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Abstract

This paper studies a principal who incentivizes an agent to achieve and maintain compliance and

voluntarily disclose incidences of non-compliance. Compliance is modeled as a persistent binary

process that jumps at random times arriving at a rate that depends on the agent’s efforts. The state

of compliance is verifiable by the principal only at isolated instances through costly inspections.

We show that in principal-optimal equilibria, the principal attains maximum compliance by using

deterministic inspections. The optimal equilibrium features periodic inspection cycles which are

suspended during periods of self-reported non-compliance, in which the agent is fined. We explain

how commitment to random inspections benefits the principal by relaxing the agent’s incentive-

compatibility constraints, and we discuss possible ways for the principal to overcome her commitment

problem through third-party involvement.

1 Introduction

Trust rarely endures at arm’s length without oversight. In 2010, Boeing decided to redesign its best-

selling 737 to create a newer model, the 737 MAX, in response to its arch rival’s fuel-efficient newcomer,

the Airbus 320 NEO. The redesign required fitting larger engines on the 737 which was a challenge

due to the aircraft’s low profile. The necessary adjustments to the position of the engines altered the

aerodynamics of the aircraft in a way that could result in a stall under certain flight conditions, a risk

that Boeing engineers tried to mitigate with a software fix. This software turned out to be prone to

failure, however; a defect that ultimately caused a fatal crash in 2018 and a second one 5 months later.

These accidents killed 346 people and led to a worldwide grounding of the remaining aircraft. As a

result, Boeing suffered an operational loss in excess of $20 billion, and the estimated impact on the U.S.

economy as a whole was a devastating 0.4 percentage points loss in GDP growth (di Giovanni et al.,

2020). An investigation by U.S. Congress concluded that the accidents were to a large extent due to

“grossly insufficient oversight by the FAA.”1 In the early 2000s, the FAA began to increasingly trust

∗We are thankful to Francesc Dilmé, Daniel Hauser, Florian Hoffmann, Martin Pollrich, Sven Rady and Alex Smolin
for valuable comments, and thank participants at the Canadian Economic Theory Meeting in Vancouver and Econometric
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to Chris Shannon and the Economics Department at UC Berkeley for their hospitality during a productive visit in the fall
of 2016, and to the Hausdorff Center for Mathematics in Bonn for providing financial support. Jan Knoepfle acknowledges
financial support by the German Research Foundation (DFG) through CRC TR 224 (Project B04).
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manufacturers to certify their own planes as a cost-saving measure. By 2018, Boeing had self-certified

nearly all of its work (Kitroeff et al., 2019). In absence of oversight, Boeing responded to competitive

pressure by rushing development and production at the expense of safety.

The case of Boeing’s 737 MAX illustrates the potential risks of delegating responsibilities without

maintaining sufficient oversight. Oversight is needed to provide incentives for compliance, but in general,

it is difficult to say how much oversight is enough. How much should manufacturers be monitored to

ensure that they adhere to safety and environmental regulation? How much should service industries be

monitored for potential consumer-protection or privacy violations? How closely should banks be watched

to ensure that they maintain functioning internal audit systems and control their risk exposure? Ques-

tions of adequate oversight are relevant not only for regulatory enforcement but also arise frequently in

the private sector. Retail firms, for example, must decide how often to inspect franchise outlets to ensure

that they comply with quality and operating requirements (Martin, 1988; Lafontaine and Slade, 1996).

Banks must decide how closely to monitor borrowers to verify their appropriate use of funds (Diamond,

1984; Antinolfi and Carli, 2015). Similar questions also arise in the enforcement of international agree-

ments, such as disarmament or financial-aid treaties. A critical issue in all of these settings is the tension

between trust and oversight. In a principal-agent relationship, if the principal trusts that the agent is

compliant, what incentive is there to maintain oversight? With too little oversight, why would the agent

exert effort to remain compliant? Theoretical work predicts that when monitoring is costly, compliance

is attainable if the principal has commitment power (Holmstrom, 1979). Without commitment power,

however, the relationship must inevitably involve some degree of distrust and cheating (Reinganum and

Wilde, 1985; Avenhaus et al., 2002; Dilmé and Garrett, 2019).

We explore the tension between trust and oversight in a continuous-time relational contracting frame-

work between a principal and an agent. Our setup entails two critical modeling assumptions. First, we

assume that the agent’s effort has a delayed and persistent effect on compliance. To achieve this, we

model compliance as a binary Markov process which jumps at random times arriving at a rate that

depends on the agent’s effort choices. Prolonged periods of shirking will inevitably lead to a state of non-

compliance, which the principal can detect by performing costly inspections. Our model thus exhibits

both hidden action as well as hidden information (Levin, 2003). Second, we consider an environment

with extreme conflict of interest between the principal and the agent in that only the principal bene-

fits from the agent’s compliance, and compliance is hard to observe and non-contractible, so that the

information asymmetry cannot be easily mitigated through performance contracts. To generate incen-

tives, we assume that the principal can impose limited sanctions —reductions in the agent’s promised

utilities, which we can interpret literally as monetary payments (i.e., fines), or as resulting from other,

non-monetary measures such as increasing bureaucratic burden, reputational harm, limits to trade, or

restricting access to resources.

We focus on principal-optimal equilibria of this environment. Our main result is that there exist

equilibria in which the agent truthfully discloses all changes in compliance and exerts maximum effort

throughout. The novel insight is that the principal can induce the agent to work and report truth-

fully despite her lack of commitment, provided the agent’s effort has a delayed and persistent effect on

compliance. The persistence allows the principal to deter the agent from deviations through isolated

inspections and threats of penalties. The principal’s motive to monitor in these equilibria is derived

from her desire to maintain a reputation for vigilance. Our notion of reputation follows Barro and Gor-

don (1983), Canzoneri (1985), and Ljungqvist and Sargent (2018), and it is in the sense of maintaining
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reputation by following equilibrium actions.2 As long as the principal monitors as prescribed by her

equilibrium strategy, the agent will continue to expect to be monitored in the future, and therefore have

an incentive to exert effort and report changes in compliance truthfully. When the principal monitors

insufficiently, in such a way that the agent detects a deviation, the agent will infer that the principal has

become non-vigilant, which in turn induces the agent to shirk and ultimately leads to a breakdown of

the relationship.

In the class of principal-optimal equilibria we construct, inspections are entirely predictable for the

agent. This result implies in particular that the principal cannot gain from randomized inspections.

Intuitively, inspecting at random without commitment is ineffective because it renders deviations by the

principal undetectable for the agent. To deter the principal from delaying inspections, later inspections

must be followed by continuation play which is increasingly less favorable for the principal. In equilibrium,

the principal is willing to randomize if she receives the same expected payoff from inspecting at any date

in the support of her inspection strategy. This also means that she would be equally well off when

inspecting at the earliest possible date in this support. We use this observation and show that we

can modify the equilibrium strategies successively to obtain an alternative equilibrium in which the

principal uses a non-random inspection strategy that involves performing an inspection with certainty at

the earliest possible realization of the original (mixed) strategy while maintaining the agent’s incentive-

compatibility conditions.

To construct the principal-optimal equilibrium, we show that equilibrium payoffs coincide with the

value of an auxiliary mechanism-design problem in which the principal is restricted to non-random

inspections. We then transform this optimization into a dynamic programming problem which uses

the agent’s promised utility as state variable. The principal-optimal equilibrium we derive entails two

phases that depend on the agent’s report: a penalty phase and a monitoring phase. The agent is in the

penalty phase when he reports a failure of compliance. He then pays a constant flow fine but is never

inspected. The agent enters the monitoring phase when he reports compliance. During the monitoring

phase, the agent is not fined but subject to periodic inspections. Crucially, the equilibrium naturally

features penalty reductions for early disclosures of non-compliance, which is an aspect that is consistent

with voluntary disclosure schemes that are commonly used in practice. The penalty reduction is needed

to prevent the agent from delaying a report of an incidence of non-compliance in the hope that he can

remain undetected and regain compliance in time for the next inspection.

We then contrast this equilibrium with stochastic inspection mechanisms and show that the ability to

commit to random inspections decreases the expected inspection costs. Delay and noise in the detection

of non-compliance, as well as additional penalties needed to generate incentives for voluntary disclo-

sure, make deterministic inspections more costly than random inspection. We conclude by discussing

alternative ways to use randomization without commitment power and highlight mechanisms that are

used in practice: institutional separation of planning and execution of oversight and inspection sampling,

combined with publicly accessible and verifiable inspection records.

1.1 Related literature

Our paper is closely related to the literature on costly state verification (CSV). Early papers, including

Townsend (1979), Gale and Hellwig (1985), Mookherjee and Png (1989), and Border and Sobel (1987),

2An interpretation which is distinct from the different strands of reputation literature following Kreps and Wilson (1982),
Mailath and Samuelson (2001), Holmström (1999), Board and Meyer-ter-Vehn (2013). See also Mailath and Samuelson
(2006), pg. 459.
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focus on static models of adverse selection. One of the main findings in this literature is the optimality of

cut-off verification protocols, an insight that has been influential in explaining the use of debt contracts

and the role of financial intermediaries. A number of papers consider dynamic extensions of the static

models. These include models with a risk-neutral agent and deterministic monitoring schemes (Webb,

1992; Chang, 1990), with a risk-neutral agent and random verification under wealth constraints (Monnet

and Quintin, 2005; Antinolfi and Carli, 2015), and models with randomized verification and a risk-averse

agent (Wang, 2005; Popov, 2016). These papers focus on discrete-time settings in which the agent’s

information is i.i.d. across periods. More similar to the setup in this paper is Ravikumar and Zhang

(2012), which also considers a continuous-time model with persistent private information. However,

they consider a pure adverse-selection framework in which the private information results from a single

exogenous jump in income that is unobservable to the principal. In contrast, our analysis includes a

moral-hazard problem and our information structure allows for oscillations between states and effort-

dependent transitions.

The above papers focus on optimal mechanisms when the principal has full commitment power. Less

attention has been given to the question of limited commitment in costly state verification models. A

notable exception is the paper by Krasa and Villamil (2000) which considers an extension of the standard

CSV model in which the principal is free to choose whether to go to court to enforce a mechanism. Their

results are similar in spirit to ours: randomization is optimal when the principal can commit ex-ante, but

deterministic verification is optimal without commitment. However, as they study a static model, they

rely on an external party that enforces the mechanism. In our dynamic model without an external party,

enforcement is ensured by contingent continuation play, and the strategic considerations in deciding when

to inspect are quite different.

Commitment plays an important role in costly inspections in two fundamental and intertwined ways:

First, when truthful reports are expected from the agent, the principal has no incentive to pay the in-

spection cost to reveal the agent’s private information. Indeed, for static games, Reinganum and Wilde

(1985) show that full compliance is not achievable without commitment. Second, randomized inspec-

tions —which may be more effective in providing incentives— are more demanding on the principal’s

commitment power. With repeated interactions, in which the principal’s choices affect the continuation

play, there is scope to provide punishment for insufficient inspection. Indeed, Ben-Porath and Kahneman

(2003) prove a folk-theorem, showing that full compliance can be obtained without commitment in the

undiscounted limit through random inspections. In our game, full compliance is attainable even with

discounting. However, a non-committed principal cannot lower inspection costs through randomization.

These differences stem from the persistence of information and the observability of inspections and. In

Ben-Porath and Kahneman (2003), instances of non-compliance can only be detected by a contempora-

neous inspection and inspections are not observable to the agent, so some instances of non-compliance

are required to identify and incentivize inspections for the principal. When these incentives are provided

tightly, that is, such that the principal is indifferent between inspecting or not, and inspections are un-

observed, the principal may randomize. In the equilibrium constructed in Ben-Porath and Kahneman

(2003), the frequency of non-compliance vanishes as the discount factor approaches one.

This paper is also related to the theories of crime deterrence and enforcement through policing and

punishment following the seminal paper by Becker (1968). See also Dye (1986), Bassetto and Phelan

(2008), and Bond and Hagerty (2010). The primary focus of these papers is the enforcement of an

agent’s hidden action. This stands in contrast to the CSV literature, which primarily focuses on the

problem of eliciting hidden information. Showing that the agent need not be inspected while reporting
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non-compliance, our dynamic model of enforcement with voluntary disclosure confirms the insights from

Malik (1993); Kaplow and Shavell (1994); Pfaff and Sanchirico (2000); Innes (1999a,b, 2001) who show in

static models that self-reporting can reduce monitoring costs. For the case of limited commitment, there

is an extensive literature on so-called inspection games, which have been applied to various problems,

among them pollution or arms control. The contributions to this literature, including static as well

as dynamic models, are surveyed by Avenhaus et al. (2002). More recently, Dilmé and Garrett (2019)

consider a dynamic model of deterrence in which the principal faces a transition cost to commence

monitoring. A common feature of equilibria in these games is that, without commitment, it is impossible

to induce the agent to comply fully, which stands in contrast to our results with persistent information.

Our model of compliance as a two-state Markov process is based on Board and Meyer-ter-Vehn (2013),

which studies the reputation problem of a firm that has to make costly investments towards quality

improvements, where quality becomes publicly observable at random times. We embed this framework

into a principal-agent problem, allowing the principal to choose the times at which to inspect the state of

compliance and to control the agent’s payoff by fines. A similar model has been studied by Kim (2015)

in the context of environmental control, comparing specific classes of inspection policies without limited

liability. Most closely related is the contribution by Varas et al. (2020), which also studies inspections in a

principal-agent model that incorporates the reputation-for-quality framework. In their model, the agent

is motivated by the desire to generate a positive reputation and inspections make the agent’s current

type public. Additionally, inspections serve an information-acquisition role for the principal. The authors

find random inspections to be most effective for incentive provision, but deterministic inspections may

nevertheless be optimal when inspections have the purpose of revealing socially valuable information. In

contrast, in our model, the agent voluntarily discloses the state of compliance, and therefore inspections

do not serve the purpose of diminishing public uncertainty. Instead, the reason for the optimality of

non-random inspections in our paper is the principal’s lack of commitment power.3

Finally, our model is also related to the classic machine maintenance problem in operations research.

The machine maintenance problem is a statistical decision problem in which a machine “fails” at random

times which can be observed only through inspection (see Osaki, 2002, for an overview). Similar models

have also been applied in the accounting literature to study the optimal timing of audits (Kaplan, 1969;

Carey and Guest, 2000; Hughes, 1977). All of these models are non-strategic, however.

2 Model

There are an agent and a principal. Time t ∈ [0,∞) is continuous. The principal and the agent are

risk-neutral and discount future payoffs at a common rate r > 0. The principal requires the agent to

comply with an exogenously given ”standard” (representing a set of rules, for example on quality or

conduct). Compliance is represented by a binary indicator variable θt ∈ {0, 1} which fluctuates over

time with random transitions following a two-state Markov process. At each instant, the agent chooses

effort level ηt ∈ [0, 1] at instantaneous cost of cηt dt with c > 0. Effort affects transition rates of the state

of compliance as follows.

3Varas et al. (2020) explain the occurrence of periodic, non-random inspections of aircraft as mandated by the FAA to
the importance of the information revealed in safety checks. Our findings suggest that a complementary explanation could
be that the principal must maintain a reputation for vigilance due to a lack of commitment.
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State dynamics. Let (Ω,F , P ) be a probability space. Let the marked point process z = {zt}t≥0
represent the arrival of random shocks, where zt = 0 except at isolated times t0 < t1 < · · · . Shocks

arrive at constant rate λ > 0. At each random time tj , the value of the shock ztj is independently

and uniformly distributed on [0, 1]. Let {Ft} be the natural filtration generated by z. The process

θ = {θt}t≥0 evolves according to a two-state Markov process that depends on the shock process and the

agent’s effort choices. Immediately after the arrival of a shock at time tj , we have θtj = 1 if αηtj ≥ ztj ,

and θtj = 0 if αηtj < ztj . The state θt is constant between shocks. The control parameter α ∈ (0, 1)

measures the agent’s control of the state conditional on the arrival of a shock; α < 1 represents the

possibility that the agent cannot always maintain compliance despite best efforts. At any time t, the

probability of θt+dt = 1 is therefore

Prob(θt+dt = 1|θt) =

1− λ dt+ αηtλ dt if θt = 1,

αηtλ dt if θt = 0.

Inspections and fines. The principal has an interest in the agent’s compliance. At each instant t,

the principal’s flow payoff is θtR, where R > 0. The agent privately observes θt at each time t ≥ 0.

The principal cannot observe the agent’s effort, and compliance is observable for her only through costly

inspections.4 At any time t ≥ 0, the principal can inspect the state at lump-sum cost κ > 0. In addition to

inspection decisions, the principal can punish the agent through fines. Fines may be understood literally,

as compulsory monetary payments, or they may be interpreted as remedial actions that negatively impact

the agent in some other way. We assume that the principal does not benefit directly from fining the

agent. This assumption is innocuous if fines are interpreted as remedial actions. When interpreting fines

as monetary payments, this assumption prevents rent-seeking incentives for the principal, who could use

fines as a means to transfer surplus. In the context of public institutions, this represents a benevolent

view of the regulator that uses transfers with the intention to correct market failures.

In addition to effort and reporting decisions, we allow both the principal and the agent to exit, which

permanently ends the relationship and results in a continuation value of zero for the principal, and a

continuation payoff of −B for the agent. For the principal, this implies a constraint on the severity of

fines she can impose. We assume that the exogenously given bound B is larger than c(r+λ)
αλr . Otherwise,

the maximal punishment is insufficient to incentivize effort even if θt were public at all times. The

players’ option to exit reflects the idea that they can limit their liability by dissolving the relationship:

a lender can withdraw a loan, a firm or bank can shut down, etc.

Timing. The timing at each t ≥ 0 is as follows.5 First, the agent chooses effort level ηt. Subsequently,

nature determines whether a shock arrives and, conditional on the arrival of a shock and the effort

level, draws a new state. The agent then observes the realized state and sends a report θ̂t ∈ {0, 1} to

the principal. The principal, in turn, makes an inspection decision and, conditional on the inspection

outcome, chooses a fine incurred immediately by the agent. Denote by N I
t the number of inspections

and by Ft the cumulative fines up to and including time t.

