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Abstract

Truncated conditional expectation functions are objects of interest in a wide range

of economic applications, including income inequality measurement, financial risk man-

agement, and impact evaluation. They typically involve truncating the outcome variable

above or below certain quantiles of its conditional distribution. In this paper, based

on local linear methods, I propose a novel, two-stage, nonparametric estimator of such

functions. In this estimation problem, the conditional quantile function is a nuisance pa-

rameter, which has to be estimated in the first stage. I immunize my estimator against

the first-stage estimation error by exploiting a Neyman-orthogonal moment in the second

stage. This construction ensures that the proposed estimator has favorable bias proper-

ties and that inference methods developed for the standard nonparametric regression can

be readily adapted to conduct inference on truncated conditional expectation functions.

As an extension, I consider estimation with an estimated truncation quantile level. I ap-

ply my estimator in three empirical settings: (i) sharp regression discontinuity designs

with a manipulated running variable, (ii) program evaluation under sample selection, and

(iii) conditional expected shortfall estimation.

*I am grateful to my Ph.D. advisor Christoph Rothe for his invaluable support. I thank François Gerard
for kindly running my estimation routine on a restricted-use dataset. I thank Claudia Noack, Yoshi Rai, Timo
Dimitriadis, and participants of the Econometrics Seminar in Mannheim, the HKMetrics PhD workshop, and the
Bonn-Mannheim PhD Workshop for their helpful comments. I gratefully acknowledge funding by the German
Research Foundation (DFG) through CRC TR 224 (Project A04) and by the European Research Council
(ERC) through grant SH1-77202. Address: University of Mannheim, Department of Economics, L7, 3–5; 68161
Mannheim, Germany. Email: tomasz.olma@gess.uni-mannheim.de. Website: tomaszolma.github.io.
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1 Introduction

A truncated sample mean is the mean calculated after discarding some of the highest and/or

lowest values in a sample. Such quantities, which estimate the corresponding truncated ex-

pectations, are used in a wide range of economic applications. In studies of inequality, income

dispersion can be summarized by reporting the mean income in different quintiles of its distri-

bution, i.e., the mean income of the 20% of households with the lowest income, followed by the

mean income of households between the 20th and 40th percentile of the income distribution,

etc. (see e.g. Semega et al., 2020). In finance, the expected shortfall denotes the expected value

of a certain proportion, e.g. 5%, of top losses. It is a widely-used risk measure, which informs

about the performance of a portfolio of assets in the worst-case scenarios (see e.g. Chen, 2008).

Another set of applications of truncated means is related to the fact that in settings with con-

taminated data, the sharp bounds on the expectation take the form of truncated expectations

(Horowitz and Manski, 1995). The partial identification approach underlying this result has

been adapted to several impact evaluation settings to handle sample selection problems (see

e.g. Zhang and Rubin, 2003; Lee, 2009; Chen and Flores, 2015).

In all the above examples, the analysis can be enriched by incorporating covariates. First,

the anatomy of income inequality can be better understood when analyzed conditionally on

characteristics such as age and work experience. Second, an estimator of the expected shortfall

can be more informative if it takes into account covariates. Third, in the above-mentioned

impact evaluation problems, the heterogeneity of treatment effects can be explored based on

individuals’ characteristics. Furthermore, Gerard et al. (2020) apply the truncation argument

of Horowitz and Manski (1995) to regression discontinuity designs with a manipulated running

variable, which necessarily involve conditioning on a covariate.

In this paper, I propose a novel, nonparametric estimator of truncated expectations defined

conditionally on covariates. As in the above examples, I consider setups where the outcome

variable needs to be truncated above or below certain quantiles of its conditional distribution.

To simplify the exposition, I focus on one-sided truncation. I consider a nonparametric setting

with a continuous outcome variable, denoted by Y , and a vector of continuous covariates,

denoted by X.1 For a quantile level η ∈ (0, 1) and x in the support of X, let Q(η, x) be the

conditional η-quantile of Y given X = x. My aim is to nonparametrically estimate the following

function:

m(η, x) = E[Y |Y ≤ Q(η,X), X = x]. (1)

I refer to η in the above definition as the truncation quantile level. It might be chosen by

the analyst, in which case it is a fixed, known number, but in some applications it has to be

estimated from the data. My setting is nonparametric, meaning that I do not impose any

1If the covariates take on only a small number of distinct values, then the truncated conditional expectation
function can be estimated using sample truncated means binned by covariate values.
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parametric restrictions on the joint distribution of (X, Y ). In particular, the functions m(η, x)

and Q(η, x) can be of any form, subject only to mild smoothness restrictions.

In this estimation problem, the function Q(η, · ) is a nuisance parameter. If it was known,

then based on a sample {(Xi, Yi)}ni=1 from the distribution of (X, Y ), one could estimate m(η, x)

using standard nonparametric regression techniques, e.g., kernel estimators, applied to the

sample restricted to observations with Yi ≤ Q(η,Xi). Alternatively, motivated by the equivalent

representation of the estimand as:

m(η, x) =
1

η
E[Y 1(Y ≤ Q(η,X))|X = x], (2)

one could run a nonparametric regression with 1
η
Yi1(Yi ≤ Q(η,Xi)) as the outcome variable.

Feasible versions of these two estimators, however, require estimating the function Q(η, · ) in

the first stage. This additional estimation step affects the properties of the resulting estimators

in a potentially complicated manner.

In order to avoid the transmission of the first-stage estimation error to the final estimator,

I propose a modification of the latter approach, which utilizes a conditional moment that is

Neyman-orthogonal to the nuisance function Q(η, · ). Specifically, my estimation approach is

based on the following representation of the estimand:

m(η, x) =
1

η
E[Y 1(Y ≤ Q(η,X))−Q(η,X)(1(Y ≤ Q(η,X))− η)|X = x]. (3)

Compared to (2), the conditional moment in (3) contains an additional term, which, however,

is mean-zero conditional on X.2 Its inclusion renders the conditional moment in (3) insensitive

to small perturbations of Q(η, · ) in the following sense. For the quantile level η and q ∈ R, let

ψ(η, q) =
1

η

[
Y 1(Y ≤ q)− q(1(Y ≤ q)− η)

]
. (4)

Equation (3) can be expressed as m(η, x) = E[ψ(η,Q(η,X))|X = x]. This expression is in-

sensitive to small perturbations of the conditional quantile function because the derivative of

E[ψ(η, q)|X = x] with respect to q evaluated at the true conditional quantile Q(η, x) is zero,

∂

∂q
E[ψ(η, q)|X]|q=Q(η,X) = 0, a.s. (5)

Such orthogonal, or immunized, conditional moments feature prominently in the modern liter-

ature in setups where a nuisance parameter has to be estimated in the first stage (e.g. Cher-

nozhukov et al., 2015; Belloni et al., 2017). In this literature, it is well understood that the

orthogonality property immunizes the estimator against the first-stage estimation error.

2In fact, the conditional moment in (3) is the quantity of interest when the outcome variable has mass points
but, as argued above, there are reasons to consider this formula even for a continuous outcome variable.

3



Based on the orthogonal conditional moment in (3), I construct a two-stage estimator using

local linear modeling methods (see e.g. Fan and Gijbels, 1996). In the first stage, I estimate

the local linear approximation of the function Q(η, · ). In the second stage, I run a local

linear regression with a generated outcome variable corresponding to the expression under the

conditional expectation in (3). The estimator is computationally easy to implement, and I show

that the tuning parameters (bandwidths in the two local linear regressions) can be selected as

in the standard nonparametric regression.

This paper contains two main theoretical results. First, I show that my estimator is asymp-

totically equivalent to the corresponding oracle estimator using the true function Q(η, · ). Given

this result, the asymptotic distribution follows from the standard theory of local linear esti-

mation. The proposed estimator has good bias properties, and it is straightforward to adapt

existing inference methods to do inference on truncated conditional expectation functions. Un-

like the existing approaches, my estimator is well-suited for estimation at the boundary of

the support of the conditioning variables. Second, I study the asymptotic properties of my

estimator when the truncation quantile level is estimated from the data. Under a high-level as-

sumption on η̂, I derive an expansion of the estimator of the truncated conditional expectation

function evaluated at η̂ about the estimator evaluated at the true value η. This expansion can

be used on a case-by-case basis to derive the asymptotic distribution of the estimator evaluated

at η̂ for specific estimators η̂.

I apply my estimator in three empirical settings. First, I estimate bounds on the local

average treatment effect in regression discontinuity designs with a manipulated running variable

(Gerard et al., 2020). Second, I estimate bounds on the conditional wage effects of a job training

program (Lee, 2009). Third, I estimate the expected shortfall for a market index conditional

on past losses. The bounds in the first two examples involve truncated conditional expectation

functions with truncation quantile levels that need to be estimated from the data. In the last

example, the truncation quantile level is chosen by the analyst, hence known.

Related literature. My two-stage procedure is similar to that of Linton and Xiao (2013).

In the first stage, they estimate Q(η,Xi) in a local polynomial quantile regression at Xi. In

the second stage, they apply the Nadaraya-Watson estimator to the data with a generated

outcome variable corresponding to the conditional moment in (3). My analysis, however, is

different in three aspects. First, I employ a local linear estimator in the second stage, which

is well-known to have favorable bias properties compared to the Nadaraya-Watson estimator.3

Second, I estimate the function Q(η, · ) based on a single local linear quantile regression. If one

is interested in m(η, x) for a specific covariate value, my approach is much simpler to implement

than using a separate local polynomial quantile regression for each data point included in the

second-stage regression. Third, and most importantly, the analysis of Linton and Xiao (2013)

3Linton and Xiao (2013) mention the possibility of running a higher-order local polynomial regression with
1
ηYi1(Yi ≤ Q̂(η,Xi)) as the outcome variable, but they did not investigate it further.
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applies specifically to setups where the conditional variance of the outcome variable is infinite.

While the presence of an infinite variance generally complicates the derivation of the asymptotic

distribution, which is a non-normal, stable law, it makes some aspects of the analysis easier.

Specifically, Linton and Xiao (2013) exploit the fact that under their assumptions the first-stage

local polynomial quantile estimator converges faster than the respective oracle estimator. Their

proof does not directly apply to models with finite variance of the outcome variable considered

in this paper, where the first-stage and the oracle estimators have the same rates of convergence.

Other nonparametric estimators of truncated conditional expectation functions have been

developed by Scaillet (2005), Cai and Wang (2008), and Kato (2012), who construct their

estimators based on first-stage estimators of the conditional cumulative distribution function

(c.d.f.) of the outcome variable. This estimation strategy, however, is not well-suited for esti-

mation at boundary points of the support of the conditioning variables. The Nadaraya-Watson

estimator of the conditional c.d.f.,4 employed by Scaillet (2005), exhibits the so-called boundary

effects in that its bias is of larger order at the boundary than in the interior. The bias properties

of the Nadaraya-Watson can be improved upon using the local linear estimator but it is not

guaranteed to produce a proper c.d.f., as the resulting function can be nonmonotone and is not

restricted to lie between 0 and 1. For that reason, Cai and Wang (2008) and Kato (2012) use

the weighted Nadaraya-Watson estimator, which, for interior points, is asymptotically equiva-

lent to the local linear estimator but it yields a proper c.d.f. The weighted Nadaraya-Watson

estimator, however, is not defined for boundary points.

Various ways of estimating truncated conditional expectation functions have been also pro-

posed in parametric settings. In early work, Koenker and Bassett (1978), Ruppert and Carroll

(1980), and Jureckova (1984) consider generalizations of truncated means to linear models. In

the first stage, they estimate quantile regressions, and in the second stage they run a regression

on a sample truncated according to the first-stage estimates. Conceptually related to my paper

is the work of Barendse (2020), who also runs a regression with a generated outcome variable

based on the orthogonal moment. He additionally considers efficient weighting, analogous to,

possibly nonlinear, weighted least squares. Dimitriadis and Bayer (2019) develop a joint quan-

tile and expected shortfall estimation framework, and find estimators that can be more efficient

than the simple two-stage procedure described above. The efficiency gains of Dimitriadis and

Bayer (2019) and Barendse (2020), however, are specific to parametric models, and they do not

carry over to the nonparametric setting.

The cited papers—developed for the conditional expected shortfall estimation or robust

estimation—assume that the truncation quantile level is chosen by the analyst. A setting with

estimated conditional truncation quantile levels and possibly continuous covariates is studied by

Semenova (2020).5 She exploits a moment similar to (3), which is additionally made orthogonal

to the truncation quantile level (using a specific conditional moment defining the truncation

4Estimation of a conditional c.d.f. is a regression problem with outcome variables of the form 1(Yi ≤ y).
5See also Shorack (1974) and Lee (2009) for truncated means with an estimated trimming proportions.
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quantile level). Her focus, however, is on integrated truncated conditional expectations, and

she does not provide conditional estimates.

Outline of the paper. The remainder of this paper is structured as follows. In Section 2,

I formally introduce the estimator. I study its asymptotic properties in Section 3. In Section 4,

I discuss inference, estimation with an estimated truncation quantile level, and related ap-

proaches. I present a Monte Carlo study in Section 5. In Section 6, I discuss three applications:

regression discontinuity designs with a manipulated running variable, estimation of wage effects

of a job training program, and conditional expected shortfall estimation. Section 7 concludes.

2 Estimator

In this section, I formally introduce my proposed estimator. To simplify the exposition, in the

main text I consider a univariate X. A natural extension for the multivariate case is presented

in Appendix A.1. I construct a two-stage estimator. First, I estimate the conditional η-quantile

function, Q(η, · ). Next, I use this first-step estimate to construct a generated outcome variable

corresponding to the orthogonal conditional moment in (3). Since the final estimator requires

an estimate of the function Q(η, · ) only for covariate values close to the evaluation point x0,

I estimate a local approximation of the function Q(η, · ).
In the first stage, the level and slope of the function Q(η, · ) at x0 are estimated in a local

linear quantile regression as

(q̂0(η, x0; a), q̂1(η, x0; a))T = arg min
β0,β1

n∑
i=1

ka(Xi − x0)ρη(Yi − β0 − β1(Xi − x0)), (6)

where ρη(v) = v(η−1(v ≤ 0)) is the ‘check’ function, k(·) is a kernel function, a is a bandwidth,

and ka(v) = k(v/a)/a. Using these estimates, I estimate Q(η, x) as

Q̂ll(η, x;x0, a) = q̂0(η, x0; a) + q̂1(η, x0; a)(x− x0). (7)

For a given η, Q̂ll(η, x;x0, a) is a linear (random) function in x indexed by x0 and a.

