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Abstract

A sender choosing a signal to be disclosed to a receiver can often influence
the receiver’s actions. Is persuasion harder when the receiver has additional
information sources? Does the receiver benefit from having them? We extend
Bayesian persuasion to a receiver’s acquisition of costly information. The
game can be solved as a standard Bayesian persuasion under an additional
constraint: the receiver never learns. The ‘threat’ of learning hurts the sender.
However, the outcome can also be worse for the receiver, in which case the
receiver’s possibility to gather additional information decreases social welfare.
Furthermore, we propose a new solution method that does not rely directly
on concavification, which is also applicable to standard Bayesian persuasion.

Keywords: Bayesian persuasion, Rational inattention, Costly information acquisi-
tion, Information design
JEL classification: D72, D81, D82, D83
∗For valuable comments, we thank: Andrew Caplin, Yeon-Koo Che, Mark Dean, Olivier Goss-

ner, Navin Kartik, Frédéric Koessler, Andrei Maatvenko, Helene Mass, Filip Matějka, Laurent
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1 Introduction

Decision makers often rely on free information provided by an interested party. Lob-

bying groups, such as tobacco and pharmaceutical companies, commission research

activities with the goal of influencing politicians. Firms try to make sells by provid-

ing information to their potential customers; car dealers allow for limited inspection

of their cars, and software developers offer trial versions of their products. The

decision makers, however, may also be able to obtain independent information at

a costly effort. Politicians can carry out their own research on tobacco and drugs,

and customers can find online information about the characteristics of the product.

In this paper, we study the welfare effects of access to independent information in

such settings.

We consider a Bayesian persuasion model (Kamenica and Gentzkow 2011, hence-

forth KG) in which the receiver has access to additional information sources. As

in KG, a sender chooses a signal to disclose information to a receiver, the decision

maker. Unlike in KG, however, the receiver further chooses her own signal at a

cost to acquire more information before taking an action. Within this framework,

we address the following questions. Does the receiver benefit from having access to

additional information? Is persuasion harder for the sender in such a case?

We solve the model and describe comparative statics with respect to the receiver’s

cost of information. We show that the possibility of additional learning reduces

the sender’s persuasive power, thus lowering his expected equilibrium utility. On

the other hand, the effect on the receiver’s expected equilibrium utility is positive

in a binary state, binary action setting. However, in more general settings, the

possibility of additional learning can be detrimental not only to the sender, but also

to the receiver. If there is significant disagreement about preferred actions under

full information, the sender optimally garbles a fully informative signal in order to

prevent the receiver from taking certain actions. Whenever the receiver can also

obtain further information, the sender might provide even less information. In turn,

this can lead to less overall information being disclosed in the equilibrium. In such
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cases, the receiver’s access to additional information unambiguously decreases the

social welfare.

We demonstrate the possibility of such detrimental effect in an application on dif-

ference of opinions: extremism versus conservatism. In the application, the payoffs

are given by quadratic loss functions arising from the distance between the receiver’s

action and state. The players agree on the type of the action (negative vs positive),

but they differ in their opinions on the level of the action (extreme vs conservative)

as new information is generated. When the receiver is the conservative player, she

under reacts to new information. She can never be persuaded to consider extreme

levels, not even under full information. Then, the sender optimally provides full

information so as to (at least) minimize mistakes in the type of actions. This effect

is independent of how costly the receiver’s information is, and hence, a conservative

receiver is not affected by changes in her cost of information.

When the receiver is the extreme player, she overreacts to new information. Then,

the sender optimally garbles a fully informative signal in order to prevent the receiver

from choosing too extreme levels. The sender faces a trade-off between preventing

extreme levels that would be taken if he provides too much information (or pre-

venting further learning, which could also possibly lead to an extreme level) and

minimizing the probability of mistakes in the type of action if he provides too lit-

tle information. This tension becomes greater as the receiver’s information becomes

cheaper, leading the sender to provide less information (in Blackwell sense). In equi-

librium, the receiver does not learn, and thus an extreme receiver becomes worse off

as her cost of information decreases.

Our general model assumes finitely many actions and states, general preferences and

uniformly posterior-separable cost function of receiver’s information. To solve the

model, we develop an extreme-point solution method that simplifies the task of find-

ing equilibria. We fully characterize the solution for a specific, entropy-based cost,

commonly used in models of rational inattention (Sims 2003). This characterization

is applicable also at the limiting case of our model, the standard Bayesian persua-
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sion, and it is thus complementary to the geometrical methods of concavification

used in the Bayesian persuasion literature.1

The extreme-point method relies on two results. First, Proposition 1 (Non-Learning

Equilibrium), the main simplification step, shows that the game can be solved as

a standard Bayesian persuasion under an additional constraint: the receiver never

acquires additional information in equilibrium. The reason is that all the information

that the receiver would have gathered following the sender’s signal can always be

provided on her behalf by the sender. Therefore, once we partition the belief space

into learning and non-learning regions (a non-learning region of a certain action is

defined as all beliefs at which receiver does not learn and takes that action right

away), the sender’s strategy optimally induces only posterior beliefs in the non-

learning regions. To find a solution, it is thus sufficient to characterize the non-

learning regions. This simplifies the analysis, because otherwise we need to identify

the receiver’s optimal learning strategy for every belief in the learning regions—and

there are infinitely many such beliefs—which becomes intractable when the state

space is high dimensional.

Second, Proposition 2 (Extreme-Point Equilibrium) states that there always exists

an optimal sender’s strategy that is supported only on the extreme points of the

non-learning regions. For the entropy-based cost, we further provide a full charac-

terization of the extreme points (Lemma 4), which implies that there are only finitely

many of them (Corollary 1). Hence, we only need to consider finitely many sender’s

strategies to find a solution, which generally may not be true under an arbitrary

uniformly posterior-separable costs. We describe the steps how to find a solution

with the entropy-based cost in Extreme-point solution algorithm in Section 3.3.1.

We use this algorithm when solving the application.

In a binary action-state setting, there are two non-learning regions. Each is an inter-

val with two extreme points. Extreme-point method then implies that only very few

1Originally proposed by Aumann, Maschler, and Stearns (1995), concavification methods pro-
vides the analyst geometrical tools to solve the model. KG introduced this method in models of
Bayesian persuasion, and Caplin and Dean (2013) introduced this method in decision problems
with the entropy-based cost.
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sender’s strategies must be considered for an optimum. It turns out that the sender

optimally provides (i) no information (optimal when players disagree on preferred

action in each state, in which case the sender does not benefit from persuasion),

(ii) full information (optimal under aligned preferences), or (iii) information that

maximizes the probability of one of the actions such that additional learning was

prevented (optimal when the sender has a dominant action). In the binary-state set-

ting, where the belief simplex is a line, extreme-point method then gives us an easy

way to compare how the solution changes in the Blackwell order as the receiver’s

cost parameter varies: we only need to determine whether the extreme points that

are induced by the optimal strategy are moving apart from or towards each other.

We use this observation when establishing our comparative statics results in a binary

action-state setting and in the application.

Related literature. This paper lies at the intersection of the literature on Bayesian

persuasion and on costly information acquisition. We extend the standard Bayesian

persuasion model to consider an endogenously privately informed receiver.2 Our

model is closest in spirit to Bizzotto, Rüdiger, and Vigier (2020). In a binary action,

binary state framework, they consider a receiver who, after receiving the sender’s

information, can additionally obtain a binary signal of fixed precision by paying a

fixed fee.3 Both Bizzotto, Rüdiger, and Vigier (2020) and we derive a similar result

showing that the receiver may prefer commitment to worse information technology.

However, the mechanisms beyond this result differ. In Bizzotto, Rüdiger, and Vigier

(2020), the result stems from rigidity of receiver’s information acquisition technology,

which the sender takes advantage of. In contrast, we show that when the receiver’s

information technology is flexible, and thus this channel is not present, this result

2Extensions with an exogenously privately informed receiver have already been examined in
Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017) and Kolotilin (2018). Other extensions of
the standard Bayesian persuasion model that consider some natural constraints for the sender
range from multiple senders (Gentzkow and Kamenica 2017) to a limited communication capacity
(Le Treust and Tomala 2019), heterogeneous priors (Alonso and Camara 2016) and limited com-
mitment power for the sender (Nguyen and Tan 2021). See Kamenica (2019) for a recent survey
on Bayesian persuasion literature.

3We independently explore a similar framework in Example B3 in Appendix B, used to demon-
strate failure of Proposition 1. At the time this example was framed, we were not aware of the
existence of the above mentioned paper.

5



no longer holds in the binary action, binary state setting. It exists once a more

general setup is considered. In our setting, the result is driven by the sender’s desire

to prevent the receiver from additional learning, which, in a more general model,

can have an unfavorable effect on a receiver with better information technology.4

Our modelling choice of the flexible information acquisition assumes that the receiver

faces a uniformly posterior-separable (UPS) cost function.5 Other contemporaneous

papers on information provision consider a similar modelling choice. However, the

game specification differs from ours. Bloedel and Segal (2018) consider a receiver

who needs to pay an attention, entropy-based, cost to process the sender’s messages.

Lipnowski, Mathevet, and Wei (2020a) and Lipnowski, Mathevet, and Wei (2020b)

consider players with aligned preferences, where the receiver acquires information

about the state at a UPS cost, provided it can only be as informative (in Blackwell

sense) as an upper bound disclosed by the sender. Subsequently, Wei (2020) extends

this setup to binary action, binary state with misaligned preferences. He shows,

similar to us, that the receiver’s equilibrium payoff is non-monotone in her cost

parameter. The reason is that when the cost parameter is low, so that the receiver

processes almost any information disclosed by the sender regardless of its information

value, the sender provides very little useful information for the receiver.

Our paper’s technical contribution is on solution methods for standard and ex-

tended Bayesian persuasion problems. Our extreme-point solution method comple-

ments the results of Lipnowski and Mathevet (2017) and Lipnowski and Mathevet

(2018), who independently show, in a standard Bayesian persuasion model and in

a model with psychological preferences with aligned interest, that it is sufficient to

focus on extreme-points of sets of beliefs on which the sender’s value function is

(weakly) convex. They provide general abstract conditions to characterize those

4The notion that an agent in a strategic setting can be hurt by having access to better informa-
tion technology is not unique to Bayesian persuasion setting, e.g., see Roesler and Szentes (2017)
and Kessler (1998) for such a case in a contracting environment.

5Gentzkow and Kamenica (2014) introduce costly information acquisition into the model by
assuming that the sender faces a cost of disclosing information to the receiver. They provide a
class of cost functions (including entropy-based cost) that are compatible with the concavification
approach.
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sets. Complementary to them, we provide specific linear conditions to characterize

the extreme-points when assuming the entropy-based cost, which can be used to

solve standard Bayesian persuasion models as the cost parameter goes to infinity.

For a special setting with continuous state and a sender with state-independent

preferences, Arieli, Babichenko, Smorodinsky, and Yamashita (2019) and Kleiner,

Moldovanu, and Strack (2020) characterize optimal sender’s strategies using the ob-

servation that a solution of this specific problem is an extreme-point of the set of all

sender’s strategies. However, the notion of the extreme point is different from ours.

In our setting, an optimal sender’s strategy is supported on the extreme-points of

certain sets of beliefs, while in their setting, an optimal sender strategy itself is an

extreme point (of a set of sender’s information strategies).6

By the modelling choice of the cost function, we also contribute to the growing lit-

erature that applies rational inattention (Sims 2003) framework to strategic setting,

such as Martin (2017), Matějka and Tabellini (2016), Montes (2020), Ravid (2020),

Yang (2015) and Yang (2020). We build on insights from single-agent decision prob-

lems in Matějka and McKay (2015), Caplin and Dean (2013), and Caplin, Dean,

and Leahy (2017) when solving for the receiver’s maximization problem.

The rest of the paper is organized as follows. Section 2 sets the model up. Section 3

states the main simplification result (the Never-Learning Equilibrium), describes the

solution method (the Extreme-Point Equilibrium) and provides a characterization of

the solution for an entropy-based cost (Extreme-point solution algorithm). Section

4 provides comparative statics. Section 5 presents an application on difference of

opinions. Section 6 is a conclusion.

6Other alternative method for persuasion problems in which the sender’s utility depends only
on the expected state is introduced by Dworczak and Martini (2019).
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2 Model

There are two players, a sender (he) and a receiver (she). There is an unknown

payoff-relevant state ω drawn from a finite set Ω according to a prior µ0 ∈ int(∆(Ω)).7

The receiver chooses an action a from a finite set A. The payoffs of the sender and

the receiver are u, v : A× Ω→ R respectively.

