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Abstract

Price discrimination in real-world settings is likely based on imperfect information. I

analyse a homogenous goods framework where firms receive binary and noisy signals

about consumer valuations and consumers engage in sequential search. Firms have

no information about consumers’ search histories. In this framework, the existence of

on-path search can be understood as an imperfect screening device that firms employ

to the detriment of consumers. Firm profits and equilibrium prices are highest in the

unique symmetric pure-strategy equilibrium with search on the equilibrium path, as

compared to any other symmetric pure-strategy equilibrium. The equilibrium with

on-path search can only be sustained when search costs are at an intermediate level.

At low search costs, an equilibrium is played in which there is no on-path search, but

consumers use the threat of searching to ensure low prices. High levels of signal pre-

cision are detrimental to consumers by facilitating existence of the equilibrium with

on-path search.
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1 Introduction

The issue of price discrimination gains relevance with every year that passes in the digital

age. Both the amount of data that consumers generate online and the ability of firms to

use this information profitably is rising over time. These ideas, together with the increasing

amount of empirical evidence for price discrimination on online markets 1, generate urgency

for economists to fully understand how to protect consumers in such settings. A key issue

in this endaveour is the notion that the information which firms use to price discriminate

is likely imperfect. Consumer preferences are both erratic and latent - because of this, the

prediction of preferences is noisy by construction. The issue of price discrimination based

on imperfect information in competitive settings is the focus of this paper.

I study the above issues in a theoretical framework where consumers have to acquire con-

sumption opportunities via sequential search and the size of consumer choice sets is thus

endogenous. The analysis of imperfect price discrimination has close ties to the modelling

of optimal consumer search decisions, both from an applied and a theoretical standpoint.

Firstly, consumer search choices play an important role in real-world settings such as online

markets where it is likely that price discrimination is particularly relevant. To understand

outcomes on such markets and guide policy, it is thus instructive to consider endogenous

search choices. Secondly, price discrimination based on noisy information presents a theo-

retical explanation of equilibrium search in settings where consumers are fully aware of their

preferences before searching and all consumers have strictly positive search costs. This is

particularly relevant when considering markets where consumers repeatedly buy the same

or similar goods, such as the market for commercial flight tickets.

I formalize the above ideas in the following framework: There is a unit mass of consumers

who each want to buy at most one unit of an indivisible and homogenous good. This prod-

uct is produced by two firms that each have zero marginal costs of producing the good.

Consumers have heterogenous valuations for the good. These valuations are private infor-

mation to each consumer and are drawn independently from the unit interval according to

a distribution that is common knowledge. While the first search is costless, searching an

additional firm after that incurs strictly positive search costs. Consumers pick the first firm

they visit randomly - this is without loss of generality when considering a homogenous goods

framework and restricting attention to symmetric equilibria.

1Contributions such as Mikians et al. (2012) and Escobari et al. (2019) provide rigorous evidence for
this.
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When a firm is visited by a consumer, this firm receives an informative binary signal about

the true valuation of this consumer. The probability distribution of the signal depends only

on the consumer’s valuation and nothing else. I define the signal realization which becomes

more likely to occur when a consumer’s valuation rises as the high signal and the other signal

as the low signal. A firm knows nothing about any consumer’s search history. Consumers

have perfect recall and firms commit to the prices they have offered to a given consumer. A

firm’s pure strategy is thus a price tuple (pL, pH) that consists of a low signal price pL that

is offered to all consumers who generate the low signal and a high signal price pH that is

offered to the rest. When studying symmetric pure-strategy equilibria, it is without loss of

generality to restrict attention to equilibria where pL < pH .

Initially, I consider a simplified version of this framework with a simple step-function distri-

bution of the signal. I assume that the probability to generate the high signal is 1 − σ for

any agent with a valuation below 0.5 and σ for any agent with a valuation above 0.5. In

the following, I refer to consumers with valuation above and below 0.5 as high-valuation and

low-valuation consumers, respectively. The parameter σ, which I call information precision,

is the probability that the binary signal correctly identifies whether a consumer is in the

upper or the lower half of the valuation spectrum. In this game, there are three potential

symmetric pure-strategy equilibrium candidates: Two of these potential equilibrium candi-

dates do not feature search on the equilibrium path, namely the monopoly equilibrium and

what I refer to as the search deterrence equilibrium. In the monopoly equilibrium, firms

choose the prices they would offer to consumers when search is prohibitively costly. In the

search deterrence equilibrium, the high signal price is set in such a way that the consumers

with the highest incentives to search are just indifferent between searching and not searching.

I refer to the unique equilibrium with on-path search as the search equilibrium. The search

equilibrium is characterized by the following key results: Firstly, no consumer with a valua-

tion above the high signal price pH can search on the equilibrium path. If this condition were

to be violated, there would exist a strictly positive measure of consumers with a valuation

above pH who are offered the high signal price at multiple firms. This group of consumers

would create an undercutting motive that eliminates any such pure-strategy equilibrium.

Secondly, there exists a non-degenerate interval of prices above the low signal price pL for

which no consumer would move on to search. Moreover, any consumer that arrives after

searching would buy the good when offered a price in this interval. These two results shape

the structure of the search equilibrium: When setting the high signal price, the sale is not
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made to any consumer that arrives after searching. By contrast, the sale is made to all

consumers who arrive after searching when offering the low signal price.

The monopoly equilibrium exists if and only if low valuation consumers, who have the

greatest incentives to search in this equilibrium, do not search on path. This implies that

the monopoly equilibrium exists when search costs are comparatively high and when signal

precision is relatively low. Perhaps surprisingly, the search equilibrium only exists for inter-

mediate search costs. Existence of this equilibrium requires that low-valuation consumers

search on the equilibrium path, while high-valuation consumers do not. This scenario is

possible because high valuation consumers have lower incentives to search at equilibrium

prices, given that the probability of generating the low signal is smaller for them. If search

costs become too small, incentives to search for high valuation consumers become too large

to sustain this equilibrium. The search deterrence equilibrium, in which there is no on-path

search, exists when search costs are low. Existence of this equilibrium is based on the feature

that high-valuation consumers can credibly promise to search at the monopoly high signal

price and at prices slightly below this, which requires low search costs. It turns out that only

one of the three aforementioned equilibria exists for almost all of the parameter combinations.

I show that the search equilibrium features the highest prices and the highest firm prof-

its of all equilibria. In other words, the presence of equilibrium search coincides with higher

prices and firm profits, as compared to the equilibria without search. This has two reasons:

Firstly, equilibrium search requires that low-valuation and high-valuation consumers system-

atically differ in their equilibrium search behaviour. Equilibrium search is thus beneficial

to firms because it offers them an imperfect screening device. Secondly, equilibrium search

essentially offers firms in the industry a ”second chance” to make the sale to consumers that

could not purchase at an initial price offer. This ”second chance” allows firms to generate

additional profits from these consumers who would not have purchased the good in an equiv-

alent equilibrium without on-path search.

The effects of an increase in search costs are non-monotonic and depend fundamentally

on the equilibrium that is being played and whether the parameter change induces a shift

of the equilibrium that is being played. Moreover, the relationship of search costs and the

volume of equilibrium search is non-monotonic. Starting off at low levels of search costs

for which the search deterrence equilibrium is played, an increase of search costs increases

the high signal price while leaving the low signal price unaffected. The high signal price

increases because the ability of consumers to restrict firm pricing by threatening to search
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is reduced. There exists a threshold level of search costs at which an increase of search

costs eliminates the search deterrence equilibrium and the search equilibrium will be played.

When this happens, both equilibrium prices will jump up discontinuously. In the search

equilibrium, a further increase of search costs has no effects on the high signal price but

benefits consumers by reducing the equilibrium low signal price. This effect is driven by the

fact that any consumer who arrives at a firm after searching generates locally price inelastic

demand for this firm at the equilibrium low signal price.

The effects of increases in the signal precision parameter σ on prices are similarly non-

monotonic. Higher information precision reduces the low signal price in any equilibrium

that is being played. This is because greater signal precision implies that less consumers

search on path and that those consumers who generate the low signal have a lower average

valuation. In addition, increases of signal precision also reduce the high signal price in the

search deterrence equilbrium. This is because a rise in information precision increases the

incentives to search for low-valuation consumers. However, high information precision may

also be detrimental to consumers. This is because the interval of search costs for which the

search equilibrium can be supported as a perfect Bayesian equilibrium expands as informa-

tion precision increases.

This baseline analysis shows that the effects of search costs and information precision are

highly non-monotonic in the markets I describe. Moreover, observing that consumers acquire

a large choice set via search is not necessarily an indicator for thriving competition in a mar-

ket nor a reflection of low search costs. Instead, such an equilibrium outcome may simply

represent an imperfect screening device for firms in an industry. To further add credibility

to these ideas, I generalize my framework after completing the aforementioned analysis by

studying general signal distributions. I show that two conditions are sufficient to reproduce

the above results in general settings. The first condition is that the signal distribution is

continuously differentiable. The second condition ensures that the set of valuations that

would search on the equilibrium path is always convex.

The rest of the paper proceeds as follows. I lay out the related literature in section 2.

In section 3, I set up the model and provide initial results. In section 4, I solve the baseline

model described above. Section 5 is devoted to the analysis of generalized versions of this

model. Section 6 concludes.
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2 Related literature

My work connects to the extensive literature that exists on price discrimination, such as

Villas-Boas (1999), Fudenberg & Tirole (2000), and Acquisti & Varian (2005). More specif-

ically, my work has ties to the theoretical contributions which study price discrimination

based on imperfect information in a monopoly setting, such as Aron et al. (2006), Belle-

flamme & Vergote (2016), de Cornière & Montes (2017), Koh et al. (2017), and Valletti &

Wu (2020). In contrast to all these papers, I study a setting with competition.

In addition, my work is not just a model of price discrimination but also a model of en-

dogenous search. Thus, it is related to the developing strand of theoretical research which

connects price discrimination to endogenous consumer search choices. A keystone of this

literature is the work of Fabra & Reguant (2020), who study a simultaneous search setting

where consumers are heterogenous in their search costs and the quantity of the good they

desire. Importantly, all consumers have the same valuation for the good. Firms observe

the consumer’s desired quantity and update beliefs about the consumer’s search behaviour.

Price discrimination then occurs based on these notions.

Following the ideas of Fabra & Reguant (2020), other papers have started to examine the role

of price discrimination based on ex-ante consumer heterogeneity in search models. Crucially,

all these papers study a setting where firms receive information about the search costs of

consumers or the size of the choice sets consumers are endowed with. By contrast, I study

a setting where firms receive noisy signals about consumer valuations and all consumers

are endowed with the same search technology. Mauring (2021) and Atabak (2021) study

a setting with shoppers and non-shoppers as defined in Burdett & Judd (1983) and Stahl

(1989). Mauring (2021) and Atabak (2021) assume that firms receive imperfect information

about the affiliation of a particular consumer to the groups of shoppers and non-shoppers.

Armstrong & Vickers (2019) study a setting where firms face exogenously captive and non-

captive consumers and receive information about this status. Bergemann et al. (2020) study

a homogenous goods setting where competing firms receive imperfect information about a

consumer’s search technology and the number of price offers a consumer obtains or has pre-

viously obtained.

My work is also related to the following papers which study settings where competing firms

receive noisy or partial information about consumer valuations. My work fundamentally

differs from all these papers in the sense that I study a model with endogenous search,
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while the following papers do not. Esteves (2014) studies a Hotelling-style framework where

firms receive noisy information about the continuous horizontal preference parameters of

consumers. Peiseler et al. (2018) consider an infinite repetition of a stage game that is very

similar to the one analysed in Esteves (2014). Within this framework, the authors anal-

yse under what conditions collusion can be sustained over time. Clavorà Braulin (2021)

studies a horizontal differentiation setting where consumer preferences vary in two dimen-

sions. In Clavorà Braulin (2021), firms have perfect information about the realizations of

one dimension of consumer preferences, but not both. Importantly, all these papers assume

that the market is fully covered, i.e. that all consumers will purchase the good in equilibrium.

Finally, Belleflamme et al. (2020) study a setting with homogenous goods where firms have

access to an imperfect profiling technology. The technology they consider differs fundamen-

tally from the one I consider. In Belleflamme et al. (2020), a firm either knows a consumer’s

valuation perfectly or knows nothing at all about a consumer. In my setup, a firm knows

something about all consumers that visit the firm, but this information is always noisy.

3 Framework

I study a model that incorporates price discrimination based on noisy information into a

sequential search setup. There is a unit mass of consumers indexed i, who each want to buy

at most one unit of an indivisible good. There are 2 firms indexed j ∈ {1, 2} active in the

market who each have a marginal cost equal to 0. A firm is free to offer a different price

to any consumer that visits the firm. Goods are homogenous and a given consumer i has

a valuation of νi ∈ [0, 1] for the good of any firm. These valuations are private information

to each consumer and are known by the consumer at the beginning of the game. The

distribution of these valuations, which is identical for all consumers, is common knowledge.

Consumers maximize expected utility. When a consumer i buys the good at price p, the

utility of the consumer is:

u(νi, p) = νi − p (1)

Consumers visit firms by sequential search. After realizing their valuations, consumers ran-

domly visit some firm first. This incurs no costs to the consumers. The firm that is visited

first offers a price to the consumer. After having received this price, a consumer decides

whether or not she wants to visit an additional firm, i.e. to search. Searching the second

firm implies that the consumer incurs a fixed cost equal to s > 0. The firm that is visited

second then also offers the consumer a price. After this, the consumer decides from which
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firm to buy the product, or not to buy the good from either firm. The assumption that

a consumer randomly chooses which firm to visit first is without loss of generality when

considering symmetric equilibria in a setting with homogenous goods.

When a firm j is visited by a consumer i, this firm receives a binary signal ν̃i,j ∈ {ν̃L, ν̃H}
about the true valuation of this consumer. The signal probability distribution is expressed

by Pr(ν̃H |νi). Note that the signal probability distribution only depends on νi and nothing

else. In particular, the signals ν̃i,j and ν̃i,−j which the two firms j and −j receive for a given

consumer i are independent, conditional on νi. I assume that Pr(ν̃H |νi) is a weakly increas-

ing function. I label the signal ν̃H , which becomes more likely as a consumer’s valuation

increases, as the high signal and the other signal ν̃L as the low signal.