In the second stage, I run a local linear regression with ψi(η, Q̂
ll(η,Xi;x0, a)) as the outcome

variable, where

ψi(η, q) =
1

η

[
Yi1(Yi ≤ q)− q(1(Yi ≤ q)− η)

]
. (8)

My proposed estimator is given by

m̂(η, x0; a, h) = eT1 arg min
β0,β1

n∑
i=1

kh(Xi − x0)
(
ψi(η, Q̂

ll(η,Xi;x0, a))− β0 − β1(Xi − x0)
)2
, (9)

where h is another bandwidth, which can be different from the first-stage bandwidth a.
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3 Asymptotic properties

In this section, I introduce assumptions and study the asymptotic properties of the proposed

estimator. I use the following notation. I put ∂kxm(η, x0) = ∂k

∂xk
m(η, x)|x=x0 and ∂kxQ(η, x0) =

∂k

∂xk
Q(η, x)|x=x0 . For positive sequences bn and cn, I write bn ≺ cn if bn/cn → 0, and bn � cn if

C1bn ≤ cn ≤ C2bn for some positive constants C1 and C2.

3.1 Assumptions

As the canonical case, I consider estimation based on independent and identically distributed

(i.i.d.) observations. This modeling assumption is appropriate for many microeconometric

applications. The asymptotic results of this paper can also be derived for weakly dependent,

time series data satisfying an α-mixing condition. This condition is commonly assumed in the

finance literature, e.g., in conditional expected shortfall estimation problems. The assumptions

necessary in the time series context, however, have a more involved form than in the i.i.d.

setting. I postpone them to Appendix A.3.

Assumption 1.

(a) {(Xi, Yi)}ni=1 are continuous, i.i.d. random variables.

(b) η ∈ (0, 1).

I follow the classic literature on local polynomial modeling methods and assume that the

covariate is continuous. The density of X is denoted by fX(x), and its support is denoted

by X . The conditional distribution function of Y given X is denoted by FY |X(y|x), and the

corresponding conditional density by fY |X(y|x).

Subsequent assumptions involve smoothness requirements for the functions Q(η, · ) and

m(η, · ). I adopt the following convention. For a point on the left (right) boundary of X ,

I define the derivative with respect to the covariate value as the right (left) derivative at that

point.

Assumption 2.

(a) ∂2xQ(η, x) is continuous in x.

(b) fX(x) is continuous and positive.

(c) fY |X(y|x) is continuous in x and y on {(x, y) : x ∈ X and y ∈ [Q(η, x)− ε, Q(η, x) + ε]}
for some ε > 0. Moreover, fY |X(Q(η, x)|x) > 0.

Assumption 2 comprises standard conditions for the asymptotic analysis of the local linear

quantile estimator. A continuous second-order derivative of Q(η, x) w.r.t. x is required to

control the bias introduced by approximating the possibly nonlinear function Q(η, · ) with

its first-order Taylor expansion. The restrictions on the density fX(x) ensure that there are

observations around the estimation point. The restrictions on the conditional density fY |X(y|x)

ensure that the conditional η-quantile function can be precisely estimated.
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Assumption 3.

(a) ∂2xm(η, x) is continuous in x.

(b) Var(Y |X = x, Y ≤ Q(η, x)) is finite, positive, and continuous in x.

(c) E[|Y |2+ξ1(Y ≤ Q(η,X))|X = x] is bounded uniformly in x for some ξ > 0.

Assumption 3 is a natural adaptation of the standard conditions for the local linear estima-

tor in the nonparametric mean regression to the problem of estimating truncated conditional

expectation functions. Even if the function Q(η, · ) was known, a continuous second-order

derivative of m(η, x) w.r.t. x would be required to control the bias introduced by approximat-

ing the function m(η, · ) with its first-order Taylor expansion. Parts (b) and (c) are needed to

obtain asymptotic normality.

Assumption 4.

(a) The kernel k is a bounded and symmetric density function with compact support, say

[−1, 1].

(b) As n→∞, h→ 0, a→ 0, nh→∞, and na→∞.

The restrictions on the kernel are standard. The requirements on the bandwidths are

necessary for ensuring consistency.

3.2 Asymptotic distribution

In this section, I analyze the asymptotic properties of my estimator. The key result is that the

feasible estimator m̂ is asymptotically equivalent to the oracle estimator employing the true

function Q(η, · ), which is given by

m̃(η, x0;h) = eT1 arg min
β0,β1

n∑
i=1

kh(Xi − x0)(ψi(η,Q(η,Xi))− β0 − β1(Xi − x0))2.

This asymptotic equivalence result is stated in Theorem 1.

Theorem 1. Suppose that Assumptions 1, 2, and 4 hold. Then

R(η, x0; a, h) ≡ m̂(η, x0; a, h)− m̃(η, x0;h) = Op(wn(nh)−1/2 + w2
n),

where wn = a2 + h2 + (a + h)(a3n)−1/2. In particular, if a � h, then R(η, x0; a, h) = Op(h
4 +

(nh)−1).

The remainder R(η, x0; a, h) is driven by the estimation error from the first stage on the

interval X (x0, h) ≡ [x0−h, x0 +h]∩X , which is relevant for the second-stage estimator. There

are two sources of this estimation error. First, the function Q(η, · ) is replaced with its local

linear approximation, which results in an error of order O(h2). Second, the intercept and
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slope of this approximation are estimated at rates Op(a
2 + (an)−1/2) and Op(a + (a3n)−1/2),

respectively.6 As a result, the estimated conditional quantile function satisfies

sup
x∈X (x0,h)

|Q̂ll(η, x;x0, a)−Q(η, x)| = Op(wn). (10)

If h(nh)−1/3 ≺ a, then wn → 0, and R(η, x0; a, h) is of order smaller than Op(wn). This low

sensitivity to the first-stage estimation error is obtained by construction, owing to the use of

an orthogonal moment.

Theorem 1 holds regardless of whether the variance of the outcome variable is finite or infi-

nite. If Assumption 3 holds in addition to the assumptions of Theorem 1, then the asymptotic

normal distribution follows from the standard theory of local linear estimation (e.g. Li and

Racine, 2006). If the variance of the outcome variable is infinite, then the asymptotic distri-

bution can be obtained under alternative assumptions following the steps of Linton and Xiao

(2013). I focus on the former case.

The asymptotic distribution is presented in Corollary 1. It involves typical kernel constants,

which differ depending on whether x0 is an interior or a boundary point. If x0 lies in the interior

of X , I put µ(x0) =
∫
v2k(v)dv and κ(x0) =

∫
k(v)2dv. If x0 lies on the boundary of X , I put

µ(x0) = (µ̄2
2 − µ̄1µ̄3)/(µ̄2µ̄0 − µ̄2

1) and κ(x0) =
∫∞
0

(k(v)(µ̄1v − µ̄2))
2dv/(µ̄2µ̄0 − µ̄2

1)
2, where

µ̄j =
∫∞
0
vjk(v)dv.

Corollary 1. Suppose that Assumptions 1–4 hold, and h(nh)−1/6 ≺ a ≺
√
h; for example,

a = h. Then

√
nh
(
m̂(η, x0; a, h)−m(η, x0)− B(η, x0, h)

) d−→ N (0, V (η, x0)),

where

B(η, x0, h) =
1

2
µ(x0)∂

2
xm(η, x0)h

2 + op(h
2),

V (η, x0) =
κ(x0)

ηfX(x0)

{
Var(Y |Y ≤ Q(η, x0), X = x0) + (1− η)

(
Q(η, x0)−m(η, x0)

)2 }
.

The additional conditions imposed on the bandwidths ensure that the remainderR(η, x0; a, h)

is of order op(h
2 + (nh)−1/2), and as such, it does not affect the first-order asymptotic distri-

bution of m̂. These conditions admit certain degrees of both under- and oversmoothing in

the first stage relative to the second stage. For example, if h � n−1/5, then I require that

n−1/3 ≺ a ≺ n−1/10. Subject to these restrictions, the choice of the first-stage bandwidth does

not affect the first-order asymptotic distribution. In practice, the two bandwidths might be set

equal.

As in the standard nonparametric regression, the leading bias is proportional to the second

6In fact, these are the only properties of the first-stage estimator required in the proof of Theorem 1.
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derivative of the curve under estimation. The variance is fully analogous to the variance of the

unconditional truncated mean.

4 Discussion

In this section, I discuss statistical inference based on the asymptotic result in Corollary 1,

estimation with an estimated quantile level, and related approaches.

4.1 Inference

The asymptotic distribution obtained in Corollary 1 forms the basis for conducting statistical

inference. As in the standard nonparametric regression, constructing a confidence interval

(CI) requires estimating the variance and accounting for the bias. The asymptotic variance

V (η, x0) can be consistently estimated using the Eicker-Huber-White (EHW) estimator based

on the residuals from the second stage. Let ŝe(h) denote the resulting estimate of the standard

error. The asymptotic bias can be handled in any of the three following ways adapted from the

nonparametric regression literature.

The first, classic approach is called undersmoothing (US). It relies on choosing a ‘small’

bandwidth, which ensures that the bias is negligible. If h ≺ n−1/5, or equivalently nh5 → 0,

then the bias is of smaller order than the standard error. As a result, an asymptotically valid

1− α CI can be formed as

CIUSα = [m̂(η, x0;h, h)± z1−α/2 · ŝe(h)], (11)

where zu is the u-quantile of the standard normal distribution. The two further approaches

allow for bandwidths of order n−1/5. This case is relevant as it covers, i.a., the bandwidth

optimal in terms of the asymptotic mean squared error.

The second approach is analogous to the robust bias corrections proposed by Calonico et al.

(2014). It involves subtracting an estimate of the leading bias term and accounting for the

additional variation in the bias-corrected estimator when forming a CI. The bias correction

term can be constructed using the estimator of ∂2xm(η, x0) proposed in Section A.2. The CI

takes the form as in (11) but with a bias-corrected estimator and an adjusted standard error.

The third approach follows Armstrong and Kolesár (2020), who propose ‘honest’ CIs that

account for the largest possible bias under restrictions on the smoothness of the function under

estimation. Suppose that |∂2xm(η, x0)| is bounded by a constant M . Then the leading bias term

is bounded in absolute value by 1
2
µ(x0)Mh2. It follows from Armstrong and Kolesár (2020)

that an asymptotically valid 1− α confidence interval can be formed as

CIα = [m̂(η, x0;h, h)± cv1−α(r̂(h)) · ŝe(h)], (12)
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where r̂(h) = 1
2
µ(x0)Mh2/ŝe(h) and cv1−α(t) is the 1− α quantile of the folded normal distri-

bution |N (t, 1)|.7 One can also account for the maximal bias of the oracle estimator conditional

on X. The bandwidth can be chosen so as to minimize the worst-case mean squared error or

the length of the CI. Implementation of bandwidth selectors and of the CIs requires imposing

a bound on ∂2xm(η, x0). See Armstrong and Kolesár (2020) and Noack and Rothe (2020) for

discussions of the choice of the smoothness constant in the standard nonparametric regression.

4.2 Estimated truncation quantile level

In some applications the truncation quantile level of interest has to be estimated from the data.

In this section, I study the properties of my estimator evaluated at an estimated truncation

quantile level. Specifically, under a high-level assumption on the estimator η̂ of η, I provide an

expansion of the estimator m̂(η̂, x0) about the estimator m̂(η, x0). This result can be used on

a case-by-case basis to derive the asymptotic distribution of m̂(η̂, x0) for specific estimators η̂.

I analyze two such examples in Section 6.

To keep the exposition transparent, I restrict the analysis to bandwidths such that a � h. In

comparison to Theorem 1, I impose two further assumptions. First, I require that the estimator

η̂ converges at a rate not slower than the estimator m̂(η, x0; a, h) does.

Assumption 5. There exists a deterministic sequence ηn such that ηn−η = O(h2) and η̂−ηn =

Op

(
(nh)−1/2

)
.

Second, I slightly strengthen Assumption 2(a), which is needed to establish the bias prop-

erties of the first-stage local linear quantile estimator for quantile levels close to η.

Assumption 6. ∂2xQ(u, x) is continuous in u and x on [η − ε, η + ε]×X for some ε > 0.

Theorem 2 provides an expansion of the estimator with an estimated truncation quantile

level about the estimator using the true quantile level.

Theorem 2. Suppose that Assumptions 1–6 hold and a � h. Then

m̂(η̂, x0; a, h) = m̃(η, x0, h) + C(η, x0)(η̂ − η) +Op(h
4 + (nh)−1),

where C(η, x0) = ∂ηm(η, x0) = 1
η
(Q(η, x0)−m(η, x0)).

The coefficient on (η̂ − η) in the above expansion is equal to the derivative of m(η, x0)

with respect to the truncation quantile level, which is in line with Lemma 1 of Shorack (1974)

and Proposition 3 of Lee (2009), who study the unconditional truncated mean with random

trimming proportions. In Theorem 2 it is essential that η < 1, assumed in Assumption 1(b).

Otherwise, if Y has unbounded support, the derivative ∂ηm(η, x0) is infinite, and the expansion

in Theorem 2 is not valid.
7I do not discuss coverage properties uniform in the data generating processes, which would require ensuring

that the remainder in Theorem 1 is uniformly small. This is conceptually similar to the inference procedure for
fuzzy regression discontinuity designs in Appendix B.4 of Armstrong and Kolesár (2020).
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4.3 Related approaches

Local linear methods can be used to construct two further estimators, which have not been

studied in the literature so far. I discuss them briefly in this section, and I provide a detailed

asymptotic analysis in Appendix B. I argue that the first one has an undesirable property in

that it is not translation invariant. The second one has good asymptotic properties only in one

special case when the same bandwidth is used in both stages.

The non-orthogonal conditional moment (NM) in (2) motivates running a regression without

the second term included in the generated outcome variable ψi(η, Q̂
ll(η,Xi;x0, a)). Let

m̂NM(η, x0; a, h) = eT1 arg min
β0,β1

n∑
i=1

kh(Xi−x0)
(1

η
Yi1(Yi ≤ Q̂ll(η,Xi;x0, a))−β0−β1(Xi−x0)

)2
.