After the state is drawn, the sender generates public information about the realized

state, inducing the receiver to rationally update her prior belief µ0 to an interim

belief µ ∈ ∆(Ω). A sender’s (information) strategy is a choice of a distribution

τ ∈ ∆(∆(Ω)) over the (updated) interim beliefs such that the martingale property

holds: Eτ [µ] = µ0. We assume that the sender can choose any information strategy

at zero cost. After observing the sender’s information and updating her beliefs to a

particular interim belief µ, the receiver decides whether to acquire additional, costly,

information about the realized state, inducing her to further rationally update her

interim belief µ to a posterior belief γ ∈ ∆(Ω). The receiver’s (information) strategy

is a choice of a distribution φ ∈ ∆(∆(Ω)) over the (further updated) posterior beliefs

γ such that the martingale property holds: Eφ[γ] = µ. Finally, once interim beliefs

are updated to a particular posterior belief γ, the receiver chooses an action σ∗(γ)

where σ∗ : ∆(Ω)→ A is defined such as8

σ∗(γ) ∈ arg max
a′∈A

∑
ω

u(a′, ω)γ(ω) ∀γ ∈ ∆(Ω) (1)

where γ(ω) denotes the probability of state ω at posterior γ. If, for a given γ,

there are multiple actions satisfying (1), we assume that σ∗(γ) is the action that is

(weakly) preferred by the sender.

7int(S) denotes interior of set S, and ∆(S) denotes the set of all probability distributions on S.
8As the focus of this paper is on information strategies, for the sake of notation, we do not

specify the action strategies in the text. Instead, we assume that at the last stage of the game, the
receiver is always automatically choosing the action that maximizes her expected utility.
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Let us denote the receiver’s highest expected payoff at posterior belief γ as

U(γ) :=
∑
ω

u(σ∗(γ), ω)γ(ω) (2)

While the sender’s information has no cost, the receiver’s information is costly.

We assume that the receiver’s cost of information is uniformly posterior-separable

(UPS).9 That is, given a bounded and strictly concave function F : ∆(Ω)→ R+ and

an interim belief µ, the cost of information strategy φ is given by

c(φ;µ, λ) = λ (F (µ)− Eφ[F (γ)]) (3)

where λ > 0 and the expectation is over posteriors γ distributed according to φ.

A leading example of such a cost function used in the literature is based on Shannon

entropy. We say that the cost function is Shannon if

F (γ) = −
∑
ω∈Ω

γ(ω) ln γ(ω) (4)

(with 0 log 0 = 0 by convention). This function underpinned important develop-

ments in the literature of rational inattention, from Sims (2003), Sims (2006) to

Matějka and McKay (2015) and Steiner, Stewart, and Matějka (2017).

Definition 1. Given an interim belief µ, the receiver’s maximization problem is

max
φ∈∆(∆(Ω))

Eφ[U(γ)]− c(φ;µ, λ) (5)

s.t. Eφ[γ] = µ,

where U(γ) is defined by (2) and the expectation is over posterior beliefs γ dis-

tributed according to the information strategy φ.

Lemma 1. The receiver’s maximization problem (5) has a solution.

Throughout the paper, for a probability distribution π over a set S, we denote

9See Caplin, Dean, and Leahy (2017).
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its support by supp(π).10 We assume that if at some µ there is more than one

optimal information strategy, the receiver chooses one that is (weakly) preferred

by the sender. Hence, we focus on sender-preferred equilibria in both action and

information strategies. For a given interim belief µ, let φ∗µ denote the solution to

problem (5) which is (weakly) preferred by the sender. We say that the receiver

does not learn at µ if supp(φ∗µ) = {µ}, so that no new information is gathered and

the posterior beliefs remain at the interim belief. We use φNµ to denote such non-

informative receiver’s information strategies. Otherwise, we say that the receiver

learns at µ.

When a belief µ is drawn from the information strategy τ , the receiver gathers

information according to φ∗µ. Finally, if a final posterior γ is drawn from φ∗µ, the

action σ∗(γ) is taken. Applying backward induction, we can thus express the sender’s

conditional expected payoff for each interim belief µ as

v̂(µ) := Eφ∗µ

[∑
ω∈Ω

v(σ∗(γ), ω)γ(ω)

]
(6)

where the expectation is over posterior beliefs γ distributed according to the re-

ceiver’s optimal information strategy φ∗µ. The function v̂(µ) is the sender’s expected

payoff at interim belief µ given the optimal continuation play of the receiver at µ.

Definition 2. Given prior µ0, the sender’s maximization problem is

max
τ∈∆(∆(Ω))

Eτ [v̂(µ)] (7)

s.t. Eτ [µ] = µ0,

where v̂(µ) is given by (6) and the expectation is over interim beliefs µ distributed

according to τ .

Lemma 2. The sender’s maximization problem (7) has a solution.

10Hence, supp(π) = {s ∈ S : π(s) > 0}.
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Definition 3. A (sender-preferred subgame perfect) equilibrium of the game is a

pair (τ ∗, (φ∗µ)µ) such that τ ∗ solves (7) and for every µ ∈ ∆(Ω), φ∗µ solves (5).11

We define the sender’s equilibrium value v∗ as his expected payoff obtained under

an equilibrium profile. We say that the sender benefits from persuasion when v∗ is

strictly larger than his expected payoff obtained under an information strategy τN :

supp(τN) = {µ0}, a strategy under which he generates no new information. Note

that by Lemmas 1 and 2, an equilibrium always exists. We say that the receiver

never learns in equilibrium (τ ∗, (φ∗µ)µ) if for all µ ∈ supp(τ ∗), φ∗µ = φNµ , i.e., the

receiver does not learn at any µ in the support of the sender’s optimal strategy.

3 Solution

A common solution method used in Bayesian persuasion is a concavification ap-

proach. Geometrically, one builds a concave closure of v̂(·), which we denote by

cav(v̂)(·).12 The support of an optimal sender’s strategy can then be read off from

the graph.13 The concavification approach, sometimes also called a posterior-based

approach, can also be used when solving the receiver’s maximization problem (see

Caplin and Dean (2013)).

For a binary state, applying the concavification method to both the receiver’s and

the sender’s maximization problems is a tractable way to solve the model, because

the receiver’s solution implies v̂(µ) is a piecewise linear function. The procedure is

illustrated on Example B1 in Appendix B. Nevertheless, a double concavification ap-

proach becomes intractable with three or more states of nature, because the solution

to the receiver’s concavification problem does not imply a simple functional form

11For the sake of notation, we do not include an action profile as the part of the definition of
the equilibrium. Note, however, that the definition implicitly assumes that σ(γ) = σ∗(γ) for all
γ ∈ ∆(Ω).

12Concave closure of v̂(·) is the smallest concave function that is everywhere weakly greater than
v̂(·).

13The support of the optimal sender’s strategy is the set of the interim beliefs that support the
tangent hyperplane to the lower epigraph of the concavification above the prior belief.
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for v̂(µ). Then, it requires to determine v̂(µ) for each belief separately and there is

infinitely many such beliefs. The next section presents the main simplification step

that allows us to solve the model without having to specify v̂(µ) for all the beliefs.

3.1 Persuasion With No Learning

When the receiver is fairly uncertain about what the right thing to do is, she decides

to gather some more information before taking an action. In turn, when her interim

belief is precise enough, she does not learn and takes an action right away. The

latter set of interim beliefs is important for our further analysis.

Definition 4. A non-learning region of action a ∈ A is

NLa :=

{
µ ∈ ∆(Ω) : φNµ solves (5) and a ∈ arg max

a′∈A

∑
ω

u(a′, ω)γ(ω)

}
. (8)

The non-learning region of some action a is the set of all the interim beliefs at which

taking that action right away instead of learning is optimal from the receiver’s point

of view. The set ∪aNLa is non-empty as the vertices of the belief space always

belong to ∪aNLa.14 Our first result states that there exists an equilibrium in which

the receiver never learns. We call such an equilibrium a non-learning equilibrium.

Proposition 1 (Non-Learning Equilibrium). There exists an equilibrium in which

the receiver never learns. That is, there exists (τ ∗, (φ∗µ)µ) such that ∀µ ∈ supp(τ ∗),

φ∗µ = φNµ .

The intuition for Proposition 1 is the following: since the sender faces no cost

of information, he can incorporate, at no cost, any subsequent receiver’s learning

strategy and save the learning part of the receiver. This new equilibrium preserves

14Furthermore, although it can be true that at some belief µ ∈ ∪aNLa: φNµ 6= φ∗µ—when
there are multiple solutions to the receiver’s maximization problem (5) and the sender prefers the
learning strategy—it is also always true that φNµ = φ∗µ at the vertices of the belief simplex, because
no other strategy is available. Hence, the set of ∪aNLa at which the receiver does not learn is also
non-empty.
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the final distribution of posteriors because the receiver will not engage in further

learning, and so the expected payoff of the sender remains unchanged. Note that the

receiver’s expected payoff may differ between an arbitrary equilibrium and a non-

learning equilibrium, since the receiver may be undertaking costly learning in an

arbitrary equilibrium. Hence, non-learning equilibria are Pareto dominant. Finally,

note that whenever the equilibrium is unique, it is a non-learning equilibrium.

Proposition 1 is the main simplification step in our analysis, and it relies on several

key properties of UPS cost functions. First, the learning technology does not vary

with the interim belief and has an additive form. This implies that the support

of any receiver’s optimal information strategy at any interim belief consists only

of beliefs belonging to some non-learning regions (see Lemma 5 in Appendix A).

That is, once the receiver learns, she does not wish to learn further even when given

an extra chance to do so. Then, if the sender provides the desired information

on the receiver’s behalf, she does not engage in any further learning afterwards,

because her optimal learning behavior at a certain belief is independent of how she

arrived at the belief. On the contrary, this property of receiver’s behavior can fail

under a (not uniform) posterior-separable (PS) cost function, where the learning

technology—the function F or the scaling parameter λ in (3)—is interim-specific.

For instance, when the receiver’s learning technology becomes more efficient as her

interim beliefs become more precise, provision of information on receiver’s behalf

can change her subsequent behavior: the receiver would sometimes follow up with

additional learning that would not have occurred otherwise.15 If this additional

learning—which would not have happened if the sender were to leave the receiver to

learn by herself—is not convenient for the sender, a non-learning equilibrium may

fail to exist (see Example B2 in Appendix B).

Second, UPS cost functions do not restrict the set of receiver’s information strategies

beyond Bayes’ law so that the receiver’s information technology is as flexible as

the sender’s information technology. On the other hand, when the set of available

15One can think that when the interim belief is more precise, it may be easier for the agent to
learn because she already knows where to find the information or whom to ask for it.
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information strategies is constrained, Proposition 1 can fail. The sender can take

advantage of the rigidity of the receiver’s available strategies and optimally induce

the receiver to learn in equilibrium (see Example B3 in Appendix B, when the

receiver has available a binary signal of fixed precision by paying a small fixed fee

c).

3.2 Extreme-Point Solution Method

Next, we show that there exists an equilibrium in which the posteriors induced by

sender’s strategy actually consist of (at most |Ω|) extreme points of the (convex

hull of the) non-learning regions.16 We call such an equilibrium an extreme-point

equilibrium. Formally, for each a ∈ A, let EP a denote the set of extreme points of

the convex hull of NLa.

Proposition 2 (Extreme-Point Equilibrium). There exists a non-learning equilib-

rium in which the sender’s strategy is supported in (at most |Ω|) extreme points of

the convex hull of the non-learning regions. That is, there exists (τ ∗, (φ∗µ)µ) such

that |supp(τ ∗)| ≤ |Ω| and for all µ ∈ supp(τ ∗) we have µ ∈ ∪aEP a and φ∗µ = φNµ .

The rationale for Proposition 2 is the following. First, Proposition 1 implies that we

can focus on non-learning equilibria. Then, if the sender induces an interim belief

that lies in a non-learning region, but it is not an extreme point, it can instead be

replaced by a distribution over a set of extreme points (of the convex hull) of the

particular non-learning region. Doing this is feasible, because every belief in the

non-learning region can be expressed as a convex combination of extreme points of

its convex hull. It does not change the sender’s expected payoff because the action

that the receiver takes at the newly induced beliefs remains the same. Finally, the

restriction on the size of the support of the optimal sender’s strategy follows from

the Carathéodory theorem. Note that, just as in Proposition 1, the expected payoff

16Recall that an extreme point of a convex set B is a point in the boundary of B which does
not lie in any open line segment joining two points of B.
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of the receiver may differ between an arbitrary non-learning equilibrium and an

extreme-point equilibrium.

