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Abstract

This paper examines the issue of product compatibility in an oligopoly with three multi-product

firms. Whereas most of the existing literature focuses on the extreme cases of full compatibility

or full incompatibility, we look at asymmetric settings in which some firms make their products

compatible with a standard technology and others do not. Our analysis reveals each firm’s individual

incentive to adopt the standard, and allows to study a two-stage game in which first each firm chooses

its technological regime (compatibility or incompatibility), then price competition occurs given the

regime each firm has selected at stage one. When firms are ex ante symmetric, we find that for each

firm, compatibility weakly dominates incompatibility. In a setting in which a firm’s products have

higher quality than its rivals’ products, individual incentives to make products incompatible emerge,

first for the firm with higher quality products, then also for the other firms, as the quality difference

increases. This paper sheds lights on markets in which some firms adopt the standard technology but

other firms use proprietary systems.

Keywords: Compatibility, Spatial competition, Vertical differentiation, Asymmetric equilibrium,

Competitive Bundling
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1 Introduction

During our routine life we make extensive use of objects that are made of several complementary com-

ponents, which generate utility only as a system. Examples include a printer and its cartridges; a coffee

maker and its capsules; an operating system and other software; a smartphone and its battery charger.

Consumers’ behavior is affected by whether a system’s components produced by different firms are com-

patible or not. Most of the times, these industries are characterized by a standard technology that each

firm may decide to adopt. In alternative, a firm may develop and use a proprietary technology. Precisely,

we consider perfectly complementary goods for which the producers can introduce technological barriers

limiting their usage (note that our examples above meet these conditions). In practice, each firm chooses

whether to make the components it offers compatible or not with the standard. If the components are

compatible, then each consumer can "mix and match" them in his preferred way; otherwise a system

works only if its components are produced by a same firm. Clearly, compatibility makes consumers better

off, holding prices fixed, because it allows each consumer to buy his preferred variety of each component.

We examine in this paper whether compatibility is profitable from each firm’s perspective.

We study oligopoly competition when each firm either adopts the standard (i.e., chooses compatibility,

denoted with C in the following) - this makes its components compatible with those of the competitors that

adopt the standard - or a proprietary technology (i.e., chooses incompatibility, denoted with NC) which

is used only by that firm. The existing literature has compared the extreme cases of competition under

full compatibility (here it arises when each firm chooses C) with competition under full incompatibility

(here it arises if each firm chooses NC), and has identified sufficient conditions for one regime to be more

profitable than the other. We extend the analysis to intermediate cases with partial compatibility, that

arise when some firms choose C but some do not.1

In our model there are three firms.2 Each firm offers two components, A and B. Each consumer gets

a positive utility only from consumption of both components, i.e. of a system. We model product differ-

entiation by assuming that for each component consumers are independently and uniformly distributed

over a Salop’s circle (Salop, 1979). On each circle the firms are located equidistantly, in the same way on

the two circles, and a firm’s location on a circle represents the variety of the component (to which the

circle refers) the firm is offering. In this context, we examine the following two-stage game:

• at stage one, each firm chooses its technological regime: either C or NC;

• at stage two, firms compete in prices given the technological regimes chosen at stage one.3

Our first result is that in a setting with ex ante symmetric firms, C weakly dominates NC for each

firm. We know from Kim and Choi (2015) that under our assumptions, firms’ collectively prefer full

compatibility to full incompatibility. Unlike Kim and Choi (2015), we allow firms to choose different

technological regimes, but prove that each firm prefers C to NC, independently of its rivals’ choices; thus

all firms choose C in each undominated equilibrium. In other words, even though each firm can make a

distinct compatibility choice, full compatibility emerges, and as a dominant strategy equilibrium.

1To the best of our knowledge, only Chen (1997) addresses a related question, in the context of bundling. Later on in

the introduction we describe the model in Chen (1997) and point out the differences with our paper.
2 In a duopoly we cannot examine the effect of different compatibility choices because as soon as one firm chooses NC,

in practice each consumer must buy the entire system either from one firm or from the other.
3Asymmetric regimes lead to asymmetric price competition games. This requires to apply a case-by-case approach that

depends on the number of firms choosing NC and on the locations of these firms. Therefore, for reasons of tractability we

restrict attention to a setting with three firms. In Innocenti and Menicucci (2021) we allow for four firms, which does not

modify our results for the case of symmetric firms.
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In order to develop an intuition for this result, consider a firm  that chooses NC and assume that all

other firms choose C. This restricts consumers’ choice set and forces some consumers to select a second

best option because they cannot mix and match one component of firm  and one component of another

firm. It turns out that this inflicts a profit loss to firm . As a starting point, assume that the price of

the system of firm  is the sum of the prices of firm ’s individual components in the equilibrium with full

compatibility. Then, consider the "mix and match consumers" of firm  that under full compatibility buy

only one component of firm . These consumers must now decide whether to buy firm ’s entire system

or not. Only a minority of them, those located not far away from firm  on both circles, do so. Thus,

firm  loses most of its mix and match consumers. The reduced market share induces a price cut by firm

, and since prices are strategic complements, competition becomes more intense. At the equilibrium

prices, firm  recovers its original market share but with a substantially reduced price that makes its

profit smaller than under full compatibility.

This result suggests that even if firms can choose different technological regimes, ex ante symmetric

firms all adopt the standard. Then, we introduce vertical differentiation assuming that one firm offers

components with higher quality than its rivals’ components (or, equivalently, one firm bears lower pro-

duction costs than its rivals), and prove that this overturns the previous result.4 The firm offering higher

quality components has a higher market share. Therefore, we call it large firm, and call small the other

firms. We let a positive parameter  represent the quality difference, and show that incompatibility is

profitable for the large firm if  is above a threshold 0. Precisely, given a high  the market share

effect of incompatibility is positive for the large firm: a majority of its mix and match consumers choose

to buy the system of the large firm. Moreover, a high  also affects the intensity of price competition,

making the demand of the large firm less elastic under incompatibility. This softens price competition

and increases the profit of all firms with respect to full compatibility. Thus, partial compatibility may

arise in equilibrium under vertical differentiation.

We also show that there exists another threshold 00 (larger than 0) such that also each small firm
chooses NC (given that the large firm chooses NC) when  is above 00. This occurs because, under full
incompatibility, the large firm faces less competition as consumers cannot mix and match the components

of the small firms. This increases the demand for the large firm, but also induces it to be less aggressive

in pricing. This latter effect benefits the small firms and ultimately dominates the initial demand loss,

increasing their profits. Therefore, full incompatibility emerges.

Our initial examples may provide real world cases of equilibrium with partial compatibility. Let

us consider the smartphone industry. Currently, this oligopolistic industry is characterized by different

technological regimes, meaning that some smartphones are incompatible with some battery chargers. In

particular, Apple is using its proprietary technology, called lightning, whereas the other firms have a

common standard called USB-C. Therefore, in order to charge an iPhone it is necessary to use a battery

charger offered by Apple, whereas a Samsung phone (for instance) can be charged by any USB-C battery

charger. In our setting, this is analogous to Apple choosing NC whereas the other firms choose C, and

may suggest that Apple has a quality advantage over its competitors, perhaps due to a higher intrinsic

value of its products compared to the competitors’ products.

In the next subsection we briefly discuss some related literature. Then, Section 2 introduces the

model. In Section 3 we deal with stage two of the game, whereas Section 4 is about stage one. In Section

5 we analyze the setting with vertical differentiation. Finally, Section 6 contains a few suggestions for

future research. Since some proofs of our results are long, the appendix includes only a partial version of

the proofs. The complete proofs can be found in Innocenti and Menicucci (2021).

4Hahn and Kim (2012) and Hurkens et al. (2019) examine a similar setting with two firms. However, as we remarked in

footnote 2, when there are only two firms, in practice there cannot be asymmetric technological regimes.
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1.1 Related literature

Our analysis also applies to the study of the incentives of multi-product firms to engage in bundling of

products that have independent values (rather than being perfect complements). Precisely, the effect of

incompatibility in our setting is equivalent to that of bundling when products have independent values:

if a firm  uses its own technology, then each consumer either buys both components from firm , or

buys no component at all from firm , just as if firm  were offering only the pure bundle of its products.

Conversely, compatibility is equivalent to separate sales (no bundling) of firm ’s products. Therefore,

our paper is related to the literature on compatibility and also to the literature on competitive bundling.5

A seminal paper for both these literatures is Matutes and Regibeau (1988), which shows that in

a two-dimensional Hotelling duopoly, competition under full incompatibility yields lower profits than

competition under full compatibility.6 However, more recent research shows that this result may not hold

when more than two firms compete. In the random utility setting of Perloff and Salop (1985), Zhou (2017)

shows that under suitable assumptions on the distribution of consumers’ valuations, bundling essentially

reduces the heterogeneity in consumer valuation. In particular, the density of the average per-product

value has thinner tails compared to the density of the original single-product valuation. If the number

of competing firms is sufficiently large, then thinner tails lead to higher profits for competition under

bundling than under separate sales. Kim and Choi (2015) study system compatibility in a spatial model

in which the market for each product is represented by a Salop’s circle. They prove that with at least

four firms, there exists a way to symmetrically locate the firms in the two circles (but not in the same

way on the two circles) such that full incompatibility generates higher profits than full compatibility.

The above papers focus on the extreme cases of competition under full compatibility (separate sales)

or under full incompatibility (bundling). By contrast, we examine competition when some firms choose

compatibility and some do not, modelling product differentiation as in Kim and Choi (2015).7 For ex

ante symmetric firms, Kim and Choi (2015) show that if firms are located in the same way on the two

circles, then full incompatibility reduces each firm’s profit with respect to full compatibility. Thus, firms

have no collective incentive to adopt proprietary technologies. We establish that also no single firm

has an individual incentive to use a proprietary technology, regardless of the choices of the other firms.

However, among vertically differentiated firms, a significant asymmetry generates incentives towards

incompatibility first for the large firm, and then also for small firms.8

Our paper is also related to Chen (1997), in which two firms offer homogeneous products and each

firm decides whether to offer only a single product, product A (for which consumers have homogeneous

preferences), or a bundle of product A with another product, product B (for which consumers have

5We remark that the bundling interpretation makes the timing of the game less compelling. A sequential game is

appropriate in a situation in which a firm’s choice in stage one is irreversible, which is the case for a decision of compat-

ibility/incompatibility. However, if a firm can costlessly and quickly switch from one regime to the other, then it may be

appropriate to merge stage one and stage two, such that at a single stage each firm chooses bundling and the price for the

bundle, or separate sales and the prices for the single products.
6 See also Economides (1989) and Nalebuff (2000).
7An alternative approach is to use the random utility setting as in Zhou (2017). For the case of symmetric firms, that

leads to the same result we obtain in Proposition 1. Moreover, the spatial distribution for consumers we consider allows to

employ a graphical analysis to support the intuition about the firms’ incentives towards C or NC (see our Subsections 4.2

and 5.5), because the consumers’ space is in a one-to-one correspondence with the square [0 1) × [0 1). Such analysis is
infeasible in a random utility model.