4Thus, to ensure that the principal cannot infer the state without inspection, we assume that she does not observe
her flow payoff. Alternatively, one could model the principal’s payoff difference as stemming from the possibility of a
detrimental event that arrives only during the low state, ends the game, and creates expected cost of R.

5We outline the sequentiality at a given instant to establish some intuition about the order of events over time. Formally,
this order is captured by continuity properties of the respective action and state paths.
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Histories and strategies. A history at time t is a collection of paths

ht = {ηs, θs, θ̂s, N I
s , Fs}s∈[0,t],

where

(ηs, θs, θ̂s, N
I
s , Fs) ∈ [0, 1]× {0, 1} × {0, 1} × N0 × R+.

Throughout, we denote strict histories for which the realization at time t is excluded by ht−. Let Ht be

the set of all time-t histories and Ht− the set of all strict histories. Let H =
⋃
t≥0Ht and H− =

⋃
t≥0Ht−.

The agent’s strategy specifies efforts and reports as functions of histories. A strategy for the agent is

defined as a pair (e, ρ) = ({et, ρt}t≥0) with

et : Ht− → [0, 1], ρt : Ht− × {0, 1} → {0, 1},

where et(ht−) is the agent’s effort at time t and ρt(ht−, θt) is the agent’s report at time t after history

ht− when the state at time t is θt. To capture the principal’s uncertainty about the agent’s effort choices

and the true state of compliance, consider a partition HPt of the history set Ht which comprises all

subsets of Ht whose elements are indistinguishable to the principal. Define the partition HPt− similarly

for strict histories at t. To allow for randomized inspections, we equip the principal with a (private)

random signal π, defined on a sufficiently rich probability space with state space Π. A strategy for the

principal is defined as a pair (n, f) = ({nt, ft}t≥0) of mappings

nt : Π×Ht− × {0, 1} → {0, 1}, ft : Ht− × {0, 1}3 → R+,

which are constant on every HP
t− ∈ HPt− for each t ≥ 0, where ft is required to be weakly increasing over

time. Here, nt(π, ht−, θ̂t) is equal to 1 if an inspection is performed at time t and equal to 0 otherwise. By

ft(ht−, θt, θ̂t,dN I
t ) we denote the cumulative fine imposed by the principal at time t. We abuse notation

slightly and write ft(ht) instead of ft(ht−, θt, θ̂t,dN I
t ) whenever there is no danger of confusion. The

exit decision for each player at any history is a binary variable indicating whether this player decides to

exit or not. For the ease of exposition, we do not introduce additional notation for these choices; they

translate into lower bounds on the expected payoffs of the players in the equilibrium definition below.

The strategies above are to be understood as conditional on no player having exited previously. Actions

to be chosen after one player exited are irrelevant.

Equilibrium. In continuous-time games with observable actions, strategies may not produce well-

defined action paths, and —in stochastic environments— agents’ behavior may be non-measurable. We

adopt the approach by Kamada and Rao (2018) and impose restrictions on strategies to ensure well-

defined action paths. We refer the interested reader to Appendix A. We do not impose restrictions on

strategies that rule out non-measurable behavior. Instead, our equilibrium definition below requires that

strategies lead to measurable actions along the equilibrium path. Histories away from the equilibrium

path may lead to non-measurability. Payoffs at such histories can be assigned freely within the feasible

bounds. In our game, the lower bounds on payoffs can be reached by either player unilaterally through

exit. Therefore, potential non-measurabilities off path and the assigned payoffs cannot be used as a

threat to enlarge the equilibrium set (see also the discussion of this approach in Kamada and Rao, 2018).

For a realized history h = {ηt, θt, θ̂t, N I
t , Ft}t∈[0,∞) the discounted net present payoff for the principal at
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time t is

vt =

∫ ∞
t

e−r(s−t)
(
θsR ds− κdN I

s

)
.(1)

Similarly, the discounted net present payoff for the agent at time t is given by

ut =

∫ ∞
t

e−r(s−t) (−cηs ds− dFs) .(2)

Given a strategy profile, the principal and the agent form expectations about h based on their past

observations. For strategies that induce measurable action processes on path, we denote the expected

payoff for the agent and the principal at t by Ut = EAt−[ut] and Vt = EPt−[vt] respectively, where the

expectation is with respect to shock process {zs}s∈[0,∞) and the randomization device π, and it is

conditional on the information that is available to the agent and the principal, respectively.6

We define a combination of strategies ((e, ρ), (n, f)), together with processes {Vt, Ut}t≥0, to be a

perfect Bayesian equilibrium if the following holds.

1. At no time t ≥ 0 is there a deviation for the principal that yields a payoff strictly higher than Vt.

2. At no time t ≥ 0 is there a deviation for the agent that yields a payoff strictly higher than Ut.

3. At all histories at any time t, we have Vt ≥ 0, and Ut ≥ −B.

4. Along the equilibrium path, Vt and Ut are equal to the conditional expectations given above. Away

from the equilibrium path, Vt and Ut are equal to the conditional expectations whenever these are

well-defined.

We say that the agent’s strategy is truthful if ρ(ht−, θt) = θt at all histories ht− along the equilibrium

path. Further, we call the agent’s strategy maximally compliant if et(ht−) = 1 after any history along

the equilibrium path. Note that with maximum effort by the agent, the probability of attaining or

remaining in compliance at any given time is maximized. We refer to an equilibrium as truthful or

maximally compliant if the agent’s strategy in this equilibrium has the respective property.

We say that inspections are predictable for the agent if he knows for certain whether or not his current

report will lead to an inspection or not at any history.7 Henceforth, we refer to inspections as random

whenever they are non-predictable for the agent.

3 Principal-optimal equilibrium

Our main result is the characterization of a truthful and maximally compliant principal-optimal equi-

librium. We assume at this point that the principal’s gain from compliance R is large relative to the

inspection cost κ so that the benefit in a maximally compliant equilibrium outweighs the necessary

6For the agent, the expectation is with respect to the natural filtration generated by the process {ηs, θs, θ̂s, NI
s , Fs}s∈[0,t)

for his effort choice, and with respect to the natural filtration generated by {θ̂s, NI
s , Fs}s∈[0,t)∪{ηs, θs}s∈[0,t] for his report.

For the principal, the expectation is with respect to the natural filtration generated by the process {NI
s , Fs, θτ : dNτ =

1}s∈[0,t) ∪ {θ̂s, θτ : dNτ = 1}s∈[0,t] for her inspection decision, and with respect to the natural filtration generated by

{θ̂s, NI
s , Fs}s∈[0,t) ∪ {ηs, θs}s∈[0,t] for the cumulative fine.

7More formally, predictability means that the inspection process NI is measurable with respect to the information
available to the agent (see Davis, 1993, p. 67, for a formal definition in the context of jump processes).
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inspection costs. An explicit lower bound on R follows from the equilibrium presented in Theorem 1

below.

The equilibrium path alternates between two phases: First, while the agent reports compliance, he

pays no fine and is subject to periodic inspections with inspection cycle length T ∗. Formally, let the

clock

τt ≡ t− sup{s ∈ [0, t) | θ̂s = 0 ∨ dN I
s = 1}

count the time in compliance since the last transition or inspection, that is, when θ̂t = 1, τt increases

linearly with slope 1, and τt drops to 0 whenever θ̂t = 0 or dN I
t = 1. At each time t with τt = T ∗, an

inspection is performed. Second, while the agent reports non-compliance, he pays a constant flow fine

and is not inspected. Additionally, when reporting a change from compliance to non-compliance, the

agent has to pay a lump-sum fine. While in compliance, the agent’s expected payoff at the beginning

of each inspection cycle is u1∗. In phases of non-compliance, the agent’s expected payoff is constant at

lower level u0∗ = u1∗ − c
λα , to incentivize effort. The details of the equilibrium are presented in the

following theorem.

Theorem 1. For R sufficiently large,8 there is a principal-optimal equilibrium with inspection cycle

length T ∗ and initial expected payoff pair (u0∗, u1∗) such that

• If θ̂t = 1, the agent pays no fine and an inspection is performed whenever the clock τt reaches T ∗.

• If θ̂t = 0, the agent pays a constant flow fine f∗ = −ru0∗.

• If θ̂t = 0 and θ̂t− = 1, the agent pays lump-sum transition fine P (τt) = u0∗ − U0
τt .

• Whenever an inspection reveals non-compliance, the agent has to pay B immediately.

The values of T ∗, u1∗, u0∗, and U0
τ are

T ∗ = sup
{
T > 0

∣∣ 0 = (B − c/r) (1− e−rT )λα− ceλT (erT − α) + c(1− α)
}
,(3)

u1∗ = −B + e(r+λ)T
∗ c

λα
< 0, u0∗ = u1∗ − c

λα
,(4)

U0
τ = erτu0∗ − erτ

(
eλτ − 1

) c
λ

+ (erτ − 1)
c

r
.(5)

The proof is relegated to the appendix. We defer a discussion of intermediate results and illustra-

tions toward the equilibrium construction to Subsections 3.2–3.4 and proceed here with a description of

equilibrium properties and comparative statics.

Figure 1 illustrates how the equilibrium unfolds for a sample path with initial state θ0 = 1. While in

compliance, the agent pays no fines, and an inspection is performed at time T ∗ (the first vertical line).

During compliance, the agent’s expected total payoff evolves according to Ut = U1
τt , which is equal to u1∗

initially and at the inspection time. At the second vertical line, a breach in compliance occurs. In a first

step, the agent’s utility drops to the current level of U0
τt , the dashed blue line; at the same time, the agent

pays the transition fine P (τt), so that his continuation utility increases by that amount to u0∗. While in

non-compliance, the agent pays a flow fine so that the promised payoff remains constant at u0∗ until the

next transition to compliance (the third vertical line). At this transition, the agent’s utility jumps up to

u1∗ and the evolution takes the same course as at t = 0 and t = T ∗. The agent’s utility during times of

8Sufficiently large R ensures that the principal’s expected benefit from compliance, r+λα
r(r+λ)

R, exceeds the required inspec-

tion costs, which are given in Equation (6) below. A sufficient condition in terms of primitives is R > κ r+λ
log((Bα/c−1/r)λ)

.
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T ∗

dN I
t=1 dN θ̂

t=1 dN θ̂
t=1

u1∗

u0∗
Ut=U

1
τt

U0
τt

Ut=u
0∗

P (τt)

0

−B

t

Ut

Figure 1: The evolution of an example path realization starting in the compliant state. Solid curves depict the
agent’s expected payoff in the current state, dashed curves depict the transitional payoff, to which the agent’s
payoff jumps when the state changes.

compliance, U1
τt , is lowest between two inspections. At the beginning, when the next inspection is still

far in the future, the agent’s incentives to delay the report of a breach in compliance is strongest so that

the transition fine imposed must be moderate in comparison to the fine imposed for later reports of a

transition. As time in compliance progresses, the transition fine becomes more severe, which decreases

his expected payoff. Approaching the next inspection time, however, it becomes increasingly likely that

no breach in compliance occurs previously, so that the persistent payoff increases again, reaching u1∗ at

the time of inspection.

Theorem 1 demonstrates that despite the principal’s lack of commitment, maximal compliance and

voluntary disclosure are attainable in equilibrium. This result stands in contrast to previous studies on

enforcement without commitment (see, e.g., Reinganum and Wilde, 1985; Ben-Porath and Kahneman,

2003). The existence of such an equilibrium can be traced back to two sources. First, the long-term

interaction between the principal and the agent generates enough value for the principal to make it

worthwhile for her to bear the cost of consistently monitoring the agent. Second, the persistence of the

agent’s state of compliance supplies an important informational link that enables the principal to provide

effective incentives for compliance based on observations at isolated inspection times alone. Indeed, our

comparative statics results (see Proposition 2) show that without persistence, it is impossible to sustain

a maximally compliant equilibrium at finite inspection costs.

A crucial feature of this equilibrium is that inspections are predictable from the perspective of the

agent. The advantage of non-random inspections is that each inspection provides a verifiable signal to the

agent which provides evidence of continued oversight. This demonstrated vigilance thus serves to shape

the agent’s perception that there is a high probability of detection if he was to deviate. The importance

of perceived risk of detection is empirically evidenced by Makkai and Braithwaite (1994) which finds that

CEOs of small organizations have greater regulatory compliance in their organizations if they perceive

a high probability of detection. While random inspections may be supported in a relational contract,

such arrangements require strong deterrents for the principal to ensure her adherence to the equilibrium

strategy. This requirement ultimately renders randomization non-beneficial for the principal.9

9See Proposition 3 for the formal result and further discussion.
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This observation has important implications for audit design in practice. Of particular relevance is

the recent announcement of the Public Company Accounting Oversight Board (PCAOB) that it will

be making increased use of randomized inspections.10 The PCAOB was founded in the early 2000s to

re-establish public trust in oversight of the financial sector after a series of fraudulent activities within

the then self-regulated audit profession, most notably the Enron scandal. Considering the context and

motivation of its creation, the shift towards increased use of random audits, combined with a weakening

of reporting standards,11 may have the potential to undermine its ability to maintain effective oversight

in the long run.

The equilibrium of Theorem 1 naturally features penalty reductions for early disclosures of non-

compliance, which is consistent with voluntary disclosure schemes that are commonly used in practice.

The U.S. environmental protection agency (EPA) for example employs a self-reporting program called

“Incentives for Self-Policing,” that requires participating firms to maintain an internal monitoring system

and to voluntarily disclose any violations that are detected in this way. Similar to the way the agent is

incentivized in the above equilibrium, firms who disclose violations early are rewarded by a reduction in

penalties and a suspension of inspections until compliance is restored. Similar self-policing mechanisms

are also employed by the U.S. Department of Defense for fraudulent activity among contractors and

within the EU to ensure adherence to its data protection regulation (EU, 2016) and export regulation

for dual-use goods (European Commission, 2019).

In our model, a penalty reduction is needed to prevent the agent from delaying a report of an incidence

of non-compliance in the hope that he can remain undetected and regain compliance in time for the next

inspection. To induce truthful disclosure, the penalty reduction must be decreasing over time such that,

at each time between inspections, the agent’s expected loss from paying an increased penalty when

reporting non-compliance with delay is larger than the potential gain from avoiding the fine in case

compliance recovers before the next inspection. The basic principle that the agent is monitored only

in a more favorable state to him is familiar from static models of costly state-verification (Townsend,

1979). In our model, due to the coexistence of hidden information with hidden action, flow fines during

non-compliance are necessary to create the incentive for effort, making the state of compliance more

favorable to him.

Theorem 1 also provides insights into how exactly enforcement agencies can benefit from offering

regulated firms incentives for voluntary disclosure. Voluntary disclosure allows the principal to limit

inspection to periods of compliance, and thus lowers her overall monitoring costs. On its website,

the EPA points out that the advantage of these incentives lies in “making formal EPA investigations

and enforcement actions unnecessary.”12 In the theoretical literature, the observation that voluntary

disclosure reduces monitoring costs dates back to Kaplow and Shavell (1994), which introduces self-

reporting into the enforcement model by Becker (1968). Without the agent’s disclosure, the principal in

our model would not be able to consistently avoid inspections during phases of non-compliance.13 Our

results add a theoretical argument to the empirical findings of Toffel and Short (2011) that monitoring

10Maurer,M., December 7, 2020, US watchdog will be selecting audits for inspection more randomly, Wall Street Journal
https://www.wsj.com/articles/u-s-watchdog-will-be-selecting-audits-for-inspection-more-randomly-11607387

903
11https://pcaobus.org/news-events/speeches/speech-detail/statement-regarding-the-pcaob-s-revised-researc

h-and-standard-setting-agendas-reducing-credibility-accountability-and-confidence-in-the-financial-repor

ting-process
12https://www.epa.gov/compliance/how-we-monitor-compliance
13See Varas et al. (2020) for a model without reports. Our results confirm the conjecture in that paper that voluntary

disclosure can avoid unnecessary inspections (see Varas et al., 2020, p. 2921). Further, we discuss in Section 4 that the
trade-off between random and deterministic inspections identified in that paper is resolved in favor of randomness when
self-reporting and fines are possible.

11

https://www.wsj.com/articles/u-s-watchdog-will-be-selecting-audits-for-inspection-more-randomly-11607387903
https://www.wsj.com/articles/u-s-watchdog-will-be-selecting-audits-for-inspection-more-randomly-11607387903
https://pcaobus.org/news-events/speeches/speech-detail/statement-regarding-the-pcaob-s-revised-research-and-standard-setting-agendas-reducing-credibility-accountability-and-confidence-in-the-financial-reporting-process
https://pcaobus.org/news-events/speeches/speech-detail/statement-regarding-the-pcaob-s-revised-research-and-standard-setting-agendas-reducing-credibility-accountability-and-confidence-in-the-financial-reporting-process
https://pcaobus.org/news-events/speeches/speech-detail/statement-regarding-the-pcaob-s-revised-research-and-standard-setting-agendas-reducing-credibility-accountability-and-confidence-in-the-financial-reporting-process
https://www.epa.gov/compliance/how-we-monitor-compliance


has to be an essential component for the functioning of voluntary-disclosure schemes. Our results also

emphasize the importance to align these schemes with the agent’s dynamic incentives both for effort and

disclosure.

The remainder of the paper is organized as follows. The next subsection provides comparative static

results and additional discussion of equilibrium properties. The construction of the equilibrium presented

in Theorem 1 is outlined in Subsections 3.2-3.4 and proceeds in three steps. First, we consider the agent’s

problem for arbitrary principal strategies and derive necessary and sufficient conditions for truthful

reporting and maximal compliance to constitute a best response. These conditions are fully characterized

in terms of the evolution of the agent’s promised utilities conditional on each state. Second, we turn

to the principal’s problem and show that sequential rationality implies that it is without loss to use

inspection schedules that are predictable. Furthermore, we show that if a predictable inspection strategy

by the principal induces the agent to be truthful and maximally compliant and generates a positive

payoff for the principal at all times, then this inspection strategy can be sustained in equilibrium. Thus,

the principal-optimal equilibrium can be established by finding the cost-minimizing predictable strategy

for the principal subject to inducing truthful reporting and maximal compliance. In the third step, we

solve this mechanism design problem recursively, using dynamic programming techniques for piecewise

deterministic processes (Davis, 1993). Equivalence is shown in Subsections 3.2 and 3.3. The mechanism

design problem is set up and solved in Subsection 3.4. Readers who prefer to skip the technical details

may jump to Section 4.

