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Abstract

A central problem in vertical relationships is to minimize the mismatch between
supply and demand. This paper studies a problem of contracting between a manu-
facturer and a retailer who privately observes the retail demand materialized after
the contracting stage. Cash payments are bounded above by the retailer’s revenue,
while the return of unsold inventories is bounded above by the order quantity net of
the actual quantity sold. While the majority of the papers in the literature takes the
contractual forms as given and investigates the consequences that these contracts
may lead to in various contexts, without assuming any functional form of contracts,
we show that the optimal contract can be implemented by a buy-back contract: the
manufacturer requests an upfront payment from the retailer and buys back the un-
sold inventories at the retailer’s salvage value. The optimality of buy-back contracts
is robust to several scenarios including competition between retailers.
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1 Introduction

A central problem in vertical contracting is to minimize the mismatch between supply
and demand. Manufacturers, in many situations, have to rely on retailers to sell their
products in the market. Due to unavoidable long lead times, production by manufacturers
must occur before retail demand is realized, and supply-demand mismatch may arise.
When demand is large, the retailer can only sell up to the quantity he has received,
and the excess demand is lost. When demand falls short, the unsold inventory may be
salvaged by either the retailer or the manufacturer at a discount. The vertical contracting
relationship between the manufacturer and the retailer determines the retailer’s order
quantity, monetary transfers, return policies, and other elements that coordinate the
supply chain.

In practice, a number of contracts are used, including buy-back, franchise, revenue
sharing, wholesale price, fixed transfer contracts, etc. There is large literature investi-
gating these contracts and their consequences on supply chain performance in various
contexts (see Cachon (2003) for an extensive discussion). The conceptual question what
is the optimal contract, however, has received less attention. As Cachon (2003) puts it
succinctly: “practice has been used as a motivation for theoretical work, but theoretical
work has not found its way into practice”.

In this paper, we present a model in which a manufacturer sells its products through a
retailer who privately observes the retail demand. We argue that production usually pre-
cedes sales, thus the two parties have to write down the terms of the contract, including
the quantity of products to be delivered to the retailer before any demand uncertainty is
resolved. In fact, if we think of the retailer as a grocery, it must determine the storage
level of each product it sells before consumers arrive. This assumption is also standard
in the retail contracting literature (e.g., Deneckere, Marvel, and Peck, 1996, 1997; Mon-
tez, 2015). After the retail demand is materialized, the retailer makes a report of the
demand to the manufacturer, and transfers are executed accordingly. A contract between
the manufacturer and the retailer specifies the quantity to be produced and delivered,
the retailer’s cash payments to the manufacturer after sales, and the allocation of un-
sold inventories. The last two terms are contingent on the retailer’s report. Information
asymmetry essentially implies that the contract must be incentive-compatible: The re-
tailer should find it optimal to truthfully report the retail demand after the demand is
realized.

Moreover, the retailer is subject to limited liability, implying that the retailer’s cash
payments are bounded above by the sales revenue. This constraint is considered in the
literature studying contracting problems in industrial organization (e.g., Brander and
Lewis, 1986) and captures the fundamental feature of small and medium enterprises:
They are typically resource-constrained and thus the only collateral that can be pledged is
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the business value they have created.1 Also, the retailer’s returns cannot exceed the total
amount of unsold inventories, which imposes the feasibility constraint on the contract.
It is further assumed that returning unsold inventories is inefficient.2 This assumption,
together with the retailer’s limited liability, makes the return of unsold inventories a
screening device. Consistent with our observation on small groceries, we also postulate
that the manufacturer has full bargaining power.

Without assuming any functional form of contracts, very generally, we find that the
optimal contract takes a rather simple form: The retailer transfers a fixed amount of
cash to the manufacturer when the realized demand is high, and returns part of unsold
inventories to the manufacturer when the realized demand is too low for the retailer to pay
the fixed amount in full. The rationale for this result is the following: Facing the adverse
selection problem, the manufacturer wants to elicit the retailer’s private information
on the retail demand, so the return of unsold inventory is used as a punishment when
the reported demand is low. However, the manufacturer, who is assumed to have full
bargaining power, also aims to minimize unsold inventories returned by the retailer,
since it leads to efficiency loss. Therefore, return policies will be offered only when the
reported demand is sufficiently low. From another perspective, the optimal contract can
be implemented by the familiar buy-back contract, in which the manufacturer requests
the retailer to make a sales-independent payment, and buys back unsold inventories
at the retailer’s salvage value. Although we derive buy-back contracts from a state-
contingent contractual space, it does not imply that in reality people will actually solve a
complex contracting problem. Those who implement buy-back contracts may not know
that such contracts are optimal. This “as if” approach are widely used in economic
theories. Therefore, our paper can be viewed as a micro-foundation of the commonly
used buy-back contracts in the real world.

We further show that the quantity determined in the optimal contract is lower than
the first-best level when the cost function is assumed to be linear. That is, supplies are
rationed by the manufacturer in the presence of information asymmetry. Intuitively, in
an economy with complete information, unsold inventories should best be kept by the
retailer. Under information asymmetry, however, return polices serve as an incentive
scheme, thus part of unsold inventories should be returned to the manufacturer. The
manufacturer’s marginal revenue from production is thereby less than that in the complete
information economy.

We then extend our model to allow for competition between retailers. When an up-
1Limited liability is sometimes used in lieu of risk-aversion. The latter assumption is also in line with

our focus on small and medium retailers.
2In part of the literature, the salvage value for both parties is assumed to be zero (e.g., Marvel and

Peck, 1995; Arya and Mittendorf, 2004). We argue that this is less realistic in situations with many non-
perishable goods, such as clothes and electronic devices. Even for perishable goods, returning unsold
inventory to the manufacturer may involve certain transportation costs, leading the retailer to be strictly
more efficient in keeping unsold inventories.
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stream manufacturer sells her products through several downstream retailers, the manu-
facturer may want to impose retail price control to maximize her total profits. In presence
of information asymmetry, however, it is usually difficult for the manufacturer to observe
the retail price or detect retailers’ secret discounts, such as free add-ons, coupons or cash-
back. Therefore, contracts with price maintenance conditions may not be enforceable in
vertical relationships. We study whether the manufacturer can use retail contracts that
only specifies cash payments and return polices to perform de facto price control. In this
environment, we show that buy-back contracts are still optimal. Retail prices are equal to
consumers’ valuation of the product, implying zero consumers surplus. The total supply
is increased compared to a monopoly case, but it is still less than the first-best level.
Put differently, competition between retailers may push the market supply towards the
efficient level, but is not effective in cutting down the retail price.

Our paper contributes to the growing literature on vertical relationships with asym-
metric information and uncertain demand. The vast majority of this literature focuses
on vertical restraints (e.g., Winter, 1993; Deneckere, Marvel, and Peck, 1996, 1997; Dana
and Spier, 2001; Harstad and Mideksa, 2020), i.e., how (and why) the manufacturer con-
trols the retail price, order quantity, or competition between retailers. In these papers,
retail contracts are usually given by two-part tariffs, or revenue-sharing schemes, plus
some specific restraints, such as the Resale Price Maintenance. However, a fundamental
question of whether theses contractual forms are indeed optimal remains a problem. A re-
lated stream of literature studies the newsvendor problem (e.g., Pasternack, 1985; Marvel
and Peck, 1995; Krishnan and Winter, 2007; Montez, 2015), in which the manufacturer
proposes a contract to induce the retailer choosing the optimal price and inventory. How-
ever, in these models the retailer’s payments are independent of the realized demand,
so the adverse selection problem is assumed away. In a related literature (e.g., Rey and
Tirole, 1986; Blair and Lewis, 1994), optimal retail contracts are derived under demand
uncertainty, but they do not consider the prescribed newsvendor problem. Wang, Gur-
nani, and Subramanian (2020) examine the signaling role of buy-back contracts, while
they take the buy-back form as exogenously given. The paper perhaps closest to the
one presented here is by Arya and Mittendorf (2004), in which the manufacturer uses a
return allowance to elicit the retailer’s private information on demand. In their model the
return policy is characterized by the price offered by the manufacturer, so the retailer’s
choice is all-or-nothing: Full return if the return allowance is higher than the retail price,
zero return otherwise. In the present paper, the contract determines the quantity to be
returned, so partial return polices are allowed.

Technically, our model is an ex post screening problem with hidden characteristics.
When the type set is a continuum, as in our model, the standard methodology is to use
control theory. This approach is pioneered by Guesnerie and Laffont (1984), and further
developed by Hellwig (2010) who proposes a unified approach that only requires the
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compactness of the type set, and allows for mass points. However, the control-theoretic
approach cannot be applied in the present paper. In our model, each type of the retailer’s
set of deviation is bounded by the limited liability and the feasibility constraint, and
thus depends on the endogenous contract. Therefore, the retailer’s incentive constraint
cannot be simplified into a local differential equation. This feature is similar to the
financial contracting literature by Townsend (1979) and Gale and Hellwig (1985), but
in their settings there is no feasibility constraint, which substantially complicates the
problem in our retail contracting context. Relatedly, Gui, von Thadden, and Zhao (2019)
provide a detailed discussion on how the presence of limited liability affects the analysis
of incentive constraint in the financial contracting literature. In particular, overlooking
the role of limited liability in specifying the incentive constraint may lead to an over-
simplified analysis and sub-optimal contracts. This paper also shows that relaxing the
limited liability constraint ex-post may be harmful to firms.