8There also exists a relationship with the literature on network goods. See for instance Crémer et al. (2000), who study

a duopoly in which a firm has a larger installed base of customers than the other firm. A main result is that the large firm

has a greater incentive to degrade connectivity (which is analogous to incompatibility in our setting) than the small firm,

in order to have an advantage in the competition for unattached customers. However, our model is significantly different as

there are no network goods; the quality advantage is independent of stage-one’s choice; incentives to choose incompatibility

emerge also for small firms when the large firm’s quality advantage is sufficiently strong.
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heterogeneous preferences). There is also a large number of perfectly competitive firms offering product

B, hence no firm can make a profit by offering product B alone. After the firms have selected the

products to offer, price competition takes place. Chen (1997) shows that in each equilibrium one firm

offers the bundle and the other offers only product A; thus bundling emerges endogenously in equilibrium.

This occurs as bundling differentiates the firms’ products and softens price competition with respect to

competition between homogeneous products.9 Our paper is different because the firms offer differentiated

products and there are no perfectly competitive firms which offer one of the products.

2 The setting

We consider competition among three symmetric firms, denoted firm 1, firm 2 and firm 3, each offering

two different components,  and . We let  ≡ {1 2 3} denote the set of all firms. We use  () to

denote component  (component ) offered by firm , for each  ∈  . The two components are perfectly

complementary goods and there is no value from consumption of just one component. Each consumer

has a unit demand for a system given by the union of the two components. In the following, with  , or

"system ", we denote the system consisting of components  and  ; notice that  may be equal to .

The firms offer differentiated components and we represent this differentiation using a spatial model

in which each firm is located on two Salop’s circles (Salop, 1979). More precisely, like in Kim and Choi

(2014, 2015) the market for each component is represented by a circle with unit length, in which a point

is denoted "origin". Each point on the circle is identified by a number  ∈ [0 1) which represents the
distance between the origin and that point, moving clockwise from the origin.

Fig. 1 A point’s coordinate

on the circle

Fig. 2 Distance between two

points  and  on the circle

x = length of
bold arc

origin

x

d(x,y) = squared
length of
bold arc

origin

x

y

Figure 1 Figure 2

Each firm  is located at a point  on the circle for component  (circle  from now on) and at a

point  on the circle for component  (circle ) such that  = . On each circle, firms are equally-

spaced (see for instance Figure 3 below). There is a unit mass of consumers and each consumer has a

location  on circle  and a location  on circle . The consumers’ locations are independently and

uniformly distributed on the two circles. A consumer’s locations represent the consumer’s ideal versions

of the two components, and for a consumer with locations  , the utility from buying system  is

 − ( 

)− (  


)− total payment to buy  (1)

9A related mechanism applies also in Carbajo et al. (1990).
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In the above expression,   0 represents the consumer’s gross utility from consuming his preferred

system. With ( ) we denote the quadratic distance between two generic points  and  on the circle:

( ) = ( ) and for any   such that 0 ≤  ≤   1 (without loss of generality) we have

( ) =

(
( − )2 if 0 ≤  −   1

2

(1−  + )2 if 1
2
≤  −   1

(2)

Hence, ( ) is the quadratic length of the shortest path that connects  to . This sometimes

requires to move clockwise from , sometimes counter-clockwise: see Figure 2. The term ( 

) in (1)

is the distance between  and 

 on circle . It represents the reduction in the consumer’s utility from

consuming a version of component  which differs from his ideal one. A similar interpretation applies to

( 

).

10

We assume that there exists a unique standard technology that each firm can freely adopt - choosing

Compatibility (C). The alternative for any firm is to adopt an exclusive proprietary technology - choosing

Incompatibility (NC). When firm  chooses C, it sets a price for its component  and a price for its

component , but since 

 = 


 for each  ∈  and we assume below that the marginal cost for each

component is the same, we focus on the case in which firm  sets the same price  for both its components

(about this, see footnote 15). If instead firm  chooses NC, then de facto it offers its components  and

 jointly, and for this system, , what matters is just the sum of the components’ prices, which we

denote . From a consumer’s viewpoint, if firm  chooses C then the consumer can combine — mix and

match — component  () with component  () as long as also firm  has chosen C. Conversely, if

firm  chooses NC then a consumer either buys , or buys no component at all from firm .

After the firms’ choices of technological regimes, each consumer faces a set of available systems. For

instance, if firms 1 and 2 have both chosen C but firm 3 has chosen NC, then 11 12 21 22 33 are the

available systems, whereas 13 31 23 32 are not available. We assume that  in (1) is high enough

to make each consumer buy a system in equilibrium. Hence, each consumer chooses the available system

that yields the highest utility as evaluated in (1). That is equivalent to choosing the system with the

lowest total cost. For a consumer located at ( ), the total cost of  is

( 

) + ( 


) + total payment to buy  (3)

For each firm , let  denote the marginal production cost for component  and for component .

Since marginal costs have an additive effect on prices, without loss of generality we simplify the notation

by setting  = 0 and interpret prices as profit margins.11

The timing of the game we analyze is as follows:

• Stage one: Each firm simultaneously chooses C or NC.

• Stage two: Each firm simultaneously sets the prices of its single components or the price of its

system.

• After stage two, consumers make their purchases as we have described above.
10We may multiply ( 


) and (  



) by a positive number  6= 1, representing the importance for a consumer of

consuming a component different from his ideal one, but that would not change our results qualitatively.
11Precisely, consider full compatibility (to fix the ideas) and the market for component . For each  ∈  , let  = −

denote firm ’s unit profit margin. For a consumer located at  in circle , the cost of  can be written as ( 

)++.

Then,  does not affect the comparisons among the costs of 1 2 3, and since the market is fully covered, 123

play the same roles as 1 2 3 when  = 0. Thus, the demands for 1 2 3 and the firms’ profits are as when  = 0;

hence also stage one is unchanged. The same logic applies if the two components have different marginal costs, equal across

firms. The setting we examine in Section 5 is equivalent to one in which a firm has a cost advantage: see footnote 22.
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We denote the whole game with Γ. We apply to Γ the notion of Subgame Perfect Nash Equilibrium

(SPNE), which requires to determine a Nash Equilibrium (NE) for each subgame of Γ that may be entered

at stage two. Next section is devoted to this analysis.

3 The second stage

In this section we examine stage two in Γ, in which firms compete in prices given the technological regimes

determined at stage one. Precisely, we determine the equilibrium prices for each possible combination of

regimes, that is for each subgame of Γ; notice that each subgame of Γ starts at stage two.

In order to distinguish different subgames, we let  0 be a generic subset of  . Then we use 
0
to

denote the subgame which is entered after at stage one each firm in  0 has chosen NC and each firm in

\ 0 has chosen C. Hence, ∅ is the subgame which is played after each firm has chosen C; {} (from
now on ) is the subgame entered after only firm  has chosen NC; and 123 is the subgame played after

all firms have chosen NC. It is important to note that 12 13 23 are all equivalent to 123. Indeed,

if two firms have chosen NC, then a consumer will buy the system of one of these firms, or the two

components of the other firm; in each case the consumer buys both components from a same firm, as in

123. Hence, in subgames 12 13 23 123 competition occurs among the systems 11 22 33.

3.1 Competition under full compatibility: Subgame ∅

Here we consider the subgame ∅ that is entered if each firm chooses C at stage one. Given that each

consumer’s total cost is separable in the cost of the two components (see (3)), competition for the sale

of component  is independent of competition for the sale of component . Then, it is immediate to

identify a symmetric NE for each single market: See Proposition 1 in Kim and Choi (2015).

Lemma 1 In subgame ∅ there exists a NE such that in the market for component  () the price of

each component is 1
9
. For each firm the equilibrium profit in each market is 1

27
and the total profit is 2

27
.

3.2 Competition under full incompatibility: Subgame 123, or 12 13 23

Here we consider the case in which at least two firms have chosen NC at stage one. Then subgame 123

(or an equivalent one) is entered, and for it Kim and Choi (2014) determine the following symmetric NE.

Lemma 2 (Kim and Choi (2014)) In subgame 123 there exists a NE such that the price for the

system of each firm is 1
6
, and the equilibrium profit for each firm is 1

18
.

From Lemmas 1 and 2 it is immediate to see that each firm’s profit is greater in ∅ than in 123.

Therefore, all firms prefer that competition takes place among compatible components rather than among

proprietary systems.

3.3 Asymmetric subgames: 1 2 3

In this subsection we examine the subgames 1 2 3, in which just one firm offers incompatible com-

ponents. We call them asymmetric subgames because in these subgames firms are not in a symmetric

situation. To fix the ideas, here we examine 2, the subgame played after only firm 2 has chosen NC; but

the results we obtain apply also to 1 and to 3. In 2 it is computationally convenient (without loss of

7



generality) to assume that in both circles firm 1 is located at 1
6
, firm 2 is located at 1

2
, firm 3 is located

at 5
6
,12 as described in Figure 3:

Fig. 3

Distribution of firms over the

circle for each component

:

firm 1

firm 2

firm 3

origin

5/6

1/2

1/6
0

Figure 3

We denote with 1 (3) the price firm 1 (firm 3) charges for each of its components, and with 2 the

price charged by firm 2 for its system. Since firms 1,3 are in a symmetric position, we focus on NE such

that 1 = 3. In order to derive such NE, we now derive the demand functions for firms 2 and 3.

Demand function for firm 2 In 2, the available systems are 11 22 13 31 33, and each con-

sumer buys the system that is the cheapest for him, given 1 2 3 and given his locations. Then, for a

consumer located at ( ), (3) reveals that the cost of 22 is

22( ) = ( − 1
2
)2 + ( − 1

2
)2 + 2 (4)

and the cost of  , for  = 1 3 and  = 1 3, is

( ) = () + (), in which

1() =

(
(− 1

6
)2 + 1 if 0 ≤   2

3

(1− + 1
6
)2 + 1 if 2

3
≤   1

and 3() =

(
(1
6
+ )2 + 3 if 0 ≤   1

3

(− 5
6
)2 + 3 if 1

3
≤   1

(5)

In order to derive the demand function for 22, we exploit the fact that the set of consumers can

be viewed as the square [0 1) × [0 1) in which locations are uniformly distributed. We need to identify
the set of consumers for which 22 is the cheapest system, that is the set of solutions to the inequality

22( )  min{11( ) 13( ) 31( ) 33( )}, and to evaluate the area of this
set. Although this is conceptually straightforward, it requires some algebraic steps that we describe in

the appendix. Here we only describe the result.

We let  denote the common equilibrium value of 1 and 3, and let 22 denote the subset of [0 1)×
[0 1) in which 22 is the cheapest system. Then, we find that 22 depends on 2 − 2 as follows: 22 is
the whole [0 1)× [0 1) if 2−2  −49 , 22 is empty if 2−2 ≥ 2

9
. If 2−2 is between −49 and 2

9
, then

22 is a more complicated convex polygon which we describe by listing its vertices. In particular, given

x = ( ) ∈ [0 1)× [0 1), we use x̄ to denote the point that is obtained by permuting the coordinates
of x, that is x̄ = ( ). It turns out that 22 is the octagon in Figure 4 if −49 ≤ 2 − 2  −19 ; 22
12The reason is that ( 1

2
) is equal to (− 1

2
)2 for each  ∈ [0 1), whereas if  6= 1

2
then ( ) is a piecewise defined

function of  as in (2). Thus, 2 = 2 = 1
2
simplifies ( 

2
) + (  

2
).
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is the square in Figure 5 if −1
9
≤ 2 − 2  2

9
:13

Fig. 4 The set 22 of consumers

that buy the system of firm 2 in

2 when − 4
9
≤ 2 − 2  −19

Fig. 5 The set 22 of consumers

that buy the system of firm 2 in

2 when − 1
9
≤ 2 − 2  2

9

:

x
1 x

2

x
3

x
4

x
4

x
3

x
2

x
1

R22

xA

xB

1

1

y
1

y
1

y
2

y
2

R22

xA

xB

1

1

Figure 4 Figure 5

The demand for 22 is the area of 22, hence

2(2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 2  2− 4

9

1− 2(2
3
− 3+ 3

2
2)

2 if 2− 4
9
≤ 2  2− 1

9

2(1
3
+ 3− 3

2
2)

2 if 2− 1
9
≤ 2  2+

2
9

0 if 2+ 2
9
≤ 2

(6)

The profit of firm 2 is 22(2), and we denote with 2( 
2) the profit maximizing value of 2,

that is the best reply of firm 2 given :14

2( 
2) =

⎧⎨⎩
2
3
+ 2

27
if  ≤ 5

36

4
3
− 8

27
+ 1

27

p
3242 − 144+ 70 if   5

36

(7)

Demand function for firm 3 and the equilibrium prices Here we are interested in the demand

function for the components of firm 3, which depends on 1 2 3. We focus on the case of 3 close to

1, to obtain a first order condition for 3 (recall that we are searching for a NE such that 1 = 3). This

can be combined with the best reply function of firm 2 in (7) to identify prices   and a candidate NE

for 2 such that 1 = , 2 =  , 3 = . Lemma 3 below establishes that this is indeed a NE of 2.

