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Abstract

We study the delegation problem between a principal and an agent, who not

only has better information about the performance of the available actions but

also superior awareness of the set of actions that are actually feasible. We provide

conditions under which the agent finds it optimal to leave the principal unaware

of relevant options. By doing so, the agent increases the principal’s cost of dis-

torting the agent’s choices and increases the principal’s willingness to grant him

higher information rents. We further show that the principal may use the option of

renegotiation as a tool to implement actions that are not describable to her at the

contracting stage. If the agent renegotiates, his proposal signals information about

the payoff state. Due to her limited awareness, the principal makes a coarse infer-

ence from the agent’s recommendations and, as a result, accepts a large number of

the agent’s proposals, which ultimately benefits both.
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1 Introduction

In many situations, economic agents delegate decisions to experts whose preferences may

not be perfectly aligned with their own. Public and private organizations use procurement

managers to purchase products and services for the tasks at hand; corporate headquar-

ters rely on division managers with superior information about the profitability of new

projects; small investors seek advice from financial experts with a better understand-

ing of the risks and returns of the available portfolios. Oftentimes, the informed party

not only has a better understanding of what the most suitable action is but also of the

options that are actually available. Procurement managers have superior awareness of

the feasible products and potential suppliers in the market where they operate; division

managers have a better understanding of the projects they could pursue; financial experts

are familiar with more financial instruments than retail investors, etc.

This paper proposes a framework to study the implications of such asymmetry by

incorporating unawareness into a canonical delegation model. More specifically, we con-

sider the problem of a principal (she) who needs to take an action and delegates the

task to an agent (he). The agent receives private information about the payoffs of each

available action, and the principal’s problem is to determine a set of actions from which

the agent can choose. We depart from the traditional framework of optimal delegation by

considering a situation where the principal is unaware of some feasible actions and where

this limits the language with which she can write a contract: the principal can only per-

mit actions in the delegation set if she can name these actions explicitly, hence, if she is

aware of them. Before the delegation stage and before receiving private information, the

agent can expand the principal’s awareness by revealing additional actions and thereby

enrich the set of feasible contracts for the principal.

We are interested in the question if and how the agent distorts the principal’s aware-

ness in order to increase his own rent. We address this question in an environment with

a continuum of payoff states, a continuum of feasible actions, and an agent who prefers a

higher action than the principal in each state. Given her awareness, the principal’s opti-

mal delegation set solves the usual tradeoff between minimizing distortions and limiting

the agent’s information rent. Since the agent has an upward bias, optimal delegation
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entails that the principal limits the agent’s choice from above. An optimal delegation

set thus has a threshold above which no action is permitted. How high this threshold is

depends on the principal’s awareness set. We identify conditions under which the agent

optimally leaves the principal unaware of an interval of actions around the optimal upper

threshold under full awareness. By choosing the bounds of the interval appropriately, the

agent makes it optimal for the principal—who still cares about the agent’s information—

to permit an action above the full awareness cap and, hence, an action that would be

precluded if the principal was fully aware.

An important assumption of our model is that the principal cannot specify actions in

the delegation set of which she is unaware. An introspective principal might, however, ask

herself whether there are other contracts that can improve on the optimal delegation set

without giving the agent the flexibility of taking unknown, potentially harmful options.

One such possibility for the principal is to forego full commitment and add a contractual

clause that allows the delegation set to be adjusted when new options or contingencies

come to light. Adding such a clause and thereby allowing for ex-post renegotiation is

indeed consistent with the principal’s sophistication and language. In the second part

of the paper, we study the implications of the use of such contracts. The agent is then

allowed to propose additional actions to the principal after the initial delegation set is

agreed upon and he observes the state. Subsequently, the principal decides whether to

permit a new action or whether to maintain the original delegation set.

Since the disclosure of additional actions is made after the agent receives private in-

formation, the principal and agent play a signaling game at the renegotiation stage. We

characterize the set of proposals the principal is willing to accept after the initial agree-

ment is signed. Fixing the agent’s initial disclosure and focusing on the equilibrium with

the maximal set of acceptable proposals, we provide conditions under which adding a

renegotiation clause to the initial delegation set always benefits the principal. The down-

side of renegotiation is that it limits the agent’s disclosure incentives in the contracting

phase. Indeed, we show that, depending on the principal’s initial awareness, the agent can

significantly increase his flexibility by initially holding back some available actions and

tailoring additional disclosures to the information he receives. From a modeler’s view-
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point, the agent’s strategy in this equilibrium is fully revealing. The unaware principal,

however, cannot compare the agent’s proposal at a given state to the actions which the

agent would have proposed in a different state and hence infers strictly less information

from the agent’s recommendation.

An application of our setting is procurement delegation within an organization. Many

organizations have procurement managers in charge of purchasing products and services

according to the organization’s current needs. This choice is often limited via pre-specified

lists of approved products or vendors. A possible concern rationalizing such restrictions

is that the procurement manager can use his discretion to further personal goals, such

as career enhancement, minimization of workload, personal enrichment, etc. (Rogerson,

1994). We can think of our agent as the procurement manager and interpret the agent’s

actions as the different products (or suppliers) available in the market. The state captures

the characteristics of the task at hand, determining the procurement manager’s “ideal”

product. The principal can be interpreted as a high-level manager with limited awareness

of the available products.

Our results suggest that a biased procurement manager typically benefits from hiding

certain products or suppliers. In particular, under the identified conditions, the procure-

ment manager has incentives to propose products with relatively extreme characteristics

for approval but wants to hide those with more moderate attributes. The more pro-

nounced the awareness asymmetry, the larger the scope for the procurement manager to

distort the procurement decision through strategic disclosure. Finally, if the procurement

manager has the possibility to seek approval for additional options after observing the

characteristics of the task, he can substantially expand his flexibility by tailoring the

disclosure to the circumstances.

After the literature review, the paper is organized as follows. Section 2 presents the

delegation model with limited awareness. In Section 3 we analyze the agent’s optimal

disclosure and the resulting delegation set. Section 4 analyses the game with renegotiation

and Section 5 concludes.
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1.1 Related Literature

The paper makes both applied and theoretical contributions. It introduces unawareness

to the canonical delegation problem and shows how the agent can distort the principal’s

delegation choice through strategic disclosure. The analysis builds on the literature on

optimal delegation. Holmström (1980) first defines the delegation problem and provides

conditions for the existence of its solution. Following the seminal paper, the literature

was further developed by Melumad and Shibano (1991), Szalay (2005), Martimort and

Semenov (2006), Alonso and Matouschek (2008), Kováč and Mylovanov (2009), Arm-

strong and Vickers (2010), Amador and Bagwell (2013) and Halac and Yared (2020),

among others. None of them consider limited awareness in this framework.

The paper is also related to the smaller literature that applies unawareness to games

in general and contracting problems in particular. In contrast to our setting, most of the

existing work considers contracting problems where contingent transfers are feasible and

where the agent has limited awareness, while the principal is fully aware (Von Thadden

and Zhao 2012; Zhao 2011; Filiz-Ozbay 2012; Auster 2013). One exception is Francetich

and Schipper (2020), which studies a screening model where the principal is unaware of

certain cost types (but has full awareness over actions) and the agent decides which types

to disclose.

In Auster and Pavoni (2022), we consider a finance application of our model, in-

terpreting the agent as a financial expert and the principal as an investor with limited

awareness about the available financial products. We collect self-reported data from cus-

tomers in the Italian retail investment sector and find support for the key predictions

of the model: the menus offered to less knowledgeable investors contain fewer products,

which are perceived to be more extreme.1 Also Lei and Zhao (2021) study a financial

market application of our model but focus on the unawareness of contingencies (nature’s

moves) rather than players’ actions.

On the theoretical side, the study of the disclosure problem reveals how the agent’s

1The data we collected consists of approximately 1,400 investors reporting on their experience in
the Italian retail investment sector. We regress both the number of offered products and a measure of
perceived ‘extremeness’ in the menu on an index of knowledge, which is based on a number of questions
eliciting the investor’s background knowledge. See Auster and Pavoni (2022) for details.
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information rents depend on the set of feasible actions—or the principal’s perception

thereof—in delegation settings. This question is related to a recent literature looking at

the determinants of agency rents in models with full awareness, initiated by Roesler and

Szentes (2017). With the second part of the paper, we also contribute to the literature on

incomplete contracts and unforeseen contingencies (Grossman and Hart 1986; Hart and

Moore 1988) by demonstrating the value of ex-post renegotiation in settings with partial

awareness. Previous papers that study the interaction between limited awareness and

the possibility of renegotiation are Tirole (2009) and Piermont (2017), albeit in rather

different settings.

2 Environment

There is a principal and an agent. The agent has access to an interval of actions Y A =

[ymin, ymax]. The principal’s and agent’s payoffs depend on the action that is chosen

and an unknown payoff parameter θ, which can be privately observed by the agent. Let

Θ = [0, 1] be the set of payoff states and let F (θ) denote the cumulative distribution

function on Θ, assumed to be twice differentiable on the support. The principal and the

agent have twice continuously differentiable utility functions2

UP (θ, y), UA(θ, y).

Fixing θ, U i for i = P,A is assumed to be strictly concave in y with an interior maximum

on Y A. The principal’s and agent’s conditionally preferred actions are described by the

functions

yP (θ) := argmaxy∈Y A UP (θ, y), yA(θ) := argmaxy∈Y A UA(θ, y).

We assume U i
θy > 0, which implies that yP (·), yA(·) are strictly increasing functions.

Furthermore, we assume that conditional on the payoff parameter θ, the agent prefers a

higher action than the principal: for all θ, yP (θ) < yA(θ).

2Note that the principal does not have full access to her payoff function UP but just to a payoff
function restricted to the domain of actions of which she is aware.

6



Awareness. Let Y denote the set of closed subsets of [ymin, ymax]. The principal is

aware of a subset of available actions, denoted by Y P ∈ Y . Hence, unawareness in our

framework does not take the form of unforeseen contingencies but concerns the set of

available actions. Apart from the assumption that Y P is closed, we impose no further

structure on the principal’s initial awareness set. Before the principal contracts with the

agent and the agent observes θ, the agent can make the principal aware of additional

actions by revealing a closed set X ∈ Y . The principal fully understands the options that

are revealed to her and accordingly updates her awareness to the union of whatever she

knew initially and what the agent reveals.3

Delegation. Given her updated awareness, the principal offers a contract to the agent.

We rule out monetary transfers and assume that the agent’s participation constraint is

always satisfied. The contracting problem of the principal then reduces to the decision

over the set of actions from which the agent can choose once he observes the payoff

parameter θ.4 Our substantial assumption is that the principal’s unawareness restricts

the language with which she can write a contract. In particular, we assume that the

principal can only refer to actions in the contract which she can name explicitly. The

larger the principal’s awareness set, the richer the set of contracts she can write.

Given the principal’s updated awareness set, she then has two natural options: the

principal can either name the actions she allows the agent to take or she can name

the actions she explicitly forbids. Under full awareness, these two options are clearly

equivalent. With unawareness, on the other hand, specifying only the forbidden actions

leaves the principal vulnerable to the agent taking actions that the principal does not

anticipate. We will discuss this case and other options in Section 3.2 and concentrate

now on the case where the principal specifies the actions which she permits. Since the

3Assuming that the agent discloses actions before receiving private information avoids signaling effects
in the baseline model. That is, after any disclosure by the agent, the principal’s beliefs about the payoff
state are described by the prior F . This is consistent with ‘Reverse Bayesianism’ (see Karni and Vierø
(2013)), which postulates that relative beliefs on events of which the decision maker was previously aware
do not change when her awareness grows.

4The standard delegation problem is equivalent to a mechanism design problem when the principal
restricts herself to deterministic allocations (see Alonso and Matouschek (2008) and Kováč and Mylo-
vanov (2009)). Formally, the principal commits to a mechanism that specifies an action as a function of
the agent’s message.
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principal cannot specify actions of which she is unaware, the principal’s delegation set is

then a subset of her awareness set. We restrict attention to closed delegation sets. The

timing of the game can be summarized as follows:

1. The agent reveals a set of actions X ∈ Y and the principal updates her awareness

to Y = Y P ∪X.

2. Given awareness set Y , the principal chooses a delegation set D ∈ Y such that

D ⊆ Y .

3. The agent observes θ and chooses an action from set D.

4. Payoffs are realized.

The game between the principal and the agent can be formally represented by a

family of partially ordered subjective game trees. Such family includes the modeler’s

view of the objectively feasible paths of play, but also the feasible paths of play as

subjectively viewed by some players, or as the frame of mind attributed to a player

by other players or by the same player at a later stage of the game (Heifetz et al., 2021).5

As a solution concept, we use a strong version of Perfect Bayesian Nash Equilibrium

(PBE) which implies subgame perfection, adapted to generalized extensive-form games

with unawareness (e.g., see Halpern and Rêgo (2014) and Feinberg (2021)).