3.1 Comparative Statics

We now provide comparative statics of the principal-optimal equilibrium in Theorem 1. Specifically, we

are interested in how variations in the parameters affect the length of inspection cycles and the overall

inspection costs. Note that due to voluntary disclosure of non-compliance, the principal inspects only

while the agent reports compliance, and thus shorter inspection cycles do not necessarily translate to

higher monitoring costs.

We consider variations in four parameters: the penalty threshold B; the agent’s cost of effort c; the

parameter α, which measures the agent’s level of control over compliance conditional on a shock; and

the arrival rate of shocks λ, which measures the variability of compliance. In general, intuition would

suggest that whenever a change in parameters relaxes the obedience constraint for the agent, so that

it becomes easier to incentivize effort, then this should reduce the required monitoring intensity (i.e.,

increase the length of inspection cycles) and costs of monitoring. The next result shows that with regard

to monitoring intensity, this is only partially true.

Proposition 1. Consider a given set of parameters for which there exists an open neighborhood on which

the equilibrium in Theorem 1 exists.14 Holding all other parameters fixed, the length of the inspection

cycle T ∗ is

• increasing in the penalty threshold B,

• decreasing in the effort cost c,

• increasing in control parameter α, and

14That is, B >
c(r+λ)
rλα

and R large enough.
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• increasing in the arrival rate for low λ and decreasing for high λ, with

limλ↓ cr
Brα−c

T ∗(λ) = limλ↑∞ T ∗(λ) = 0.

It is straightforward to see that increasing the punishment bound B reduces the need for monitoring.

A larger maximum fine for the agent provides a stronger deterrent, and thus decreases the required

frequency of inspections. The basic mechanism is the same as in Becker’s classical model of enforcement

(Becker, 1968). The monitoring intensity also decreases when the cost of effort c decreases, or when the

agent’s control over compliance α increases. Either change in parameters relaxes the obedience constraint

as effort becomes less costly or more effective, and thus allows the principal to incentivize effort with

fewer inspections.

In contrast to the other parameters, a change in the variability λ has a non-monotone effect on

monitoring intensity. To understand why, note that a change in variability has two opposing effects. On

one hand, when λ is low, so that the state of compliance is highly persistent, it is very unlikely at any

given instance for the state to change. This implies a low marginal benefit from effort, and therefore

the principal must offer high-powered incentives to induce the agent to work. However, incentives for

effort can only be generated by threats of penalty at times of inspections. Since the size of the penalty

is bounded by the agent’s limited liability, the only way to increase the power of incentives is for the

principal to shorten inspection cycles. When λ grows large, then the state of compliance becomes

extremely fragile, with a high frequency of transitions, so that delayed inspections have less incentive

power as the link between current effort and future compliance weakens.

In a banking context, where the parameter λ has a natural interpretation as a bank’s risk exposure, our

non-monotone comparative statics on λ are consistent with the empirical findings in Delis and Staikouras

(2011), which observes an inverse-u-shaped relationship between bank risk and the frequency of financial

audits. The paper views risk exposure of banks as a choice variable and estimates how it responds to

audit frequency abstracting from strategic considerations in the regulator’s choice of monitoring policy.

Our results point to an alternative explanation for the non-monotonic relationship between risk and audit

frequency with reversed causality. In our interpretation, the non-monotonic relationship is the result of

the regulator’s choice of inspection intensity based on its risk assessment of the bank.

Next, we study the effect of changes in the parameters on the equilibrium monitoring costs. Consider

the expected discounted inspection costs in the case θ0 = 115 as a function of the inspection cycle T ∗:

C1
EQ = E

[∫ ∞
0

e−rtκdN I
t | θ0 = 1

]
=

r + λα

r(r + λ)
· (r + λ(1− α))

e−(r+λ(1−α))T
∗

1− e−(r+λ(1−α))T∗ · κ.(6)

The first fraction captures the relative likelihood of the good state. Future inspection costs are effectively

discounted at rate r + λ(1 − α) to account for the possibility that the state may deteriorate prior to

inspection. Intuitively, inspection costs decrease as T ∗ increases. When α or λ change, there is an

additional effect on costs as these parameters influence the underlying stochastic process and thus the

inspection costs caused by any fixed cycle length T .

Proposition 2. Consider a given set of parameters for which there exists an open neighborhood on

which the equilibrium in Theorem 1 exists. Holding all other parameters fixed, the following holds for the

discounted total inspection costs C1
EQ.

• C1
EQ is decreasing in the penalty threshold B.

15The case θ0 = 0 is analogous. We have C0
EQ = λα

r+λα
C1
EQ. For a detailed derivation of the total cost, see the proof of

Proposition 2 in the appendix.
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• C1
EQ is increasing in the effort cost c.

• For the agent’s control α, the exist α > c(r+λ)
Brλ and ᾱ ∈ [α, 1] such that C1

EQ decreases in α if α < α

and increases if α > ᾱ.

• For the arrival rate λ, there exists λ > cr
Brα−c such that C1

EQ decreases in λ if λ < λ and C1
EQ goes

to infinity for λ→∞.

The fractions in the third and fourth items represent our standing feasibility assumption B > c(r+λ)
αrλ .

For B and c the results follow immediately from Proposition 1 as these parameters have no effect on the

inspection costs given any fixed cycle length T . As in Becker (1968), enforcement is more effective and

thus less costly if the maximal punishment increases.

The non-monotone effect of α on monitoring cost provides some insight into the benefit from voluntary-

disclosure schemes. The non-monotonicity is related to the value of voluntary disclosure in reducing

inspection costs: when α is high and the agent is compliant most of the time, voluntary disclosure has

only little advantage. With low levels of α, however, the savings from avoiding inspections during periods

of non-compliance are significant. The non-monotonicity arises, because α affects inspection costs in two

opposing ways. On one hand, α increases the informativeness of inspections, which increases the length

of inspection cycles and in this way lowers monitoring costs. On the other hand, the agent tends to

remain in compliance longer as α increases, and thus must be inspected more often on average. The

second effect dominates for low values of α and the first effect dominates for high values, so that the

overall effect of α on inspection costs is non-monotone.

Similarly, the variability parameter λ affects inspection costs directly through transitions in compli-

ance and indirectly through the length of inspection cycles T ∗. The direct effect of an increase in λ is a

reduction in inspection costs because any inspection cycle of fixed length is increasingly often interrupted

by a breach of compliance, so that inspections are less likely to be carried out. For low variability λ, an

increase results in a longer equilibrium inspection cycle, and thus the overall effect of an increase in λ

on inspection costs must be negative. For high variability λ, a further increase causes the cycle length

to decrease, so that the two effects go in opposite directions. The last item in the result shows that

the cost-increasing effect dominates for large values of λ. Note that for fixed T > 0 the total cost C1
EQ

decreases to 0 as λ grows arbitrarily large. Proposition 2 shows that T ∗ approaches zero fast enough so

that the inspection costs explode in the limit. This cost increase arises because inspections are scheduled

periodically, so that the agent has a strictly positive time to aim for a recovery in compliance prior to

the next inspection. This deviation is more attractive for high values of λ.

As λ becomes arbitrarily high, the probability of reaching any time in the strict future without a prior

transition vanishes. For inspections to effectively deter misreports, cycle length T ∗ has to shrink to 0 fast

enough. The intuition why this leads to arbitrarily large inspection costs despite the increasing variability

of the compliance state is the following. For the agent who considers shirking for an instant, the effective

discount rate until the next inspection is r + λ. For example, effort at t = 0 affects the current state

with probability λ dt. The state at t = 0, in turn, determines the state at the next inspection only with

probability e−λT
∗(λ), that is, if no other transition occurs before T ∗. This implies that, for inspections to

be effective, λT ∗(λ) cannot vanish too quickly so that λe−(r+λ)T
∗(λ) remain strictly positive. However,

the effective discount rate on path —i.e., the relevant rate to evaluate the principal’s cost— is only

r + λ(1 − α). Since the limit of C1
EQ as λ goes to ∞ is proportional to limλe−(r+(1−α)λ)T∗(λ), it must

be infinite for α < 1 given that λe−(r+λ)T
∗(λ) remains positive in the limit. As the comparative statics

uncovered, the high cost of compliance in the case of high λ stems from the agent’s opportunity to regain
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compliance with high probability whenever the next inspection is not imminent, and making inspections

imminent (choosing T ∗ close enough to 0) explodes the costs. This suggests that randomization over

inspection times may be valuable as it permits the principal to threaten an instant inspection at all times

without having to perform inspections at all times. We confirm this in Section 4 where we show that

random inspection schedules dominate predictable inspections if randomization is feasible and discuss

possible sources of commitment power or incentives to inspect randomly.

3.2 The agent’s problem: incentive compatibility

We now characterize the incentive-compatibility conditions for the agent as constraints on the evolution

of his promised utilities. Fix an arbitrary principal strategy (n, f) and let Ut be the agent’s expected

discounted continuation payoff from t onward, assuming he exerts full effort and reports truthfully

throughout. Define Wt to be the agent’s lifetime expected utility, with expectations taken with respect

to the information that is available at time t:

Wt =

∫ t

0

e−rs (−dFs − cηs ds) + e−rtUt

By construction, the process {Wt}t≥0 is a martingale (Davis, 1993, p. 20). Note that there are three

types of random events: changes in the state, changes in reports, and inspections. Inspections are

governed by the process N I given by the principal’s strategy. For the sake of consistency, we also

introduce the counting processes Nθ = {Nθ
t }t≥0 and N θ̂ = {N θ̂

t }t≥0 that count the number of changes

in the state of compliance and in the reports, respectively. For each process Na with a ∈ {θ, θ̂, I}, define

the compensator to be a predictable process νa = {νat }t≥0 such that the compensated process Na
t − νat

is a martingale. The compensator exists under very general conditions and can be interpreted as the

predictable drift of the underlying (non-predictable) stochastic process. Alternatively, we can think of

the compensator as a generalization of the cumulative hazard function, and consequently of dνa/ dt as

the hazard rate of transitions in Na
t (if it exists). For the hazard rate of transitions in compliance, we

shall write qt(ηt) := dνθt / dt, or, more explicitly,

qt(ηt) = θt−λ(1− αηt) + (1− θt−)λαηt.(7)

The martingale representation theorem for marked point processes (Last and Brandt, 1995) implies

the following result.

Lemma 1. There exist predictable processes ∆θ, ∆θ̂, ∆I such that the evolution of the agent’s expected

utility is given by

dUt = rUt dt+ dFt + cηt dt+
∑

a∈{θ,θ̂,I}

∆a
t (dNa

t − dνat ).(8)

The formal proofs of this and all remaining results are relegated to the appendix. The processes ∆θ,

∆θ̂ and ∆I have an intuitive interpretation: ∆θ
t represents the jump in utility that results from a change

in compliance at time t. Similarly, ∆θ̂
t is the jump in utility that results from a change in reported

compliance, and ∆I
t represents the jump in utility that results from an inspection at time t.

To characterize when truthful reports and maximal compliance is a best response for the agent, fix

a principal-strategy and take a strict history at any time t. Now, define the agent’s continuation utility
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from truthful reporting and maximum effort as

(9)
U0
t = EAt−[Ut|θt = 0],

U1
t = EAt−[Ut|θt = 1],

when ht− is followed by the realization θt = 0 or θt = 1, respectively. Here EAt− represents the expectation

conditional on all available information before time t. Following Zhang (2009), we call U1
t the persistent

payoff if the history ht− is such that θt− = 1, and the transitional payoff in case θt− = 0, and vice versa

for U0
t .

The next lemma provides a complete characterization of the agent’s incentive-compatibility con-

straints in terms of three objects: the most recent state θt−, and the utilities U0
t and U1

t . For U
θt−
t to

represent the agent’s expected utility consistently, it has to satisfy a promise-keeping constraint. Fur-

thermore, the principal’s strategy has to provide incentives for the agent to truthfully reveal the state

of compliance (honesty constraint), incentives for exerting full effort (obedience constraint) and it must

be sufficiently lenient to deter the agent from withdrawing (participation constraint). By standard ar-

guments, it is optimal for the principal to enforce the most severe punishment after a verified misreport

to induce the agent to reveal the state truthfully. Thus, the agent’s payoff after a false report that was

detected by an inspection is −B.

Lemma 2. A principal’s strategy that generates the process {U1
t , U

0
t }t≥0 of utilities induces maximal

compliance and truthful reporting if and only if there exists a predictable process {dµt ≥ 0}t≥0 such that

for i = θt− and j = 1− θt− we have

(Pk) dU it = rU it dt+ λ(i− α)(U1
t − U0

t ) dt+ cdt+ dFt −∆I
t dνIt ,

(H) dU jt = rU jt dt+ λ(j − α)(U1
t − U0

t ) dt+ cdt+ dFt + (B + U jt ) dνIt − dµt,

(O) U1
t − U0

t ≥ c/λα,

(P ) U0
t , U

1
t ∈ [−B, 0],

at all t ≥ 0 with dNa
t = 0 for each a = θ, θ̂, I.

Condition (Pk) is the promise-keeping constraint which is the expectation of Equation (8) in Lemma 1

conditional on no intervention at time t. Condition (O) is the obedience constraint that ensures that

maximal compliance is a best response for the agent. This condition has an intuitive interpretation. The

marginal cost of effort is c. The marginal benefit from effort is λα(U1
t − U0

t ), where the factor λα is

the marginal rate of arrival of a shock that leads to compliance. The utility gain from the high state is

U1
t −U0

t . Thus, (O) states that for maximum effort to be optimal for the agent, the marginal benefit must

exceed the marginal cost. Condition (H) is the honesty constraint that ensures that the agent reports

truthfully. This constraint says that transitional utility cannot increase too quickly. We have dµt > 0

when the honesty constraint (H) is slack. As a positive value for dµt implies a more rapidly declining

transitional utility, we shall refer to dµt as the principal’s threat to the agent. The variable dνIt > 0 can

be interpreted as the rate of inspections. When an inspection reveals a misreport, the continuation value

for the agent is −B. Had he reported truthfully instead, he would have received transitional utility U jt .

Thus, −B − U jt is the utility the agent loses if an inspection reveals a false report.

We now present a heuristic derivation of the honesty constraint (H). For illustration, we focus on

the case in which the state changes from high to low and there is no inspection. Suppose a decline in θt
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occurs at time t ≥ 0. The agent is willing to report the decline without delay only if he cannot gain from

delaying the change in report. In particular, this means that on a small interval [t, t+ dt), the value of

reporting the low state must exceed the value of misreporting the high state, i.e.,

U0
t ≥

∫ t+dt

t

e−(r+αλ)(s−t)(αλU1
s ds− dFs − cds) + e−(r+αλ)dtU0

t+dt.

The integral is the instantaneous gain from reporting high instead of low, followed by a truthful report of

the low state at time t+ dt if no change happened in the meantime. Taking a first-order approximation,

we obtain, after a few rearrangements,

U0
t ≥ αλU1

t dt− dFt − cdt+ (1− r dt− αλdt)U0
t+dt.

If we further substitute the approximation dU0
t := U0

t+dt − U0
t and ignore higher-order terms, then this

necessary condition for a truthful report is equivalent to

dU0
t ≤ rU0

t dt− αλ(U1
t − U0

t ) dt+ dFt + cdt.

This inequality is precisely condition (H) for the high state without inspection (dνIt = 0). Note that

while this heuristic derivation generates a necessary condition, the general result in Lemma 2 is also

sufficient and captures the possibility of random arrivals of inspections.

3.3 The principal’s problem: sequential rationality and predictability

It is sequentially rational for the principal to carry out inspections only if failing to do so results in

some form of punishment. To provide such punishments for the principal, inspections must be at least

partially predictable for the agent. In fact, the following result shows that, without commitment power,

the principal cannot gain from any randomness in the timing of inspections.

Proposition 3. For any truthful and maximally compliant equilibrium, there exists a principal-strategy

such that truthful reporting and maximal compliance is a best response for the agent and

(i) inspections are predictable for the agent whenever he reports compliance and

(ii) it generates weakly lower inspection costs for the principal.

The idea behind the proof is to take the principal’s random equilibrium strategy and consider the

realization in which inspections take place at the earliest possible time. The outcome generated by

this strategy can then be replicated by a predictable inspection strategy. To see this, consider any

maximally compliant equilibrium in which the principal randomizes over inspection dates. For a mixed

strategy to be optimal for the principal, she must be indifferent along any path of play that is consistent

with her mixed strategy. Call an inspection process most vigilant if, after any history, it generates the

earliest possible inspection date that is consistent with the underlying mixed strategy. From the agent’s

perspective, there is zero probability that the principal performs inspections any earlier than given by

the most vigilant inspection process. Moreover, the agent’s incentive-compatibility conditions must be

satisfied between inspections. Therefore, we can replace the principal’s mixed strategy with a strategy in

which inspections are predictable and determined by the most vigilant inspection process. We then show

that we can modify the principal’s strategy in this way without violating the incentive-compatibility
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conditions for the agent so that, by indifference, the new principal strategy generates the same payoff as

the original equilibrium.

We now combine the previous proposition with the next result, which shows that the predictability

of inspections is indeed the only restriction implied by sequential rationality.

Proposition 4. Let ((n, f), (e, ρ)) be a strategy profile and suppose the following holds.

(i) The inspection schedule is predictable for the agent.

(ii) The agent’s strategy (e, ρ) is truthful, maximally compliant and a best response to the principal’s

strategy (n, f).

(iii) The expected payoff for the principal along any history generated by ((n, f), (e, ρ)) is non-negative.

(iv) Every action path generated by the strategy profile ((n, f), (e, ρ)) is measurable.