Proposition 2 provides an algorithm that can be used to find an equilibrium. We

illustrate the algorithm in the next section when applied to the Shannon cost.

3.3 Shannon Model

In this subsection, we provide a characterization of a solution with the Shannon cost.

The following two lemmas are based on known results in the literature of optimal

behavior in decision problems with Shannon cost. Lemma 3, which uses equation

(5) of Proposition 2 of Caplin, Dean, and Leahy (2019), gives a specific set of linear

inequalities for an interim belief µ to be in a non-learning region. Lemma 4 then

states that |Ω| − 1 of these inequalities must be binding for the interim belief µ to

also be an extreme point of the non-learning region.

Lemma 3. When the cost is Shannon, a non-learning region of action a is given by

NLa =

{
µ ∈ ∆(Ω) :

∑
ω∈Ω

µ(ω)ed
λ
ω(a,a′) ≤ 1 ∀a′ 6= a

}
(9)

where dλω(a, a′) = u(a′,ω)−u(a,ω)
λ

.

Lemma 3 implies that for the Shannon cost, the non-learning regions are defined by

polytopes, which in turn guarantees that the set of extreme points is always finite.

Corollary 1. When the cost is Shannon, the set ∪aEP a is finite.

Corollary 1 is important, because it implies that only finitely many sender’s strate-

gies need to be considered in order to find a solution. This is not the case if ∪aEP a

is infinite, which could occur in the case of a general UPS cost function.

We now turn to the characterization of the extreme points of the non-learning re-
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gions. Lemma 3 endows us with 2×|Ω|+ |A|×(|A|−1) inequalities, and an extreme

point is uniquely identified when |Ω| − 1 affine independent constraints are binding.

Lemma 4. When the cost is Shannon, a vector µ ∈ R|Ω| is an extreme point of NLa

if and only if
∑

ω µ(ω) = 1 and

(i) µ(ω) ≤ 1 for all ω ∈ Ω

(ii) µ(ω) ≥ 0 for all ω ∈ Ω

(iii)
∑

ω∈Ω µ(ω)ed
λ
ω(a,a′) ≤ 1 for all a′ 6= a, where dλω(a, a′) = u(a′,ω)−u(a,ω)

λ

where |Ω| − 1 affine independent constraints from among (i), (ii), (iii) are binding.

3.3.1 Extreme-Point Solution Algorithm With Shannon Cost

Using the previous results, we obtain the following algorithm to find an equilibrium

with the Shannon cost.

Extreme-Point Solution Algorithm. 1. For every action a ∈ A, find all the

extreme points of its non-learning regions, EP a, using Lemma 4.

2. Consider all the sets of beliefs in ∪aEP a whose size is at most |Ω| and for

which the prior lies in the convex hull of the set. These sets are the supports

of the sender’s candidate strategies. Note that since ∪aEP a is finite (Corollary

1), there are only finitely many such sets.

3. For each support that we consider, pin the distribution of each candidate

strategy down using Bayes’ law: Eτ [µ] = µ0. Note that since supp(τ) ≤ |Ω|,

the distribution is unique.

4. For each candidate strategy τ , determine the value of v̂(µ) on its support by

noting that for each a ∈ A, if µ ∈ EP a, then v̂(µ) = Eµ[v(a, ω)]. If two non-
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Figure 1: Model with Shannon cost, where a, ω ∈ {1, 2, 3}, u(a, ω) = a if a = ω
and 0 otherwise, λ = 2: (a) Non-learning regions and their extreme points; (b) A
candidate sender’s optimal strategy.

learning regions share the same extreme point (for instance, when λ → ∞),

use the action that is preferred by the sender at that belief.17

5. For each candidate strategy τ , compute the sender’s expected utility Eτ [v̂(µ)].

The candidate strategy that yields the highest sender’s expected payoff is an

optimal one.

See Figure 1 for an illustration of the non-learning regions, their extreme points and

a candidate optimal strategy for the sender in an example with three actions, three

states, and the Shannon cost.

Note that Proposition 2 is applicable also to the standard Bayesian persuasion model

by considering the limiting case λ → ∞. In that case, the whole (interim) belief

space is partitioned into non-learning regions, each of them with finitely many ex-

treme points. The provided algorithm can thus be used to solve standard Bayesian

persuasion models by using Lemma 4 for λ→∞. We demonstrate the partitioning

17For some µ ∈ EP a for some a, the solution to (5) may not be unique and then φ∗µ can

be different from φNµ (if the sender strictly prefers the learning strategy). In that case, v̂(µ) 6=
Eµ[v(a, ω)]. However, Proposition 2 implies that treating every extreme point as if φ∗µ = φNµ is
without loss of generality to find at least one solution of the model.
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Figure 2: Limiting case of model with Shannon cost, where λ→∞, a, ω ∈ {1, 2, 3},
u(a, ω) = a if a = ω and 0 otherwise: (a) Non-learning regions and their extreme
points; (b) A candidate sender’s optimal strategy.

of the belief simplex together with a candidate optimal strategy for the sender in

such a limiting case in Figure 2.

4 Comparative Statics

In this section, we examine the relationship between the agents’ expected equilibrium

payoffs and the receiver’s information cost parameter λ. First, we show that the

sender cannot be better off if the receiver becomes better at gathering information.

Recall that a higher λ means that the receiver is worse at gathering information.

Proposition 3. The sender’s expected equilibrium payoff is (weakly) increasing in

λ.

The intuition of Proposition 3 is straightforward. We show that the non-learning

regions—and hence the set of sender’s strategies under which the receiver never

learns—do not shrink as λ increases. Therefore, increasing λ can only make the

sender better off, as he can choose from a larger set of strategies.
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The relationship between the receiver’s expected equilibrium payoff and her in-

formation cost parameter λ is less trivial. While one might expect that a lower

information cost should benefit the receiver, the opposite can also be true, and the

receiver’s expected equilibrium payoff can be non-monotone in λ.

Proposition 4. In general, the receiver’s expected equilibrium payoff is not neces-

sarily (weakly) decreasing in λ.

We prove the statement by giving an example where a non-monotone relationship

arises (see the next section).

In general, it is hard to provide necessary and sufficient conditions under which the

receiver is always (weakly) better off as her cost of information becomes cheaper.

Three actions and binary state are enough to build examples with non-monotonicity

of the receiver’s payoff, even when assuming that the sender has state-independent

preferences. Nonetheless, we present a setting where a monotone relationship is

attained: when the state and action are binary—which is a setting used in a number

of applied papers in Bayesian persuasion18—the receiver’s expected payoff is always

(weakly) decreasing in her cost parameter λ. First, we state a restriction on the

sender’s preferences that is needed for unique equilibrium in this setting.

Assumption 1. There exists no action a ∈ A s.t. (i) ∀µ ∈ ∆(Ω) : v̂(µ) ≤∑
ω∈Ω µ(ω)v(a, ω), and (ii) ∃µ ∈ NLa′ where a′ 6= a and v̂(µ) =

∑
ω∈Ω µ(ω)v(a, ω).

Assumption A1 takes care of possible cases of indifference on the sender’s side, which

could otherwise lead to multiplicity of equilibria. Lemma 8 in Appendix A shows

that, for a given λ, when the sender benefits from persuasion, A1 is a sufficient

condition for a unique equilibrium in a binary action-state setup.

Proposition 5. Assume |A| = |Ω| = 2, and that for all λ > 0: A1 holds and the

sender benefits from persuasion. Then the receiver’s expected equilibrium utility

(weakly) decreases in λ.

18Standard Bayesian persuasion was applied to bank regulation (Gick and Pausch 2012), electoral
manipulation (Gehlbach and Simpser 2015), investment decision (Bizzotto, Rüdiger, and Vigier
2021), and forecasting of disasters (Aoyagi 2014).
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The proof takes advantage of the structure of the extreme-point method. In a bi-

nary action-state setting, there are two non-learning regions. Each is an interval

with two extreme points. Extreme-point method then implies that only very few

sender’s strategies must be considered for an optimum. It turns out that optimal

sender’s strategies are: (i) providing no information (This is optimal when the play-

ers disagree on a preferred action in each state. Then, the game resembles a zero-sum

game and the sender does not benefit from persuasion. This specification is thus

excluded from Proposition 5.); (ii) providing full information (optimal under aligned

preferences), which is independent of λ, and (iii) providing partial information in

order to maximize the probability of sender’s preferred action, given that additional

learning was prevented (optimal when the sender has a dominant action). He does so

by providing as little information as possible that convinces the receiver to take the

dominant action upon favorable evidence and prevents her from additional learning.

As λ increases, the receiver is willing to take the dominant action without additional

learning even when less convinced about its optimality. The sender thus needs to

provide less convincing information, making the receiver worse off.

Formally, in the binary-state setting, where the belief simplex is a line, the extreme-

point method gives us an easy way to understand how the solution changes in the

Blackwell order as the receiver’s cost parameter varies: we only need to determine

whether the extreme points induced by the optimal strategy are moving apart from

or towards each other. To determine this, we further use the notion that the non-

learning regions do not shrink as λ increases. For binary action, this gives us a clear

direction of how the extreme points that are induced by the optimal strategy move.

5 Application: Extremism vs Conservatism

Here, we present a discretized version of a model with quadratic loss functions, a

common specification used in the literature on communication games. Consider a

binary state, ω ∈ {−1, 1}. In this section, we use µ0, µ, γ to denote the probability
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of the state ω = 1 (i.e., Pr[ω = 1]) at the prior, the interim, and the posterior belief

respectively. Let µ0 = 0.5. Consider five actions, a ∈ {−2,−1, 0, 1, 2}. Call the

actions {−1, 1} conservative and the actions {-2,2} extreme. The payoff functions

of the receiver and the sender are u(a, ω) = −(αω − a)2 and v(a, ω) = −(βω − a)2,

respectively. The cost is Shannon.

Under the prior, there is no disagreement among the players—the preferred action

is 0 for both of them. The parameters α and β capture the players’ extremism—how

much their preferred action changes with the precision of their beliefs. The higher

the parameter, the more extreme they are, since their preferred action in any given

state becomes (weakly) more extreme. We consider two cases: (i) α = 1, β = 2,

and (ii) α = 2, β = 1. In (i), the receiver is the conservative player (knowing the

state, the receiver chooses a conservative action, but the sender prefers an extreme

action); in (ii), the opinions are reversed and the receiver is the extreme player.

The sender’s optimal information strategy, and the way in which it varies with the

receiver’s cost parameter λ, is different in each case. In Appendix B, we analytically

solve the application by applying the Extreme-point solution algorithm with Shan-

non cost developed in Section 3.3.1. Again, since we assume binary-state setting,

where the belief simplex is a line, extreme-point method then gives us an easy way

to compare how the solution changes in the Blackwell order with λ: we only need

to determine whether the extreme points that are induced by the optimal strategy

are moving apart from or towards each other. The following proposition captures

the qualitative properties of the solution.

Proposition 6. For any λ > 0, the application has a unique equilibrium. Moreover:

(i) When the receiver is the conservative player, the sender optimally provides

full information for all values λ > 0.

(ii) When the receiver is the extreme player, there exist a threshold value λ ∈

(0,∞) such that

a) If λ < λ, the sender optimally provides full information.
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b) If λ ≥ λ, the sender optimally provides partial information. Then, the

receiver’s expected equilibrium utility is strictly increasing in λ.

When the receiver is the conservative player, an extreme sender gains nothing in

providing less than full information. Since the receiver is conservative, the best the

sender can do is to fully reveal the state so as to minimize the probability of mistakes

in conservative actions. Full revelation is thus always optimal, independently of the

receiver’s cost parameter λ. The receiver’s expected equilibrium utility is (weakly)

monotone in λ.

On the other hand, when the receiver is the extreme player, full revelation leads to

extreme actions. A conservative sender wants to prevent that. He thus optimally

garbles a fully informative signal leaving the receiver uncertain enough about the

state so that she chooses conservative rather than extreme action and she does not

undergo additional learning. Thus, the sender faces a trade-off between preventing

the receiver from taking extreme actions (or learning further) if too much information

is provided and minimizing the probability of mistakes in conservative actions if too

little information is provided.