Remark. There is an alternative reading of our model as one of limited authority. We

can think of a situation where the agent, rather than disclosing feasible actions to the

principal, actually enables the principal to pursue them. The agent thus decides on the

set of actions he makes available to the principal and, as before, the principal delegates

some subset of those actions to the agent. By deciding which actions to make available,

the agent is given commitment power not to take certain actions. Since such commitment

limits the principal’s choice over feasible contracts, we are ultimately faced with a double

delegation game between the agent and the principal.

5In a working paper version of this paper, available on our websites, we provide a more extensive
description of the family of game trees representing the generalized game with unawareness associated
to our delegation model according to the approach proposed by Heifetz et al. (2013). We also describe
the set of outcomes that satisfy a prudent version of extensive-form rationalizability and we show that
whenever we restrict to pure strategies and assume the tie-breaking rules we adopt below to be commonly
known, the PBE outcome we obtain is also the sole rationalizable outcome of the generalized game.
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3 Equilibrium Analysis

We will work backward and start the analysis by considering the last stage of the game.

Given a delegation set D and observed payoff state θ, the agent’s best response for the

last stage of the game is defined by

BRA(θ,D) := argmax
y∈D

UA(θ, y). (1)

When the agent is indifferent between two actions, let y∗(θ,D) := minBRA(θ,D) be the

selection that takes the smallest value (indifference is broken in favor of the principal).6

Delegation stage. Turning to the principal’s delegation choice, we first define the

principal’s value of delegation set D ∈ Y given y∗:

V P (D) :=

∫ 1

0

UP (θ, y∗(θ,D))dF (θ). (2)

There are typically actions that the principal could permit but the agent will not imple-

ment. W.l.o.g. we will restrict attention to delegation sets D such that for any y ∈ D,

there is some state θ ∈ [0, 1] such that y∗(θ,D) = y. Let D(Y ) be the set of delegation

sets in {D ∈ Y : D ⊆ Y } that satisfy this requirement. For each awareness set Y ∈ Y ,

the principal’s optimal delegation set solves the problem

max
D∈D(Y )

V P (D). (3)

Theorem 1 in Holmström (1980) guarantees existence for each closed Y (see also Propo-

sition 12 in Appendix A.8). If problem (3) has multiple solutions, we assume that the

principal chooses the agent-preferred set. For each Y , we denote by D∗(·) such selection

from the set of maximizers. Furthermore, we assume that in the case where the principal

is fully aware, delegation is valuable. A sufficient condition for valuable delegation is

y∗0 > yA(0), where y∗0 ∈ argmaxy V
P ({y}). This requires the bias to be not too large and

implies that the principal prefers the delegation set [yA(0), y∗0] to the singleton {y∗0} (see

6Such selection is well defined, since the BRA correspondence is non-empty and upper hemicontinuous
(see Holmström (1980)). In addition, for each closed D, the set of θ’s for which BRA(·, D) is not a
singleton is at most countable, and hence of F -measure zero (see Lemma 11 in Appendix A.8).
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also Alonso and Matouschek (2008), Corollary 2).

Disclosure stage. In the first stage of the game, the agent chooses an awareness set

Y ∈ Y . Since the agent cannot make the principal unaware of actions that the principal

already knows, the induced awareness set must contain the principal’s initial awareness

set Y P . The smaller Y P , the larger the collection of awareness sets from which the agent

can choose. An optimal awareness set Y ∗ solves the problem

max
Y ∈Y

∫ 1

0

UA(θ, y∗(θ,D∗(Y )))dF (θ) s.t. Y P ⊆ Y. (4)

Since different awareness sets might induce the same delegation set, the solution to prob-

lem (4) is again typically not unique. Of course, this type of multiplicity does not affect

the outcome. We assume that when two solutions of problem (4) are nested, the agent

discloses the larger set. This assumption allows us to distinguish the actions that remain

undisclosed for strategic reasons from those that are redundant. Let Y∗ denote the set

of all solutions of (4) satisfying this requirement.

Our model is a sequential move game with infinite actions. This makes equilibrium

existence a non-trivial issue. In Appendix A.8, Proposition 13, we show that a solution to

problem (4) exists. Hence, there is an equilibrium where the agent discloses a set Y ∈ Y∗,

the principal delegates set D∗(Y ) and, after observing the state realization θ, the agent

takes action y∗(θ,D∗(Y )).

Equilibrium disclosure. The central question of this paper is whether the agent dis-

torts the principal’s delegation choice in his favor by leaving the principal unaware of

some feasible actions. Due to the conflict of interest between the principal and the agent,

a fully aware principal will not find it optimal to permit the agent his preferred action

in every payoff state. Indeed, since the agent is upward biased, the principal can always

improve on full delegation by excluding an interval of high actions, forcing the agent for

high realizations of θ to take an action closer to the principal’s conditionally preferred

action.

Following this argument, we define ŷ := maxD∗(Y A) < yA(1) as the highest ac-

tion which the principal permits under the optimal delegation set in the full awareness
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benchmark. The following proposition shows conditions under which unawareness of ŷ

is sufficient to ensure that the agent benefits from the principal’s limited awareness.7

To this end, let s := (yA)−1 denote the inverse of yA, implicitly defined by the first-

order condition UA
y (s(y), y) = 0. Since the agent’s utility function is twice continuously

differentiable, the function s(·) is differentiable (see Lemma 8 in the Appendix).

Suppose now the upper threshold ŷ is a limit point of D∗(Y A). It must then satisfy

the following optimality conditions:

∫ 1

s(ŷ)

UP
y (θ, ŷ)dF (θ) = 0 (5)

−UP
y (s(ŷ), ŷ)f(s(ŷ))s

′(ŷ) +

∫ 1

s(ŷ)

UP
yy(θ, ŷ)dF (θ) ≤ 0. (6)

The first-order condition (5) says that, conditioning on the event θ ≥ s(ŷ), action ŷ is

optimal for the principal in expectation. The second-order condition (6) is necessary for

ŷ to constitute a local maximizer. For the following result we will maintain that this

condition holds strictly.

Proposition 1. Assume that the full awareness problem (3) has a unique maximizer

D∗(Y A) and that the upper threshold ŷ is a limit point of D∗(Y A), with (6) holding as

strict inequality. Then:

ŷ ̸∈ Y P =⇒ Y A ̸∈ Y∗.

Proposition 1 shows that, under the stated conditions, if the principal is initially

unaware of the highest action in the optimal delegation set under full awareness, then the

agent finds it profitable to hide some of the feasible actions from the principal. To prove

the result, we consider a simple perturbation of the full awareness set. The perturbation

entails that the principal remains unaware of an interval (y−, y+) of actions around the

upper threshold ŷ. In the first step, we show that the bounds of the interval, y− and y+,

can be chosen in a way such that the principal finds it optimal to include both y− and y+

in the delegation set. The principal essentially tries to find the best approximation of the

full awareness delegation set that is compatible with her actual awareness. By setting y+

7Since Y P is a closed set, unawareness of ŷ implies that the principal is unaware of an interval around
ŷ
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sufficiently close to ŷ relative to y−, the agent assures that this approximation includes

the higher action y+. Leaving the principal unaware of actions around ŷ thus allows the

agent to implement an action y+ > ŷ that would not be permitted under full awareness.

The possibility of taking the higher action y+ comes at the cost of losing the option

to take an action in the interval (y−, ŷ]. In the second step of the proof, we show that

the perturbation is profitable for the agent despite this cost. The perturbation forces

the agent to move away from the bliss point in states just below s(ŷ). However, since

the marginal cost of moving away from the bliss point at the bliss point is zero, the

effect of losing these actions is second order and thus dominated by the agent’s benefit

of increasing the implemented action in states above of s(ŷ). Note indeed that, since for

the principal the action ŷ is optimal in expectation when conditioning on θ ≥ s(ŷ), it is

strictly too low for the agent.

We should emphasize that when the optimal delegation set under full awareness is

not an interval, the agent may profit from perturbations around other pooling points as

well. For example, if D∗(Y A) has an intermediate gap (y, y), the agent would benefit from

moving up the lower bound y at the cost of losing some flexibility below y. The main

complication here is that such perturbation may affect the principal’s optimal choice of

y. If the optimal value for y decreases as a result of the perturbation, the agent strictly

gains. If, on the other hand, it increases, then there are two first-order effects that need

to be compared. To guarantee the profitability of the perturbation in this case, more

stringent assumptions on the principal’s initial awareness set would be needed in order

to give the agent the necessary tools to deter the principal from undesired movements of

adjacent pooling actions. In the described situation, for instance, it might be necessary

to keep the principal unaware of some actions to the right of y.

Finally, notice that if the bias is not restricted to be positive but can change, the

argument proving Proposition 1 can sometimes be extended to a potential lower threshold

of D∗(Y A). For instance, suppose there is a point θ̄ ∈ (0, 1) such that the agent is

downward biased if θ < θ̄ and upward biased if θ > θ̄. In this case, it is optimal for the

principal to restrict the agent’s choice from both sides, so we have yA(0) < minD∗(Y A) <

maxD∗(Y A) < yA(1). Assuming that, in addition to the requirements of Proposition 1,
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minD∗(Y A) is a limit point of D∗(Y A) and that the analog of (6) holds as a strict

inequality, a sufficient condition for the agent to optimally leave the principal unaware is

that the principal is initially unaware of either threshold minD∗(Y A) or maxD∗(Y A).8

Proposition 1 is a consequence of a more general principle. Revealing an action y to

the principal typically has a benefit and a cost. Conditional on the principal permitting y,

the benefit of revelation is the utility gain in the states where y is preferred by the agent.

The downside is that the action may crowd out other actions which the principal would

permit if she remains unaware. In regions of θ where the principal gives full discretion,

crowding out is not an issue, so the agent optimally discloses the relevant options. In

regions where the conflict of interest is instead severe, the principal optimally restricts

the agent’s choice and full revelation can be detrimental to the agent. In the case of

Proposition 1, the action ŷ crowds out all actions higher than ŷ. Since the agent benefits

from being permitted such actions, he optimally leaves the principal unaware of ŷ (and

some actions around it).

Interval delegation. Without additional assumptions, we are unable to characterize

the agent’s disclosure set further, simply because we know very little about the opti-

mal delegation set under full awareness. The literature on optimal delegation, however,

establishes sufficient conditions under which the optimal delegation set under full aware-

ness is an interval. These conditions assure that any delegation set that has gaps can

be improved upon by adding intermediate actions to the set. Assumption 1 makes this

requirement explicit.

Assumption 1. Consider a delegation set D ∈ Y and its convex hull Conv (D). Then,

for all A ⊆ Conv(D):

∫ 1

0

UP (θ, y∗(θ,D))dF (θ) ≤
∫ 1

0

UP (θ, y∗(θ,D ∪ A))dF (θ).

Consider a convex delegation set and suppose the principal removes an interval of

actions in the interior of the set. Let this interval be denoted by (y, y). The removal of

actions in (y, y) means that there is an interval of states where the agent switches to the

8We formalize the analogous condition and provide an argument for the claim at the end of the proof
of Proposition 1.

13



lower action y and an interval of states where the agent switches to the higher action y

with respect to the original delegation set. Since the principal is downward biased with

respect to the agent, the switch to the lower action can benefit her, whereas the switch

to the higher one does not. Concavity of UP means that the principal is risk-averse

and therefore has incentives to hedge against these two possibilities. Hence, unless the

principal views the scenario of the beneficial switch considerably more likely, she favors

intermediate actions. The literature on optimal delegation provides conditions on the

state distribution with respect to the utility functions that guarantee this property. We

provide a set of sufficient assumptions below. For more general conditions we refer the

reader to Alonso and Matouschek (2008, Proposition 5) and Amador and Bagwell (2013,

Propositions 1 and 2).

Assuming that interval delegation is optimal, the optimal delegation set under full

awareness is described by an upper cap below which the agent is free to choose his

preferred action. The optimal delegation set under full awareness thus takes the form

[yA(0), y] for some y < yA(1). The associated value for the principal is

V P ([yA(0), y]) =

∫ s(y)

0

UP (θ, yA(θ))dF (θ) +

∫ 1

s(y)

UP (θ, y)dF (θ) (7)

We now show that under Assumption 1, unawareness of the full awareness upper threshold

ŷ maximizing (7) is not only a sufficient condition for less-than-full revelation to be

strictly optimal but also a necessary one. Moreover, provided this assumption holds and

the principal’s payoff in (7) is single-peaked, the resulting delegation set has a single gap

around ŷ.

Proposition 2. Let Assumption 1 be satisfied. Assume the full awareness problem (3)

has a unique maximizer, with (6) holding as a strict inequality.

(i) The agent optimally reveals all feasible actions to the principal if and only if the

principal is aware of action ŷ.

(ii) If in addition (7) is strictly quasi-concave in y, there exist two parameters ∆1,∆2 ≥
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0 such that:

Y ∗ = [ymin, ŷ −∆1] ∪ [ŷ +∆2, ymax],

D∗(Y ∗) = [yA(0), ŷ −∆1] ∪ {ŷ +∆2},

with ∆1,∆2 > 0 if and only if ŷ /∈ Y P .