(13)

Under assumptions, this estimator is consistent and asymptotically normal. However, it has

one unappealing property—it is not translation invariant. Adding a constant to all outcomes

and subtracting it from the result can yield a different estimate than applying the estimator to

the original data.8 The estimator m̂ is free of this deficiency.

Another estimator, motivated by the definition of the estimand in (1), can be obtained by

running a local linear regression on a truncated sample (TS) restricted to observations that fall

below the estimated conditional η-quantile function. Let

m̂TS(η, x0; a, h) = eT1 arg min
β0,β1

n∑
i=1

kh(Xi − x0)
(
Yi − β0 − β1(Xi − x0)

)2
1(Yi ≤ Q̂ll(η,Xi;x0, a)).

(14)

This estimator is translation invariant. Unlike in the case of m̂, the asymptotic distribution of

m̂TS explicitly depends on the first-stage bandwidth, and in general it involves more complicated

bias and variance formulas than those in Corollary 1. Only in the special case when the

bandwidths in both stages are equal is m̂TS asymptotically equivalent to the oracle estimator

m̃, and hence it has the asymptotic distribution given in Corollary 1. However, for boundary

points, the remainder in the Bahadur representation of m̂TS(η, x0;h, h) is in general of larger

order than Op(h
4+(nh)−1) obtained in Theorem 1 for bandwidths converging at the same rates.

The estimator based on the truncated sample with equal bandwidths corresponds most

closely to the unconditional truncated mean, where the same (full) sample is used to first

estimate the quantile and then to calculate the truncated mean. However, I advocate using

the estimator m̂, as it makes the parallel between estimation of conditional expectation func-

tions and truncated conditional expectation functions explicit.9 The very small remainder in

Theorem 1 provides a strong theoretical justification for conducting inference as if the oracle

estimator was available.

8This difference is asymptotically very small in the case when the same bandwidth is used in both stages,
but even then, the estimator is not numerically translation invariant.

9Standard inference methods cannot be simply applied to the truncated sample.
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I remark that the two-stage procedure yielding m̂TS with equal bandwidths provides an intu-

itive decomposition of the asymptotic variance V (η, x0) defined in Corollary 1. The asymptotic

variance of the infeasible local linear estimator using observations with Yi ≤ Q(η,Xi) equals
κ(x0)
ηfX(x0)

Var(Y |Y ≤ Q(η, x0), X = x0), which is the first component of V (η, x0). The second,

strictly positive, component of V (η, x0) is due to the first-step estimation.10

5 Monte Carlo study

In this section, I present simulation evidence for two claims. First, I show that the feasible

estimator m̂ is close to the oracle estimator m̃ in terms of the mean squared difference. Second,

I show that inference based on m̂ performs almost identically as inference based on the oracle

estimator m̃. In this simulation study, I use the third approach discussed in Section 4.1,

which exploits a bound on ∂2xm(η, x).11 The qualitative conclusions about the very similar

performance of the feasible and oracle estimators are the same for undersmoothing and robust

bias corrections.

I generate data from a location-scale model of the form

Y = m(X) + sd(X)ε, (15)

where X is uniformly distributed on [−1, 1] and ε ∼ N (0, 1). I consider three specifications

for the conditional expectation function, which were used by Armstrong and Kolesár (2020) in

their Monte Carlo study comparing different inference methods. Let

m1(x) = x2 − 2s(|x| − 0.25),

m2(x) = x2 − 2s(|x| − 0.2) + 2s(|x| − 0.5)− 2s(|x| − 0.65),

m3(x) = (x+ 1)2 − 2s(x+ 0.2) + 2s(x− 0.2)− 2s(x− 0.4) + 2s(x− 0.7)− 0.92,

where s(x) = max{x, 0}2 is the square of the plus function. These functions are depicted in

Figure 1. Their second derivatives are bounded in absolute value by 2. I consider homoskedas-

tic and hetersokedastic residuals, induced by functions sd1(x) = 0.5 and sd2(x) = 0.5 + x,

respectively.

Due to normality of the residuals, the truncated conditional expectation functions have a

simple, closed-form expression. It holds that

m(η, x) = m(x)− φ(qη)

η
sd(x), (16)

10An analogous decomposition holds for the unconditional truncated mean. A similar point is also made by
Dimitriadis and Bayer (2019, Remark 2.9) in a parametric model.

11In simulations, I account for the exact worst-case bias of the oracle estimator conditional on X, rather than
only for the leading term.
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Figure 1: Conditional expectation functions mj(x).

where φ(·) is the density and qη is the η-quantile of the standard normal distribution, respec-

tively. With homoskedastic residuals, the truncated conditional expectation functions have

the same shape as the respective conditional expectation functions but are shifted downwards.

With heteroskedastic residuals, the slopes change as well, but this type of heteroskedasticity

does not affect the curvature. Figure 2 illustrates that for η = 0.8 and m(x) = m1(x). Other

cases are analogous.

m(x)
m(η, x)

Q(η, x)

-0.5
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1.0

-1.0 -0.5 0.0 0.5 1.0 1.5

x
(a) Homoskedastic residuals, sd(x) = 0.5.

m(x)

m(η, x)

Q(η, x)

-0.5
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0.5

1.0

-1.0 -0.5 0.0 0.5 1.0 1.5

x
(b) Hetersokedastic residuals, sd(x) = 0.5 ·(1+x).

Figure 2: Truncated conditional expectation functions for m(x) = m1(x) and η = 0.8.
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Table 1: RMSE and root mean squared distance to the oracle.

RMSE Dist. to the oracle
Design for mj: 1 2 3 1 2 3

Homoskedastic errors

η = 0.2
Feasible m̂ 5.273 5.222 4.965 0.563 0.569 0.575
Oracle m̃ 5.044 5.002 5.146 - - -

η = 0.5
Feasible m̂ 4.202 4.174 4.041 0.277 0.280 0.282
Oracle m̃ 4.094 4.068 4.134 - - -

η = 0.8
Feasible m̂ 3.804 3.782 3.707 0.164 0.165 0.166
Oracle m̃ 3.742 3.721 3.759 - - -

Heteroskedastic errors

η = 0.2
Feasible m̂ 5.306 5.236 5.006 0.548 0.551 0.556
Oracle m̃ 5.095 5.032 5.177 - - -

η = 0.5
Feasible m̂ 4.230 4.192 4.070 0.271 0.271 0.273
Oracle m̃ 4.126 4.091 4.157 - - -

η = 0.8
Feasible m̂ 3.825 3.800 3.731 0.161 0.160 0.161
Oracle m̃ 3.766 3.742 3.782 - - -

Notes: All values are multiplied by 100. The estimators are evaluated with the
RMSE-optimal bandwidth for the oracle estimator based on the true smooth-
ness constant. The sample size is n = 1, 000, and the number of simulations
is S = 10, 000.

Table 2: Coverage, average bandwidth, and average length of the 95% CI.

Coverage Bandwidth CI length
Design for mj: 1 2 3 1 2 3 1 2 3

Homoskedastic errors

η = 0.2
Oracle m̃ 92.1 92.4 96.1 0.373 0.372 0.369 0.099 0.099 0.099
Feasible m̂ 92.1 92.3 96.1 0.366 0.368 0.374 0.100 0.100 0.098

η = 0.5
Oracle m̃ 93.5 93.7 96.0 0.334 0.334 0.333 0.080 0.080 0.080
Feasible m̂ 93.6 93.8 95.9 0.331 0.332 0.335 0.081 0.081 0.080

η = 0.8
Oracle m̃ 94.4 94.6 95.7 0.319 0.319 0.318 0.073 0.073 0.073
Feasible m̂ 94.4 94.5 95.9 0.318 0.318 0.320 0.074 0.074 0.073

Heteroskedastic errors

η = 0.2
Oracle m̃ 92.1 92.7 96.3 0.382 0.384 0.379 0.100 0.100 0.100
Feasible m̂ 92.5 93.0 96.1 0.375 0.380 0.385 0.101 0.101 0.099

η = 0.5
Oracle m̃ 93.4 93.8 96.2 0.341 0.344 0.341 0.081 0.081 0.081
Feasible m̂ 93.6 94.0 96.0 0.337 0.342 0.344 0.081 0.081 0.080

η = 0.8
Oracle m̃ 94.4 94.6 95.8 0.325 0.328 0.326 0.074 0.074 0.074
Feasible m̂ 94.4 94.6 95.8 0.323 0.327 0.328 0.074 0.074 0.074

Notes: The estimators are evaluated with their respective RMSE-optimal bandwidths based on
the true smoothness constant. The sample size is n = 1, 000, and the number of simulations is
S = 10, 000.
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In all simulations, the sample size is n = 1, 000, and the number of replications is S = 10, 000.

I estimate truncated conditional expectation functions for x0 = 0 and three quantile levels,

η ∈ {0.2, 0.5, 0.8}. I use the triangular kernel and the EHW variance estimator.

In Table 1, I report the root mean squared error (RMSE) of the oracle estimator m̃ and the

feasible estimator m̂, as well as the root mean squared error difference between the two. The

estimators are evaluated with the RMSE-optimal bandwidth chosen for the oracle estimator

using the bandwidth selector of Armstrong and Kolesár (2020) employing the true smoothness

constant (M = 2). In all cases, the difference between the oracle and feasible estimators is

small compared to their mean squared errors.12 Moreover, the results are very similar in the

homoskedastic and heteroskedastic settings, which shows that the estimator adapts to different

slopes of the conditional quantile and truncated expectation functions very well.

In Table 2, I present results regarding the bandwidth choice as well as empirical coverage

and length of 95% confidence intervals. Here, I also use the true smoothness constant (M = 2).

The bandwidth selector for the feasible estimator chooses virtually the same bandwidth as

would be chosen for the oracle estimator, and the coverage is nearly identical. I note that even

for the oracle estimator, the CI based on the true smoothness constant can have coverage below

the nominal confidence level despite correctly accounting for maximal bias. The reason for that

is that although Y is conditionally normally distributed, the outcome variable ψ(η,Q(η,X)) is

not. The non-normality is more severe for lower truncation quantile levels. In Appendix D, I

discuss a rule of thumb for choosing the smoothness constant, and I show that it performs well

in this simulation setting.

6 Applications

I discuss three empirical settings in which my estimator can be applied: (i) sharp regression

discontinuity designs with a manipulated running variable, (ii) program evaluation under sample

selection, and (iii) conditional expected shortfall estimation. The first two involve estimated

truncation quantile levels. In the third one, the truncation quantile level is known.

6.1 Sharp RD designs with manipulation

Gerard et al. (2020) study regression discontinuity (RD) designs with a manipulated running

variable. They develop a complex estimation approach applicable to fuzzy RD designs, which

encompass sharp RD designs as a special case. Their inference is based on a bootstrap proce-

dure. I study a simpler approach tailored specifically to sharp RD designs, which allows me to

derive the asymptotic distribution of the estimator of the bounds.

12This qualitative conclusion remains the same when using the true constant divided or multiplied by two.
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Partial identification under manipulation. In a sharp RD design, the treatment is as-

signed and taken up if and only if a special covariate, the running variable, exceeds a fixed

cutoff value.13 If the distribution of units’ potential outcomes varies smoothly with the running

variable around the cutoff, then the (local to the cutoff) average treatment effect is identified

by the difference in average outcomes of the treated and untreated units whose realization of

the running variable is just to the right or just to the left of the cutoff, respectively. The key

identifying assumption, however, is often questionable if the running variable is not exogenously

determined.

To allow for violations of the smoothness assumption, Gerard et al. (2020) develop a frame-

work where there are two unobservable types of units: always-assigned units, for which the

realization of the running variable is always to the right of the cutoff, and hence they are as-

signed the treatment; and potentially-assigned units, whose density of the running variable is

smooth around the cutoff, and hence they satisfy the standard assumptions of an RD design.

Gerard et al. (2020) show that the average treatment effect for the subpopulation of potentially-

assigned units at the cutoff, denoted by Γ, is partially identified. Under their behavioral model,

the share of always-assigned units just to the right of the cutoff, denoted by τ , is identified by

the discontinuity in the density of the running variable at the cutoff as

τ = 1− f(x−0 )

f(x+0 )
, (17)

where x0 is the cutoff value.14 Given τ , the sharp bounds on Γ are obtained by considering the

‘extreme’ scenarios in which the always-assigned units constitute the proportion τ of the units

with the lowest or the highest outcomes among the treated. This yields the following lower and

upper bound (Gerard et al., 2020, Theorem 1)

ΓL = E[Y |X = x+0 , Y ≤ Q(1− τ, x+0 )]− E[Y |X = x−0 ], (18)

ΓU = E[Y |X = x+0 , Y ≥ Q(τ, x+0 )]− E[Y |X = x−0 ]. (19)

Estimation and inference. I discuss the main ingredients of the bounds estimator and its

asymptotic properties. The details are given in Appendix C.1. The bounds ΓL and ΓU involve

truncated conditional expectation functions, which I estimate using the estimator m̂ developed

in this paper.15 Since τ is the proportion of truncated data, the quantile level η in the previous

sections corresponds to 1 − τ , i.e. η is the proportion of potentially-assigned units just to the

right of the cutoff. The first step is to estimate τ . The density limits can be estimated using

estimators such as the linear smoother of the histogram (Cheng, 1997; McCrary, 2008), the

13Whether the treatment is assigned if the running variable falls below or above the cutoff is just a normal-
ization.

14For a generic function g(·), I put g(x+0 ) = limx→x+
0
g(x) and g(x−0 ) = limx→x−

0
g(x).

15Estimation with truncation from below can be performed using the procedure developed for estimation with
truncation from above by taking the negative of the estimator applied to the data {Xi,−Yi}ni=1.
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linear smoother of the empirical density function (Jones, 1993; Lejeune and Sarda, 1992), or

the local quadratic smoother of the empirical distribution function of (Cattaneo et al., 2020).

Under regularity conditions, the resulting estimator of the truncation quantile level, η̂ =

1 − τ̂ , satisfies the high-level assumption of Theorem 2. Moreover, since η̂ depends only on

the running variable, it is conditionally uncorrelated with the estimators of the truncated

conditional expectations with known η, which simplifies the asymptotic variance formula. The

conditional expectation just to the left of the cutoff, E[Y |X = x−0 ], can be estimated using

a standard local linear estimator. The estimators of the bounds have an asymptotically normal

distribution, which can be used to form confidence intervals.