Then there exists a perfect Bayesian equilibrium ((n∗, f∗), (e∗, ρ∗)) which generates the same distribution

over action paths as ((n, f), (e, ρ)).

This proposition says that for any strategy combination leading to well-defined action paths, for

which the principal’s inspections are predictable for the agent, the principal obtains a non-negative

payoff and the agent’s best response is truthful and maximally compliant, there exists a perfect Bayesian

equilibrium that induces the same outcome. Intuitively, predictability makes it easy to incentivize the

principal because the agent immediately detects when an inspection does not take place as anticipated.

In the equilibrium we construct, the agent immediately stops working and exits if the principal deviates

by not inspecting as expected. The agent’s exit represents, in reduced form, a possibly much richer

continuation play in which the agent believes that a principal has become non-vigilant, in the sense that

she no longer inspects in a way that would allow her to satisfy the agent’s obedience constraint. The

agent would thus begin to shirk, and the principal would retaliate by setting large fines which eventually

force the agent to exit. The agent’s immediate exit is the worst case in terms of payoffs for both the

principal and the agent and thus the equilibria supported in this way generate a higher payoff for the

principal than other, more favorable off-path continuation plays.

Propositions 3 and 4 in combination imply that for any equilibrium that involves randomized inspec-

tions, we can find another equilibrium in which inspections are non-random and the expected payoff for

the principal is the same. Therefore, to characterize principal-optimal equilibria, it is sufficient to find

a strategy for the principal with non-random inspections that induces truthfulness and maximum effort

and minimizes the principal’s monitoring costs.

3.4 Derivation of the principal-optimal predictable strategy

Based on the results of the previous subsection, we can transform our equilibrium optimization problem

into a mechanism design problem in which inspections must be predictable for the agent. A mechanism

is characterized by a strategy for the principal. The mechanism is incentive compatible if the paths of

promised utilities resulting from truthful reporting and maximal compliance satisfy the conditions in

Lemma 2. Standard results then allow us to formulate the optimization problem in recursive form, with

the promised utilities as state variables. We derive the optimal predictable strategy using a recursive

approach due to Davis (1993). This method involves restricting the principal to perform a fixed number
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of inspections and then solving for the optimal strategy recursively as the number of inspections grows

large. To do this, we first restrict attention to histories for which the state is always in compliance.

We then show how the principal’s strategy can be adjusted to optimally respond to reports of non-

compliance. Here, we provide a heuristic derivation, the formal arguments are contained in the proof of

Theorem 1.

Between inspections, the evolution of promised utilities during continued periods of compliance can

be characterized by a pair of first-order differential equations. To see this, note that when there are

no inspections, the principal’s choice of dFt cannot depend on the true state (conditional on the report

θ̂t = 1). Moreover, the principal and the agent are risk-neutral, and therefore it is without loss to shift

all fines into the future until after the next inspection, that is, we can set dFt = 0 for all t ≥ 0 strictly

before the next inspection. Assume additionally that constraint (H) binds between inspections, i.e.,

dµt = 0 whenever dN I
t = 0. We later verify that the principal cannot lower inspection costs through

threats between inspections. Hence, if we start at t = 0 with initial payoffs U0
0 and U1

0 , the trajectories

of the transitional payoff U0
t and the persistent payoff U1

t up until the first inspection are pinned down

by the constraints (Pk) and (H) in Lemma 2. This pair of coupled first-order differential equations has

the following closed-form solution:

U0
t = ert(U0

0 − α(eλt − 1)(U1
0 − U0

0 )) + c(ert − 1)/r,(10)

U1
t = ert(U1

0 + (1− α)(eλt − 1)(U1
0 − U0

0 )) + c(ert − 1)/r.(11)

We now iterate over the number of inspections. As the promised utilities are determined by (10) and

(11), the optimization problem reduces to the choice of initial values (u0, u1) = (U0
0 , U

1
0 ) and inspection

time T subject to the remaining constraints (O): U1
t −U0

t ≥ c
αλ and (P ): U it ∈ [−B, 0] for i ∈ {0, 1} and

all t ∈ [0, T ].

Note that maximal compliance is not achievable if the number of inspections is bounded. To ensure

that a solution exists for problem step k ∈ N, (when the number of inspections cannot exceed k), we set

the principal’s objective to ensure compliance for as long as possible, which is equivalent to maximizing

the time between inspections. Consider first the case with no inspection (k = 0). At any time t, the

principal has no possibility to distinguish the states, so that U0
t = U1

t and effort can never be incentivized.

As a consequence, if the principal has one inspection (k = 1), effort is achievable at most until the time

of this inspection. The principal’s goal is to perform this inspection as late as possible such that the

payoff pair (U0
t , U

1
t ) fulfills conditions (O) and (P ) up until this inspection time. The trajectories in (10)

and (11) can be combined to obtain

U1
t − U0

t = (U1
0 − U0

0 )e(r+λ)t,

which shows that the obedience constraint (O) is fulfilled for all t ≥ 0 if it holds at t = 0.

Given any initial values (u0, u1) satisfying u1 − u0 ≥ c
αλ , the optimal inspection time is the largest

value T > 0 such that U it satisfy (P ) for all t ∈ [0, T ]. That is, the minimum of the two boundary hitting

times

T 0(u0, u1) = inf{t > 0 : U0
t ≤ −B} and T 1(u0, u1) = inf{t > 0 : U1

t ≥ 0}.

The principal chooses (u0, u1) to maximize min{T 0, T 1}. Note that, by (10), U0
t is increasing in u0 while

by (11), U1
t is decreasing in u0, for all t ≥ 0. Thus, an increase in u0 increases both T 0 and T 1 so
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Figure 2: The evolution of promised utilities over
time conditional on continued compliance with a
single inspection. Persistent utility is shown as
solid line, transitional utility is dashed.
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Figure 3: The evolution of promised utilities over
time conditional on continued compliance with re-
peated inspections. Persistent utility is shown as
solid line, transitional utility is dashed.

that it is optimal to set u0 as large as possible, i.e., u0 = u1 − c
αλ . The problem in step k = 1 is thus

reduced to finding the optimal initial utility u1. Again, from (10) and (11) we observe that U0
t and U1

t

are both increasing in u1 for fixed value of u1 − u0 = c
αλ . Thus, T 0 is increasing and T 1 decreasing

in u1. The minimum of the two hitting times, T (u1) ≡ min
{
T 0(u1 − c

αλ , u
1), T 1(u1 − c

αλ , u
1)
}

, is then

maximized by choosing u1 so that each utility path hits the respective boundary at the same time.

Figure 2 illustrates this. For any other choice of initial value u1, the hitting time is lower. For higher

values u1, the upper boundary is reached earlier, for lower values, the lower boundary is reached earlier.

Next, consider the case k = 2, in which the principal can perform two inspections. If the first of the

two inspection times was chosen in the same way as in the previous step with both utility levels at the

boundary, then U1
t would stay constant at 0 after the first inspection. No further incentives could be

created despite another inspection being left. Hence, the principal-optimal initial value after the first

inspection is strictly lower than in the case where only one inspection is available, so that the trajectory

of U0
t reaches the lower boundary −B before the trajectory of U1

t reaches the upper boundary 0. A

lower level of u1 forces the principal to inspect earlier, but she retains the option to fine the agent in the

future, which is necessary for the following inspections to be valuable.

For k > 2, we proceed in a similar fashion. Denote by u1(k) the optimal initial value of the trajectory

of U1
t when the maximal number of inspections is k. By a similar argument as above, the inspection time

T k is determined by the time at which the trajectory of U0
t reaches −B. Iterating over the number of

inspections k, we find that the optimal initial value u1(k) decreases as k increases. The more inspections

are available to the principal, the more she will reduce the agents’ persistent payoff in order to retain the

option to fine him in the future. This implies that the inspection time T k decreases. As k grows large,

u1(k) converges to a unique limit u1∗ and T k converges to a unique limit T ∗, the length of each inspection

cycle. The optimal mechanism ensuring maximal compliance has the property that the trajectory of the

persistent utility U1
t is u-shaped, and it returns to the initial value u1∗ at the time of each inspection

(see Figure 3). The limit values u1∗ and T ∗ are given by the solution to (10) and (11) with boundaries
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(U0
0 , U

1
0 ) = (u0∗, u1∗) and (U0

T∗ , U
1
T∗) = (−B, u1∗):

U0
t = ertu1∗ − e(r+λ)t c

λ
− ert 1− α

α

c

λ
+ (ert − 1)

c

r
,(12)

U1
t = ertu1∗ + e(r+λ)t

1− α
α

c

λ
− ert 1− α

α

c

λ
+ (ert − 1)

c

r
.(13)

We provide an implicit characterization of T ∗ and u1∗ in Theorem 1 below. Finally, for the case of a

breach of compliance (θ̂t = 0) at time t, the promised utilities jump to U1
t = u1∗ and U0

t = u1∗ − c
λα .

Using constant flow fines, the promised utilities can be held constant at these levels while θ̂t = 0. In this

way, upon another transition, the promised utilities are already at their optimal initial values.

4 Overcoming the commitment problem

Our previous results show that without commitment the principal cannot benefit from inspecting at

random. We now show that when the principal can commit, then stochastic inspection procedures

reduce her monitoring cost. We discuss two possible ways for the principal to implement stochastic

inspection strategies even without commitment. First, the principal can rely on the help of independent

third parties. Second, when the principal is responsible for a large pool of agents, then randomization

can be implemented without commitment by inspecting a sample of firms and making inspection reports

publicly available.

4.1 Stochastic inspection mechanisms

We begin by considering a simple stationary stochastic mechanism: whenever the agent reports non-

compliance, he pays a fixed flow fine

f∗ = (r + λ)
c

λα
,(14)

and is never inspected. On the other hand, whenever the agent reports compliance, he pays no fines, but

the principal inspects at random at a stationary Poisson rate

m∗ =
cr(r + λ)

Brλα− c(r + λ)
.(15)

Finally, if the agent is inspected and found to have made a false report, he receives the maximum penalty.

There are no other transfers. It is straightforward to verify that in this mechanism, when the agent exerts

maximum effort and reports truthfully, then his promised utilities are stationary, and given by

Ū1 = − c

rα
, Ū0 = − c

rα
− c

λα
,(16)

where Ū1 is the persistent utility when the agent reports compliance and Ū0 is the persistent utility when

the agent reports non-compliance. It is immediate to see that for either θ ∈ {0, 1}, when we substitute

the promised utilities, m∗, and f∗ into the honesty constraint (H) and obedience constraint (O), then

each holds with equality. Thus, for this mechanism, the honesty and the obedience conditions bind at all

times. The next result shows that this mechanism is optimal among all stationary stochastic mechanisms

in the sense that the monitoring costs for the principal are lower than in any other mechanism generating
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a stationary promised utility in each state of compliance.

Theorem 2. The following characterizes an optimal stationary stochastic mechanism:

1. If θ̂t = 1, inspections are conducted at a constant rate m∗ given by (15). There is no fine after an

inspection if it reveals the high state, and a maximum penalty B + Ū0 if it reveals the low state.

2. If θ̂t = 0, the agent pays a constant flow fine f∗ given by (14) and no inspections are performed.

3. The agent’s promised utilities Ū1 and Ū0 are given by (16).

Similar to the non-commitment case, the agent is fined a fixed flow fine in phases of non-compliance,

and inspections are performed only when he reports compliance.

Proof. To see that the mechanism described above is optimal, consider an alternative stationary stochas-

tic mechanism that delivers some given promised utility u. From the promise-keeping constraint (Pk)

and the honesty constraint (H), it is straightforward to obtain that the constant rate m0(u) of inspection

that keeps the promised utility stationary at the level u ∈ [−B + c
λα ,− c

rα ] is

m0(u) =
r(c− αλu)

αλ(B + u)− c .

The principal’s expected monitoring costs in the stationary random mechanism that provides promised

utility U1
t = u throughout can be determined recursively as follows:

C0
R(u) =

∫ ∞
0

e−(r+λ)tλ
(
αC1

R(u) + (1− α)C0
R(u)

)
dt and

C1
R(u) =

∫ ∞
0

e−(r+λ)t
(
m0(u)κ+ λ(αC1

R(u) + (1− α)C0
R(u)

)
dt,

where C0
R(u) denotes the expected costs while in non-compliance and C1

R(u) the expected costs while in

compliance. Solving the above equations for the cost during compliance gives

C1
R(u) =

r + λα

r

m0(u)

r + λ
=
r + λα

r

r(c− αλu)

(r + λ)(αλ(B + u)− c) .(17)

It is easy to see that CR(u) is decreasing in u. Given that − c
rα is an upper bound on the promised

utility for the agent during compliance (it is the maximum payoff for the agent subject to satisfying

the obedience constraint), and it is the promised utility delivered by the mechanism characterized in

Theorem 2, it follows that this mechanism is indeed the optimal stationary mechanism.

The next result shows that the principal’s monitoring cost with predictable inspections is generally

higher than with random inspections:

Proposition 5. The monitoring cost for the principal in the optimal stationary stochastic mechanism

is lower than in the principal-optimal equilibrium.

Proof. We can express the total cost of compliance in the principal-optimal equilibrium recursively as
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follows:

C0
EQ =

∫ ∞
0

e−(r+λ)tλ
(
αC1

EQ + (1− α)C0
EQ

)
dt and

C1
EQ =

∫ ∞
0

e−(r+λ)tλ
(
αC̃1(τt) + (1− α)C0

EQ

)
dt+

∞∑
k=1

e−(r+λ)kT
∗
κ,

where C0
EQ denotes the expected costs while in non-compliance and

C̃1(τ) = e−(r+λ(1−α))(T
∗−τ)(κ+ C1

EQ) +

∫ T∗

τ

e−(r+λ(1−α))(s−τ)λ(1− α)C0
EQ ds

denotes the expected costs while in compliance and time τ ∈ [0, T ∗] has passed since the last inspection

or transition. Note that C̃1(τ) is increasing in τ with C̃1(0) = C1
EQ and C̃1(T ∗) = κ + C1

EQ. Thus,

replacing C̃1(τt) by C1
EQ in the recursive expression above, and solving the system gives a lower bound

on the equilibrium costs C1
EG:

C1
EQ ≥ C =

r + λα

r

e−(r+λ)T
∗

1− e−(r+λ)T∗ κ.(18)

To see that the costs from random inspection (17) are lower, use Equation (4) to write T ∗ in (18) as

a function of u1∗, giving

C(u1∗) =
r + λα

r

e−(r+λ)T
∗

1− e−(r+λ)T∗ κ =
r + λα

r

c

αλ(B + u1∗)− cκ.

Now it is immediate to check that C
(
− c
rα

)
= CR

(
− c
rα

)
and C ′(u) < C ′R(u) for u < − c

rα and B > c(r+λ)
rλα ,

where the latter is precisely our restriction on the bound B that ensures that the punishment is sufficient

to induce effort. Since − c
rα is an upper bound on u, it follows that CR(u1∗) < C(u1∗). It follows from

(18) that C1
EQ > C1

R.

Random inspections dominate predictable inspection procedures for two reasons. One reason is that

due to noise and delay, a deterministic inspection regime is less effective in providing incentives for effort

than a stochastic monitoring scheme, where the threat of punishment is instantaneous (Varas et al.,

2020). Moreover, predictable inspections generate additional costs when the principal must provide in-

centives for voluntary disclosure. When inspections are predictable, the agent must be deterred from

trying to hide a breach in compliance in the hope of recovering before the arrival of the next inspec-

tion. To generate incentives for truthtelling, the principal-optimal equilibrium of Theorem 1 requires a

transition fine that must increase exponentially to prevent the agent from concealing such a breach in

compliance. The risk of having to pay the transition fine, however, decreases the agent’s overall payoff

in equilibrium. The reduction in his promised utility has the side effect of decreasing the maximum loss

that the principal can impose, which makes inspections overall less powerful. Thus, with predictable

inspections, truthful reporting requires a higher monitoring intensity. More formally, it is easy to see

that the initial promised utility with predictable inspection is smaller than the utility in the optimal

stationary mechanism with random inspections, i.e., u1∗ < Ū1. Moreover, as CEQ(·) is decreasing in u,

we have CR(Ū1) < CEQ(Ū1) < CEQ(u1∗). The first inequality represents the higher cost of deterministic

inspections for any payoff level, and the second inequality represents the cost increase that stems from

the dynamic voluntary disclosure incentives.
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Our finding that random inspections dominate deterministic inspections for incentive provision is

consistent with Varas et al. (2020) for the case without voluntary disclosure. The authors show that

(partially) predictable inspections can be optimal when the principal derives direct value from knowledge

of the true state, i.e. when her flow-payoff is convex is her posterior belief. In our model, the principal

uses fines to induce honest self-disclosure by the agent. Along the equilibrium path, the principal thus

knows the true state of compliance. Therefore, introducing convexity in the principal’s value as a function

of her belief would not affect our results; her belief is always 0 or 1. Varas et al. (2020) identify a trade-off

according to which incentive provision recommends randomization while the social value of information

makes predictable inspections more profitable. Our analysis shows that when the current state is known

to the agent and monetary incentives are feasible, self-reporting can resolve this trade-off in favor of

randomization.

4.2 Implementation of stochastic inspection mechanisms

While Proposition 3 shows that the principal without commitment power in our baseline model cannot

benefit from random inspections, the result does not rule out randomization altogether. Proposition 3

merely says that the indifference between conducting the inspection and postponing it, which is required

in any mixed strategy, precludes the principal from benefiting from randomization.

4.2.1 Extraneous randomization

In our main result in Theorem 1, we assumed implicitly that the principal and the agent do not have

access to a public randomization device. Randomization devices are commonly encountered in models of

relational contracts, and repeated games more generally, where they serve predominantly to ensure that

equilibrium payoffs form a convex set. Here, introducing a randomization device would serve a slightly

different purpose. By conditioning on the random realizations of a sufficiently rich, publicly observable

stochastic process, the principal could inspect at random, while allowing the agent to detect deviations

by the principal. Despite the theoretical appeal, however, implementing a random strategy with the help

of a public randomization device is uncommon and it can be a rather involved process in practice.