The sender’s optimal information strategy is then no longer independent of the

receiver’s cost parameter λ. As λ decreases, the sender becomes more constrained

in how much information he can provide and still guarantee that the receiver is

not going to undergo additional costly learning. Hence, as λ decreases, the sender

optimally generates strictly less information (in Blackwell sense). Since the receiver

never learns in equilibrium, she then becomes strictly worse off. Note that the

non-learning regions shrink as λ decreases. At the threshold value λ, the non-

learning regions of conservative actions are no longer intervals, but singletons. For

any λ < λ, only the non-learning regions of extreme actions are not empty sets.

The cost of information is so cheap that whenever the receiver decides to learn,

she acquires enough information to be confident enough about the state so that

she always chooses an extreme action. Thus, the sender can never persuade her to

consider any action but an extreme one. Then, the best he can do is to minimize the
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probability of mistakes in extreme actions. Full revelation is then optimal. Hence,

when the receiver is the extreme player, the receiver’s expected equilibrium utility

is non-monotone in λ.

5.1 A Graphical Illustration

Figure 3 demonstrates the solution for both cases for λ → ∞ (the receiver cannot

acquire additional information) and for λ = 15 (the receiver can costly acquire ad-

ditional information). We depict the solution using the concavification approach,

since, in a binary state setting, this approach offers an easily understandable graph-

ical form. One expresses the sender’s expected payoff at interim belief given the

optimal continuation play v̂(µ)—the black function—and take its concave closure

cav(v̂)(µ)—the red function. The support of the sender’s optimal information strat-

egy is the set of those interim beliefs that support the tangent of cav(v̂)(µ) at the

prior µ0, and for which cav(v̂)(µ) = v̂(µ).

The left column depicts the sender’s optimal strategy when the receiver is conser-

vative. In this case, the support of the sender’s optimal strategy remains the same

for both values of λ: the state is always revealed in equilibrium. Let τ ∗λ denote

the sender’s optimal strategy when the cost parameter is λ. Then supp(τ ∗∞) =

{µ∗, µ′∗} = {0, 1} in (a), and supp(τ ∗15) = {µ̃∗, µ̃′∗} = {0, 1} in (b). The right col-

umn depicts the sender’s optimal strategy when the receiver is extreme. Here, the

optimal strategy changes with λ. As λ decreases, the sender provides less informa-

tion in Blackwell sense:19 supp(τ ∗∞) = {µ∗, µ′∗} in (c), and supp(τ ∗15) = {µ̃∗, µ̃′∗} in

(d), where supp(τ ∗15) lies inside a convex hull of supp(τ ∗∞).

19An information strategy τ is more Blackwell-informative than τ ′ if and only if obtaining infor-
mation via τ is preferred to information via τ ′ by all expected utility maximizers. Equivalently, τ
is more Blackwell-informative than τ ′ if and only if supp(τ ′) lie inside the convex hull of supp(τ).
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Figure 3: Sender’s value function v̂(µ), its concavification cav(v̂)(µ) and his optimal
information strategy. With conservative receiver—cases (a) and (b)—the sender
fully reveals the state for both values of λ: {µ∗, µ′∗} = {µ̃∗, µ̃′∗} = {0, 1}. With
extreme receiver—cases (c) and (d)—the sender provides Blackwell less information
for lower λ: {µ̃∗, µ̃′∗} lie in the convex hull of {µ∗, µ′∗}.
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6 Conclusion

We extend a model of Bayesian persuasion by allowing for additional costly informa-

tion acquisition by a receiver under a uniformly posterior-separable cost function.

We exploit common features of Bayesian persuasion and decision problems with this

type of cost, resulting in a tractable model which can be used as a building block

for applied problems. Using the characterization of the receiver’s optimal behavior,

we propose a solution method that generates a smaller set of posterior beliefs on

which at least one optimal strategy of the sender must be supported. Under an

entropy-based cost function, as in rational inattention, such an optimal strategy is

characterized by a finite series of specific linear conditions. This method, which

does not rely on standard concavification method, is also applicable to the standard

Bayesian persuasion model and can be used to find a solution. We further show

that having additional information sources can be detrimental to the receiver, who

could then prefer to commit to not having any such sources.

This result illustrates that the ability to gather information is not always desirable

in strategic environments. It is well-known that the value of information may be

negative when decisions are taken strategically. That is, in a game, equilibrium

payoffs may be lower when more information is provided to the players.20 This

paper shows that a similar counter-intuitive phenomenon can occur in the model

of Bayesian persuasion for the ability to gather information. In other words, even

though a better ability to gather information is always desirable in a non-strategic

environment, the reverse may be true in strategic environments.
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7 Appendix A: Proofs

7.1 Proofs for Section 2

Lemma 1: The receiver’s maximization problem (5) has a solution.

We prove a stronger statement: The solution correspondence of the receiver’s max-

imization problem (5) is non-empty, compact valued and upper hemicontinuous in

µ.

Proof. Since the cost function is strictly increasing in Blackwell informativeness,

under optimal receiver’s strategy (if it exists), each action is selected in at most one

posterior. Inducing distinct posteriors that lead to the same action is inefficient as

information is acquired but not acted upon. Hence, the support of the receiver’s

optimal strategy contains at most as many posteriors as |A| and the receiver then

chooses different action at each of the posteriors. The proof of this statement is

shown in proof of Lemma 1 in Matějka and McKay (2015) used for a model of

Shannon cost. Their proof is derived for Shannon entropy, where only the fact that
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it is a strictly concave function, not its functional form per se, was used and thus

can be applied in our setting as well.

We can thus rephrase the receiver’s maximization problem (5) as choosing condi-

tional action probabilities, π(a|ω). That is, the problem can be rephrased as choosing

a family of probability distributions {π(·|ω)}ω∈Ω, where π(·|ω) ∈ ∆(A) for each ω.

Definition. 1’: Given an interim belief µ, the receiver’s maximization problem is

maxπ={π(a|ω)}a,ω

∑
a,ω

u(a, ω)π(a|ω)µ(ω)− c̃(π;µ, λ) (10)

s.t. ∀a ∀ω : π(a|ω) ≥ 0

∀ω :
∑
a

π(a|ω) = 1

where c̃(π;µ, λ) = λ (F (µ)−
∑

a F (γπa )π̃(a)), and where for all a, π̃(a) =
∑

ω π(a|ω)µ(ω)

is the unconditional probability of choosing action a under strategy π, and for all ω

and for all a,

γπa (ω) =


π(a|ω)µ(ω)

π̃(a)
if π̃(a) 6= 0

p(ω) otherwise
(11)

is the posterior probability of state ω when action a is taken under strategy π,

where p ∈ ∆(Ω) is an arbitrary probability distribution over states.21 The posterior

probability depends on the strategy π and, for notation purposes, such dependence

is reflected in the upper-script.

Next, we need to show that the cost function c̃(π;µ, λ) is continuous in π. Function

(11) is well-defined, but it is not continuous. To show that c̃(π;µ, λ) is still con-

tinuous in π, the only points of concern are strategies under which there exist an

action a which is never chosen, π̃(a) = 0. Let {πn}n be a converging sequence of

21Since the cost function of the original problem is defined in terms of beliefs, we need to map
all possible strategies π into well-defined beliefs, which are described in equation (11). We do it by
assigning an arbitrary belief p to the beliefs that are not well-defined (posterior beliefs associated
with actions which are never chosen under π).
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receiver’s strategies with a limit {πn}n → π̂, where π̂ is a strategy that assigns zero

unconditional probability to choosing action a′, ˆ̃π(a′) = 0. Then

lim
{πn}n→π̂

c̃(πn;µ, λ) = lim
{πn}n→π̂

λ

(
F (µ)−

∑
a

F (γπna )π̃n(a)

)

= λ lim
{πn}n→π̂

(
F (µ)−

∑
a6=a′

F (γπna )π̃n(a)− F (γπna′ )π̃n(a′)

)

= λ

(
F (µ)−

∑
a6=a′

F (γπ̂a )ˆ̃π(a)

)
= c̃(π̂;µ, λ)

The third equality follows because (i) F (γπna′ )π̃n(a′) goes to zero, as F (·) is bounded

and π̃n(a′) approaches zero, and (ii) F (·) is continuous, so F (γπna )→ F (γπ̂a ). Hence,

we conclude that c̃ is continuous on π.

Finally, since the objective function in the receiver’s problem is continuous in π and

the set of all possible strategies π in ∆(A)|Ω| is compact, Berge Maximum Theorem

implies that the solution correspondence is non-empty, compact valued and upper

hemicontinuous in µ.

Lemma 2: The sender’s maximization problem (7) has a solution.

Proof. As in KG, the objective of the sender is to build the concave closure of

the function v̂(µ). The sufficient condition for that is when the function v̂(µ) is

upper semi-continuous. To show it is true, for now, we will drop the assumption

of sender-preferred equilibrium in both the receiver’s information strategies and

her chosen actions, and consider the conditional expected value of the sender as a

correspondence. We then show that this correspondence is upper hemicontinuous

with closed graph. This in turn implies that v̂(µ) is upper semi-continuous.

Formally, let us drop the sender-preferred equilibrium assumption and let us consider
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the receiver’s maximization problem (10) as it is redefined in terms of conditional

action probabilities in Definition 1’ in proof of Lemma 1. Let π∗µ be the solution

correspondence to the problem (10) for a given interim belief µ and γπa (ω) the pos-

terior probability of state ω when action a is chosen under strategy π defined as in

(11). Then, let ṽ : ∆(Ω) ⇒ R be the correspondence that assigns to every µ the set

of payoffs

⋃
π∈π∗µ

(∑
a,ω

v(a, ω)γπa (ω)π̃(a)

)
(12)

Now we show that correspondence ṽ is compact valued and upper hemicontinuous

in µ, which in turn implies that ṽ has closed graph.22

To prove that ṽ is upper hemicontinuous in µ, we use the sequential characterization

of upper hemicontinuous correspondences as formulated in Ok (2007). Formally, take

{µn}n converging to µ, and {zn}n with zn ∈ ṽ(µn) for all n. We want to show that

there exists a sub-sequence {znk}k such that it converges to z ∈ ṽ(µ). Since π∗µ is

upper hemicontinuous (as shown in the proof of Lemma 1), we know that for given

{µn}n converging to µ, and {πn}n with πn ∈ π∗µn for all n, there exists a sub-sequence

{πnk}k such that it converges to π′ ∈ π∗µ. Since {πnk}k converges to π′

{∑
a,ω

v(a, ω)γ
πnk
a (ω)π̃nk(a)

}
nk

−→
∑
a,ω

v(a, ω)γπ
′

a (ω)π̃′(a) (13)

which is an element in ṽ(µ). Note that if π′ is such that π̃′(a) = 0 for some a, the

term
∑

ω v(a, ω)γ
πnk
a (ω)π̃nk(a)→ 0 since v(a, ω) is bounded, γ

πnk
a (ω) is bounded and

π̃nk(a) → 0. For any other actions with π̃′(a) > 0, the convergence in (13) follows

from the fact that
∑

ω v(a, ω)γ
πnk
a (ω)π̃nk(a) is then continuous on π. Hence, ṽ is

upper hemicontinuous.

Finally, since π∗µ is a compact set (as shown in the proof of Lemma 1), its image

through a continuous function, that is, {
∑

a,ω v(a, ω)γπ
′

a (ω)π′(a)|π′ ∈ π∗µ}, is also

22See Ok (2007), Chapter E, Continuity II.
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compact. Therefore, ṽ is also compact valued. Since v̂ is compact valued and upper

hemicontinuous in µ, ṽ has a closed graph, and a solution to sender’s problem (7)

always exists. The reason is that, since ṽ is compact valued, the function v̂(µ) :=

maxπ∈π∗µ

(∑
a,ω v(a, ω)γπa (ω)π̃(a)

)
is well defined for every µ, and since ṽ is upper

hemicontinuous, v̂ is an upper semi-continuous function.

7.2 Proofs for Section 3.1

The next lemma is used to prove Proposition 1. It states that whenever the receiver

learns at µ, she induces beliefs that all lie in some non-learning regions.

Lemma 5. For any µ, the support of the receiver’s optimal strategy lies in non-

learning regions. That is, ∀µ ∈ ∆(Ω), we have supp(φ∗µ) ∈ ∪aNLa.