Our paper is part of a more general approach that tries to provide the foundation
of observed economics or financial institutions as outcomes of optimal contracting (see,
e.g., Nöldeke and Schmidt (1995) in the context of buyer-seller relationships, Aghion
and Tirole (1997) in a model of hierarchical authority, or Schmidt (2003) for venture
capital arrangements). Our paper follows a similar vein to justify the buy-back contract
in the retail contract setting without imposing any functional form assumptions on the
contract space. Some researchers have also demonstrated, in various contexts, that simple
practical contracts seem to perform well even if they are known to be sub-optimal (e.g.,
Bower, 1993; Rogerson, 2003; Chu and Sappington, 2007). Unlike these papers, we show
that the popular buy-back contract in practice may indeed be the optimal contract form.

The rest of this paper is organized as follows. Section 2 introduces the model setup.
Section 3 proves the optimality of buy-back contracts and solves for the optimal order
quantity. Section 4 extends our benchmark model to study competitive retailers. Section
5 concludes and discusses some possible extensions. Most of the proofs are relegated to
the Appendix.

2 Model

Consider a manufacturer (she) who sells its products through a retailer (he) to meet
the retail demand. The retail price and demand are denoted by p and ω, respectively.
Assume both contracting parties take p as exogenously given in this section. However, ω is
materialized after the manufacturer determines its production quantity q. In other words,
production must take place prior to the realization of demand, hence a supply-demand
mismatch may arise.

The retailer observes ω freely because of his direct contact with consumers. Nonethe-
less, the manufacturer can only form priors about the distribution of ω, which we denote
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by F (ω). Assume F (ω) is defined on a bounded interval [0, ω̄], and admits a continu-
ously differentiable density function f(ω), with 0 < f(ω) < +∞ for all ω. Therefore, the
manufacturer has to rely on the retailer’s report to execute any transfer between them.
By applying the revelation principle, it is without loss to focus on direct mechanisms in
which the retailer simply reports his demand (or “type”) ω̂ and the transfer is executed
correspondingly.

After observing ω, the retailer determines the quantity of products sold to the market,
which is indexed by s. When there is supply shortage, i.e., q < ω, the retailer can only
sell up to the quantity q, and the excess demand is lost. When the demand falls short,
i.e., q > ω, the retailer can sell up to ω. In what follows, we will use ω+ = min{ω, q} to
denote the maximum quantity that the retailer can possibly sell. Thus, 0 ≤ s ≤ ω+. s is
also unobservable to the manufacturer.

Moreover, the retailer is able to salvage unsold inventories at a constant salvage value
vr per unit. If instead, the manufacturer possesses unsold inventories, her per unit salvage
value is vm. As discussed in Section 1, we assume that the retailer’s salvage value is higher
than the manufacturer’s, i.e., vm < vr < p. Thus, it is more efficient for the retailer to
keep unsold inventories.

The manufacturer offers the retailer a contract Γ = (q, T, R) that specifies three terms:
(1) the quantity q delivered to the retailer; (2) the cash transfer from the retailer to the
manufacturer, T (ω̂), after selling her products on the market, where ω̂ is the demand
reported by the retailer; and (3) the return shipment of unsold inventory, R(ω̂), again as
a function of ω̂.

This contractual form captures many different types of retail contracts in practice.

Example 1 (Wholesale price). In a wholesale price contract, the manufacturer
charges the retailer a constant wholesale price pw per unit purchased. The corresponding
transfers and returns are, respectively,

T (ω) = pwq,

R(ω) = 0.

Example 2 (Buy-back). In a buy-back contract, the manufacturer charges the whole-
sale price and pays back the retailer b for each unsold unit. Therefore,

T (ω) = pwq − bR(ω),

R(ω) = q − s.

It also requires b < pw since the retailer should not profit from left over inventory.
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Example 3 (Revenue sharing). In a revenue sharing contract, in addition to the
wholesale price, the manufacturer also obtains a percentage of the retailer’s revenue. In
this case

T (ω) = pwq + φps,

R(ω) = 0,

where φ is the manufacturer’s share of the retailer’s revenue.

All these contracts condition ex-post transfers and actions on the realized demand. If
the demand is commonly observable, and the retailer faces no limited liability, all these
contracts are enforceable. However, the retail demand can hardly be observed by the
manufacturer, which corresponds to our assumption that ω is the retailer’s private infor-
mation. Therefore it is usually difficult to conduct such direct conditioning in practice.

We assume both contracting parties are risk-neutral. Given a contract Γ, the realized
demand ω, the retailer’s sales decision s and his report of the retail demand ω̂, his ex-post
payoff is

ur(Γ, ω, ω̂, s) = ps− T (ω̂) + vr[q − s−R(ω̂)],

where T (ω̂) and R(ω̂) are the actual cash transfer and return shipment based on the
retailer’s report ω̂, ps is the gross revenue from the realized sales, vr[q − s − R(ω̂)]

corresponds to the salvage value from the retailer’s inventory on hand. Note that ur
increases with s, so the retailer will optimally choose s = ω+.

Accordingly, the manufacturer’s payoff is

um(Γ, ω̂) = −c(q) + T (ω̂) + vmR(ω̂),

where c(q) is her cost of producing q units of good.
The social welfare W (q) is given by

W (q) = um(Γ, ω̂) + ur(Γ, ω, ω̂, s)

= vrq + (p− vr)ω+ − (vr − vs)R(ω̂)− c(q),

which is decreasing in R(ω̂) if q is predetermined.
The contracting problem becomes interesting because of the several restrictions faced

by the retailer. First, the retailer cannot return more than the amount of unsold inventory
he has and cannot re-order after strong demand. This implies the following feasibility
constraint:

0 ≤ R(ω) ≤ q − ω+. (FC)
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Second, the retailer cannot pay the manufacturer more than the amount of cash he
has after the selling season. This implies the following limited liability (or liquidity,
affordability) constraint:

T (ω) ≤ pω+. (LL)

We do not consider the salvage value of unsold inventory on the right-hand side of (LL)
because in practice liquidating leftover inventory typically takes time. The insights of
our analysis will not be truly affected even if we account for the value of unsold inventory
when specifying (LL).

In the agency literature, (LL) is standard and widely used as an alternative to the
assumption of risk-aversion. It can be interpreted as an extreme form of risk aversion,
since it restricts the contract from reacting too strongly to demand fluctuations. In
practice, it arises for various reasons such as the retailer’s inability to raise money over
and above what he has realized from sales, his option to quit the relationship ex-post, or
legislation banning exploitative contracts.

Again from the revelation principle, contracts must be able to ensure that the re-
tailer makes a truthful report of ω. This leads to the following incentive-compatibility
constraint:

ur(Γ, ω, ω, ω
+) ≥ ur(Γ, ω, ω̂, s), for any ω, ω̂ and s such that

0 ≤ s ≤ ω+, 0 ≤ R(ω̂) ≤ q − s and T (ω̂) ≤ ps.
(IC)

Note that as the type-ω retailer mis-reports to be type ω̂, the transfer and the return
shipment change accordingly. We only require each type of retailer has no incentive to
choose the contract designed for other types when his wealth, ps, and unsold inventory,
q− s, can afford. The retailer may also sell less than ω+ to fulfill the requirements for his
deviation. In the presence of (FC) and (LL), our (IC) turns out to be type-dependent; the
choice set for each type depends on the contract, which is endogenous. Incorporating (FC)
and (LL) into (IC) makes it difficult for us to simplify the global incentive constraint into
a local first-order condition, and apply the well-established control-theoretic approach to
solve for the optimal contract, as in the mainstream literature of mechanism design with
hidden types.3 We will give a detailed discussion on how we circumvent this problem in
Section 3.

Finally, the retailer has a certain level of reservation utility as his outside option, which
is denoted by ur. Since the contract is offered by the manufacturer, the retailer’s expected
payoff from the contract must exceed ur. This gives rise to the retailer’s individual-
rationality constraint:

Eωur(Γ, ω, ω, ω
+) ≥ ur. (IRr)

3See the vast literature starting from Guesnerie and Laffont (1984).
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Similarly, the manufacturer’s individual-rationality constraint is given by:

Eωum(Γ, ω, ω, ω+) ≥ 0. (IRm)

It means that the manufacturer’s expected profit from the contract should be able to
cover her production cost.

Hence a full statement of the contracting problem is

max
Γ

Eωum(Γ, ω, ω, ω+),

subject to (FC), (LL), (IC), (IRr), (IRm).

We denote this problem by (P), and say that Γ is optimal if it solves (P).

3 Analysis

In this section, we first characterize the optimal contract taking q as given, then calculate
the manufacturer’s expected payoff as a function of q, and finally derive the optimal
quantity. For this purpose, we will sometimes write the contract as a pair (T,R), and write
two parties’ utility functions simply as Eωur(T,R) and Eωum(T,R), correspondingly.
Also, we ignore (IRm) at the moment, and will check whether it is satisfied for the
optimal contract later on. Our analysis is restricted to q ≤ ω̄.

Besides, it is convenient for us to say a contract (T,R) is admissible if it satisfies (FC),
(LL), and (IC). For any given q, we also say an admissible contract (T,R) is q-optimal if
it maximizes Eωum(T,R) subject to (IRr). Moreover, if two admissible contracts differ
only in a zero-measure set, we say they are equivalent since both contracting parties are
indifferent between them.

Finally, let

Φ(ω) = T (ω) + vrR(ω),

which represents the retailer’s total payout when he reports ω.
The rest of our analysis will be centered around a special form of contracts. It is

defined piecewisely, and resembles a buy-back contract on each of its pieces.