Proposition 2 shows that when the principal is initially aware of ŷ the agent optimally

reveals everything. The principal will not allow the agent to take any action higher than

ŷ, so the agent maximizes his discretion by revealing all actions below ŷ—he cannot

improve on the full awareness delegation set [yA(0), ŷ]. On the other hand, if the principal

is initially unaware of ŷ, it is optimal for the agent to leave the principal unaware of an

interval around ŷ and disclose the remaining actions (recall that we assumed that the

agent reveals the largest optimal set). The resulting delegation set includes all relevant

actions below the interval and one action above it.

When choosing the optimal disclosure set, the agent is constrained by the principal’s

initial awareness. The more actions the principal initially knows, the smaller the set of

awareness sets the agent can induce. Under Assumption 1, this gives rise to a monotonic

relation between the principal’s awareness before and after disclosure: the smaller the

principal’s initial awareness set Y P , the smaller her equilibrium awareness set after the

agent’s disclosure. Indeed, adding an action to the principal’s initial awareness set Y P

can only shrink the induced awareness gap (∆1,∆2) and hence expand the set of actions

that the agent optimally proposes.

Remark. We model limited awareness as a restriction on the set of feasible contracts

from which the principal can choose. It is interesting to contrast our framework to the

case where the principal can describe all possible actions but faces uncertainty about

their availability.9 The principal would then have a prior belief about the available

set and perfectly understand the payoff implications of all potentially available actions.

The agent’s disclosure choice would be interpreted as evidence that certain actions are

available and, in addition, serve as a signal about the availability of other undisclosed

9Adapting the setting of Armstrong and Vickers (2010), Guo and Shmaya (2021) study such disclosure
problem and solve for the mechanism that minimizes the maximal regret.
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actions. Assumption 1 implies that the principal benefits from closing potential gaps in

the delegation set, independent of her belief about which actions are actually available.

Hence, in contrast to our setting, the principal would delegate an interval following any

disclosure of the agent, as long as Assumption 1 holds.10

3.1 Quadratic Utility and Uniform Bias

For a concrete illustration of the main results and an explicit solution of the agent’s

optimal disclosure policy, consider the specification

UP (y, θ) = −(y − (θ − β))2, UA = −(y − θ)2. (8)

The agent’s conditional preferred action is yA(θ) = θ, while the principal’s preferred

action is yP (θ) = θ − β. The agent thus has a constant upward bias equal to β. In

this environment, a condition implying Assumption 1 and hence guaranteeing interval

delegation to be optimal is the following regularity condition on the distribution function

(Martimort and Semenov, 2006):

f ′(θ)β + f(θ) > 0 for all θ ∈ (0, 1). (9)

Delegation is valuable for the principal if E[θ−β] > 0. When both conditions are satisfied,

the optimal delegation set under full awareness is an interval [0, ŷ], where ŷ solves the

following equality (Martimort and Semenov, 2006):11

ŷ = E[θ − β|θ ≥ ŷ]. (10)

To characterize the equilibrium disclosure and delegation sets for the quadratic setting,

let ∆̄(Y P ) := argminy∈Y P |y − ŷ| indicate the smallest distance between ŷ, as defined in

(10), and the actions in the principal’s awareness set.

Proposition 3. Assume preferences are as in (8), condition (9) is satisfied and E[θ−β] >

0. The equilibrium disclosure set is

10The agent could still try to raise the upper threshold of that interval by leaving the principal uncertain
about the availability of some actions around ŷ. Whether this is possible or not will depend on the
principal’s equilibrium beliefs following the agent’s disclosure.

11If instead E[θ − β] < 0, the optimal delegation set is {E[θ − β]}.
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Figure 1: Optimal delegation set D∗(Y ). The figures represent two examples of the principal’s

awareness set Y . In both figures, the yellow bullets represent the set Y while the red bullets

represent the resulting optimal delegation set D∗(Y ). In the upper figure, the principal includes

action y1 in the delegation set, as it is the closest action to ŷ. In the lower figure, the principal

is aware of action y2 as well and, for this reason, she excludes action y1 from D∗(Y ).

Y ∗ = [ymin, ŷ −∆] ∪ [ŷ +∆, ymax],

where ∆ = min{∆̄(Y P ),∆∗} and ∆∗ solves the agent’s first order condition

∫ ŷ

ŷ−∆∗

[θ − (y −∆∗)] dF (θ) =

∫ 1

ŷ

[θ − (y +∆∗)] dF (θ). (11)

The resulting equilibrium delegation set is

D∗(Y ∗) = [0, ŷ −∆] ∪ {ŷ +∆}. (12)

Under the restriction to quadratic preferences and a uniform bias, the optimal dele-

gation set for a given awareness set Y is given by

D∗(Y ) = {y ∈ Y : y ≤ argmin
ȳ

|ȳ − ŷ|}.

The optimal delegation set under partial awareness can thus be seen as the closest approx-

imation of the optimal delegation interval under full awareness, [0, ŷ], which is available

to the principal given her restricted awareness. The approximation includes an element

y > ŷ if and only if y is closer to ŷ than any element of Y smaller than ŷ, as illustrated

in Figure 1.

This implies that the agent optimally chooses a gap that is symmetric around ŷ,

17



Δ*

ymaxymin

Y*

Δ*

YP

y y

ymaxymin

Y*

YP

yy1

y

Figure 2: Optimal awareness set Y ∗. The figures represent two examples of the principal’s initial

awareness set Y P and associated awareness sets Y ∗ = Y P ∪X∗ after including disclosed actions

X∗. In both figures, the blue bullets represent the set Y P , while the yellow set represents the

resulting optimal awareness set Y ∗. In the upper figure, the agent keeps the principal unaware

of the interval (ŷ − ∆∗, ŷ + ∆∗). In the lower figure, the principal is also aware of action y1,

making the unconstrained solution ∆∗ infeasible.

i.e. ∆1 = ∆2 = ∆. We can then write the agent’s optimization problem over a single

parameter ∆ as follows:

max
∆≥0

−
∫ ŷ

ŷ−∆

(ŷ −∆− θ)2dF (θ)−
∫ 1

ŷ

(ŷ +∆− θ)2dF (θ) s.t. ∆ ≤ ∆̄(Y P ). (13)

The first order condition (11) describes ∆∗ as the unrestricted maximum of this prob-

lem. If, however, the principal is aware of some action in the interval (ŷ−∆∗, ŷ+∆∗), the

agent’s optimal strategy is to choose the largest feasible gap, as we illustrate in Figure 2.

Next, we show how the optimal awareness gap from the agent’s perspective, (ŷ −
∆∗, ŷ +∆∗), depends on the bias β.

Proposition 4. Assume preferences are as in (8), condition (9) is satisfied and E[θ −
β] > 0. Let ∆∗(β) be the unconstrained solution to problem (13) when the principal’s

preferences parameter is β ∈ (0,E[θ]). Then ∆∗(·) is an increasing function.

Proposition 4 shows an intuitive result: the larger the divergence between the princi-

pal’s and the agent’s preferred action, the more the agent wants to distort the principal’s

delegation choice by hiding actions from the principal. For a simple illustration, consider

the case where F is uniform. The larger β is, the lower is the cap ŷ(β) of the optimal

delegation set under full awareness, as can be seen from condition (10). Considering the
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agent’s tradeoff when choosing ∆, notice that when F is uniform, the cost associated

with the loss of flexibility for a given gap around ŷ(β) is the same for all β. The desired

consequence of generating a gap is an increase of the highest permitted action—from ŷ(β)

to ŷ(β) + ∆—and hence an increase of the agent’s information rent in all states above

ŷ(β) + ∆. The lower the original cap ŷ(β), the larger the range of values for θ above

ŷ(β) + ∆ and hence the set of types to whom this rent accrues.

Remark. While we assume that the set of available actions is an interval for tractability,

the agent’s disclosure incentives are qualitatively similar in the case where Y A is an

arbitrary subset of R, e.g. a collection of discrete points. The analysis of the optimal

delegation set for a given awareness set Y ⊆ Y A remains valid, so D∗(Y ) is described

by (12). With regard to the optimal awareness set, notice that if the agent reveals some

y ∈ Y A, he might as well reveal all actions that have a greater distance to ŷ than y:

their inclusion will weakly expand the agent’s choice set. This implies that the optimal

awareness set can again be described by a gap parameter ∆. A sufficient condition for

optimality of full disclosure is then that the principal is initially aware of the action

in Y A closest to ŷ. A sufficient condition for less-than-full disclosure is that the set of

feasible actions includes three actions y1 < y2 < y3 such that Y P ∩ (y1, y3) = ∅ and

|y2 − ŷ| < |y3 − ŷ| ≤ |y1 − ŷ| < δ for some δ sufficiently small.

3.2 Limited Awareness and Contract Language

We assume that the principal specifies the actions that are permitted (ruling in) rather

than those that are not permitted (ruling out). While under full awareness these two

options are equivalent, in the case of limited awareness contract language matters for the

outcome. If the principal’s contract only specifies those actions that are not permitted,

the agent has no incentives to expand the principal’s awareness: since the agent is free

to take any action of which the principal remains unaware, revealing them before the

contracting stage can only reduce his flexibility.

The restriction to ruling-in contracts arises naturally if one views the principal’s prob-

lem as designing a direct mechanism. Under this interpretation, the principal commits to

a mapping from messages to actions, where unawareness imposes restrictions on the image
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of such mappings. In particular, the principal cannot commit to an action that she does

not know to exist. It might be interesting to consider more complex relationships between

the principal’s awareness and implementable action profiles through indirect mechanisms.

For instance, the principal could attempt to permit additional actions through an indirect

description of those. Whether this improves the principal’s welfare or actually hurts her

depends on the details of the model, of which the principal is unaware. Any aversion

to such unknown possibilities might in fact call for a description of actions as specific as

possible given the principal’s language.

An introspective principal—one who is aware of her unawareness—might, however,

wonder whether there are any contracts that can improve on the optimal delegation set

without giving the agent blanket approval to take unknown actions. One such possibility

is to add a contractual clause specifying that the initial contract can be adjusted when new

options come to light and parties mutually agree (see also Piermont (2017)). Specifying

a contractual clause of this form would not rely on the principal’s ability to describe

actions outside her awareness and would hedge her against the possibility of the agent

taking harmful actions without her consent. In the spirit of the incomplete contract

literature, one could then view the initial delegation set as a preliminary agreement that

can be renegotiated when new, mutually beneficial options appear. We explore this

possibility in the following section. In contrast to the incomplete contracts literature, we

will maintain the assumption that the principal has full commitment, so renegotiation

is in fact fully avoidable. We ask instead whether under limited awareness the principal

can actually benefit from voluntarily giving up some of that commitment.

4 Ex-Post Renegotiation

Suppose that, rather than fully committing to the initial delegation set, the principal

proposes a contract that fixes a set of permitted actions but allows for an adjustment when

new options appear. We thus consider contracts under which the agent can renegotiate

with the principal over actions that were not disclosed (or simply not permitted) in the

initial stage of the game. Crucially, we allow the agent to propose such actions after he

observes the payoff state, thereby signaling information. In particular, upon receiving a
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proposal for a new action, the principal infers that the agent makes such a proposal only if

taking the new action benefits him. However—due to the principal’s limited awareness—

she cannot conceive of alternative actions the agent could have disclosed instead and,

hence, cannot learn from particular actions not being proposed. This asymmetry arises

as a consequence of the principal’s limited awareness and plays a crucial role in the results

that follow.

The modified game has two phases, the contracting phase and the renegotiation phase.

The contracting phase is the same as before: the agent discloses a set of actions and the

principal determines a delegation set. In the renegotiation phase, the agent first observes

the payoff state θ and then decides between two options. Either he picks an action from

the delegation set or he proposes a different action to the principal, who can then accept

the proposal or keep the original delegation set.

Strategies and beliefs. While we return to the contracting phase at the end of the

section, our main focus will lie on the renegotiation phase. To this end, we fix the

principal’s interim awareness set Y ∈ Y and a delegation set D ⊆ Y as primitives. The

set Y is interpreted as the principal’s updated awareness after the contracting phase

and the set D as the corresponding delegation set. Next, we define the strategies of the

principal and the agent. The agent’s possible moves are either ‘no new proposal’ (let us

call it N) or singleton proposals x ∈ Y A. The set of possible proposals for the agent is

thus X := N ∪ Y A and the agent’s strategy is a map x : [0, 1] → X from the possible

realizations of θ to a recommendation. Upon receiving a new proposal, the principal needs

to decide whether to accept or reject it. Her strategy is a mapping ρ : X → {0, 1}, where
ρ(x) = 0 means that the principal rejects the agent’s proposal and keeps the original

delegation set D, while ρ(x) = 1 means that the principal accepts the agent’s proposal

and the implemented action is x. To account for the fact that after ‘no new proposal’

the original delegation set must be kept, we set ρ(N) = 0. Whenever there is no new

proposal or the proposal is rejected, the agent chooses an action from the original set D.

The agent’s optimal choice in this case is described by y∗(θ,D), as introduced in Section

3. We will take this part of the agent’s strategy as given.
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We restrict strategies x and ρ to be upper semicontinuous functions.12 Intuitively,

this amounts to assuming that, in case of indifference, the agent breaks ties in favor of

proposing a new action, and the principal breaks ties in favor of allowing new proposals.