A firm knows nothing about any consumer’s search history. In particular, a firm j does

not know its’ position in the search queue of any consumer. This assumption allows me to

put the spotlight on the role of imperfect information about preferences. Consumers are

fully aware of all the prices they have received from any firm they have visited. Moreover,

when a consumer visits a firm, decides to search, and returns back to the firm, the consumer

can purchase the good at the price that was initially offered to her without further cost.

I focus on deriving symmetric pure-strategy perfect Bayesian equilibria. A consumer’s pure

strategy consists of a search strategy and a purchasing strategy. Sequential rationality im-

plies that the consumer’s search strategy must also be optimal off-path, i.e. for prices pj

that the consumer would not be offered if firms play their equilibrium strategies. A firm’s

pure strategy is a mapping p : {ν̃L, ν̃H} → R. There are no relevant off-path decisions for

firms.

Any symmetric pure-strategy equilibrium in the above game is characterized by the fol-

lowing result:

Proposition 1 In a symmetric pure strategy equilibrium (pL, pH) with pH > pL, the set

of consumers that search on the equilibrium path and have a valuation νi ≥ pH must have

measure 0.

Suppose, for a contradiction, that there is a strictly positive measure of consumers that

search on the equilibrium path and have νi ≥ pH . Because goods are homogenous, such a

consumer can only search on the equilibrium path after receiving pH . No consumer would

have incentives to search after receiving the low signal price. Thus, the consumers that search
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on-path must have received pH at the first firm they visited - this implies that Pr(ν̃H |νi) > 0

must hold true for them. Thus, they would also be offered the price pH with positive

probability at the firm they visit second. This means that there exists a set of consumers

with positive measure who receive the high price at both firms and who would buy the good

at this price. This creates an undercutting motive which eliminates the equilibrium. Note

that there exists no equivalent undercutting motives for the low price pL because consumers

never search when being offered this price.

4 Baseline model:

4.1 Setup and monopoly solution

Consider the following special case of the model outlined above: The valuations of the

consumers are uniformly distributed and the signal follows a step-function distribution with

precision parameter σ, where the following holds:

Pr(ν̃H |νi) =

σ νi ≥ 0.5

1− σ νi < 0.5
(2)

I assume that σ > 0.5, which indicates that the signal is informative. In the following, I

refer to the setting I have just described as the ”baseline setting”.

Pinning down the profits and optimal prices when firms have monopoly power is instructive

to understand the competitive equilibrium. Note that monopoly power could be reached,

for instance, when s→∞. I denote ΠM(pj; ν̃) as the expected profits a firm with monopoly

power obtains from a consumer that generates the signal ν̃ ∈
{
ν̃L, ν̃H

}
at their firm when of-

fering them a price pj. In this setting, these functions are strictly concave almost everywhere

and optimal prices in such a setting are pinned down by the following lemma:

Lemma 1 Consider the baseline setting and suppose that s→∞. The optimal low and high

signal prices are given by:

pL,M = argmax
pj

ΠM(pj; ν̃
L) = 1/4σ (3)

pH,M = argmax
pj

ΠM(pj; ν̃
H) = 0.5 (4)

The monopoly low signal price pL,M is falling in σ. A more precise signal, which is reflected
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by an increase of σ, implies that the average valuation of consumers that generate the low

signal decreases. This means that the optimal price that would be offered to these consumers

falls. The fact that the high price pH,M is independent of the information precision parameter

σ follows from the distributional assumptions on Pr(ν̃H |νi). Notice also that pL,M < pH,M

holds true because the signal is informative.

4.2 Search

Having established this, I move on to characterize the competitive equilibrium. The starting

point for doing this is pinning down the sequentially rational search behaviour. In what

follows, I will drop the index i which refers to a given consumer. Consider a symmetric

equilibrium price tuple where the price pL (the low signal price) is set when observing the

low signal and the price pH (the high signal price) is set when observing the high signal.

Assume, for now, that pL < pH .

A consumer that has initially received a price pj ≤ pL will never search, since the gains

of search are necessarily 0. Thus, consider the decision situation of a consumer who has

initially received a price pj ∈ [pL, pH ]. This consumer will find it strictly optimal to search

if and only if:

Pr(ν̃L|ν) max{ν − pL, 0}+ Pr(ν̃H |ν) max{ν − pj, 0} − s > max{ν − pj, 0} (5)

I assume that a consumer will only search if it is strictly optimal to do so. Any consumer

with ν ≤ pL would never search. Moreover, this equation can be rewritten as:

Pr(ν̃L|ν) max{ν − pL, 0} − s > Pr(ν̃L|ν) max{ν − pj, 0} (6)

Note that the RHS of this equation is always weakly positive. A consumer with current price

offer pj ∈ (pL, pH ] can thus only search if the following necessary condition is satisfied:

Pr(ν̃L|ν) max{ν − pL, 0} − s > 0 ⇐⇒ ν > pL +
s

Pr(ν̃L|ν)
(7)

Notice that this condition is independent of the best price the consumer currently has in

hand. A consumer can only search on-path if her valuation satisfies condition (7). Given

that the probability to generate the low signal varies discontinuously around ν = 0.5, the

structure of this necessary condition varies around this threshold.
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Now consider prices pj ∈ (pH , 1), i.e. off-equilibrium prices. A consumer will find it strictly

optimal to search if and only if:

Pr(ν̃L|ν) max{ν − pL, 0}+ Pr(ν̃H |ν) max{ν − pH , 0} − s > max{ν − pj, 0} (8)

For a consumer with ν ≤ pH , the necessary condition for search to occur at prices pj ∈ (pH , 1]

is the same as the necessary condition for on-path search laid out in condition (7). For

consumers with ν > pH , the necessary condition for search at prices pj ∈ (pH , 1] is potentially

less strong and given by:

ν > Pr(ν̃L|ν)pL + Pr(ν̃H |ν)pH + s (9)

Having established this, we are ready to pin down sufficient conditions for search. I define a

cutoff price function p̂(ν) such that a consumer with valuation ν will find it strictly optimal

to search if and only if the current price pj satisfies pj > p̂(ν). Consider first consumers with

a valuation ν that satifies neither necessary condition outlined above. For these consumers,

p̂(ν) = ∞ holds, which means that they will never search. The cutoff prices of consumers

that fulfil one of the necessary conditions outlined above depend on the equilibrium under

consideration. For example, when pH ≥ s/(1 − σ) + pL, the cutoff price of consumers with

ν > 0.5 is given by:

p̂(ν) = pL +
s

1− σ
(10)

When pH < s/(1− σ) + pL, the cutoff price of these consumers is given by:

p̂(ν) = (1− σ)pL + σpH + s (11)

4.3 Equilibria

This section is devoted to the characterization of the symmetric pure-strategy perfect Bayesian

equilibria that exist in the baseline setting. I first characterize the types of pure-strategy

equilibria that can exist in the following proposition:

Proposition 2 Consider the baseline setting. A symmetric pure-strategy equilibrium with

search on the equilibrium path must satisfy:

pL < pH = pH,M (12)

A symmetric pure-strategy equilibrium without search on the equilibrium path must satisfy
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one of the following expressions:

(pL, pH) = (pL,M , pH,M) (13)

(pL, pH) = (pL,M , s/σ + pL,M) (14)

The above result shows that there are three types of pure-strategy equilibria that are possi-

ble in the model that I have outlined. Firstly, there potentially exists an equilibrium with

search on the equilibrium path. Such an equilibrium must satisfy condition (12). I show later

that there exists a unique candidate for this equilibrium, which I then refer to as the search

equilibrium. In addition, there are exactly two candidates for a pure-strategy equilibrium

without on-path search. I label these equilibria as follows: The price vector (pL,M , pH,M) is

labelled the monopoly equilibrium, and the price vector (pL,D, pH,D) = (pL,M , s/σ + pL,M) is

labelled the search deterrence equilibrium. Note also that the low signal price must always

be strictly below the high signal price in any symmetric pure-strategy equilibrium.

In the search deterrence equilibrium, the high signal price is set in such a way that con-

sumers with valuations ν ∈ (s/σ + pL, 0.5) are exactly indifferent beween searching and

not searching.2 These consumers generate the low signal and are offered the low price with

probability σ > 0.5. This means that they have greater incentives to search at equilibrium

prices than consumers with ν > 0.5, which implies that there will be no on-path search in

the search deterrence equilibrium. Note further that consumers with ν ∈ (s/σ + pL, 0.5)

would search and never return if offered a price pj > s/σ + pL.

Having established this, I move on to characterize when each of these equilibria exist. I

start with the equilibria that do not feature search on the equilibrium path. To do so, define

ΠC(pj; ν̃) as the expected profits a firm in a competitive setting obtains from a consumer

that generates the signal ν̃ ∈
{
ν̃L, ν̃H

}
when offering the consumer a price pj.

Proposition 3 Consider the baseline setting. The price tuple (pL,M , pH,M) can be supported

in perfect Bayesian equilibrium if and only if:

0.5 ≤ s

σ
+ pL,M =

s

σ
+

1

4σ
(15)

By contrast, the price tuple (pL,D, pH,D) = (pL,M , s/σ + pL,M) can be supported in perfect

2Consumers with ν < s/σ + pL do not fulfil the necessary conditions for search.
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Bayesian equilibrium if and only if the following two conditions jointly hold:

0.5 > (1− σ)pL,D + σpH,D + s (16)

ΠC((1− σ)pL,D + σpH,D + s; ν̃H) ≤ ΠM(pH,D; ν̃H) (17)

The condition laid out in equation (15) is both necessary and sufficient for existence of the

monopoly equilibrium. This inequality is equivalent to the property that the cutoff price

p̂(ν) of any consumer is above pH,M = 0.5. If this holds true, there will be no search on

the equilibrium path and monopoly profits are an upper envelope for the profits that can be

attained in this equilibrium. Since both prices maximize monopoly profits after the respec-

tive signal, there will be no deviations. Condition (15) is also necessary for existence of the

monopoly equilibrium. If this condition is violated, some consumers would search at these

prices, which would create incentives for an upward deviation from the equilibrium low price.

As discussed previously, there will not be on-path search in the search deterrence equi-

librium. Moreover, this equilibrium must satisfy:

pH,D =
s

σ
+ pL,D < 0.5 (18)

A high signal price above 0.5 can not be supported in an equilibrium without search, since

there would be a downward deviation to the monopoly price pH,M = 0.5. That inequality

(18) holds is guaranteed by condition (16). Furthermore, the search deterrence equilibrium

can only be supported when all agents with ν > 0.5 would search upon being offered the

monopoly high signal price pH,M = 0.5. Condition (16) is also sufficient for this to hold

true. Suppose, for a contradiction, that consumers with ν > 0.5 would not search when

being offered the monopoly high signal price in the search deterrence equilibrium. Then,

this deviation would grant the firm monopoly profits. Because there is no on-path search in

this equilibrium and monopoly high signal profits have a strict optimum at pH,M , deviating

to the monopoly high signal price would be profitable, breaking the initial equilibrium.

It remains to check other profitable deviations from the equilibrium prices. There exist

no profitable deviations from the low signal price, since there is no on-path search and pL,D

maximizes monopoly profits. By an analogous logic, there exist no profitable downward de-

viations from pH,D since pH,D < pH,M . Now consider deviation prices pj > pH,D. Setting such

a price triggers search by all consumers with ν ∈ (s/σ + pL,D, 0.5). In addition, consumers
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with ν > 0.5 would move on to search if and only if:

pj > (1− σ)pL,D + σpH,D + s (19)

The term (1− σ)pL,D + σpH,D + s is the search price cutoff p̂(ν) of consumers with ν > 0.5.

Note that condition (16) implies that this cutoff price is strictly below 0.5, which is neces-

sary for existence of the search deterrence equilibrium. Note further that any consumer who

leaves firm j to search will never return. Thus, setting a price above (1−σ)pL,D +σpH,D + s

will yield zero profits. In addition, any price in the interval (pH,D, (1−σ)pL,D +σpH,D + s) is

dominated by setting the price pj = (1− σ)pL,D + σpH,D + s. At any such price, consumers

with ν ≤ 0.5 will surely not buy at the firm while the sale is surely made to all consumers

with ν > 0.5. A deviation to the price pj = (1− σ)pL,D + σpH,D + s is not profitable if and

only if condition 17 holds true.

This completes the characterization of the conditions which guarantee existence of the equi-

libria without search on the equilibrium path. I thus turn my attention to the equilibrium

candidate which features search on the equilibrium path. In this equilibrium, the mass of

agents that search on the equilibrium path and the equilibrium prices are determined jointly.

Firstly, I pin down the sequentially rational search behaviour in such an equilibrium in the

following lemma:

Lemma 2 Consider the baseline setting. A symmetric pure-strategy equilibrium (pL, pH)

with search on the equilibrium path must satisfy:

s

σ
+ pL < 0.5 ≤ s

1− σ
+ pL (20)

In such an equilibrium, the sequentially rational consumer search behaviour is given by:

p̂(ν) =



∞ ν ∈ [0, s/σ + pL]

s/σ + pL ν ∈ (s/σ + pL, 0.5]

∞ ν ∈ (0.5, σpH + (1− σ)pL + s]

σpH + (1− σ)pL + s ν ∈ (σpH + (1− σ)pL + s, 1]

(21)

It was previously shown that any equilibrium with on-path search must satisfy pL < pH = 0.5.

Moreover, agents with ν > 0.5 = pH cannot search on the equilibrium path in a symmetric

pure-strategy equilibrium of the above form. The inequality 0.5 ≤ s/(1−σ)+pL is equivalent

to this property. Intuitively, this holds true when 1−σ is comparatively small, which means
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that agents with ν > 0.5 have a relatively small chance of generating the low signal and

being offered the low signal price. Moreover, an equilibrium with search on path must have

a property which guarantees that on-path search is optimal for some agents. As indicated

above, consumers with ν ∈ (s/σ + pL, 0.5) will have a cutoff price equal to:

p̂(ν) = pL +
s

σ
(22)

The inequality s/σ + pL < 0.5 thus guarantees that there exists an interval of consumers

with ν ∈ (s/σ + pL, 0.5) who will search when being offered the price pH = 0.5.