Empirical application. I evaluate the procedure that I propose by implementing it for the

empirical application of Gerard et al. (2020) (the authors kindly implemented my procedure on

their data for comparison purposes). They investigate the effect of unemployment insurance

(UI) benefits on the formal reemployment in Brazil. They exploit the rule that a worker

involuntarily laid off from a private-sector firm is eligible for the UI benefit only if there was

at least 16 months between the date of her layoff and the date of the last layoff after which

she applied for and drew UI benefits. This rule creates a discontinuity in the eligibility for

UI benefits, which is reflected in a 70pp increase in the actual take-up of UI benefits. In the

following, I focus on an intention-to-treat analysis, where the eligibility for the UI benefit is the

treatment, and the outcome of interest is the duration without a formal job after the layoff.

(a) Frequency. (b) Duration without a formal job.

Figure 3: Graphical evidence for the intention-to-treat analysis. The dots represent the fre-
quency (left panel) and the average duration of unemployment censored at 24 months (right
panel) by day. The figure is based on 169,575 observations. Source: Gerard et al. (2020).

Despite the 16-month rule being rather arbitrary, Gerard et al. (2020) point out the following

ways in which violations of the standard RD assumptions may arise in this setup. Some workers

may provoke their layoffs or ask their employers to report their quit as involuntary once they

become eligible for a UI benefit. Other workers may have managed to delay their layoff to
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a date when they were eligible for the UI benefit. All theses workers are always-assigned units

in the manipulation framework outlined in the previous subsection.

In Figure 3, I reproduce the graphical evidence for this RD design. The running variable is

the difference in days between the layoff date and the eligibility date, so that the cutoff is at 0.

In the left panel, I present the density of the running variable. The share of always-assigned

units is estimate to be 6.4%, which is relatively well separated from 0. This is essential for

the good quality of the normal approximation of the asymptotic distribution of τ̂ . In the right

panel, the dots represent the average outcome by day (of all observations). There is a marked

jump in the mean duration without a formal job at the cutoff. I note that a substantial share,

about 12–14%, of duration outcomes is censored at 24 months. This, however, does not require

any adjustment in my estimation and inference procedure (see Appendix E).

Following Gerard et al. (2020), I conduct two types of analysis. First, I estimate bounds

on Γ using an estimated proportion of the always-assigned units to the right of the cutoff.

Second, I conduct a sensitivity analysis, where I report bounds for different levels of potential

manipulation. I report my results along with the original estimates of Gerard et al. (2020).

Their estimator is based on a local linear estimator of the conditional c.d.f., and they conduct

inference via bootstrap. All estimators use a 30-day bandwidth, and the confidence intervals

are formally justified by undersmoothing.

In Table 3, I present estimates of the bounds and the 95% confidence intervals for Γ with

estimated τ . As a reference point, the point estimate ignoring the possibility of manipulation

indicates that the eligibility for an UI benefit increases the duration of unemployment by about

62 days. When accounting for manipulation, however, the estimated identified set spans the

range from 31 to 81 days. In the second part of the analysis, I do inference presuming a certain

hypothetical, fixed degree of manipulation in the data. The results are presented in Figure 4.

The vertical black line marks the estimated proportion of always-assigned units just to the right

of the cutoff.

Table 3: Estimated effects of UI benefits on the duration without a formal job in days.

Results of Gerard et al. (2020) My results
Estimate 95% CI Estimate 95% CI

Share of always-assigned workers 0.064 [0.038; 0.089]

LATE: Ignoring manipulation 61.9 [55.7; 68.1] 61.9 [55.5; 68.3]
LATE: Bounds for Γ [31.4; 80.9] [18.9; 89.6] [31.4; 80.9] [19.4; 89.5]

Note: There are 102,791 observations in the 30-day estimation window.

The results are nearly identical when using the procedure of Gerard et al. (2020) and mine.

This similarity, however, is specific to this dataset, where the conditional quantile functions at

the truncation quantile levels are flat. I show in Appendix B.3 that compared to my estimator,

approaches based on first-stage estimates of the conditional c.d.f. have an additional bias term

when the conditional quantile function has a nonzero slope.
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Figure 4: Fixed-manipulation inference. The horizontal axis displays the hypothetical propor-
tion of potentially-assigned workers. The solid lines present the estimates of the bounds and
the dashed lines mark 95% confidence intervals. The figures are based on 102,791 observations.

6.2 Conditional Lee bounds

Lee (2009) studies the effect of a job training program on wage rates. In this analysis, he

uses conditional estimates to narrow down the bounds on the unconditional effect (see also

Semenova, 2020). The conditional treatment effects, however, may be of interest in their own

right.

Partial identification of the wage effect. Evaluation of the wage effect of a job training

program is complicated by the fact that a job training affects not only the wage rates but also

the employment status. As a result, individuals in the treatment and control groups are not

comparable conditional on being employed even if the treatment was random assigned. Lee

(2009) derives bounds on the wage effect for the subpopulation of always-observed individuals,

i.e. those who would work regardless of whether they obtained the treatment. In the first

step, he identifies the proportion of individuals whose employment status is affected by the

treatment status. By random assignment to the program, this proportion is given by the

difference in the employment rates in the treatment and control group. If the training program

weakly encourages to work, then the bounds on the wage rates of the always-observed in the

treatment group are obtained by considering the extreme scenarios in which the always-observed

individuals have the highest or the lowest wage rates among the employed.16 This reasoning

holds unconditionally as well as conditionally on covariates.

To state these bounds formally, let D be the treatment indicator and S the employment in-

dicator. Further, let X be some additional covariate. The conditional proportion of individuals

16If the treatment discourages from working, then the control group would need to be truncated.
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among the employed in the treatment group who are employed if and only if they are treated

is identified as

p(x) = 1− P(S = 1|D = 0, X = x)

P(S = 1|D = 1, X = x)
. (20)

The lower and upper bounds on the local average treatment effect on wage rates are given by

(Lee, 2009, Proposition 1b)

∆L(x) = E[Y |D = 1, S = 1, Y ≤ QDS(1− p(x), x), X = x]− E[Y |D = 0, S = 1, X = x], (21)

∆U(x) = E[Y |D = 1, S = 1, Y ≥ QDS(p(x), x), X = x]− E[Y |D = 0, S = 1, X = x], (22)

where QDS(u, x) denotes the u-quantile of Y conditional on D = 1, S = 1, and X = x. Note

that p(x) is the proportion of data to be truncated conditional on X = x, so that η = 1− p(x)

in the notation from Section 2.

Lee (2009) conducts an intention-to-treat analysis, where the assignment to the training

program is the treatment itself. Chen and Flores (2015) derive bounds on the treatment effect

for the subpopulation of always-employed compliers, i.e. the individuals who comply with their

treatment assignment and would be employed whether or not they obtained the treatment.

Their bounds also involve truncated expectations. My estimator could be also applied to

estimate the conditional versions of these bounds.

Estimation and inference. I discuss the main ingredients of the bounds estimator. The

details are given in Appendix C.2. For d ∈ {0, 1}, the conditional probabilities P(S = 1|D =

d,X = x) in (20) can be estimated using a local linear estimator with Si as the outcome and

Xi as a regressor, run on the sample restricted to observations with Di = d. Under regularity

conditions, the resulting estimator η̂ = 1− p̂(x0) satisfies the high-level assumption of Theorem

2. The truncated conditional expectations in (21) and (22) can be estimated using the estimator

proposed in this paper and the conditional expectation function in the control group can be

estimated using the standard local linear estimator. Restricting the samples based on the

values of indicators Si and Di does not cause any complications for the asymptotic analysis.

The estimators of the bounds have an asymptotically normal distribution, which can be used

to form confidence intervals.

Empirical application. I evaluate the effect of the job training offered under the Job Corps

program in the United States. I use data from the National Job Corps Study conducted in mid

90s. I follow Lee (2009) closely in terms of the sample definition. The individuals who applied

to the program were followed for 4 years after random assignment. There are 3599 individuals

in the control group and 5546 in the treatment group, giving the total of 9145 observations. I

investigate the effect on wage rates 4 years after the random assignment, conditioning on the

usual weekly earnings at the most recent job reported at the baseline.

The results are presented in Figure 5. The bandwidth is selected based on smoothness
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Figure 5: Conditional Lee bounds for the Job Corps program conditional on usual weekly
earnings at baseline. The solid lines present the estimates of the bounds and the dashed lines
mark pointwise 95% confidence intervals.

constants calibrated through the procedure described in Appendix D. The point estimates

indicate that the treatment encourages taking up employment. The bounds on the treatment

effect on wage rates are relatively flat for low weakly earnings at the baseline, where they are

very similar to the unconditional estimates of Lee (2009).

6.3 Conditional expected shortfall

In finance, the expected shortfall denotes the expectation of a certain proportion of top losses.

The expected shortfall is a coherent risk measure in the sense of Artzner et al. (1999), and

it has replaced the value at risk (a quantile of the loss distribution) as the basis for capital

requirements in the financial sector under the regulatory framework Basel III (BCBS, 2016).

I apply my estimator to estimate the expected shortfall conditional on past returns.

Estimation with dependent data. I follow the literature and consider time-series data

which satisfy an α-mixing condition. This condition holds for important types of financial

times series data, such as those following autoregressive conditionally heteroskedastic (ARCH)

models (Masry and Fan, 1997). In the context of the conditional expected shortfall estimation,

such an assumption has been imposed, e.g., by Scaillet (2005), Cai and Wang (2008), Kato

(2012), and Linton and Xiao (2013). Under the assumptions stated in Appendix A.3, the

estimator m̂ with dependent data has the same asymptotic distribution as in the i.i.d. case

presented in Corollary 1. Such results are typical in nonparametric settings with dependent

data because localization by the kernel weakens the dependence of the observations used for

estimation.
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Figure 6: Conditional expected shortfall estimates at the 5% level with pointwise 95% confi-
dence intervals. The estimates are based on 1761 observations of daily returns to Dow Jones
Industrial Average index for years 2013–2019.

Empirical application. I estimate the conditional expected shortfall for the Dow Jones

Industrial Average index based on daily data from years 2013 through 2019, giving the total

of 1761 observations. The daily loss is defined as 100 times the negative of the log difference

between the closing values of the index on subsequent days.

The results are presented in Figure 6. The horizontal axis marks the loss on the previous

day, and the vertical axis the conditional expected shortfall estimates with pointwise confidence

intervals. The bandwidth is selected based on the smoothness constant calibrated through the

procedure described in Appendix D. The point estimates exhibit the so-called “volatility smile”

in that the relation of the conditional expected shortfall with past losses is U-shaped. In periods

with increased volatility—when abnormal returns appear—the predicted risk is higher, even if

past returns were positive. A similar pattern was found by Cai and Wang (2008). However,

even the pointwise confidence intervals are very wide for low values of past losses.

7 Conclusions

I propose a nonparametric estimator of truncated conditional expectation functions based on

an orthogonal conditional moment and local linear methods. When the truncation quantile

level is known, I show that the feasible estimator is asymptotically equivalent to the oracle esti-

mator, which uses the true conditional quantile function, and I find its asymptotic distribution.

I also consider estimation with an estimated truncation quantile level. I apply my estimator in

three empirical settings: (i) sharp regression discontinuity designs with a manipulated running

variable, (ii) impact evaluation under sample selection, and (iii) conditional expected shortfall

estimation.
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A Extensions

In the main text I consider local linear procedures and a univariate X. It is straightforward

to generalize the results to allow for a vector of covariates, and to use an arbitrary order

of polynomials. I provide extensions in these two directions separately to avoid cumbersome

notation, and to highlight different effects on the order of the remainder term in both cases,

but they can be combined. As the third extension, I allow for dependent data.

A.1 Multivariate case

Let d be the dimension of X, and let a = (a1, ..., ad) and h = (h1, ..., hd) be vectors of band-

widths. Let k(v) =
∏d

j=1K(vj) be a d-dimensional product kernel built from the univariate

kernel function K(·). I put |h| =
∏d

j=1 hj and kh(v) =
∏d

j=1K(vj/hj)/hj, and similarly for a.

In the first step, I run a multivariate local linear quantile regression,[
q̂0(η, x0; a)

q̂1(η, x0; a)

]
= arg min

β0,β1

n∑
i=1

ρη(Yi − β0 − βT1 (Xi − x0))ka(Xi − x0). (23)

Further,

Q̂ll(η, x;x0, a) = q̂0(η, x0; a) + q̂1(η, x0; a)T (x− x0). (24)

Finally,

m̂(η, x0; a, h) = eT1 arg min
β0,β1

n∑
i=1

kh(Xi − x0)(ψi(η, Q̂ll(η,Xi;x0, a))− β0 − βT1 (Xi − x0))2, (25)

where e1 = (1, 0, ..., 0)T is a (d+1)-dimensional vector. Likewise, the oracle estimator m̃(η, x0;h)

is defined as above but with ψi(η,Q(η,Xi)) as the outcome variable.

I maintain the smoothness assumptions onQ(η, · ) with the understanding that for boundary

points the derivatives exist in the directions in which x can be perturbed within X . The

assumptions on the kernel and the bandwidths are as follows.

Assumption 4*. The following hold.

(a) Kernel: K is a bounded, symmetric density function with compact support, say [−1, 1].

(b) As n→∞, maxj hj → 0, maxj aj → 0, n|h| → ∞, and n|a| → ∞.

Theorem A.1 is the multivariate version of Theorem 1.

Theorem A.1 (General d). Suppose that Assumptions 1, 2, and 4* hold, hj � aj for j ∈
{1, ..., d}, and that X is a convex set. Then

m̂(η, x0; a, h) = m̃(η, x0;h) +Op

(∑
j

h4j + (n|h|)−1
)
.
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For d > 1 the variance component of the remainder in Theorem A.1 is of larger order than it

is in Theorem 1. However, this result can still be used to obtain asymptotic normality because

the oracle estimator has a bias of order Op(
∑
h2j) and variance of order O((n|h|)−1/2), which

are smaller than the remainder in Theorem A.1.

A.2 Higher-order polynomials and derivatives

I introduce notation analogous to that in Section 2, making the dependence on p explicit. The

local polynomial quantile estimates are given by

q̂T (η, x0; a, p) = arg min
β

n∑
i=1

kh(Xi − x0)ρη
(
Yi −

p∑
j=0

1

j!
βj(Xi − x0)j

)
. (26)

I define the estimated p-th order approximation of Q(η, · ) as

Q̂(η, x;x0, a, p) =

p∑
j=0

1

j!
q̂j(η, x0; a, p)(x− x0)j. (27)

The estimator of the r-th derivative of m(η, x) w.r.t. x at x0, ∂
r
xm(η, x0), is defined as

m̂r(η, x0; a, h, p) = eTr+1 arg min
β

n∑
i=1

kh(Xi − x0)
(
ψi(η, Q̂(η,Xi;x0, a, p))−

p∑
j=0

1

j!
βj(Xi − x0)j

)2
,

where er+1 is a (p + 1)-dimensional vector with 1 at the (r + 1)-th position and 0 otherwise.