In order to derive the demand for firm 3, we need to determine the subsets of [0 1)× [0 1) for which
either 13 or 31 or 33 is the cheapest system. In the appendix we provide the details, which lead to

3(3) = 1 +
9

2
(1 − 3)− 9

2
(
2

9
+ 1 + 3 − 2)

2 (8)

Therefore, for 3 close to 1 the profit function of firm 3 is 33(3).
15 From this we derive a first

order condition for 3, which must hold at 3 = 1. Combining it with (7) yields the equilibrium prices.

13 In Figure 4, x1 = ( 0), x2 = (1 −  0), x3 = (1 ), x4 = (1 1 − ), with  = 2
3
+ 3

2
(2 − 2). In Figure 5,

y1 = ( 1
2
 − 1

2
), y2 = ( 3

2
−  1

2
), with the same .

14The best reply of firm 2 in (7) is such that if  ≤ 5
36
(if   5

36
), then it is optimal for firm 2 to choose 2 that makes

22 equal to a square as in Figure 5 (equal to an octagon as in Figure 4).
15As we explain in Section 2, when a firm chooses C we focus on the case in which the firm sets the same price for

both its components. If firm 3 can set 3 6= 3 , then for 3 and 3 close to 1 we find that the demand for 3

is 3(3 3) =
1
2
+ 9

4
1 − 9

4
3 − 9

4


2
9
+ 1 +

1
2
3 +

1
2
3 − 2

2
and the demand for 3 is 3(3 3) =

1
2
+ 9

4
1 − 9

4
3 − 9

4


2
9
+ 1 +

1
2
3 +

1
2
3 − 2

2
. Given 1 = ∗1 2 = ∗2 in (9), we can prove that the profit of firm

3, 33(3 3) + 33(3 3), is maximized at (3 3) = (
∗
3 

∗
3), consistently with Lemma 3.
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Lemma 3 Consider the subgame 2 which is entered if firm 2 chooses NC and firms 1 3 choose C at

stage one. In 2 there exists a NE such that

∗1 = ∗3 =
3
√
4681− 137
720

= 00948,  ∗2 =

√
4681− 19
360

= 01373 (9)

The equilibrium profit of firm 2 is 00466; the equilibrium profit of each other firm is 00626.

Figure 6 represents the equilibrium distribution of consumers among the available systems in 2, in

which  , for  = 1 3 and  = 1 3, is the set of consumers that buy  :
16

Fig. 6

The distribution of consumers

among 11 13 31

33 22 in the NE of 
2

:
R22

R11

R13 R33

R31

xA

xB

1

1

Figure 6

From Lemmas 1-3 we see that in 2 the profit of each firm is smaller than in ∅ . Moreover, firm 2

(firm 1, firm 3) has a lower (higher) profit in 2 than in 123. In Section 4 we provide an intuition for

these results and we discuss their consequences on firms’ choices at stage one.

4 The first stage

In this section we examine stage one, in which each firm chooses its technological regime, either C or NC.

To this purpose, we study the stage one reduced game with simultaneous moves in which each firm’s set

of feasible actions is {C, NC} and given any action profile (1 2 3) ∈ {C,NC}3, the firms’ profits are
given by the equilibrium profits in the subgame which is entered given (1 2 3). Note that (NC, NC,

NC) is a NE of the reduced game. Indeed, if all firms different from firm  play NC, then firm  has no

incentive to deviate by choosing C as the resulting subgame is equivalent to 123. Hence, there always

exists a SPNE of Γ in which each firm offers its own proprietary system; we call it the trivial SPNE.

4.1 The stage one reduced game

Using Lemmas 1-3 we obtain the following stage one reduced game, in which firm 1 chooses a row, firm

2 chooses a column, firm 3 chooses a matrix:17

3 = C 3 = NC

2 = C 2 = NC

1 = C 0.0741,0.0741,0.0741 0.0626,0.0466,0.0626

1 = NC 0.0466,0.0626,0.0626 0.0556,0.0556,0.0556

2 = C 2 = NC

1 = C 0.0626,0.0626,0.0466 0.0556,0.0556,0.0556

1 = NC 0.0556,0.0556,0.0556 0.0556,0.0556,0.0556

16The vertices in Figure 6 are the vertices in Figure 5 (see footnote 13) with the equilibrium prices in Lemma 3.
17 In each entry, the th number is the profit of firm , for  = 1 2 3.
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It is immediate to see that in this game, for each firm action C weakly dominates action NC because

00741  00466 and 00626  00556.

Proposition 1 In the stage one reduced game for Γ, C weakly dominates NC for each firm and the

unique non-trivial SPNE of Γ is such that each firm plays C at stage one.18

Proposition 1 establishes that unless firms coordinate on the trivial SPNE, the only equilibrium

outcome is that all firms choose C and competition occurs among fully compatible components, as full

compatibility is the (unique) dominant strategy equilibrium for the stage one reduced game. We have

remarked in Subsection 3.2 that all firms are better off in ∅ than in 123, hence starting from (C, C, C)

firms have no collective incentive to move to (NC, NC, NC). Proposition 1 establishes that no individual

incentive for a firm to offer incompatible components exists either, regardless of the technological regimes

adopted by the other firms, because C weakly dominates NC for each firm. In the rest of this section we

explore in detail the causes of this result.

4.2 The unprofitability of incompatibility

In this subsection we explain why NC is weakly dominated by C for each firm. We rely on two notions

described by Hurkens et al. (2019): the demand size effect and the demand elasticity effect.

Incompatibility is unprofitable when all other firms choose compatibility Without loss of

generality, we focus on firm 2 and examine its incentive to choose NC given 1 = , 3 = . For the

demand size effect we start from the NE in ∅ (i.e., the NE under full compatibility), in which each

components’ price is ∅ = 1
9
. Then, suppose firm 2 offers a proprietary system and sets its price 2

equal to 2∅ , the total equilibrium price of the individual components 2 2 in ∅ ; firms 1,3 still offer

compatible components at the unit price ∅ . The demand size effect inquires each firm’s profit change due

to the choice of NC by firm 2, with unchanged prices. From (6) we know that 2 = 2
∅ and 1 = 3 = ∅

make the demand for the system of firm 2 equal to 2
9
, smaller than 1

3
, the demand for each component

of firm 2 in ∅ . Therefore, firm 2 loses (firms 1,3 gain) market share and profit with respect to ∅ .

In order to see why, notice that NC by firm 2 makes unavailable the systems 12 21 32 23. Hence,

each consumer who buys one of these systems in ∅ must change his purchase in 2,19 and firm 2’s

revenue comes only from the sale of 22. Figure 7 represents the sets of the consumers that buy one or

both components of firm 2 in ∅ , denoted with ∅ for  = 12 21 23 32 22. Figure 8 shows the set 22

of consumers that buy 22 in 2 given 1 = 3 = ∅ , 2 = 2
∅ . This set includes ∅22 and a subset of

∅ for  = 12 21 23 32; to fix the ideas, we focus on ∅32 without loss of generality. For each consumer

in ∅32, incompatibility doubles firm 2’s revenue from the consumer if the latter buys 22 (i.e., if the

consumer is in 22), but reduces the revenue to 0 if the consumer buys a different system. As Figure

8 suggests, the consumers in ∅32 that belong to 22 are fewer than those that do not; thus, relative to

the set ∅32, NC makes firm 2 lose more consumers than those that eventually buy 22. For instance,

a consumer located at x = (08 04) ∈ ∅32 buys 32 under 
∅ . However 32 becomes unavailable after

2 = , and 31 is more convenient for the consumer since it has the same monetary cost as 22, but

18The complete SPNE strategies (which include each firm’s behavior at stage two) are obtained from Lemmas 1-3.
19Conversely, there is no change in the purchase of any consumer that in ∅ buys one of the other systems, as they

remain available at the same price.
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x is closer to 31 than to 22. Hence, the demand size effect reduces firm 2’s market share and profit.

Fig. 7 The sets of

consumers that buy at

least one component of

firm 2 in the NE of ∅

Fig. 8 The set of

consumers that buy 22 in 2

given 1 = 3 = ∅ , 2 = 2
∅

:
R12

∅

R21
∅

R22
∅

R32
∅

R23
∅

1/3 2/3

1/3

2/3

xA

xB

1

1

Figure 7 Figure 8

The above analysis neglects the demand elasticity effect, that is the firms’ incentives to change prices

given 2 = . Precisely, from (7) we see that given 1 = 3 = ∅ , the optimal price for firm 2 is 4
27
,

smaller than 2∅ ; thus firm 2 wants to reduce 2. This occurs because firm 2’s lower demand reduces its

loss from reducing the price to inframarginal consumers, but also because firm 2’s demand in 2 reacts

more to a price decrease than its demand in ∅ . Firms 1 3, if 2 were fixed at 2
∅ , would increase

slightly 1 3 above 
∅ . However since prices are strategic complements, the decrease in 2 induces firms

1,3 to reduce 1 3 below ∅ . This pushes firm 2 to further reduce 2, and the NE is reached at the

prices in Lemma 3.

Combining the two effects yields the equilibrium outcome under 2, in which firm 2’s market share

is 03392. Although this is greater than 1
3
, the price of 22 is low enough that firm 2 is worse off with

respect to ∅ , and also with respect to 123. The stronger price competition hurts also firms 1,3 as they

have about the same market share as in ∅ but charge a price for each component lower than ∅ .

Incompatibility is unprofitable when only another firm chooses it Now we suppose that 1 = ,

2 =  and illustrate why NC is unprofitable for firm 3. If firm 3 offers a proprietary system, then

123 is entered. We examine the demand size effect given 1 = 3 = 2∗ and 2 =  ∗2 (
∗ = 00948,

 ∗2 = 01373 as in the NE in 2: see (9)). Figure 9 describes how the set of consumers of firm 3 changes

in moving from 2 to 123 with unchanged prices. Precisely, let 2 denote the set of consumers that

buy  in 2, for  = 13 31. The boundaries of these sets are represented by dashed segments (see also

Figure 6). The solid segments are the boundaries of the set 33 of consumers that buy 33 in 
123. Firm

3 keeps all the consumers that buy 33 in 2 (the set 233) but, as Figure 9 suggests, loses most of the

consumers in 213 ∪ 231 as they buy 22 or 11 rather than 33.
20 For example, the consumer located

at x = (085 04) and the consumer located at x0 = (085 02) both buy 31 in 2, but in 123 the first

20Precisely, the demand for 33 is 02779, whereas firm 3’s market share in 2 is 03304 for both components.
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consumer buys 22, the second consumer buys 11. Hence, the demand size effect is negative for firm 3.