Having established the properties of the sequentially rational search behaviour in an equi-

librium with on-path search, I now move on to characterize profits. This is necessary to pin

down a closed form solution for the low signal price in such an equilibrium. Note that firms

form beliefs over three consumer characteristics: (i) the true valuation of the consumer, (ii)

the consumer’s search queue, and (iii) the price the consumer has received from the other

firm (if any). In the search equilibrium, the profit functions of a firm (after any signal)

can be split into three distinct segments. Before describing these, I define the density of

consumers with valuation ν that arrive at a firm in position k ∈ {1, 2} as fk(ν). Because the

first search is random and valuations are drawn from the uniform distribution, fk(ν) = 0.5

holds true for both k ∈ {1, 2}.

Firstly, suppose that a firm j sets a price pj ∈ (0, s/σ+pL). By lemma (2), no consumer that

arrives at firm 1 first would move on to search when receiving such a price. Thus, a consumer

that arrives at firm j first buys at firm j if and only if ν ≥ pj. By lemma (2), consumers

that arrive at firm j second must have generated the high signal (and thus received the high

price pH = 0.5) at firm −j and must have ν ∈ (s/σ + pL, 0.5].

Recall further that s/σ + pL < 0.5 = pH must hold in an equilibrium with search. Thus,

when firm j offers consumers who arrive at this firm second a price pj ∈ (0, s/σ + pL),

any such consumer would thus surely buy the good at firm j. In this price interval, the

demand implied by these consumers is thus fully inelastic. For prices pj ∈ (0, s/σ+ pL), the

competitive profit functions ΠC(pj; ν̃
k) are given by:

ΠC(pj; ν̃
k) = pj

∫ 1

pj

f 1(ν)Pr(ν̃k|ν)dν︸ ︷︷ ︸
ΠM (pj ;ν̃k)

+pj

∫ 0.5

s/σ+pL
f 2(ν)Pr(ν̃k|ν)Pr(ν̃H |ν)dν︸ ︷︷ ︸

Mk(σ,s;pL)

(23)
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Note that the first term on the right-hand side is just equal to the monopoly profits at this

price (for the given signal). The second term is the mass of people that arrive at firm j after

searching and generate the signal ν̃, multiplied by the price. Observe that I have defined:

ML(σ, s; pL) =

∫ 0.5

s/σ+pL
f 2(ν)Pr(ν̃L|ν)Pr(ν̃H |ν)dν (24)

Profits in the price interval pj ∈ (s/σ + pL, 0.5) are not of fundamental importance and are

only relevant when checking for potential deviations.

Now consider prices in the interval pj ∈ [0.5, σpH + (1 − σ)pL + s]. Any consumer that

arrives at firm j after searching would not buy the good at firm j when being offered such a

price. However, no consumer that arrives at firm j first and has ν > 0.5 would move on to

search at these prices. Thus, profits are equal to monopoly profits, i.e:

ΠC(pj; ν̃) = pj

∫ 1

pj

f 1(ν)Pr(ν̃|ν)dν (25)

A natural candidate for an equilibrium high signal price would be the global maximizer of

this function, namely the monopoly high signal price pH,M . By proposition 2, we know that

this price is the unique high signal price that can be supported in a perfect Bayesian equi-

librium with on-path search. In the price interval pj ∈ [σpH + (1− σ)pL + s, 1], profits will

be zero, because all consumers leave to search and never return.

Given that the equilibrium low signal price must satisfy pL ∈ [0, s/σ + pL] and competi-

tive profits are continuously differentiable in this interval, the lower price pL must be a fixed

point of the following first-order condition:

∂ΠM(pj; ν̃
L)

∂pj

∣∣∣∣
pj=pL

+ML(σ, s; pL) = 0 (26)

Strict concavity of the monopoly low signal profit function ΠM(pj; ν̃
L) in the interval [0, 0.5]

implies that there is a unique solution to this equation (if a solution that satisfies the prop-

erties laid out in lemma 2 exists), which is given by:

pL,S =
1 + (1 + 2s)σ − σ2 − 2s

4(1.5σ − 0.5σ2)
(27)
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Evaluating this first-order condition shows that the price pL must solve the following:

pL = pL,M +
M(σ, s; pL)

σ
(28)

Thus, the equilibrium low signal price will be higher in a competitive equilibrium with on-

path search than the monopoly low signal price pL,M . We also know that the high signal

price pH must equal the monopoly high signal price pH,M = 0.5 in an equilibrium with search.

Moreover, the previous insights imply that equilibrium profits in the search equilibrium are

pinned down by the following expressions.

ΠC(pL; ν̃L) = ΠM(pL; ν̃L) + pLML(σ, s; pL) (29)

ΠC(pH ; ν̃H) = ΠM(pH ; ν̃H) (30)

The following proposition defines when the search equilibrium can be supported as a perfect

Bayesian equilibrium:

Proposition 4 There is a unique pure-strategy equilibrium candidate (pL,S, pH,S) with search

on the equilibrium path, where pL,S is given by equation (27) and pH,S = pH,M = 0.5.

This price tuple constitutes a perfect Bayesian equilibrium (together with the sequentially

rational search behaviour given in lemma 2) if the following conditions both hold:

3σ − 1− 2σ2

10σ − 2− 4σ2
< s ≤ 0.5σ − 0.25 (31)

ΠC(s/σ + pL; ν̃H) ≤ ΠM(0.5; ν̃H) (32)

Moreover, firm profits are always stricly higher in the search equilibrium than in the monopoly

equilibrium and in the search deterrence equilibrium.

Uniqueness of the equilibrium follows from previous arguments. Equation (31) is obtained

when plugging the equilibrium prices into equation (20). In addition, it needs to be en-

sured that there are no profitable deviations from equilibrium prices. In the baseline model,

monopoly profits for either signal are an upper envelope for competitive profits in the price

interval pj ∈ (s/σ+pL, 0.5). There is not necessarily an analogous property in the generalized

settings I study later. Moreover, monopoly profits for either signal are an upper envelope for

the respective competitive profits in the price interval pj ∈ (0.5, 1). Now consider possible

deviations from the low signal price pL,S. Recall that the equilibrium low signal price in the

search equilibrium is higher than the monopoly low signal price. Note further that low signal
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profits in the price interval pj ∈ (0, pL + s/σ] were given by the following expression:

ΠC(pj; ν̃
L) = ΠM(pj; ν̃

L) + pjM
L(σ, s; pL) (33)

Because pL,M < pL,S, equation (33) implies that competitive profits when setting pL,M are

higher than the monopoly profits when setting this price. Moreover, recall that pL,S must

maximize ΠC(pj; ν̃) in the interval pj ∈ [0, s/σ + pL,S]. These two notions imply that the

profits a firm obtains from consumers that generate the low signal are higher in the search

equilibrium than in the monopoly outcome.

This result is already noteworthy as such - it means that firms obtain higher profits in an

equilibrium where consumers have more firms in their choice set. Moreover, it is very useful

when checking deviations. Because monopoly low signal profits are an upper envelope for

competitive low signal profits at all prices pj ∈ (s/σ+pL, 1) and ΠC(pL,S; ν̃L) > ΠM(pL,M ; ν̃L)

no profitable deviations from the competitive low price exist. By an analogous logic, one

can show that the most profitable deviation from the high signal price would be to the price

pj = s/σ + pL. Equation 32 formalizes the notion that this deviation is not profitable.

This result that firm profits are highest in the search equilibrium has important conse-

quences. It breaks the positive link between the size of consumers’ choice sets and the

degree of competition. As a corollary, it suggests that observing a large volume of search on

a market may not be beneficial to consumers. Instead, equilibrium search may just act as

an imperfect screening device that additionally allows firms multiple chances to make a sale

to a given consumer.

I visualize the existence results pinned down in propositions (3) and (4) in the following

graph, where I plot realizations of signal precision (σ) on the x-axis and realizations of

search costs (s) on the y-axis. Blue dots indicate existence of the monopoly equilibrium,

yellow dots indicate existence of the search equilibrium, and the dark green dots indicate

existence of the search deterrence equilibrium. Light green dots indicate that both the search

and the search deterrence equilibrium exist. In the red-shaded areas, no equilibrium exists.
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Figure 1: Equilibrium existence in the baseline model

The relationship between parameters and the existence of equilibria is based on the following

ideas: The monopoly equilibrium exists if and only if no consumers search at the price tuple

(pL,M , pH,M). This property holds true if and only if consumers with ν ≤ 0.5, who have the

highest probability to generate the low signal, have no incentives to search at these prices.

The incentives to search for these agents are falling in search costs and rising in information

precision. Thus, this equilibrium exists when search costs are relatively high or information

precision is relatively low.

The search equilibrium requires that some consumers with ν < 0.5 would search when

offered the price pH,M = 0.5, but consumers with ν ≥ 0.5 would not search at this price.

Such an outcome is possible because incentives to search at equilibrium prices are lower for

consumers with ν ≥ 0.5 than for consumers with ν ∈ (s/σ + pL, 0.5). In order for said

outcome to be an equilibrium, search costs must be in an intermediate range. Then, search

costs are low enough such that consumers with ν ∈ (s/σ + pL, 0.5) would optimally search

at the price pH,M , but also high enough to ensure that consumers with ν ≥ 0.5 do not search

on path. The possible range of search costs that can support this equilibrium shrinks as

information precision falls. This is because the difference inbetween the search calculus of

consumers with ν < 0.5 and those with ν ≥ 0.5 becomes smaller as signal precision falls.

Now consider the search deterrence equilibrium. Recall that the equilibrium high price was

based on making consumers with ν ∈ (s/σ+ pL,D, 0.5) exactly indifferent between searching

and not searching. By contrast, existence of this equilibrium is determined by the search

incentives of agents with ν > 0.5. Existence of this equilibrium requires that consumers with
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ν > 0.5 can credibly promise to search when being offered the monopoly high signal price.

Moreover, existence of the equilibrium requires that the cutoff price of these consumers is

sufficiently far away from 0.5. This is necessary to ensure that a deviation from the high

signal price to this cutoff price is not profitable.

The interval of search costs under which this equilibrium can be supported is greatest for

intermediate levels of information precision. This is because the effect of information preci-

sion on search incentives is non-linear. Fixing equilibrium prices, higher levels of σ reduce

the search incentives of agents with ν > 0.5. This is because greater levels of information

precision imply that these agents are more likely to generate the high signal and receive the

high signal price. On the other hand, higher levels of σ reduce the equilibrium prices pL,D

and pH,D, which raises incentives to search.

Finally, it remains to explain the regions where both the search deterrence and the search

equilibrium exist and the regions where no equilibrium exists. In the region where no equi-

librium exists for low levels of information precision, search costs are too high to support

the search deterrence equilibrium. Moreover, the search equilibrium cannot be supported

since there exist profitable deviations from the high signal price. In the light green region in

the middle of the graph, both the search deterrence and the search equilibrium exist. This

follows from the fact that equilibrium prices are lower in the search deterrence equilibrium,

which means that incentives to search are higher in this equilibrium. This implies that

consumers with ν > 0.5 can effectively constrain prices with the threat of searching in this

equilibrium, but would not search at pj = 0.5 when the search equilibrium is played.

Next to this, there exists a region of parameter combinations where no equilibrium ex-

ists. In this region, consumers with ν > 0.5 would search at pj = 0.5, no matter whether

they would expect the prices (pL,D, pH,D) or the prices (pL,S, pH,S) at the firm they visit

second. This means that the search equilibrium cannot exist. However, the cutoff price of

these consumers, given the potential equilibrium price vector (pL,D, pH,D), is quite close to

pH,M = 0.5. Setting a price equal to the cutoff price of consumers with ν > 0.5 when observ-

ing the high signal thus yields deviation profits that are approximately equal to monopoly

high signal profits. Because these are higher than equilibrium high signal profits in the search

deterrence equilibrium, said deviation is profitable.
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4.4 Comparative statics

Now I investigate the comparative statics of prices and profits in any three equilibria. The

above considerations already indicate that the effects of changes in the parameters are non-

monotonous and fundamentally depend on the equilibrium that is being played.

Corollary 1 Consider the impacts of a rise in s (search costs) for fixed σ (signal precision)

and vice versa. If the search equilibrium
(
pL,S(σ, s), pH,S(σ, s)

)
is played for the parameter

vectors under consideration, then

1. The price pH,S(σ, s) is independent of s and σ, while pL,S(σ, s) is falling in s and in σ.

2. Firm profits are falling in the level of search costs.

Standard intuition regarding the effect of search costs on prices suggests the following: An

increase of search costs should reduce the number of firms an average consumer has in her

choice set, thus reducing competition, and hence raising prices and firm profits. In the search

equilibrium, both the sign of the comparative statics result and the working channel behind

it are diametrically opposed to the standard intuition.

The low signal price will fall in response to an increase of search costs. Recall that any

consumer that arrives at a firm after searching generates fully inelastic demand for this firm

at prices pj ∈ (0, s/σ + pL,S). By contrast, the demand created by consumers that arrive at

firm j first is sensitive to the price pj offered by this firm. When search costs increase, less

consumers search on the equilibrium path. Thus, the weight of consumers that arrive after

searching and generate locally inelastic demand in the low signal profit function falls. As a

consequence, the optimal low signal price falls.

The profits a firm makes from consumers that generate the low signal fall when search

costs rise. Lower search costs imply that less agents arrive at a firm after searching, which

reduces profits because these agents generate locally price-inelastic demand. The profits a

firm makes from consumers that generate the high signal are unaffected by search costs.

Now consider the search deterrence equilibrium:

Corollary 2 Consider the impacts of a rise in s (search costs) for fixed σ (signal precision)

and vice versa. If the search deterrence equilibrium
(
pL,D(σ, s), pH,D(σ, s)

)
is played for the

parameter vectors under consideration, then

1. The price pL,D(σ, s) is independent of s and is falling in σ. The price pH,D(σ, s) is

rising in search costs and is falling in σ.
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2. Firm profits are rising in the level of search costs.

Consider first the prices in the search deterrence equilibrium. The low signal equilibrium

price is equal to the monopoly low signal price, which falls in σ by previous arguments and

is independent of s. By contrast, the high price pH,D is rising in search costs. Recall that the

high price is set in a way that makes consumers with ν ∈ (s/σ+pL,D, 0.5) exactly indifferent

between searching and not searching. As s rises, their gains of search at any given price offer

fall. This implies that the price achieving indifference rises. This comparative statics result

can also be explained by market forces. When s rises from s′ to s′′, competitive profits are

now equal to monopoly profits in the interval (s′/σ + pL,D, s′′/σ + pL,D). Because the old

high signal price had to be strictly below 0.5 and monopoly profits are thus increasing at the

initial high signal price, firms will raise their high signal price in response to the rise of s.