Traditionally, theorists have proposed three different ways to obtain jointly observable random signals.

One method is to rely on publicly observable random events. A prominent example of such natural

random events that has frequently been cited in the literature is the occurrence of ”sun spots”, which

are literal spots on the surface of the sun that randomly change their size and position. The literature

uses sunspots predominantly as a metaphor, however, to illustrate how otherwise irrelevant random

events might affect equilibrium outcomes if they influence expectations. Another way to obtain publicly

observable random information is through a procedure known as “jointly controlled lottery” in which

players have access to one or more randomization devices that they operate together. Examples include

joint coin tosses or simultaneous message exchange (i.e., a cheap-talk game, such as rock-paper-scissors).

In practice, joint lotteries are used for generating “keys” that are needed for example for cryptocurrencies

or electronic travel documents.

For the setting we are envisioning in this paper, in which the relationship between the principal

and the agent is at arm’s length,16 it seems implausible that the players employ elaborate stochastic

methods based on naturally occurring random events or jointly controlled lotteries to coordinate the

16The modeling of the agent’s reports as a continuous process is for notational ease. The agent’s reports should be
interpreted as occurring at times of transition only.
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principal’s inspection dates. Perhaps the most compelling way in which such stochastic information can

be generated is through an impartial third party. One way to achieve this is by separating the inspection

planning from its execution on an institutional level. For example, inspections can be prescribed by the

compliance manager but carried out by external practitioners. This eliminates the principal’s incentive

to skip inspections. In practice, the separation of planning and execution can be observed in the context

of banking supervision in Germany: Depending on the bank’s size, the European Central Bank or

the supervisory agency at the federal Finance Ministry (BaFin) fulfills the supervisory function and is

responsible for scheduling audits. The execution of these audits, however, is always done by the German

Bundesbank (BaFin, 2016). This way, the inspection cost is incurred by a different party from the one

taking the inspection decision.

There is an important difference between this suggestion and two seemingly analogous alternatives:

outsourcing the entire oversight activity at one extreme and directly compensating the principal for the

inspection costs at the other. Delegating to an independent oversight agency solely shifts the question

of how to avoid skipping costly inspections when that action can be accounted for with an alternative

realization. Compensating the principal for each performed inspection resolves the problem highlighted

above only if there is precise knowledge of the cost and effort required by the principal to carry out

an inspection (cost κ in our model). If the compensation for an inspection falls below this value, the

incentive to skip it remains. If the compensation is too generous, this creates an incentive to inspect

inefficiently often.

4.2.2 Randomization through inspection sampling and public records

The lack of detectability which hinders profitable randomization may be mitigated if the principal is

responsible for monitoring a large pool of independent agents. The principal can employ a strategy that

involves inspecting a fixed proportion of inspectees at all times, and publicizing the outcomes to create

a verifiable signal of vigilance and monitoring effort. Indeed, many public regulators are responsible for

overseeing large pools of companies and their oversight activity can be verified through the publication of

inspection outcomes. For example, the EPA’s database “Enforcement and Compliance History Online”17

collects over 44,000 inspected facilities within the 12 months up to April 2021; the PCAOB publicizes

approximately 100-300 inspection reports per year.18

Inspection sampling can be formally incorporated into our model as follows. Suppose there is a pool of

M ∈ N identical and independent agents. Let M0 ≤M be the number of these agents who are currently

in compliance; this implies that M0 is Binomially distributed with parameters (α,M). For simplicity,

suppose that α = 1, so that M0 = M (for the case α < 1, the expected number of compliant firms is

M0 = αM and the construction below works in a similar way). Fix a time interval of positive length

dt. Suppose that on this time interval, theorems k = M dt separate inspections at isolated dates, and at

each of these inspections, a total number of m < M firms is inspected. For each firm, the probability of

being among the m inspected agents at a given inspection date is given by p = m
M . On the entire time

interval dt, the number of inspections for this agent is binomially distributed with parameters k and p,

where k is the number of trials and p the probability in each trial. Now, when M →∞, then also k →∞
proportionally, and by the Poisson limit theorem, the distribution of the number of inspections for each

firm converges to the Poisson distribution with parameter kp = m dt. Hence, by definition, the rate of

inspection for any agent follows a Poisson process with arrival rate m, while the number of inspections

17https://echo.epa.gov
18https://pcaobus.org/oversight/inspections/firm-inspection-reports
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for the principal at each time t is constant.

If inspections are publicly observable or their outcomes have to be published by the principal, it is

easily detectable for any agent if the principal ceases her oversight activity by reducing inspections. At

the same time, each agent’s own inspection times are not predictable and follow the optimal constant

rate derived in Theorem 2. This example indicates that random inspection protocols are easier to sustain

if the principal’s vigilance is evaluated on the basis of overseeing an industry that consists of a large pool

of firms. By contrast, in monopolistic or oligopolistic industries in which there is a small number of large

companies, such as Boeing in the U.S. aircraft manufacturing business as mentioned in the introduction,

consistent oversight with random protocols will be much harder to sustain.

5 Conclusion

The paper studies a principal-agent setting with costly inspections in which the principal incentivizes

the agent to achieve and maintain compliance and disclose any incidence of non-compliance. Under

relational enforcement, when the principal cannot commit to the timing of inspections, it is possible to

induce maximum compliance and voluntary disclosure and the principal achieves this optimally through

non-random inspections. A fully committed principal, however, would prefer to inspect at random.

The persistent and delayed effect of the agent’s effort on the state of compliance makes it possible to

create incentives through isolated and predictable inspections and fines. We find that an intermediate

level of persistence is optimal for the principal. If the state of compliance becomes arbitrarily persistent,

the agent’s effort is unlikely to have an effect. If the state of compliance grows arbitrarily variable, the

informational link between past effort and compliance at future inspections erodes. At both extremes,

it becomes infeasible to achieve maximal compliance with finite inspection costs.

The use of predictable inspection schedules makes deviations by the regulator easy to observe for

the agent. Regular inspections serve as demonstrations of the principal’s vigilance and they are needed

to maintain the agent’s perception that non-compliance will likely be detected. Random inspection

schedules, on the other hand, lower the principal’s accountability, as it is difficult or impossible for the

agent to verify whether the principal remains vigilant when the inspections are conducted at random.

Decreased accountability, paired with pressure to reduce the regulatory burden and costs of monitoring,

can then result in a failure of oversight and enforcement.

A crucial assumption maintained throughout is that the principal seeks maximal compliance, defined

as full effort and truthful reporting after any history along the equilibrium path. This assumption keeps

the analysis tractable. We interpret the results in this paper as a benchmark for the design of optimal

policies, and as a sound theoretical approach to generating predictions of the cost of effective enforcement.

For a subset of the parameter space, in particular, if the principal’s reward from compliance, R, is large

enough, implementing effort always is optimal. There are cases, however, in which full compliance is not

socially optimal. Extending the analysis to allow for periods of non-compliance by the agent would be

interesting, but it makes the underlying optimization substantially more complicated. Other aspects not

considered in this paper are, for example, exogenous signals about the state, an agent who is imperfectly

informed, or an imperfect monitoring technology. These and other variants might be fruitful avenues of

future research.
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Appendix A: Strategies and outcomes

This part of the appendix contains the formal restrictions on the players’ strategy spaces to ensure that

any combination of strategies leads to a unique and well-defined outcome. We adopt the approach by

Kamada and Rao (2018) and require that actions are not changed ’too frequently’ on any time interval.

To apply this approach we first restrict the strategy spaces for the fine and effort choices. A history

ht ∈ Ht, has an intervention for the agent at time t if either t = 0, or if t > 0 and at least one of the

following holds: (i) θt − θt− 6= 0, (ii) θ̂t − θ̂t− 6= 0, (iii) N I
t −N I

t− 6= 0. Similarly, there is an intervention

for the principal if either t = 0, or if t > 0 and at least one of the properties (ii) and (iii) holds. No

new information arrives in between interventions. We restrict the principal’s fine strategy to reflect

this, and require that it be predictable in between inspections. Formally, for any two histories htandh
′
t:

ft(ht) 6= ft(h
′
t) only if there exists τ ≤ t such that τ is an intervention time for the principal and the

truncation of the above histories at time τ , hτ and h′τ , are distinguishable for the principal. In other

words, this restriction requires the principal’s fines to be specified pathwise; at each intervention, it is

fully specified how fines proceed until another intervention arrives. Similarly, we restrict the agent’s effort

strategy to be predictable in between interventions: For any two histories ht−, h′t−: et(ht−) 6= et(h
′
t−)

only if there exists τ < t such that τ is an intervention time for the agent and hτ 6= h′τ . Based on Kamada

and Rao (2018), we require all strategies to fulfil the properties traceability and frictionality as defined

below. Lemma A then shows that any combination of strategies from this class yields a well-defined and

unique outcome path. A history h is said to be consistent with the agent’s strategy (e, ρ) at time t if

ρt(ht−, θt) = θ̂t and et(ht) = ηt. Similarly, a history h is consistent with the principal’s strategy (n, f)

at time t if nt(π, ht−, θ̂t) = dN I
t and ft(ht) = dFt.

Definition 1. The agent’s strategy (ρ, e) is traceable if for any time-t history ht and any principal-

action path {N I
s , Fs}s≥0 that coincides with ht for all s < t, there is a continuation path {θ̂s, ηs}s≥t that

is consistent with (ρ, e). Analogously, The principal’s strategy (n, f) is traceable if for any time-t history

ht and any agent-action path {θ̂s, ηs}s≥0 that coincides with ht for all s < t, there is a continuation path

{N I
s , Fs}s≥t that is consistent with (n, f).

Definition 2. The agent’s strategy (ρ, e) is frictional if for any time-t history ht, there is conditional

probability one that the report path {θ̂s}s≥t has only finitely many report changes on any finite interval

[t, u] for all paths {ηs, θ̂s}s≥t such that there is a principal-action path {N I
s , Fs}s≥t for which the history(

ht−, {N I
s , Fs}s≥t, {ηs, θ̂s}s≥t

)
is consistent with the agent’s strategy. Analogously, the principal’s strat-

egy (n, f) is frictional if for any time-t history ht, there is conditional probability one that the inspection

path {Ns}s≥t has only finitely many inspections on any finite interval [t, u] for all paths {N I
s , Fs}s≥t such

that there is an action path {ηs, θ̂s}s≥t for which the history
(
ht−, {N I

s , Fs}s≥t, {ηs, θ̂s}s≥t
)

is consistent

with the principal’s strategy.

Lemma A (Existence and Uniqueness of consistent Outcome Path). Given any possible history hu− ={
π0, zt, ηt, θ̂t, N

I
t , Ft

}
t∈[0,u)

∪ {ηu}, any combination of strategies ((e, ρ), (n, f)) that are traceable and

frictional yields a unique consistent path
(
{ηt}t∈(u,∞), {θ̂t, N I

t , Ft, }t∈[u,∞)

)
almost surely.

Proof. The proof of Lemma A proceeds in two steps. First we show uniqueness and then existence.

Step 1: Uniqueness. Fix a pair of strategies, a history up to u, and any realization of the shock

process {zt}t∈[u,∞). Suppose there are two distinct continuation paths x = {ηxt , θ̂xt , N Ix

t , F xt }t∈[u,∞)

27



and y = {ηyt , θ̂yt , N Iy

t , F yt }t∈[u,∞) that are consistent with the strategies and the shock path. Let t =

inf{t ≥ u : xt 6= yt} be the first time at which the processes differ. Strategy e maps history hA
tAk

into

a deterministic process {ηs}s∈(tAk ,∞) only for times tAk at which an intervention for the agent occurs.

Likewise, strategy f maps history htPk into a deterministic process {Fs}s∈[tPk ,∞) for times tPk with an

intervention for the principal. Therefore, if ηxs 6= ηys for s > u or F xs 6= F ys for s ≥ u, then there must

also be a time t ≤ s with an intervention at t, i.e. ∃k ∈ N s.t. t = tAk or t = tPk . Furthermore, we must

have hxt 6= hyt at this intervention. With probability 1, the realization {zt}t∈[u,∞) has only finitely many

jumps on any closed interval. Hence, by frictionality, there are at most finitely many interventions on

any closed interval. Therefore, t defined above must be an intervention time and the infimum is attained,

i.e., xt 6= yt. We therefore must have θ̂xt 6= θ̂yt or N Ix

t 6= N Iy

t and, as t is the first such time, hxt− = hyt−.

As θ̂xt and θ̂yt both result from the same strategy, this, however, implies that θ̂xt = θ̂yt , leaving as only

possibility that N Ix

t 6= N Iy

t . This contradicts consistency of both processes with the fixed strategy (as

hxt− = hyt−). Hence, any pair of traceable and frictional strategies gives at most one consistent outcome.

Step 2: Existence. Existence of a consistent outcome path is shown constructively: Start with

arbitrary history hu− =
{
π0, zt, ηt, θ̂t, N

I
t , Ft

}
t∈[0,u)

∪ {ηu} and fix a realization of the shock process

{zt}t∈[u,∞). We apply the steps below iteratively until they give an outcome path consistent with z and

the strategies for t ≥ u: Define paths {η0t , θ̂0t , N I0

t , F 0
t } equal to the history up to u and such that for

t > u : η0t = et(hmaxk tAk <u
), and for t ≥ u: θ̂0t = θ̂u−, N I0

t = N I
u− and dF 0

t = ft(hmaxk tAk <u
).19 Let

n = 1 and t(1) = u.

i) By traceability, there are paths {ηnt , θ̂nt }t≥0 such that, for t < t(n): {θ̂nt , ηnt } = {ηn−1t , θ̂n−1t } and

that {ηnt , θ̂nt , N In−1

t , Fn−1t }t≥0 is consistent with the agent’s strategy and process z for t ≥ t(n). Set

{ηnt , θ̂nt } equal to these processes. Similarly, traceability implies that there exist paths {N In

t , Fnt }
with (N In

t , Fnt ) = (N In−1

t , Fn−1t ) for t < t(n) and such that {ηnt , θ̂nt , N In

t , Fnt }t≥0 is consistent with

the principal’s strategy on t ≥ u. Set {N In

t , Fnt } equal to these processes and continue to step (ii).

ii) If {ηnt , θ̂nt , N In

t , Fnt } is consistent with the strategies for all t ∈ [u,∞), stop the procedure. The

proof is complete. Otherwise, redefine n = n+ 1 and set t(n+ 1) equal to the largest time v such

that there is an intervention at v and {ηnt , θ̂nt , N In

t , Fnt } is consistent with the strategies for all

t ∈ [u, v), go to step (i).

If the above procedure stops after finite n, that’s because of having given a consistent process and the

proof is complete. In the case in which it does not stop after finitely many iterations,

lim
n→∞

{ηnt , θ̂nt , N In

t , Fnt }t≥0

is consistent with the strategies on [u,∞) with probability one. To see this, note that for every n,

t(n+2) > t(n). Given that, with probability one, any finite interval has only finitely many interventions,

limn→∞ t(n) =∞ which implies consistency of the resulting process for all t ∈ [u,∞).

19That is, report and inspections are held constant from u onward and fines and effort are chosen according to the
strategies (depending only on the last intervention before u) for the case that no further interventions occur.
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Appendix B: Proofs

B.1 Proofs of intermediate results

Proof of Lemma 1. Denote by F the filtration generated by the random processes θ, θ̂ and νI . Define

Wt :=

∫ t

0

e−rs(−dFs − cηs ds) + e−rtUt.

The corresponding representation in differential form is

dWt = e−rt(−dFt − cηt dt)− re−rtUt + e−rt dUt.(19)

The process {Wt} is an F-martingale by construction. By the martingale representation theorem for

marked point processes (Last and Brandt, 1995, Theorem 1.13.2), there exist F-predictable functions

∆̃θ
t , ∆̃θ̂

t and ∆̃I
t such that

dWt =
∑

a∈{θ,θ̂,I}

∆̃a
t (dNa

t − dνat )(20)

Replacing ∆̃a
t = e−rt∆a

t and then equating (19) and (20) yields

dUt = rUt dt+ dFt + cηt dt+
∑

a∈{θ,θ̂,I}

∆a
t (dNa

t − dνat ).

This is the representation of the evolution of promised utilities shown in the lemma.

Lemma B. A mechanism that induces the payoffs {Ut}t≥0 is incentive compatible with maximum effort

and truthful reporting if and only if for all t ≥ 0:

(i) (r + qt(1))∆θ̂
t − dνIt (∆I

t −∆θ̂
t ) ≥ d∆θ̂

t when θt 6= θ̂t,

(ii) (1− 2θt−)λα(∆θ
t + ∆θ̂

t ) ≥ c when θt = θ̂t,

(iii) Ut ∈ [−B, 0].

Proof. Define

Wt =

∫ t

0

e−rs(−dFs − cηs ds) + e−rtŨt.

to be the agent’s expected payoff from choosing effort {η̃s} and report {θ̂s} up to time t with maximum

effort and truthful reporting thereafter. Here Ũt is the expected continuation payoff. We may have

Ũt 6= Ut if the agent has reported non-truthfully, i.e., θ̂t− 6= θt−. Consider first the case in which the

agent’s report regarding his type at time t is truthful, so that Ũt = Ut. Differentiating with respect to t

yields

dWt = e−rt(−dFt − cηt dt)− re−rtUt dt+ e−rt dUt.
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Using Lemma 1 to replace dUt yields

dWt =

(
e−rt(−dFt − cηt dt)− re−rtUt dt+ e−rt

(
rUt dt+ dFt + cdt+

∑
a∈{θ,θ̂,I}

∆a
t (dNa

t − dνat )

))

= e−rt
(

(1− ηt)cdt+
∑

a∈{θ,θ̂}

∆a
t (dNa

t − qt(1) dt) + ∆I
t (dN

I
t − dνIt )

)
,

If the agent deviates for an additional instant (but still reports truthfully) then

dNθ
t = dN θ̂

t =

1 with probability qt(η̃t) dt

0 with probability 1− qt(η̃t) dt
.