Proof. Let φ∗µ be receiver’s optimal strategy at µ and suppose, contrary to the

statement, that ∃γ̃ ∈ supp(φ∗µ) for which γ̃ /∈ ∪aNLa. What it means is that, if

γ̃ was an interim belief, then the receiver’s optimal strategy at the interim belief γ̃

includes learning. That is, there exists a distribution of posterior beliefs φLγ̃ 6= φNγ̃

with EφLγ̃ [γ] = γ̃ (an optimal receiver’s strategy at γ̃) which yields a strictly higher

receiver’s expected payoff at γ̃ than no learning, that is,

EφLγ̃ [U(γ)]− c(φLγ̃ ; γ̃, λ) = EφLγ̃ [U(γ) + λF (γ)]− λF (γ̃) > U(γ̃) = EφNγ̃ [U(γ)]− c(φNγ̃ ; γ̃, λ)

EφLγ̃ [U(γ) + λF (γ)] > U(γ̃) + λF (γ̃) (14)

where we used the fact that no-learning comes at zero cost.

We will show that there exist another receiver’s strategy, φ′µ, that yields a strictly

higher expected expected utility than φ∗µ. For the initial receiver’s problem—a re-
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ceiver who faces interim belief µ—consider a different receiver’s strategy φ′µ satisfying

φ′µ(γ) =


φ∗µ(γ) if γ /∈ {γ̃} ∪ supp(φLγ̃ )

φ∗µ(γ) + φ∗µ(γ̃)φLγ̃ (γ) if γ ∈ supp(φLγ̃ )

0 if γ = γ̃

Note that for γ /∈ supp(φ∗µ) ∪ supp(φLγ̃ ), we have φ∗µ(γ) = φ′µ(γ) = 0 and thus

supp(φ′µ) = supp(φ∗µ) ∪ supp(φLγ̃ ) \ {γ̃}. Note that the optimality of φ∗µ and φLγ̃

implies that their supports are of finite size (as discussed in the proof of Lemma 1)

and thus the support of φ′µ is also finite.

However, then, the strategy φ′µ yields a strictly higher receiver’s expected utility than

φ∗µ, contradicting the optimality of φ∗µ. To see that, let us compare the receiver’s

expected utility under both of the strategies. We have Eφ′µ [U(γ)] − c(φ′µ;µ, λ) >

Eφ∗µ [U(γ)]− c(φ∗µ;µ, λ) whenever the following inequality holds

∑
γ∈supp(φ′µ)

[U(γ) + λF (γ)]φ′µ(γ)− λF (µ) >
∑

γ∈supp(φ∗µ)

[U(γ) + λF (γ)]φ∗µ(γ)− λF (µ)

∑
γ∈{γ̃}∪supp(φLγ̃ )

[U(γ) + λF (γ)]φ′µ(γ) >
∑

γ∈{γ̃}∪supp(φLγ̃ )

[U(γ) + λF (γ)]φ∗µ(γ)

∑
γ∈supp(φLγ̃ )

[U(γ) + λF (γ)]φ∗µ(γ) +
∑

γ∈supp(φLγ̃ )

[U(γ) + λF (γ)]φLγ̃ (γ)φ∗µ(γ̃) >

∑
γ∈supp(φLγ̃ )

[U(γ) + λF (γ)]φ∗µ(γ) + [U(γ̃) + λF (γ̃)]φ∗µ(γ̃)

EφLγ̃ [U(γ) + λF (γ)]φ∗µ(γ̃) > [U(γ̃) + λF (γ̃)]φ∗µ(γ̃)

The inequality holds, since we only made equivalent operations and the last inequal-

ity is true based on (14) and φ∗µ(γ̃) > 0. The second line follows from φ′(γ) = φ∗(γ)

for all γ /∈ {γ̃}∪supp(φLγ̃ ) and thus the terms in the sum for γ /∈ {γ̃}∪supp(φLγ̃ ) can-

cel out on both sides. The third line uses φ′(γ̃) = 0 and φ′(γ) = φ∗µ(γ) +φ∗µ(γ̃)φLγ̃ (γ)

when γ ∈ supp(φLγ̃ ).
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Proposition 1: There exists an equilibrium in which the receiver never learns.

That is, there exists (τ ∗, (φ∗µ)µ) such that ∀µ ∈ supp(τ ∗), φ∗µ = φNµ .

Proof. By Lemmas 1 and 2, an equilibrium exists. Suppose that there exists an

equilibrium in which the receiver learns. We will construct another equilibrium in

which the receiver never learns. Suppose there exists an equilibrium (τ̂ , (φ̂µ)µ), such

that for some µ′ ∈ supp(τ̂) we have φ̂µ′ 6= φNµ . As discussed in proof of Lemma 1,

for all µ, the size of the support of any optimal receiver’s strategy at µ does not

exceed |A| and hence it is finite.

Consider τ ′, another sender’s strategy, defined by

τ ′(µ) =


τ̂(µ) if µ /∈ {µ′} ∪ supp(φ̂µ′)

τ̂(µ) + τ̂(µ′)φµ′(µ) if µ ∈ supp(φ̂µ′)

0 if µ = µ′

(15)

Note that for µ /∈ supp(τ ′) ∪ supp(τ̂), we have τ ′(µ) = τ̂(µ) = 0. Note that, by

Lemma 5, we have supp(φ̂µ) ∈
⋃
aNL

a for all µ. Hence, the receiver’s optimal equi-

librium strategies (φ̂µ)µ satisfy φ̂µ = φNµ for all µ ∈ supp(φ̂µ′). That is, whenever the

sender induces an interim belief in supp(φ̂µ′)—provides the information on receiver’s

behalf—the receiver does not learn at that interim belief and takes an action right

away. Hence, the final distribution over posteriors and associated actions under τ ′ is

the same as under τ̂ and the expected payoff of the sender remains the same. Thus,

(τ ′, (φ̂µ)µ) is also an equilibrium. This process can be done for all µ ∈ supp(τ̂) at

which the receiver learns until we reach an equilibrium in which the receiver never

learns. Note that generally, it can be true that at some belief µ̃ ∈ ∪aNLa, the

solution to the receiver’s maximization problem (5) may not be unique, in which

case φ∗µ̃ may be different from φNµ̃ (whenever the sender strictly prefers the learning

strategy). However, this cannot be the case for any belief in supp(φ̂µ) and we indeed

have φ̂µ = φNµ . The reason is that if this were not the case, then τ ′ yields strictly

higher payoff than τ̂ , contradicting that τ̂ was an equilibrium strategy.
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7.3 Proofs for Section 3.2

The next lemma is used to prove Proposition 2, Proposition 5 and Lemmas 7 and 8.

Lemma 6. i) If µ ∈ supp(τ ∗), then cav(v̂)(µ) = v̂(µ).

ii) The sender benefits from persuasion if and only if v̂(µ0) < cav(v̂)(µ0).

Lemma 6 is an analogy of Lemma 2 and Corollary 2 from KG, which is applicable

to our setting when v̂(µ) modified to our setting is considered.

Proposition 2: There exists a non-learning equilibrium in which the sender’s strat-

egy is supported in (at most |Ω|) extreme points of the convex hull of the non-

learning regions. That is, there exists (τ ∗, (φ∗µ)µ) such that |supp(τ ∗)| ≤ |Ω| and for

all µ ∈ supp(τ ∗) we have µ ∈ ∪aEP a and φ∗µ = φNµ .

Proof. By Proposition 1, there exists a non-learning equilibrium. We will construct

an extreme-point equilibrium from an arbitrary never-learning equilibrium. Let

(τ̂ , (φ̂µ)µ) be a non-learning equilibrium, and suppose it is not an extreme-point

equilibrium, i.e., for some µ′ ∈ supp(τ̂), we have µ′ ∈ NLa \ EP a for some a. By

Corollary 18.3.1 in Rockafellar (1997), the extreme points of the convex hull of NLa

belong to NLa. Then, by Minkowsky-Caratheodory Theorem (see Simon (2011),

Theorem 8.11), there exists a collection (xi)
|Ω|
i=1 with xi ∈ EP a for all i and a list

(αi)
|Ω|
i=1 with αi ≥ 0 ∀ i and

∑
i αi = 1 such that µ′ =

∑
i αixi.

Consider another sender’s strategy τ ′ defined as

τ ′(µ) =


τ̂(µ) if µ /∈ {µ′} ∪ (xi)

|Ω|
i=1

τ̂(µ) + τ̂(µ′)αi if µ = xi, i = 1, . . . , |Ω|

0 if µ = µ′

(16)

Note that for µ /∈ supp(τ̂) ∪ (xi)
|Ω|
i=1, we have τ̂(µ) = τ ′(µ) = 0 and thus supp(τ ′) =

supp(τ̂) ∪ (xi)
|Ω|
i=1 \ {µ′}. Note that, as xi ∈ EP a, for all i, the receiver takes the
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same action at xi that he takes at µ′. If that were not the case—which could happen

when multiple convex hulls of non-learning regions share the same extreme point—

then the sender could only benefit from inducing the collection (xi)i instead of µ′ by

the assumption of the sender preferred equilibrium. However, this would contradict

that (τ̂ , (φ̂µ)µ) is an equilibrium, because then there existed another sender’s strategy

under which the sender would have a strictly higher expected payoff. Hence, since for

all i, the receiver takes the same action at xi that he takes at µ′, the expected payoff

of the sender is the same under τ ′ as under τ̂ , since it is linear on the non-learning

regions and µ′ =
∑

i αixi. Hence, (τ ′, (φ̂µ)µ) is also an equilibrium. Proceeding

like this for every µ′ that induces a posterior that is not an extreme point of some

non-learning regions, we can construct a corresponding extreme-point equilibrium.

As in proof of Proposition 1, note that, generally, it can be true that at some belief

µ̃ ∈ ∪aEP a, the solution to the receiver’s maximization problem (5) may not be

unique, in which case φ∗µ̃ may be different from φNµ̃ (whenever the sender strictly

prefers the learning strategy). However, this cannot be the case for any belief in the

constructed extreme-point equilibrium and we indeed have that the receiver does

not learn in equilibrium. The reason is that if this were not the case, then τ ′ yields

strictly higher payoff than τ̂ , contradicting that τ̂ was an equilibrium strategy.

Finally, let (τ ′, (φ̂µ)µ) be an equilibrium where µ ∈ ∪aEP a for all µ ∈ supp(τ ′)

and suppose that |supp(τ ′)| > |Ω|. Since τ ′ is sender’s optimal strategy, supp(τ ′)

supports a tangent hyperplane to cav(v̂) at the prior µ0, and cav(v̂)(µ) = v̂(µ) for all

µ ∈ supp(τ ′) (Lemma 6). Caratheodory Theorem implies that there exists a subset

C ⊂ supp(τ ′) with |C| ≤ |Ω| such that the prior µ0 lies in the convex hull of C.

Hence, there exists a sender’s strategy τ̃ where supp(τ̃) = C. Since cav(v̂)(µ) = v̂(µ)

for all µ ∈ C, C ⊂ supp(τ ′) and supp(τ ′) supports the tangent hyperplane to cav(v̂)

at the prior µ0, the strategy τ̃ also supports the tangent hyperplane to cav(v̂) at the

prior µ0. Then (τ̃ , (φ̂µ)µ) is an extreme-point equilibrium with |supp(τ̃)| ≤ |Ω|.
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7.4 Proofs for Section 4

Proposition 3: The sender’s expected equilibrium payoff is weakly increasing in λ.

Proof. By Proposition 1, we know that a sender’s optimal strategy is contained in

the set of strategies under which the receiver never learns. We show that the non-

learning regions do not shrink as λ increases. As the sender can choose from the

same (or possibly even bigger) set of strategies, he never becomes strictly worse off

as λ increases.

Let λ ≥ 0 and let us denote φ∗µ,λ an optimal strategy at µ when the cost parameter

is λ. Suppose φ∗µ,λ = φNµ . Let φLµ be an arbitrary receiver’s strategy with strictly

positive learning at µ, i.e., φLµ 6= φNµ . By optimality of φNµ at µ when the cost

parameter is λ, we have

EφNµ [U(γ)]− c(φNµ ;µ, λ) ≥ EφLµ [U(γ)]− c(φLµ ;µ, λ)

Let λ′ > λ. Then c(φNµ ;µ, λ) = c(φNµ ;µ, λ′) = 0 (no-learning costs zero) and

c(φLµ ;µ, λ) < c(φLµ ;µ, λ′). Hence,

EφNµ [U(γ)]− c(φNµ ;µ, λ′) = EφNµ [U(γ)]− c(φNµ ;µ, λ) ≥ EφLµ [U(γ)]− c(φLµ ;µ, λ)

> EφLµ [U(γ)]− c(φLµ ;µ, λ′)

showing that no-learning strategy remains optimal at λ′: φ∗µ,λ′ = φNµ .