Definition 1. (T,R) is a piecewise buy-back contract (PBC) if there exists a sequence
{(ωi, ti)}i=0,1,...,n, where n ∈ N+, such that:

(a) 0 = ω0 < ω1 < · · · < ωn = q, t1 < t2 < · · · < tn, and ti ≤ pωi + vr(q − ωi);
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(b) For i = 1, ω ≤ ω1, and any i = 2, 3, . . . , n, ω ∈ (ωi−1, ωi],
T (ω) = pω, R(ω) = q − ω, if ω ≤ ti−vrq

p−vr ,

T (ω) = pω, R(ω) = ti−pω
vr

, if ti−vrq
p−vr < ω ≤ ti−vr(q−ωi)

p
,

T (ω) = ti − vr(q − ωi), R(ω) = q − ωi, if ω > ti−vr(q−ωi)
p

;

For ω > q, T (ω) = T (q), R(ω) = R(q).

Depending on the value of ti, a PBC can have three different shapes on different
intervals, which are depicted in Figure 1.

In each of the subfigures of Figure 1, the upward sloping dashed line represents (LL),
and the downward sloping dashed line represents (FC). The shape of a PBC on (ωi−1, ωi]

is determined by ti, ωi−1 and ωi. In particular:

• When ti < pωi−1 + vr(q − ωi), the contract exhibits Shape I;

• When pωi−1 + vr(q − ωi) ≤ ti < pωi + vr(q − ωi), the contract exhibits Shape II;

• When pωi + vr(q − ωi) ≤ ti, the contract exhibits Shape III.

Although distinct at first glance, the three shapes share a common feature that has a
natural economic interpretation: The retailer is obligated to repay ti to the manufacturer
when ω ∈ (ωi−1, ωi] is realized, unless ti exceeds his total wealth. Moreover, cash has
priority in payments, but a minimum q − ωi units of unsold inventory must be returned
irrespective of ti.

There are several important properties of a PBC, which can be verified immediately
by our definition: For any ω ∈ (ωi−1, ωi],

• when ω ≤ ti−vrq
p−vr , both (LL) and (FC) bind, Φ(ω) = pω + vr(q − ω);

• when ti−vrq
p−vr < ω ≤ ti−vr(q−ωi)

p
,, only (LL) binds, Φ(ω) = ti;

• when ω > ti−vr(q−ωi)
p

, both T (ω) and R(ω) are constant, Φ(ω) = ti.

We then utilize these properties to provide conditions under which a PBC is admis-
sible.

Proposition 1. A PBC is admissible if and only if ur(T (ω), R(ω)) is nondecreasing in
ω.

The condition stated in Proposition 1 serves to prevent the retailer from under–selling,
i.e., it gives the retailer incentive to choose s = ω+. If he deviates to selling a quantity ω̂
less than ω+, his utility would be weakly less according to the monotonicity of ur.
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Shape I

0 ω

T

ω̄ωi−1 ωi 0 ω

R

q

q ω̄ωi−1 ωi

Shape II

0 ω

T

ω̄ωi−1 ωi 0 ω

R

q

q ω̄ωi−1 ωi

Shape III

0 ω

T

ω̄ωi−1 ωi 0 ω

R

q

q ω̄ωi−1 ωi

Figure 1: Three possible shapes of a PBC
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3.1 Optimal contracts given the order quantity

When the type set is a continuum, as in our model, the standard technique for optimiza-
tion problems with incentive constraint is control theory (e.g., Hellwig, 2010). The basic
idea of this technique is to replace the global incentive constraint with local incentive
constraints, thus prove the absolute continuity of the agent’s indirect utility function.
Hence the agent’s indirect utility can be treated as the state variable, and an optimal
solution can be obtained using the classical maximum principle.

However, the control-theoretic approach cannot be applied in the present paper. Since
the absolute continuity of the agent’s indirect utility function is crucial if one attempts to
rewrite the contracting problem into an optimal control problem, it essentially requires
that the global incentive constraint be substituted by local ones. When the agent is able
to mimic any other type irrespective of his own type or the contract, the substitution of
incentive constraints, as shown in the adverse selection literature, is valid. Nevertheless,
in our model, (IC) interacts with (FC) and (LL), implying that the set of states that
the retailer is able to misreport depends on the realized demand and the endogenous
contract. Therefore, it is possible that the retailer is only able to mimic a subset of types,
or even cannot mimic other type.

As an example, if (IC) is specified as

ur(Γ, ω, ω, ω
+) ≥ ur(Γ, ω, ω̂, s), for any ω, ω̂ and s,

then one can use local incentive constraints to replace (IC); ur is thus absolutely continu-
ous.4 For the (IC) presented in Section 2, if (IC) binds at ω, the retailer with any ω̂ < ω

cannot misreport ω because he cannot afford the cash payment specified in the contract
when ω is reported. Hence, the retailer’s indirect utility function may have a jump at ω.
The possible discontinuities in contracts prevent us from using control theory.

Instead, we apply a step-by-step constructive method to show that any admissible
contract is either weakly dominated or approximated by a PBC. Such methodology is
standard in the early literature of the Costly State Verification model (e.g., Gale and
Hellwig, 1985). We begin by proving that, for any admissible contract, we can find
countably many disjoint intervals, on which the retailer’s total payout is nonincreasing.
Lemma 1 is a prerequisite result for such a conjecture.

Lemma 1. If (T,R) is admissible, then for any ω ≤ q, Φ(ω) is nonincreasing on (ω, q−
R(ω)) unless R(ω) = q − ω.

4Actually, assuming that (IC) holds for any ω and ω̂ that lie in an open ball of ω is sufficient for
the substitution to be valid. See Hellwig (2000) and Hellwig (2001) for examples. In these papers, the
limited liability constraint never binds due to the agent’s risk-aversion, so the control-theoretic approach
can still be applied. However, in our model even this weaker condition cannot be ensured.
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The proof of Lemma 1 is basically an application of (IC). Based on Lemma 1, we let

S(T,R) =
⋃

ω∈[0,q]

(ω, q −R(ω)), (1)

which represents the union of all the open intervals (ω, q−R(ω)) generated from ω. 5 By
definition, S(T,R) is an open set, so there exist countably many nonempty disjoint open
intervals, denoted by {(aj, bj) : j ∈ J(T,R)}, where J(T,R) is a countable index set, such
that

S(T,R) =
⋃

j∈J(T,R)

(aj, bj),

and for any j, j′ ∈ J(T,R), j 6= j′, we have

(aj, bj) ∩ (aj′ , bj′) = ∅.

In other words, {(aj, bj) : j ∈ J(T,R)} is a partition of S(T,R). This partition is unique, so
J(T,R) is uniquely determined by (T,R). Since Φ(ω) is nonincreasing on (ω, q −R(ω)), it
must also be nonincreasing on any of these open intervals (aj, bj). Moreover, our definition
implies that for any j and ω ∈ (aj, bj), R(ω) ≥ q − bj. This property is similar to that
of a PBC, and thus plays a key role when we conjecture a PBC in the proof of Lemma 2
and Lemma 3.

Note that the partition of S(T,R) can be either finite or countably infinite, so one has
either |J(T,R)| < +∞ or |J(T,R)| = +∞, correspondingly. We will first discuss the case
when |J(T,R)| is finite. In this case any admissible contract is weakly dominated by a
PBC.

Lemma 2. If (T,R) is admissible, and |J(T,R)| < +∞, then there exists a PBC, (T̂ , R̂),
such that:

(a) Eωum(T̂ , R̂) ≥ Eωum(T,R);

(b) Eωur(T̂ , R̂) = Eωur(T,R).

Moreover, the inequality in (a) is strict unless (T̂ , R̂) is a PBC.

The proof of Lemma 2 involves several steps. We first transform the contract on any
(aj, bj) ⊆ S(T,R) so that it exhibits a buy-back structure, with the retailer’s expected total
payout conditional on (aj, bj) unchanged. This transformation makes the manufacturer
better off because the buy-back structure increases the retailer’s cash payments given
that Φ(ω) is nonincreasing on (aj, bj). Then the same transformation is performed on
any interval that is not a subset of S(T,R). Since (FC) binds at any state that belongs to

5S may be empty, but it will not affect the conjecture we make in Lemma 2 and Lemma 3.
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the interior of [0, q]/S(T,R), the transformation will never make the manufacturer worse
off as long as the retailer’s expected payoff is unchanged. After these two steps and some
other small adjustments, we will finally get a PBC that outperforms the original contract.

Lemma 3. If (T,R) is admissible, and |J(T,R)| = +∞, then for any ε > 0, there exists a
PBC, (T̂ , R̂), such that:

(a) Eωum(T̂ , R̂) > Eωum(T,R)− ε;

(b) Eωur(T̂ , R̂) = Eωur(T,R).

When the partition of S(T,R) is infinite, we cannot expect the intervals in {(aj, bj) :

j ∈ J(T,R)} are well-ordered, so the conjecture in the proof of Lemma 2 may not be
applicable. To circumvent this difficulty, we choose an arbitrarily small δ > 0, and treat
all the intervals in the partition of S(T,R) whose lengths are smaller than δ as if they have
a binding (FC). Therefore, there will be only finitely many intervals left in the partition
of S(T,R), thus we can conjecture a PBC in the same way as shown in the proof of Lemma
2.

Clearly, this conjecture makes the retailer strictly worse off, because the return of
unsold inventory is raised on some intervals to make (FC) bind. The manufacturer
is strictly better off, because the retailer pays strictly more than the original contract.
However, the retailer’s utility loss is bounded above by an increasing function of δ. Hence
for any given ε > 0, we can always find a δ so that the retailer’s utility loss from the newly
constructed PBC is smaller than ε. Finally, we compensate his utility loss by reducing t1
in the new PBC. Lemma 3 is thereby proved.

Proposition 2 directly comes from Lemmas 2 and 3, so we state it without any separate
proof.

Proposition 2. If (T,R) is admissible, then for any ε > 0, there exists a PBC, (T̂ , R̂),
such that:

(a) Eωum(T̂ , R̂) > Eωum(T,R)− ε; i

(b) Eωur(T̂ , R̂) = Eωur(T,R).