Fig. 9

The set 33 of consumers that buy

33 in 123, given 1 = 2
∗, 2 =  ∗2 ,

3 = 2
∗ (∗  ∗2 are the NE prices
in 2: see Lemma 3)

:

Figure 9

Also in this case there is a demand elasticity effect that modifies the firms’ pricing incentives. In

particular, at 2 =  ∗2 , 1 = 3 = 2
∗ firms 1,3 want to reduce 1 3, whereas firm 2 wants to increase

2.
21 Consistently with these incentives, the equilibrium price for each system in 123 is 1

6
, such that

 ∗2  1
6
 2∗. At the equilibrium prices, the market share of firm 3 is slightly higher than in 2, 1

3

instead of 03304, but the price 1
6
of its system is smaller than 2∗; this makes its profit 00556, smaller

than the profit 00626 under 2. Thus, it is unprofitable for firm 3 to choose NC when 1 = , 2 = .

5 A setting with vertical differentiation

In this section, we examine a setting with vertical differentiation in which one firm offers components

with higher quality with the respect to the other firms’ components. We inquire whether this asymmetry

generates incentives to choose incompatibility, or instead leads to results analogous to Proposition 1.22

We assume, without loss of generality, that it is firm 2 that offers higher quality components, and

firms are located in both circles as described by Figure 3. The higher quality of 2 2 is represented by a

higher gross utility: a consumer receives gross utility  +, with   0, from a system that includes one

component made by firm 2, receives gross utility  +2 from system 22. We can equivalently interpret

 as a cost reduction from a consumer’s viewpoint, such that for each system the cost reduction is 

times the number of components (in the system) supplied by firm 2. For instance, for a consumer located

at ( ), the cost of 22 is (
1
2
)+(

1
2
)+2−2. Since the quality difference leads to a higher

market share for firm 2, sometimes we call it "large firm", and use "small firms" for firms 1 3.

As in the previous sections, we suppose that each firm incurs zero marginal production costs. However,

since the large firm offers higher quality components, it may be plausible that firm 2’s marginal cost is

higher than that of the small firms, as in Bos and Marini (2019) and Bos, Marini and Saulle (2020), for

instance. Indeed, this possibility is covered by our analysis:

21This occurs because in 123, firm 2 faces softer competition than in 2 as systems 13 31 are not available. In

Subsection 5.5 we provide more details about this effect.
22We remark that the same results arise if all firms’ components have the same quality but one firm is more efficient

than the others in the sense that it has lower production costs, for instance because it employs more skilled workers, or

can procure raw materials more cheaply then the other firms. The empirical literature identifies large differences in firms’

productivity levels, and consequently in firms’ costs, even within narrowly defined industries: see Syverson (2004).
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Proposition 2 The game in which the large firm has quality advantage   0 and marginal cost  ∈ (0 )
is payoff-equivalent to the game in which the large firm’s quality advantage is ̂ = −  and its marginal

cost is zero.

Therefore, the assumption of zero marginal cost for the large firm we make in the following is without

loss of generality when  is interpreted as the large firm’s quality advantage net the cost of producing

such quality. That is, if higher quality can be achieved only via higher costs, then this is equivalent to

a reduction in the quality advantage.23 Therefore, our results below can be seen as determined by the

relationship between the quality advantage and the associated cost.

In the rest of this section, we use Γ to denote the game which differs from Γ only because firm 2 offers

higher quality components, and with 
0

 the stage two subgame of Γ that is entered if 
0 ⊆ {1 2 3}

is the set of the firms that at stage one choose NC. Since vertical differentiation introduces an ex ante

asymmetry among firms which was absent in the previous sections, Lemmas 1 and 2 do not apply to ∅
and to 123 , respectively, and we need to distinguish between 2 and 3 (

1
 is equivalent to 3 up to

a relabelling of firms) as it is relevant if the unique firm choosing NC is the large firm or a small firm.

However, 12  13  23 are each still equivalent to 123 .

5.1 Full compatibility: Subgame ∅

Here we consider competition under full compatibility. Then, competition for component  is independent

of competition for component even under vertical differentiation. We focus on the market for component

, and for a consumer located at  the cost of component  , for  = 1 3, is () in (5); the cost of

component 2 is 2() = ( − 1
2
)2 + 2 − .

Since firms 1,3 are in a symmetric position, we examine NE of ∅ such that firms 1,3 charge the

same price. Given 1 = 3 = , we derive the demand function for firm 2 by solving the inequality

2()  min{1() 3()} and obtain24

2(2) =

⎧⎪⎨⎪⎩
1 if 2  + − 2

9

3+ 3− 32 + 1
3

if + − 2
9
≤ 2  + + 1

9

0 if + + 1
9
≤ 2

(10)

2( 
∅
 ) =

(
1
18
+ 1

2
+ 1

2
 if +   5

9

+ − 2
9

if +  ≥ 5
9

(11)

The best reply for firm 2 in (11) follows from (10). Now we derive the demand function for firm 3.

Assume that firms 1,3 have both a positive market share in the NE, that is 1 = 3 =  with   2−+ 2
9
.

Then, for 3 close to , 3()  min{1() 2()} reduces to  ∈ ( 23+ 3
2
(3+−2) 1− 3

2
(3−));

hence

3(3) =
1

3
+
3

2
(+ 2 − − 23) (12)

From (12) we derive a first order condition for 3, which combined with (11) delivers the equilibrium

prices when all firms have a positive market share. Next lemma also determines that firm 2 captures the

whole market when  ≥ 5
9
.

23 In order to see why, consider full compatibility (to fix the ideas) and the market for component . Let 2 = 2 − 

denote the unit profit margin for firm 2. For a consumer located at  in circle , the cost of 2 is ( 
2

) + 2 −, or

( 
2
)+2− (− ). Since the market is fully covered, the demands for 1 2 3 are determined by the comparisons

among the costs for these components . Thus, the demand functions (and profits) are the same as when firm 2’s marginal

cost is zero and its quality advantage is ̂ = − , with 2 playing the same role as 2.
24We have that min{1() 3()} is equal to 1() if  ∈ [0 1

2
), is equal to 3() if  ∈ [ 1

2
 1). Hence,

2()  min{1() 3()} holds for each  ∈ [0 1) if 2  +− 2
9
, holds for  ∈ ( 13+ 3

2
(2−−) 23+ 3

2
(+−2))

if + − 2
9
≤ 2  + + 1

9
, is violated for each  ∈ [0 1) if 2 ≥ + + 1

9
.
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Lemma 4 In game Γ, consider the subgame 
∅
 which is entered if each firm chooses C at stage one.

In this subgame, for each market there exists a NE such that 1 = 3 = ∗ and 2 = ∗2 with

∗ =
1

9
− 1
5
 ∗2 =

1

9
+
2

5
 if  ∈ (0 5

9
) (13)

∗ = 0 ∗2 = − 2
9

if  ≥ 5
9

(14)

In the following of this section we assume that  ∈ (0 5
9
), so that each firm has positive market share

and profit in ∅ .

5.2 Incompatibility by the large firm only: Subgame 2

Subgame 2 is entered if only the large firm chooses NC at stage one. Therefore, 2 is similar to 2

examined in Subsection 3.3, but the firm that has chosen a proprietary technology also offers higher quality

components. As a consequence, 22( ) is not given by (4) but is ( − 1
2
)2 + ( − 1

2
)2 + 2 − 2.

As in Subsection 3.3, we consider NE in which firm 1 and firm 3 charge a same price  for each single

component they offer. Then, we notice that firm 2’s per-component advantage  has the same effect as

an increase in  by . As a consequence, we can derive the demand function for 22 from (6), by replacing

 with + , and from (7) we obtain 2(+  2). Hence,

2( 
2
) =

⎧⎨⎩
2
3
+ 2

3
+ 2

27
if +  ≤ 5

36

4
3
(+ )− 8

27
+ 1

27

p
324(+ )2 − 144(+ ) + 70 if +   5

36

(15)

For firm 3 we can argue like in the appendix of Subsection 3.3 to derive the demand function when

3 is close to 1, but in fact it is simpler to recall, from the second paragraph in Section 5, that the

quality difference is equivalent to a reduction in the monetary cost of 22 by 2. Thus, we can obtain the

demand function for firm 3 from (8), after replacing 2 with 2 − 2. This allows to derive a first order
condition for 3, which combined with (15) (when  +  ≤ 5

36
) identifies the equilibrium prices when 

is close to zero: see ∗  ∗2 in (16) below in Lemma 5. In this case the set [0 1) × [0 1) of consumers is
partitioned among the available systems as described by Figure 10, which is similar to Figure 6:25

Fig. 10 Equilibrium partition

of consumers in 2 among

11 22 13 31 33

when  ≤ 13
180

Fig. 11 Equilibrium partition

of consumers in 2 among

11 22 13 31 33

when  ∈ ( 13
180

 5
9
)

:
R22

R33R13

R31R11

xA

xB

1

1

R22

R33R13

R31R11

xA

xB

1

1

Figure 10 Figure 11

In order for the equilibrium prices to be given by (16), it is necessary that the set 22 is a square as

in Figure 10. This occurs if  ≤ 13
180
, but 22 widens as  increases (as it is intuitive), for  =

13
180

the

25The vertices in Figure 10 are as in Figure 5 with  = 2
3
+ 3

2
(∗2 − 2− 2∗) and ∗  ∗2 in (16): See footnote 13.
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vertices of 22 hit the edges of the square [0 1)× [0 1), and for   13
180

the set 22 is an octagon like in

Figure 11. Since 13 31 33 are triangles and not pentagons as in Figure 10, the expression of 3 for

3 slightly larger than 1 is not anymore derived from (8): see the proof to Lemma 5 in the appendix.

From it we derive a first order condition for 3, which together with (15) (when  +   5
36
) yields the

equilibrium prices in (17) in Lemma 5, and the consumers partition as described by Figure 11.26

Lemma 5 In game Γ, consider the subgame 2 which is entered if firm 2 chooses NC and firms 1,3

choose C at stage one. In 2 there exists a NE with 1 = 3 = ∗ and 2 =  ∗2 such that

∗ = 1
240

√
51842 + 10 224+ 4681− 7

10
− 137

720

 ∗2 =
1
360

√
51842 + 10 224+ 4681 + 1

5
− 19

360

if  ≤ 13
180

(16)

∗ = 1
855

√
81002 − 3600+ 2110− 2

19
+ 4

171

 ∗2 =
24
19
+ 7

855

√
81002 − 3600+ 2110− 16

57

if 13
180

   5
9

(17)

5.3 Incompatibility by a small firm only: Subgame 3

Here we study the case in which only a small firm (either firm 1 or firm 3) chooses NC. Since the subgame

1 is equivalent to 
3
, up to a relabelling of firms, we examine 

3
. This subgame is more complicated

than 2 as there is no symmetry between any two firms: firm 2 has a quality advantage over firms 1,3

and firm 3 offers a proprietary system whereas the others do not. In 3, a NE is a triplet (
∗
1 
∗
2 

∗
3 ).

