0.

t

V

V (UU, 0)

V (UU, t)

t0

Figure 4: Continuation payoff for Claim 1
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Proof. Assume for contradiction that there exists such a t0. Let

t1 = inf
t

{
∀t′ > t : V (UU, t′) < V (UU, 0)

}
be the infimum over all such times. After t1, agents strictly prefer to accept to

rematch. Thus, the partner’s acceptance probability does not change after t1. Since

agents get more optimistic over time, V (UU, t′) is strictly increasing on the interval

(t1,∞). This is a contradiction, since by construction and continuity V (UU, t0) =

V (UU, 0) holds.

The next claim shows that the continuation payoff cannot go below V (UU, 0)

and up again. Together with the last claim, this implies that V (UU, t) is always at

least as large as V (UU, 0).

Claim 2. There are no t < t′ with V (UU, t) < V (UU, t′) = V (UU, 0).

t

V

V (UU, 0)
V (UU, t)

t t′

Figure 5: Continuation payoff for Claim 2

Proof. Assume for contradiction that there exist such t < t′. Now, we construct an

open interval (t0, t1) with positive length such that the continuation payoff is smaller

than V (UU, 0) at the interval and the interval is maximal under set-inclusion. More

precisely, we define

t0 = inf
t′

{
∀t′′ ∈ (t′, t) : V (UU, t′′) < V (UU, 0)

}
and

t1 = sup
t′

{
∀t′′ ∈ (t, t′) : V (UU, t′′) < V (UU, 0)

}
.

Then, (t0, t1) is such an interval. By continuity the agents are indifferent at the

boundary points, i.e., the equality V (UU, t0) = V (UU, t1) = V (UU, 0) holds. Now,

we compare the continuation payoff at the two times t0 and t0+t1
2 . Agents are
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more optimistic at t0+t1
2 , the acceptance probability of the partner is 1 immediately

after both times, and the future continuation payoff is higher after t0+t1
2 . We apply

Lemma 8 to t0 and t0+t1
2 with ε = t1−t0

2 and we get V (UU, t0) < V (UU, t0+t1
2 ) which

contradicts our construction.

The next claim shows that after t = 0 the continuation payoff cannot go above

V (UU, 0) without going down again.

Claim 3. There exists no t0 > 0 with V (UU, t0) = V (UU, 0) such that for all larger

t > t0 V (UU, t) > V (UU, 0) holds.

t

V

V (UU, 0)
V (UU, t)

t0

Figure 6: Continuation payoff for Claim 3

Proof. Assume for contradiction that there exists a t0 > 0 such that agents with

information (U,U) do not accept to rematch afterwards. Without loss, let t0 be the

minimum of all such times. Then, the agents are more optimistic at t0 than at t = 0

and the partner will always reject to rematch after t0. We apply Lemma 8 to 0 and

t0 with ε = t0 and get that the continuation payoff V (UU, t0) is strictly larger than

V (UU, 0). This is a contradiction to the minimality of t0.

Finally, the last claim says that after t = 0 the continuation payoff cannot go

above V (UU, 0) and reach V (UU, 0) again afterward. Together with the previous

claim, this implies that if V (UU, t) = V (UU, 0) holds for some t > 0, then the same

equality also holds for all t′ > t.

Claim 4. There exist no three points 0 < t0 < t1 < t2 such that V (UU, t0) =

V (UU, 0), V (UU, t1) > V (UU, 0), and V (UU, t2) = V (UU, 0) hold.
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Figure 7: Continuation payoff for Claim 4

Proof. Assume for contradiction that there exist such three points. Without loss let

the distance t2− t0 be minimal of all such tuples. Then, V (UU, t) > V (UU, 0) holds

for all interior points t ∈ (t0, t2). Now, we distinguish two cases.

Case 1: t2−t0 ≥ t0, i.e., the length of the interval (t0, t2) is larger than the length

of the interval (0, t0). Then, we apply Lemma 8 to 0 and t0 with ε = t0. Agents are

more optimistic at t0, agents are never left by their partner in the interval (t0, 2t0),

and the continuation payoff at 2t0 is strictly larger than at t0. Thus, we get that

V (UU, t0) ≥ V (UU, 0) holds which is a contradiction.

Case 2: t2 − t0 < t0, i.e., the length of the interval (t0, t2) is smaller than the

length of the interval (0, t0). Let t̂ := t0−(t2−t0). We apply Lemma 8 to t̂ and t0 with

ε = t2− t0 to compare the continuation payoffs V (UU, t̂) and V (UU, t0). The beliefs

are higher at t0, the partner does not accept to rematch at the interval (t0, t2), and

the continuation payoff at the end of the interval (t0, t2) is equal to the continuation

payoff at the end of the interval (t̂, t0). Therefore, V (UU, t̂) < V (UU, t0) = V (UU, 0)

holds. This is a contradiction, since we have shown that V (UU, t) ≥ V (UU, 0) has

to hold for all t.