Likewise, the oracle estimator m̃r(η, x0;h, p) is defined as above but with ψi(η,Q(η,Xi)) as the

outcome variable.

In order to prove an analog of Theorem 1, I require one natural modification of Assumption

2. I assume that the function Q(η, x) is p+ 1 times continuously differentiable w.r.t. x (instead

of twice).

Assumption 2*. ∂p+1
x Q(η, x) is continuous in x. Moreover, Assumptions 2(b) and 2(c) hold.

Theorem A.2. Suppose that Assumptions 1, 2∗, and 4 hold, and that h � a. Then

m̂r(η, x0; a, h, p) = m̃r(η, x0;h, p) +Op(h
−r(h2(p+1) + (nh)−1)).

With this result, under modified Assumption 3, asymptotic normality follows e.g. from

the results of Hong (2003). The stochastic part of hr(m̃r(η, x0;h, p) − ∂rxm(η, x0)) is of order

Op((nh)−1/2), and its leading bias is of order Op(h
p+1) or Op(h

p+2). Theorem A.2 allows to

characterize the leading bias for all orders p and derivatives r ≤ p, both for interior and

boundary points, except for the local constant estimator for interior points. Its leading bias is

of order Op(h
2), which is the same as the order of the remainder in the above theorem. This

case is discussed by Kato (2012).
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A.3 Dependent data.

I assume that the process is α-mixing, and the mixing coefficients satisfy a summability condi-

tion.

Assumption TS1.

(a) The process {(Yt, Xt) : t = 1, 2, ...} is stationary and α-mixing:

α(j) := sup
i≥1

sup
A∈Fi

1,B∈F∞i+j

|P (A ∩B)− P (A)P (B)| → 0, as j →∞,

where for j ≥ i F ji is the σ-field generated by {(Yk, Xk), k = i, ..., j}.
(b) It holds that

∞∑
j=1

jγ(α(j))1−2/δ <∞

for some δ > 2 and γ > 1− 2/δ.

Assumptions 2 and 3 need to be complemented with two further conditions on the joint

distribution of the data.

Assumption TS2.

(a) f(x1, xl; l) ≤M1 for all l ≥ 1, where f(x1, xl; l) is the joint density of X1 and Xl.

(b) fY |X(y|x) is continuous in x and y.

The continuity of fY |X(y|x) is required not only around the conditional η-quantile but also

in the lower tails of the conditional distribution in order to use the truncation argument of

Masry and Fan (1997) in the proof of asymptotic normality.

Assumption TS3. E[Y 2
1 1(Y1 ≤ Q(η,X1)) + Y 2

l 1(Yl ≤ Q(η,Xl))|X1 = x1, Xl = xl] ≤ M2 for

all l ≥ 1.

Finally, the required convergence rate of the bandwidth is related to the coefficients α(j).

Assumption TS4. There exists a sequence of constants sn satisfying sn → ∞ and sn =

o((nh)1/2) such that

(n/h)1/2α(sn)→ 0.

Under the above conditions, the estimator has the same asymptotic distribution as in the

case of i.i.d. data.

Theorem A.3. Suppose that Assumptions 1(b), 2–4, and TS1–TS4 hold. Then the conlucions

of Theorem 1 and Corollary 1 hold.
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B Alternative approaches

I discuss in detail the two alternative approaches introduced in Section 4.3. As reference points,

I also present the asymptotic distributions of the corresponding oracle estimators. Next, for

interior points, I contrast my approach from Section 2 with the weighted Nadaraya-Watson

estimator of Kato (2012).

B.1 Local linear estimator based on a non-orthogonal moment

First, I show that in the special case when the same bandwidth is used in both stages, the

estimator m̂NM(η, x0;h, h) is asymptotically equivalent to the oracle estimator m̃(η, x0;h), and

I give the exact rate of the remainder. Second, I derive the asymptotic distribution in the

general case allowing for different bandwidths.

Proposition B.1. Suppose that Assumptions 1, 2, and 4 hold. Then

RNM(η, x0;h) ≡ m̂NM(η, x0;h, h)− m̃(η, x0;h) = Op((h+ (nh)−1/2)(h2 + (nh)−1/2)).

If additionally f(x) is continuously differentiable and x0 is an interior point or if ∂1xQ(η, x0) = 0,

then RNM(η, x0;h) = Op(h
4 + (nh)−1).

Let m̃NM(x0, η;h) be the oracle estimator corresponding to m̃NM(x0, η; a, h), i.e. a local

linear estimator with 1
η
Yi1(Yi ≤ Q(η,Xi)) as the outcome variable.

Proposition B.2. Suppose that Assumptions 1–4 hold, and h/a→ ρ ∈ (0,∞). Then

(i)
√
nh
(
m̃NM(x0, η;h)−m(η, x0)− B̃NM(η, x0, h)

) d−→ N (0, Ṽ NM(η, x0)),

where

B̃NM(η, x0, h) =
1

2
µ(x0)∂

2
xm(η, x0)h

2 + op(h
2),

Ṽ NM(η, x0) =
κ(x0)

ηfX(x0)

{
Var(Y |Y ≤ Q(η, x0), X = x0) + (1− η)m(η, x0)

2
}
.

(ii)
√
nh
(
m̂NM(x0, η; a, h)−m(η, x0)− BNM(η, x0, a, h)

) d−→ N (0, V NM(η, x0, ρ)),

where

BNM(η, x0, a, h) =
1

2
µ(x0){∂2xm(η, x0)h

2 + CNM(η, x0)∂
2
xQ(η, x0)(a

2 − h2)}+ op(h
2),

V NM(η, x0, ρ) =
κ(x0)

ηfX(x0)
Var(Y |Y ≤ Q(η, x0), X = x0) +

1− η
ηf(x0)(µ0µ2 − µ2

1)
2

×
∫
D(x0)

[
k(v)(µ2 − µ1v)

1

η
m(η, x0) + ρk(vρ)(µ2 − µ1vρ)

1

η
Q(η, x0)

]2
dv
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with CNM(η, x0) = 1
η
fY |X(Q(η, x0)|x0)Q(η, x0), D(x0) = [−1, 1] if x0 lies in the interior

of X and D(x0) = [0, 1] if x0 lies on the boundary of X , µj ≡ µj(x0) ≡
∫
D(x0) k(v)vjdv.

Both bandwidths appear in the bias formula and the ratio ρ appears in the asymptotic

variance. When ρ is small, i.e. a is large relative to h, then the variance of the feasible

estimator is close to the variance of the oracle estimator because V NM(η, x0, 0) = Ṽ NM(η, x0).

In the proof, I give an expansion of the feasible estimator m̂NM about the infeasible m̃NM .

The bias BNM(η, x0, a, h) differs from the oracle bias due to the fact that, first, Q(η, · ) is

replaced by its local linear approximation, and, second, this approximation is estimated. The

factor CNM(η, x0) equals the derivative of 1
η
E[Y 1(Y ≤ y)|X = x0] w.r.t. y evaluated at Q(η, x0),

CNM(η, x0) =
d

dy
E
[1

η
Y 1(Y ≤ y)|X = x0,

]∣∣
y=Q(η,x0)

.

B.2 Local linear estimator on a truncated sample

First, I show that in the special case when the same bandwidth is used in both stages, the

estimator m̂TS(η, x0;h, h) is asymptotically equivalent to the oracle estimator m̃(η, x0;h), and I

give the exact rate of the remainder. Second, I derive the asymptotic distribution in the general

case allowing for different bandwidths.

Proposition B.3. Suppose that Assumptions 1–4 hold. Then

RTS(η, x0;h) ≡ m̂TS(η, x0;h, h)− m̃(η, x0;h) = Op((h+ (nh)−1/2)(h2 + (nh)−1/2)).

If additionally f(x) is continuously differentiable and x0 is an interior point or if ∂1xQ(η, x0) =

∂1xm(η, x0), then RTS(η, x0;h) = Op(h
4 + (nh)−1).

Let m̃TS(x0, η;h) be the oracle estimator corresponding to the estimator m̂TS(x0, η; a, h), i.e.

a local linear estimator using observations with Yi ≤ Q(η,Xi).

Proposition B.4. Suppose that Assumptions 1–4 hold, and h/a→ ρ ∈ (0,∞). Then

(i)
√
nh(m̃TS(η, x0;h)−m(η, x0)− B̃TS(η, x0, h)

) d−→ N (0, Ṽ TS(η, x0)),

where

B̃TS(η, x0, h) =
1

2
µ(x0)∂

2
xm(η, x0)h

2 + op(h
2),

Ṽ TS(η, x0) =
κ(x0)

ηfX(x0)
Var(Y |Y ≤ Q(η, x0), X = x0).

(ii)
√
nh(m̂TS(η, x0; a, h)−m(η, x0)− BTS(η, x0, a, h)

) d−→ N (0, V TS(η, x0, ρ)),
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where

BTS(η, x0, a, h) =
1

2
µ(x0){∂2xm(η, x0)h

2 − CTS(η, x0)∂
2
xQ(η, x0)(h

2 − a2)}+ op(h
2),

V TS(η, x0, ρ) =
κ(x0)

ηfX(x0)

{
Var(Y |Y ≤ Q(η, x0), X = x0) + ρ(1− η)

(
Q(η, x0)−m(η, x0)

)2 }
with CTS(η, x0) = 1

η
fY |X(Q(η, x0)|x0)(Q(η, x0)−m(η, x0)).

As in the case of the estimator using a non-orthogonal moment, both bandwidths appear

in the bias formula, and the ratio ρ appears in the asymptotic variance. When ρ is small, i.e. a

is large relative to h, then the variance of the feasible estimator is close to the variance of the

oracle estimator because V TS(η, x0, 0) = Ṽ TS(η, x0).

The factor CTS(η, x0) equals the derivative of E[Y |X = x0, Y ≤ y] w.r.t. y evaluated at

Q(η, x0),

CTS(η, x0) =
d

dy
E[Y |X = x0, Y ≤ y]

∣∣
y=Q(η,x0)

.

B.3 Weighted Nadaraya-Watson estimation for interior points

I contrast my estimator m̂ with the estimator of Kato (2012) based on the weighted Nadaraya-

Watson (WNW) estimator of the conditional c.d.f. For interior points, the WNW estimator is

asymptotically equivalent to the local linear estimator. Additionally, the WNW estimator of

FY |X(y|x0), i.e. applied to the data with 1(Yi ≤ y) as the outcome variable, is monotone in y,

and it lies between 0 and 1. Both these properties are not shared by the local linear estimator.17

I emphasize that the WNW estimator is not defined for boundary points, but for interior points

the estimator of Kato (2012) bears some similarity with the approaches developed in this paper.

In the first step, Kato (2012) estimates the conditional c.d.f. as

F̂WNW

Y |X (y|x0;h) =

∑n
i=1 pi(x0)kh(Xi − x0)1(Yi ≤ y)∑n

i=1 pi(x0)kh(Xi − x0)
, (28)

where pi(x0) ≥ 0 are the empirical likelihood weights, which maximize
∑n

i=1 log(pi(x0)) subject

to the constraints
∑n

i=1 pi(x0) = 1 and
∑n

i=1 pi(x0)(Xi − x0)kh(Xi − x0) = 0.18 He estimates

Q(η, x0) as Q̂WNW (η, x0;h) = inf{y : η ≤ F̂WNW

Y |X (y|x0;h)}, and m(η, x0) as

m̂WNW (η, x0;h) =

∑n
i=1 pi(x0)kh(Xi − x0)Yi1(Yi ≤ Q̂WNW (η, x0;h))∑n
i=1 pi(x0)kh(Xi − x0)1(Yi ≤ Q̂WNW (η, x0;h))

, (29)

which is essentially the WNW estimator with 1
η
Yi1(Yi ≤ Q̂WNW (η, x0;h)) as the outcome vari-

able. Kato (2012) shows that, under suitable assumptions, the estimator m̂WNW is asymp-

17Nevertheless, the asymptotic properties remain the same when the weighted Nadaraya-Watson estimator is
replaced with the local linear estimator.

18When x0 lies on the boundary, so that all Xi−x0 have the same sign, it is not possible to find non-negative
weights satisfying the last constraint.
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totically equivalent to the WNW estimator (and hence to the local linear estimator) with

ψi(η,Q(η, x0)) as the outcome variable. In consequence, it is asymptotically normal with

asymptotic variance V (η, x0) defined in Corollary 1,19 and its leading bias is given by

BWNW (η, x0, h) =
1

2
µ(x0)

d2

dx2
E[ψ(η,Q(η, x0)|X = x)]|x=x0h2. (30)

The difference between the WNW approach and my approach, for interior points, results from

the fact that they estimate different curves which coincide only at the evaluation point x0. The

two approaches have the same asymptotic variance but their biases are different, as shown in

Proposition B.5.

Proposition B.5. Suppose that FY |X(y|x) is twice continuously differentiable. Then

BWNW (η, x0, h) = B(η, x0, h)− 1

2η
µ(x0)fY |X(Q(η, x0)|x0)(∂xQ(η, x0))

2h2.

The second term of the difference on the right-hand side is always non-negative, so that

BWNW (η, x0, h) ≤ B(η, x0, h). However, which of the two biases is larger in absolute value, de-

pends on the specific data generating process. For example, it is possible that BWNW (η, x0, h) =

0 and B(η, x0, h) > 0, or that BWNW (η, x0, h) < 0 and B(η, x0, h) = 0.

However, I remark that in a simple location-scale model with a linear conditional expectation

function and homoskedastic residuals, my estimator has no bias, whereas |BWNW (η, x0, h)| can

be arbitrarily large.

C Estimation details for Sections 6.1 and 6.2

I formally introduce the estimators of bounds in RD designs with a manipulated running

variable and of the Lee bounds discussed in the main text. Their asymptotic distributions

follow easily from Theorems 1 and 2, and hence are stated without proofs.