One complication of the equilibrium analysis is that the expressions of the firms’ demand functions,

which lead to the equilibrium prices, change as  varies, like in the previous subsection. Precisely, if 

is close to 0, then 3 is only slightly different from the subgame 2 examined in Subsection 3.3 (apart

from the fact that in 3 it is firm 3 that has chosen NC rather than firm 2). This suggests that given ∗

and  ∗2 in Lemma 3, for  close to 0 the equilibrium prices ∗1 
∗
2 are close to 

∗, and  ∗3 is close to 
∗
2 .

This is useful because it is cumbersome to derive the complete demand functions in 3, but is simpler to

derive them for 1 2 close to 
∗ and 3 close to  ∗2 . Since the expressions we obtain are complicated, we

leave them to the proof of Lemma 6 in the appendix. From them we determine a NE of 3 for  ≤ 26
77
,

and for this case the partition of consumers among the available systems is described by Figure 12.

Fig. 12 Equilibrium partition

of consumers in 3 among 11

22 33 12 21 when  ≤ 26
77

Fig. 13 Equilibrium partition

of consumers in 3 among 11

22 33 12 21 when  ∈ (26
77
 5
9
)

:

Figure 12 Figure 13

However, as  increases, the set 22 widens and for   26
77
it "absorbs" point x in Figure 12, which

is the location of a consumer indifferent between 21, 33, 11; a similar remark applies to point x̄,

26The vertices in Figure 11 are as in Figure 4 with  = 2
3
+ 3

2
(∗2 − 2− 2∗) and ∗  ∗2 in (17). See footnote 13.
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the location of a consumer indifferent between 12, 33, 11. As a result, when   26
77
the consumers

partition is as in Figure 13, and since the sets 11, 33, 21, 12 have different shapes with respect to

Figure 12, the demand functions have different expressions (see the proof to Lemma 6).27

Since the system of the first order conditions is highly non-linear, it cannot be solved in closed form

and for subgame 3 (unlike for 
2
) we do not have a closed form expression for the equilibrium prices.

For this reason we resort to a numerical approach, but the proof of Lemma 6 verifies that the solution

we obtain numerically constitutes a NE of 3. Figure 14 plots the equilibrium prices as function of .

Fig. 14

Equilibrium prices in 3
∗1 (thin), 

∗
2 (dashed), 

∗
3 (thick)

:

αp1
*

p2
*

P3
*

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

Figure 14

Lemma 6 In game Γ, consider the subgame 3 which is entered if only firm 3 chooses NC at stage

one. For each  ∈ (0 5
9
), there exists a NE of 3.

5.4 Incompatibility by all firms: Subgame 123

Subgame 123 is entered if each firm chooses NC; if only two firms choose NC, then a subgame equivalent

to 123 is entered. In this case, competition occurs under full incompatibility as in 123 (see Subsection

3.2), but firm 2 offers higher quality components. Since firms 1,3 are in a symmetric position, we consider

NE in which firms 1,3 charge the same price  for 11 33.

The demand functions for the three systems have somewhat complicated expressions which are left

to the proof of Lemma 7 in the appendix, and as in the Subsections 5.2, 5.3 the relevant expressions of

the demand functions depend on . Figure 15 represents the consumers’ partition among 11 22 33 in

equilibrium when  is close to zero. As  increases, the set 22 widens and for  =
71
630

four of its vertices,

included the vertex x, hit the edges of the square [0 1) × [0 1). As a consequence, when   71
630

there

is no consumer with a strong preference for component 2 that is indifferent among 11 22 33: each

consumer with a strong preference for 2 buys 22. This changes the shapes of the sets 11 22 33,

27For instance, in the southeast of [0 1)× [0 1), 11 is a triangle rather than a quadrilateral because there are consumers
indifferent between 11 and 33 (or between 21 and 33), but no consumer is indifferent among 11, 21, 33.
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and Figure 16 describes the resulting equilibrium partition of consumers when 71
630

   5
9
:

Fig. 15 Equilibrium partition of

consumers in 123 among

11 22 33 when  ≤ 71
630

Fig. 16 Equilibrium partition of

consumers in 123 among

11 22 33 when  ∈ ( 71
630

 5
9
)

:

Figure 15 Figure 16

Lemma 7 In game Γ, consider the subgame 
123
 which is entered if all firms choose NC at stage one.

For each  ∈ (0 5
9
), there exists a NE of 123 .

5.5 The first stage

Here we study the firms’ choices in stage one of Γ: As in Section 4, we consider the stage one re-

duced game with simultaneous moves in which, for each (1 2 3) ∈ {C,NC}3, the firms’ profits given
(1 2 3) are equal to the profits in the equilibrium of the subgame which is determined by (1 2 3):

see Subsections 5.1-5.4. Precisely, we denote with Π∅ the profit of firm  in ∅ (i.e., 1 = 2 = 3 = ),

with Π

 the profit of firm  in  (i.e.,  =NC,  =  = ), and with Π123 the profit of firm  in 123

(i.e., at least two firms have chosen NC). In the normal form below, firm 1 chooses a row, firm 2 chooses

a column, firm 3 chooses a matrix.

3 = C 3 = NC

2 = C 2 = NC

1 = C Π∅1 Π
∅
2 Π

∅
3 Π21Π

2
2Π

2
3

1 = NC Π11Π
1
2Π

1
3 Π1231 Π1232 Π1233

2 = C 2 = NC

1 = C Π31Π
3
2Π

3
3 Π1231 Π1232 Π1233

1 = NC Π1231 Π1232 Π1233 Π1231 Π1232 Π1233

As we mentioned in Section 4, (NC,NC,NC) is a trivial NE for each . Hence, in the following we

examine the existence of other NE. To this purpose, it is useful to compare:

• Π22 with Π∅2 and Π1232 with Π32, in order to inquire the large firm’s incentives to choose incompati-

bility, when no small firm does so or when only one small firm does so.

• Π33 with Π∅3 , Π1233 with Π13, and Π
123
3 with Π23, in order to learn about the incentives of a small firm

to choose incompatibility when: a) no other firm does that; b) only the other small firm does that;

c) only the large firm does that.

We rely on our results from Subsections 5.1-5.4 and numeric analysis to perform the above compar-

isons. For instance, Figure 17 below plots Π22 and Π
∅
2 as a function of ; the appendix includes the plots

18



of the profit functions involved in the other comparisons.

Fig. 17

Π22 (solid) vs Π
∅
2 (dashed)

:

α

Π2
2 Π2

∅

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

Figure 17

The profit comparisons for firm 2 reveal that

Π22  Π
∅
2 if  ∈ (0 0), Π22  Π

∅
2 if  ∈ (0 5

9
), with 0 = 01953 (18)

From (18) we see that if the small firms adopt the standard technology, then the large firm has

incentive to adopt it as well if its advantage is small (coherently with the results in Section 4 obtained

for  = 0); otherwise it wants to develop a proprietary system. Moreover,

Π1232  Π32 if  ∈ (0 01709), Π1232  Π32 if  ∈ (01709 5
9
) (19)

Similarly, (19) reveals that if one small firm develops a proprietary technology, then the large firm

still wants to adopt the standard if its advantage is small; otherwise it develops a proprietary system.

However, note that NC by a small firm lowers the threshold for  above which the large firm chooses NC.

From (18)-(19) jointly we deduce that (i) if   01709, then firm 2 plays C in any non-trivial NE;

(ii) if   0, then NC is weakly dominant for firm 2; (iii) if  is between 01709 and 0, then firm 2’s

best reply is C when 1 = 3 = , and it is NC when 1 =  or 3 = .

The profit comparisons for firm 3 reveal that

Π33  Π∅3 if  ∈ (0 0496), Π33  Π
∅
3 if  ∈ (0496 5

9
) (20)

Π1233  Π13 for each  ∈ (0 5
9
) (21)

Π1233  Π23 if  ∈ (0 0051)∪(01 00), Π1233  Π23 if  ∈ (0051 01)∪(00 5
9
), with 00 = 01981 (22)

The most relevant takeaway from (20)-(22) is that firm 3 wants to choose NC if 1 = 2 =  and

  0496, or if 1 = , 2 =  and   00.28

With these information we can identify the NE of the reduced game for each  ∈ (0 5
9
), distinguishing

three intervals for : (0 0), (0 00), (00 5
9
).

When  is in the interval (0 0), firm 2 wants to play NC only if at least one of the small firms

plays NC and   01709. However, for   0 firm 3 (firm 1) plays NC only if 1 = , 2 =  and

 ∈ (0051 01). Hence, (C,C,C) is the unique non-trivial NE. This extends Proposition 1, which covers
the case of  = 0.

We obtain different results when  ∈ (0 00), because then firm 2 wants to choose NC even if no

small firm does so. However, (22) reveals that firm 3 (firm 1) does not choose NC if only firm 2 does so.

Hence (C,C,C) is not a NE, and (C,NC,C) is the unique non-trivial NE.

28 If 1 =  and 2 = , for firm 3 3 =  is optimal also when  is between 0051 and 01. However, this does not

affect the equilibrium behavior in the reduced game.
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Finally, for  ∈ (00 5
9
) there is a change in the preference of firm 3 (firm 1): now firm 3 wants to

choose NC if only firm 2 does so. Hence, in each NE at least two firms choose NC and each NE is

equivalent to (NC,NC,NC). Next proposition summarizes these results.

Proposition 3 In the stage one reduced game for Γ, (NC,NC,NC) is a NE for each  and

(i) when  ∈ (0 0), there exists a unique non-trivial NE, (C,C,C);
(ii) when  ∈ (0 00), there exists a unique non-trivial NE, (C,NC,C);
(iii) when  ∈ (00 5

9
), each other NE is equivalent to (NC,NC,NC).

Unlike Proposition 1, Proposition 3 establishes that, in the setting with vertical differentiation we

examine, firms may have individual incentives to offer proprietary systems. These incentives depend on

the magnitude of  and on the other firms’ technological regime choices. For   0 full compatibility
remains the unique non-trivial equilibrium. By contrast, for  ∈ (0 00) there exists an asymmetric
equilibrium where only the large firm offers a proprietary system. Finally, for   00 full incompatibility
is the unique equilibrium. The difference between Proposition 1 and Proposition 3 is determined by the

inequalities Π22  Π
∅
2 and Π

123
3  Π23 in (18) and (22). In the rest of this section we explore why these

inequalities hold for   0 and for   00, respectively, even though they are violated when  = 0.

Incompatibility is profitable for the large firm when the small firms choose compatibility

and   0. As we have explained in Section 4, NC reduces the profit of firm 2 (given 1 = 3 = )

when  = 0 because of a negative demand size effect, and because the demand elasticity effect makes

price competition fiercer. However, a different result emerges if   0 is not small. Starting with the

demand size effect, we consider 2 with 1 = 3 = ∗, 2 = 2∗2 (
∗ ∗2 are the NE prices in ∅ :

see (13)). As in Section 4, we focus on the set ∅32 of consumers that buy 32 in ∅ , the rectangle

[2
3
+ 3

5
 1) × [1

3
− 3

5
 2

3
+ 3

5
) shown in Figure 18 with three dashed edges.29 Since 32 is unavailable

in 2, each consumer in ∅32 will buy either 22 or 33 or 31. With respect to 32, all these systems

reduce the utility of such consumer. However, simple algebra shows that the utility decrease with 22

is decreasing in , whereas the utility decrease with 33 or 31 is increasing in , in such a way that

more than half of the consumers in ∅32 buy 22 if   5
36
. Essentially, when   5

36
for a majority of

consumers in ∅32 it is not convenient to give up component 2, even though that requires to buy 2

which they like less than 3. Figure 18 also represents the set 22 of consumers that buy 22 in 
2
 when

  5
36
, 1 = 3 = ∗, 2 = 2∗2.