It is easy to see that this assumption generates equilibrium sets of permitted actions that

are closed. We further concentrate on outcomes in pure strategies. Finally, we denote

for each x ∈ X the set of conceivable proposals under the principal’s updated awareness

Y ∪ {x} by Xx := Y ∪ {x} ∪ {N}.

Definition 1. Fix an awareness set Y ∈ Y and a delegation set D ⊆ Y . The strategy

profile (x∗, ρ∗), together with a belief function µ∗(·|x) ∈ ∆([0, 1]) for each x ∈ X and a

collection of strategy perceptions (x∗
x)x∈X , with x∗

x : [0, 1] → Xx, constitutes a PBE of the

renegotiation game if and only if the following conditions hold:

1. Principal optimality: for all x ∈ X \N ,

ρ∗(x) ∈ arg max
ρ∈{0,1}

ρEµ∗(·|x)[U
P (θ, x)] + (1− ρ)Eµ∗(·|x)[U

P (θ, y∗(θ,D))];

2. Agent optimality: for all θ ∈ [0, 1],

x∗(θ) ∈ argmax
x∈X

ρ∗(x)UA (θ, x) + (1− ρ∗(x))UA (θ, y∗(θ,D)) ;

3. Consistency of beliefs: for all x ∈ X, µ∗(·|x) is consistent with the perceived strategy

x∗
x(·), where

x∗
x(θ) ∈ arg max

x′∈Xx

ρ∗(x′)UA (θ, x′) + (1− ρ∗(x′))UA (θ, y∗(θ,D)) . (14)

In particular, letting Θ∗(x) denote the preimage of x for the function x∗
x(·), µ∗(·|x) is

derived via Bayes rule whenever
∫
Θ∗(x)

dF (θ) > 0. If
∫
Θ∗(x)

dF (θ) = 0 but Θ∗(x) ̸=
∅, then µ∗(·|x) is an arbitrary distribution with support Θ∗(x). Finally, if Θ∗(x) = ∅,
then µ∗(·|x) is unrestricted;

The main novelty in Definition 1 is the awareness-adapted consistency condition,

which assures that the principal’s beliefs are coherent with the agent playing optimally

12To define upper semicontinuity for the agent, associate a negative number to N in the codomain of
his strategy.
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in the game as perceived through the principal’s awareness. To formalize this requirement

we need to account for the fact that the principal’s perception of the agent’s set of feasible

strategies depends on the principal’s updated awareness set and, hence, on the agent’s

realized proposal. Indeed, each proposal x ∈ X induces a different subjective game in the

mind of the principal. We thus define for each x ∈ X, a perceived strategy x∗
x, which maps

the state θ ∈ [0, 1] to a feasible recommendation x′ ∈ Xx in the principal’s subjective

game. Condition (14) then requires that in this game, strategy x∗
x is optimal against the

principal’s equilibrium strategy ρ∗. The key implication of the consistency condition is

that after any change of awareness following the agent’s proposal, the principal’s strategy

and her beliefs are part of an equilibrium in the resulting subjective game.13

Acceptable proposals. We now ask which proposals the principal is willing to accept

in a renegotiation equilibrium. To answer the question, we restrict attention to initial

delegation sets D that solve the principal’s delegation problem (3): D = D∗(Y ). Given

the principal’s awareness in the contracting phase, delegation setD∗(Y ) is indeed optimal,

since any action in Y , which the principal plans to permit in the renegotiation phase,

can directly be included in the delegation set. Given this restriction, we can show that

in any equilibrium of the renegotiation game, the principal permits an agent’s proposal

x ̸∈ D∗(Y ) only if she would have preferred to add the action to the initial delegation set

D∗(Y ) at the contracting stage. The set of actions satisfying this requirement is defined

by

A(Y ) := {x ∈ Y A : V P (D∗(Y ) ∪ {x}) ≥ V P (D∗(Y ))},

where V P is the principal’s value in the ‘full commitment delegation’ benchmark.

Proposition 5. Fix an awareness set Y ∈ Y and a delegation set D = D∗(Y ).

(i) In any equilibrium (x∗, ρ∗, (µ∗(·|x), x∗
x)x∈X), if ρ

∗(x) = 1, then x ∈ A(Y ).

(ii) There is an equilibrium such that ρ∗(x) = 1 for all x ∈ A(Y ).

13We could impose the consistency condition only on beliefs following on-path proposals. None of
our results would be affected. While this is obvious for Propositions 5(ii), 6, and 7, also Proposition
5(i) remains valid, as the argument proving it does not rely on the specification of off-path beliefs (see
Appendix A.5).
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Proposition 5 characterizes the set of proposals that can be accepted by the principal

in equilibrium. By definition of D∗(Y ), the set A(Y ) does not include any actions that

belong to Y other than those already in the delegation set D∗(Y ). Hence, in equilibrium

we have ρ∗(x) = 0 for all x ∈ Y \D∗(Y ). This means that, given delegation set D∗(Y ), the

agent can only gain from renegotiation if he discloses new actions of which the principal

was previously unaware. Consider then an equilibrium where proposal x ̸∈ Y is accepted

in the renegotiation phase. By the consistency condition, the principal’s beliefs after this

proposal have support

Θ∗(x) = {θ ∈ [0, 1] : UA(θ, x) ≥ max
y∈D∗(Y )

UA(θ, y)}. (15)

According to the principal’s awareness, x is the only new action that the agent can

propose. The principal thus believes that the agent proposes x whenever he prefers it

over his best alternative in D∗(Y ). The question is then whether conditional on the agent

preferring x over the actions belonging to D∗(Y ), the principal prefers x as well. The

answer to this question is yes if and only if the principal would have preferred to add x to

the delegation set D∗(Y ), i.e., if and only if x ∈ A(Y ). This is because adding an action

to the delegation set changes the outcome only in those states where the agent prefers

the action to the alternatives in the delegation set. In the renegotiation phase, the same

consideration applies.

The benefit of partial commitment. The previous result demonstrates that by

adding a renegotiation option to the optimal delegation set the principal can keep some

flexibility to implement additional actions should her awareness grow while generating

the same outcome as under full commitment in case her awareness remains unchanged.

We show next that, if Assumption 1 holds, partial commitment indeed dominates full

commitment.

Proposition 6. Let Assumption 1 be satisfied. Fix an awareness set Y ∈ Y, a delegation

set D = D∗(Y ) and consider a renegotiation equilibrium (x∗, ρ∗, (µ∗(·|x), x∗
x)x∈X) where

ρ∗(x) = 1 for all x ∈ A(Y ) and ρ∗(x) = 0 otherwise. The principal’s expected payoff in
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this equilibrium is V P (A(Y )) and satisfies

V P (A(Y )) ≥ V P (D∗(Y )). (16)

Proposition 6 shows that, focusing on the equilibrium where the set of accepted pro-

posals is maximal, the principal benefits from partially forgoing her commitment if As-

sumption 1 is satisfied. In equilibrium, the set of implementable actions for the agent

is A(Y ) and the principal’s equilibrium payoff (as viewed from the perspective of a fully

aware outside observer) is given by V P (D∗(Y ) ∪A(Y )). By Assumption 1, the set A(Y )

includes all actions in [yA(0),maxD∗(Y )]. Intuitively, this means that the agent can

“close potential gaps” of the original delegation set D∗(Y ) through renegotiation. By the

same assumption, convexifying the set not only benefits the agent but also the principal.

The set A(Y ) may also include actions strictly higher than maxD∗(Y ). In the proof, we

show that their inclusion benefits the principal as well.14

Information transmission. A striking feature of the described equilibrium is that

the implemented action is strictly increasing in the state for all θ such that yA(θ) ≤
maxD∗(Y ), even when the initial delegation set D∗(Y ) has gaps. This would not be

possible under full awareness: in any candidate equilibrium where types perfectly separate

themselves through their announcement, the fully aware principal learns the payoff state

and has incentives to deviate to a strictly lower action, at least in some states. In the

case of limited awareness, however, the principal cannot contemplate the agent’s moves

of which she remains unaware and this limits the extent to which she infers information

from the agent’s recommendation.

In particular, if the realized value is θ and the agent proposes an action yA(θ) ̸∈ Y such

that yA(θ) ∈ [yA(0),maxD∗(Y )], the subjective game tree that represents the principal’s

frame of mind after updating does not include moves of the agent involving a proposal

just below or above yA(θ). As a consequence, the principal cannot conceive of the fact

that she would have permitted such actions if the agent had proposed them instead. In

14To see why Assumption 1 is needed, suppose it is not satisfied. Then we cannot rule out the
possibility to have an awareness Y , a delegation set D∗(Y ), and two actions y, y′ ̸∈ D∗(Y ) such that
V P (D∗(Y ) ∪ {y}), V P (D∗(Y ) ∪ {y′}) ≥ V P (D∗(Y )) and V P (D∗(Y ) ∪ {y, y′}) < V P (D∗(Y )). The
principal may thus be worse off after renegotiation.
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the principal’s subjective game following proposal yA(θ), there is an equilibrium where

the agent reveals yA(θ) in all states where the agent prefers yA(θ) over the actions in the

initial delegation set. Each of the agent’s equilibrium proposals is thus perceived to be

consistent with an interval of states and these intervals overlap; that is, the principal’s

information can no longer be represented by a partition of the state space into pairwise

disjoint sets. The discrepancy between the agent’s true strategy and the principal’s

perception of it is exactly what allows for a continuum of on-path proposals. Sometimes

the principal’s coarse inference leads her to accept proposals that she should reject, e.g.

when the agent proposes an action close to the lower boundary of any potential gap in

D∗(Y ). In expectation, however, she gains from the additional flexibility that she grants

in equilibrium.

Disclosure in the contracting phase. While for a fixed awareness set renegotiation

unambiguously benefits the principal, the prospect of being able to renegotiate after the

arrival of information affects the agent’s disclosure incentives in the contracting phase.

The agent’s initial disclosure determines the principal’s delegation set and with that the

set of proposals the principal is willing to accept in the renegotiation phase. His goal

is to maximize the final set of permitted actions, whether permission is given in the

contracting phase or in the renegotiation phase. Focussing again on the case where, upon

inducing awareness Y , the agent expects the principal to delegate D∗(Y ) and accept

any additional proposal in A(Y ), the agent’s optimal disclosure in the contracting phase

solves the problem

max
Y

∫ 1

0

UA(θ, y∗(θ, A(Y )))dF (θ) (17)

subject to Y P ⊆ Y ⊆ Y A. When Assumption 1 is satisfied, this problem has a simple

solution.

Proposition 7. Let Assumption 1 be satisfied. A solution to problem (17) exists and is

given by the awareness set Y that solves

max
Y P⊆Y⊆Y A

maxD∗(Y ).
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The proposition shows that the agent’s highest equilibrium payoff is attained by having

the agent disclose a set of actions in the contracting phase that maximizes the upper

threshold of the principal’s resulting delegation set. Since through renegotiation, the

agent is able to implement all actions below the upper threshold, this maximizes the

agent’s flexibility in equilibrium and thus his equilibrium payoff.

For concreteness, consider case (ii) of Proposition 2, where the principal’s value

V P ([yA(0), y]) is single-peaked in y and the agent’s optimal disclosure policy introduces

a single gap around ŷ. Let (ŷ − ∆̄1, ŷ + ∆̄2) be the largest feasible awareness gap such

that the corresponding delegation set is D∗(Y ) = [ymin, ŷ − ∆̄1] ∪ {ŷ + ∆̄2}. The highest

action the principal is willing to delegate in the contracting phase is thus

max
Y P⊆Y⊆Y A

maxD∗(Y ) = ŷ + ∆̄2.

Given awareness set Y = [ymin, ŷ − ∆̄1] ∩ [ŷ + ∆̄2, ymax] and delegation set D∗(Y ) =

[ymin, ŷ − ∆̄1] ∪ {ŷ + ∆̄2}, there is an equilibrium in the renegotiation phase where the

agent can implement any action in the interval [yA(0), ŷ + ∆̄2]. If the realized state θ is

such that yA(θ) ∈ D∗(Y ), the agent does not renegotiate and takes his preferred action

yA(θ). If the realized θ is such that yA(θ) > ŷ + ∆̄2, the agent does not renegotiate

either, because, conditioning on the event that the agent prefers some action x > ŷ+ ∆̄2

over ŷ + ∆̄2, the principal strictly prefers ŷ + ∆̄2. If instead the state θ is such that

yA(θ) ∈ (ŷ− ∆̄1, ŷ+ ∆̄2), the agent renegotiates and proposes his preferred action yA(θ).

The principal is unaware of other actions in the interval (ŷ − ∆̄1, ŷ + ∆̄2) and thus

only infers that the agent prefers the proposed action to all other actions in D∗(Y ).

Conditioning on this information, she prefers x as well.