C.1 Estimation in RD designs with manipulation

Let k−h (v) = 1(v < 0)kh(v) and k+h (v) = 1(v ≥ 0)kh(v). Recall that µ̄j =
∫∞
0
vjk(v)dv. I put

µ̄ = (µ̄2
2 − µ̄1µ̄3)/(µ̄2µ̄0 − µ2

1) and κ̄ =
∫∞
0

(k(v)(µ̄1v − µ̄2))
2dv/(µ̄2µ̄0 − µ̄2

1)
2.

I first estimate the share of potentially-assigned units. Since it cannot be negative, the

estimator is given by

τ̂ = max {τ̃ , 0} , with τ̃ = 1− f̂−(x0)

f̂+(x0)
,

where f̂−(x0) and f̂+(x0) are estimators of f(x−0 ) and f(x+0 ).

19Kato (2012) considers time series data satisfying an α-mixing condition but the asymptotic variance is the
same as for i.i.d. data because of the localization effect (see his discussion following Theorem 1).
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Let the density limits be estimated using ‘linear’ boundary kernels (Jones, 1993). For a

bandwidth b and ∗ ∈ {+,−} let

f̂ ∗(x0) =
1

n

n∑
i=1

k∗b (Xi − x0)
µ̄2 − µ̄1|Xi − x0|/b

µ̄2µ̄0 − µ2
1

. (31)

Let η̂ = min{1, f̂−(x0)/f̂
+(x0)}. To analyze this estimator, I impose smoothness assumptions

on the density.

Assumption 7. There exists ε > 0 s.t. f(·) is twice continuously differentiable on (x0−ε, x0)∪
(x0, x0 + ε). Moreover, f(x+0 ) > 0, f ′(x+0 ), f ′′(x+0 ), f(x−0 ) > 0, f ′(x−0 ), and f ′′(x−0 ) exist.

Lemma C.1 yields an asymptotical linear representation of η̂.

Lemma C.1. Suppose that Assumptions 1, 4(a), and 7 hold. Moreover, b → 0 and nb → ∞.

Then

1

η

(
η̂ − η

)
=
f̂−(x0)− f(x−0 )

f(x+0 )
− f̂+(x0)− f(x+0 )

f(x+0 )
+ o(b2) + op((nb)

−1/2).

I note that the asymptotic bias and variance of 1
η

(
η̂ − η

)
are given by

Aη =
1

2
µ̄
{f ′′X(x−0 )

f(x−0 )
− f ′′X(x+0 )

f(x+0 )

}
b2 + o(b2) and Wη = κ̄

{ 1

f(x+0 )
+

1

f(x−0 )

}
.

These quantities appear in the asymptotic distribution of the bounds. The lemma implies that

for bandwidths b � h this estimator satisfies the high-level Assumption 5.

Let m(x) = E[Y |X = x], mL(η, x) = E[Y |X = x, Y ≤ Q(η, x)], and mU(η, x) = E[Y |X =

x, Y ≥ Q(1 − η, x)]. The truncated conditional expectations mL(η, x+0 ) and mU(η, x+0 ) are

estimated as

m̂+
L(η̂, x0) = eT1 arg min

β0,β1

n∑
i=1

k+h (Xi − x0)(ψLi (η̂, Q̂ll,+(η̂, Xi;x0, h))− β0 − β1(Xi − x0))2,

m̂+
U(η̂, x0) = eT1 arg min

β0,β1

n∑
i=1

k+h (Xi − x0)(ψUi (η̂, Q̂ll,+(1− η̂, Xi;x0, h))− β0 − β1(Xi − x0))2,

where ψLi (u, q) = ψi(u, q) and ψUi (u, q) = 1
u
Yi1(q ≤ Yi)− 1

u
q(1(q ≤ Yi)− u). Q̂ll,+ is defined as

in Section 2, except that it uses only observations to the right of the cutoff.

The conditional expectation m(x−0 ) is estimated as

m̂−(x0) = eT1 arg min
β0,β1

n∑
i=1

k−h (Xi − x0)(Yi − β0 − β1(Xi − x0))2.
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The final estimators of the bounds on Γ are defined as

Γ̂L = m̂+
L(η̂, x0)− m̂−(x0),

Γ̂U = m̂+
U(η̂, x0)− m̂−(x0).

In addition to the assumptions introduced in Section 3.1 additional assumptions are needed.

The asymptotic analysis requires obvious modifications of Assumptions 2 and 3 to analyze

m̂+
L(η̂, x0) and m̂+

U(η̂, x0). Additionally, I impose standard assumption for the analysis of

m̂−(x0).

Assumption 8. For some ε > 0 the following hold on (x0 − ε, x0).

(a) m(x) is twice continuously differentiable in x, and m(x−0 ), m′(x−0 ) and m′′(x−0 ) exist.

(b) Var(Y |X = x) is continuous and Var(Y |X = x−) exists.

(c) There exists ξ > 0 s.t E
[
|Y |2+ξ

∣∣X = x
]

is uniformly bounded.

Proposition C.1 establishes joint convergence of the bounds estimators.

Proposition C.1. Suppose that the Assumptions 1–4 and 6 hold, mutatis mutandis. Further-

more, Assumptions 7 and 8 hold, and h/b→ ν. Then

√
nh

[
Γ̂L − ΓL − (B+

L (η)−B−)

Γ̂U − ΓU − (B+
U (η)−B−)

]
d−→ N

0,

[
V +
L (η) + V − Cov+(η) + V −

Cov+(η) + V − V +
U (η) + V −

] ,

where for ∗ ∈ {L,U}

B+
∗ (η) =

1

2
µ̄∂2xm∗(η, x

+
0 )h2 + op(h

2) +D+
∗ Aη,

V +
∗ (η) =

κ̄

f(x+0 )
Var(ψ∗|X = x+0 ) + ν(D+

∗ )2Wη,

Cov+(η) =
κ̄

f(x+0 )
Cov(ψL, ψU |X = x+0 ) + νD+

LD
+
UWη,

B− =
1

2
µ̄∂2xm(x−0 )h2 + op(h

2),

V − =
κ̄

f(x−0 )
Var(Y |X = x−0 )

with ψL ≡ ψL(η,Q(η,X)) and ψU ≡ ψU(η,Q(1 − η,X)), D+
L ≡ Q(η, x+0 ) − mL(η, x+0 ) and

D+
U ≡ Q(1− η, x+0 )−mU(η, x+0 ).

Since η̂ is based only on X, there is no covariance between η̂ and the estimators of the three

conditional expectations, which are asymptotically mean independent of X. The component in

the asymptotic covariance due to estimation of η is negative since D+
L (η) > 0 and D+

U (η) < 0.
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C.2 Estimation of conditional Lee bounds

The derivation follows the same steps as for regression discontinuity designs with a manipulated

running variable. For d ∈ {0, 1}, let sd(x) = P(S = 1|D = d,X = x). The probability

sd(x0) can be estimated using the standard local linear estimator with the sample restricted to

observations with Di = d,

ŝd(x0) = eT1 arg min
β0,β1

n∑
i=1

kh(Xi − x0)(Si − β0 − β1(Xi − x0))21(Di = d). (32)

Let

η̂ =
ŝ0(x0)

ŝ1(x0)
.

To analyze the above estimator, I impose the following assumption.

Assumption 9.

(a) For d ∈ {0, 1}, sd(x) is twice continuously differentiable.

(b) E[D|X = x] is continuous in x.

Lemma C.2. Suppose that Assumptions 1, 4(a), and 9 hold. Moreover, b → 0 and nb → ∞.

Then

1

η

(
η̂ − η

)
=
ŝ0(x0)− s0(x0)

s0(x0)
− ŝ1(x0)− s1(x0)

s1(x0)
+ op(b

2 + (nb)−1/2).

I note that the asymptotic bias and variance of 1
η

(
η̂ − η

)
are given by

ALeeη =
1

2
µ(x0)

{s′′0(x0)

s0(x0)
− s′′1(x0)

s1(x0)

}
b2 + op(b

2)

WLee
η =

κ(x0)

f(x0)

{ s0(x0)(1− s0(x0))
P(D = 0|X = x0)s0(x0)2

+
s1(x0)(1− s1(x0))

P(D = 1|X = x0)s1(x0)2

}
.

These quantities appear in the asymptotic distribution of the bounds.

Let QLee(η, x) = QY |D=1,S=1(η, x) and

mLee(x) = E[Y |X = x,D = 0, S = 1],

mLee
L (η, x) = E[Y |X = x, Y ≤ QLee(η, x), D = 1, S = 1],

mLee
U (η, x) = E[Y |X = x, Y ≥ QLee(1− η, x), D = 1, S = 1].
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The truncated conditional expectations mLee
L (η, x+0 ) and mLee

U (η, x+0 ) are estimated as

m̂Lee
L (η̂, x0) = eT1 arg min

β0,β1

n∑
i=1

kh(Xi − x0)SiDi(ψ
L
i (η̂, Q̂ll,Lee(η̂, Xi;x0, h))− β0 − β1(Xi − x0))2,

m̂Lee
U (η̂, x0) = eT1 arg min

β0,β1

n∑
i=1

kh(Xi − x0)SiDi(ψ
U
i (η̂, Q̂ll,Lee(1− η̂, Xi;x0, h))− β0 − β1(Xi − x0))2,

where ψLi (u, q) = ψi(u, q) and ψUi (u, q) = 1
u
Yi1(q ≤ Yi)− 1

u
q(1(q ≤ Yi)− u).

The conditional expectation mLee(x0) is estimated as

m̂Lee(x0) = eT1 arg min
β0,β1

n∑
i=1

kh(Xi − x0)Si(1−Di)(Yi − β0 − β1(Xi − x0))2.

The final estimators of the bounds on Γ are defined as

∆̂L(x0) = m̂Lee
L (η̂, x0)− m̂Lee(x0),

∆̂U(x0) = m̂Lee
U (η̂, x0)− m̂Lee(x0).

I impose standard assumptions for the analysis of m̂Lee(x0).

Assumption 10.

(a) mLee(x) is twice continuously differentiable in x.

(b) Var(Y |X = x,D = 0, S = 1) is continuous.

(c) There exists ξ > 0 s.t E
[
|Y |2+ξ

∣∣X = x, S = 1, D = 0
]

is uniformly bounded.

Proposition C.2 establishes joint convergence of the bounds estimators.

Proposition C.2. Suppose that the Assumptions 1–4 and 6 hold, mutatis mutandis. Further-

more, Assumptions 9 and 10 hold, and h/b→ ν. Then

√
nh

[
∆̂L −∆L − (BLee

L (η)−BLee)

∆̂U −∆U − (BLee
U (η)−BLee)

]
d−→ N

0,

[
V Lee
L (η) + V Lee CovLee(η) + V Lee

CovLee(η) + V Lee V Lee
U (η) + V Lee

] ,
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where for ∗ ∈ {L,U}

BLee
∗ (η) =

1

2
µ(x0)∂

2
xm

Lee
∗ (η, x0)h

2 + op(h
2) +DLee

∗ ALeeη ,

V Lee
∗ (η) =

κ(x0)

f(x0)E[SD|X = x0]
Var(ψ∗|X = x0, S = 1, D = 1) + ν(DLee

∗ )2WLee
η ,

CovLee(η) =
κ(x0)

f(x0)E[SD|X = x0]
Cov(ψL, ψU |X = x0, S = 1, D = 1) + νDLee

L DLee
U WLee

η ,

BLee =
1

2
µ(x0)∂

2
xm

Lee(x)h2 + op(h
2),

V Lee =
κ(x0)

f(x0)E[S(1−D)|X = x0]
Var(Y |X = x0, S = 1, D = 0)

with ψL ≡ ψL(η,QLee(η,X)), ψU ≡ ψU(η,QLee(1 − η,X)), DLee
L ≡ QLee(η, x0) −mLee

L (η, x0),

and DLee
U ≡ QLee(1− η, x0)−mLee

U (η, x+0 ).

D Rule of thumb for choosing the smoothness constant

Armstrong and Kolesár (2020) propose a rule of thumb to calibrate the bound on the second

derivative of the conditional expectation function. They run a quartic, global regression, and

estimate the maximal second derivative based on it. I adapt this approach to calibrate the

bound on ∂2xm(η, x). In the first stage, I run a global, quartic quantile regression. I denote the

resulting estimator as Q̂glob(η,Xi). In the second stage, I run a global quartic regression with

ψi(η, Q̂
glob(η,Xi)) as the outcome variable.

I investigate the performance of this procedure in the setting from Section 5. The results

are presented in Table 4. In this example, the rule of thumb leads to CIs with good coverage

properties. This is consistent with the findings of Armstrong and Kolesár (2020).

E Censored data

The general expression for the expectation of the proportion η of the smallest outcomes condi-

tional on X = x0 allowing for non-continuously distributed outcomes is given by

m(η, x0) = η−1{E[Y 1(Y ≤ Q(η, x0))|X = x0] +Q(η, x0)(η − E[1(Y ≤ Q(η, x0))|X = x0])}.

If Q(η, ·) is well in the “mass line” caused by censoring, then Q(η, ·) = Q(η, x0) is effectively

known. The estimator and inference procedure can be applied without any adjustments.
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Table 4: Coverage, average bandwidth, and average length of the 95% CI. Estimators evaluated
with their respective RMSE-optimal bandwidths. The sample size is n=1, 000, and the number
of simulations is S=10, 000. Rule of thumb for the smoothness constant.