Taking expectations therefore yields

EAt [dWt] = e−rtEA
[
(1− ηt)cdt+ (∆θ

t + ∆θ̂
t )(qt(η̃t)− qt(1)) dt

]
.

It follows from Condition (ii) that

(∆θ
t + ∆θ̂

t )q(η̃t)− cηt ≤ (∆θ
t + ∆θ̂

t )qt(1)− c.

Thus EAt [dWt] ≤ 0. We thus obtain the chain of inequalities

EA0 [Wt] = EA0
[∫ t

0

dWs +W0

]
=

∫ t

0

EA0 [dWs] + EA0 [W0] =

∫ t

0

EA0
[
EAs [dWs]

]
+W0 ≤W0.(21)

Now, consider the case in which the agent’s most recent report at time t is false, that is θt− 6= θ̂t− and

he continues the non-truthful strategy for an additional moment at time t. If no change in the state

occurs at the additional moment, then the agent must correct his report immediately thereafter. If a

change occurs, then the previously false statement becomes truthful, and thus his report does not change.

Therefore, we have the following:

(22)

dŨt = Ũt − Ũt−dt
= dNθ

t (Ut − Ut−dt −∆θ̂
t−dt) + dN I

t (Ut + ∆I
t − Ut−dt −∆θ̂

t−dt)

+ (1− dNθ
t − dN I

t )(Ut + ∆θ̂
t − Ut−dt −∆θ̂

t−dt)

= dNθ
t (dUt + d∆θ̂

t −∆θ̂
t ) + dN I

t (dUt + d∆θ̂
t −∆θ̂

t + ∆I
t ) + (1− dNθ

t − dN I
t )(dUt + d∆θ̂

t )

= dUt + d∆θ̂
t − dNθ

t ∆θ̂
t + dN I

t (∆I
t −∆θ̂

t ).

Using again Lemma 1 to replace dUt, we obtain

dWt = e−rt(−dFt − cηt dt)− re−rt(Ut + ∆θ̂
t )

+ e−rt
(
rUt dt+ dFt + cdt+ ∆θ

t (dN
θ
t − q∗t ) + d∆θ̂

t − dNθ
t ∆θ̂

t + dN I
t (∆I

t −∆θ̂
t )
)

It follows from the honesty constraint (i) that, in expectation, d∆θ̂
t ≤ (r + qt(1))∆θ̂

t − dνt(∆
I
t − ∆θ̂

t ).
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When we substitute it into dWt and simplify, using again Ũt = Ut + ∆θ̂
t , we obtain

EAt [dWt] = e−rt
(

(1− η)cdt+ (∆θ
t −∆θ̂

t )q(η̃t)− qt(1)(∆θ
t −∆θ̂

t )
)
.

Now, ∆θ
t − ∆θ̂

t = (∆θ
t + Ut) − (∆θ̂

t + Ut) is the payoff difference from a change in the state without a

change in report and a change in report without a change in the state. Since θt− 6= θ̂t− by hypothesis,

this is identical to ∆̃θ
t + ∆̃θ̂

t after the history in which the true state was identical to his report. Thus

(ii) implies that ηt = 1 maximizes the right-hand side, so that EAt [dWt] ≤ 0. By the same argument as

in (21), we have

EA0 [Wt] ≤W0 = U0.

so that the agent cannot profit from deviating. Taking the limit, we find that

lim
t→∞

EA0 [Wt] ≤ U0.

which implies that the agent cannot gain from deviating from maximum effort and truthful reporting.

Conversely, if the incentive constraint (i) is violated, then the above inequalities are inverted, so that the

agent has a strict incentive to be dishonest. Likewise, if (ii) is violated, the agent has a strict incentive

to exert no effort, and a violation of (iii) leads to exit by the agent.

Proof of Lemma 2. We show that condition (Pk) follows from Lemma 1 and (H), (O) and (P ) are

equivalent to conditions (i), (ii) and (iii) in Lemma B. Consider a mechanism and a strategy for the

agent that jointly generate the payoff process {Ut}t≥0 for the agent, and denote by {U1
t , U

0
t }t≥0 the

associated pair of promised utilities defined in Equation (9).

(1.) By the definition of U0
t , U

1
t , we have

∆θ
t + ∆θ̂

t =

U1
t − U0

t if θt− = θ̂t− = 0

U0
t − U1

t if θt− = θ̂t− = 1
, qt(1) = qt(1) =

αλ if θt− = 0

(1− α)λ if θt− = 1
.(23)

Combining these two expressions, we can write more succinctly:

qt(1)(∆θ
t + ∆θ̂

t ) = λ(θt− − α)(U1
t − U0

t ).

Lemma 1 implies that, conditional on the event that dNθ
t = dN θ̂

t = dN I
t = 0, we have

dU it = rU it dt− qt(1)(∆θ
t + ∆θ̂

t ) + dFt + cdt− dνt∆
I
t

= rU it dt+ λ(i− α)(U1
t − U0

t ) + dFt + cdt− dνt∆
I
t

which proves condition (Pk) in Lemma 2. Note that ∆I
t measures the difference in utility before and

after an inspection when the agent reports his type truthfully. (2.) Next, suppose that the agent is

not truthful after some history at time t. Let i = θt be the true state and suppose the agent reports
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j = 1− θt. Then, U it = Ut + ∆θ̂
t , and

(24)

dU it = (Ut+dt + ∆θ̂
t+dt)− (Ut + ∆θ̂

t )

= rUt dt+ dFt + cdt− qt(1)∆θ
t + d∆θ̂

t

≤ rUt dt+ dFt + cdt− qt(1)∆θ
t + (r + qt(1))∆θ̂

t − dνt(∆
I
t −∆θ̂

t )

= r(Ut + ∆θ̂
t )− qt(1)(∆θ

t −∆θ̂
t )− dνt(∆

I
t −∆θ̂

t ) + dFt + cdt

= rU it + λ(i− α)(U1
t − U0

t )− dνt(∆
I
t −∆θ̂

t ) + dFt + cdt

The second line follows from Lemma 1, the inequality in the third line follows from Condition (i) in

Lemma B, where we take expectations conditional on the event that dNθ
t = dN θ̂

t = 0. The last equality

in (24) holds since

qt(1)(∆θ
t −∆θ̂

t ) = qt(1)(Ut + ∆θ
t − (Ut + ∆θ̂

t )) = qt(1)(U jt − U it ) = λ(i− α)(U1
t − U0

t ).

Punishment is without cost for the principal, and therefore, it is optimal to impose the most severe

punishment after an inspection reveals a dishonest report. The severity of punishments is restricted by

the limits of enforcement that require the agent’s continuation value not to fall below the lower bound

−B < 0. Therefore, we have

∆I
t −∆θ̂

t = Ut + ∆I
t︸ ︷︷ ︸

=−B

−(Ut + ∆θ̂
t︸ ︷︷ ︸

=Uit

) = −(B + U it ).

Substituting this last equation into Equation (24) yields

dU it = rU it + λ(i− α)(U1
t − U0

t ) dt+ dνt(B + U it ) + dFt + cdt,

which is equal to Condition (H) in Lemma 2. Conversely, if (i) does not hold at some t, then using the

same steps as above, the inequality is reversed, so that (H) is violated. (3.) Substituting Equation (23)

into the obedience constraint (ii) we obtain for each θt−:

(∆θ
t + ∆θ̂

t )(1− 2θt−)αλ = αλ(U1
t − U0

t ) ≥ c.

The last inequality is identical to (O) in Lemma 2. Conversely, if (ii) is violated at some t, then the

inequality is reversed, so that (O) is violated.

Proof of Proposition 3. Take any truthful maximally compliant equilibrium. The following steps

present a modified inspection schedule that satisfies the properties stated in Proposition 3. Let U0
t , U

1
t

be the equilibrium continuation payoffs of the agent in this equilibrium. As the original equilibrium is

truthful and maximally compliant, U0
t and U1

t satisfy the constraints from Lemma 2. First, we argue for

any inspection following a high report, it is without loss to assume that truthful (high) reports are never

punished more than (low) misreports at the time of an inspection. That is, if the persistent payoff U1
t

jumps downward after an inspection, it will do so by less than the distance from the transitional utility to

the lower bound −B. Formally, let Ū1
t be the agent’s persistent payoff right after an inspection performed

at time t and let U1
t− be the payoff just prior to time t. Recall that by definition ∆I

t = Ū1
t − U1

t−. We

show that, without loss, ∆I
t > −B − U0

t .
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Suppose, to the contrary, that ∆I
t ≤ −B−U0

t ≤ 0. Then, we can construct another truthful maximally

compliant equilibrium in which the principal’s inspection costs are weakly lower by removing instant t

from the support of the inspection distribution. To satisfy the agent’s incentives for truthtelling and

compliance, we compensate for the change in utility resulting from eliminating the inspection. To this

end, introduce an additional fine at t, such that the new fine is dF̂t = dFt − dνIt ∆I
t , where dFt denotes

the fine specified in the original equilibrium. Hence, the agent’s expected loss from the inspection caused

by ∆I
t < 0 is paid as a fine at time t. This way, the path of persistent payoff U1

t remains unchanged for

all s ≤ t. Similarly, the path of transitional utility, U0
s , remains unchanged as the continuation equilibria

after a transition remain the same. As both paths U1
s and U0

s are as before, the obedience constraint

remains satisfied.

To see that the honesty constraint is not violated by this change, consider the constraint (H) in case

j = 0:

dU0
t ≤ r(U0

t ) dt− λα(U1
t − U0

t ) dt+ dνIt (B + U0
t ) + dFt + cdt.

The effect of the proposed change on the right-hand-side of this constraint is −dνIt (B + U0
t ) − dνIt ∆I

t .

As ∆I
t ≤ −B − U0

t , this effect is positive and the path of U0
s still satisfies the honesty constraint. In

order to randomize at time t in the original equilibrium, the principal must have been indifferent between

inspecting and continuing without, so that removing instant t from the support weakly lowers inspection

costs. Now, with ∆I
t > −B − U0

t , we prove Proposition 3. Suppose, towards contradiction, that the

statement in the result is false. Then, there must be some time t and history ht with θ̂t = 1 such

that any inspection schedule with the first inspection after t being predictable for the agent must create

higher inspection costs for the principal. We show that this cannot be the case by replacing the random

inspection with a non-random inspection at the earliest realization of the random inspection schedule.

Without loss, take the time t above to be t = 0 and θ̂0 = 1. Let T be the support of the first inspection

time for this history and denote its infimum by t0 = inf T . If T = {t0}, the inspection strategy for this

history is already predictable, and we continue with the next instance, interpreting 0 as the last time of

inspection after the high report or the time of transition to the high report.

When the support is not a singleton, consider first the case in which t0 ∈ T , i.e., the infimum is

contained in the support. We show at the end of the proof how the arguments extend to the case t0 /∈ T ,

i.e., when t0 is an accumulation point.

Let t0 ∈ T and consider the inspection schedule with a certain inspection at t0 in case time t0 is

reached without prior transition. If ∆I
t0 ≥ 0, introduce an additional fine at t0 so that the new fine is

given by dF̂t0 = dFt0 +(1−dνIt0)∆I
t0 , where dFt0 denotes the fine in the original equilibrium. The payoff

paths U0
s and U1

s remain unchanged for s ≤ t0 and, thus, the obedience constraint is unaffected. The

honesty constraint at t0 is relaxed since both the increase in inspection probability and the additional

fine increase the right hand side of (H). If ∆I
t0 < 0, increasing the inspection probability from dνIt0

to 1 decreases the persistent payoff path U1
s for all s ≤ t0 by |∆I

t0 |(1 − dνIt0)e−(r+(1−α)λ)(t0−s). This

change in persistent payoff cannot be compensated by an additional fine at the high report as it would

reduce the expected persistent payoffs further. Instead, we ensure obedience and truthtelling by lowering

the transitional payoff by the necessary amount. To this end, introduce an additional transition fine of

|∆I
t0 |(1 − dνIt0)e−(r+(1−α)λ)(t0−s) to be paid at time s ≤ t0 if a transition to the bad state occurs. This

additional fine ensures that the difference U1
s −U0

s is as in the original equilibrium, so the obedience and

honesty constraints will still be satisfied. To ensure that this additional transition fine is feasible, we need

33



to verify for all s ≤ t0, that U0
s −|∆I

t0 |(1−dνIt0)e−(r+(1−α)λ)(t0−s) ≥ −B. This term is decreasing in s, so

it is sufficient to verify that U0
t0 +∆I

t0(1−dνIt0) ≥ −B. Recall that we have shown that for any inspection

time, ∆I
t0 > −B − U0

t0 . Feasibility follows since dνIt0 < 1. Last, we show how the arguments extend to

the case t0 /∈ T . First, note that if its infimum t0 is not contained in the set T , then for any δ > 0, we

can find an ε ∈ (0, δ) such that t0 + ε ∈ T . Further, by choosing δ small enough, we can ensure that the

expected inspection probability
∫ t0+δ
t0

dνIs becomes arbitrarily small. In the first case with U0
t0 > −B,

there exists an ε > 0 small enough such that t0 + ε ∈ T and also U0
t0+ε > −B by right-continuity of U0

t .

In this case we can apply the argument above to schedule a predictable inspection at time t0 + ε. To

satisfy the agent’s incentive constraints, this modification is paired either with an additional fine after

a high report at t0 + ε or with an additional transition fine for any transition at times s ∈ [t0, t0 + ε),

depending on the sign of ∆I
t0+ε. In the second case with U0

s = −B, on [t0, t0 + δ) for some δ > 0, then

by ∆I
s > −B − U0

s , we have that ∆I
t0+ε > 0. In this case, we can proceed in a similar way as above

and introduce an additional fine to compensate for the increase in the agent’s expected payoff caused by

performing the inspection with probability 1 and keep the path of persistent payoffs U1
s unchanged for

s ≤ t0. However, to ensure that the obedience and honesty constraints are also satisfied on (t0, t0 + ε],

the fine is increased gradually on the interval (t0, t0 + ε). Specifically, construct the fine such that the

honesty constraint (H) binds (with U0
s = −B):

0 = −rB dt− λα(U1
s +B) dt+ dFt + cdt.(25)

In the promise-keeping constraint (Pk), substituting for dFs with the binding honesty constraint (25)

and inserting U0
s = −B determines the evolution of U1

s on (t0, t0 + ε) via the differential equation

û′s = (r + λ)(ûs +B).

We keep the persistent utility at t0 unchanged, so the initial condition for the ODE is ût0 = U1
t0 , which

leads to the solution

ûs = U1
t0e

(r+λ)(s−t0) +B
(
e(r+λ)(s−t

0) − 1
)
,

for s ∈ [t0, t0 + ε). To ensure, that this trajectory of persistent utility is feasible, we verify that the fine

dFs is positive and that the solution ût0+ε does not exceed U1
t0+ε + ∆I

t0+ε from the original equilibrium.

The latter is necessary to reach U1
t0+ε + ∆I

t0+ε as the continuation payoff after inspection at t0 + ε. For

the fine, (25) with U1
s = ûs gives

dFs
dt

= −c+ rB + λα(ûs +B) = −c+ rB + λα(U1
t0 +B)e(r+λ)(s−t

0).

This term is decreasing in s and therefore smallest at s = t0, where it is positive if

(r + λα)B + λαU1
t0 ≥ c.

For the original equilibrium to satisfy the obedience constraint we must have U1
t0 ≥ −B + c

λα , so that

the above inequality must be satisfied and the fines are positive. To check that ût0+ε constructed

above does not lie above U1
t0+ε + ∆I

t0+ε from the original equilibrium, note that the inspections in the

original equilibrium had no effect on the honesty constraint (H) as, by assumption, we are in the case

U0
s = −B. Therefore, as the original equilibrium satisfied the honesty constraints, the evolution of ûs,

which was constructed by making the honesty constraint binding, must lie weakly below the original U1
s
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and therefore ût0+ε ≤ U1
t0+ε + ∆I

t0+ε since ∆I
t0+ε is positive by ∆I

t0+ε > −B−U0
t0 = 0. Hence, the newly

constructed equilibrium includes a fine at inspection time t0 + ε of Û1
t0+ε − (U1

t0+ε + ∆I
t0+ε) so that the

persistent utility increases to the one from the original continuation equilibrium after inspection at time

t0 + ε. This concludes the proof of the result by constructing an inspection schedule in which the next

inspection following a good report is predictable, the agent’s incentive constraints are satisfied, and the

principal’s inspections costs have not increased.

Proof of Proposition 4. We show that any predictable principal strategy that generates a positive

value for the principal at each t can be implemented in equilibrium. First, note that for any history,

there is a possible continuation equilibrium in which the agent chooses to exit the relationship with

probability one. To support exit by the agent as a best response, the principal’s strategy is such that

whenever the agent deviates and fails to exit although he was supposed to do so, the principal implements

the harshest possible fine of −B. We show that this bad continuation equilibrium can be leveraged to

support any principal strategy as an equilibrium given that leads to predictable inspections for the agent.

Let {Nt, Ft} be the paths induced by the strategy in the result. By hypothesis (ii), compliance

is incentive compatible for the agent. Let (ñ, f̃) be an alternative strategy for the principal (with

possibly random inspection) and denote by Ñ I the resulting inspection path if the agent follows the

compliant strategy from the result. Adapt the agent’s strategy such that he exits after any history

ht with dN I
t 6= dÑ I

t , that is, whenever the agent observes that the principal deviated from the original

inspection strategy. Define the set D = {t|dN I
t 6= dÑ I

t } containing the dates at which the agent observes

that the principal deviates from her original inspection strategy. Since the payoff for the principal from

the strategy in the result is positive at each t, and the payoff from any deviating strategy is equal for

all t < inf D, her deviation cannot be profitable as it results in a payoff of 0 from inf D onward. Finally,

adapt the principal’s strategy from the result such that he fines the agent as harshly as possible whenever

the agent was expected to exit but failed to do so. This way, for the agent the strategy which leads to

exit at t = inf D is incentive compatible, and the constructed equilibrium differs from the initial strategy

profile in Proposition 4 at most off the equilibrium path.