Binary action-state setting

The next two lemmas are used to prove Proposition 5. They describe sufficient

conditions for unique equilibrium in a binary action-state setting. Let us first state

simplifying notation that we will use in proofs of Lemmas 7, 8, and Proposition 5.
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Let Ω = {ω0, ω1}, A = {a, b}. In this subsection of the proofs, we use µ0, µ, γ to

denote the probability of the state ω = 1 (i.e., Pr[ω = 1]) at the prior, the interim,

and the posterior belief respectively. Without loss of generality, assume that in each

state, different action is uniquely optimal (if that is not satisfied, then the sender can

never benefit from persuasion). Let σ∗(µ) = {a} when µ = 0 and σ∗(µ) = {b} when

µ = 1. Then there exists two threshold beliefs 0 ≤ µ ≤ µ ≤ 1 such that NLa = [0, µ]

and NLb = [µ, 1]. Without loss of generality, we consider sender’s strategies with

no more than two elements in their support. Note that v̂(µ) is a piecewise-linear,

upper semi-continuous function with linear segments on [0, µ], [µ, µ], and [µ, 1] (see

Example B1 in Appendix B for explanation why v̂(µ) is linear on [µ, µ]). Further,

note that whenever µ 6= µ, the function v̂(µ) is continuous in µ for all µ ∈ [0, 1].

The concavification cav(v̂)(µ) of v̂(µ) can attain four forms: (i) v̂(µ) = cav(v̂)(µ)

iff µ ∈ [µ, 1] ∪ {0}; (ii) v̂(µ) = cav(v̂)(µ) iff µ ∈ [0, µ] ∪ {1}; (iii) v̂(µ) = cav(v̂)(µ)

iff µ ∈ {0} ∪ {1}; (iv) v̂(µ) = cav(v̂)(µ) for all µ ∈ [0, 1]. Note that in iv), the

sender does not benefit from persuasion for any possible prior µ0 ∈ (0, 1), since

v̂(µ0) = cav(v̂)(µ0) holds (Lemma 6).

Lemma 7. Suppose |A| = |Ω| = 2 and, for a given λ, the sender benefits from

persuasion. Then only never-learning equilibria exist.

Proof. Suppose that the sender benefits from persuasion, but, contrary to the state-

ment, there exists a sender’s optimal strategy τ ∗ with µ̃ ∈ supp(τ ∗) and µ̃ ∈ (µ, µ),

i.e., the receiver learns at µ̃. Then v̂(µ̃) = cav(v̂)(µ̃) (Lemma 6). Since v̂(µ) is linear

over [µ, µ], this implies that v̂(µ) = cav(v̂)(µ) for all µ ∈ [µ, µ]. But then, only case

iv) can happen. In particular, v̂(µ0) = cav(v̂)(µ0), which contradicts that the sender

benefits from persuasion.

Lemma 8. Suppose |A| = |Ω| = 2, and, for a given λ, that the sender benefits from

persuasion and A1 holds. Then there exists a unique equilibrium.

Proof. First, we show that only extreme-point equilibria exist. We then show that

this implies unique equilibrium. Suppose that the sender benefits from persuasion
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and A1 holds. By Lemma 7, only non-learning equilibria exist. Suppose there exist

a non-learning equilibrium, which is not an extreme-point equilibrium. That is,

suppose there exists µ′ ∈ supp(τ ∗) with µ′ /∈ EP a ∪ EP b = {0, µ, µ, 1}. WLOG,

suppose µ′ ∈ (µ, 1). Then v̂(µ′) = cav(v̂)(µ′) (Lemma 6). Since v̂(µ) is linear over

[µ, 1], it then implies that v̂(µ) = cav(v̂)(µ) for all µ ∈ [µ, 1]. Then only case (i) or

(iv) can happen. Under (iv), the sender does not benefit from persuasion, hence it

must be the case (i). Furthermore, since µ′ is in the support of the optimal sender’s

strategy, it supports the tangent hyperplane to the concavification above the prior.

Hence, v̂(µ) is also part of this tangent for all µ ∈ [µ, 1], as it is linear and coincides

with cav(v̂)(µ). However, then action b violates the assumption A1. Hence, only

extreme-point equilibria exist.

Note that, since the sender benefits from persuasion, supp(τ ∗) ∈ {{0, µ}, {µ, 1}, {0, 1}}.

Any other combination of extreme points contradicts that the sender benefits from

persuasion, because then, from the shape of v̂(µ) and Lemma 6, it holds that

v̂(µ0) = cav(v̂)(µ0). Suppose, contrary to the proposition, there are two differ-

ent optimal sender’s strategies. Then there is a non-learning region of (at least) one

of the actions such that the two sender’s strategies each induce different extreme

point of the same non-learning region. But then a new strategy that would, instead,

ceteris paribus, induce a convex combination of these two extreme points would

also be optimal (since still the same action is taken under the convex combination;

more specifically, both the extreme points support the tangent hyperplane to the

concavification above prior. Since v̂(µ) is liner over that whole non-learning region,

it then follows that all beliefs in that non-learning region also support the tangent

hyperplane to the concavification above the prior and can thus be part of an opti-

mal strategy). However, such a new belief lie inside the non-learning region, which

contradicts that there are only extreme-point equilibria.

Proposition 5. Assume |A| = |Ω| = 2, and that for all λ > 0: A1 holds and the

sender benefits from persuasion. Then the receiver’s expected equilibrium utility

(weakly) decreases in λ.
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Proof. Suppose that, for all λ > 0, the sender benefits from persuasion and as-

sumption A1 holds. Then, for all λ > 0, there always exist a unique equilibrium

(Lemma 8). For each λ, the support of the unique optimal strategy lies in the set of

extreme points of non-learning regions (Proposition 2). Consider an arbitrary value

λ > 0 and the associated sender’s optimal strategy τ ∗λ . Since the sender benefits

from persuasion, i.e., v̂(µ0) < cav(v̂)(µ0) (Lemma 6), and since v̂(µ) is a piecewise-

linear function, with linear segments over [0, µ], [µ, µ] and [µ, 1], the support of τ ∗λ

is either (A) {0, 1}, (B) {0, µ} or (C) {µ, 1}, as any other combination of extreme

points contradicts that the sender benefits from persuasion. Consider λ′ > λ. As

shown in the proof of Proposition 3, the non-learning regions do not shrink as λ

increases. Hence, the new non-learning regions are NLa = [0, µ′] and NLb = [µ′, 1],

with µ ≤ µ′ ≤ µ′ ≤ µ. It is direct to see that in all three cases (A), (B) and (C),

the receiver is weakly better off (whenever the sender does not switch between the

three cases as λ changes).

To complete the proof, we show that the sender does not switch between the three

cases (A), (B), and (C) as λ changes. That is, we show that if inducing {0, µ} is

optimal at λ, then inducing {0, µ′} is optimal at λ′ (and not, for instance, inducing

{µ′, 1}). Let us consider all different possible specifications of sender’s payoff:

(1.) First, let the sender prefer different actions in each of the state. (a) If he agrees

with the receiver on the preferred actions under full information (he prefers action

a when ω = ω0 and action b when ω = ω1), then v̂(µ) is convex in µ for any λ and

he optimally provides full information regardless of λ. We are in case (A). (b) If

he disagrees with the receiver on the preferred actions under full information (he

prefers action b when ω = ω0 and action a when ω = ω1), then, for low enough λ—so

that the interim belief at which the sender is indifferent between the two actions, µ̂:

Eµ̂[v(a, ω)] = Eµ̂[v(b, ω)], lies in the learning region of the receiver—v̂(µ) is concave

in µ and the sender optimally provides zero information for any prior µ0 ∈ (0, 1).

Then, this case violates the assumption that the sender benefits from persuasion

for all values of λ. Intuitively, it resembles a zero-sum game, in which case the

sender cannot benefit from persuasion as any information leads the receiver to do
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the opposite of what the sender prefers.

(2.) Second, let the sender prefer (at least weakly) one action over the other in

both states. Without loss of generality, let b be such a dominant action. Let

us consider an arbitrary λ > 0. Then the expected sender’s payoff from action

b satisfies Eµ[v(b, ω)] ≥ v̂(µ) for all µ. More precisely, Eµ[v(b, ω)] = v̂(µ) when

µ ∈ NLb = [µ, 1] and Eµ[v(b, ω)] > v̂(µ) otherwise (the situation when v(b, ω0) =

v(a, ω0) leading to Eµ[v(b, ω)] = v̂(µ) when µ = 0 is excluded by assumption A1).

In this case, the concavification of v̂(µ) is piecewise linear, with line connecting

v(a, ω1) at µ = 0 with Eµ[v(b, ω)] at µ = µ and a line coinciding with Eµ[v(b, ω)]

for µ ∈ [µ, 1]. Then, the only possible case under which the sender benefits from

persuasion is when the prior µ0 lies somewhere between (0, µ), because only for these

beliefs the concavification is strictly above v̂(µ) (Lemma 6). Then, the support of

optimal sender’s strategy is case (B), {0, µ}. As this holds for an arbitrary λ, no

switch between the cases occurs as λ changes. Intuitively, when the sender has a

(weakly) dominant action, his strategy is to maximize the probability of taking that

action. This is done by inducing the closest possible belief to the prior at which the

receiver already takes the dominant action without learning, µ = µ, and inducing

the farthest possible belief from the prior at which the dominated action is taken,

µ = 0.

8 Appendix B: Examples

8.1 Application on Extremism vs Conservatism: Analytical

Solution

In this section, we use µ0, µ, γ to denote the probability of the state ω = 1 (i.e.,

Pr[ω = 1]) at the prior, the interim, and the posterior belief respectively. We use

the Extreme-Point Solution Algorithm to obtain an analytical solution. Note that
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in both cases (setting with the conservative receiver and with the extreme receiver),

the shape of the receiver’s utility implies that v̂(µ) is symmetric around the prior

µ0 = 0.5. Therefore, there is an optimal sender’s strategy with a symmetric support

around the prior. As such, for step 2 of the Algorithm, we can state an additional

restriction to only consider such symmetric supports. Under this restriction, step 3

immediately determines that the candidate seller’s strategies place equal probabili-

ties on the beliefs in their support. If τ is then such a candidate sender’s strategy,

then v̂(µ) = v̂(µ′) for µ, µ′ ∈ supp(τ), and Eτ [v̂(µ)] = v̂(µ) = v̂(µ′). Therefore,

to compare the values of each candidate strategy, for each strategy, we only need

to determine v̂(µ) at one of the beliefs from its support and compare these val-

ues of different strategies against each other. Further, note that in this setting, a

necessary and sufficient condition for multiple equilibria is that there are multiple

extreme-point strategies with symmetric support. This follows from the fact that

v̂(µ) is linear on a learning region between two non-learning regions (as explained in

Example B1 in this Appendix). Therefore, the value of any sender’s strategy under

which the receiver learns can be obtained when used a convex combination of two

different extreme-point strategies. The same is true for any non-learning strategy

which is not an extreme-point strategy. Therefore, a necessary condition for multiple

equilibria is existence of two different optimal symmetric extreme-point strategies.

8.1.1 The Conservative Receiver

Note that for any posterior belief γ ∈ [0, 1], the extreme actions {−2, 2} /∈ σ∗(γ).

Therefore, for any value of λ > 0: NL−2 = NL2 = ∅. Further, note that there is a

threshold value λ̂ ∈ (0,∞), such that for all λ ≥ λ̂: NL−1, NL0, NL1 6= ∅, and for

all λ < λ̂: NL0 = ∅ and NL−1, NL1 6= ∅.