According to Proposition 2, any admissible contract can be either weakly dominated,
or approximated by a sequence of PBCs. As a consequence, if there exists a PBC that
maximizes Eωum(T,R) subject to (IRr) and (IRm) among all the PBCs, it will outperform
all the admissible contracts. If such PBC is admissible, then it is an optimal contract to
the manufacturer’s problem. Proposition 3 formally confirms the result.

Proposition 3. If, among all the PBCs, (T,R) is admissible and maximizes Eωum(T,R)

subject to (IRr), then it is q-optimal.
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Our next step is to find the optimal PBC and see whether it is indeed admissible.
Note that, given a PBC, both contracting parties’ expected payoffs are pinned down
by {ωi, ti : i = 0, 1, . . . , n}. Thus the standard technique for constrained optimization
problems can be applied.

Let L be the Lagrangian of the manufacturer’s optimization problem, and λ be the
Lagrangian multiplier of (IRr). If (T,R) maximizes Eωum(T,R) subject to (IRr) and
(IRm), {ωi, ti : i = 0, 1, . . . , n} should maximize

L = Eωum(T,R) + λ[Eωur(T,R)− ur],

subject to (IRr) and (IRm), as well as several boundary constraints:

0 = ω0 ≤ ω1 ≤ · · · ≤ ωn = q, (2)

t1 ≤ t2 ≤ · · · ≤ tn, (3)

ti ≤ pωi + vr(q − ωi) for any i = 1, 2, . . . , n, (4)

and the complementary slackness constraint:

λ ≥ 0, λ[Eωur(T,R)− ur] = 0. (5)

Here we use weak inequalities instead of strict ones in (2), (3), and (4), because we want
to allow for the possibility that the optimal PBC has less than n pieces. This happens
when some ωi and ωi+1 coincide, or ti = pωi + vr(q − ωi) for some i.

In fact, the objective function L can be expressed as some constant plus L̂, where

L̂ =
n∑
i=1

∫ ωi

ωi−1

[T (ω) + vmR(ω)]dF (ω) +

∫ ω̄

q

[T (ω) + vmR(ω)]dF (ω)

− λ{
n∑
i=1

∫ ωi

ωi−1

[T (ω) + vrR(ω)]dF (ω) +

∫ ω̄

q

[T (ω) + vrR(ω)]dF (ω)}.

By applying first-order necessary conditions, we characterize the optimal PBC, and
show that it is admissible. Therefore by Proposition 3, the optimal PBC is a q-optimal
contract.

Proposition 4. The only PBC that is q-optimal has n = 1 and a binding (IRr).

According to Definition 1, our q-optimal contract (T ∗, R∗) is given by
T ∗(ω) = pω, R∗(ω) = q − ω, if ω < t∗−vrq

p−vr ,

T ∗(ω) = pω, R∗(ω) = t∗−pω
vr

, if t∗−vrq
p−vr ≤ ω < t∗

p
,

T ∗(ω) = t∗, R∗(ω) = 0, if ω ≥ t∗

p
,

(6)
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Figure 2: Two possible shapes of (T ∗, R∗).

where t1 is determined by a binding (IRr). Likewise, (T ∗, R∗) has two possible shapes,
depending on different values of t∗. Figure 2 is a graphical illustration of (T ∗, R∗), which
corresponds to Shape II and Shape III in Figure 1 with n = 1.

Proposition 4, as well as its mathematical representation (6), has a nice economic
interpretation. First, the manufacturer provides the retailer with a fixed quantity q at
the wholesale price t1/q. If he sells more than t1/p, then t1 is repaid to the manufacturer
and he salvages unsold inventories. If he sells less than t1/p, some of unsold inventories
must be returned to the manufacturer so as to make his total payout equal t1. This means
that the supplier effectively pays him a unit price vr for his returns. The only exception
occurs when the demand is considerably small such that the retailer cannot fulfill the
obligation of repaying ti even if everything he has is transferred to the manufacturer.
Hence, our q-optimal contract is indeed a buy-back contract.

Corollary 1. Our q-optimal contract can be implemented by a buy-back contract with a
wholesale price t1/q and a buy-back price vr.
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Thus, our analysis provides a foundation of retail contracts. In the supply chain
contracting literature, a pre-dominant paradigm is to compare amongst various contracts
observed in practice (e.g., Cachon, 2003; Chen, 2003). While these comparisons generate
useful managerial implications, a potential caveat is that the contracts considered may be
sub–optimal. By taking a different approach, our analysis speaks directly to the question
of contract optimality. Remarkably, even though salvaging unsold inventory is more
efficient at the retailer, the manufacturer buys back some of them in order to alleviate
the ex-post adverse selection problem.

Moreover, Proposition 5 shows that (T ∗, R∗) is unique in the sense that any q-optimal
contract is equivalent to (T ∗, R∗).

Proposition 5. An admissible contract is q-optimal only if it is equivalent to (T ∗, R∗).

Proposition 5 is proved by contradiction. Suppose that there is another contract (T,R)

that gives the two contracting parties the same expected payoffs as (T ∗, R∗). By Lemma 2
and Lemma 3, |J(T,R)| = +∞, otherwise (T,R) will be outperformed by a PBC. However,
when |J(T,R)| = +∞, we can arbitrarily choose an endpoint ωi of the open intervals in
the partition of S(T,R), and divide [0, ω̄] into two parts: [0, ωi] and (ωi, ω̄]. Now we treat
[0, ωi] as if it is the type set, and conjecture in the same way as in the proof of Lemma 2,
Lemma 3, and Proposition 4. Consequently, on the “truncated” type set [0, ωi], (T,R) is
weakly dominated by a PBC with n = 1. The same result applies to (ωi, ω̄]. Therefore,
on the complete type set [0, ω̄], (T,R) is weakly dominated by a PBC with n = 2, which
is a violation of Proposition 4.

3.2 The optimal order quantity

Now we are ready to solve for the optimal quantity q provided by the manufacturer, using
the manufacturer’s expected payoffs in any q-optimal contract. To simplify the analysis,
we impose the following assumption on the cost function.

Assumption 1. c(q) = cq, with vr ≤ c ≤ p.

That is, we assume the cost function c(q) is linear in q, with the marginal cost of
production c less than the retail price, but higher than the retailer’s salvage value of the
unsold inventory.

As a benchmark, consider the first-best quantity for the contracting problem qFB; it
maximizes the expected social welfare, denoted by EωW (q), with the retailer salvaging
any unsold inventory. That is, qFB maximizes

EωW (q) =


∫ q

0

[pω + vr(q − ω)]dF (ω) +

∫ ω̄

q

pqdF (ω)− cq if q < ω̄,∫ ω̄

0

[pω + vr(q − ω)]dF (ω)− cq if q ≥ ω̄.
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Note that
∂EωW (q)

∂q
=

p− c− (p− vr)F (q) if q < ω̄,

vr − c if q ≥ ω̄.

Our assumption vr ≤ c ≤ p ensures that EωW (q) is quasiconcave, thus there exists a
unique solution qFB ∈ [0, ω̄], where

F (qFB) =
p− c
p− vr

.

We further assume the first-best social welfare is able to cover the retailer’s reservation
utility ur, i.e.,

EωW (qFB) =

∫ qFB

0

(p− vr)ωdF (ω) > ur. (7)

Clearly, if (7) is violated, the set of contract that satisfies both (IRm) and (IRr) is either
empty or a singleton, and the problem thus becomes straightforward.

In the presence of information asymmetry, the q-optimal contract derived in Propo-
sition 4 has two different shapes, depending on the value of t∗ and its relationship with
vrq. t∗ is again determined by a binding (IRr). In particular, let q be the solution for∫ q

0

[pω + vr(q − ω)]dF (ω) +

∫ ω̄

q

pqdF (ω) = ur; (8)

and q be the solution for∫ q

0

[pω + vr(q − ω)]dF (ω) +

∫ ω̄

q

pqdF (ω)− vrq = ur. (9)

Then, t∗ > 0 if and only if q > q. When q < q < q, t∗ < vrq; when q ≥ q, t∗ ≥ vrq.
We will then provide separate analysis for each of these two cases, and use first-order
conditions for the manufacturer’s utility maximization problem to characterize q∗.

When t∗ < vrq, the manufacturer’s expected utility is

Eωum(T ∗, R∗) =

∫ t∗
p

0

[pω +
vm
vr

(t∗ − pω)]dF (ω) +

∫ ω̄

t∗
p

t∗dF (ω)− cq,

where t∗ is determined by∫ q

0

[pω + vr(q − ω)]dF (ω) +

∫ ω̄

q

pqdF (ω)− t∗ = ur. (10)
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The first-order condition is

[1− (1− vm
vr

)F (
t∗

p
)][p− (p− vr)F (q)] = c. (11)

The left-hand side of (11) decreases with q, and when q → q, it converges to p − (p −
vr)F (q). By (8), when q = q, t∗ = 0, so we must have q ≤ qFB, which implies

p− (p− vr)F (q) ≥ p− (p− vr)F (qFB) = c.

Therefore, (11) has a solution on [q, q] if and only if

[1− (1− vm
vr

)F (
vrq

p
)][p− (p− vr)F (q)] ≤ c.

When t∗ > vrq, the manufacturer’s expected utility is

Eωum(T ∗, R∗) =

∫ ω′1

0

[pω + vm(q − ω)]dF (ω) +

∫ t∗
p

ω′1

[pω +
vm
vr

(t∗ − pω)]dF (ω)

+

∫ ω̄

t∗
p

t∗dF (ω)− cq,

where ω′1 = t∗−vrq
p−vr , and t∗ is determined by

∫ q

ω′1

[pω + vr(q − ω)]dF (ω) +

∫ ω̄

q

pqdF (ω)− t∗[1− F (ω′1)] = ur. (12)

The first-order condition is

{1− F (ω′1)− (1− vm
vr

)[F (
t∗

p
)− F (ω′1)]}{p− (p− vr)

F (q)− F (ω′1)

1− F (ω′1)
}+ vmF (ω′1) = c.