Continuation of the proof of Proposition 1. Now, we know that if we have

V (UU, t) = V (UU, 0) for any t > 0, then this equality also holds for all t′ > t. If this

equality would only hold for t = 0, then we would have a monotone equilibrium.

Therefore, in any non-monotone partial equilibrium exists a t ∈ [0,∞) such that

V (UU, t′) = V (UU, 0) holds for all t′ > t. Let

t0 = inf
t

{
∀t′ > t : V (UU, t′) = V (UU, 0)

}
be the earliest time after which V (UU, t) is constant. By the previous claims, we get

V (UU, t) > V (UU, 0) for all t ∈ (0, t0). Therefore, the partial equilibrium is exactly

as characterized in Proposition 1.
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Proof of Theorem 1. In any non-monotone partial equilibrium, there is a time t0

after which φ(UU, t) is strictly increasing. Thus, the probability that an hh-pair

stays together for at least time t converges to 0 as t approaches ∞. Since agents

who received bad news accept to rematch with probability 1, there is no absorbing

state, i.e., every match is eventually dissolved.

Since the balance conditions imply that the inflow of agents into absorbing states

is equal to the inflow into the market, a non-monotone partial equilibrium does not

satisfy the balance conditions. Therefore, all steady-state equilibria have to be

monotone. Since there exists a unique monotone steady-state equilibrium, we get

uniqueness among all steady-state equilibria.

A.4 Proofs for Section 6

Proof of Lemma 6. First, we show that t∗ tends to ∞ as phl vanishes. Let t̂ denote

the time at which

P (hl|UB, t) = P (i = h|UU, 0) ⇔

phl
phl + plle−γt

=
phh

phh + 2phle−γt + plle−2γt
+

phle
−γt

phh + 2phle−γt + plle−2γt

holds. For agents whose partner received bad news, it is a dominant strategy to

search at all times before t̂. Thus, for the equilibrium cutoff t∗ > t̂ holds. Now,

consider a sequence where phl converges to 0. Along this sequence, the time t̂ tends

to ∞. Therefore, t∗ also tends to ∞.

Next, we consider the limit of such a sequence, i.e., let phl = 0 and t∗ = ∞ hold.

Let V (ij) denote the expected continuation payoff of forming a new pair with type i

oneself and type j for the partner. Let V (x) denote the expected continuation payoff

of forming a new pair before the types are realized. Recall that V (∅, 0) denotes the
expected continuation payoff of becoming single. Then, by integrating the expected

future utilities, we get for the continuation payoffs:

V (x) = phhV (hh) + pllV (ll)

V (hh) =
w

r

V (ll) =
2γ

r + 2γ
V (∅, 0)

V (∅, 0) = λm0

r + λm0
V (x).

Taking these together, we get

V (x) = phh
w

r
+ pll

2γ

r + 2γ

λm0

r + λm0
V (x)
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and therefore

V ∗(∅, 0) = λm0

r + λm0
· 1− pll

r(1− pll
2γλm0

(r+2γ)(r+λm0)
)
· w

holds. Taking the derivative with respect to the learning rate γ shows that dV ∗(∅,0)
dγ >

0 holds.

Now, by the continuity of the payoff functions, the payoff function V (∅, 0) con-
verges to V ∗(∅, 0) as phl vanishes. As the derivative of V ∗(∅, 0) is strictly positive,

dV (∅,0)
dγ > 0 is also positive for phl sufficiently small.

Proof of Lemma 7. Analogously to the proof of Lemma 6, for pll sufficiently small,

an agent whose partner received bad news stays in the match (t∗ = 0). Next,

consider the limit of such a sequence, i.e., pll = 0. The continuation payoffs are:

V (x) = phhV (hh) + phlV (hl) + plhV (lh)

V (hh) =
w

r

V (hl) =
w

r + γ
+

γ

r + γ

( w

r + λm0
+

λm0

r + λm0
V (∅, 0)

)
V (lh) =

γ

r + γ
V (∅, 0)

V (∅, 0) = λm0

r + λm0
V (x).

Together, we get

V (x) =
phh

w
r + phl

w
r+γ + phl

γ
r+γ

w
r+λm0

1− phl
γ

r+γ
λm0

r+λm0

λm0
r+λm0

− phl
γ

r+γ
λm0

r+λm0

and thus, the expected equilibrium utility upon entering the market is given by

V ∗∗(∅, 0) ≈ λm0

r + λm0
·

phh
r + phl

r+λm0+γ
(r+γ)(r+λm0)

1− phl
γλ2m2

0
(r+γ)(r+λm0)2

− phl
γλm0

(r+γ)(r+λm0)

· w

which is strictly decreasing in γ. By the continuity of the payoff functions, the payoff

function V (∅, 0) converges to V ∗∗(∅, 0) as pll vanishes. As the derivative of V ∗∗(∅, 0)
is strictly negative, dV (∅,0)

dγ > 0 is also negative for pll sufficiently small.
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