In the search deterrence equilibrium, lower prices are not generated by an expanded choice

set of consumers. Instead, the mere threat of searching is sufficient to generate down-

ward pressure on prices. A similar reasoning lies behind the effect of an increase in infor-

mation precision σ. As σ rises, the incentives to search will increase for consumers with

ν ∈ (s/σ + pL,D, 0.5). To re-achieve indifference, the high signal price must fall. This new

equilibrium is reached via the following transitional dynamics: An increase of σ implies that

consumers with ν ∈ (s/σ + pL,D, 0.5) will now search on-path at the old price tuple. This

creates undercutting incentives for firms, who will successively reduce their high signal price

until the new equilibrium is reached.

This concludes the study of the effects of parameter changes on equilibrium prices in a

given equilibrium. Next, I study the how equilibrium prices respond to larger parameter

changes that may switch the equilibrium that is being played. When parameter changes

induce shifts in the nature of the equilibrium that is played, this has a considerable effect

on prices. In the following, I fix two levels of σ at 0.65 and 0.75 and study the equilibrium

prices under different search costs. Equilibrium prices are plotted on the y-axis while search

costs are plotted on the x-axis. The vertical green lines and the green text specify which

equilibrium is being played at a given (s, σ) combination.
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Figure 2: Search costs and prices in the baseline model

Recall the existence results laid out in the previous section. Fixing a given level of informa-

tion precision (σ), the search deterrence equilibrium will be played for low search costs s.

The search equilibrium and the monopoly equilibrium will be played for intermediate and

high levels of search costs, respectively.

The effect of search costs on prices is non-monotonic. Within the search deterrence equilib-

rium, higher search costs raise the equilibrium high price. When search costs are such that

a marginal rise of search costs ensures existence of the search equilibrium, this equilibrium

will be played, which implies a stark upward jump of prices. As is standard in many models,

an increase of search costs thus raises prices in this interval. However, the forces that drive

this result in my model are fundamentally different to the logic underlying the standard

explanation of the positive relationship between search costs and prices.

In my model, an increase of search costs goes along with a discontinuous increase of the

extent of equilibrium search when the market shifts from the search deterrence equilibrium

to the search equilibrium. Equilibrium search is induced because consumers with ν > 0.5

loose their ability to credibly promise to search when being offered the monopoly high signal

price in the search equilibrium. This leads firms to offer the monopoly high signal price to all

consumers that generate the high signal, which induces low valuation consumers to search
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on-path. As discussed before, a further increase of search costs has a favorable effect on the

lower equilibrium price within the search equilibrium.

I move on to study the effect of signal precision on prices. In the following, I fix two

levels of s at 0.02 and 0.04 and study the equilibrium prices under different levels of signal

precision. Importantly, the nature of the equilibria that exist is fundamentally different for

the two levels of search costs. For low search costs (s = 0.02), all three equilibria exist and

increases of σ carry the market from the monopoly equilibrium into the search deterrence

equilibrium and finally into the search equilibrium. For higher search costs (s = 0.04), the

search deterrence equilibrium is never the unique equilibrium. Equilibrium prices are plotted

on the y-axis while signal precision is plotted on the x-axis. As before, the green lines and

text indicate which equilibrium is being played at a given parameter combination.

Figure 3: Signal precision and prices in the baseline model

In general, increases of information precision uniformly reduce the equilibrium low signal

price. By contrast, the effect of information precision on the equilibrium high signal price is

non-monotonic. When s = 0.02, an increase of information precision reduces both prices for a

large interval of information precision because the search deterrence equilibrium is constantly

played. However, when a threshold level of information precision is surpassed, the economy

reverts back to the search equilibrium which is extremely unfavorable to consumers. These

results add nuance to the intuition that more precise price targeting must be harmful to

consumers.
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5 Generalized signal distribution

5.1 Setup and initial remarks

This section is devoted to emphasizing that the key insights of the previous simplified frame-

work also hold in more general contexts. The main points stressed by the previous model

were the following: Firstly, the presence of an imperfect, but informative signal about con-

sumer valuations is sufficient to sustain an equilibrium with search on the equilibrium path

in certain parameter conditions. Secondly, the effect of search costs and information pre-

cision on prices is non-monotonic. Thirdly, the search equilibrium exists for intermediate

levels of search costs and greater information precision shrinks the interval of search costs for

which the search equilibrium exists. By contrast, the search deterrence equilibrium requires

low search costs and the interval of search costs for which this equilibrium exists is largest

at intermediate levels of information precision. Thus, there is a non-monotonic relationship

between search costs and the degree of equilibrium search.

In the following, I show under which assumptions these results hold for generalized signal

distributions. For now, I only assume that Pr(ν̃H |ν) is weakly increasing in ν.

5.2 Equilibrium analysis

Proposition 1 still holds in any generalized setting of the model framework I consider. In a

pure-strategy equilibrium p := (pL, pH) with pL < pH , all consumers that arrive at a firm

after searching can not buy at the high price pH .

Recall that the previous discussion of optimal search first pinned down a necessary con-

dition for search in terms of a consumer’s valuation and then moved on to define sufficient

conditions. Mirroring these insights, I define the set V̂ (pL), which pins down what consumers

can search on the equilibrium path. This set is defined as follows:

V̂ (pL) =

{
ν ∈ [0, 1] : Pr(ν̃L|ν) max{ν − pL, 0} > s

}
(34)

A consumer can search on the equilibrium path if and only if her valuation ν is in the set

V̂ (pL). Define further that S(pL, pH) is the set of consumer valuations that search on the

equilibrium path, with ν := inf S(pL, pH), and ν̄ = supS(pL, pH). The properties of these

sets are pinned down by the following lemma:

Lemma 3 Consider a pure-strategy equilibrium (pL, pH). The following must hold:
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• Pr(ν̃L|ν)(ν−pL)−s = 0 must hold when ν = inf V̂ (pL), which implies that inf V̂ (pL) >

pL. Moreover, the function Pr(ν̃L|ν)(ν − pL) must be continuous at ν = inf V̂ (pL).

• The set of consumer valuations that search on the equilibrium path (ignoring measure

zero sets) is V̂ (pL) ∩ [pL, pH ]. Thus, ν = inf V̂ (pL).

The first result has mostly technical relevance. Intuitively, it holds because any jumps in

Pr(ν̃L|ν) at points of discontinuities must always be downwards by the assumption that

Pr(ν̃H |ν) is weakly increasing in ν. The second result is useful to pin down the measure of

people that search on the equilibrium path. The following lemma establishes useful connec-

tions between the optimal search and consumption choices:

Lemma 4 Consider a pure-strategy equilibrium (pL, pH). The following must hold:

• All consumers that arrive after search would buy at firm j when this firm offers them

a price pj ≤ ν.

• No consumer would search after receiving a price pj ≤ ν.

By lemma 3, all consumers that arrive after searching must have a valuation above ν. The

fact that any consumer arrives after searching requires that the set S(pL, pH) is not empty,

which in turn requires that ν < pH . Together, these notions imply the first result. To under-

stand the second result, recall the definition of the price cutoff function p̂(ν): A consumer

with valuation ν will search if and only if she receives an initial price offer pj > p̂(ν). Note

that any consumer with ν ∈ S(pL, pH) has a cutoff price p̂(ν) > ν. Together with the fact

that inf S(pL, pH) = ν, this notion implies the second result.

These two lemmas imply that the structure of profits around any equilibrium low signal

price mirrors the structure of this function in the baseline model, even for general settings.

Consider an equilibrium with on-path search. The demand that is implied by searchers is

also fully inelastic around the equilibrium low price in these generalized settings. In other

words, there must exist an interval of prices pj ∈ [0, ν] that includes pL in its interior where

the profit functions satisfy the following stucture:

ΠC(pj; ν̃
k) = pj

∫ 1

pj

f 1(ν)Pr(ν̃k|ν)dν + pjM
k(p) (35)

Note that Mk(p) is defined as follows:

Mk(p) =

∫
ν∈S(pL,pH)

Pr(ν̃H |ν)Pr(ν̃k|ν)f 2(ν)dν (36)
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The term ML(p) thus represents the mass of consumers that arrive at a firm after searching

and generate the low signal. Before moving forward, recall that the set of valuations that

searched on the equilibrium path in the baseline model was S(pL, pH) = [s/σ + pL, 0.5] and

inf V̂ (pL) = s/σ + pL. Thus, the high price in the search deterrence equilibrium satisfied

pH = inf V̂ (pL). The set of possible equilibria that can exist in generalized settings is also very

similar to the set of equilibrium candidates in the baseline model under weak assumptions.

This is formalized in the following result:

Proposition 5 Consider the set of symmetric pure strategy equilibria. Suppose that the

probability function Pr(ν̃H |ν) is continuous on ν ∈ [0, 1]. The lower equilibrium price must

be characterized by the following expression:

∂ΠM(pj; ν̃
L)

∂pj

∣∣∣∣
pj=pL

+ML(p) = 0 (37)

The equilibrium high price must satisfy one of the following expressions:

∂ΠM(pj; ν̃
H)

∂pj

∣∣∣∣
pj=pH

= 0 (38)

Pr(ν̃L|pH)(pH − pL)− s = 0 (39)

If the function Pr(ν̃H |ν) is once continuously differentiable, there is a unique solution to

equation (38). Suppose further that:

(i) g(ν) := Pr(ν̃L|ν)(ν − pL) − s is a quasiconcave function in the interval [0, pH,M ] for

any pL ∈ [0, pH,M ].

(ii) Pr(ν̃H |0.5) = 0.5 holds true.

(iii) In any equilibrium, g(ν) = 0 =⇒ g′(ν) 6= 0.

Then, there are at most two potential equilibrium high signal prices that solve equation (39)

but not equation (38), namely pH = inf V̂ (pL) and pH = sup V̂ (pL) ∩ [0, pH,M).

This proposition characterizes the set of potential symmetric pure-strategy equilibria. The

equilibrium low price must satisfy expression (37) because the profit function in the interval

of prices pj ∈ [0, ν], which includes pL, is differentiable and satisfies the structure laid out in

equation (35). If the first order condition given in (37) is violated, there would surely exist

a profitable deviation to another price within the interval [0, ν].
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Given that competitive profits are equal to monopoly profits at pH , a natural candidate

for the equilibrium high signal price is the monopoly high signal price. Now consider

an equilibrium candidate that does not satisfy this first-order condition. Suppose that

Pr(ν̃L|pH)(pH − pL) − s > 0. By continuity of Pr(ν̃L|ν), there would exist an open in-

terval of valuations above pH for which a consumer would search at pH , which yields a

contradiction. Suppose alternatively that Pr(ν̃L|pH)(pH − pL) − s < 0. Then, competitive

profits are equal to monopoly profits in an open ball around pH . If the price pH does not

satisfy the first-order condition, it cannot be an equilibrium. Hence, the only possible can-

didate high signal price that does not satisfy the monopoly FOC must satisfy equation (39).

Assume that the regularity conditions laid out in proposition 5 hold. Then, the following

equilibria exist:

• The search equilibrium, where pL satisfies the FOC laid out in equation 37 and pH =

argmax ΠM(pj; ν̃
H).

• The monopoly equilibrium, where pL = argmax ΠM(pj; ν̃
L) and pH = argmax ΠM(pj; ν̃

H).

• The search deterrence equilibrium, where pL = argmax ΠM(pj; ν̃
L) and pH = inf V̂ (pL).

• An equilibrium where pL satisfies the FOC laid out in equation 37 and pH = sup V̂ (pL)∩
[0, pH,M)

The only new equilibrium candidate is the fourth one, which I will refer to as the constrained

search equilibrium. The numerical simulations that follow highlight that this equilibrium

candidate is extremely unlikely to actually exist, because two conflicting forces are necessary

to support this as a perfect Bayesian equilibrium. First, no consumer with a valuation above

pH can search on the equilibrium path. However, any equilibrium must satisfy pH < pH,M

under plausible assumptions on the signal distribution such as Pr(ν̃H |0.5) = 0.5. To avoid

the existence of a profitable upward deviation towards pH,M , enough agents with valuation

in the interval ν ∈ (pH , pH,M) need to search for prices slightly above pH . However, these

consumers cannot search at price pH . Given the continuity of the signal probability distri-

bution, these forces fundamentally conflict.
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5.3 Numerical results

In the following numerical simulations, I will consider signal distributions that take the

following form:

Pr(ν̃L|ν) = σ

(
1− 1

1 + ek(0.5−ν)

)
+ (1− σ)

(
1

1 + ek(0.5−ν)

)
(40)

For k → ∞, this distribution is for all intents and purposes equal to the one used in the

baseline setting. Lower values of k amount to making the signal distribution more linear,

while the parameter σ governs the upper and lower bounds of the probability distribution.

In the following, I plot this distribution for different values of σ and k.

Figure 4: General signal distributions

The precision of a binary signal can be seen as the probability that the signal correctly iden-

tifies whether a consumer is in the upper or the lower part of the valuation interval. Under

this interpretation, signal precision is rising both in k and σ.

In the following, I study different parameter combinations and show when the aforemen-

tioned equilibria exist. As of now, I have not found any parameters for which the constrained

search equilibrium actually exists. A given graph always corresponds to a fixed level of σ. I

consider two values of σ, namely σ ∈ {0.75, 0.85}, in the following analysis. On the x-axis,

different levels of k are being plotted. On the y-axis, different levels of s are plotted. As

before, the different colors indicate existence of a given equilibrium. The search deterrence

equilibrium exists at green points, the search equilibrium exists at yellow points, and the
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monopoly equilibrium exists at blue points. Red points indicate that none of these equilibria

exist and a yellow dot with a green border indicates that both the search and the search

deterrence equilibrium exist.

Figure 5: Existence for general signal distributions

The general trends outlined previously are being confirmed. The search deterrence equilib-

rium exists for low search costs, the search equilibrium exists for intermediate search costs,

and the monopoly equilibrium exists for high search costs. Both the search equilibrium and

the search deterrence equilibrium exist for substantial parameter ranges even when k is in

the region [25, 40], at which the signal distribution is relatively linear.

High levels of information precision facilitate existence of the search equilibrium. Shifting σ

from 0.85 to 0.75 and decreasing k shrinks the interval of search costs for which the search

equilibrium exists. There is a potential issue of equilibrium non-existence when search costs

are too high to support the search deterrence equilibrium but not high enough to support

the search equilibrium. This issue is particularly relevant at high values of k and disappears

as the signal probability distribution becomes more linear in the valuation.