(13)

Similarly, the left-hand side of (13) decreases with q, and when q → q, it converges to
the left-hand side of (11); when q → ω̄ and ur → 0, it converges to vm. Therefore, the
first-order derivative of Eωum(T ∗, R∗) is continuous at the cutoff q, and there exists a
cutoff u0 such that when ur ≤ u0, first-order conditions (11) and (13) have a unique
solution q∗.

We can also compare q∗ with qFB. If q∗ solves (11), then

p− (p− vr)F (q∗) > c ⇒ F (q∗) <
p− c
p− vr

.
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If q∗ solves (13), then

[1− F (ω′1)][p− (p− vr)
F (q)− F (ω′1)

1− F (ω′1)
] + vrF (ω′1) > c ⇒ F (q∗) <

p− c
p− vr

.

In both cases, q∗ < qFB. Our discussion is summarized in Proposition 6.

Proposition 6. Under Assumption 1, there exists a cutoff u0 such that when ur ≤ u0,
(11) and (13) have a unique solution q∗ < qFB.

For completeness, one has to plug q∗ into Eωum(T ∗, R∗) to verify (IRm). This is
straightforward since q∗ ≥ q.

4 Competitive Retailers

In this section, we extend our benchmark model to allow for competition between retail-
ers. It is commonly observed in practice that a manufacturer sells her products through
different retailers. The manufacturer may want to maintain a relatively high retail price
for her products as he extract profits from all the retailers contracting with him. However,
retailers usually compete with each other and attract customers by cutting down retail
prices; this is against the manufacturer’s private interest. The manufacturer sometimes
fixes the retail price through contracts. This mechanism is the so called Resale Price
Maintenance (RPM) that has been well studied in the literature (e.g., Marvel and Mc-
Cafferty, 1984; Shaffer, 1991; Deneckere, Marvel, and Peck, 1996; Jullien and Rey, 2007;
Asker and Bar-Isaac, 2014) and intensively discussed in legal practice.6

While whether RPM is legal under antitrust laws remains controversial, we argue that
it is usually very costly for the manufacturer to verify retailers’ price-cutting behaviors
due to the severe information asymmetry between these two parties. Retailers sometimes
offer implicit discounts to attract customers, such as free add-ons, extra services, vouchers,
or cash rebates. These are all similar to price-cutting, but are rather difficult to get
detected, especially when the manufacturer has no information about the retail demand.
Thus, the following questions become important in the competitive retail contracting
environment: What is the optimal contract when the manufacturer sells her products
through several retailers? Can the manufacturer mitigate competition when there is
information asymmetry that makes RPM infeasible? We will address these questions
using a simple model with one manufacturer and two retailers.

Consider an environment that is identical to the one described in Section 2 except
that now there are two symmetric retailers, indexed by subscript i ∈ {1, 2}. The timing

6See, e.g., Leegin Creative Leather Products, Inc. v. PSKS, Inc., dba Kay’s Kloset...Kay’s Shoes
(https://www.justice.gov/atr/case/leegin-creative-leather-products-inc-v-psks-inc-
dba-kays-klosetkays-shoes).
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of the game is revised as follows. First, the manufacturer offers contracts to two retailers,
respectively. The contract specifies the quantity to be delivered qi, the cash payment
function Ti, and the amount of products to be returned Ri. The last two components
are contingent on retailer i’s report ω̂i. Then, both retailers decide whether to accept
their corresponding contracts. If contracts are accepted, they choose their retail prices
pi simultaneously. Finally, the retail demand ω is realized and allocated according to
efficient rationing (Kreps and Scheinkman, 1983). When retailers post the same price,
the demand is split evenly. Both retailers can freely observe ω, but the manufacturer
only knows its distribution. Hence, the manufacturer maximizes her profits from two
contracts subject to all the constraints listed in in Section 2.

It is worth noting that, different from our benchmark model, retail prices are endoge-
nously determined by retailers in this oligopoly market. Therefore, customers’ willingness
to pay for the product must be bounded above. We assume that customers share the
same valuation for the product, which is denoted by v, and v > c. A retailer may have
incentive to undercut his competitor’s price so that customers will first purchase from
herself. However, such incentive is limited by his obligation to return unsold inventories
to the manufacturer. Since prices are determined before the realization of demand, if a
retailer lowers his price to increase sales and revenue, he may be unable to return enough
inventories pre-specified in the contract. The manufacturer thus can mitigate competition
between downstream retailers through return policies.

In a first-best economy, there is no information asymmetry between the manufacturer
and retailers. Hence, the manufacturer can enforce both retailers to choose p1 = p2 = v.
By symmetry, the first-best quantity vector (qFB1 , qFB2 ) satisfies qFB1 = qFB2 . Similar to
our discussion in Section 3.2, qFB1 maximizes

EωW (q1) =


∫ 2q1

0

[vω + vr(2q1 − ω)]dF (ω) +

∫ ω̄

2q1

2vq1dF (ω)− 2cq1 if 2q1 < ω̄,∫ ω̄

0

[vω + vr(2q1 − ω)]dF (ω)− 2cq1 if 2q1 ≥ ω̄.

Note that

∂EωW (q1)

∂q1

=

2[v − c− (v − vr)F (2q1)] if q < ω̄,

2[vr − c] if q ≥ ω̄.

Our assumption vr ≤ c ≤ v ensures that EωW (q1) is quasiconcave, thus there exists a
unique solution qFB1 ∈ [0, ω̄], where

F (2qFB1 ) =
v − c
v − vr

.

This expression is the same as the characterization of qFB in Section 3.2 except that now
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p is replaced by v. Therefore, the manufacturer earns monopoly profit.
When there is information asymmetry, equilibrium contracts are characterized in

Proposition 7.

Proposition 7. Under Assumption 1, there exists a cutoff u1 such that when ur ≤ u1,
optimal retail contracts are identical for both retailers. They are buy-back contracts and
exhibit Shape II in Figure 2. In particular, for i = 1, 2,

T ∗i (ω) = 1
2
vω, R∗i (ω) = qi − 1

2
ω, if ω < 2(t∗i−vrqi)

v−vr ,

T ∗i (ω) = 1
2
vω, R∗i (ω) =

t∗i−
1
2
vω

vr
, if t∗i−vrqi

v−vr ≤ ω <
t∗i
v
,

T ∗i (ω) = t∗i , R∗i (ω) = 0, if ω ≥ t∗i
v
,

(14)

where t∗i > vrqi is determined by a binding (IRr). Optimal order quantities satisfy 1
2
q∗ <

q∗1 = q∗2 < qFB1 . Retailers both propose p1 = p2 = v.

Several remarks can be made on Proposition 7. First, buy-back contracts are robust
with competitive retailers. By Proposition 4, the optimality of buy-back contracts is not
sensitive to how prices or quantities are determined, as long as they are fixed before the
realization of demand.

Second, the total quantity delivered by the manufacturer is larger than the optimal
quantity in a single-retailer market, but is still less than the first-best quantity. In other
words, introducing a competitive retailer increases the overall supply, while there is still
inefficient rationing in the market. This result is in line with the literature starting
from Kreps and Scheinkman (1983), which shows that price competition and quantity
precommitment yield Cournot outcomes.

Finally, both retailers set their prices equal to consumers’ valuation of the product,
implying that consumers have no surplus. Due to information asymmetry, the manufac-
turer cannot observe retail prices, therefore RPM is infeasible in our model. However, the
manufacturer can still use retail contracts to incentivize downstream retailers to increase
their prices and avoid competition. The key mechanism is the use of return polices. In
a Shape-II buy-back contract, the manufacturer may specify a cash payment function
so that each retailer can fulfill such payments if he set retail prices to v. Moreover, a
retailer has to return all his cash and unsold inventories to the manufacturer when the
demand realization is sufficiently low. If any retailer wants to undercut his competitor,
he has to sell more than one half of the realized demand to increase revenue, but then
he will unable to return the specified amount of unsold products. Therefore, no one has
incentive to deviate on price.

Our analysis in this section shows that, even if information asymmetry prevents the
manufacturer from implementing price control, she can still maintain a monopoly price
in the retail market through retail contracts. Competition between retailers may increase
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the market supply, but cannot achieve the first-best level. Consumers get zero surplus,
which is the same as that of a monopoly.

5 Discussion

In this paper, we show that the optimal retail contract takes the form of a buy-back
contract when the retailer privately observes the realized demand and the order quantity is
sufficiently high, thereby providing a microeconomic foundation for the buy-back contract.
Moreover, when the cost function is linear, the optimal order quantity is shown to be
lower than the first-best quantity. While we prove that buy-back contracts are optimal
when there are competitive retailers, it is worth noting that the optimality of buy-back
contracts is remarkably robust in other dimensions.

Renegotiation-proofness. The retailer has no incentive to renegotiate and will in-
deed return his inventories as specified, because the manufacturer compensates him fully.
The manufacturer, on the other hand, will have an incentive to renegotiate the contract
because she pays more for the returns than they are worth to her. But it is the retailer
who ships the returns, because he alone knows the realized demand. Thus, the optimal
contract is renegotiation-proof.

Initial cash holdings. In our benchmark model, we implicitly assume that the retailer
has no cash at hand before the selling season. Relaxing this assumption will make the
retailer better off because the probability of returning unsold inventories is reduced.
However, the spirit of (IC) is invariant to the retailer’s initial cash holdings, and our
main finding, i.e., the optimality of buy-back contracts, is not prone to this assumption.