B.2 Proof of Theorem 1

The general outline of the proof is as follows. First, we consider a relaxed mechanism design problem

in which the honesty constraint applies only while the agent reports compliance. We then solve for the

optimal mechanism in this case using an iteration argument, assuming that fines are levied only at the

time of inspections or transitions. Second, we show that fines between inspections cannot increase the

principal’s payoff. Third, we verify that there is no mechanism in non-Markov strategies that performs

better than the optimal Markovian mechanism of the relaxed problem. Finally, we show that the solution

to the relaxed problem is also achievable in the original problem.

B.2.1 Auxiliary control problem

We begin by considering the auxiliary control problem

max
{NIt ,Ft}t≥0

EP
[∫ ∞

0

e−rt(θtR dt− κdN I
t )

]
(26)
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subject to the incentive-compatibility conditions (H), (O), (P ), and the following two additional condi-

tions:

(A) When θ̂t = 1, there are no fines between inspections, that is, dN I
t = 0 implies dFt = 0 and the

honesty constraint (H) binds (i.e., dµt = 0).

(B) When θ̂t = 0, then the evolution of U1
t is not limited by the honesty constraint (H).

Condition A is a restriction on the set of strategies for the principal, while Condition B relaxes the

incentive-compatibility restriction for the agent. Under Condition (A), the honesty constraint (H) holds

with equality during compliance, so that when θ̂t = 1, Conditions (Pk) and (H) yield a pair of simple

first-order differential equations which can be solved in closed form. The inspection problem thus becomes

a standard deterministic impulse-control problem with state constraints. We solve this by first deriving

the optimal mechanism when the principal can inspect at most continue iteratively and consider the

limit as the total number of available inspections k goes to infinity. More specifically, for any integer

k ≥ 0, consider the following optimization problem:

max
{NIt ,Ft}t≥0

EP
[∫ ∞

0

e−rt(θtR dt− κdN I
t )

]

subject to limt→∞N I
t ≤ k pathwise, and to the incentive-compatibility conditions (H), (O), (P ), (A) and

(B) at all t ≥ 0 at which N I
t < k. Note that in order for a solution to exist, we cannot impose incentive

compatibility at any t with Nt = k, as the obedience constraint (O) is necessarily violated when the

principal cannot inspect. Denote by Vk the solution to the problem with k available inspections. It then

follows from Proposition 54.18 in Davis (1993) that the value function for the auxiliary problem V is the

limit of Vk, i.e., V = limk→∞ Vk. In the second part of the proof, we show that Assumption A is without

loss. Indeed, due to risk-neutrality, any fines the agent has to pay between inspections can be moved

while maintaining incentive compabitility. We then confirm that there is no non-Markovian mechanism

that generates a larger payoff for the principal. Finally, we show that in the optimal mechanism, the

honesty constraint holds in both states, so that the solution to the auxiliary problem is also a solution

to our original maximization problem in which we do impose Conditions (A) and (B).

Evolution of promised utilities during compliance. We begin by establishing an upper bound

for the promised utility for the agent.

Claim 1. Along the equilibrium path of a maximally compliant mechanism, we have U1
t ≤ − c

rα .

Proof. Let Ū1 be the supremum of U1
t which exists by (P ). By obedience (O), we have that Ū1 − c

λα is

an upper bound for U0
t . Therefore, in a maximally compliant equilibrium, we must have

Ū1 ≤
∫ ∞
0

e−(r+λ(1−α))s
[
−c+ λ(1− α)(Ū1 − c

λα
)
]

ds.

Solving the integral yields

Ū1 ≤ −c+ Ū1λα(1− α)

rα+ λα(1− α)
⇒ Ū1 ≤ − c

rα
.

Since Ū1 is the supremum for U1
t , we have U1

t ≤ − c
rα as required.
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By Assumption A, the promise-keeping and truthtelling constraints in state θ̂t = 1 yield a system of

coupled first-order differential equations

dU1
t

dt
= rU1

t + λ(1− α)(U1
t − U0

t ) + c,

dU0
t

dt
= rU0

t − λα(U1
t − U0

t ) + c,

which, for given initial values U1
0 = u1 and U0

0 = u0, has the unique solution

U1
t = ert(u1 + (1− α)(eλt − 1)(u1 − u0))− c(1− ert)/r,(27)

U0
t = ert(u0 − α(eλt − 1)(u1 − u0))− c(1− ert)/r.(28)

Inspection of (27) and (28) reveals that for u1 < − c
rα , U1

t is u-shaped in t and strictly decreasing in u0

whereas U0
t is strictly decreasing in t and strictly increasing in u0. We will show below that it is optimal

to set u0 = u1 − c
λα and, therefore, it is sufficient to specify the promised utility u = u1. We define

φ1(t, u) := ert
(
u+

(
1− α
α

)
(eλt − 1)

c

λ

)
− c(1− ert)/r(29)

φ0(t, u) := ert
(
u−

(
1− α
α

)
c

λ
− eλt c

λ

)
− c(1− ert)/r.(30)

It is easy to see that for u < − c
rα , the function φ1(t, u) is u-shaped in t, φ0(t, u) is strictly decreasing in

t and both are linearly increasing in u for all t. Define the boundary hitting times

T θ(u) = min
t≥0
{t|φθ(t, u) ∈ {0,−B}} ,

denoting the length of time until Uθt hits the boundary, where θ ∈ {0, 1}.

Claim 2. The boundary hitting times T 0 and T 1 are differentiable in u and their minimum is quasi-

concave.

Proof. It follows from the implicit function theorem that T 1 and T 0 are differentiable. Define

T (u) = min{T 0(u), T 1(u)}.

It is immediate that φ1 and φ0 are increasing in u. Therefore, an increase in u decreases T 1(u) and

increases T 0(u) and vice versa. Therefore, T is quasi-concave, and T assumes its maximum at the point

u∗1 at which T 0 and T 1 are equal, that is:

T 0(u) = T 1(u).

Hence, T 0′(u) < 0 and T 1′(u) > 0 and, consequently,

(31) T ′(u)

> 0 if u < u∗1

< 0 if u > u∗1.
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Claim 3. There is a unique value ū < − c
rα such that φ1(T (ū), ū) = ū.

Proof. We show that for u < − c
rα there is a unique t solving φ1(t, u) = u and that the solution is strictly

decreasing in u. After a few simple operations, the identity φ1(t, u) = u becomes

α

1− α

(
−λ
r
− λu

c

)
︸ ︷︷ ︸

=:LHS

=
e(r+λ)t − 1

ert − 1
− 1︸ ︷︷ ︸

=:RHS

.(32)

It is easy to see that RHS is increasing and convex in t and that

lim
t→0

e(r+λ)t − 1

ert − 1
− 1 = lim

t→0

(r + λ)e(r+λ)t

rert
− 1 =

λ

r
.

LHS is clearly strictly decreasing in u, and for u < − c
rα , we have,

α

(1− α)

(
−λ
r
− λu

c

)
>

α

(1− α)

(
−λ
r

+
λ

c

c

rα

)
=
λ

r
.

Therefore, for any u < − c
rα , there is a unique time Ts(u) such that φ1(Ts(u), u) = u. Moreover, inspection

of (32) reveals that this time is continuous and strictly decreasing in u. Note that for u→ − c
rα , we have

T0(u) > Ts(u)→ 0 and for u→ −B + c
λα we have Ts(u) > T 0(u)→ 0. Because T 0(u) is continuous and

strictly increasing, and Ts(u) is continuous and strictly decreasing, there must then exist a unique value

ū, such that Ts(ū) = T 0(ū) and φ1(T 0(ū), ū) = ū.

Claim 4. φ1(T (u), u) > u if u > ū and φ1(T (u), u) < u if u < ū.

Proof. Note that Ts is decreasing while T 0 is increasing. Moreover, Ts(ū) = T 0(ū) by construction. Thus,

for u > ū we have Ts(u) < T 0(u), so that φ1(T 0(u), u) > u. Similarly, for u < ū we have Ts(u) > T 0(u),

so that φ1(T 0(u), u) < u.

Evolution of promised utilities during non-compliance. We show that during reports of non-

compliance, the utility of the agent is held constant Define β1 = λα
r+λα .

Claim 5. Let (V 0
k , V

1
k ) be the value functions in an optimal mechanism when there are k ≥ 1 available

inspections. Denote the pair of initial promised utilities in this mechanism by u∗ = (u0
∗
, u1
∗
). Then

V 0
k (Ut) = β1V

1
k (u∗).

Proof. Without loss, assume θ0 = 1. We establish the claim via contradiction. Suppose to the contrary

that V 0
k (Ut) < β1V

1
k (u∗), and consider the following alternative mechanism. For θt = 1, let the new

mechanism be identical to the original one. For θ0t = 0 we set dFt = u0
∗ − U0

t for U0
t < u0

∗
and

dFt/ dt = ru0
∗

for U0
t ≥ u0

∗
. In this new mechanism, for θt = 1, the paths of promised utilities

are identical to those in the original mechanism by construction, so that all incentive-compatibility

constraints hold when θt = 1. Moreover, since U0
t is strictly decreasing in t when θt = 1, we have

U0
t < u0

∗
and thus dFt1 > 0. The promised utilities at θt = 0 in the new mechanism are constant and

equal to u∗, so that the obedience constraint is satisfied. Along the equilibrium paths, the expected
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payoff for the principal at time t in state θt = 0 in the new mechanism is therefore

V̂ 0
k (Ut) =

∫ ∞
0

e−(r+λα)sλαV 1(u∗) ds =
λα

r + λα
V 1
k (u∗) = β1V

1(u∗).

Since the new mechanism is identical to the original mechanism for θt = 1, the expected payoff for the

principal in the new mechanism is strictly higher than in the original mechanism, contradicting optimality

of the original mechanism.

Derivation of the optimal mechanism in the auxiliary problem. We now solve for the principal’s

value function iteratively by solving a sequence of impulse-control problems where the number of available

inspections is bounded by a number k. We derive the optimal initial promised utility u∗k for each k, and

we show that the sequence {u∗k} converges to ū as k → ∞. For the case in which the agent reports

θ̂t = 0, Claim 5 implies that without loss the expected payoff for the principal in state θt = 0 with k

available inspections can be written as V 0
k (u0, u1) = β1V

1
k (u1). We show that for all k ≥ 0, the obedience

constraint (O) binds at the outset.

Claim 6. Suppose the total number of available inspections in k. Then there is an optimal policy such

that at the initial pair of promised utility (u0k, u
1
k), the obedience constraint (O) binds.

Proof. Using Claim 5, there is no loss in generality in assuming that θ̂0 = 1. Consider the optimal initial

utilities (u0, u1), where we assume to the contrary u1 − u0 > c
λα . Denote by t∗ the minimum of U1

t . Let

T be the first inspection time conditional on no transition, and let the promised utilities at that time

be û1 and û0. Now, fix ε > 0 sufficiently small, and consider an alternative mechanism identical to the

original mechanism, except that the first time of inspection is (T + ε), and with initial utilities (ũ1, ũ0).

If T < t∗, then let ũ0 = ũ1 − u1 + u0 and let ũ1 solve

û1 = er(T+ε)(ũ1 + (1− α)(eλ(T+ε) − 1)(u1 − u0))− c(1− er(T+ε))/r.

Thus, by shifting the initial promised utilities up, the first inspection date is postponed, while maintaining

incentive compatibility and keeping the terminal values constant. Consequently, the initial utilities could

not have been optimal. If T ≥ t∗, then let ũ1 = u1 and let ũ0 solve

û1 = er(T+ε)(ũ1 + (1− α)(eλ(T+ε) − 1)(ũ1 − ũ0))− c(1− er(T+ε))/r.

Thus, by shifting up u0 while keeping u1 constant, the first inspection date can be postponed while

maintaining incentive compatibility and keeping the terminal values constant. In either case, a pair of

initial utilities with u1 − u0 > c
λα cannot be optimal.

Without loss, we can now restrict attention to initial pairs of utility (u0, u1) such that u1− u0 = c
λα .

Let u = u1 denote the initial utility for the agent in the high state. The paths of promised utilities are

then described by φ0(t, u) and φ1(t, u). Define

V 1
k (u) = max

0≤t≤T (u)
u′≥φ1(t,u)

∫ t

0

e−(r+λ(1−α))s(R+ λ(1− α)V 0
k ) ds+ e−(r+λ(1−α))t

(
V 1
k−1(u′)− κ

)
(33)

to be the maximum payoff for the principal at initial utility u for the agent, where the principal maximizes

over stopping times and the post inspection utility u′ resulting from the terminal promised utility φ1(t, u)
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and a potential fine at the time of an inspection. Let u∗k be a maximizer of V 1
k and denote by t∗k the

associated first inspection date.

Claim 7. Let u∗k−1 be a maximizer of V 1
k−1(u) and suppose V 1

k−1
′
(u) < 0 for all u > u∗k−1. Then,

t∗k = T 0(u∗k) and φ1(t∗k, u
∗
k) > u∗k−1.

Proof. First we show that t∗k = T 0(u∗k). Suppose, to the contrary, that t∗k < T (u∗k). If φ1(t∗k, u
∗
k) > u∗k−1,

then because φ1 is strictly increasing in its second argument, we can find a lower initial utility u < u∗k such

that φ1(t∗k, u) < φ1(t∗k, u
∗
k). Since V 1

k−1
′
(ũ) < 0 for ũ > u∗k−1, we have V 1

k (u) > V 1
k (u∗k), contradicting

optimality of u∗k. If φ1(t∗k, u
∗
k) ≤ u∗k−1, then the optimal initial utility in step k − 1 is u′ = −u∗k−1.

We can thus find t > t∗k such that φ1(t, u∗k) < u∗k−1. Thus, the first inspection was delayed, while

the continuation utility for the agent remains constant, contradicting optimality of u∗k. Thus, we have

t∗k = T 0(u∗k). Now suppose φ1(T 0(u∗k), u∗k) < u∗k−1. Then we can find a new initial utility u > u∗k such

that φ1(T 0(u), u) = u∗k−1. Since T 0(·) is increasing we have T 0(u) > T 0(u∗k), contradicting the optimality

of u∗k.

In light of the result of Claim 7, there will be no loss in limiting our attention to the case t = T (u)

and u′ = φ1(t, u). The principal’s expected payoff for given utility u is therefore:

V 1
k (u) =

∫ T (u)

0

e−(r+λ(1−α))s(R+ λ(1− α)V 0
k ) ds+ e−(r+λ(1−α))T (u)(V 1

k−1(φ1(t, u))− κ).

Define β0 = λα
r+λα and β1 = λ(1−α)

r+λ(1−α) . Solving the integrals and performing a few simple rearrangements,

the principal’s payoff can be expressed more succinctly as

V 1
k (u) = a(u) + b(u)V 1

k−1(φ1(T (u), u)),

where

a(u) =
1− e−(r+λ(1−α))T (u)

1− β0β1 + β0β1e−(r+λ(1−α))T (u)

R

r + λ(1− α)
− e−(r+λ(1−α))T (u)

1− β0β1 + β0β1e−(r+λ(1−α))T (u)
κ,

b(u) =
e−(r+λ(1−α))T (u)

1− β0β1 + β0β1e−(r+λ(1−α))T (u)
,

Simple calculus reveals

a′(u) =

(
e(r+λ−αλ)T (u)(r + λ− αλ)2(r + αλ)(rκ(r + λ) +R(r + αλ))

)(
(1− α)αλe(r+λ−αλ)T (u)r(r + λ)

)2 T ′(u)

and

b′(u) = −e
(r+λ−αλ)T (u)r(r + λ)(r + λ− αλ)2(r + αλ)(

(1− α)αλ2 + e(r+λ−αλ)r(r + λ)
)2 T ′(u),

so that sign a′(u) = − sign b′(u) = sign T ′(u). From (31), it follows that

a′(u)

> 0 if u < u∗1

< 0 if u > u∗1
, b′(u)

< 0 if u < u∗1

> 0 if u > u∗1.

Step 0: Consider the case k = 0, so the principal cannot perform any interventions. The obedience

constraint is then necessarily violated (all penalties must be enforced independently of the true
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state) and thus no effort by the agent can be induced. Thus, the value function for the principal is

V̄0 =

∫ ∞
0

e−(r+λ(1−α))tλ(1− α)R dt =
λ(1− α)

r + λ(1− α)
R.

Step 1: Suppose the principal can inspect at most once, so that k = 1. Let t be the first inspection if

no transition occurs, u the initial utility for the agent. The expected payoff for the principal when

inspecting at time t is

V 1
1 (u) = a(u) + b(u)V̄0

The marginal utility at a given utility u is

V 1
1
′
(u) = a′(u) + b′(u)V̄0.

We have V 1
1
′
(u) < 0 for u > u∗1 > ū and V 1

1
′
(u) > 0 for u < u1

∗, thus u1
∗ maximizes V 1

1 .

Step 2: Suppose there are two inspections left to be performed. The principal’s payoff can be written as

V 1
2 (u) = a(u) + b(u)V 1

1 (φ1(T (u), u)).

When u > u∗1, then V 1
2 (u) < 0, and therefore u < u∗1. Because V 1

2 (u) is minimized when u lies

at the participation boundary, and continuous in between, there must be a maximum u∗2. The

marginal utility is

V 1
2
′
(u) = a′(u) + b′(u)V1(φ1(T (u), u)) + b(u)Duφ1(T (u), u))V 1

1
′
(φ1(T (u), u)).

Here, Duφ1(T (u), u)) is the total derivative of φ1(T (u), u)) with respect to u which can be shown

to be

Duφ1(T (u), u)) = erT (u)

(
1 + T ′(u)

(
c
(
eλT (u) − 1

) 1− α
α

r

λ
+ ru+ c

(
eλT (u) 1− α

α
+ 1

)))
> 0.

Thus, for u > u∗1(> ū):

V 1
2
′
(u) = a′(u) + b′(u)V1(φ1(T (u), u)) + b(u)Duφ1(T (u), u))V ′1(φ1(T (u), u))

< a′(u) + b′(u)V1(φ1(T (u), u))

< a′(u) + b′(u)V̄0 = V 1
1
′
(u)

In particular, this means u∗2 < u∗1.