The model with renegotiation highlights an important aspect concerning the dynamics

of unawareness. Much like information, awareness is not reversible. This means that if a

player becomes aware of an action today, he remains aware of that action in the future

(similarly for outcomes, events, etc.). Hence, the more a player reveals at an early stage

of the game, the smaller the collection of the opponent’s awareness sets from which he

can choose later on. When there is uncertainty about the future, this creates incentives

to hide feasible actions from the other player until the later stages of the game. In our
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environment, this principle is reflected in the fact that the agent reveals fewer actions

in the contracting phase when renegotiating is possible than when it is not. In the

case discussed above, the optimal awareness gap in the contracting phase is maximal

when renegotiating is possible. Notice that, even without renegotiation, the agent could

implement any single action below ŷ+∆̄2 by revealing the ‘right’ set of actions. He cannot,

however, implement all actions below ŷ+∆̄2 because some actions crowd out others. The

agent has to make a choice based on the expected value of the feasible awareness sets

and the resulting delegation sets. When renegotiation is possible, on the other hand, the

agent can condition the principal’s awareness on the realization of θ.

Ex-ante welfare. Since the possibility to renegotiate limits the agent’s disclosure in-

centives in the contracting phase, the ranking of the principal’s expected payoff between

the two cases, with and without renegotiation, depends on the principal’s initial level of

awareness. To illustrate this, consider the following example based on the model analyzed

in Section 3.1.

Example. Assume UP (y, θ) = −(y − (θ − β))2, UA = −(y − θ)2. Let θ be uniformly

distributed on [0, 1] and assume β < 1/2, so that delegation is valuable. The optimal

full awareness cap in this example is ŷ = 1− 2β, while the parameter characterizing the

agent’s unconstrained solution of the disclosure problem is ∆∗ = 2(
√
2− 1)β. Denote by

∆̄(Y P ) the action in the principal’s initial awareness set closest to ŷ, where, for ease of

notation, we will suppress the argument Y P .

A calculation shows that under this specification, the principal’s expected payoff in

the case with renegotiation is higher than in the case without it if and only if

∆̄

β
≤

√
2− 1

2

(√
3(4

√
2− 5)− 1

)
≈ 1.21. (18)

In words, accounting for the agent’s initial disclosure incentives, the principal is better off

with renegotiation if and only if ∆̄ is sufficiently small with respect to the agent’s bias β.

To understand this property, note first that if ∆̄ ≤ ∆∗, the agent’s optimal disclosure in

the contracting phase is not affected by the possibility to renegotiate later: in either case,

the optimal awareness gap for the agent is (ŷ − ∆̄, ŷ + ∆̄) and the resulting delegation
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set is D∗(Y ∗) = [0, ŷ − ∆̄] ∪ {ŷ + ∆̄}. Given that the principal prefers to have the

gap in D∗(Y ∗) closed, she is strictly better off when renegotiation is allowed. Moreover,

the larger the bias β, the larger ∆∗ and hence the gain from renegotiation. If instead

∆̄ > ∆∗, the possibility to renegotiate gives the agent incentives to leave the principal

unaware of more actions in the contracting phase than in the case of full commitment,

thus a tradeoff arises. The principal’s expected payoff in the case of pure delegation is

now V P ([0, ŷ−∆∗]∪{ŷ+∆∗}) (independent of ∆̄), while her expected payoff in the case

of renegotiation is V P ([0, ŷ+∆̄]).15 The ranking of these two payoffs depends on how high

ŷ+∆̄ is, i.e., how much additional flexibility the agent gains in the case of renegotiation.

Condition (18) is equivalent to V P ([0, ŷ + ∆̄]) ≥ V P ([0, ŷ −∆∗] ∪ {ŷ +∆∗}).

5 Conclusion

This paper formulates a flexible delegation model with limited awareness and derives

several properties of the optimal solution. The solution shows that by leaving the principal

unaware of moderate options, the agent makes it optimal for the principal to permit

actions closer to his own preferences. As argued in the Introduction, our framework has

interesting implications for applications. We however believe that a key component of

the contribution is to provide at least three general insights that apply to games with a

principal-agent structure where the agent has superior awareness over feasible actions.

First, the paper illustrates that limited awareness can impose natural constraints

on the language of contracts and that such limits may be exploited by the contracting

party with superior awareness. This principle is not restricted to delegation problems

but applies to other contracting problems. A principal facing a privately informed agent

must resolve a tradeoff between exploiting the agent’s private information and limiting

the agent’s information rents. The distortions solving this tradeoff are optimal for the

principal but not for the agent. By manipulating the principal’s awareness set and hence

15The closed form expressions are:

V P ([0, ŷ −∆∗] ∪ {ŷ +∆∗}) = −β2 +
8

3
(3− 2

√
2)β3

V P ([0, ŷ + ∆̄]) = −(1− 2β + ∆̄)β2 +
1

3
[(∆̄− β)3 − β3].
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the set of feasible contracts, the agent can increase the principal’s cost of such distortions,

thereby increasing the principal’s willingness to grant the agent higher information rents.

The unconstrained solution to the agent’s disclosure problem determines the maximal

information rents he can get by modifying the set of feasible actions.

Second, the paper shows how in contracting situations with limited awareness, the

option of renegotiation may be used as a tool to implement outcomes that are not de-

scribable at the contracting stage, without giving the other party blanket approval for

unknown actions. While the existing literature largely focuses on the costs caused by

the impossibility of avoiding ex-post renegotiations in the presence of ex-ante specific in-

vestments, we thus see renegotiation as an opportunity for the principal to improve the

outcome. The downside of ex-post renegotiation for the principal in our setting is the

reduction in the agent’s incentives to disclose actions ex ante, giving rise to an interesting

tradeoff. A clever design of the renegotiation process may shift this tradeoff further in

favor of renegotiation (see Aghion et al. (1994) and Hart and Moore (2004)). An intrigu-

ing general question is indeed what a designer with limited awareness can achieve with

mechanisms that are expressible in her language. The current paper may be viewed as a

step in that direction.

Third, our modification of the game with renegotiation exemplifies how unawareness

changes the ways in which agents infer information. If a player is unaware of the set of

possible signals and only becomes aware of the signal s/he observes, the player cannot

infer information from the fact that a different signal did not realize. This asymmetry

gives rise to non-standard information structures and hence to rather different equilibrium

outcomes with respect to the full awareness benchmark.

A Appendix

A.1 Proof of Proposition 1

Let t : (Y A)2 → [0, 1] be a symmetric function, indicating the state at which the agent is

indifferent between any two actions y and y′. It is specified as follows. For y = y′, set

t(y, y′) = s(y) (recall that s(·) is the inverse of yA(·)). For y < y′, t(y, y′) is defined by:
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- if UA(θ, y) < UA(θ, y′) for all θ ∈ [0, 1], then t(y, y′) = 0;

- if UA(θ, y) > UA(θ, y′) for all θ ∈ [0, 1], then t(y, y′) = 1;

- otherwise t(y, y′) is such that

UA(t(y, y′), y) = UA(t(y, y′), y′). (19)

Due to the single-crossing condition, the solution of (19) is unique. For y > y′, t(y, y′)

is pinned down by the symmetry condition t(y, y′) = t(y′, y). The following lemma links

the slope of s with a partial derivative of t.

Lemma 8. Consider y0 such that s(y0) ∈ (0, 1), then

lim
y→y0

dt(y, y0)

dy
=

1

2
s′(y0)

Proof. For the case where t is determined by (19), we apply the implicit function theorem

to derive
dt(y, y0)

dy
=

UA
y (t(y, y0), y)

UA
θ (t(y, y0), y0)− UA

θ (t(y, y0), y)

Taking the limit, we have

lim
y→y0

dt(y, y0)

dy
= lim

y→y0

UA
y (t(y, y0), y)

UA
θ (t(y, y0), y0)− UA

θ (t(y, y0), y)

= lim
y→y0

UA
θy(t(y, y0), y)

dt(y,y0)
dy

+ UA
yy(t(y, y0), y)

(UA
θθ(t(y, y0), y0)− UA

θθ(t(y, y0), y))
dt(y,y0)

dy
− UA

θy(t(y, y0), y)

=
UA
θy(s(y0), y0) limy→y0

dt(y,y0)
dy

+ UA
yy(s(y0), y0)

−UA
θy(s(y0), y0)

where the second equality follows from L’Hôspital’s rule. Also recall t(y0, y0) = s(y0).

We can solve the above equality for limy→y0
dt(y,y0)

dy
and obtain

lim
y→y0

dt(y, y0)

dy
= −1

2
· U

A
yy(s(y0), y0)

UA
y0
(s(y0), y0)
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From UA
y (s(y), y) = 0, we derive via the implicit function theorem:

s′(y) = −UA
yy(s(y), y)

UA
θy(s(y), y)

which is well defined given our assumption that UA(θ, y) is in C2 and UA
θy > 0. The two

results together establish the claim.

Define D̄(y) := D∗(Y A) ∩ [yA(0), y] as the set obtained by capping the optimal dele-

gation set under full awareness at y.

Lemma 9. If (6) holds as a strict inequality, there exists some y < ŷ such that for all

y ∈ (y, ŷ) ∩D∗(Y A),

V P
(
D̄(y)

)
< V P

(
D̄(y) ∪ {ŷ}

)
.

Proof. We define the difference between the principal’s expected payoffs when adding

action ŷ to a delegation set whose highest action is y < ŷ. Given the strict monotonicity

of the agent’s preferred action in θ, adding action ŷ to a delegation set D with maxD =

y < ŷ only changes the outcome in the states where the agent optimally switches from y

to ŷ. The set of states where this happens is (t(y, ŷ), 1], so the payoff difference is:

∆Ŵ (y) :=

∫ 1

t(y,ŷ)

UP (θ, ŷ)dF (θ)−
∫ 1

t(y,ŷ)

UP (θ, y)dF (θ)

Note that for all y ∈ (y, ŷ) ∩D∗(Y A), we have

V P
(
D̄(y) ∪ {ŷ}

)
− V P

(
D̄(y)

)
= ∆Ŵ (y)

We calculate the first derivative of ∆Ŵ (·) and evaluate it at ŷ:

∆Ŵ ′(y) = −
∫ 1

t(y,ŷ)

UP
y (θ, y)dF (θ)−

(
UP (t(y, ŷ), ŷ)− UP (t(y, ŷ), y)

)
f(t(y, ŷ))

d t(y, ŷ)

d y

∆Ŵ ′(ŷ) = −
∫ 1

s(ŷ)

UP
y (θ, ŷ)dF (θ)
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By (5), the above term is equal to zero. We must therefore consider the second derivative:

∆Ŵ ′′(y) = −
∫ 1

t(y,ŷ)
UP
yy(θ, y)dF (θ) + 2UP

y (t(y, ŷ), y)f(t(y, ŷ))
d t(y, ŷ)

d y

−
(
UP
θ (t(y, ŷ), ŷ)− UP

θ (t(y, ŷ), y)
)
f(t(y, ŷ))

(
d t(y, ŷ)

d y

)2

−
(
UP (t(y, ŷ), ŷ)− UP (t(y, ŷ), y)

)(
f ′(t(y, ŷ))

d t(y, ŷ)

d y
+ f(t(y, ŷ))

d2 t(y, ŷ)

d y2

)

∆Ŵ ′′(ŷ) = −
∫ 1

s(ŷ)
UP
yy(θ, ŷ)dF (θ) + 2UP

y (s(ŷ), ŷ)f(s(ŷ))
d t(y, ŷ)

d y

∣∣∣∣
y=ŷ

Since, by Lemma 8, we have d t(y,ŷ)
d y

∣∣∣
y=ŷ

= 1
2
s′(ŷ), condition (6) holding as a strict

inequality implies ∆Ŵ ′′(ŷ) > 0. Remembering ∆Ŵ ′(ŷ) = 0, there is then an interval

for y to the left of ŷ, where ∆Ŵ ′(y) < 0. With ∆Ŵ (ŷ) = 0, this property implies, in

turn, that there is some y < ŷ such that ∆Ŵ (y) > 0 for all y ∈ (y, ŷ). Hence, for all

y ∈ (y, ŷ) ∩D∗(Y A), we have V P
(
D̄(y) ∪ {ŷ}

)
− V P

(
D̄(y)

)
= ∆Ŵ (y) > 0.

Perturbation. We now construct a sequence of perturbations of Y A as awareness levels

for the principal, which are candidates for generating an improvement for the agent

compared to full awareness.

Lemma 9 shows that there exists some y < ŷ, such that for all y ∈ (y, ŷ) ∩D∗(Y A),

V P (D̄(y)) < V P (D̄(y)∪{ŷ}) is satisfied. Hence, for each y ∈ (y, ŷ)∩D∗(Y A) there exists

some δy > 0 such that for all δ ∈ [0, δy), V
P (D̄(y)) ≤ V P (D̄(y)∪{ŷ+δ}) holds.16 Setting

δŷ = 0, we can then find a continuous, strictly decreasing function δ̄ which maps each

y ∈ (y, ŷ]∩D∗(Y ) to a value of δ satisfying V P (D̄(y)) ≤ V P (D̄(y)∪ {ŷ+ δ}) with image

Φ := {δ ≥ 0 : δ̄(y) = δ for some y ∈ (y, ŷ] ∩D∗(yA)}. Letting ȳ(·) denote the inverse of

δ̄(·), we define for each δ ∈ Φ the associated awareness set by

Y (δ) := Y A\(ȳ(δ), ŷ + δ).