Effort/price-dependent demand. Finally, it can be seen that the buy-back contract
keeps being optimal if the retailer can enhance demand by costly marketing efforts, or
if the retail price is determined at the contracting stage and the demand distribution is
price-dependent.

Our paper can be regarded as part of the foundation of economic and social institutions
with a complete contracting approach. While we take a first step in this direction in the
area of retail contracting theory, linking optimal retail contractual forms in response to a
variety of economic context to empirical studies on retail markets, especially how vertical
relationships, demand fluctuation and inventory management affect the market structure
of the retail sector (e.g., Hortaçsu and Syverson, 2015) leaves us a promising research
agenda of combining theory and practice in the future.
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A Proofs

A.1 Proof of Proposition 1

The “only if” part is straightforward, so we only need to prove the “if” part. When ω ≤ q

For any i = 1, 2, . . . , n, ω ∈ (ωi−1, ωi],

ω ≤ ti − vrq
p− vr

⇒ T (ω) = pω,

0 ≤ R(ω) = q − ω; (15)
ti − vrq
p− vr

< ω ≤ ti − vr(q − ωi)
p

⇒ T (ω) = pω,

0 ≤ q − ωi < R(ω) =
ti − pω
vr

≤ q − ω; (16)

ω >
ti − vr(q − ωi)

p
⇒ T (ω) = ti − v(q − ωi) ≤ pω,

0 ≤ R(ω) = q − ωi ≤ q − ω. (17)

Thus (FC) and (LL) hold.
To verify (IC), we note that, the retailer has no incentive to sell less than the real-

ized demand because ur(T (ω), R(ω)) is nondecreasing. Then, we rule out the retailer’s
incentive to misreport given that there is no under-selling.

The retailer’s total payout for any i = 1, 2, . . . , n and ω ∈ (ωi−1, ωi] is

Φ(ω) =

pω + vr(q − ω) if pω < ti − vr(q − ω),

ti if pω ≥ ti − vr(q − ω),

which is nondecreasing on (ωi−1, ωi]. Then, consider ω̂1, ω̂2 and some i ∈ {1, 2, . . . , n}.
If ωi−1 < ω̂1 < ω̂2 ≤ ωi, then Φ(ω̂1) ≤ Φ(ω̂2) because Φ(ω) is nondecreasing on

(ωi−1, ωi]. We only need to study the case when Φ(ω̂1) < Φ(ω̂2). Note that

Φ(ω̂1) < Φ(ω̂2) ⇒ Φ(ω̂1) = pω̂1 + vr(q − ω̂1) < Φ(ω̂2) = ti,

⇒ R(ω̂1) = q − ω̂1,

which means (FC) binds at ω̂1. Therefore, a type-ω̂2 retailer cannot misreport ω̂1.
If ωi−2 < ω̂1 ≤ ωi−1 < ω̂2 ≤ ωi, then from (15), (16), and (17), we know that

R(ω̂1) ≥ q − ωi−1 > q − ω̂2, so a type-ω̂2 retailer cannot mimic ω̂1. Moreover, we have
either

Φ(ω̂2) = ti ⇒ Φ(ω̂2) = ti > ti−1 ≥ Φ(ω̂1),
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which means a type-ω̂1 retailer does not want to misreport ω̂2; or

Φ(ω̂2) = pω̂2 + vr(q − ω̂2) < ti ⇒ T (ω̂2) = pω̂2,

which means (LL) binds at ω̂2, i.e., a type-ω̂1 retailer is unable to misreport ω̂2.
It is also straightforward to check the admissibility for ω = 0 and ω > q.

A.2 Proof of Lemma 1

Suppose that R(ω) < q − ω for some ω ≤ q, i.e., (ω, q − R(ω)) is nonempty. Let
ω < ω̂1 < ω̂2 < q − R(ω). Since q − ω̂1 > R(ω), a type-ω̂1 retailer can misreport ω,
implying that Φ(ω̂1) ≤ Φ(ω). A similar argument also gives us Φ(ω̂2) ≤ Φ(ω).

If R(ω̂1) ≥ R(ω), then from Φ(ω̂1) ≤ Φ(ω), T (ω̂1) ≤ T (ω), which means a type-ω
retailer can misreport ω̂1 too. From (IC), Φ(ω̂1) = Φ(ω) ≥ Φ(ω̂2).

If R(ω̂1) < R(ω), then R(ω̂1) < q − ω̂2, which means a type-ω̂2 retailer can misreport
ω̂1. From (IC), Φ(ω̂1) ≥ Φ(ω̂2).

A.3 Proof of Lemma 2

When |J(T,R)| < +∞, {(aj, bj) : j ∈ J(T,R)} is well-ordered by ≤, and so is the set of all the
endpoints of these open intervals {aj, bj : j ∈ J(T,R)}. We will use {ωi : i = 0, 1, . . . , n}
to represent {aj, bj : j ∈ J(T,R)} ∪ {0, q}, and assume that 0 = ω0 < ω1 < · · · < ωn = q.

Now we construct (T̂ , R̂) in two steps.

Step 1. Consider an alternative contract (T̃ , R̃), and the retailer’s corresponding total
payout Φ̃(ω), such that:

(1) For i = 1, ω ≤ ω1, and any i = 2, 3, . . . , n, ω ∈ (ωi−1, ωi],
T (ω) = pω, R(ω) = q − ω, if ω ≤ ti−vrq

p−vr ,

T (ω) = pω, R(ω) = ti−pω
vr

, if ti−vrq
p−vr < ω ≤ ti−vr(q−ωi)

p
,

T (ω) = ti − vr(q − ωi), R(ω) = q − ωi, if ω > ti−vr(q−ωi)
p

;

For ω > q, T (ω) = T (q), R(ω) = R(q).
(2) For i = 1, 2, . . . , n− 1, ti is determined by∫ ωi

ωi−1

Φ̃(ω)dF (ω) =

∫ ωi

ωi−1

Φ(ω)dF (ω); (18)
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tn is determined by ∫ ω̄

ωn−1

Φ̃(ω)dF (ω) =

∫ ω̄

ωn−1

Φ(ω)dF (ω).

Step 2. If, in the newly constructed contract (T̃ , R̃), ti−1 ≥ ti for some i, then we drop
ωi−1 from {ωi}i=0,1,...,n, and repeat Step 1 based on (T̃ , R̃).

After finitely many steps, we will get a contract (T̂ , R̂) and the retailer’s corresponding
total payout Φ̂(ω), which is by definition a PBC. Observe that, compared with (T,R), the
retailer’s expected total payout conditional on [0, q] is unchanged. So one immediately
has (b) of the lemma.

To establish (a) of the lemma, we have to show that the manufacturer is not worse
off in both steps. Given the equality in (b), this is equivalent to proving that the retailer
pays more cash to the manufacturer in expectation. Mathematically,∫ q

0

Φ̃(ω)dF (ω) =

∫ ω̄

0

Φ(ω)dF (ω)∫ q

0

T̂ (ω)dF (ω) ≥
∫ ω̄

0

T (ω)dF (ω)

⇒ Eωum(T̂ , R̂) ≥ Eωum(T,R).

For this purpose, we will first prove that, for any i = 1, 2, . . . , n− 1,∫ ωi

ωi−1

T̃ (ω)dF (ω) ≥
∫ ωi

ωi−1

T (ω)dF (ω). (19)

In particular, there are two cases.
(1) If (ωi−1, ωi) ⊆ S(T,R), then T̃ (ω) ≤ T (ω) for any ω ∈ (ωi−1, ωi). We prove this by

contradiction.
Suppose that pω̂ ≥ T (ω̂) > T̃ (ω̂) for some ω̂ ∈ (ωi−1, ωi). By the definition of (T̃ , R̃),

pω̂ ≥ T (ω̂) > T̃ (ω̂) ⇒ T̃ (ω̂) = ti < pω̂,

⇒ T (ω̂) > ti.

For any ω ∈ (ω̂, ωi), (IC) implies that either pω̂ < T (ω), which means a type-ω̂ retailer
cannot misreport ω; or Φ(ω̂) ≤ Φ(ω), which means a type-ω̂ retailer does not want to
misreport ω. We conclude from either cases that Φ(ω) > ti.

For any ω ∈ (ωi−1, ω̂), Lemma 2 implies that Φ(ω) is nonincreasing on (ωi−1, ωi), so
we also have Φ(ω) ≥ Φ(ω̂) > ti.

Thus Φ(ω) > ti for any ω ∈ (ωi−1, ωi), which is a violation of (18).
(2) When (ωi−1, ωi) * S(T,R), (ωi−1, ωi) is a subset of the interior of [0, q]/S(T,R). For

any ω ∈ (ωi−1, ωi), (FC) must bind, otherwise (ω, q − R(ω)) ⊆ S(T,R), a contradiction.
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Therefore R(ω) ≥ R̃(ω) for any ω ∈ (ωi−1, ω̂). We immediately have (19).

Next we shall prove that∫ ω̄

ωn−1

T̃ (ω)dF (ω) ≥
∫ ω̄

ωn−1

T (ω)dF (ω). (20)

(1) If (ωn−1, ωn) ⊆ S(T,R), then Φ(ω) is nonincreasing on (ωn−1, ωn). Moreover, the
firm at state q should have no incentive to choose any s smaller than q. Thus, for any
ω < q,

pω + vr(q − ω)− Φ(ω) ≤ pq − Φ(q),

⇒ Φ(q)− Φ(ω) ≤ (p− vr)(q − ω).