Fig. 18:

The set ∅32 (with dashed edges) of the consumers

that in ∅ buy 32, and the set 22 (with solid edges)

of consumers that buy 22 in 2 given 1 = 3 = ∗,
2 = 2

∗
2 (

∗ ∗2 are NE prices in ∅ : see (13))

:

Figure 18

29Similar arguments apply to the sets ∅12 
∅
21 

∅
23, and there is no change in the purchases of consumers that in ∅

buy no component of firm 2 or both components of firm 2.
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Therefore, the demand size effect for firm 2 is negative if   5
36
but is positive if   5

36
(compare

Figure 8 with Figure 18). We also remark that this effect is weak if  is close to 5
9
, as then the market

share of firm 2 is already very large in ∅ , hence the set 
∅
32 is small.

Also the demand elasticity effect depends on : given 1 = 3 = ∗, we find that at 2 = 2∗2, 2

is elastic if   03115, but it is inelastic if   03115. In Section 4.2 we have mentioned the first case

when  = 0; the second case is simple to see for  = 5
9
. Precisely, when  = 5

9
the equilibrium prices for

∅ are 
∗
1 = ∗3 = 0, 

∗
2 =

1
3
and all consumers buy 2 and 2. If in 

2
 firm 2 increases 2 above 2

∗
2 =

2
3

by ∆2  0 close to zero, then the set of consumers that firm 2 loses is the union of four right triangles

at the corners of [0 1)× [0 1), each with edges proportional to ∆2 (see Figure 4). This set has an area
proportional to (∆2)

2, hence the increase in 2 has a zero first order effect on the demand for 22 and

this demand has zero elasticity at 2 =
2
3
.

The incentive of firm 2 to reduce 2 for   03115 has the effect of inducing firms 1,3 to reduce their

prices, as we remarked for the case of  = 0. Moreover, except for values of  close to zero, firms 1,3

want to reduce 1 3 below ∗ even if 2 = 2∗2. This harms firm 2, therefore   5
36
is not sufficient to

make firm 2 prefer 2 to 
∅
 . Indeed, (18) reveals that Π

2
2  Π

∅
2 holds if and only if   0.

Incompatibility is profitable for a small firm if the large firm chooses incompatibility and

  00. In Section 4 we have explained why firm 3 prefers C to NC given 1 = , 2 =  when

 = 0. Now we illustrate why the opposite holds, that is Π1233  Π23, when   00.
We first notice that the demand size effect is negative for firm 3. Comparing the NE of 2 with the

outcome in 123 given 1 = 3 = 2∗, 2 =  ∗2 (
∗  ∗2 are the NE prices of 

2
: see (17)) reveals that

in the latter case the market share and profit of firm 3 is reduced. In order to see why, notice that

00  13
180
, therefore in 2 the equilibrium partition of consumers is described by Figure 11. Moving to

123 with unchanged prices makes 13 31 unavailable, and firm 3’s profit derives only from the sale of

33. The consumers that buy 33 in the NE of 
2
 still buy 33 in 123 . Hence, the demand size effect is

determined by the purchases of the consumers that buy 31 in 2 (similar arguments apply to 13); let

231 denote this set, a triangle with vertices x
1, x3, (1 0) in Figure 19. In 123 , suppose for one moment

that 22 is not available. Then, the consumers in 231 split equally between 11 and 33 since 1 = 3

and one half of them is closer to 11, whereas the other half is closer to 33. However, the presence

of 22 is relevant since for the consumers in 231, 11 and 33 are inferior to 31 but the consumers on

the segment x1x3 (the border between 231 and 222: see Figure 11) are indifferent between 22 and

31. Hence, the consumers in 231 close to this segment prefer 22 to both 11 and 33: these are the

consumers in the triangle x1x2x3. Therefore, the consumers in 231 that buy 33 are less than one half of

231: they are a half of the quadrilateral with vertices x
1x2x3, (1 0) in Figure 19. Thus, moving from

2 to 
123
 with unchanged prices worsens the situation of firm 3, but improves that of firm 2. The latter

faces relaxed competition as 13 31 are not available anymore: Firm 2 wins over the consumers in the

triangles x1x2x3 and x̄1x̄2x̄3.
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Fig. 19:

The set 231 (triangle x
1x3 (1 0)) of the consumers

that in 2 buy 31, and the set (triangle x
1x2 (1 0)) of

consumers in 231 that buy 33 in 123 given 1 = 3 = 2
∗,

2 =  ∗2 (
∗  ∗2 are NE prices in 2: see (17))

:

Figure 19

Nevertheless, also firms 1,3 prefer 123 to 2 for large  because firm 2 is less aggressive in 
123
 than in

2. Precisely, suppose that 1 = 3 =  in 2 and 1 = 3 = 2 in 
123
 ; thus 11 (33) has the same price

in 2 as in 123 , but in 2 also 13 31 are available. Comparing 2( 
2
) in (15) with the best reply

of firm 2 in 123 , denoted 2(2 
123
 ) [see (41) in the appendix], shows that 2(2 

123
 )  2(2 

2
),

thus firm 2 is less aggressive in 123 than in 2. This occurs because a higher number of inframarginal

consumers for firm 2 in 123 than in 2 (due to the positive demand size effect for firm 2) makes it more

profitable to increase 2, and also because a same increase in 2 leads to a smaller loss of consumers in

123 than in 2 (this is a consequence of how the triangles x
1x2x3 and x̄1x̄2x̄3 depend on 2). Although

the demand size effect is negative for firm 3, when  is large that effect is weak as the market share of firm

3 is already small in 2. It follows that for firm 3 this effect is dominated by the demand elasticity effect,

which induces less aggressive pricing by firm 2, and allows firm 3 (firm 1) to increase 3 (1) and earn a

higher profit than in 2.
30 We remark that, by reducing the own competitiveness through a reduction

of the number of systems, firm 3 (firm 1) increases the own profit as the less competitive environment

induces firm 2 to charge a higher price, which has a more important effect on the profit of firm 3.31

6 Discussion and conclusions

We have examined an oligopoly model in which multi-product firms compete for the sale of a system made

of complementary components. Each firm can choose to offer components that are incompatible with those

supplied by rivals. In particular, we studied a two-stage game where first firms simultaneously choose

whether to adopt a standard technology or not; and then firms compete in prices given their compatibility

choices. We show that, with ex-ante symmetric firms, for each firm compatibility weakly dominates

incompatibility. It follows that full compatibility arises in equilibrium if firms avoid weakly dominated

actions. This result provides a ground to the previous literature which focuses on the comparison between

full compatibility and full incompatibility.

We then show that individual incentives to use proprietary technologies may exist when firms are

ex-ante asymmetric because of vertical differentiation. A firm offering higher quality components has

incentive to use a proprietary technology if its quality advantage is large. Therefore, partial compatibility

30This is similar to what happens in Hurkens et al. (2019), in a case with two firms for which footnote 2 applies.
31We point out that firms 1,3 prefer to play ∅ rather than 123 for   0429. Conversely, firm 2 prefers 123 to ∅ for

each   00.
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may arise in equilibrium when firms are vertically differentiated, and ruling it out a priori may entail some

loss of generality. Furthermore, if the vertical differentiation is sufficiently large, then also the small firms

want to develop proprietary technologies. In this case, full incompatibility is the unique equilibrium.

We have modelled asymmetry among firms in a specific way, but it would be interesting to find out

whether other specifications lead to the result that asymmetric technological regimes can arise with ex

ante asymmetric firms. For instance, one firm may have a quality advantage for only one component

and a second firm an advantage for the other component. Alternatively, we may allow firms to be not

equidistantly located in the two markets. Finally, a very interesting extension would be relaxing the

assumption of a unique standard, in order to study whether clusters of firms may form around different

standards (allowing for more than three firms).
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7 Appendix

7.1 Appendix to Subsection 3.3

7.1.1 Derivation of the demand function for firm 2

In order to derive the demand function for 22, we employ two steps as follows.

Step 1 We pretend that consumers can buy only from firms 1 and 3, as if there were no firm 2,

and derive the resulting distribution of consumers among 11 13 31 33. Since 1 = 3 in equilibrium

and firm 1 (3) is located at 1
6
(at 5

6
), in each market a consumer buys from firm 1 (from firm 3) if the

consumer is located between 0 and 1
2
(between 1

2
and 1). We let  denote the region of consumers that

buy system  , for  = 1 3 and  = 1 3, when there is no firm 2. Hence

11 = [0
1

2
)× [0 1

2
), 13 = [0

1

2
)× [ 1

2
 1), 31 = [

1

2
 1)× [0 1

2
), 33 = [

1

2
 1)× [ 1

2
 1) (23)

Fig. 20

Consumers’ purchases in 2 when

22 is not available and 1 = 3

:

Q11 Q31

Q33Q13

0.5

0.5 xA
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1

1

Figure 20

Step 2 For each region in (23) we identify the consumers that prefer 22 to the best alternative offered

by firms 1, 3. Precisely, for  = 1 3 and  = 1 3 we solve 22( )  ( ) for ( ) in 

to determine the consumers that prefer 22 to  . For instance, consider  = 1,  = 3 and let  be the

common equilibrium value of 1 and 3. Then (4)-(5) yield 13( ) = (− 1
6
)2+( − 5

6
)2+2 for

( ) ∈ 13 and 22( )  13( ) reduces to   1
3
− 3

2
(2 − 2) + . More generally,

for ( ) ∈ 11, 22( )  11( ) reduces to   2
3
+ 3

2
(2 − 2)− 

for ( ) ∈ 13, 22( )  13( ) is reduces to   1
3
− 3

2
(2 − 2) + 

for ( ) ∈ 31, 22( )  31( ) reduces to   −1
3
+ 3

2
(2 − 2) + 

for ( ) ∈ 33, 22( )  33( ) reduces to   4
3
− 3

2
(2 − 2)− 

(24)

The resulting subset of [0 1) × [0 1) depends on 2 − 2 as illustrated in the main text just before
Figures 4 and 5.
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7.1.2 Derivation of the demand function for firm 3

In order to derive the demand for firm 3 for 3 close to 1, we follow two steps as in Subsection 7.1.1.

Step 1Given 3 slightly larger than 1, we examine the consumers’ purchases when only 11 13 31 33

are available, as if there were no firm 2. Since 3  1, solving 3() ≤ 1() (see (5)) reveals that the con-

sumers buying component 3 (3) are those with  () in the interval [ ), with  =
1
2
+ 3
4
(3−1)  1

2

and  = 2− 2  1; conversely, the consumers with  () in [0 )∪ [ 1) buy component 1 (1). As
a consequence, we define the sets 11, 13, 31, 33 as follows (see Figure 21):

11 = ([0 ) ∪ [ 1))× ([0 ) ∪ [ 1)) , 13 = ([0 ) ∪ [ 1))× [ ),
31 = [ )× ([0 ) ∪ [ 1)) , 33 = [ )× [ )

(25)

Step 2 Since we are interested in the demand for firm 3, we neglect 11 but for the other regions

in (25) we identify the consumers that prefer a system offered by firms 1 and 3 to 22. Precisely, for

 = 13 31 33 we solve ( )  22( ) for ( ) ∈  . For instance, (4)-(5) reveal that

in 33 the inequality 33( )  22( ) reduces to   4
3
+ 3

2
(23 − 2)− . Therefore, the

set of consumers that buy 33 is given by region 33 in Figure 22.
32 Arguing likewise for 13 and 31

shows that the set of consumers that buy just one component from firm 3 is 13 ∪31 in Figure 22.33

Fig. 21 The sets 11 13

31 33 in (25)

Fig. 22 The sets 13 31 33
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The demand for firm 3 given 3 slightly larger than 1 is equal to twice the area of 33 plus the area of

13 ∪31; this yields (8). In fact, from the proof of Lemma 3 we see that the demand for firm 3 has the

expression in (8) also for 3 slightly smaller than 1.