Consider λ ≥ λ̂. Step 1: Using Lemma 4, equation (iii), we obtain the sets of extreme

points of each non-learning regions: EP−1 =
{

0, 1

1+e
1
λ+e

2
λ+e

3
λ

}
:= {0, µ′}, EP 0 ={

e
3
λ

1+e
1
λ+e

2
λ+e

3
λ
, 1− e

3
λ

1+e
1
λ+e

2
λ+e

3
λ

}
:= {µ′′, 1 − µ′′} and EP 1 =

{
1− 1

1+e
1
λ+e

2
λ+e

3
λ
, 1
}

:= {1− µ′, 1}. Step 2: the supports of symmetric candidate sender’s strategies are:
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supp(τ1) = {0, 1} (i.e., full information), supp(τ2) = {µ′, 1 − µ′} and supp(τ3) =

{µ′′, 1− µ′′}. Step 3: as already noted, each candidate strategy places equal proba-

bility at the beliefs in its support. Step 4 & 5: Note that since action 0 is optimal

at the prior, v̂(µ′′) = v̂(1−µ′′) = v̂(µ0), the sender does not benefit from persuasion

under τ3 and the value of the strategy is Eτ3 [v̂(µ)] = Eµ0 [v(0, ω)] = v̂(µ0). Further,

note that beliefs 0 and µ′ belong to the non-learning region of action a = −2. Not-

ing that Eµ[v(−2, ω)] is strictly decreasing in µ, we have v̂(0) > v̂(µ′) (similarly,

v̂(1 − µ′) < v̂(1)) for any specification of λ. Therefore, τ1 is strictly better than

τ2. Noting that v̂(0) = v̂(1) > v̂(µ0), we get that τ1 is strictly better than τ3. Full

revelation is strictly optimal.

The threshold value λ̂ is the value at which NL0 is a singleton: µ′′ = 1−µ′′ yielding

λ̂ = 1.64102. Consider λ < λ̂. Using Lemma 4, equation (iii), we obtain EP−1 ={
0, 1

1+e
4
λ

}
and EP 1 =

{
1− 1

1+e
4
λ
, 1
}

. By the same logic as when comparing τ1 and

τ2 in previous paragraph, we conclude that full revelation is the unique solution.

Therefore, for any λ > 0, full revelation is uniquely optimal.

8.1.2 The Extreme Receiver

Note that there are two threshold values λ̃ > λ > 0 such that: for all λ ≥ λ̃, all

non-learning regions are nonempty, for all λ ∈ [λ, λ̂), NL0 = ∅ and all others are

nonempty, and for all λ < λ, NL−2, NL2 6= ∅ and all others are empty sets.

Consider λ ≥ λ̂. Step 1: Using Lemma 4, equation (iii), we obtain the sets of ex-

treme points of each non-learning regions: EP−2 =
{

0, −1+e
1
λ

−1+e
8
λ

}
:= {0, µ′}, EP−1 ={

−
e
7
λ

(
1−e

1
λ

)
−1+e

8
λ

, −1+e
3
λ

−1+e
8
λ

}
:= {µ′′, µ′′′}, EP 0 =

{
−
e
5
λ

(
1−e

3
λ

)
−1+e

8
λ

, 1−−
e
5
λ

(
1−e

3
λ

)
−1+e

8
λ

}
:= {µ′′′′, 1−

µ′′′′}, EP 1 = {1 − µ′′′, 1 − µ′′}, EP 2 = {1 − µ′, 1}. Step 2: The candidate sender’s

strategies with a symmetric support around the prior are strategies supp(τ1) =

{0, 1}, supp(τ2) = {µ′, 1 − µ′}, supp(τ3) = {µ′′, 1 − µ′′}. supp(τ4) = {µ′′′, 1 − µ′′′},

and supp(τ5) = {µ′′′′, 1 − µ′′′′}. Step 3: As already noted, each candidate strat-
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egy places equal probabilities at the beliefs in its support. Step 4 & 5: Noting

that Eµ[v(−2, ω)] and Eµ[v(−1, ω)] are strictly decreasing in µ (and Eµ[v(2, ω)] and

Eµ[v(1, ω)] are strictly increasing in µ), strategy τ1 is strictly better than τ2 and

strategy τ3 is strictly better than τ4, ∀λ ≥ λ̂. Further, note that v̂(0) = v̂(1) =

−1 = v̂(µ′′′′) = v̂(µ′′′′) = v̂(µ0). Therefore, strategy τ1 and τ5 yields the same ex-

pected payoff and, furthermore, the sender does not benefit from persuasion. Noting

that v̂(µ′′) = v̂(1−µ′′) > v̂(µ0) for all λ ≥ λ̂, we conclude that strategy τ3 is optimal.

The threshold λ̂ is a value at which the non-learning region NL0 is a singleton, i.e.,

at which µ′′′′ = 1− µ′′′′, yielding λ̂ = 7.66092

Consider λ ∈ [λ, λ̂]. Step 1: Using Lemma 4, equation (iii), we obtain the sets of

extreme points of each non-learning regions. They have the same form as in previous

paragraph, except for these changes: EP 0 = ∅, EP−1 =
{
µ′′, 1

1+e
8
λ

}
and EP 1 ={

1− 1

1+e
8
λ
, 1− µ′′

}
. By the same logic as before, since v̂(µ′′) = v̂(µ′) > v̂(0) = v̂(1)

for all values of λ ∈ [λ, λ̂], and the optimal strategy is thus τ3. The threshold value

λ is a value at which the non-learning regions NL−1 and NL1 are singletons, i.e., at

which µ′′ = 1

1+e
8
λ

, which yields λ = 5.99735.

Consider λ < λ. Then EP−1 = EP 0 = EP 1 = ∅ and EP−2 =
{

0, 1

1+e
16
λ

}
and

EP 2 =
{

1− 1

1+e
16
λ
, 1
}

. Since Eµ[v(−2, ω)] is strictly decreasing in µ (and Eµ[v(2, ω)]

is strictly increasing in µ), strategy τ1 is strictly optimal for all 0 < λ < λ.

Therefore, for 0 < λ < λ, full revelation is uniquely optimal. For λ ≥ λ, full

revelation is not optimal and the unique optimal strategy is strategy τ3 where

supp(τ3) =

{
−
e
7
λ

(
1−e

1
λ

)
−1+e

8
λ

, 1−
e
7
λ

(
1−e

1
λ

)
−1+e

8
λ

}
. The derivatives are

e
7
λ

(
−7+8e

1
λ
−e

8
λ

)
(
−1+e

8
λ

)2

λ2
> 0

and −
e
7
λ

(
−7+8e

1
λ
−e

8
λ

)
(
−1+e

8
λ

)2

λ2
< 0. The extreme points that are induced by strategy τ3 are

moving strictly apart from each other as λ increases. Hence, the sender provides

strictly more information in Blackwell sense as λ increases.
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8.2 Example B1: Double Concavification Approach

A seller (he) is persuading a buyer (she) to buy his product (e.g. a music record).

The product is either a good (ω = 1) or a bad (ω = 0) match. The buyer can

either buy (a = 1) or not buy (a = 0). In this section, we use µ0, µ, γ to denote the

probability of the state ω = 1 (i.e., Pr[ω = 1]) at the prior, the interim, and the

posterior belief respectively. Let µ0 < 0.5. Consider Shannon cost. Tables 1 and 2

depict the buyer’s and the seller’s payoffs.

u(a, ω) ω = 0 ω = 1
a = 0 0 0
a = 1 −1 1

Table 1: Buyer’s Payoff

v(a, ω) ω = 0 ω = 1
a = 0 0 0
a = 1 1 1

Table 2: Seller’s Payoff

We first solve the buyer’s maximization problem. Given µ, the buyer maximizes

max
φ∈∆([0,1])

Eφ[B(γ)]− λ(F (µ)− Eφ[F (γ)]) (17)

s.t. Eφ[γ] = µ,

where the expectation is taken over the posterior beliefs induced by φ and B(γ) =

max{0, 2γ − 1} is the buyer’s gross expected utility at posterior γ under optimal

action. We follow Caplin and Dean (2013) when solving for the buyer’s optimal

behavior. They show that the buyer’s optimal behavior can be read off from a

geometric interpretation of the problem (17), which can be rewritten as

max
φ∈∆([0,1])

Eφ[û(γ)]− λF (µ)︸ ︷︷ ︸
=const.

(18)

s.t. Eφ[γ] = µ,

where û(γ) = B(γ) + λF (γ) is the buyer’s value function at posterior γ. Let

cav(û)(γ) denote the concavification of û(γ) defined as the smallest concave func-

tion that is everywhere weakly greater than û(γ). Then the support of the receiver’s

optimal information strategy, supp(φ∗µ), are those posterior beliefs that support the

tangent hyperplane to the lower epigraph of the concavification above the interim
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0 μ .5 μ 1
γ, μ

(not buy) (buy)

u(γ)

cav(u)(γ)

no learning no learninglearning

Figure 4: Buyer’s value function û(γ) and its concavification cav(v̂)(γ). When
µ ∈ [0, µ] ∪ [µ, 1], the buyer does not learn at µ. When µ ∈ (µ, µ), the buyer learns
at µ and the support of the buyer’s optimal strategy is supp(φ∗µ) = {µ, µ}.

belief µ. Whenever cav(û)(γ) = û(γ), the receiver does not learn at µ, and whenever

cav(û)(γ) > û(γ), she learns at µ, where supp(φ∗µ) = {µ, µ} is the support of the

optimal information strategy, see Figure 4.23 Note that the buyer’s optimal strategy

satisfies a “locally invariant posteriors” property, which states that the support of

the optimal strategy is invariant to local changes in the interim belief (see Caplin

and Dean (2013)). That is, supp(φ∗µ) = supp(φ∗µ′) for every µ, µ′ that is in the con-

vex hull of supp(φ∗µ). In binary state, this property implies that v̂(µ) is linear on a

particular learning region.

Next, let us turn to the seller’s maximization problem. Given µ0, the seller maxi-

mizes

maxτ∈∆([0,1]) Eτ [v̂(µ)] (19)

s.t. Eτ [µ] = µ0,

where the expectation is taken over interim beliefs induced by τ and v̂(µ) is the

23Using equation (iii) from Lemma 4, we obtain µ = 1

1+e
1
λ

and µ = e
1
λ

1+e
1
λ

.
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cav(v)(μ)

Figure 5: Seller’s conditional expected payoff v̂(µ), its concavification cav(v̂)(µ) and
support of the sender’s optimal strategy supp(τ ∗) = {0, µ}.

seller’s expected utility at µ under optimal continuation play of the buyer at µ.24

Recall, that cav(v̂)(µ) denotes the concavification of v̂(µ). Determining the seller’s

optimal behavior can be done in a similar fashion as we did it for the buyer. The

seller’s expected equilibrium utility is the concavification evaluated at the prior,

cav(v̂)(µ0), and supp(τ ∗) = {0, µ} is the support of the optimal sender’s strategy,

see Figure 5.

8.3 Example B2: Failure of Proposition 1 Under a Non-

Uniformly Posterior-Separable Cost Function

Let Ω = {ω0, ω1}, A = {a, b, c}. Let the sender’s and receiver’s payoffs be given by

Tables 3 and 4. In this section, we use µ0, µ, γ to denote the probability of the state

ω = 1 (i.e., Pr[ω = 1]) at the prior, the interim, and the posterior belief respectively.

Let µ0 = 0.5.

24Hence, v̂(µ) = 0 if µ ≤ µ (the buyer does not learn and does not buy), v̂(µ) = 1 if µ ≥ µ (the

buyer does not learn and buys), and v̂(µ) = 1
µ−µµ−

µ

µ−µ for µ ∈ (µ, µ).
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u(a, ω) ω0 ω1

a 1 −2
b 0 0
c −2 1

Table 3: Receiver’s Payoff

v(a, ω) ω0 ω1

a 0 0
b 0 1.5
c 2 2

Table 4: Sender’s Payoff

8.3.1 Receiver’s Optimal Behavior Under Shannon Cost

Let us first solve the model under the Shannon cost. Note that the receiver wants

to take action a in state ω0, action c in state ω1, and action b when uncertain

about the state. For high enough λ, there are three non-learning regions: NLa =

[0, µa(λ)], NLb = [µ
b
(λ), µb(λ)], and NLc = [µc(λ), 1], where 0 < µa(λ) < µ

b
(λ) ≤

µb(λ) < µc(λ) < 1. For low enough λ, the non-learning region of action b disappears:

whenever the receiver acquires information, she does so to decide on taking either

action a or c. Then, there are only two non-learning regions: NLa = [0, µ′a(λ)], and

NLc = [µ′c(λ), 1], where 0 ≤ µ′a(λ) < µ′c(λ) ≤ 1.