The right-hand side converges to zero as ω converges to q, which implies

Φ(q) ≤ lim
ω→q−

Φ(ω).

Hence, Φ(q) ≤ Φ(ω) for any ω < q. An argument similar to the previous one gives us
(20).

(2) If (ωn−1, ωn) * S(T,R), then (FC) binds on (ωn−1, ω̄). We immediately have (20).
Finally, we show that ∫ q

0

T̂ (ω)dF (ω) ≥
∫ q

0

T̃ (ω)dF (ω). (21)

Without loss of generality, assume that in (T̃ , R̃), ti−1 ≥ ti for some i ∈ {2, 3, . . . , n};
moreover, after we drop ωi−1 and repeat step 1, (T̂ , R̂) is finalized.

According to Step 2, on (ωi−2, ωi], (T̂ , R̂) is determined by
T̂ (ω) = pω, R̂(ω) = q − ω, if ω < t̂i−vrq

p−vr ,

T̂ (ω) = pω, R̂(ω) = t̂i−pω
vr

, if t̂i−vrq
p−vr ≤ ω < t̂i−vr(q−ωi)

p
,

T̂ (ω) = t̂i − v(q − ωi), R̂(ω) = q − ωi, if ω ≥ t̂i−vr(q−ωi)
p

;

where t̂i is determined by∫ ωi

ωi−2

Φ̂(ω)dF (ω) =

∫ ωi

ωi−2

Φ̃(ω)dF (ω).

The left-hand side is the retailer’s expected total payout conditional on (ωi−2, ωi] given
(T̃ , R̃), which is nondecreasing in ti−1 and ti. Therefore, ti−1 ≥ ti implies t̂i ≥ ti. By
construction we immediately have (21).
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(19)–(21), along with the equality established in (b), imply (a). It can also be verified
that the inequality in (a) is strict unless (T̂ , R̂) = (T,R). Hence our proof is complete.

A.4 Proof of Lemma 3

When |J(T,R)| = +∞, inf{bj − aj : j ∈ J(T,R)} = 0. For any δ > 0 sufficiently small,
the set {(aj, bj) : bj − aj ≥ δ, j ∈ J(T,R)} is nonempty, finite, and thus well-ordered.
Following the similar methodology as what is applied in the proof of Lemma 2, we use
{ωi : i = 0, 1, . . . , n} to represent {aj, bj : bj − aj ≥ δ, j ∈ J(T,R)} ∪ {0, q}, and assume
that 0 = ω0 < ω1 < · · · < ωn = q. Moreover, let

S̃ =
⋃

bj−aj≥δ,j∈J(T,R)

(aj, bj).

The conjecture is also proceeded in two steps.

Step 1. Consider an alternative contract (T̃ , R̃), and the retailer’s corresponding total
payout Φ̃(ω), such that:

(1) For i = 1, ω ≤ ω1, and any i = 2, 3, . . . , n, ω ∈ (ωi−1, ωi],
T (ω) = pω, R(ω) = q − ω, if ω ≤ ti−vrq

p−vr ,

T (ω) = pω, R(ω) = ti−pω
vr

, if ti−vrq
p−vr < ω ≤ ti−vr(q−ωi)

p
,

T (ω) = ti − vr(q − ωi), R(ω) = q − ωi, if ω > ti−vr(q−ωi)
p

;

For ω > q, T (ω) = T (q), R(ω) = R(q).
(2) For i = 1, 2, . . . , n− 1, ti is determined by

∫ ωi

ωi−1

Φ̃(ω)dF (ω) =

∫ ωi

ωi−1

Φ(ω)dF (ω) if (ωi−1, ωi) ⊆ S̃,∫ ωi

ωi−1

Φ̃(ω)dF (ω) =

∫ ωi

ωi−1

[T (ω) + vr(q − ω)]dF (ω) if (ωi−1, ωi) * S̃;

tn is determined by
∫ ω̄

ωn−1

Φ̃(ω)dF (ω) =

∫ ω̄

ωn−1

Φ(ω)dF (ω) if (ωn−1, ωn) ⊆ S̃,∫ ω̄

ωn−1

Φ̃(ω)dF (ω) =

∫ ω̄

ωn−1

[T (ω) + vr(q − ω)]dF (ω) if (ωn−1, ωn) * S̃.

Step 2. If in the newly constructed contract (T̃ , R̃), ti−1 ≥ ti for some i, then we drop
ωi−1 from {ωi : i = 0, 1, . . . , n}, and repeat Step 1 based on (T̃ , R̃).
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After finitely many steps, we will get a contract (T̂ , R̂) and the retailer’s corresponding
total payout Φ̂(ω), which is by definition a PBC. Recall that by our construction S̃ ⊂
S(T,R), so [0, q]/S̃ contains some small intervals that actually belongs to S(T,R). These
intervals are treated as if they have a binding (FC) in the conjecture of (T̃ , R̃). Such
a transformation serves to ensure that we can apply the same argument in the proof of
Lemma 2 to establish (a), i.e., the manufacturer is better off in Step 1. Actually, since
the retailer’s total payout is increased in (T̃ , R̃), the manufacturer is strictly better off.
Similarly, one can prove that Step 2 will not make the manufacturer worse off, so

Eωum(T̂ , R̂) ≥ Eωum(T,R). (22)

Although the retailer is worse off in (T̃ , R̃), its utility loss is bounded above. For any
ω ∈ (aj, bj) such that bj − aj < δ, we have

R(ω) ≥ q − bj ⇒ q − ω −R(ω) < bj − aj < δ.

Therefore∫ ω̄

0

Φ̂(ω)dF (ω)−
∫ ω̄

0

Φ(ω)dF (ω) ≤
∫

[0,q]/S̃

vr[q − ω −R(ω)]dF (ω) < vrδ,

which is equivalent to
Eωur(T̂ , R̂) > Eωur(T,R)− vrδ. (23)

As a final step, we reduce t1 in (T̂ , R̂) by a small amount to compensate the retailer’s
utility loss. Afterwards (22) and (23) become

Eωum(T̂ , R̂) > Eωum(T,R)− vrδ,

Eωur(T̂ , R̂) = Eωur(T,R).

Note that δ can be arbitrarily small, so for any ε > 0, choosing δ = ε/vr will give us a
contract that satisfies both (a) and (b).

A.5 Proof of Proposition 3

We prove the result by contradiction. Suppose that (T,R) maximizes Eωum(T,R) sub-
ject to (IRr) among all the PBCs, but is not q-optimal. By definition, there exists an
admissible contract (T̃ , R̃), which satisfies (IRr) and

Eωum(T̃ , R̃) > Eωum(T,R).
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Let
ε =

1

2
[Eωum(T̃ , R̃)− Eωum(T,R)] > 0.

According to Proposition 1, there exists a PBC, (T̂ , R̂), such that

Eωum(T̂ , R̂) > Eωum(T̃ , R̃)− ε > Eωum(T,R),

Eωur(T̂ , R̂) = Eωur(T̃ , R̃),

which means (T̂ , R̂) outperforms (T,R) subject to (IRr), a contradiction. Therefore
(T,R) must be q-optimal.

A.6 Proof of Proposition 4

We start from discussing the range of λ. Given a PBC, (T,R), both contracting parties’
expected payoffs on (ωi−1, ωi) is determined by ωi−1, ωi, and ti. In what follows, we
restrict our attention to cases with i = 1, 2, . . . , n− 1. For i = n, all the discussion is the
same except that F (ωi) should be replaced by 1. Specifically, there are three cases.

(1) If ti < pωi−1 + vr(q − ωi), then for any ω ∈ (ωi−1, ωi], pω ≥ ti − vr(q − ωi), which
means T (ω) = ti − vr(q − ωi), R(ω) = q − ωi. Therefore,

∂L̂

∂ti
= (1− λ)[F (ωi)− F (ωi−1)].

(2) If pωi−1 + vr(q − ωi) < ti < pωi−1 + vr(q − ωi−1), then there exists a cutoff ω1
i ,

determined by pω1
i + vr(q − ωi) = ti, such that

ω < ω1
i ⇒ T (ω) = pω, R(ω) =

ti − pω
vr

,

ω ≥ ω1
i ⇒ T (ω) = ti − vr(q − ωi), R(ω) = q − ωi.

Therefore,

∂L̂

∂ti
= (1− λ)[F (ωi)− F (ωi−1)]− (1− vm

vr
)[F (ω1

i )− F (ωi−1)].

(3) If pωi−1 + vr(q−ωi−1) < ti, then there exist two cutoffs ω1
i and ω2

i , determined by
pω2

i + vr(q − ω2
i ) = pω1

i + vr(q − ωi) = ti, such that

ω < ω2
i ⇒ T (ω) = pω, R(ω) = q − ω,

ω2
i ≤ ω < ω1

i ⇒ T (ω) = pω, R(ω) =
ti − pω
vr

,

ω ≥ ω1
i ⇒ T (ω) = ti − vr(q − ωi), R(ω) = q − ωi.
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Therefore,
∂L̂

∂ti
= (1− λ)[F (ωi)− F (ω2

i )]− (1− vm
vr

)[F (ω1
i )− F (ω2

i )].

It should also be noted that L̂ is continuous at the two nondifferentiable points:
ti = pωi−1 + vr(q − ωi) and ti = pωi−1 + vr(q − ωi−1). Lemma A.1 states the range of
λ, which directly comes from the first-order necessary conditions. We can immediately
infer from Lemma A.1 that (IRr) binds in any optimal PBC.

Lemma A.1. λ ∈ (vm/vr, 1), and for any i = 1, 2, . . . , n, ti ≥ pωi−1 + vr(q − ωi).