7.1.3 Proof of Lemma 3

From (8) we derive the following first order condition for 3, at 3 = 1 = :

−9
2
 22 + 272+ 22 − 362 −

21

2
+

7

9
= 0 (26)

Together with 2 =
2
3
+ 2

27
from (7) (given   5

36
), (26) identifies the prices in Lemma 3. In this proof

we show that such prices constitute a NE for 2. We use ∗ to denote the common value of ∗1 and ∗3.
For firm 2, from (7) we know that  ∗2 = 2(

∗ 2) is a best reply given that 1 = 3 = ∗.
In the rest of this proof we suppose that firm 1, firm 2 play 1 = ∗, 2 =  ∗2 . We derive the complete

demand function for firm 3 and prove that playing 3 = ∗ is a best reply for firm 3.

32 In Figure 22, x1 = ( 3 − ), x2 = ( −  ) with  = 4
3
+ 3

2
(23 − 2).

33Figure 22 is obtained assuming that 1
2
2+

1
18

 3; this indeed holds in equilibrium by Lemma 3, otherwise the vertical

coordinate of x̄2 (the horizontal coordinate of x2) would be greater than  and 33 would be a triangle.
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The demand function of firm 3 First we consider 3  ∗ and argue as in Steps 1 and 2 of Subsection
7.1.2, assuming initially that 22 is not available. The inequality 3()  1() holds for  ∈ [0 )∪[ 1),
with  = 3

2
(∗ − 3),  =

1
2
− 1

2
. Therefore the consumers partition among 11 13 31 33 as follows:⎧⎪⎨⎪⎩

11 = [ )× [ ), 
13 = [ )× [0 ), 

13 = [ )× [ 1),

31 = [0 )× [ ), 

31 = [ 1)× [ ), 
33 = [0 )× [0 ),


33 = [ 1)× [0 ), 

33 = [0 )× [ 1), 
33 = [ 1)× [ 1)

(27)

see Figure 23:

Fig. 23 The partition of

[0 1)× [0 1) described
in (27)

Fig. 24 The sets 
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We neglect 11 and solve 22( )  ( ) in  for  6= 11 to determine the set  of

consumers that prefers  to 22: see Figure 24. We use A() to denote the area of the set  .

In 
33 , 22( )  33( ) reduces to   3

4
 ∗2 − 3

2
3 − +

1
3
, which is satisfied for each

( ) ∈ 
33 , for each 3  ∗. Hence 

33 = 
33 and A(

33 ) = 2.

In 
33 , 22( )  33( ) reduces to   3

4
 ∗2 − 3

2
3 +

1
2
 − 1

6
, which holds for each

( ) ∈ 
33 , for each 3  ∗. Hence 

33 = 
33 and A(

31 ) = (1− ). Likewise, 
33 = 

33

and A(
33 ) = (1− ).

In 
33 , 22( )  33( ) is equivalent to   4

3
+33− 3

2
 ∗2 −. Hence 

33 coincides

with 
33 except for a triangle in the left bottom of 

33 with vertices ( ), x2 = ( 4
3
+33− 3

2
 ∗2 − ),

x̄2 = ( 4
3
+ 33 − 3

2
 ∗2 − ) (see Figure 24) and A(33) = (1− )2 − 1

2
( 4
3
+ 33 − 3

2
 ∗2 − 2)2.

In 
31 , 22( )  31( ) is equivalent to   3

2
 ∗2 − 3

2
∗− 3

2
3−2+ 2

3
, which holds for

each ( ) ∈ 
31 , for each 3  ∗. Hence 

31 = 
31 and A(

31) = ( − ). Likewise, 
13 = 

13

and A(
13) = ( − ).

In 
31, 22( )  31( ) reduces to   3

2
 ∗2 − 1

3
− 3

2
∗ − 3

2
3 + , which makes 


31

equal to 
31 minus a triangle in the top left of 


31 with vertices ( ), x

1 = ( 3
2
 ∗2 − 1

3
− 3
2
∗− 3

2
3+),

x2 (see Figure 24). Hence A(
31) = ( − )(1 − ) − 1

2
(1
3
+ 3

2
∗ + 3

2
3 − 3

2
 ∗2 )

2. Likewise, A(
13) =

( − )(1− )− 1
2
(1
3
+ 3

2
∗ + 3

2
3 − 3

2
 ∗2 )

2.

Hence the total demand of firm 3 when 3  ∗ is

2A(
33 ) + 2A(

33 ) + 2A(
33 ) + 2A(

33 ) +A(
31) +A(

31) +A(
13) +A(

13)

= 1 +
9

2
∗ − 9

2
3 − 9

2
(
2

9
+ ∗ + 3 −  ∗2 )

2

In the Supplementary Material we derive the total demand for firm 3 when 3  ∗ and find that the
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complete demand function for firm 3 is

3(3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 + 9
2
∗ − 9

2
3 − 9

2
( 2
9
+ 3 + ∗ −  ∗2 )

2 if 0 ≤ 3 ≤ 1
5
∗ + 2

5
 ∗2 +

2
45

981
32

23 − ( 1538  ∗2 +
369
16

∗ + 77
8
)3 +

9
8
( ∗2 )

2

+117
8
 ∗2 

∗ + 13
4
 ∗2 − 99

32
(∗)2 + 25

8
∗ + 61

72

if 1
5
∗ + 2

5
 ∗2 +

2
45

 3 ≤ 1
2
∗ + 1

4
 ∗2 +

1
9

(1
2
+ 9

4
∗ − 9

4
3)(

5
4
− 27

8
∗ + 9

2
 ∗2 − 45

8
3) if 1

2
∗ + 1

4
 ∗2 +

1
9
 3 ≤ 2 ∗2 − 3∗ + 2

9
27
2
(2
9
+ 1

2
 ∗2 − 3)

2 if 2 ∗2 − 3∗ + 2
9
 3 ≤ 1

2
 ∗2 +

2
9

0 if 3 
1
2
 ∗2 +

2
9

(28)

Since 3(3) = 33(3), from (28) we obtain 03(3)  0 for 3 ∈ (0 ∗), 03(3)  0 for 3 ∈
(∗ 1

2
 ∗2 +

2
9
).

7.2 Proof of Lemma 5

In Subsection 5.2 we have established that given 1 = 3 = , the best reply for firm 2 is given by

2( 
2
) in (15). In the Supplementary Material we consider the point of view of firm 3 (a similar

argument applies for firm 1). Given that firm 1, firm 2 play 1 = , 2 =  , we derive the demand

function of firm 3 when 3 is slightly larger than  and obtain

3(3) = 1 +
9

2
(1 − 3)− 9

2
(
2

9
+ 2+ 1 + 3 − 2)

2 (29)

if  ≤ 1
2
 − + 1

18
(this is the demand function for firm 3 from (8), after replacing 2 with 2 − 2). If

instead   1
2
 − + 1

18
, then

3(3) =
63

2
23+(45−181−

45

2
 −10)3+ 9

2
( − 2)2+ 9

2
1+4+

9

2
21−91+21−8+

8

9
(30)

From (29) and 3(3) = 33(3) it follows that

03(3) = −
27

2
23 + (18 − 18− 36− 13)3 +

9

2
+ 1− 9

2
(+ 2−  +

2

9
)2 (31)

and the first order condition for 3, at 3 = , is −9
2
 2 + 27 + 18 + 2 − 362 − 54 − 21

2
 −

182− 4+ 7
9
= 0. Jointly with  = 2

3
+ 2

3
+ 2

27
from (15), this yields ∗  ∗2 in (16), which satisfy the

inequalities  ≤ 1
2
 − + 1

18
and +  ≤ 5

36
for each  ≤ 13

180
, but violate them if   13

180
.

From (30) we obtain

03(3) =
189

2
23+(90− 36− 45 − 20) 3+

9

2
( − 2)2+ 9

2
+4 +

9

2
2−9+2−8+ 8

9
(32)

and the first order condition with respect to 3, at 3 = , is 9
2
 2− 81

2
−18+4+632+81−18+

182 − 8+ 8
9
= 0. Jointly with  = 1

27

p
324(+ )2 − 144(+ ) + 70 + 4

3
(+ )− 8

27
from (15), this

yields ∗  ∗2 in (17), which satisfy  
1
2
 − + 1

18
and +   5

36
for each  ∈ ( 13

180
 5
9
).

In the Supplementary Material we derive firm 3’s complete demand function and show, also using the

software Mathematica, that for each  ∈ (0 5
9
), 3 = ∗ is a best reply for firm 3.

7.3 Proof of Lemma 6

In the Supplementary Material we show that if(
max{2 −  1

2
3}  1 ≤ 2

5
3 +

1
5
(2 − ) + 2

45
 − 23 + 51 − 2

9
≤ 2  + 1

5
2
1 − 1

2
(2 − )− 1

9
≤ 3  1 + 2 − + 2

9

(33)

27



then the demand functions are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1(1) =
(93 − 92 + 9− 13

2
)1 − 9

2
21 − 9

2
2 − 93 + 7

9

+92 − 5
2
− 9

2
 23 + 932 + 23 − 9

2
22 +

5
2
2

2(2) =
(93 − 91 + 9− 13

2
)2 − 9

2
22 − 9

2
2 − 93 + 7

9

+91 +
13
2
− 9

2
 23 + 931 + 23 − 9

2
21 +

5
2
1

3(3) =
9
2
 23 − (91 + 92 − 9+ 2)3 + 1

18
(91 + 92 − 9+ 2)2

(34)

and from them we derive the following first order conditions for 1 2 3:
34⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(183 − 18(2 − )− 13) 1 − 27
2
21 − 9

2
 23

+93(2 − ) + 23 − 9
2
(2 − )2 + 5

2
(2 − ) + 7

9
= 0

−27
2
22 + (18+ 183 − 181 − 13) 2 − 9

2
2 − 93

+91 +
13
2
− 9

2
 23 + 931 + 23 − 9

2
21 +

5
2
1 +

7
9
= 0

3 − ( 131 − 1
3
+ 1

3
2 +

2
27
) = 0

(35)

By solving (35) numerically, we obtain a solution that satisfies (33) for  ∈ (0 26
77
]; the equilibrium

partition of consumers among the available systems is described by Figure 12. However, for   26
77
solving

(35) numerically yields a solution that violates 1 ≤ 2
5
3+

1
5
(2−)+ 2

45
, therefore also −23+51− 2

9
≤

2 and
5
2
1 − 1

2
(2 − )− 1

9
≤ 3 fail to hold.