Using equation (iii) in Lemma 4, for high enough λ, we obtain

µa(λ) =
e

1
λ − 1

e
3
λ − 1

, µb(λ) =
e

2
λ − 1

e
3
λ − 1

, µ
b
(λ) =

1− e−
1
λ

1− e−
3
λ

, µc(λ) =
1− e−

2
λ

1− e−
3
λ

(20)

Analogously, for low enough λ, we obtain

µ′a(λ) =
e

3
λ − 1

e
6
λ − 1

, µ′c(λ) =
1− e−

3
λ

1− e−
6
λ

(21)

8.3.2 Non-Uniformly Posterior-Separable Cost Function: Setup

Now, let us consider a particular case of posterior-separable cost functions that

are not UPS. In particular, we consider a function, in which the scaling parameter

decreases in µ in the interval [µ0, 1] (as opposed to UPS cost, where λ is independent

of µ). Intuitively, the scaling parameter decreasing (increasing) in µ when µ > µ0

(µ < µ0) means that information acquisition technology is more efficient (cheaper)
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supp(φ∗µ) Pr[a] Pr[b] Pr[c]

µ ∈ [0, µa(κ] {µ} 1 0 0

µ ∈
(
µa(κ), µ

b
(κ)
)
{µa(κ), µ

b
(κ)} µ

b
(κ)−µ

µ
b
(κ)−µa(κ)

µ−µa(κ)
µ
b
(κ−µa(κ))

0

µ ∈
[
µ
b
(κ), µb

]
{µ} 0 1 0

µ ∈
(
µb, µ̂

)
{µb(κ̃(µ)), µc(κ̃(µ))} 0 µc(κ̃(µ))−µ

µc(κ̃(µ))−µb(κ̃(µ))
µ−µb(κ̃(µ))

µc(κ̃(µ))−µb(κ̃(µ))

µ ∈ [µ̂, µc) {µ′a(κ̃(µ)), µ′c(κ̃(µ))} µ′c(κ̃(µ))−µ
µ′c(κ̃(µ))−µ′a(κ̃(µ))

0 µ−µ′a(κ̃)
µ′c(κ̃(µ))−µ′a(κ̃(µ))

µ ∈ [µc, 1] {µ} 0 0 1

Table 5: Receiver’s optimal behavior under a non-uniformly posterior-separable cost
function

when the receiver is better informed about the state.25

Formally, let κ = 3, κ = 1.5 and denote µb ≡ µb(κ) and µc ≡ µ′c(κ), where µb(·)

is given by (20) for λ = κ, and µ′c(·) is given by (21) for λ = κ. That is, µb is the

higher of the extreme points of NLb when the receiver faces a Shannon cost with

scaling cost parameter κ, where the cost parameter is high enough so that there are

three non-learning regions. Analogously, µc is the lower of the extreme points of

NLc when the receiver faces a Shannon cost with scaling cost parameter κ, where

the cost parameter is low enough so that there are only two non-learning regions.

Let us define the receiver’s cost function as

c(φ;µ, κ) =


κ
[
H(µ)−

∑
γ H(γ)φ(γ)

]
if µ ∈ [0, µb]

κ̃(µ)
[
H(µ)−

∑
γ H(γ)φ(γ)

]
if µ ∈ (µb, µc]

κ
[
H(µ)−

∑
γ H(γ)φ(γ)

]
otherwise

(22)

where κ̃(µ) = κ µcκ−µ
µc−µb + κ µ−µb

µc−µb . Note that κ̃(µ) is a uniformly decreasing function

on [µb, µc] satisfying limµ→µb+ κ̃(µ) = κ and limµ→µc− κ̃(µ) = κ.
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8.3.3 Non-Uniformly Posterior-Separable Cost Function: Solution

Table 5 captures how the receiver’s optimal behavior and corresponding uncon-

ditional probabilities of taking each action vary with her interim belief. When

µ ∈ [0, µa(κ)], where µa(·) is given by (20) for λ = κ, the receiver does not learn and

takes an action a. When µ ∈
(
µa(κ), µ

b
(κ)
)

, where µ
b
(κ) is given by (20) for λ = κ,

the receiver learns in order to take either action a or b. In that case, the support of

her optimal learning strategy are posteriors γa = µa(κ), under which she takes an

action a, and γb = µ
b
(κ) under which she takes an action b. When µ ∈

[
µ
b
(κ), µb

]
,

the receiver does not learn and takes an action b. When µ ∈
(
µb, µ̂

)
, the receiver

learns in order to take either action b or c. The support of her optimal learning

strategy are posteriors

γb(µ) =
e

2
κ̃(µ) − 1

e
3

κ̃(µ) − 1
, γc(µ) =

1− e−
2

κ̃(µ)

1− e−
3

κ̃(µ)

, (23)

where she takes an action b if γb(µ) is induced and an action c otherwise. The

belief µ̂ is a point of indifference, where the receiver is indifferent between learning

in order to take either action b or c, or learning in order to take either action a or

c. It is an interim belief, under which in a model with Shannon cost with λ = κ̃(µ̂),

the non-learning region of action b is not an interval, but a singleton. That is, the

following condition is satisfied:

µ
b
(κ̃(µ̂)) = µb(κ̃(µ̂)) (24)

where µ
b
(·) and µb(·) are given by (20). When µ ∈ (µ̂, µc), the receiver learns in

order to take either action a or c. The support of her optimal learning strategy are

posteriors

γ̂a(µ) =
e

3
κ̃(µ) − 1

e
6

κ̃(µ) − 1
, γ̂c(µ) =

1− e−
3

κ̃(µ)

1− e−
6

κ̃(µ)

, (25)

25The failure of Proposition 1 holds when the scaling parameter decreases in µ for µ0 < µ and
increases in µ when µ < µ0 at the same time. To keep the analysis simple, we focus only on one
side, when µ0 < µ.
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μa(κ) μb(κ)μ0 μb μ μc 1
μ

v(μ)

cav(v)(μ)

learning learning

Figure 6: Non-existence of a non-learning equilibrium under a non-uniformly
posterior-separable cost function (22): Sender’s conditional expected payoff v̂(µ),
its concavification cav(v̂)(µ) and the support of sender’s unique optimal strategy
supp(τ ∗) = {0, µ̂}. The receiver learns at µ̂.

where she takes an action a if γ̂a(µ) is induced and an action c otherwise. When

µ ∈ [µc, 1], the receiver does not learn at µ and takes an action c. Knowing the

support of the receiver’s optimal information strategies for each µ, we can determine

the unconditional probabilities for each of the action to be taken using Bayes’ law.

Having characterized receiver’s optimal behaviour, we can determine v̂(µ), which

takes the following form:

v̂(µ) =



0 µ ∈ [0, µa(κ)]

µ
b
(κ)−µ

µ
b
(κ)−µa(κ)

× 1.5µ
b
(κ) µ ∈

(
µa(κ), µ

b
(κ)
)

1.5µ µ ∈
[
µ
b
(κ), µb

]
µ−µb(κ̃(µ))

µc(κ̃(µ))−µb(κ̃(µ))
× 2 + µc(κ̃(µ))−µ

µc(κ̃(µ))−µb(κ̃(µ))
× 1.5µb(κ̃(µ)) µ ∈

(
µb, µ̂

)
µ−µ′a(κ̃)

µ′c(κ̃(µ))−µ′a(κ̃(µ))
× 2 µ ∈ [µ̂, µc)

2 µ ∈ [µc, 1]

(26)

Figure 6 captures the sender’s conditional expected payoff v̂(µ), its concavification

cav(v̂)(µ) and the support of sender’s unique optimal strategy supp(τ ∗) = {0, µ̂}.

Since µ̂ ∈
(
µb, µc

)
, the receiver learns at µ̂, and the Proposition 1 fails.
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8.4 Example B3: Failure of Proposition 1 Under a Binary

Signal Strategy with Exogenous Precision

In this section, we solve the buyer-seller setup used in Example B1 under a different

cost function: we assume the receiver can obtain a partially revealing binary signal

at a fixed cost c ≥ 0.

Let Ω = {0, 1}, A = {0, 1}, v(a, ω) = a, u(a, ω) = 1 if a = ω = 1, u(a, ω) = −1

if a = 1 and ω = 0 and 0 otherwise. In this section, we use µ0, µ, γ to denote

the probability of the state ω = 1 (i.e., Pr[ω = 1]) at the prior, the interim, and

the posterior belief respectively. Given µ, the receiver can obtain a binary signal

s ∈ {0, 1} of precision p := Pr[s = ω|ω] > 0.5 by paying c ≥ 0. In this example, say

the receiver learns if she pays c and gets the signal.

8.4.1 Receiver’s Maximization Problem: Solution

Given µ, if the receiver learns, she updates her beliefs to a posterior γs(µ) := Pr[ω =

1|s, µ] with probability φs(µ) := Pr[s|µ], where

γ1(µ) =
pµ

φ1

, φ1(µ) = pµ+ (1− p)(1− µ),

γ0(µ) =
(1− p)µ

φ0

, φ0(µ) = (1− p)µ+ p(1− µ).

The receiver takes action a = 1 if γs ≥ 1/2. Her expected utility from learning is

UL(µ) = max{0, 2γ1(µ)− 1}φ1(µ) + max{0, 2γ0(µ)− 1}φ0(µ)− c.

If she does not learn, she takes action a = 1 if and only if µ ≥ 1/2, obtaining

expected utility

UNL(µ) = max{0, 2µ− 1}.
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For sufficiently low cost c, there are two interim beliefs at which the receiver is

indifferent between learning and not: µ < 1/2 such that upon s = 1, the receiver

switches to action a = 1, but the expected marginal benefit is exactly c: UNL(µ|µ <

1/2) = UL(µ|µ < 1/2, γ1(µ) ≥ 1/2); and µ ≥ 1/2 such that upon s = 0, the receiver

switches to action a = 0, but the expected marginal benefit is exactly c: UNL(µ|µ ≥

1/2) = UL(µ|µ > 1/2, γ0(µ) < 1/2). The first equation is 0 =
(
2γ1(µ)− 1

)
φ1(µ)−c

and the second equation is 2µ− 1 = (2γ1(µ)− 1)φ1(µ)− c, yielding

µ = 1− p+ c, µ = p− c,

where p− c ≥ 1/2 must hold.

Hence, if c ≤ p − 1/2, there are two non-learning, [0, µ), [µ, 1], and one learning,

[µ, µ), regions. In contrast to the original model, a non-learning region need not

be closed, as the sender-preferred equilibrium assumption puts the belief µ to the

learning region. If c > p− 1/2, the receiver never learns for any µ.

8.4.2 Sender’s Maximization Problem: Solution

Suppose c ≤ p− 1/2. A seller’s conditional expected utility v̂(µ) is

v̂(µ) =


0 0 ≤ µ < µ

pµ+ (1− p)(1− µ) µ ≤ µ < µ

1 µ ≤ µ ≤ 1

.

A sender’s optimal strategy can be found by concavification cav(v̂)(µ) of v̂(µ). Fig-

ure 7 depicts v̂(µ) and an optimal sender’s strategy when the precision of the re-

ceiver’s signal is p = 0.8 and when (a) c → 0 or (b) c = 0.2. Proposition 1 fails

when c → 0, since the (unique) sender’s strategy targets learning of the receiver.

Figure 8 then captures the player’s expected equilibrium payoffs as a function of c

when the precision of the signal is p = 0.8. Similarly to the application, the receiver’s

payoff is non-monotone in c, and in this example, the receiver prefers intermediate
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Figure 7: v̂(µ) and the sender’s optimal strategy with p = 0.8. The sender targets
(a) learning (less information) and (b) no learning (more information).

p-1�2
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0.065

HaL receiver’s expected equilibrium utility
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learning

targeting
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p-1�2
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HbL sender’s expected equilibrium utility

Ev*Ha,ΩL

targeting
learning

targeting
no learning

Figure 8: Equilibrium expected utilities as a function of c with p = 0.8. Both the
sender’s and the receiver’s utilities are non-monotone in c.

to very low cost. In contrast to Proposition 3, however, the sender’s payoff is also

non-monotone in c: it is locally decreasing in c over the region in which the sender

targets learning. The difference to our original model stems from the rigidity of

receiver’s information acquisition technology, which the sender takes advantage of.

The sender optimally chooses between two types of strategies: providing enough

information to prevent the receiver from additional learning, or providing less infor-

mation and inducing her to learn the fixed amount of information that is available

to her. The non-monotonicity results then stem from the interplay between these

two strategies and how their optimality varies with changes in the cost c.
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