Step k: Suppose there are k inspections available. Our induction hypothesis is that V 1
j has a maximum

at u∗j where u∗j < u∗j−1 for all j = 2, . . . , k − 1 and that V 1
k−1
′
(u) < V 1

k−2
′
(u) for u > u∗k−2. By the

same arguments as in Step 2, the principal’s payoff,

V 1
k (u) = a(u) + b(u)V 1

k (φ1(T (u), u)),
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has a maximum u∗k. The marginal payoff at u > u∗k−1 (> ū) is

V 1
k
′
(u) = a′(u) + b′(u)Vk−1(φ1(T (u), u)) + b(u)Duφ1(T (u), u))V ′k−1(φ1(T (u), u))

< a′(u) + b′(u)V 1
k−1(u) + b(u)Duφ1(T (u), u))V ′k−2(φ1(T (u), u))

< a′(u) + b′(u)V 1
k−2(u) + b(u)Duφ1(T (u), u))V ′k−2(φ1(T (u), u))

where the first line follows from our induction hypothesis. Therefore, u ≥ u∗k−1 implies V 1
k
′
(u) <

V 1
k−1
′
(u) < 0. The induction shows that u∗k < u∗k−1 for all k ≥ 0. It follows immediately from

the definition of ū that u∗k > ū for all k. Hence {u∗k} is a decreasing and bounded sequences, so

that by the monotone convergence theorem, the sequence converges to a limit û ≥ ū. Since {u∗k}
is convergent, it is a Cauchy sequence, so that

lim
k→∞

|u∗k − u∗k−1| = lim
k→∞

|u∗k − φ1(T (u∗k), u∗k)| = 0⇒ û = ū

by Claim 3.

B.2.2 No fines between inspections.

We now show that the mechanism described in the previous section remains optimal when we remove

Assumption A. To this end, we show that when performing the iteration over the number of available

inspections k, the principal cannot gain from imposing fines between inspections when k inspections are

left. Consider again Step k of the iteration in the previous section. By the same argument as before,

we have u1 − u0 = c
λα and the first time of inspection is at the first time t at which U0

t = −B. The

evolution of the paths of promised utilities are given by

dU1
t = rU1

t dt− λ(1− α)(U1
t − U0

t ) dt+ cdt+ dFt,

dU0
t = rU0

t dt− λα(U1
t − U0

t ) dt+ cdt+ dFt − dµt,

The evolution of the difference in utilities is

d(U1
t − U0

t ) = (r + λ)(u1 − u0) + dµt,

which implies that the utility paths diverge at least exponentially, and are independent of any fines and

increasing in threats. If the first inspection takes place at t, conditional on no transition before t, this

means that U0
t = −B and

U1
t = −B + e(r+λ)t

c

λα
+

∫ t

0

e(r+λ)s dµs

The last term has to be zero because otherwise we could find a pair of initial promised utilities with

û1 < u1 and set dµs = 0 for all s ∈ (0, t), and a time t′ > t such that the promised utilities at time t′

under the new initial conditions are as with the original pair at time t, thus increasing the principal’s

payoff. Therefore, at the first time of inspection,

U1
t = −B + e(r+λ)t

c

λα
.
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Given that U t1 is independent of any fines in step k, and there no fines in step k−1 onwards, we must have

U1
t = φ1(T (u∗k), u∗k). This means that the policy of the previous section with initial promised utilities

(u∗k, u
∗
k − c

λα ) remains optimal even when fines between inspections are available.

B.2.3 General mechanisms in the relaxed problem

Parts (1.)-(2.) demonstrate that the mechanism described in the theorem is an optimal Markovian

mechanism under the relaxing Assumption B. It remains to verify that no (non-Markovian) mechanism

can do better. Let V θt(U) denote the expected value for the principal in our mechanism that delivers

the agent with promised payoffs of U = (U0, U1). We show that the expected value in state θt from

any incentive-compatible mechanism that delivers the initial promised payoff U0 = (U0
0 , U

1
0 ) to the agent

cannot exceed V θt(U0). Since both the inspection cost and the set of feasible continuation utilities do

not depend on their values prior to inspection, we can apply Proposition 54.18 and Theorem 54.28 in

Davis (1993, pp. 235 & 242) to conclude that, Vk, the value function with no more than k inspections,

converges to value function V of the problem without bound on the number of inspections, and that V

is the unique bounded and continuous function that solves the quasi-variational inequality

UV θ(u)− rV θ(u) ≤ 0,

WV θ(u)− V θ(u) ≤ 0,(
UV θ(u)− rV θ(u)

) (
WV θ(u)− V θ(u)

)
= 0,

on the state space
{

(θ, u0, u1) : θ ∈ {0, 1}, (u0, u1) ∈ [−B, 0]2, u1 − u0 ≥ c
λα

}
. Here, U denotes the ex-

tended generator of the piecewise deterministic Markov process which is defined by the relationship20

EP0
[
V θt(Ut)

]
= V θ0(u) + EP0

[∫ t

0

UV θs(us) ds

]
in case no inspection occurs before t, and W is the expected value at the time of an inspection:

WV θ = max
u0,u1

V θ(u0, u1)− κ.

Consider an arbitrary incentive-compatible mechanism with inspection process {dN I
t }t and define the

expected value at time t by

Gt =

∫ t

0

e−rs
(
Rθs ds− κdN I

s

)
+ e−rtV θt(Ut).

For t = 0, we have G0 = V θ0(U0). For t > 0, we can represent Gt by the differential formula (see

Theorem 31.3 in Davis, 1993, p. 83) as

Es[Gt]−Gs =

∫ t

s

e−r(z−s)
(
UV θz (Uz)− rV θz (Uz)

)
dz + Es

[∫ t

s

e−r(z−s)
(
WV θz (Uz)− V θz (Uz)

)
dN I

z

]
.

By the variation inequality above, both integrals are negative so that the process (Gt)t ≥ 0 is a super-

martingale bounded by R
r+λ . This implies that E0 [Gt] ≤ G0 for any t ≥ 0. In particular, taking the

limit as t approaches infinity, we get E0

[∫∞
0
e−rs

(
θsR ds− κdN I

s

)]
= E0 [limt→∞Gt] ≤ G0 = V θ0(U0).

Hence, any incentive-compatible maximal-compliance mechanism leads to weakly higher inspection costs.

20See Davis, 1993, pp. 27-33.
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B.2.4 Optimality in the original problem

We now consider the original model, in which we remove Assumption A so that the honesty constraint

holds in both states. We show that during non-compliance, the honesty constraint does not bind, and

therefore, the solution of the relaxed problem is also a solution to our original problem. The proof is

constructive. In the optimal mechanism of the relaxed problem, the pair of promised utilities at the

outset and during non-compliance is (u0, u1) := (ū, ū − c
λα ). Since dU0

t ≤ 0, we have U0
t ≤ u0. Set

dFt = u0 − U0
t and dµt = u1 − U1

t + u0 − U0
t . Next, while θ = 0, set dFt = −ru0 + αλ(u1 − u0) and

dµt = c+ (r+ λ)(u1− u0). Substituting into the promise-keeping and truthtelling constraints, it follows

that dU it = 0 for each i = 0, 1 and dN I
t = 0 while θt = 0, which is identical to the solution in the relaxed

problem.

B.3 Proofs of comparative static results

Proof of Proposition 1. Define

Ψ(T ) ≡ (B − c/r) (1− e−rT )− c/(λα)eλT (erT − α) + c/(λα)(1− α),(34)

so that T ∗ = inf{T > 0 : Ψ(T ) = 0}. This exists and is unique whenever our feasibility assumption

B > c r+λrλα is satisfied (Ψ is increasing from 0 at T = 0 and crosses 0 from above exactly once). The

function Ψ is continuously differentiable in all parameters and in T on a neighbourhood of T ∗. By the

implicit function theorem we have

∂T ∗

∂x
= −Ψx

ΨT

∣∣∣∣
T=T∗

,

for all parameters x ∈ {B, c, α, λ}, where Ψx denotes the partial derivative of Ψ with respect to x. As

mentioned above, Ψ(T ) crosses 0 from above at T = T ∗ so that ΨT |T=T∗ < 0. Hence, for all parameters,

we have

sign

(
∂T ∗

∂x

)
= sign

(
Ψx|T=T∗

)
.

The first two items of Proposition 1 follow immediately as Ψ is increasing in B and decreasing in c

everywhere. Likewise for the third item, note that

Ψα =
c

λα2

(
e(r+λ)T − 1

)
> 0,

so that T ∗ is increasing in α. For the fourth item, describing the change of T ∗ in λ, consider Ψ in (34) as

λ ↘ cr
Brα−c , which is the lower bound on λ such that the feasibility assumption B > c(r+λ)

rλα is fulfilled.

Ψ = 0 is then equivalent to

(B − c

r
)(1− e−rT )−

(
B − c

rα
)
) (
eλT (erT − α)− (1− α)

)
= 0.

This can only be fulfilled at T = 0, as we have B > c
rα >

c
r and for all T > 0,

0 > −
(
eλT (erT − α)− (1− α)

)
>

1

α

(
eλT (erT − α)− (1− α)

)
.
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Hence, T ∗ is initially increasing in λ. Finally, consider Ψ in (34) to see that T ∗(λ)
λ→∞−→ 0. In particular,

lim
λ→∞

e(r+λ)T
∗(λ)

λ
= 0.

This implies that λT ∗(λ) is either finite or grows at lower than logarithmic rate as λ becomes arbitrarily

large. Thus, T ∗(λ) must go to 0.

Proof of Proposition 2. Let C0
EQ and C1

EQ denote the expected discounted inspection cost when

starting in state 0 or 1, respectively. For fixed inspection cycle length, T , they follow the following

nested equations

C0
EQ =

∫ ∞
0

e−(r+λα)tλαC1
EQ dt =

λα

r + λα
C1
EQ

and

C1
EQ =

∫ T

0

e−(r+λ(1−α))tλ(1− α)C0
EQ dt+ e−(r+λ(1−α))T

(
κ+ C1

EQ

)
=
(

1− e(r+λ(1−α))T
) λ(1− α)

r + λ(1− α)
C0
EQ + e−(r+λ(1−α))T

(
κ+ C1

EQ

)
Inserting C0

EQ and solving for C1
EQ gives

C1
EQ =

r + λα

r(r + λ)
· (r + λ(1− α))

e−(r+λ(1−α))T

1− e−(r+λ(1−α))T · κ,

the expression given in the main text before Proposition 2. The results on the first two items, considering

changes in B and c follow immediately from Proposition 1 as these parameters do not enter C1
EQ directly

and C1
EQ is decreasing in T ∗. For the third item, consider the total derivative of cost C1

EQ w.r.t. α:

d

dα
C1
EQ =

1

(e(r+λ(1−α))T∗ − 1)2r(r + λ)[
(2α− 1)λ2 + e(r+λ(1−α))T

∗ (
(T ∗λ(r + αλ)(r + λ(1− α))− (2α− 1)λ2

)
(35)

− ∂T ∗(α)

∂α
· (r + λ(1− α))2(r + αλ)

]
.

The change in inspection cost caused by varying α contains a cost-increasing direct effect on the environ-

ment contained in the first terms of the squared bracket and a cost-decreasing indirect effect through the

increase in T ∗. The first effect captures the change in relative probability of high reports as well as the

volatility of the state, both of which determine how often the deadline T ∗ is reached without previously

changing to state L. To see that this effect is always positive, verify that it is 0 at T = 0 and increasing

in T . We establish the second item of the result: there exists α > c(r+λ)
Brλ such that C1

EQ is decreasing

in α for all α < α. Note that as α ↘ c(r+λ)
Brλ , T ∗(α) ↘ 0. The squared bracket in (35) converges to

−∂T∗∂α |α↘ c(r+λ)
Brλ
·r(r+λ)2. ∂T∗

∂α is strictly positive for α > c(r+λ)
Brλ . By continuity, the total derivative must

be negative for all α smaller than some α > c(r+λ)
Brλ . Finally, we show that there exists ᾱ such that C1

EQ

is increasing in α for all α > ᾱ and that ᾱ < 1 whenever Br−c
cr is large enough. Consider the squared
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bracket in (35) as α↗ 1. This is equal to

lim
α↗1
−λ2

[
erT

∗(α) − 1
]

+

(
λT ∗(α)− r ∂T

∗

∂α

)
erT

∗(α).

From the condition Ψ|α=1 = 0 we get e(r+λ)T
∗(α) α→1−→ Br−c

cr λ. Further,

∂T ∗

∂α

∣∣∣∣
α↗1

= lim
α↗1

(
− λ(Br − c)(1− e−rT ) + cr(eλT − 1)

λα(Br − c)re−rT − (r + λ)cre(r+λ)T + λαcreλT

∣∣∣∣
T=T∗(α)

)

=
λ(Br − c)

(
1−

(
Br−c
cr λ

)− r
r+λ

)
+ cr

((
Br−c
cr λ

) λ
r+λ − 1

)
−λ(Br − c)r

(
Br−c
cr λ

)− r
r+λ + (r + λ)cr

(
Br−c
cr λ

)
− λcr

(
Br−c
cr λ

) λ
r+λ

=
λ (Br−c)

cr

((
Br−c
cr λ

) r
r+λ − 1

)
+
((

Br−c
cr λ

)
−
(
Br−c
cr λ

) r
r+λ

)
−λ (Br−c)

cr r + (r + λ)
(
Br−c
cr λ

) 2r+λ
r+λ − λ

(
Br−c
cr λ

)
=

(
Br−c
cr λ

) 2r+λ
r+λ −

(
Br−c
cr λ

) r
r+λ

(r + λ)

((
Br−c
cr λ

) 2r+λ
r+λ − (Br−c)

cr λ

) .
Inserting this derivative into (35) at α = 1 and defining χ = (Br−c)

cr λ > 1, we see that the deterministic

inspection cost is increasing in α if and only if

λ2 + χ

(
−λ2 +

λ

r + λ
ln (χ)− χ

2r+λ
r+λ − χ r

r+λ

χ
2r+λ
r+λ − χ

)
> 0.

As χ grows large (for example as B increases), the fraction in the bracket approaches 1, so the second

term grows arbitrarily large. Therefore, we have that for χ large enough, there exists ᾱ < 1 such that

the deterministic cost is increasing in α for all α > ᾱ. In the case of λ, the first result, that the cost

decreases initially in λ, is shown analogously to the corresponding result in the case of α. To see that

the cost becomes arbitrarily large in the limit, recall from the previous proof that λT ∗(λ) grows to ∞
at lower than logarithmic rate. The total cost in the limit is given by

lim
λ→∞

C1
EQ =

(1− α)α

r
lim
λ→∞

λ

e(1−α)λT∗(λ)
=∞.

B.4 Proofs for Section 4

Proof of Theorem 2. The total expected inspection costs from the random mechanism with inspection

rate m∗ is m∗ r+λαr(r+λ)κ, when starting with θ0 = 1. To prove that this cost is lower than C1
EQ, the cost

from the predictable inspections schedule, we show that

1

m∗
− e(r+λ(1−α))T (c) − 1

r + λ(1− α)
≥ 0.(36)
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1. For c = c̄ = Brλα
r+λ , we have T (c̄) = 0 so that the inequality in (36) holds with equality. 2. Show that

the LHS of (36) is decreasing in c and therefore positive for all c < c̄.

1

m∗
− e(r+λ(1−α))T (c) − 1

r + λ(1− α)
=

Bλα

c(r + λ)
− 1

r
− e(r+λ(1−α))T (c)

r + λ(1− α)
+

1

r + λ(1− α)
.

This is decreasing in c if

− Bλα

c2(r + λ)
− ∂T (c)

∂c
e(r+λ(1−α))T (c) < 0.

By the implicit characterization of T (c) in (3), we get

∂T (c)

∂c
=

B
c2 (1− e−rT )

Br−c
c e−rT − r+λ

λα e
(r+λ)T + eλT

.

Hence, we want to show that

B
c2 (1− e−rT )

Br−c
c e−rT − r+λ

λα e
(r+λ)T + eλT

e(r+λ(1−α))T > − Bλα

c2(r + λ)

⇔ (r + λ)(erT − 1)e−λαT < −Br − c
c

λαe−(r+λ)T + (r + λ)erT − λα

⇔ Brλα

c
− λα+ (r + λ)(erT − 1)e(r+λ(1−α))T − (r + λ)e(2r+λ)T + λαe(r+λ)T < 0.

From condition (3), we have that

Brλα

c
− λα =

r

1− e−rT
[
(e(r+λ)T − 1)− α((eλT − 1))

]
.

Inserting this identity into the above inequality yields:

r

1− e−rT
[
(e(r+λ)T − 1)− α((eλT − 1))

]
+(r+λ)(erT−1)e(r+λ(1−α))T−(r+λ)e(2r+λ)T+λαe(r+λ)T < 0

⇔ r
[
(e(2r+λ)T − erT )− α((e(r+λ)T − erT ))

]
+ (r + λ)(erT − 1)2e(r+λ(1−α))T

− (r + λ)e(2r+λ)T (erT − 1) + λαe(r+λ)T (erT − 1) < 0

⇔ r(e(r+λ)T − 1)− rα(eλT − 1) + λαeλT (erT − 1) + (r + λ)eλ(1−α)T (e2rT

− 2erT + 1)− (r + λ)e(r+λ)T (erT − 1) < 0

The factor −r(eλT − 1) + λeλT (erT − 1), multiplied by α is positive so that the LHS is smaller than

r(e(r+λ)T−1)−r1(eλT−1) + λ1eλT (erT−1) + (r + λ)eλ(1−α)T (e2rT−2erT+1)− (r + λ)e(r+λ)T (erT−1)

= (r + λ)
(
−eλT + eλ(1−α)T (e2rT − 2erT + 1)− e(r+λ)T (erT − 1) + e(r+λ)T

)
< (r + λ)

(
−eλT + e(2r+λ)T − 2e(r+λ)T + eλT − e(2r+λ)T + e(r+λ)T + e(r+λ)T

)
= 0

Hence, the derivative of the LHS in (36) in c is negative and the term itself is positive for all c < c̄.
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