In the Supplementary material we show that if(
2
5
3 +

1
5
(2 − ) + 2

45
 1 

1
3
3 +

1
3
(2 − ) + 2

27
 − 3 + 31 − 2

9
 2  − 23 + 51 − 2

9

max{41 − 2(2 − )− 4
9
 1
2
1 +

3
2
(2 − )− 1

9
}  3 

5
2
1 − 1

2
(2 − )− 1

9

(36)

then the demand functions are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1(1) =
981
32

21 −
¡
153
8
3 +

369
16
(2 − ) + 77

8

¢
1 − 99

32
2 − 117

8
3 +

61
72

+99
16
2 − 25

8
+ 9

8
 23 +

117
8
32 +

13
4
3 − 99

32
22 +

25
8
2

2(2) =

¡
153
16

+ 63
8
3 − 99

16
1 − 53

8

¢
2 − 153

32
22 − 153

32
2 − 63

8
3 +

55
72

+99
16
1 +

53
8
− 45

8
 23 +

117
8
31 +

7
4
3 − 369

32
21 +

25
8
1

3(3) =
9
4
 23 +

¡
9
4
1 − 45

4
(2 − )− 5

2

¢
3 − 153

16
21 +

63
16
2 − 117

8
1 +

7
36

− 63
8
2 − 7

4
− 153

16
21 +

117
8
12 +

13
4
1 +

63
16
22 +

7
4
2

(37)

and (37) yields the following first order conditions for 1 2 3:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2943
32

21 −
¡
153
4
3 +

369
8
(2 − ) + 77

4

¢
1 +

9
8
 23 +

13
4
3

+117
8
3(2 − )− 99

32
(2 − )2 + 25

8
(2 − ) + 61

72
= 0

−459
32

22 +
¡
153
8
+ 63

4
3 − 99

8
1 − 53

4

¢
2 − 153

32
2 − 63

8
3 +

99
16
1

+53
8
− 45

8
 23 +

117
8
31 +

7
4
3 − 369

32
21 +

25
8
1 +

55
72
= 0

27
4
 23 +

¡
9
2
1 − 45

2
(2 − )− 5¢3 − 153

16
21 +

13
4
1

+ 117
8
1(2 − ) + 63

16
(2 − )2 + 7

4
(2 − ) + 7

36
= 0

(38)

34The first order condition for 3 is written taking into account that the derivative with respect to 3 of the profit

function of firm 3, given 3 in (34), factors into
27
2


3 − ( 131 − 1

3
+ 1

3
2 +

2
27
)
 
3 − (1 − + 2 +

2
9
)

, and since

1
3
1 − 1

3
+ 1

3
2 +

2
27

 1 −  + 2 +
2
9
(because 1 + − 2

9
 2 in equilibrium, otherwise firm 1 has zero demand), it

follows that 3 = 1 − + 2 +
2
9
is a minimum point for the profit of firm 3, 3 =

1
3
1 − 1

3
+ 1

3
2 +

2
27
is a maximum

point.

28



By solving (38) numerically, we obtain a solution that satisfies (36) for each  ∈ (26
77
 5
9
). In the Supple-

mentary Material we show, also using the software Mathematica, that the solution we obtain is a NE for

each  ∈ (0 5
9
).

7.4 Proof for Lemma 7

The demand for firm 2 is the area of the set of ( ) which satisfy

22( )  min{11( ) 33( )} (39)

We use  to denote the common value of 1 and 3 and define  =
1
2
2 − 1

2
 − . Then we notice that

(39) holds for each ( ) if   −29 ; hence 2(2) = 1 in this case. Conversely, if  ≥ 1
9
then (39) is

violated for each ( ) and 2(2) = 0. In the intermediate case of  ∈ [−29 − 1
18
), the set of ( )

such that (39) holds is the convex decagon in Figure 25,35 with area 1− 15( 2
9
+ )2. If  ∈ [− 1

18
 1
9
), then

the set of ( ) which satisfy (39) is the hexagon in Figure 26,
36 with area 3(1− 3)( 1

9
− ).

Fig. 25 The set of consumers

that buy 22 in 123 given

that  = 1
2
2 − 1

2
 − 

is between − 2
9
and − 1

18

Fig. 26 The set of consumers

that buy 22 in 123 given

that  = 1
2
2 − 1

2
 − 

is between − 1
18
and 1

9
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Using  = 1
2
2 − 1

2
 − , we write the demand for firm 2 as a function of 2 as follows:

2(2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 2   + 2− 4

9

1− 15(2
9
+ 1

2
2 − 1

2
 − )2 if  + 2− 4

9
≤ 2   + 2− 1

9
1
12
(9 + 18− 92 + 2) (3 + 6− 32 + 2) if  + 2− 1

9
≤ 2 ≤  + 2+ 2

9

0 if  + 2+ 2
9
≤ 2

(40)

hence 2 that maximizes firm 2’s profit is

2( 
123
 ) =

(
2
3
 + 4

3
+ 8

27
− 1

27

p
81( + 2)2 + 72( + 2) + 28 if  + 2 ≤ 31

90

2
3
 + 4

3
− 8

27
+ 1

27

q
81( + 2)2 − 72( + 2) + 404

5
if  + 2  31

90

(41)

The demand for firm 3 is the area of the set of ( ) which satisfy

33( )  min{11( ) 22( )} (42)

and in order to solve this inequality we define  = 3 − 1,  = 3 − 2 + 2. We consider 3 close to

1, that is  close to 0. First we examine the case of  close to zero, which implies that 3 is close to 2

35 In Figure 25, x1 = ( 2
3
+ 3 0), x2 = ( 1

3
− 3 0), x3 = ( 7

9
−  2

9
+ ), x4 = (1 2

3
+ 3), x5 = (1 1

3
− 3).

36 In Figure 26, y1 = ( 5
9
+  1

9
+ 2), y2 = ( 7

9
−  2

9
+ ), y3 = ( 8

9
− 2 4

9
− ).
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in equilibrium, therefore also  is close to zero. Then the set of ( ) which satisfy (42) is the union

of the three convex sets in Figure 27: the two quadrilaterals with vertices x1 x4 and x̄1  x̄4, and

the hexagon with vertices x5x6  x̄5:37

Fig. 27 The set of consumers

that buy 33 in 123 given that

 = 3 − 1 is close to 0 and

 = 3 − 2 + 2 is close to 0

Fig. 28 The set of consumers

that buy 33 in 123 given that

 = 3 − 1 is close to 0 and

 = 3 − 2 + 2 is greater than
1
9
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This is a disconnected set with area equal to

3(3) =
9

4
 23 +

µ
9

2
− 9

4
1 − 9

4
2 − 2

¶
3 − 91+ 9

2
12 (43)

−9
8
 21 −

9

8
 22 + 1 − 9

2
2 +

9

2
2 − 2+ 2 +

1

3

Precisely, (43) applies as long as 1
2
 + 1

9
≥ .38 When instead  is about 0 but   1

9
, then the set of

( ) satisfying (42) is the union of the three convex sets in Figure 28: the two triangles with vertices

y1y2y3 and ȳ1 ȳ2 ȳ3, and the quadrilateral with vertices y4y5 ȳ5 ȳ4;39 the area is given by (44)

3(3) = 3 23 +

µ
21

2
− 3

4
1 − 21

4
2 − 7

3

¶
3 − 3

8
 21 − 31 (44)

+
3

2
12 +

2

3
1 +

15

2
2 − 15

2
2 − 10

3
+

15

8
 22 +

5

3
2 +

10
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7.4.1 The equilibrium prices

For  close to zero, from (43) we obtain Π03(3) =
27
4
 23 +

¡
9− 9

2
 − 9

2
2 − 4

¢
3 +

9
2
2 − 9 −

9
8
 2 +  − 9

2
2 + 9

2
2 − 2 − 9

8
 22 + 2 +

1
3
and the first order condition for 3, at 3 =  , is

9
8
 2−3 − 9

2
2+ 9

2
2−2− 9

8
 22 +2+

1
3
= 0. Combining this with (41) (for the case of  +2 ≤ 31

90
)

yields the following prices:

 ∗ =
1

13− 54
µ
1082 + 108( ∗2 )

2 − 270 ∗2 − 23−
727

18
− 89() + 89(18− 972

2 − 173)
2916()

¶
(45)

 ∗2 = +
11

18
+ () +

9722 − 18+ 173
2916()

(46)

37 In Figure 27, x1 = ( 1
2
+ 3

4
 0), x2 = ( 5

9
+ − 1

2
 1

9
+ 1

2
− ), x3 = ( 7

9
+ 1

2
−  2

9
− 1

2
− 1

2
), x4 = (1− 3

2
 0) and

x5 = ( − 1
2
+ 8

9
 1
2
 + 1

2
+ 4

9
), x6 = (1 3

4
+ 1

2
), x7 = (1 1− 3

2
).

38Otherwise the vertical coordinate of x2 (the horizontal coordinate of x̄2) in Figure 27 is negative, and the horizontal

coordinate of x5 (the vertical coordinate of x̄5) is greater than 1.
39 In Figure 28, y1 = ( 3

2
+ 1

3
 0), y2 = ( 7

9
+ 1
2
− 2

9
− 1
2
− 1

2
), y3 = (1− 3

2
 0) and y4 = (1 3

2
+ 1

3
), y5 = (1− 3

2
 1).
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in which () = 1
18

3

r
1622 − 453− 76

3
+ (13− 54)

q
−4324 − 1843 − 857

3
2 − 506

3
− 27869

729
.40 The

prices in (45)-(46) satisfy 1
2
+ 1

9
≥  for  ∈ (0 71

630
], but violate this inequality if   71

630
.

For the case of   71
630
, from (44) we obtain Π03(3) = 9 23 +

¡
21
2
− 3

4
 − 21

4
2 − 7

3

¢
23 +

3
¡
1
2
 − + 1

2
2 +

2
9

¢2
+ 1

2

¡
3
2
2 − 3+ 2

3

¢2 − 9
8
 2 and the first order condition with respect to 3,

at 3 =  , is 57
8

¡
 − (2 + 4

9
− 2)¢ ¡ − ( 5

19
2 +

20
171
− 10

19
)
¢
= 0. Combining this with (41) (for the

case of  + 2  31
90
) yields

 ∗ =
5

117
− 5

26
+

1

1638

p
99 2252 − 44 100+ 29470 (47)

 ∗2 =
33

26
− 11

39
+

19

8190

p
99 2252 − 44 100+ 29470 (48)

In the Supplementary Material we show, also using the software Mathematica, that ( ∗  ∗2 ) in (45)-(46)
are a NE of 123 for each  ∈ (0 71

630
], and that ( ∗  ∗2 ) in (47)-(48) are a NE of 

123
 for each  ∈ ( 71

630
 5
9
).

7.5 Profit comparisons for the study of the stage one reduced game in Γ:

(19)-(22)

Here we report the plots of the profit functions linked to (19)-(22).

Fig. 29 Π1232 , solid curve, vs

Π32, dashed curve: see (19)

Fig. 30 Π33, solid curve, vs

Π∅3 , dashed curve: see (20)
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Figure 29 Figure 30

Fig. 31 Π1233 , solid

curve, vs Π13, dashed

curve: see (21)

Fig. 32 Π1233 , solid

curve, vs Π23, dashed

curve: see (22)

:

Figure 31 Figure 32

40Solving the system consisting of 9
8
 2 − 3 − 9

2
2 + 9

2
2 − 2− 9

8
 22 + 2 +

1
3
= 0 and (41) leads to a third degree

equation in  , −3 3+( 53
6
−3) 2+(62+ 59

18
− 226

81
) − 10

9
2− 40

81
+ 227

972
= 0, for which no solution can be expressed

in terms of real radicals. Indeed, () is a complex number, although ∗ and  ∗2 in (45)-(46) are real numbers.
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