Finally, I plot the comparative statics effects of an increase of search costs, fixing levels

of k and σ. I consider σ = {0.75, 0.85} and k ∈ {30, 50}. A given figure corresponds to a

given level of σ, and a given plot within a figure corresponds to a fixed level of k. On the

x-axis, different search costs are plotted, while equilibrium prices are plotted on the y-axis.

Consider first σ = 0.75.
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Figure 6: Prices and search costs in general settings - I

Now consider σ = 0.85:

Figure 7: Prices and search costs in general settings - II

The comparative statics effects of an increase in search costs mirror those in the baseline

setting.

6 Conclusion

I have studied price discrimination based on imperfect information in markets where con-

sumers engage in sequential search to obtain price offers. Whenever a consumer visits a

firm, this firm receives a binary and informative signal about the consumer’s valuation. A
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firm observes nothing else for any consumer and offers a consumer a price purely based on

the signal the consumer has generated. I have first considered a simplified version of this

framework where the distribution of the signal is a step-function. I have highlighted that

different parameter combinations give rise to fundamentally different equilibria. This im-

plies that the role of search costs and information precision in such markets is highly nuanced.

Importantly, my results offer a strong rebuttal of the idea that observing a high level of

equilibrium search is equivalent to high levels of competitive pressure. It crucially matters

what kinds of consumers choose to search. When only a select group of consumers search,

the presence of equilibrium search may simply offer firms an effective screening tool which

generates higher equilibrium prices and firm profits. In the unique equilibrium with search

on the equilibrium path, profits and prices are higher than in any other equilibrium, includ-

ing the monopoly equilibrium that is attained when search is prohibitively costly.

The effect of search costs on equilibrium prices is non-monotonic. When search costs are

small, increases of search costs lead to increased prices, akin to standard results. When

search costs cross a certain threshold, the equilibrium that is being played switches. This

leads to an upward jump in prices. Afterwards, a further increase of search costs reduces

prices. The effect of information precision is similarly nuanced. On the one hand, high levels

of information precision facilitate existence of the search equilibrium in which prices are

highest. However, increased levels of information precision reduce both prices when search

costs are low and reduce the lower equilibrium price in any equilibrium.

31



A Proofs:

A.1 Proof of proposition 1

The proof of this result mirrors the discussion in the text.

A.2 Proof of lemma 1

Suppose that s → ∞, which de facto makes both firms into monopolists. Since the first

search is random, the profit functions are:

ΠM(pj; ν̃
k) = pj

∫ 1

pj

f(νi = ν, r∗i,j = 1, ν̃i,j = ν̃k)dν = 0.5pj

∫ 1

pj

f(νi = ν, ν̃i,j = ν̃k)dν

. Note that:

f(νi = x, ν̃i,j = ν̃L) =

(1− σ)fν(x) , if x ≥ 0.5

(σ)fν(x) , if x < 0.5

f(νi = x, ν̃i,j = ν̃H) =

(σ)fν(x) , if x ≥ 0.5

(1− σ)fν(x) , if x < 0.5

Evaluation of ΠL(pj):

Plugging all this back into the function ΠL(pj) yields the following with pj < 0.5:

ΠL(pj) = 0.5pj

[
σ

∫ 0.5

pj

fν(x)dx+ (1− σ)

∫ 1

0.5

fν(x)dx

]
= 0.5pj

[
0.5− σpj

]
The derivative of this w.r.t pj, when pj < 0.5, is:

∂ΠL(pj)

∂pj

∣∣∣∣
pj<0.5

= 0.5[0.5− σpj] + 0.5pj[−σ] = 0.25− 0.5σpj − 0.5σpj = 0.25− σpj

Let’s evaluate the sign of this derivative:

∂ΠL(pj)

∂pj

∣∣∣∣
pj<0.5

< 0 ⇐⇒ 1− 4σpj < 0 ⇐⇒ pj >
1

4σ

∂ΠL(pj)

∂pj

∣∣∣∣
pj<0.5

= 0 ⇐⇒ 1− 4σpj = 0 ⇐⇒ pj =
1

4σ
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This is the optimum of this function in the interval [0, 0.5) when σ > 0.5. Now, we need to

examine this function at pj ≥ 0.5:

ΠL(pj) = 0.5pj

[
(1− σ)

∫ 1

pj

fν(x)dx

]
= 0.5(1− σ)pj[1− pj]

The derivative of this w.r.t pj at prices weakly above 0.5 is:

∂ΠL(pj)

∂pj

∣∣∣∣
pj≥0.5

= 0.5(1− σ)(1− 2pj) < 0 ⇐⇒ pj > 0.5

Hence, this function is a parabola that has a maximum at p∗ = 1/4σ and is decreasing in all

directions as you move away from there.

Evaluation of ΠH(pj):

Now, let’s repeat this for the other function:

ΠH(pj) = pj

∫ 0.5

pj

0.5(1− σ)fν(x)dx+ pj

∫ 1

0.5

0.5(σ)fν(x)dx

If pj < 0.5, the value of this function is:

ΠH(pj) = 0.5pj(1− σ)[0.5− pj] + 0.5pj(σ)[0.5]

Let’s take the derivative of this w.r.t pj:

∂Π(pj)

∂pj

∣∣∣∣
pj<0.5

= 0.5(1− σ)[0.5− 2pj] + 0.5(σ)[0.5] = 0.25(1− σ)− (1− σ)pj + 0.25σ =

0.25− (1− σ)pj > 0 ⇐⇒ pj <
0.25

1− σ
Note that:

1− σ ≤ 0.5 ⇐⇒ 2 ≤ 1

1− σ
⇐⇒ 0.25

1− σ
≥ 2(0.25) = 0.5

This implies that this function is rising as long as pj < 0.5 if σ > 0.5, so there cannot be a

maximum here. Thus, I consider ΠH(pj) on the interval where pj ≥ 0.5:

ΠH(pj) = 0.5(σ)[pj − p2
j ]
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The derivative of this w.r.t. pj is:

0.5(σ)[1− 2pj] < 0 ⇐⇒ pj > 0.5

This means that the maximum of this function is at pj = 0.5.

A.3 Proof of proposition 2

Possible equilibrium category 1: p = pL = pH .

In such an equilibrium, there is no search on path because there are zero incentives to

search but positive costs of doing so. Thus, no consumer would arrive at any firm j after

search.

Since search costs are strictly positive, there exists an interval of prices pj ∈ [p, p+ ε] where

consumers would not search. Thus, no equilibrium with p < 0.5 can be supported, since an

upward deviation would be optimal when observing the high signal.

Consider instead a price p ≥ 0.5. Since pL,M < 0.5 holds true, there would be a prof-

itable downward deviation. No consumer would move on to search.

Possible equilibrium category 2: pH < pL.

A consumer with ν > pH will search after an initial price pj ∈ [pH , pL] if and only if:

Pr(ν̃H |ν)(ν − pH) + Pr(ν̃L|ν) max{ν − pj, 0} − s > max{ν − pj, 0}

Moreover, search after an initial price pj > pL is optimal if and only if:

Pr(ν̃H |ν)(ν − pH) + Pr(ν̃L|ν) max{ν − pL, 0} − s > max{ν − pj, 0}

Note that Pr(ν̃H |ν) = 1− σ and later Pr(ν̃H |ν) = σ , i.e. for ν > 0.5.

(i) pL > 0.5

Consider the search calculus of an agent with ν ∈ [0.5, pL] that receives a price pj ≤ pL.

σ(ν−pH)+(1−σ) max{ν−pj, 0}−s > max{ν−pj, 0} ⇐⇒ σ(ν−pH)−s > σmax{ν−pj, 0}
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An agent with ν > pL that receives a price pL will search iff:

σ(ν − pH) + (1− σ)(ν − pL)− s > (ν − pL) ⇐⇒ σ(ν − pH)− s > σ(ν − pL)

⇐⇒

pL > pH +
s

σ
⇐⇒ σ(pL − pH) > s

Suppose:

σ(pL − pH)− s > 0

This yields a direct contradiction since agents with ν > pL will search, which breaks the

equilibrium by proposition 1. Suppose alternatively that:

σ(pL − pH) ≤ s

Thus, for all agents with ν ∈ [0.5, pL], we have that:

σ(ν − pH) < σ(pL − pH) ≤ s

This means that all these consumers cannot search at prices pj ∈ [0.5, pL]. Moreover, con-

sumers with ν > pL would also not search.

In this price interval, profits would thus equal monopoly profits. No other consumer would

search at equilibrium prices, since:

(1− σ)(pL − pH) < σ(pL − pH)

Thus, there is a profitable downward deviation.

(ii) pH < pL ≤ 0.5

Assume that the following condition holds:

(1− σ)(pL − pH)− s > 0 =⇒ σ(pL − pH)− s > 0

Consider agents with ν > 0.5 > pL, who will search at price pj = pL if and only if:

(σ)(ν − pH) + (1− σ)(ν − pL)− s > (ν − pL) ⇐⇒ σ(pL − pH) > s
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Thus, these consumers will search at pj = pL, which breaks the equilibrium. Thus, it must

hold that:

(1− σ)(pL − pH)− s ≤ 0 =⇒ pL ≤ pH +
s

1− σ
Now consider agents with ν ∈ [pH , 0.5], who search for prices pj ≤ pL if and only if:

(1− σ)(ν − pH)− s > (1− σ) max{ν − pj, 0}

Agents with ν ∈ [pH , pL] have a negative LHS, i.e. won’t search. For the rest, the cutoff

price is interior and above pL, (this means search won’t occur at this price), i.e.:

p̂(ν) = pH +
s

1− σ
≥ pL

Moreover, no consumer with ν > 0.5 can search when being offered a price pj = pL. Thus,

no consumers search when being offered the price pL.

A deviation to this price is profitable after the high signal since pL ≤ 0.5 and monopoly

profits after the high signal are rising in this price interval.

Possible equilibria category 3: pL < pH

The fact that σ > 0.5 implies that:

s

σ
+ pL <

s

1− σ
+ pL

Case 1: Suppose that s/σ + pL < 0.5.

(i) pH < s/σ + pL.

Let’s define optimal consumer search behaviour:

Consider consumers with ν ∈ [pH , 0.5]:

At prices pj ≥ pH , search occurs iff:

Pr(ν̃L|ν)(ν − pL) + Pr(ν̃H |ν) max{ν − pH , ν − pj, 0} − s > max{ν − pj, 0}
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⇐⇒

Pr(ν̃L|ν)(ν − pL) + Pr(ν̃H |ν)(ν − pH)− s > max{ν − pj, 0}

⇐⇒

ν − σpL − (1− σ)pH − s > max{ν − pj, 0}

Solving for the cutoff price in this interval of valuations yields that:

p̂(ν) = σpL + (1− σ)pH + s

Let’s investigate whether this is above pH :

σpL + (1− σ)pH + s > pH ⇐⇒ σ(pL − pH) + s > 0 ⇐⇒ pL +
s

σ
> pH

In the price interval pj ∈ [pH , σpL+(1−σ)pH +s], no consumer would search. For consumers

with ν > 0.5 > pH , the price cutoff will also surely be above pH . Why? Consider the search

calculus of these agents for prices pj ∈ [pL, pH ]:

Pr(ν̃L|ν)(ν − pL) + Pr(ν̃H |ν) max{ν − pj, 0} − s > max{ν − pj, 0} ⇐⇒

(1− σ)(ν − pL)− s > (1− σ)(ν − pj)

The potential cutoff price would be:

p̂(ν) = pL +
s

1− σ
> pL +

s

σ
> pH

Thus, their cutoff price would be equal to:

p̂(ν) = (1− σ)pL + σpH + s > (σ)pL + (1− σ)pH + s > pH

Thus, profits are equal to monopoly profits in this price interval interval.

Because pH < s/σ + pL < 0.5, monopoly profits are increasing in this price interval. Thus,

an upward deviation is profitable.

(ii) pH = s/σ + pL: Could potentially be an equilibrium, deviations will be checked later.

(iii) pH ∈ (s/σ + pL, 0.5).
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Consider a consumer with ν ∈ (pH , 0.5). Such a consumer would search at price pH if

and only if:

Pr(ν̃L|ν)(ν − pL) + Pr(ν̃H |ν)(ν − pH)− s > (ν − pH)

⇐⇒

σ(−pL)− s > σ(−pH) ⇐⇒ pH > pL +
s

σ

This holds true for all such consumers. Thus, all these consumers would search at pH , which

breaks the equilibrium.

(iv) pH > 0.5:

Consider a price pH > 0.5. Note that all consumers with ν < 0.5 would have a cutoff

price equal to:

p̂(ν) = pL +
s

σ
< 0.5 < pH

Note that all consumers with ν ∈ (0.5, pH) will have the following price cutoff, supposing

that this price cutoff is weakly below pH .

p̂(ν) = pL +
s

1− σ

Suppose that pH ≤ pL + s
1−σ . Then, the price cutoff of consumers with ν > 0.5 is:

p̂(ν) = (1− σ)pH + σpL + s ≥ pH

Then, a downward deviation would be immidiately optimal since consumers with ν ∈ (0.5, 1)

would not move on to search for prices below pH .

Thus, suppose that pH > pL + s
1−σ and now consider consumers with ν ∈ (pH , 1). These

agents will find it strictly optimal to search when receiving the price pH if and only if:

Pr(ν̃L|ν)(ν − pL) + Pr(ν̃H |ν) max{ν − pH , 0} − s > max{ν − pH , 0} ⇐⇒

Pr(ν̃L|ν)(ν − pL)− s > Pr(ν̃L|ν)(ν − pH) ⇐⇒ pH > pL +
s

1− σ
This implies that these agents will search on the equilibrium path, which breaks the equilib-

rium.
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Case 2: Suppose that s/σ + pL > 0.5. This implies:

σ(0.5− pL) < s =⇒ (1− σ)(0.5− pL) < s

(i) pH < 0.5.