Principal Optimality. In the last stage of the game, the agent’s best response is de-

scribed by y∗(θ,D). Given that the agent chooses according to y∗, the principal with

awareness Y ∈ Y optimally selects a delegation set D∗(Y ) ⊆ Y to solve (3). In Propo-

sition 12 we showed that the principal’s value V P (·) is continuous in D, where distances

16Since the agent simply chooses the better of the two actions closest to him, it is immediate to see
that V P (D̄(y) ∪ {ŷ}) is continuous in ŷ.
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in D are defined according to the Hausdorff-metric dH .

Let y1(δ) = max{ỹ ∈ D∗(Y (δ)) : ỹ ≤ ŷ} with y1(0) = ŷ. We want to show that y1(·)
is continuous in δ on a right neighborhood of zero of its domain Φ. Suppose this is not

true. Then, since y1(·) is bounded above by ŷ, there exists a (sub)sequence {δn} with

limn→+∞ δn = 0 such that limn→+∞ y1(δn) = y0 ≤ ŷ, with y0 possibly depending on the

sequence. To violate continuity, one of them must satisfy y0 < ŷ. Denote this sequence

by {δ̃n}. Then,
dH(D\(y0, ŷ), D∗(Y A)) ≥ ŷ − y0

2
∀D ∈ D.

By continuity of V P and uniqueness of the solution of (3), for all D and n sufficiently

large, V P (D̄(y(δ̃n))) > V P (D\(y0, ŷ)) is satisfied, which is a contradiction to y1(δ̃n) ∈
D∗(Y (δ̃n)). Hence, y1(·) is continuous on a right neighborhood of 0.

The principal’s optimization regarding the inclusion of actions below y1(δ) is equiva-

lent to that under full awareness, as their potential inclusion only affects the agent’s choice

in states below s(y1(δ)). Indeed, given delegation set D and state θ, the agent has to

consider at most two actions, which are the points in D on the left and right from his pre-

ferred action yA(θ). Conditional on y1(δ) belonging to the delegation set, the principal’s

design problem for actions below y1(δ) can thus be separated from that for actions above.

Hence, the optimal delegation set under awareness Y (δ) satisfies D̄(y1(δ)) ⊆ D∗(Y (δ)).

Next, we show that the principal permits at least one action above ŷ when having

awareness Y (δ) for all δ ∈ Φ sufficiently close to zero. To see this notice that for all δ ∈ Φ

sufficiently close to zero and all D with maxD ≤ ȳ(δ), the following inequalities hold:

V P (D) ≤ V (D̄(ȳ(δ))) ≤ V P (D̄(y(δ)) ∪ {ŷ + δ}).

The last inequality has been established above. The first inequality follows from the facts

that: i) by continuity of V P and the fact that D∗(Y A) is a unique maximizer, generating

a payoff close to V P (D∗(Y A)) requires that maxD is close to ŷ, ii) conditional on maxD

being close to ŷ, we have V P (D) ≤ V P (D̄(maxD)), and iii) V P (D̄(y)) is increasing on a

left neighborhood of ŷ (and ȳ(δ) ≥ maxD). We thus established maxD∗(Y (δ)) > ŷ for

δ ∈ Φ sufficiently close to zero.

With this observation, we can define y2(δ) := max{ỹ ∈ D∗(Y (δ)) : ỹ > ŷ}. By an
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analogous argument to the one above, y2 is continuous in δ ∈ Φ on a right neighborhood

of zero. Since y2(δ) is bounded below by ŷ+δ and satisfies y2(0) = ŷ, it must be increasing

on a right neighborhood of 0. For all δ ∈ Φ which are sufficiently close to zero, D∗(Y (δ))

satisfies

D̄(y1(δ)) ∪ {y2(δ)} ⊆ D∗(Y (δ)). (20)

Agent optimality. Let V̂ A denote the agent’s value as a function of the delegation

set. Property (20) implies that V̂ A(D̄(y1(δ))∪{y2(δ)}) constitutes a lower bound for the

payoff the agent obtains when the principal’s awareness set is Y (δ): additional actions in

D∗(Y (δ)) can only benefit the agent. For ease of notation, we change variables and write

y+ = y2(δ) and y−(y+) = y1(y
−1
2 (y+)). The agent’s expected payoff for the delegation set

D̄+(y+) := D̄(y−(y+)) ∪ {y+} can then be written as:

V̂ A(D̄+(y+)) =

∫ s(y−(y+))

0

UA(θ, y∗(θ,D∗(Y A)))dF (θ) +

∫ t(y−(y+),y+)

s(y−(y+))

UA(θ, y−(y+))dF (θ)

+

∫ 1

t(y−(y+),y+)

UA(θ, y+)dF (θ).

The first derivative of this payoff with respect to y+ is

d V̂ A(D̄+(y+))

d y+
=

∫ t(y−(y+),y+)

s(y−(y+))

UA
y (θ, y

−(y+))
dy−(y+)

dy+
dF (θ) +

∫ 1

t(y−(y+),y+)

UA
y (θ, y

+)dF (θ).

Evaluated at y+ = ŷ, this derivative is equal to:

d V̂ A(D̄+(y+))

d y+

∣∣∣∣∣
y+=ŷ

=

∫ 1

s(ŷ)

UA
y (θ, ŷ)dF (θ).

Since UA
y (s(ŷ), ŷ) = 0 and UA

θy > 0, we have UA
y (θ, y) > 0 for all θ > s(ŷ). The derivative

of the agent’s value at y+ = ŷ is thus strictly positive. Hence, we can find a positive

δ ∈ Φ sufficiently close to zero, and an associated y+ = y2(δ) > ŷ, such that V̂ A(D̄(y1(δ)∪
{y2(δ)}) = V̂ A(D̄+(y+)) > V̂ A(D̄+(ŷ)) = V̂ A(D̄(ŷ)) = V A(Y A). Revealing all actions in

Y A is thus strictly dominated for the agent.
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Changing bias. The result can be extended to the case where the agent is downward

biased for a set of low states. Suppose there is state θ̄ ∈ (0, 1) such that yA(θ) < yP (θ)

for all θ < θ̄ and yA(θ) > yP (θ) for all θ > θ̄. In this case, the optimal full awareness

delegation set D∗(Y A) restricts the agent’s choice from below: y̌ := minD∗(Y A) > yA(0).

Assume y̌ is a limit point of D∗(Y A) and the analogue of condition (6) holds, that is:

UP
y (s(y̌), y̌)f(s(y̌))s

′(y̌)−
∫ s(y̌)

0

UP
yy(θ, y̌)dF (θ) < 0.

Following steps analogous to those above, we can then find a sequence of perturbations

of Y A—this time introducing a gap around y̌—inducing delegation sets that include an

action y− < y̌ as well as all elements of D∗(y) above some threshold y+(y−). Letting

D̄−(y−) denote such delegation set, the agent’s expected payoff as a function of y− is

V̂ A(D̄−(y−)) =

∫ t(y−,y+(y−))

0

UA(θ, y−)dF (θ) +

∫ s(y+(s−))

t(y−,y+(y−))

UA(θ, y+(y−))dF (θ)

+

∫ 1

s(y+(y−))

UA(θ, y∗(θ,D∗(Y A)))dF (θ).

Taking the derivative with respect to y− and evaluating it at y− = y̌ yields

dV̂ A(D̄−(y−))

dy−

∣∣∣∣∣
y−=y̌

=

∫ s(y̌)

0

UA
y (θ, ŷ)dF (θ).

Since UA
y (s(y̌), y̌) = 0 and UA

θy̌ > 0, we have UA
y (θ, y) < 0 for all θ < s(y̌), so the derivative

is strictly negative. This means that perturbing the full awareness set by introducing a

gap around y̌ is strictly optimal for the agent.

A.2 Proof of Proposition 2

First, we prove statement (i). Noticing that under Assumption 1 the upper threshold

ŷ is a limit point of D∗(Y A), the claim that ŷ ̸∈ Y P implies Y ∗ ̸= Y A follows from

Proposition 1. We thus want to prove the converse of this claim, namely that ŷ ∈ Y P

implies Y ∗ = Y A. Towards a contradiction, suppose this is not true. Then there exists

an awareness set Y with ŷ ∈ Y such that the agent strictly prefers D∗(Y ) over [yA(0), ŷ].

This implies that D∗(Y ) contains a non-empty set of actions X̃ such that x > ŷ for all
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x ∈ X̃. Since D∗(Y A) is the largest optimal delegation set in D(Y A),

V P (D∗(Y A)) > V P (D∗(Y A) ∪ X̃)

holds. Monotonicity of the agent’s policy then implies that conditional on permitting

action ŷ, the principal is strictly better off by removing all actions in X̃. Hence, ŷ

cannot belong to D∗(Y ). Since restricting the agent’s choice from below is never optimal,

we have ŷ > minD∗(Y ) and hence ŷ ∈ Conv(D∗(Y )). Assumption 1 then implies

V P (D∗(Y ) ∪ {ŷ}) ≥ V P (D∗(Y )), a contradiction. Disclosing all actions is thus optimal

for the agent.

To prove statement (ii), notice first that if ŷ ∈ Y P , then ∆1 = ∆2 = 0. Consider

then the case ŷ ̸∈ Y P . We start by showing that the principal permits at most one

action weakly greater than ŷ. Suppose instead there is an awareness set Y given which

the principal optimally delegates a set D∗(Y ) which contains two distinct actions weakly

greater than ŷ and let ȳ be the largest action in D∗(Y ). Given that (7) is single-peaked

in y, we know that for any y ∈ (ŷ, ȳ) we have V P ([yA(0), y]) > V P ([yA(0), ȳ]) and hence:

∫ 1

s(y)

UP (θ, y) dF (θ) >

∫ s(ȳ)

s(y)

UP (θ, yA(θ)) dF (θ) +

∫ 1

s(ȳ)

UP (θ, ȳ) dF (θ). (21)

This inequality, together with the assumption that permitting ȳ is optimal for the prin-

cipal, implies that ȳ cannot be a limit point of D∗(Y ). Consider then action y > ŷ such

that y < ȳ and [y, ȳ] ∩D∗(Y ) = {y, ȳ}. We can show the following:

V P (D∗(Y ))

=

∫ s(y)

0

UP (θ, y∗(θ,D∗(Y ))) dF (θ) +

∫ t(y,ȳ)

s(y)

UP (θ, y) dF (θ) +

∫ 1

t(y,ȳ)

UP (θ, ȳ) dF (θ)

≤
∫ s(y)

0

UP (θ, y∗(θ,D∗(Y ))) dF (θ) +

∫ s(ȳ)

s(y)

UP (θ, yA(θ)) dF (θ) +

∫ 1

s(ȳ)

UP (θ, ȳ) dF (θ)

<

∫ s(y)

0

UP (θ, y∗(θ,D∗(Y ))) dF (θ) +

∫ 1

s(y)

UP (θ, y) dF (θ)

= V P (D∗(Y )\{ȳ})

where the weak inequality follows from Assumption 1 and the strict inequality follows

from (21). Taken together, these inequalities imply that the principal can strictly improve
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her payoff by removing action ȳ from the delegation set, which yields the contradiction.

Consider now an optimal awareness set Y ∗. The set Y ∗ must clearly satisfy maxD∗(Y ∗) >

ŷ, as any delegation set with an upper bound weakly smaller than ŷ is dominated by the

full awareness delegation set and D∗(Y ∗) ̸= D∗(Y A). We set ∆2 = maxD∗(Y ∗)− ŷ > 0.

We know [ŷ, ŷ +∆2) ∩D∗(Y ∗) = ∅, because we have shown that the principal allows at

most one action above ŷ. Assumption 1 and the fact that the agent is upward biased

imply that the principal permits all actions in Y ∗ that are weakly smaller than ŷ + ∆2.

Define ∆1 ≥ 0 as the smallest value of ∆ that satisfies the inequality

∫ 1

s(ŷ−∆)

UP (θ, ŷ −∆)dF (θ)

≤
∫ t(ŷ−∆,ŷ+∆2)

s(ŷ−∆)

UP (θ, ŷ −∆)dF (θ) +

∫ 1

t(ŷ−∆,ŷ+∆2)

UP (θ, ŷ +∆2) dF (θ)

By continuity of UP (·, ·), t(·, ·) and s(·) (due to the continuity of UA(·, ·) and recalling

our tie-breaking rule), ∆1 is well-defined. Since ∆2 > 0, also ∆1 is positive.

It is easy to see that Y ∗ must satisfy Y ∗∩ (ŷ−∆1, ŷ) = ∅. If instead there is an action

y ∈ (ŷ−∆1, ŷ) such that y ∈ Y ∗, then Assumption 1 implies y ∈ D∗(Y ∗), since y belongs

to the convex hull D∗(Y ∗). However, by definition of ∆1, given that the principal permits

y, she strictly prefers not to permit ŷ+∆2, a contradiction. Assumption 1, together with

the fact that the agent is upward biased, further implies that, conditional on ŷ − ∆1 ∈
D∗(Y ∗), revealing any action below ŷ−∆1 and weakly above yA(0) results in the inclusion

of that action in the delegation set and thus strictly benefits the agent. Optimality of Y ∗

thus requires Y ∗∩ [yA(0), ŷ+∆2] = [yA(0), ŷ−∆1]∪{ŷ+∆2}. Given such awareness set,

the principal optimally chooses the delegation setD∗(Y ∗) = [yA(0), ŷ−∆1]∪{ŷ+∆2}.