Proof. If λ ≤ vm/vr, ∂L̂/∂ti > 0 for any ti. Hence for any i = 1, 2, . . . , n, ti ≤ pωi +

vr(q−ωi) must hold with equality. The retailer gets nothing from such a contract, which
is a violation of (IRr).

If λ ∈ (vm/vr, 1), ∂L̂/∂ti > 0 for any ti < pωi−1 + vr(q − ωi), so we have ti ≥
pωi−1 + vr(q − ωi).

If λ = 1, L̂ is negatively correlated with the retailer’s expected return of inventory.
The contract that maximizes L̂ must have R(ω) = 0, T (ω) ≤ 0 for any ω, which is a
violation of (IRm).

If λ > 1, ∂L̂/∂ti < 0 for any ti, a contradiction since t1 has no lower bound.

Now we are ready to solve for the q-optimal contract based on Lemma A.1. For any
i = 1, 2, . . . , n− 1, let

Li =

∫ ωi

ωi−1

[T (ω) + vmR(ω)]dF (ω)− λ
∫ ωi

ωi−1

[T (ω) + vrR(ω)]dF (ω)

denote the retailer’s Lagrangian conditional on ω ∈ (ωi−1, ωi). Then we have

∂L̂

∂ωi
=
∂Li
∂ωi

+
∂Li+1

∂ωi
.

If pωi−1 + vr(q − ωi) < ti < pωi−1 + vr(q − ωi−1),

∂Li
∂ωi

= [pω1
i + vm(q − ωi)]f(ωi)− vm[F (ωi)− F (ω1

i )]− λtif(ωi),

∂Li
∂ωi−1

= −[pωi−1 +
vm
vr

(ti − pωi−1)]f(ωi−1) + λtif(ωi−1)

= [(λ− vm
vr

)ti − (1− vm
vr

)pωi−1]f(ωi−1)

< [(λvr − vm)(q − ωi−1)− (1− λ)pωi−1]f(ωi−1).

The last inequality comes from ti < pωi−1 + vr(q − ωi−1).
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If pωi−1 + vr(q − ωi−1) < ti,

∂Li
∂ωi

= [pω1
i + vm(q − ωi)]f(ωi)− vm[F (ωi)− F (ω1

i )]− λtif(ωi),

∂Li
∂ωi−1

= −[pωi−1 + vm(q − ωi−1)]f(ωi−1) + λ[pωi−1 + vr(q − ωi−1)]f(ωi−1)

= [(λvr − vm)(q − ωi−1)− (1− λ)pωi−1]f(ωi−1).

Therefore,

∂L̂

∂ωi
< [pω1

i − (1− λ)pωi + λvr(q − ωi)]f(ωi)− vm[F (ωi)− F (ω1
i )]− λtif(ωi)

= (1− λ)[ti − pωi − vr(q − ωi)]f(ωi)− vm[F (ωi)− F (ω1
i )]

< 0.

The second equality comes from pω1
i + vr(q−ωi) = ti, and the last inequality comes from

ti < pωi + vr(q − ωi).
∂L̂/∂ωi < 0 implies that the boundary constraint derived in the proof of Lemma A.1,

ti ≥ pωi−1 + vr(q − ωi), must bind. However, in this case ω1
i = ωi−1, and

lim
ω1
i→ωi−1+

∂L̂

∂ti
= (1− λ)[F (ωi)− F (ωi−1)] > 0.

Thus ti ≤ pωi + vr(q − ωi) binds with equality, which essentially means ωi = ωi−1.
In sum, (T,R) is an optimal PBC only if n = 1. A binding (IRr) is immediate from

Lemma A.1. By Proposition 1, any PBC with n = 1 is admissible, and thus is q-optimal
according to Proposition 3. Such PBC is unique because first-order conditions are all
necessary.

A.7 Proof of Proposition 5

Suppose that (T,R) is q-optimal. As in (1), we denote the union of all the open intervals
(ω, q −R(ω)) by S(T,R), and the partition of S(T,R) by J(T,R).

If |J(T,R)| < +∞, then from Lemma 2, (T,R) must be a PBC, otherwise it will be
strictly dominated by a PBC. Again from Proposition 4, (T,R) must be equivalent to
(T ∗, R∗).

If |J(T,R)| = +∞, then we pick one of the endpoints of the open intervals in the
partition of S(T,R), which is denoted by ωi. Assume ωi < q. Now we treat [0, ωi] as if it
is the type set, and apply exactly the same method as in the proof of Lemma 2, Lemma
3, and Proposition 4. As a result, we can conclude that on the “truncated” type set
[0, ωi], (T,R) is weakly dominated by a PBC with only one piece, which is also defined on
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[0, ωi]. Similarly, on the other half of the type set (ωi, ω̄], (T,R) is, for the same reason,
weakly dominated by a PBC with only one piece defined on (ωi, ω̄]. Therefore, on the
complete type set [0, ω̄], (T,R) is weakly outperformed by a PBC with n = 2. However,
by Proposition 4, a PBC with n = 2 can never be q-optimal, a contradiction.

A.8 Proof of Proposition 7

We first show that, (p1, p2) constitutes an equilibrium price vector only if p1 = p2. Suppose
that p1 < p2. Then, Retailer 1 can raise his price as long as it does not exceed p2 so that
customers will still buy from Retailer 1 first. Retailer 1 thus may increase his revenue
without changing the quantity sold. Hence p1 < p2 cannot happen in an equilibrium.

Therefore, in any equilibrium the two retailers share the market demand. Anticipating
this, the manufacturer will offer identical buy-back contracts to both retailers as they are
optimal for any given order quantity. Moreover, The contracts will specify cash payments
that can be satisfied only if both retailers set the highest possible prices, i.e., p1 = p2 = v.
By symmetry, q1 = q2.

Let q
1
be the solution for

∫ 2q

0

[
1

2
vω + vr(q −

1

2
ω)]dF (ω) +

∫ ω̄

2q

vqdF (ω) = ur; (24)

and q1 be the solution for∫ 2q

0

[
1

2
vω + vr(q −

1

2
ω)]dF (ω) +

∫ ω̄

2q

vqdF (ω)− vrq = ur. (25)

Then, t∗1 > 0 if and only if q1 > q
1
. When q

1
< q1 < q1, t∗1 < vrq1; when q1 ≥ q1,

t∗1 ≥ vrq1. However, contracts with t∗1 < vrq1 cannot be sustained in the equilibrium, as
retailers may secretly undercut their prices to compete with each other. Therefore, we
have to find conditions that can ensure q1 ≥ q1.

When t∗1 < vrq1 the manufacturer’s expected utility is

Eωum(T ∗1 , R
∗
1) = 2

∫ 2t∗1
v

0

[
1

2
vω +

vm
vr

(t∗1 −
1

2
vω)]dF (ω) + 2

∫ ω̄

2t∗1
v

t∗1dF (ω)− 2cq1,

where t∗1 is determined by∫ 2q1

0

[
1

2
vω + vr(q1 −

1

2
ω)]dF (ω) +

∫ ω̄

2q1

vq1dF (ω)− t∗1 = ur.
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The first-order condition is

[1− (1− vm
vr

)F (
2t∗1
v

)][v − (v − vr)F (2q1)] = c. (26)

Note that the left-hand side of (26) decreases with q1. Then, when q1 → q
1
, it

converges to v − (v − vr)F (2q
1
). By (25), when q1 = q

1
, t∗1 = 0, so we must have

q
1
≤ qFB1 , which implies

v − (v − vr)F (2q
1
) ≥ v − (v − vr)F (2qFB1 ) = c.

Therefore, (26) has a solution on [q
1
, q1] if and only if

[1− (1− vm
vr

)F (
2vrq1

v
)][v − (v − vr)F (2q1)] ≤ c. (27)

When t∗1 > vrq1, the manufacturer’s expected utility is

Eωum(T ∗1 , R
∗
1) = 2

∫ ω′′1

0

[
1

2
vω + vm(q1 −

1

2
ω)]dF (ω) + 2

∫ 2t∗1
v

ω′′1

[
1

2
vω +

vm
vr

(t∗1 −
1

2
vω)]dF (ω)

+ 2

∫ ω̄

2t∗1
v

t∗1dF (ω)− 2cq1,

where ω′′1 =
2(t∗1−vrq1)

v−vr , and t∗1 is determined by

∫ 2q1

ω′′1

[
1

2
vω + vr(q1 −

1

2
ω)]dF (ω) +

∫ ω̄

2q1

vq1dF (ω)− t∗1[1− F (ω′′1)] = ur. (28)

The first-order condition is

{1− F (ω′′1)− (1− vm
vr

)[F (
2t∗1
v

)− F (ω′′1)]}{v − (v − vr)
F (2q1)− F (ω′′1)

1− F (ω′′1)
}+ vmF (ω′′1) = c.

(29)

Similarly, the left-hand side of (29) decreases with q1, and when q1 → q1, it converges
to the left-hand side of (26); when q1 → ω̄ and ur → 0, it converges to vm. Therefore,
the first-order derivative of Eωum(T ∗1 , R

∗
1) is continuous at the cutoff q1, and when ur is

small enough, first-order conditions (26) and (29) have a unique solution q∗1. Moreover,
since the left-hand side of (27) decreases with q1, we shall have q∗1 ≥ q1 if ur is sufficiently
small. It is then straightforward to show that q∗1 < qFB1 .

We will then compare q∗1 with q∗. Let p = v in (12) and (13). Suppose that 2q∗1 ≤ q∗.
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Then by comparing (12) with (28), we know that 2t∗1 < t∗, and ω′′1 < ω′1. Since

v − (v − vr)
F (2q∗1)− F (ω′′1)

1− F (ω′′1)
> vr,

the left-hand side of (29) is larger than the left-hand side of (13), a contradiction. There-
fore, 2q∗1 > q∗.
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