Note firstly that this implies that pH < s/σ + pL

Consider any consumer with ν ∈ (pH , 0.5). If the cutoff price of these consumers is be-

low pH , it equals:
s

σ
+ pL

We know this cannot be true by assumption. The resulting cutoff price for these consumers

would be:

p̂(ν) = σpL + (1− σ)pH + s > pH ⇐⇒ σpL + s > σpH ⇐⇒ pL +
s

σ
> pH

This holds true by assumption. Moreover, the cutoff price for ν > 0.5 , which has to be

above pH as well, will be even higher. Thus, you would have an optimal marginal upward

deviation since profits are monopoly profits up until this interval.

(ii) pH ∈ (0.5, 1]

For these prices, only the search behaviour of agents with ν > 0.5 is relevant, since all

other agents cannot buy.

Suppose:

0.5 < pH ≤ pL +
s

1− σ
Now consider consumers with ν ∈ [0.5, 1]. For prices pj = 0.5 which is a better deal than

pH , search occurs iff:

(1− σ)(ν − pL)− s > (1− σ)(ν − 0.5) ⇐⇒ 0.5 > pL +
s

1− σ

Thus, none of these consumers will search when being offered pj = 0.5. A downward devia-

tion to pj = 0.5 is profitable.
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Suppose instead that:

pH > pL +
s

1− σ
Consider consumers with ν > pH . Suppose pj = pH . These consumers will search because:

Pr(ν̃L|ν)(ν − pL)− s > Pr(ν̃L|ν)(ν − pH) ⇐⇒ pH > pL +
s

1− σ

This breaks the equilibrium.

Possible equilibria

Sofar, we have obtained that an equilibrium must either satisfy pH = pH,M or pH = pL+s/σ.

In the second equilibrium, there will be no on-path search.

Why? Suppose that pL = 1/4σ and pH = s/σ + pL.

It must hold that

pL +
s

σ
< 0.5

Since pH = pL + s
σ
, consumers with ν ≤ 0.5 will not search at pH = s/σ + pL. Instead,

consumers with ν ∈ (s/σ + pL, 0.5) will search for prices above pH .

Note that consumers with ν > 0.5 will not search at pH by the following logic:

(1− σ)(ν − pL)− s < (1− σ)(ν − pH) ⇐⇒ pH <
s

1− σ
+ pL

If there is no on-path search, the only optimal solution for the low price is pL = pL,M . Setting

pL > pL,M is not optimal, since a downward deviation to pL,M is optimal.

Setting pL < pL,M is also not optimal since sequentially rational search implies that marginally

raising the price above pL will not trigger search. Strict concavity of the monopoly profit

functions then implies the result.

Thus, there are two equilibria without search on path.

An equilibrium with search must thus satisfy pH = pH,M and pL < pH by initial arguments.
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A.4 Proof of proposition 3

(i) Monopoly equilibrium

In the monopoly equilibrium, pL = 1/4σ and pH = 0.5. At pH , no agent may search,

i.e. all agents must have a cutoff price above 0.5. This requires:

0.5 ≤ s

σ
+

1

4σ
<

s

1− σ
+

1

4σ

Consider any consumer with ν ≤ 0.5. This consumer will search at pH = 0.5 if and only if:

σ(ν − pL)− s > σmax{ν − 0.5, 0}

Search requires that the LHS is positive, i.e.

ν >
s

σ
+ pL

This cannot be true. Note that if the above condition is violated, you will be able to find

agents that will search, which makes pL not optimal. Now examine consumers with ν > 0.5.

These agents will not search at pH iff:

(1− σ)(ν − pL)− s ≤ (1− σ){ν − 0.5, 0} ⇐⇒ 0.5 ≤ s

1− σ
+ pL

This holds by assumption. There are no deviations in terms of prices, as competitive profits

are below monopoly profits everywhere.

(ii) Search deterrence equilibrium:

In this equilibrium, pL = 1/4σ and pH = s/σ + pL.

We have already proven that there will not be search on-path. Now let’s check possible

deviations. There are no deviations from the low price. There is no search on-path, which

means that monopoly profits are an upper envelope for competitive profits.

Consider deviations from pH . There will not be any profitable deviations to pj < pH , since

profits are equal to monopoly profits here. Monopoly profits are rising in this price interval

since pH = s/σ + pL < 0.5 holds true.
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First consider a deviation to pj = 0.5. To ensure that this is not profitable requires that

all consumers with ν ≥ 0.5 will move on to search at this price. Suppose that they do not

search - then, profits at pj = 0.5 will equal monopoly profits. Since equilibrium prices are

also monopoly profits, the deviation is profitable. Thus, all consumers with ν ≥ 0.5 must

search at pj = 0.5.

Thus, the following must hold for all ν > 0.5:

(1− σ)(ν − pL) + σ(ν − pH)− s > (ν − 0.5) ⇐⇒ 0.5 > (1− σ)pL + σpH + s

Note that this condition is independent of ν, so long as ν > 0.5.

Moreover, the above condition implies that the initial condition that pH < 0.5 holds true.

We can repeat this argument for generic prices pj > pH to pin down the cutoff price of

these consumers as:

p̂(ν) = (1− σ)pL + σpH + s ∈ (pH , 0.5)

By a similar logic, no deviations to prices pj ∈ ((1 − σ)pL + σpH + s, 1) will be profitable,

since profits will be zero as all consumers move on to search and never return.

Now consider price deviations in the interval pj ∈ (pH , (1 − σ)pL + σpH + s). This in-

terval is non-degenerate.

In this interval of prices, all consumers with ν ≤ 0.5 will search and will not return. All

consumers with ν ≥ 0.5 do not search at these prices and buy directly. Thus, the best

deviation price is pj = (1− σ)pL + σpH + s, since profits are rising at these prices.

When setting this price, the firm will only make the sale to consumers with ν ≥ 0.5 -

but the sale will be made to all these consumers. Thus, profits from the deviation are:

ΠC((1− σ)pL + σpH + s; ν̃H) =

(
(1− σ)pL + σpH + s

) ∫ 1

0.5

Pr(ν̃H |ν)(1)(0.5)dν = 0.25σ
(
(1− σ)pL + σpH + s

)
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By contrast, equilibrium profits are:

ΠC,H(pj = s/σ + pL) =

(
s

σ
+ pL

)[∫ 0.5

s
σ

+pL
Pr(ν̃H |ν)(1)(0.5)dν +

∫ 1

0.5

Pr(ν̃H |ν)(1)(0.5)dν

]
=

(
s

σ
+ pL

)[
0.5(1− σ)

(
0.5− s

σ
− pL

)
+ 0.25σ

]
Thus, a necessary condition for equilibrium existence (which is then also sufficient given that

said cutoff price is below 0.5) is:(
s

σ
+ pL

)[
0.5(1− σ)

(
0.5− s

σ
− pL

)
+ 0.25σ

]
≥ 0.25σ

(
(1− σ)pL + σpH + s

)
A.5 Proof of lemma 2

We are studying an equilibrium where pL < pH = 0.5.

Ordering:

(i) Suppose:

pH = 0.5 ≤ s

σ
+ pL <

s

1− σ
+ pL

Then, no consumer will search on-path. Consider consumers with ν ≤ 0.5, who search at

pj = pH iff:

σ(ν − pL) + (1− σ)(0)− s > (0) ⇐⇒ ν >
s

σ
+ pL

Such consumers don’t exist under the above assumption.

Consider consumers with ν > 0.5, who search at pj = pH iff:

(1− σ)(ν − pL) + (σ)(ν − 0.5)− s > (ν − 0.5) ⇐⇒ 0.5 >
s

1− σ
+ pL

(ii) Suppose instead that:

0.5 >
s

1− σ
+ pL

Then, consumers with ν > 0.5 will search on path by the above logic, which breaks the

equilibrium. This pins down the ordering such a PSE needs to satisfy.
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Calculating the search process

I will pin down the optimal search process for the relevant intervals of valuations seper-

ately.

(i) ν ≤ pL

There is no price after which such a consumer would search. This implies that p̂(ν) =∞ for

these consumers.

(ii): ν ∈ (pL, 0.5):

Search is strictly optimal for prices pj ∈ [pL, pH ] if and only if:

E[ugs(pj; ν ∈ (pL, 0.5))] = σ[ν − pL] + (1− σ) max{ν − pj, 0} − s > max{ν − pj, 0}

⇐⇒

σ[ν − pL]− s > σmax{ν − pj, 0}︸ ︷︷ ︸
≤0

Since the RHS is weakly positive, a necessary condition for search to occur at these prices

is σ[ν − pL]− s > 0. If this is true, all prices pj ≥ ν will induce search and the indifference

price is pinned down by:

σ(ν − pL)− s = σ(ν − pj) ⇐⇒ p̂(ν) = pL + s/σ

Note that our assumption implies that there exist consumers with ν ∈ [pL + s/σ, 0.5] for

which this holds. For all other consumers, search is never optimal and p̂(ν) =∞.

(iii) ν > pH : Such a consumer will find it strictly optimal to search for prices pj > pL

if and only if:

σmax{ν − pH , ν − pj}+ (1− σ)(ν − pL)− s > max{v − pj, 0}

If pL < pj ≤ pH , this inequality becomes:

(1− σ)(ν − pL) + σ(ν − pj)− s > (v − pj)
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The necessary condition we need to examine now is: (1 − σ)(ν − pL) − s > 0 ⇐⇒ ν >

s/(1−σ) + pL. If this fails, search is not optimal. If this is strictly positive, we can calculate

the search cutoff in this interval of prices as:

p̂(ν) =
s

1− σ
+ pL

In order to be the correct search cutoff, this equation must be a price in [pL, pH ].

Our assumption was that 0.5 = pH < s
1−σ + pL, which means that this cannot be the

correct search cutoff. In other words, consumers will never search at these prices.

If pj > pH , the search inequality becomes:

σ(ν − pH) + (1− σ)(ν − pL)− s > max{v − pj, 0}

The relevant condition to check now is σ(ν − pH) + (1 − σ)(ν − pL) − s > 0 ⇐⇒ ν >

s+ σpH + (1− σ)pL. If this is weakly negative, you won’t search.

If this is strictly positive, you will have an interior solution for your search cutoff and:

p̂(ν) = σpH + (1− σ)pL + s

We have to verify that this is above pH :

p̂(ν) = σpH + (1− σ)pL + s > pH ⇐⇒ pH < pL +
s

1− σ

This pins down search behaviour.

A.6 Proof of proposition 4

Closed-form solution for pL:

A word on notation: fp(ν, ν̃k, ν̃i,−j = ν̃z) indicates the density of consumers with valua-

tion ν that arrive at firm j at p− th order, generate the signal ν̃k at k and ν̃z at the other

firm.

I first focus on pinning down the optimal low price pL. Until a price pj ∈ (0, s/σ + pL],
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the objective function after the low signal is:

ΠC(pj; ν̃
L) = pj

∫ 1

pj

f 1(ν, ν̃L)dν + pj

∫ 0.5

s/σ+pL
f 2(ν, ν̃L, ν̃i,−j = ν̃H)dν

To evaluate this, note the following:∫ 0.5

s/σ+pL
f 2(ν, ν̃L, ν̃i,−j = ν̃H)dν =

∫ 0.5

s/σ+pL
0.5σ(1− σ)fv(ν)dν =

[
0.5σ(1− σ)

][
(0.5− pL)− s/σ

]
= 0.5

[
(0.5− pL)(σ − σ2)− s(1− σ)

]
=

0.5

[
(0.5− pL + s)(σ)− (0.5− pL)σ2 − s

]
Define

M(σ, pL) = 0.5

[
(0.5− pL + s)(σ)− (0.5− pL)σ2 − s

]
Now, let us plug this function M(.) into the objective for the prices pj ∈ (0, s/σ + pL]:

ΠC(pj; ν̃
L) = pj

∫ 0.5

pj

σ0.5fν(x)dx+ pj

∫ 1

0.5

(1− σ)0.5fν(x)dx+ pjM(σ, pL)

Integrating up, the objective function becomes:

ΠC(pj; ν̃
L) = pj0.5σ[0.5−pj]+pj0.5(1−σ)[0.5]+pjM(σ, pL) = 0.25pj−0.5σ(pj)

2+pjM(σ, pL)

Setting the derivative equal to zero and assuming that such a solution exists in the price

interval we are examining yields:

∂ΠC(pj; ν̃
L)

∂pj
= 0 ⇐⇒ 0.5− 2σpj + 2M(σ, pL) = 0 ⇐⇒ pj =

1

4σ
+
M(σ, pL)

σ

Now let’s obtain a closed-form expression for pL in symmetric equilibrium:

pL =
1

4σ
+

[
0.5− pL + s

2
− 0.5− pL

2
σ − s

2σ

]
=

1

4σ
+ pL

[
σ

2
− 1

2

]
+

[
0.5 + s− 0.5σ

2
− s

2σ

]
⇐⇒

pL =
1

4σ
+pL[0.5(σ−1)]+

[
(1− σ)

4
+
sσ

2σ
− s

2σ

]
=

1

4σ
−0.5pL(1−σ)+

(1− σ)σ

4σ
+

2(σ − 1)s

4σ
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⇐⇒

pL + 0.5pL(1− σ) = pL(1.5− 0.5σ) =
1 + σ − σ2 − 2(1− σ)s

4σ

⇐⇒

pL =
1 + σ − σ2 − 2(1− σ)s

4σ(1.5− 0.5σ)
=

1 + (1 + 2s)σ − σ2 − 2s

4(1.5σ − 0.5σ2)

Note uniqueness of this solution.

Checking deviations from pL:

Consider first prices pj ∈ [0, s/σ + pL]. Note that the objective function is strictly con-

cave in this price range. Thus, there will be no deviations in this interval.

Consider secondly prices pj ∈ (s/σ + pL, 1]. I will show now that the monopoly profit

functions are an upper envelope for the competitive profits function for both signals.

Consider first competitve profits made from consumers that generate the signal ν̃K at firm

j for prices pj ∈ (s/σ + pL, 0.5]:

ΠC(pj; ν̃
k) < ΠM(pj; ν̃

k)

⇐⇒

pj

∫ 1

0.5

f 1(νi = ν, ν̃k)dν+pj

∫ 0.5

pj

f 1(νi = ν, ν̃i,−j = ν̃H , ν̃k)dν+pj

∫ 0.5

pj

f 2(νi = ν, ν̃i,−j = ν̃H , ν̃k)dν

<

pj

∫ 0.5

pj

f 1(νi = ν, ν̃k)dν +

∫ 1

0.5

f 1(νi = ν, ν̃k)dν

⇐⇒

pj

∫ 0.5

pj

f 2(νi = ν, ν̃i,−j = ν̃H , ν̃k)dν < pj

∫ 0.5

pj

f 1(νi = ν, ν̃i,−j = ν̃L, ν̃k)dν

⇐⇒∫ 0.5

pj

[
0.5Pr(ν̃k|ν)(1− σ)fν(ν)

]
dν <

∫ 0.5

pj

0.5Pr(ν̃k|ν)σfν(ν)dν

This equality holds since σ > 0.5.