A.3 Proof of Proposition 3

We first want to verify that the conditions of statement (ii) in Proposition 2 are satisfied.

It is well known that condition (9) implies Assumption 1 (see Martimort and Semenov

(2006)). What remains to show is that (7) is strictly quasiconcave in y. For the case
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considered here, we can write the principal’s payoff in (7) as

V P ([0, y]) = −F (y)β2 −
∫ 1

y

(y − (θ − β))2dF (θ), (22)

with the first and second derivative respectively given by

dV P ([0, y])

dy
= −2

∫ 1

y

(y − (θ − β))dF (θ)

and
d2V P ([0, y])

dy2
= 2 (βf(y)− (1− F (y))) .

Note that by condition (9) the second derivative is strictly increasing in y, which in turn

implies that the first derivative is strictly convex. At the boundary points y = 0 and

y = 1, the first derivative, respectively, takes the values

dV P ([0, y])

dy

∣∣∣∣
y=0

= 2E[θ − β] > 0 and
dV P ([0, y])

dy

∣∣∣∣
y=0

= 0.

Together with strict convexity, this implies that dV P ([0,y])
dy

has exactly one intersection with

zero on [0, 1) at ŷ. That is, for all y < ŷ, dV P ([0,y])
dy

> 0, for all y ∈ (ŷ, 1) dV P ([0,y])
dy

< 0.

Hence, the function V P ([0, y]) is strictly quasi-concave.

Given quasi-concavity, we know that the equilibrium disclosure and delegation sets

are described by two parameters ∆1 and ∆2, as described in Proposition 2. Next, we want

to show that ∆1 = ∆2 = ∆. In equilibrium, the principal must be indifferent between

delegation sets [ymin, ŷ−∆1] and [ymin, ŷ−∆1]∪ {ŷ+∆2}, as otherwise the agent could
reduce ∆1 without destroying the principal’s incentives to permit ŷ + ∆2 and thereby

obtain a strictly higher payoff. Let t := ŷ + ∆2−∆1

2
denote the state at which the agent

is indifferent between the two actions. The change in the principal’s payoff when adding

action ŷ +∆2 to the set [ymin, ŷ −∆1] is given by

−
∫ 1

t

(ŷ +∆2 − θ + β)2dF (θ) +

∫ 1

t

(ŷ −∆1 − θ + β)2dF (θ)

= −2(∆1 +∆2)

∫ 1

t

(t− (θ − β))dF (θ)

= (∆1 +∆2)
dV P ([0, y])

dy

∣∣∣∣
y=t
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which, as we just argued, is weakly positive if and only if t ≤ ŷ. For the principal to be

indifferent, we must have t = ŷ or equivalently ∆1 = ∆2 = ∆.

Having shown this property, the agent’s optimization problem boils down to the choice

of ∆ ≤ ∆̄(Y P ). The agent’s payoff as a function of ∆ is specified in (13). Taking the first

derivative with respect to ∆ yields the first-order condition (11). The second derivative

of (13) is

−2(1− F (ŷ −∆)) < 0,

so the agent’s expected payoff is strictly concave in ∆. It follows that the unconstrained

maximizer ∆∗ is described by (11) and that the constrained maximizer is max{∆∗, ∆̄(Y P )}.

A.4 Proof of Proposition 4

Let ŷ(β) be the optimal cap under full awareness when the bias is β. Hence, ŷ(β) is the

maximizer of (22) and is implicitly defined by the first-order condition

∫ 1

ŷ

(θ − β) dF (θ)− ŷ(1− F (ŷ)) = 0.

As we argues in the proof of Proposition 3, the first derivative of V P ([0, y]) with respect

to y is strictly convex and crosses ŷ from above. The second-order condition thus holds

as a strict inequality:

βf(ŷ(β))− (1− F (ŷ(β))) < 0. (23)

We can then use the implicit function theorem (condition (9) implies that the cumulate

F is C1) to show that ŷ(β) admits a derivative at each β, which equals:

ŷ′(β) = − 1− F (ŷ(β)

βf(ŷ(β))− (1− F (ŷ(β)))
< 0 (24)

Continuous differentiability is guaranteed by the implicit function theorem and can be

checked directly in the above expression

Next, consider the agent’s payoff as a function of ∆ and the parameter β, as described

in (13), and denote it by U(∆; β). As we showed in the proof of Proposition 3, this payoff

is strictly concave with the interior solution characterized by (11). The conditions for
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applying the implicit function theorem are again satisfied, hence there is a function ∆∗(β)

describing the unconstrained solution for the agent that solves the first order condition

U∆(∆
∗(β); β) = 0, which becomes an identity when seen as a function of β, and:

∆∗′(β) = −U∆β(∆
∗(β); β)

U∆∆(∆∗(β); β)

To prove the statement of the proposition, we must then show U∆β(∆
∗(β); β) > 0. Dif-

ferentiating the expression of the first-order condition (11) with respect to β keeping ∆∗

fixed, after some rearrangement, delivers:

U∆β(∆
∗(β); β) = −ŷ′(β) [1 + F (ŷ(β)−∆∗(β))− 2F (ŷ(β))] .

Given ŷ′(β) < 0 (see (24)), we are done if 1 + F (ŷ(β)−∆∗(β)) − 2F (ŷ(β)) > 0, or

equivalently:

2(1− F (ŷ(β))) > 1− F (ŷ(β)−∆∗(β)) .

Using ŷ(β) = E[θ − β|θ ≥ ŷ(β)], the first-order condition (11) can be written as:

[1− F (ŷ(β)−∆∗(β))] [E[θ|θ ≥ ŷ(β)−∆∗(β)]− (ŷ(β)−∆∗(β))] = 2[1− F (ŷ(β))]β. (25)

Since ŷ(β)−∆∗(β) is strictly smaller than ŷ(β), the following condition holds:

E [θ − β|θ ≥ ŷ(β)−∆∗(β)]− (ŷ(β)−∆∗(β)) > 0.

Equivalently we can write

E[θ|θ ≥ ŷ(β)−∆∗(β)]− (ŷ(β)−∆∗(β)) > β.

Given this inequality, (25) requires 2(1−F (ŷ(β))) > 1−F (ŷ(β)−∆∗(β)), as desired.

A.5 Proof of Proposition 5

Proof. We begin with part (i). Consider a renegotiation equilibrium and let X̂ := {x ∈
Y : ρ∗(x) = 1} be the set of actions in the principal’s initial awareness set which are

allowed in equilibrium. By upper semicontinuity of ρ∗, this set X̂ is closed. Since also
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D∗(Y ) is closed, the set D∗(Y ) ∪ X̂ is closed as well. We first want to show that

V P (D∗(Y ) ∪ X̂) ≥ V P (D∗(Y )).

Since the agent can always guarantee choices in D∗(Y ) by proposing N , agent’s op-

timality in the eyes of the principal implies x∗
x(θ) = y∗(θ,D∗(Y ) ∪ X̂) for all x ∈ X̂ and

θ ∈ ⋃
x∈X̂ Θ∗(x), with the exclusion of points where the agent is indifferent between two

actions in D∗(Y ) ∪ X̂. For each x ∈ D∗(Y ) ∪ X̂, we thus have:

cl(Θ∗(x)) = {θ ∈ [0, 1] : UA(θ, x) ≥ max
y∈D∗(Y )∪X̂

UA(θ, y)}

Using the fact that for all x ∈ X̂ and all θ ∈ Θ∗(x), we have x = y∗(θ,D∗(Y ) ∪ X̂) and

that for each B ⊆ Θ∗(x) we have
∫
Θ∗(x)

µ∗(B|x)f(θ′)dθ′ =
∫
B
dF (θ),17 the principal’s

optimality condition yields

∫

Θ∗(x)

∫

Θ∗(x)

UP (θ, x)dµ∗(θ|x)dF (θ′) ≥
∫

Θ∗(x)

∫

Θ∗(x)

UP (θ, y∗(θ,D∗(Y )))dµ∗(θ|x)dF (θ′)

⇐⇒
∫

Θ∗(x)

UP (θ, y∗(θ|D∗(Y ) ∪X))dF (θ) ≥
∫

Θ∗(x)

UP (θ, y∗(θ,D∗(Y )))dF (θ)

for all x ∈ X̂.

Next, for θ /∈ ⋃
x∈X̂ Θ∗(x), we have x∗

x(θ) = N or ρ∗(x∗
x(θ)) = 0. In either case, the

agent will take y∗(θ,D∗(Y )). We further have y∗(θ,D∗(Y )) = y∗(θ,D∗(Y ) ∪ X̂) for all

θ /∈ ⋃
x∈X̂ Θ∗(x), since the agent is free to take any action in D∗(Y ) ∪ X̂.

Setting ΘC(X̂) := [0, 1] \
(⋃

x∈X̂ Θ∗(x)
)
, we can now integrate over X̂ and obtain

∫

ΘC(X̂)

UP (θ, y∗(θ,D∗(Y ) ∪ X̂))dF (θ) +

∫

X̂

∫

Θ∗(x)

UP (θ, y∗(θ,D∗(Y ) ∪ X̂)) dF (θ)dx

≥
∫

ΘC(X̂)

UP (θ, y∗(θ,D∗(Y )))dF (θ) +

∫

X̂

∫

Θ∗(x)

UP (θ, y∗(θ,D∗(Y )))dF (θ)dx.

or equivalently

V P (D∗(Y ) ∪ X̂) ≥ V P (D∗(Y )).

Recall that D∗(Y ) ∪ X̂ ⊆ Y is a closed set. Since D∗(Y ) is the largest closed optimal

17Note that monotonicity of the agent’s optimal policy y∗ in θ implies that Θ∗(x) is either of positive
measure or a singleton.
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awareness set with respect to Y that includes actions that will actually be taken by the

agent under some contingency, this inequality yields a contradiction unless D∗(Y )∪ X̂ =

D∗(Y ).

Having shown that the principal only accepts additional actions in the renegotiation

phase if they do not belong to Y , consider proposal x ∈ Y A \ Y such that ρ∗(x) =

1. Perceived agent optimality then requires x∗
x(θ) = x for all θ such that UA(θ, x) >

maxy∈D∗(Y ) U
A(θ, y). Principal optimality in turn requires that conditioning on the event

UA(θ, x) > UA(θ, y∗(θ,D∗(Y ))), the principal prefers x over y∗(θ,D∗(Y )) in expectation.

This is the case only if x ∈ A(Y ).

To show part (ii), we need to construct an equilibrium of the renegotiation game where

proposal x is accepted by the principal whenever x ∈ A(Y ). To this end, we set ρ∗(x) = 1

for all x ∈ A(Y ) and ρ∗(x) = 0 otherwise. Recall that ρ∗(N) = 0. For the agent we set

x∗(θ) = argmaxx∈A(Y ) U
A(θ, x) if maxx∈A(Y ) U(θ, x) ≥ maxy∈D∗(Y ) U

A(θ, y) and x∗(θ) =

N otherwise.18 Similarly, for the agent’s strategy as perceived by the principal when

receiving proposal x, we set x∗
x(θ) = x if U(θ, x) ≥ maxy∈D∗(Y ) U

A(θ, y) and x∗
x(θ) = N

otherwise. The principal beliefs system µ∗ is defined as follows. For all x ∈ X:

µ∗(B|x) =
∫
B
dF (θ∫

Θ∗(x)
dF (θ)

∀B ⊆ Θ∗(x),

whenever Θ∗(x) = (x∗
x)

−1(x) is of positive measure, and µ∗({θ}|x) = 1 if Θ∗(x) = {θ}. It
can be checked directly that this strategy and belief profile satisfy principal optimality,

agent optimality, and consistency of beliefs and thus constitute a PBE of the renegotiation

game, as specified in Definition 1.

A.6 Proof of Proposition 6

Proof. Note that, under Assumption 1, for any x ∈ (minD∗(Y ),maxD∗(Y )), we have

V P (D∗(Y )∪{x}) ≥ V P (D∗(Y )), so x belongs to the set of acceptable proposals. The same

is true for all x < minD∗(Y ), since, conditioning on the fact that the (upward biased)

agent prefers x over minD∗(Y ), the principal prefers x as well. The set of implementable

action A(Y ) thus includes all action in [yA(0),maxD∗(Y )]. Under Assumption 1 we

18Recall, in case of indifference the agent brakes ties in favour of the principal.
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clearly have V P ([yA(0),maxD∗(Y )]) ≥ V P (D∗(Y )). If maxD∗(Y ) = maxA(Y ), this

concludes the argument. For the other case, let ȳ := maxA(Y ) assume ȳ > maxD∗(Y ).