Coverage Bandwidth CI length
Design for mj: 1 2 3 1 2 3 1 2 3

Homoskedastic errors

η = 0.2
Oracle m̃ 93.6 92.1 95.4 0.231 0.310 0.257 0.128 0.113 0.120
Feasible m̂ 93.4 92.2 95.7 0.227 0.307 0.260 0.128 0.113 0.119

η = 0.5
Oracle m̃ 95.0 93.1 96.0 0.207 0.279 0.231 0.104 0.091 0.098
Feasible m̂ 94.9 93.3 96.1 0.204 0.277 0.233 0.104 0.092 0.098

η = 0.8
Oracle m̃ 95.7 94.0 96.2 0.197 0.266 0.222 0.095 0.083 0.089
Feasible m̂ 95.7 94.0 96.4 0.196 0.265 0.222 0.095 0.084 0.089

Heteroskedastic errors

η = 0.2
Oracle m̃ 93.4 92.6 95.6 0.239 0.310 0.250 0.129 0.115 0.123
Feasible m̂ 93.5 92.9 95.8 0.235 0.307 0.254 0.129 0.116 0.122

η = 0.5
Oracle m̃ 95.0 93.6 96.5 0.213 0.277 0.225 0.104 0.093 0.100
Feasible m̂ 95.1 93.7 96.5 0.210 0.276 0.227 0.105 0.094 0.100

η = 0.8
Oracle m̃ 95.7 94.3 96.6 0.202 0.264 0.215 0.095 0.085 0.091
Feasible m̂ 95.7 94.3 96.7 0.201 0.263 0.216 0.096 0.085 0.092

F Proofs of the results in the main text

Let q0(η) = Q(η, x0), q1(η) = ∂1xQ(η, x0), q̂0(η; a) = q̂0(η, x0; a), q̂1(η; a) = q̂1(η, x0; a), Q̂(η, x; a) =

Q̂ll(η, x;x0, a), kh,i = kh(Xi − x0), Xh,i = (Xi − x0)/h, X̃h,i = (1, Xh,i)
T , Q∗(η, x) = q0(η) +

q1(η)(x − x0), Li(b) = b0 + b1(Xi − x0), and Xh = X (x0, h). I put D(x0) = [−1, 1] if x0 is an

interior point, and D(x0) = [0, 1] if x0 is a boundary point. Let µj ≡ µj(x0) ≡
∫
D(x0) v

jk(v)dv.

I put Cf ≡ sup{|fY |X(y, x)| : x ∈ X and y ∈ [Q(η, x) − ε, Q(η, x) + ε]} < ∞, where ε is as in

Assumption 2(c). I index the elements of two-dimensional vectors starting with zero, so that,

e.g., b = (b0, b1), q(η) = (q0(η), q1(η)).

F.1 Basic lemmas

I state some auxiliary results which are used throughout the proofs.

Lemma F.1. Suppose that Assumptions 1(a), 2(b), and 4 hold. Then for j ∈ N it holds that

Sn,j ≡
1

n

n∑
i=1

kh,iX
j
h,i = µjfX(x0) + op(1).

If additionally x0 is an interior point, fX(x) is continuously differentiable, and j is odd, then

Sn,j = Op(h+ (nh)−1/2).

Proof. Standard kernel calculations.
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Lemma F.2. Suppose that Assumptions 1, 2(b), and 4 hold. Then for j ∈ N it holds that

1

n

n∑
i=1

kh,iX
j
h,i{1(Yi ≤ Q(η,Xi))− η} = Op((nh)−1/2).

Proof. Standard kernel calculations.

Lemma F.3. Suppose that Assumptions 1, 2(b), 3(b), and 4 hold. Then for j ∈ N it holds

that
1

n

n∑
i=1

kh,iX
j
h,i(Yi −m(η,Xi))1(Yi ≤ Q(η,Xi)) = Op((nh)−1/2).

Proof. Standard kernel calculations.

Lemma F.4. Suppose that Assumptions 1, 2, and 4 hold. Then q̂0(η; a) − q0(η) = Op(a
2 +

(an)−1/2), and a(q̂1(η; a)− q1(η)) = Op(a
2 + (an)−1/2).

Proof. The lemma follows, e.g., from Theorem 2 of Fan et al. (1994). It also follows from the

proof of Lemma F.10, where I allow for the quantile level to be estimated.

Lemma F.5. Suppose that Assumptions 1, 2, and 4 hold. Then

sup
x∈Xh

|Q̂(η, x; a)−Q(η, x)| = Op(wn),

where wn = a2 + h2 + (a+ h)(a3n)−1/2, as defined in Theorem 1.

Proof. Using a second-order Taylor expansion of Q(η, x) in x with a mean-value form of the

remainder and the triangle inequality, I obtain that

sup
x∈Xh

|Q̂(η, x; a)−Q(η, x)|

≤ |q̂0(η; a)− q0(η)|+ sup
x∈Xh

|(q̂1(η; a)− q1(η))(x− x0)|+ sup
x,x̃∈Xh

|1
2
∂2xQ(η, x̃)(x− x0)2|

= Op(a
2 + (an)−1/2 + h(a+ (a3n)−1/2) + h2).

Lemma F.6. Suppose that Assumptions 1, 2, and 4 hold. Then for j ∈ N it holds that

(i)
1

n

n∑
i=1

kh,iX
j
h,i(Yi −Q(η,Xi)){1(Yi ≤ Q̂(η,Xi; a))− 1(Yi ≤ Q(η,Xi))} = Op

(
w2
n

)
,

(ii)
1

n

n∑
i=1

kh,iX
j
h,i(Q̂(η,Xi; a)−Q(η,Xi)){1(Yi ≤ Q̂(η,Xi; a))−1(Yi ≤ Q(η,Xi))} = Op

(
w2
n

)
,

(iii)
1

n

n∑
i=1

kh,iX
j
h,i(1(Yi ≤ Q(η,Xi))− 1(Yi ≤ Q̂(η,Xi; a))) = Op(wn).
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Proof. I prove only part (i). The proofs of parts (ii) and (iii) are analogous. The proof is similar

to the proof of Lemma A.3 of Kato (2012). For l > 0 let

Mn(l) = {g : X → R s.t. sup
x∈Xh

|g(x)−Q(η, x)| ≤ lwn}.

For a function g : X → R, let

Un(g) :=

∣∣∣∣ 1n
n∑
i=1

kh,iX
j
h,i(Yi −Q(η,Xi))

{
1(Yi ≤ g(Xi))− 1(Yi ≤ Q(η,Xi))

}∣∣∣∣.
It suffices to show that for each fixed l > 0

sup
g∈Mn(l)

Un(g) = Op(w
2
n). (33)

It holds that

Un(g) ≤ 1

n

n∑
i=1

kh,i|Xj
h,i|(Yi −Q(η,Xi))1(Q(η,Xi) < Yi ≤ g(Xi))

+
1

n

n∑
i=1

kh,i|Xj
h,i|(Q(η,Xi)− Yi)1(g(Xi) < Yi ≤ Q(η,Xi)).

Let Un,1(g) and Un,2(g) denote the first and the second element in the above sum, respectively.

They are both nonnegative. It holds that

sup
g∈Mn(l)

Un,1(g) =
1

n

n∑
i=1

kh,i|Xj
h,i|(Yi −Q(η,Xi))1(Q(η,Xi) < Yi ≤ Q(η,Xi) + lwn) ≡ Ūn,1.

Further,

E[Ūn,1] ≤ E
[
kh(X − x0)|Xj

h|lwn1(Q(η,X) < Y ≤ Q(η,X) + lwn)
]

≤ Cf l
2w2

n

∫
kh(x− x0)f(x)dx = O(w2

n).

Since Ūn,1 is nonnegative, it follows that Ūn,1 = Op(w
2
n), and hence by Markov’s inequality

Un,1 = Op(w
2
n). Applying the same reasoning to Un,2 yields (33).

F.2 Proofs of Theorem 1 and Corollary 1

Proof of Theorem 1. It holds that

m̂(η, x0; a, h) =
Sn,2Ψn,0(a)− Sn,1Ψn,1(a)

Sn,2Sn,0 − S2
n,1

and m̃(η, x0;h) =
Sn,2Ψ̃n,0 − Sn,1Ψ̃n,1

Sn,2Sn,0 − S2
n,1

,
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where Ψn,j(a) = 1
n

∑n
i=1 kh,iX

j
h,iψi(η, Q̂(η,Xi; a)), Ψ̃n,j = 1

n

∑n
i=1 kh,iX

j
h,iψi(η,Q(η,Xi)), and

Sn,j is defined in Lemma F.1. Hence,

m̂(η, x0; a, h)− m̃(η, x0;h) =
Sn,2(Ψn,0(a)− Ψ̃n,0)− Sn,1(Ψn,1(a)− Ψ̃n,1)

Sn,2Sn,0 − S2
n,1

.

The denominator converges to a positive number. I consider the numerator. For j ∈ {0, 1}
it holds that

Ψn,j(a)− Ψ̃n,j =
1

n

n∑
i=1

kh,iX
j
h,i

{1

η
Yi{1(Yi ≤ Q̂(η,Xi; a))− 1(Yi ≤ Q(η,Xi))}

− 1

η
Q̂(η,Xi; a)1(Yi ≤ Q̂(η,Xi; a)) +

1

η
Q(η,Xi)1(Yi ≤ Q(η,Xi))

± 1

η
Q̂(η,Xi; a)1(Yi ≤ Q(η,Xi))− (Q(η,Xi)− Q̂(η,Xi; a))

}
=

1

n

n∑
i=1

kh,iX
j
h,i

{1

η
(Q(η,Xi)− Q̂(η,Xi; a)){1(Yi ≤ Q(η,Xi))− η}

}
+Op(w

2
n),

where the last equality follows from Lemma F.6. Further,

1

n

n∑
i=1

kh,iX
j
h,i

{1

η
(Q(η,Xi)− Q̂(η,Xi; a)){1(Yi ≤ Q(η,Xi))− η}

}
=

1

η
(q0(η)− q̂0(η; a))

1

n

n∑
i=1

kh,iX
j
h,i{1(Yi ≤ Q(η,Xi))− η}

+
1

η
h(q1(η)− q̂1(η; a))

1

n

n∑
i=1

kh,iX
j+1
h,i {1(Yi ≤ Q(η,Xi))− η}

+
1

n

n∑
i=1

kh,iX
j
h,i

1

η
(Q(η,Xi)− q0(η)− q1(η)(Xi − x0)){1(Yi ≤ Q(η,Xi))− η}

Let L1, L2, and L3 denote the three terms above. By Lemmas F.2 and F.4, it holds that

L1 = Op(a
2 + (na)−1/2)Op((nh)−1/2) and L2 = h/aOp(a

2 + (na)−1/2)Op((nh)−1/2). Moreover,

E[L3] = 0 and Var(L3) = O(h4(nh)−1), which implies that L3 = Op(h
2(nh)−1/2) In total,

Ψn,j(a)− Ψ̃n,j = Op(a
2 + (na)−1/2 + h(a+ (a3n)−1/2) + h2)Op((nh)−1/2) +Op(w

2
n)

= Op(wn(nh)−1/2 + w2
n),

which concludes the proof.

Remark. In the proof of Theorem 1, I do not explicitly use the orthogonality condition, as

stated in equation (5). However, this property is the reason why the terms with q̂0(η; a) and
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q̂1(η; a) are negligible in the expansion of Ψn,j(a)− Ψ̃n,j. Note that

d

dg
E[Y 1(Y ≤ g)− g(1(Y ≤ g)− η)|X = x0] = −E[1(Y ≤ g)− η|X = x0],

which evaluated at g = Q(η, x0) is zero.

Proof of Corollary 1. First, I show that the remainder in Theorem 1 is of order op(h
2+(nh)−1/2)

under the assumptions made on the bandwidth a. Recall that wn = a2 + h2 + (an)−1/2 +

h(a3n)−1/2. By Assumption 4(b), it holds that

Op(wn(nh)−1/2 + w2
n) = Op

(
wn(nh)−1/2 + a4 + h4 + (a2 + h2)(a3n)−1

)
= Op

(
(h(a3n)−1/2 + o(1))(nh)−1/2

)
+Op(a

4 + (an)−1) +Op(h
2(a3n)−1) + op(h

2 + (nh)−1/2).

The following equivalence statements hold

� h2/(a3n)→ 0 ⇐⇒ (nh)−1h ≺ a,

� a4/h2 → 0 ⇐⇒ a ≺
√
h,

� (nh)1/2/(an)→ 0 ⇐⇒ (nh)−1/2h ≺ a,

� (nh)1/2h2/(a3n)→ 0 ⇐⇒ (nh)−1/6h ≺ a.

The conditions on the right-hand side hold under the assumptions made.

The lemma follows from standard theory applied to the oracle estimator. The variance is

derived as follows

Var(ψ(η,Q(η,X))|X = x0) = E
[(
ψ(η,Q(η,X))−m(η, x0)

)2 |X = x0

]
= E

[(
1

η
(Y −m(η,X))1(Y ≤ Q(η,X))− 1

η
(Q(η,X)−m(η,X))(η − 1(Y ≤ Q(η,X)))

)2

|X = x0

]

=
1

η
Var(Y |Y ≤ Q(η,X), X = x0) +

(1− η)

η
(Q(η, x0)−m(η, x0))

2.

F.3 Proof of Theorem 2

The main burden of the proof lies in studying the properties of the local linear quantile estimator

with estimated quantile level. In Lemma F.10, I show that, under the assumptions made, it has

the same rate of convergence as the local linear quantile estimator with known quantile level.

In the proof I use two equicontinuity results to prove convergence of the criterion function

of the local linear quantile estimator with estimated quantile level. I introduce the following
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additional notation. Let vn = (nh)−1/2, Mn(q, l) = {b : |b0 − q0| ≤ l0vn and h|b1 − q1| ≤ l1vn},
and Y ′i (b) = Yi − b0 − b1(Xi − x0). For a vector l = (l0, l1)

T , I put |l| ≡ ||l||1 = |l0|+ |l1|.
Further, define the bandwidth-dependent estimand of the local linear quantile estimator

(q∗0(u;h), q∗1(u;h))T = arg min
(b0,b1)∈R2

E
[
ρu(Yi − b0 − b1(X − x0))k(Xh)

]
.

Lemma F.7. Suppose that Assumptions 1, 2, 4, 5, and 6 hold. Then

q∗0(η̂;h)− q∗0(η;h) = O(h2) +Op(vn),

h(q∗1(η̂;h)− q∗1(η;h)) = O(h2) +Op(vn).

Moreover, q∗0(η;h)− q0(η) = O(h2) and q∗1(η;h)− q1(η) = O(h).

Proof. It follows from Theorem 1 of Guerre and Sabbah (2012) that q∗0(u;h) = q0(u) + O(h2)

and q∗1(u;h) = q1(u)+O(h) uniformly in u. Let Y ∗i (u;h) = Yi−Q∗(u,Xi;h), with Q∗(u, x;h) =

q∗0(u;h) + q∗1(u;h)(x− x0). The first order condition of the above minimization problem is

E[kh(X − x0)X̃h{1(Y ≤ Q∗(u,X;h))− u}] = 0.

It follows that q∗0(u;h) and q∗1(u;h) are continuous in u. Using the Implicit Function Theorem

and continuity of fY |X(y|x),[
∂1uq

∗
0(u;h)

h∂1uq
∗
1(u;h)

]
= E

[
kh(X − x0)fY |X(Q∗(u,X;h)|X)X̃hX̃

T
h

]−1
E
[
kh(X − x0)X̃h

]
= O(1).