Now consider prices pj ≥ 0.5. At these prices, the sale will not be made to any searchers. As
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long as prices are below σpH + (1− σ)pL + s, profits are exactly equal to monopoly profits.

For prices above this, profits are zero.

Thus, we have the following for all prices pj > s/σ + pL:

ΠC(pj; ν̃
L) < ΠM(pj; ν̃

L)

By constrast, note the following: For all prices pj ≤ s/σ + pL:

ΠC(pj; ν̃
L) > ΠM(pj; ν̃

L)

Moreover, one can show that the following regarding the relationship between the search

equilibrium low price and the monopoly low price.

pL =
1

4σ
+
M(σ, pL)

σ
>

1

4σ
= pL,M

Thus, pL,M < s/σ+ pL holds. Taking note of this and the fact that pL maximizes ΠC(pj) on

pj ∈ (0, s/σ + pL] then yields:

ΠC(pL; ν̃L) ≥ ΠC(pL,M ; ν̃L) > ΠM(pL,M ; ν̃L)

Since pL,M maximizes ΠM(pL,M) over the entire domain, we can also say the following for

prices pj ∈ (s/σ + pL, 1):

ΠM(pL,M ; ν̃L) ≥ ΠM(pj; ν̃
L)

These arguments together imply the following chain of inequalities for the prices pj ∈ (s/σ+

pL, 1):

ΠC(pL; ν̃L) > ΠM(pL,M ; ν̃L) ≥ ΠM(pj; ν̃
L) ≥ ΠC(pj; ν̃

L)

This completes the proof.

Checking deviations from pH = 0.5

For the interval (σpH + (1− σ)pL + s, 1], the firm’s profits will be zero.

In the interval [0.5, σpH + (1 − σ)pL + s), the firm’s profits are equal to the monopoly

profits. We know there will be no deviations into this region.
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As argued before, the firm’s profits are bounded from above by ΠM(pj) in the price in-

terval pj ∈ (s/σ + pL, 0.5). Since pH,S maximizes monopoly profits, there won’t be any

deviations into this region.

Finally, I need to show that there is no deviation to a price in the interval pj ∈ (0, s/σ+ pL].

Competitive profits in such a region are:

ΠC(pj; ν̃
H) = ΠM(pj; ν̃

H) + pj

∫ 0.5

pj

f 2(νi = ν, ν̃i,j = ν̃H , ν̃H)dν

To evaluate this, recall that ΠM(pj; ν̃
H) is rising for all prices pj ≤ 0.5. Thus, the maximum

of the above will be at pj = s/σ + pL. To evaluate this, recall that monopoly profits can be

expressed as follows that

ΠM(pj; ν̃
H) = 0.25pj − 0.5(1− σ)p2

j

Moreover, note that:

(s/σ + pL)

∫ 0.5

s/σ+pL
f 2(νi = ν, ν̃i,j = ν̃H , ν̃H)dν =

(s/σ + pL)

∫ 0.5

s/σ+pL
0.5(1− σ)(1− σ)dν = 0.5(1− σ)2(s/σ + pL)[0.5− (s/σ + pL)] =

0.25(1− σ)2(s/σ + pL)− 0.5(1− σ)2(s/σ + pL)2

Combining these yields that:

ΠC(s/σ + pL; ν̃H) = 0.25
[
1 + (1− σ)2

]
(s/σ + pL)− 0.5(1− σ)

[
1 + (1− σ)

]
(s/σ + pL)2

By contrast, monopoly profits at pH = 0.5 are:

ΠM(0.5; ν̃H) = (0.5)

∫ 1

0.5

f 1(νi = ν; ν̃H)dν ≈ (0.5)(0.5)(0.5)σ = (1/8)σ

In other words, the following inequality has to hold in order to ensure that there are no

deviations:

(1/8)σ − 0.25
[
1 + (1− σ)2

]
(s/σ + pL) + 0.5(1− σ)

[
1 + (1− σ)

]
(s/σ + pL)2 > 0

49



Checking the fundamental premise of the equilibrium:

I now characterize how the two fundamental inequalities underlying this equilibrium be-

have when plugging in equilibrium prices:

pL(σ, s) + s/σ < 0.5

⇐⇒
σ(1 + (1 + 2s)σ − σ2 − 2s)

σ(6σ − 2σ2)
+
s(6σ − 2σ2)

σ(6σ − 2σ2)
< 0.5

⇐⇒
(σ + σ2 + 2sσ2 − σ3 − 2sσ) + 6sσ − 2sσ2

σ(6σ − 2σ2)
< 0.5

⇐⇒
σ + σ2 − σ3 + 4sσ

(6σ2 − 2σ3)
< 0.5

⇐⇒

σ + σ2 − σ3 + 4sσ < 3σ2 − σ3 ⇐⇒ σ − 2σ2 + 4sσ < 0

⇐⇒

4s < 2σ − 1

⇐⇒

σ > 2s+ 0.5

Analogously, we can check validity of the second condition:

0.5 < pL(s, σ) + s/(1− σ)

⇐⇒
1 + (1 + 2s)σ − σ2 − 2s

(6σ − 2σ2)
+

s

(1− σ)
> 0.5

⇐⇒
(1 + (1 + 2s)σ − σ2 − 2s)(1− σ)

(6σ − 2σ2)(1− σ)
+

s(6σ − 2σ2)

(1− σ)(6σ − 2σ2)
> 0.5

⇐⇒
(1 + σ + 2sσ − σ2 − 2s) + (−σ − σ2 − 2sσ2 + σ3 + 2sσ)

(6σ − 2σ2)− 6σ2 + 2σ3
+

6σs− 2sσ2

(6σ − 2σ2)− 6σ2 + 2σ3
> 0.5
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⇐⇒
(1 + 4sσ − 2σ2 − 2s− 2sσ2 + σ3) + 6σs− 2sσ2

6σ − 8σ2 + 2σ3
> 0.5

⇐⇒

1 + 10sσ − 2σ2 − 2s− 4sσ2 + σ3 > 3σ − 4σ2 + σ3

⇐⇒

1 + 10sσ + 2σ2 − 2s− 4sσ2 − 3σ > 0 ⇐⇒ s(10σ − 2− 4σ2) > 3σ − 1− 2σ2

⇐⇒

s >
3σ − 1− 2σ2

10σ − 2− 4σ2

Profits in the search deterrence equilibrium vs monopoly profits.

There is no search on-path and the low prices are the same in the monopoly setting and

in the search deterrence equilibrium. Thus, low signal profits are the same.

In the search deterrence equilibrium, the firm makes the high signal profits it would make

in the monopoly setting when offering the price pj = s/σ + pL < 0. We know this must be

below the monopoly price and that monopoly profits are strictly concave in this price domain.

Thus, the monopoly price is a strict optimum and high signal profits are higher in monopoly

than in the search deterrence equilibrium.

A.7 Proof of corollary 1

Part 1: High price comparative statics:

The equilibrium high price is unaffected by search costs and signal precision.

Part 2: Low price comparative statics:

We know that that monopoly profits are weakly concave and differentiable on (0, 0.5) and

(0.5, 1).

By differentiability of monopoly profits, note that the equilibrium low price has to satisfy
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the following FOC:
∂ΠM(pj; ν̃

L)

∂pj

∣∣∣∣
pj=pL

+ML(p) = 0

Note that:

ML(pj) =

∫ 0.5

pL+s/σ

0.5Pr(ν̃H |νi)Pr(ν̃L|ν)dν = 0.5

∫ 0.5

pL+s/σ

σ(1− σ)dν

Thus, it holds that:
∂ML(pj)

∂s
< 0

Using the implicit function theorem and weak concavity of the monopoly profit function

then yields the desired result regarding the effect of search costs.

Now regarding the effect of a rise in information precision. Recall that the equilibrium

low price can be characterized as follows

T (pL, σ) = pL − 1

4σ
− M(σ, pL)

σ
= 0 ⇐⇒ T (pL, σ) = pL − 1

4σ
− 0.5

∫ 0.5

pL+s/σ

(1− σ)dν

Note that:
∂T

∂pL
= 1− (−1)0.5(1− σ) > 0

∂T

∂σ
= −−1

4σ2
−0.5

∫ 0.5

pL+s/σ

(−1)dν−(−1)(−s/σ2)0.5(1−σ) = 0.5

∫ 0.5

pL+s/σ

(1)dν+
0.25

σ2
−0.5(1− σ)s

σ2
> 0

The last inequality holds because:

0.5(1− σ)s < 0.5(1− σ) < 0.25

The result follows from application of the implicit function theorem.

Part 3: Firm profits and search costs

Competitive high signal profits are independent of s and so is the high price in the search

equilibrium. Thus, high signal profits are not affected by an increase in s.

Consider the search equilibrium. We know pL < s/σ + pL < 0.5 must hold, which im-

plies that the competitive objective function is continuously differentiable around pL. Thus,
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the following FOC must hold:
∂ΠC(pj; ν̃

L)

∂pj

∣∣∣∣
pj=pL

= 0

This result directly allows for the application of the envelope theorem. The effect of a rise

in search costs on low signal profits runs only through the direct impact on M , which is

negative.

A.8 Proof of corollary 2

Prices and comparative statics in the search deterrence equilibrium:

In the search deterrence equilibrium, it holds that pL,D = 1
4σ

, pH,D = s/σ + pL,D.

The equilibrium low price is uanffected by search costs and falls in σ.

The equilibrium high price rises in s and falls in σ.

Firm profits in the search deterrence equilibrium.

There is no search on-path and a rise in s does not affect pL,D. Thus, this rise in search costs

has no effect on the low signal profits.

For a higher s, pH,D will be higher. We know monopoly high signal profits are rising in

prices in this interval. Since high signal profits in the search deterrence equilibrium are

equal to monopoly high signal profits, profits must be higher.

A.9 Proof of lemma 3:

Part 1: Define the following:

g(ν) := Pr(ν̃L|ν)(ν − pL)− s

The first part requires that limν↑xg(ν) ≥ g(x) ≥ limν↓xg(ν). By the limit rule for products,

we have:

lim
ν↑x

Pr(ν̃L|ν)(ν − pL) = lim
ν↑x

Pr(ν̃L|ν) lim
ν↑x

(ν − pL) = lim
ν↑x

Pr(ν̃L|ν)(x− pL) ≥
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Pr(ν̃L|x)(x− pL) ≥

lim
ν↓x

Pr(ν̃L|ν)(x− pL) = lim
ν↓x

[
Pr(ν̃L|ν)(ν − pL)

]
This implies the desired result.

Now I need to show that Pr(ν̃L|ν)(ν − pL) − s = 0. Define ν = inf V̂ (pL), and note

that:

V̂ (pL) =

{
Pr(ν̃L|ν)(ν − pL)− s > 0

}
Suppose that g(ν) = Pr(ν̃L|ν)(ν − pL)− s > 0. We know that limν↑xg(ν) ≥ g(ν). By defi-

nition of limits, ν cannot be the infimum then, since it would not constitute a lower bound.

Now suppose that Pr(ν̃L|ν)(ν − pL) − s < 0. We know that limν↓xg(ν) ≤ g(ν) < 0.

By definition of limits, any point just above ν would also be a lower bound, which means we

cannot have an infimum at ν.

Next, I need to show continuity. Assume, for a contradiction, that limν↑νg(ν) > g(ν) = 0.

This is a contradiction to the fact that ν is an infimum.

Assume, for a contradiction, that g(ν) > limν↓νg(ν). We can show that this would be a

contradiction to the infimum definition as well, since a point just above ν would also be a

infimum. This prooves continuity.

Part 2:

Search on the equilibrium path is only possible when receving the price offer pj = pH .

We know consumers with ν 6= V̂ (pL) cannot search on path. Similarly, consumers with

ν < pL cannot search on path. Moreover, only sets of consumers with ν > pH that have zero

measure can search on-path.

The set of consumers that searchers on path (ignoring measure zero sets) is thus a sub-

set of V̂ (pL) ∩ [pL, pH ]. Now I show that any consumer in this set will search when being

offered the price pH . Such a consumer will search then if and only if:

Pr(ν̃L|ν)(ν − pL) + Pr(ν̃H |ν) max{ν − pH , 0} − s > max{ν − pH , 0} ⇐⇒
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Pr(ν̃L|ν)(ν − pL)− s > 0

This holds true by construction.

A.10 Proof of lemma 4:

Part 1: Consider any consumer that has arrived after search. This requires that ν < pH ,

which means the firm beats the price of the other firm for such consumers. In an equilibrium,

this consumer must have ν ∈ V̂ (pL) ∩ [pL, pH ]. We know that the infimum of this set is ν,

so consumption is possible for all these agents. This implies the result.

Part 2:

I need to show that no consumer would move on to search when receiving a price pj ≤ ν.

We know that no consumer with ν /∈ V̂ (pL) ∩ [pL, pH ] will ever search.

Now consider a consumer with ν ∈ V̂ (pL) ∩ [pL, pH ]. Recall that all these consumers have a

price cutoff p̂(ν) equal to:

p̂(ν) = pL +
s

Pr(ν̃L|ν)

It was shown previously that:

Pr(ν̃L|ν)(ν − pL)− s = 0

This implies that p̂(ν) = ν. Note that p̂′(ν) > 0, which means that for all ν ∈ V̂ (pL)∩[pL, pH ]:

p̂(ν) ≥ p̂(ν) = ν

This means that none of these consumers will search after being offered the price pj = ν.

Finally, consider any consumer with ν ∈ V̂ (pL) ∩ [pH , 1]. I have shown that any such

consumer must have p̂(ν) ≥ pH (ignoring measure zero sets).

A.11 Proof of proposition 5

Part 1:

Given that the signal probability functions are continuous, the monopoly low signal profit

function is differentiable. Since competitive low signal profits take the given form in the
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price interval pj ∈ [0, ν], we know that this FOC must hold.