By definition of A, we have V P (D∗(Y )∪{ȳ}) ≥ V P (D∗(Y )). Monotonicity of the agent’s

action in θ then implies

V P
(
[yA(0),maxD∗(Y )] ∪ {ȳ}

)
≥ V P

(
[yA(0),maxD∗(Y )]

)

But given that permitting action ȳ weakly increases the principal’s expected payoff, per-

mitting any additional action in (maxD∗(Y ), ȳ) benefits the principal as well (again by

Assumption 1), so (16) is satisfied.

A.7 Proof of Proposition 7

Proof. We start by showing the existence of a solution of maxY D∗(Y ). Recall that

BRP (·) denotes the principal’s solution correspondence for problem (3). Let us then

define:

y̌(Y ) := sup
D∈BRP (Y )

maxD.

Since any D ∈ BRP (Y ) is compact, the last max is well-defined. From the proof of

Proposition 12 we know that BRP is upper hemicontinuous. If we show that the function

m(D) := maxD is continuous in D, the generalized version of the maximum theorem

(e.g., Theorem 17.30 in Aliprantis and Border (2006)) implies that the max exists for

each Y and y̌(Y ) is upper semicontinuous in Y . This in turn implies that the following

object is well-defined:

ȳ∗ := max
Y P⊆Y⊆Y A

y̌(Y ).

Lemma 10. The function m(D) := maxD is continuous with respect to the Hausdorff

metric.

Proof. Recall again that we are working with metric spaces. Take a sequence Dn →H D.

Consider now the sequence of real numbers dn := maxDn ∀n. We need to show that the

sequence converges to d := maxD ∈ R. Since Dn converges, it is Cauchy. We want to

show that also dn is Cauchy. For any δ, let Nδ be such that dH(Dn, Dm) ≤ δ ∀n,m ≥ Nδ.

Now, if dn = dm there is nothing to prove. Suppose dn ̸= dm. Then, w.l.o.g assume
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dn > dm. We have

|dn − dm| = |maxDn −maxDm| = inf
y∈Dm

|dn − y| ≤ dH(Dn, Dm) ≤ δ.

Given that δ is generic, dn is Cauchy and since R is complete, the sequence dn must

converge. Let d∗ be the converging point of the sequence. Again, w.l.o.g. assume d∗ > d.

But then, by the definition of convergence, it must be that for N large enough, dn > d

for all n ≥ N . Delivering

dH(D,Dn) ≥ inf
y∈D

|dn − y| = |dn − d| > 0 ∀n ≥ N,

which contradicts the fact that Dn converges to D. Hence, it must be that d∗ = d.

Next, we want to show that for each Y , y̌(Y ) is equal to maxD∗(Y ). Suppose this

is not true. Then there exists an awareness set Ỹ such that y̌(Ỹ ) > maxD∗(Ỹ ) and a

delegation set D̃ ∈ BRP (Ỹ ) such that max D̃ > maxD∗(Ỹ ). Since it is never optimal to

curtail the agent’s flexibility from below and Assumption 1 holds, we have

min D̃ = minD∗(Ỹ ) = y∗(0, Ỹ )

Given min D̃ = minD∗(Ỹ ) ≤ maxD∗(Ỹ ) < max D̃, Assumption 1 implies V P (D̃ ∪
D∗(Ỹ )) ≥ V P (D̃) and hence (D̃ ∪ D∗(Ỹ )) ∈ BRP (Ỹ ). But since D∗ selects the agent-

preferred delegation set from BRP (Ỹ ) and since D∗(Ỹ ) ⊆
(
D̃ ∪D∗(Ỹ )

)
, we must have

D∗(Y ) = D̃ and hence maxD∗(Y ) = max D̃, a contradiction. Combining these results,

we have shown that

sup
D∈BRP (Y )

maxD = maxD∗(Y )

and hence ȳ∗ = maxY P⊆Y⊆Y A maxD∗(Y ).

Let Ȳ ∗ be an awareness set that maximizes maxD∗(Y ) over Y subject to Y P ⊆ Y ⊆
Y A. We now want to show that Ȳ ∗ solves (17). Suppose not. Since

A(Ȳ ∗) = [yA(0), ȳ∗]

there must then exist an awareness set Y such that max(A(Y )) > ȳ∗. By definition of
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ȳ∗, there is no awareness set Y such that Y P ⊆ Y ⊆ Y A and ȳ∗ ∈ D∗(Y ). Hence, there

must be a proposal x > ȳ∗ that the principal accepts in the renegotiation phase. By

Proposition 5, this requires x ∈ A(Y ), or equivalently

V P (D∗(Y ) ∪ {x}) ≥ V P (D∗(Y )).

This in turn implies x ∈ D∗(Y ∪ {x}) and hence ȳ∗ ≥ x, a contradiction.

A.8 Existence results

Consider the following properties of our setup.

(a) The set Y ⊆ Y A = [ymin, ymax] is a compact subset of the complete and separable

metric space (R, | · |).

(b) Recall, Y denotes the set of closed subsets of [ymin, ymax], and

D̂(Y ) := {D ∈ Y : D ⊆ Y }.

Then D̂(Y ) is a closed subset of 2[Y ] with respect to the Hausdorff-metric

dH(D,D′) = max

{
sup
y∈D

inf
y′∈D′

|y − y′|, sup
y′∈D′

inf
y∈D

|y − y′|
}
,

and hence compact in the topology generated by the Hausdorff metric dH (see point

3 of Theorem 3.85 in Aliprantis and Border (2006)).

(c) Recall: UA and UP are continuous and uniformly bounded on their domains [0, 1]×
[ymin, ymax], and F admits a density.

(d) Recall: UA
θy > 0, UA

y (θ, y) > 0, UA
yy(θ, y) < 0. Hence, if we fix a closed set D ⊆ Y A

and an open interval O ⊆ Y A\D, there is at most one value of θ such that yA(θ) ∈ O

and BRA(θ,D) is not single-valued.

(e) The set (ymin, ymax) \D is an open set, and hence it can be uniquely defined as a

countable union of disjoint open intervals (e.g., Theorem 6, page 51, in Kolmogorov

and Fomin (1975)).
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Recall the agent chooses according to BRA(θ,D) := argmaxy∈D UA(y, θ). Note that by

continuity BRA(θ,D) is non-empty for each θ, since D ⊆ Y A is compact from (a) and

UA is continuous from (c). In addition, since the feasibility set D changes continuously

with D in the Hausdorff norm (and UA is continuous in (D, y, θ)), the maximum theorem

implies that BRA is an upper hemicontinuous correspondence when seen as a function

of (D, θ). In addition, combining (d) with (e), and noticing that for all θ such that

yA(θ) ∈ D we have BRA(θ,D) = {yA(θ)}, we conclude that for each D the set of θ’s for

which BRA(θ,D) is not single-valued is countable. Since F admits a density, the set of

values for which the agent is indifferent is then of F -measure zero. In summary:

Lemma 11. BRA is a non-empty upper hemicontinous correspondence in (θ,D). More-

over, for each D, the set ΘA(D) := {θ ∈ [0, 1] | BRA(θ,D) is not a singleton} has

measure zero according to F .

Recall as well, we denoted with y∗ the selection that resolves ties in favour of the

principal. Due to Lemma 11, for each awareness set Y ∈ Y , the principal optimally

selects a delegation set D ⊆ Y to solve

max
D∈D̂(Y )

V P (D) where V P (D) =

∫ 1

0

UP (θ, y∗(θ,D))dF (θ). (26)

From Lemma 4 in Holmström (1980), V P is upper semicontinuous in D for each closed

Y ⊆ Y A (where distances in D are defined according to the Hausdorff-metric). Since

according to this metric the feasibility set D̂(Y ) is compact, we have:

Proposition 12. An optimal solution to the principal’s problem in D̂(Y )—and hence in

D(Y )—exists. In addition, V P is continuous in D.

The existence of an optimal solution in D(Y ) is guaranteed by the fact that for any

solution to (26) in D̂(Y ) we obtain a solution in D(Y ) by eliminating actions that the

agent does not take in equilibrium. The continuity of V is implied by the fact that

whenever an u.h.c. correspondence is single-valued it is continuous. Hence the second

part of Lemma 11 implies that any selection h from BRA will have discontinuities at a
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set of points that have probability zero according to F . That is,

V P (D) =

∫ 1

0

UP (θ, y∗(θ,D))dF (θ) =

∫ 1

0

UP (θ, h(θ,D))dF (θ),

and the latter varies continuously with D by the continuity property of the selection h

and the continuity of UP summarized in (c).

Denote by BRP (Y ) the solution correspondence for the principal’s problem. If we can

show that the correspondence from Y to D(Y ) is continuous, thanks to properties (a)-(e),

we can apply the theorem of the maximum to show thatBRP (Y ) is upper hemicontinuous.

Now recall, we indicate with D∗(Y ) the selection from BRP (Y ) that resolves ties in

favor of the agent. The problem of the agent at the initial disclosure stage solves:

max
Y ∈Y

V A(Y ) where V A(Y ) =

∫ 1

0

UA(θ, y∗(θ,D∗(Y )))dF (θ) s.t. Y P ⊆ Y ⊆ Y A.

If we can show that the value V A(Y ) is upper semicontinuous by the property of the

selection D∗, we have a solution. Let us hence show the following result:

Proposition 13. BRP (Y ) is upper hemicontinuous and the problem of the agent has at

least one solution.

Proof. As argued above, there are two crucial steps. First, the upper semicontinuity of

V A and then the continuity of the correspondence D(Y ).

Lemma 14. The function V A is upper semicontinuous in Y under the Hausdorff metric.

Proof. Recall that D∗ has the following property:

D∗(Y ) = argmaxD∈BRP (Y )

∫ 1

0

UA(θ, y∗(θ,D))dF (θ).

To show upper semicontinuity, take a converging sequence Yn →H Ȳ and suppose there

is a sequence (in the real numbers) Vn converging to V̄ (in the | · | metric), where for each

n

Vn = V A(Yn) =

∫ 1

0

UA(θ, y∗(θ,D∗(Yn)))dF (θ).

We need to show that V̄ ≤ V A(Ȳ ). To simplify notation, let D̂n = D∗(Yn). We hence

have a sequence D̂n such that V̂n =
∫ 1

0
UA(θ, y∗(θ, D̂n))dF (θ) → V̄ . Since Y is compact,
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there is a converging subsequence, D̂n′ →H D̂, and recall that V̂n′ → V̄ . Note now

that the function T (D) :=
∫ 1

0
UA(θ, y∗(θ,D))dF (θ) is continuous in D based on the

same arguments as in the proof of Proposition 12. It must hence be the case that

T (D̂n′) → T (D̂). This implies that V̄ =
∫ 1

0
UA(θ, y∗(θ, D̂))dF (θ). Now, recall that BRP

is upper hemicontinuous, that is, it has a closed graph Gr. We have shown that D̂ is the

limit of a sequence Dn such that D̂n ∈ BRP (Yn) for all n, that is, (D̂n, Yn) ∈ Gr for all n.

The limit point must be in the graph as well: (D̂, Ȳ ) ∈ Gr. This is equivalent to saying

that D̂ ∈ BRP (Ȳ ). And hence, from the definition of D∗ we have the desired inequality:

V̄ =

∫ 1

0

UA(θ, y∗(θ, D̂))dF (θ) ≤
∫ 1

0

UA(θ, y∗(θ,D∗(Ȳ )))dF (θ).

Lemma 15. The correspondence mapping each set Y from the metric space (Y , dH) to

D̂(Y ) is both u.h.c. and l.h.c.

Proof. First of all, note that from D̂(Y ), we have

D ∈ D̂(Y ) ⇐⇒ D ⊆ Y.

Since we are working with metric spaces (and hence first countable topological spaces),

we can prove our statement using sequences. (i) u.h.c.: take any Y ∈ Y and a generic

converging sequence Yn →H Y. Now, take a sequence Dn such that Dn ⊆ Yn for all n.

We want to show that there is a subsequence Dns
converging to D ⊆ Y. The existence

of a converging sequence is implied by the compactness of the space. So let D be such

a point. We need to show that D ⊆ Y. This is implied by the convergence condition

dH(Dn, D) → 0 in the Hausdorff metric. Suppose D ⊃ Y . It must hence be that

dH(D, Y ) = ε > 0, that is, the distance between the two sets is positive. Now, since

both sequences converge, for each δ there is a Nδ such that for all n ≥ Nδ we have both

dH(Dn, D) ≤ δ and dH(Yn, Y ) ≤ δ. This indicates that Dn cannot be smaller than the

maximal reduction of D compatible with the distance and Y cannot be larger than the

maximal extension of Y compatible with the distance. Such reductions and extensions

can be made arbitrarily small, so if we have D ⊃ Y , we must have for N large enough
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DN ⊃ YN , which is a contradiction.

(ii) l.h.c.: take any D ⊆ Y and a converging sequence Yn →H Y. We need to show

that there is a sequence Dn →H D such that Dn ⊆ Yn for all n. If D = Y , we can take

the sequence Dn = Yn. Alternatively, suppose D ⊂ Y . Since Yn converges to Y , for N

sufficiently large, we have D ⊂ Yn for all n ≥ N . Hence consider the following sequence:

Dn = Yn for n < N and Dn = D for n ≥ N .

This concludes the proof.
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