Part 2: I have to show the following: When the probability function is continuous, then

an equilibrium high price must satisfy on of the following equations:

∂ΠM
j (pj; ν̃

H)

∂pj

∣∣∣∣
pj=pH

= 0

Pr(ν̃L|pH)(pH − pL)− s = 0

(i) Pr(ν̃L|pH)(pH − pL)− s > 0 cannot be an equilibrium.

Suppose, for a contradiction, that Pr(ν̃L|pH)(pH−pL)−s > 0. If this holds true, pH ∈ V̂ (pL).

Consider the search decision of an agent with ν > pH . This consumer searches at pH if and

only if:

Pr(ν̃L|ν)(ν − pL) + Pr(ν̃H |ν)(ν − pH)− s > (ν − pH) ⇐⇒

Pr(ν̃L|ν)(ν − pL)− s > Pr(ν̃L|ν)(ν − pH)

Both these objects are continuous in ν and we know that this inequality is satisfied at ν = pH .

This shows that a strictly positive measure of consumers with ν > pH search, which breaks

the equilibrium.

(ii) If Pr(ν̃L|pH)(pH − pL)− s < 0, the equilibrium must satisfy:

∂ΠM(pj; ν̃
H)

∂pj
= 0

Consider any consumer with ν ∈ [pH , 1]. This consumer would search when offered the price

pj > pH if and only if:

Pr(ν̃L|ν)(ν − pL) + Pr(ν̃H |ν)(ν − pH)− s > (ν − pH)

In order for a consumer to search at a price pj > pH , the LHS of this expression needs to be

strictly positive. Define the following set::

V̂ H(p) =

{
ν − pH + Pr(ν̃L|ν)(pH − pL)− s > 0

}

56



Further recall that the cutoff price (if it is above pH ) of agents with a valuation in the above

set is:

p̂H(ν) = Pr(ν̃L|ν)
(
pL − pH

)
+ pH + s

By continuity of Pr(ν̃L|ν), it holds that:

lim
ν↓pH

Pr(ν̃L|ν) = Pr(ν̃L|pH)

This implies that:

lim
ν↓pH

[
ν − pH + Pr(ν̃L|ν)(pH − pL)− s

]
= 0 + Pr(ν̃L|pH)(pH − pL)− s < 0

Continuity implies that you can find an open interval [pH − δ, pH + δ] such that any ν ′ ∈
[pH − δ, pH + δ] will satisfy:

ν ′ /∈ V̂ H(p)

ν ′ /∈ V̂ L(p)

Thus, for this price interval, all consumers will have p̂(ν ′) =∞ by construction.

Find the first valuation ν ′ above pH that solves:

ν ′ − pH + Pr(ν̃L|ν ′)(pH − pL)− s = 0

By continuity arguments, p̂(ν) =∞ must hold for all consumers with ν ∈ [pH , ν ′).

Note that p̂(ν ′) = ν ′. All consumers with ν > ν ′ will have a cutoff price above this. Thus,

all consumers with ν > pH will not search for prices below ν ′.

This means that profits are equal to monopoly profits in the interval [pH , ν ′]. No consumer

with a valuation above pH can arrive at firm j after searching. No consumer with ν > pH

that arrives at firm j first will search for these prices.

Consider prices just below pH . We know that consumers with [pH − δ, pH ] must have

ν /∈ V̂ (pL), which is the necessary condition for search at prices pj ≤ pH , i.e. for equi-

librium search.

Thus, no consumers with ν > pH − δ will arrive at firm j after search. All consumers
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that arrive first and have ν > pH − δ won’t move on to search at these prices.

In the price interval [pH − δ, pH ], profits will thus also be monopoly profits. This implies

that the high signal price must satisfy said FOC.

Part 3

I have to show that the monopoly high signal price is unique when the signal probabil-

ity function is once continuously differentiable. Note that monopoly high signal profits are

given by the following:

ΠM(pj; ν̃
H) = pj

∫ 1

pj

0.5Pr(ν̃H |ν)dν

Taking the derivative of this w.r.t prices yields:

∂ΠM(pj; ν̃
H)

∂pj
=

∫ 1

pj

0.5Pr(ν̃H |ν)dν − 0.5pjPr(ν̃
H |pj)

Note that this derivative is continuous, since the signal probability function is continuous.

Now let’s evaluate the second derivative of profits, which is:

∂2ΠM(pj; ν̃
H)

∂p2
j

= −0.5Pr(ν̃H |pj)− 0.5Pr(ν̃H |pj)− 0.5pj
∂Pr(ν̃H |pj)

∂pj

This implies that monopoly high signal profits are strictly concave, which implies uniqueness.

Part 4

I have to show that the given regularity conditions are sufficient to ensure that there are

only two potential high signal equilibrium prices that are unequal to pH,M and set g(pH) = 0.

The proof of this proceeds in several steps.

(i) The monopoly high signal price must be weakly above 0.5.

Suppose, for a contradiction, that pH,M < 0.5.
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Recall firstly that the monopoly high signal price must solve:∫ 1

pj

0.5Pr(ν̃H |ν)dν − 0.5pjPr(ν̃
H |pj) = 0 ⇐⇒ pH,MPr(ν̃H |pH,M) =

∫ 1

pH,M
Pr(ν̃H |ν)dν

In general, we have:∫ 1

pH,M
Pr(ν̃H |ν)dν >

∫ 1

pH,M
Pr(ν̃H |pH,M)dν = [1− pH,M ]Pr(ν̃H |pH,M)

Because pH,M < 0.5, we have:

[1− pH,M ] > pH,M

This implies a contradiction to the first-order condition.

(ii) It must hold that pH ≤ pH,M in any equilibrium.

Suppose, for a contradiction, that pH > pH,M in some equilibrium.

We know that monopoly high signal profits are strictly concave. We also know that any

firm can only make monopoly profits when setting the high signal price.

Consider a given equilibrium without search on the equilibrium path. Then, there will also

not be search at prices below pH , which directly implies that a deviation to pH,M is profitable.

Now consider an equilibrium with on-path search and consider a deviation price pj ≤ pH .

The necessary condition for search is then given by membership in the set V̂ (pL).

We know g(ν) = Pr(ν̃L|ν)(ν − pL) − s must satisfy g(pH) = 0 and that this function

cannot be flat here. Further, we have assumed that the signal probability is differentiable,

which then implies that g(ν) is differentiable.

Assume, for a contradiction, that g′(pH) > 0. By the definition of a derivative, we must

have that:

lim
v′→pH

g(v′)− g(pH)

v′ − pH
= x > 0
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Thus, we can find a δ > 0 such that, for all ν ∈ [pH − δ, pH), the following term must be

arbitrarily close to the positive number x:

g(v′)− g(pH)

v′ − pH

Setting ε = x/2, there would exist such a delta where:∣∣∣∣g(v′)− g(pH)

v′ − pH
− x
∣∣∣∣ < x

2

It is easy to show that the following must then hold true:

g(v′)− g(pH)

v′ − pH
> 0

Since the denominator is negative, the numerator must also be negative and we have g(v′) <

g(pH) = 0 for all these ν ′.

But then none of the agents with ν ∈ [pH − δ, pH ] would search at prices pj ∈ [pH − δ, pH ],

and neither could agents with ν > pH . This implies that no agents with ν > pH − δ arrive

after search and no agents with ν > pH − δ that arrive at j first would move on to search at

these prices.

This implies that profits at these prices equal monopoly profits and there is a downward

deviation by strict concavity of high signal monopoly profits.

Thus, it must hold that g′(pH) < 0. By the definition of a derivative, we must have that:

lim
v′→pH

g(v′)− g(pH)

v′ − pH
= x < 0

Setting ε = −x/2, there must exist a delta where all ν ′ ∈ [pH − δ, pH) satisfy:∣∣∣∣g(v′)− g(pH)

v′ − pH
− x
∣∣∣∣ < −x2

It follows directly that the following must hold for all such ν ′:

g(v′)− g(pH)

v′ − pH
< 0
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Since the denominator is negative, the numerator must be positive, i.e. g(v′) > g(pH) = 0.

Thus, for all these ν ∈ [pH − δ, pH ], ν ∈ V̂ (pL) and these agents must have a cutoff price

given by:

p̂(ν) =
s

Pr(ν̃L|ν)
+ pL

We also know that this cutoff must be interior. Moreover, we know that this cutoff must be

weakly below pH , because for all agents with ν ∈ [pH − δ, pH), it must hold that:

Pr(ν̃L|ν)(ν − pL)− s > 0 =⇒

Pr(ν̃L|ν)(pH − pL)− s > Pr(ν̃L|ν)(ν − pL)− s > 0 =⇒

pH > pL +
s

Pr(ν̃L|ν)

This means that there must exist agents with ν ∈ [pH − δ, pH ] that arrive at firm j after

searching.

In the following, I define a valuation cutoff function:

ν > ν̂(pj) ⇐⇒ p̂(ν) > pj

In words, consumers with ν ∈ [pH − δ, pH ] will search if and only if ν < ν̂(pj).

Thus, consider competitive profits in the price interval pj ∈ [pH − δ, pH ]. Here, profits

will be:

ΠC(pj; ν̃
k) = pj

∫ 1

pH
(0.5)Pr(ν̃k|ν)dν + pj

∫ pH

ν̂(pj)

(0.5)Pr(ν̃k|ν)dν+

pj

∫ ν̂(pj)

pj

(0.5)Pr(ν̃k|ν)Pr(ν̃H |ν)dν + pj

∫ pH

pj

(0.5)Pr(ν̃k|ν)Pr(ν̃H |ν)dν

Let’s take the derivative of this w.r.t the price pj. This is:

∂ΠC(pj; ν̃
k)

∂pj
=

∫ 1

pH
(0.5)Pr(ν̃k|ν)dν +

∫ pH

ν̂(pj)

(0.5)Pr(ν̃k|ν)dν+

∫ ν̂(pj)

pj

(0.5)Pr(ν̃k|ν)Pr(ν̃H |ν)dν +

∫ pH

pj

(0.5)Pr(ν̃k|ν)Pr(ν̃H |ν)dν+

pj

(
− ∂ν̂(pj)

∂pj

)(
0.5Pr(ν̃k|ν̂(pj))

)
+ pj

(
∂ν̂(pj)

∂pj

)(
0.5Pr(ν̃k|ν̂(pj))Pr(ν̃

H |ν̂(pj))
)
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−pj(0.5)Pr(ν̃k|pj)Pr(ν̃H |pj)− pj
(
0.5Pr(ν̃k|pj)Pr(ν̃H |pj)

)
Note that:

pj

(
− ∂ν̂(pj)

∂pj

)(
0.5Pr(ν̃k|ν̂(pj))

)
+ pj

(
∂ν̂(pj)

∂pj

)(
0.5Pr(ν̃k|ν̂(pj))Pr(ν̃

H |ν̂(pj))
)

=

0.5pj

(
∂ν̂(pj)

∂pj

)(
Pr(ν̃k|ν̂(pj))Pr(ν̃

H |ν̂(pj))− Pr(ν̃k|ν̂(pj))

)
< 0

This inequality holds since Pr(ν̃k|ν̂(pj))Pr(ν̃
H |ν̂(pj)) < Pr(ν̃k|ν̂(pj)) and

∂ν̂(pj)

∂pj
> 0.

Thus, the derivative satisfies:

∂ΠC(pj; ν̃
k)

∂pj
<

∫ 1

pH
(0.5)Pr(ν̃k|ν)dν +

∫ pH

ν̂(pj)

(0.5)Pr(ν̃k|ν)dν+

∫ ν̂(pj)

pj

(0.5)Pr(ν̃k|ν)Pr(ν̃H |ν)dν+

∫ pH

pj

(0.5)Pr(ν̃k|ν)Pr(ν̃H |ν)dν−2pj
(
0.5Pr(ν̃k|pj)Pr(ν̃H |pj)

)
Evaluating this at pj = pH yields that:

∂ΠC(pj; ν̃
k)

∂pj

∣∣∣∣
pj=pH

<

∫ 1

pH
(0.5)Pr(ν̃k|ν)dν+

∫ pH

pH
(0.5)Pr(ν̃k|ν)dν−2pH(0.5)Pr(ν̃k|pH)Pr(ν̃H |pH)+

∫ pH

pH
(0.5)Pr(ν̃k|ν)Pr(ν̃H |ν)dν +

∫ pH

pH
(0.5)Pr(ν̃k|ν)Pr(ν̃H |ν)dν =

∫ 1

pH
(0.5)Pr(ν̃k|ν)dν − 2pH(0.5)Pr(ν̃k|pH)Pr(ν̃H |pH)

Note that pH > pH,M ≥ 0.5. Note further that Pr(ν̃H |ν) is rising in ν and Pr(ν̃H |0.5) = 0.5.

This implies that Pr(ν̃H |pH) ≥ 0.5. Then, it holds that −2Pr(ν̃H |pH) ≤ −1, which im-

plies that :

∂ΠC(pj; ν̃
k)

∂pj

∣∣∣∣
pj=pH

<

∫ 1

pH
(0.5)Pr(ν̃k|ν)dν − pj(0.5)Pr(ν̃k|pH) =

∂ΠM(pj; ν̃
k)

∂pj

∣∣∣∣
pj=pH

If this is true, we cannot have an equilibrium - there would be a downward deviation. This

follows from strict concavity of the high signal monopoly profit function.

(iii) We have proven that pH ≤ pH,M must hold.
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Quasiconcavity of the function Pr(ν̃L|ν)(ν − pL) − s on [0, pH,M ] implies that the follow-

ing sets are convex: {
ν ∈ [0, pH,M ] : Pr(ν̃L|ν)(ν − pL)− s > 0

}
{
ν ∈ [0, pH,M ] : Pr(ν̃L|ν)(ν − pL)− s ≥ 0

}
An equilibrium high signal price that does not equal pH,M must be strictly below pH,M by

previous arguments.

There can be at most two solutions of the following equation in the interval [0, pH,M) that

can be supported as an equilibrium high signal price:

Pr(ν̃L|ν)(ν − pL)− s = 0

Suppose, for a contradiction, that there are three solutions to the above equation in the inter-

val [0, pH,M) that could be supported as an equilibrium high signal price. By the regularity

condition, g′(pH) 6= 0 must hold. Then, it could be that two solutions feature a strictly rising

g. Alternatively, there could be two solutions with a strictly falling g. By differentiability,

there will be a violation of convexity of the above sets.

These potential solutions are inf V̂ (pL) and sup V̂ (pL) ∩ [0, pH,M).
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