Hence, the first part follows.

Lemma F.8. Suppose that Assumptions 1, 2, and 4 hold. Let Ai,n = vnX̃
T
h,iθ for some θ and

T (b) =
n∑
i=1

k(Xh,i)(Y
′
i (b)− Ai,n){1(Y ′i (b) ≤ Ai,n)− 1(Y ′i (b) ≤ 0)},

T̄ (b) = T (b)− E[T (b)].

For any sequence qn → q(η) and for any M it holds that

sup
b∈Mn(qn,M)

|T̄ (b)| = op(1).

Proof. To prove the lemma I show that T̄ (qn) = op(1) and supb∈Mn(qn,M) |T̄ (b)− T̄ (qn)| = op(1).

I note that

T (b) =
n∑
i=1

k(Xh,i)(Y
′
i (b)− Ai,n){1(0 < Y ′i (b) ≤ Ai,n)− 1(Ai,n < Y ′i (b) ≤ 0)}.
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Using the bound on fY |X(y|x), I obtain that

Var(T (qn)) ≤
n∑
i=1

E
[
k(Xh,i)

2A2
i,n1(−|Ai,n| < Y ′i (qn) ≤ |Ai,n|)

]
= O(nhv3n) = o(1).

Hence, T̄ (qn) = op(1).

In the second part I follow the lines of the proof of Lemma 4.1 of Bickel (1975). A similar

claim has been shown by Ruppert and Carroll (1978, Lemma A.4). Let ∆i(q, b) ≡ Y ′i (q) −
Y ′i (b) = Li(b− q). It holds that

T (q)− T (b) =
n∑
i=1

k(Xh,i)
[
(Y ′i (q)− Y ′i (b)){1(0 < Y ′i (q) ≤ Ai,n)− 1(Ai,n < Y ′i (q) ≤ 0)}

+ (Y ′i (b)− Ai,n){1(Y ′i (q) ≤ Ai,n)− 1(Y ′i (q) ≤ 0)− 1(Y ′i (b) ≤ Ai,n) + 1(Y ′i (b) ≤ 0)}
]

=
n∑
i=1

k(Xh,i)
[
∆i(q, b){1(0 < Y ′i (q) ≤ Ai,n)− 1(Ai,n < Y ′i (q) ≤ 0)}

+ (Y ′i (q)− Ai,n −∆i(q, b)){1(∆i(q, b) < Y ′i (q)− Ai,n ≤ 0)− 1(0 < Y ′i (q)− Ai,n ≤ ∆i(q, b))}

+ (Y ′i (q)− Ai,n −∆i(q, b)){1(0 < Y ′i (q) ≤ ∆i(q, b))− 1(∆i(q, b) < Y ′i (q) ≤ 0)}
]
.

For l = (l0, l1), let bn,0(l) = qn,0 + l0vn and bn,1(l) = qn,1 + l1vn/h. Note that for Xi ∈ Xh, it

holds that |∆i(qn, bn(l))| ≤ vn|l|. Therefore,

Var(T (bn(l))− T (qn)) ≤3
n∑
i=1

E
[
k(Xh,i)

2(vn|l|)21(−|Ai,n| < Y ′i (qn) ≤ |Ai,n|)

+ k(Xh,i)
2(vn|l|)21(−vn|l| < Y ′i (qn)− Ai,n ≤ vn|l|)

+ k(Xh,i)
2(vn|l|+ |Ai,n|)21(−vn|l| < Y ′i (qn) ≤ vn|l|)

]
=O(nhv3n).

Hence, for any fixed l,

T̄ (bn(l))− T̄ (qn) = op(1). (34)

For a fixed δ > 0 decompose Mn(qn,M) as the union of cubes with vertices on the grid

Jn(δ) = {qn + δMvn(j0, j1/h)T : ji ∈ {0,±1, ...,±d1/δe} for i = 0, 1}, where d·e is the ceiling

function. For b ∈ Mn(qn,M), let Vn(b) be the lowest vertex of the cube containing b. The

result in (34) implies that

max
{
|T̄ (Vn(b))− T̄ (qn)| : b ∈Mn(qn,M)

}
= op(1).

Next, I consider the behavior on a cube. Note that for Xi ∈ Xh it holds that sup{|∆i(Vn(b), b)| :
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b ∈Mn(Vn(b), δM)} = 2δMvn. It holds that

|T (Vn(b))− T (b)| ≤
n∑
i=1

k(Xh,i){2δMvn1(−|Ai,n| < Y ′i (Vn(b)) ≤ |Ai,n|)

+ 2δMvn{1(−2δMvn ≤ Y ′i (Vn(b))− Ai,n ≤ 2δMvn)

+ (2δMvn + |Ai,n|)1(−2δMvn ≤ Y ′i (Vn(b)) ≤ 2δMvn)}

≡ T̃ (Vn(b), δ).

The reasoning leading to (34) yields that

max
b∈Jn(δ)

|T̃ (b, δ)− E[T̃ (b, δ)]| = op(1).

Moreover,

max
b∈Jn(δ)

E[T̃ (b, δ)] ≤ δO(1).

uniformly in δ ∈ (0, 1).

Lemma F.9. Suppose that Assumptions 1, 2, and 4 hold. Let

S(b) =
1√
nh

n∑
i=1

k(Xh,i)X
j
h,i1(Y ′i (b) ≤ 0),

S̄(b) = S(b)− E[S(b)].

For any sequence qn → q(η) and for any M it holds that

sup
b∈Mn(qn,M)

|S̄(b)− S̄(qn)| = op(1),

|S̄(qn)− S̄(q(η))| = op(1).

Proof. The proof is similar to the proof of Lemma F.8. I am using the notation defined therein.

I note that

S(q)− S(b) =
1√
nh

n∑
i=1

k(Xh,i)X
j
h,i{1(Y ′i (q) ≤ ∆i(q, b))− 1(Y ′i (q) ≤ 0)}.

It holds that

Var(S(qn)− S(q(η))) = o(1).

The second claim follows.

For any fixed l it holds that

Var(S(bn(l))− S(qn)) = Op(vn) = op(1).
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Hence,

max
{
|S̄(Vn(b))− S̄(qn)| : b ∈Mn(qn,M)

}
= op(1).

Moreover,

|S(Vn(b))− S(b)| ≤ 1√
nh

n∑
i=1

k(Xh,i)|Xh,i|1(−2δMvn ≤ Y ′i (Vn(b)) ≤ 2δMvn)

≡ S̃(Vn(b), δ)

It holds

max
b∈J(δ)

|S̃(b, δ)− E[S̃(b, δ)]| = Op(vn) = op(1).

Finally,

max
b∈J(δ)

E[S̃(b, δ)] ≤ δOp(1).

uniformly in δ.

Lemma F.10. Suppose that the assumptions of Theorem 2 hold. Then

q̂0(η̂;h)− q0(η) = Op(h
2 + (nh)−1/2),

h(q̂1(η̂;h)− q1(η)) = Op(h
2 + (nh)−1/2).

Proof. Recall that

q̂(u;h) = arg min
(b0,b1)∈R2

n∑
i=1

ρu(Yi − b0 − b1(Xi − x0))k(Xh,i),

where ρu(v) = v(u − 1(v ≤ 0)). Let θ̂n(u) =
√
nh(q̂0(u;h) − q∗0(u;h), h(q̂1(u;h) − q∗1(u;h)))T .

For a given u, the vector θ̂n(u) minimizes the function

Gn(u, θ) =
n∑
i=1

[
ρu(Y

∗
i (u;h)− vnθT X̃h,i)− ρu(Y ∗i (u))

]
k(Xh,i),

where Y ∗i (u;h) = Yi −Q∗(u,Xi;h). Let

Wn(u) = vn

n∑
i=1

k(Xh,i)X̃h,i{u− 1(Y ∗i (u;h) ≤ 0)},

Tn(u, θ) = −
n∑
i=1

k(Xh,i)(Y
∗
i (u)− vnθT X̃h,i)

{
1(Y ∗i (u;h)− vnθT X̃h,i < 0)− 1(Y ∗i (u;h) < 0)

}
.

It holds that

Gn(u, θ) = Tn(u, θ)− θTWn(u).

47



Further,

E[Tn(u, θ)|X1, ..., Xn] = −
n∑
i=1

k(Xh,i)

∫ vnθT X̃h,i

0

(
y − vnθT X̃h,i

)
fY ∗(u)|X(y|Xi)dy

=
1

2

n∑
i=1

k(Xh,i)fY ∗(u)|X(z̃i(u)|Xi)(vnθ
T X̃h,i)

2

=
1

2n

n∑
i=1

kh,i(θ
T X̃h,i)

2(fY |X(q0(u)|x0) + ξi,n),

where z̃i(u) lies between 0 and vnθ
T X̃h,i, and ξi,n = o(1) uniformly in i ∈ {1, ..., n} and u in a

sufficiently small neighborhood of η. Hence, it follows from Lemma F.8 that

Tn(η̂, θ) = θTSθ + op(1).

where

S = fY |X(q0(η)|x0)fX(x0)

[
µ0 µ1

µ1 µ2

]
.

The convex, random function T̂n(θ) ≡ Tn(η̂, θ) converges pointwise in θ to the convex function

θTSθ. By the convexity lemma (Pollard, 1991), this convergence is uniform on any compact set.

The function 1
2
θTSθ−θTWn(η̂) is minimized at S−1Wn(η̂). Since by construction E[Wn(u)] = 0,

Lemma F.9 implies that

Wn(η̂) = Wn(η) + op(1) = Op(1).

Using convexity again, the consistency argument of Pollard (1991) implies that θ̂n(η̂) = S−1Wn(η̂)+

op(1). The lemma follows using Lemma F.7.

Proof of Theorem 2. In the proof of Theorem 1, I require only rates of convergence of q̂(η; a)

which is now replaced with q̂(η̂; a). Hence, these derivations imply that for j ∈ {0, 1}

1

n

n∑
i=1

kh,iX
j
h,iψi(η, Q̂(η̂, Xi; a))− 1

n

n∑
i=1

kh,iX
j
h,iψi(η,Q(η,Xi)) = Op(w

2
n).

Moreover,

1

n

n∑
i=1

kh,iX
j
h,iψi(η̂, Q̂(η̂, Xi))−

1

n

n∑
i=1

kh,iX
j
h,iψi(η, Q̂(η̂, Xi))

=
1

n

n∑
i=1

kh,iX
j
h,i(Yi − Q̂(η̂, Xi))1(Yi ≤ Q̂(η̂, Xi))

(1

η̂
− 1

η

)
.
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Using Lemma F.6 and the CLT, I obtain that

1

n

n∑
i=1

kh,iX
j
h,i

{1

η
(Yi − Q̂(η̂, Xi))1(Yi ≤ Q̂(η̂, Xi))−m∗(η,Xi) +Q∗(η,Xi)

}
=

1

n

n∑
i=1

kh,iX
j
h,i

{1

η
(Yi −Q(η,Xi))1(Yi ≤ Q(η,Xi))−m∗(η,Xi) +Q∗(η,Xi)

}
+Op(r

2
n)

= Op(rn).

The result follows from the fact that(1

η̂
− 1

η

)
= − 1

η2
(η̂ − η) +O((η̂ − η)2).

G Proofs of the results in the Appendix

G.1 Proofs of Theorems A.1 and A.2

These proofs are very similar to the proof of Theorem 1 and therefore omitted.

G.2 Proof of Theorem A.3

The proof follows exactly the same steps as the proof of Theorem 1. The local linear quantile

estimator with dependent data is studied e.g. by Kong et al. (2010). Lemmas F.1–F.3 for

dependent data follow from Masry and Fan (1997). Lemma F.5 is a simple consequence of

Lemma F.4. Lemma F.6 does not use independence of the data. Asymptotic normality of the

oracle estimator follows from the result of Masry and Fan (1997).

G.3 Proofs of Propositions B.1 and B.3

In these propositions, I assume that a = h, and hence wn = h2 + (nh)−1/2 ≡ rn.

An essential result used to prove these two propositions, not required for the proof of

Theorem 1, are the following approximate first-order conditions of the local linear quantile

estimator.

Lemma G.1. Suppose that Assumptions 1 and 4 hold. Then for j ∈ {0, 1} it holds that

1

n

n∑
i=1

kh,iX
j
h,i(η − 1(Yi ≤ Q̂(η,Xi;h))) = Op((nh)−1).
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Proof. Similar claims have been proven by Koenker and Bassett (1978, Theorem 3.3) and

Ruppert and Carroll (1980, Theorem 1). Let

Gn(b) =
1

n

n∑
i=1

kh,iρη(Yi − Li(b)),

where ρη(v) = v[η−1(v ≤ 0)]. It holds that d+

dv
ρη(v) = η−1(v < 0) and d−

dv
ρη(v) = η−1(v ≤ 0).

Therefore, also the left and right derivatives of the criterion function exist. For j ∈ {0, 1} it

holds that

∂+

∂bj
Gn(b) =

1

n

n∑
i=1

kh,i(Xi − x0)j
[
(1(Yi < Li(b))− η)1(Xj

h,i < 0) + (1(Yi ≤ Li(b))− η)1(0 < Xj
h,i)
]
,

∂−

∂bj
Gn(b) =

1

n

n∑
i=1

kh,i(Xi − x0)j
[
(1(Yi ≤ Li(b))− η)1(Xj

h,i < 0) + (1(Yi < Li(b))− η)1(0 < Xj
h,i)
]
.

At the minimum it holds that ∂−

∂bj
Gn(q̂(η)) ≤ 0 and 0 ≤ ∂+

∂bj
Gn(q̂(η)). Using these inequalities,

I obtain the following bounds on the expression of interest.

0 ≤ 1

n

n∑
i=1

kh,i(Xi − x0)j
{
1(Yi ≤ Q̂(η,Xi;h))− η − 1(Yi = Q̂(η,Xi;h))1(Xj

h,i < 0)
}

≤ ∂+

∂bj
Gn(q̂(η))− ∂−

∂bj
Gn(q̂(η))

=
1

n

n∑
i=1

kh,i(Xi − x0)j
{
− 1(Yi = Q̂(η,Xi;h))1(Xj

h,i < 0) + 1(Yi = Q̂(η,Xi;h))1(0 ≤ Xj
h,i)
}
.

The lemma follows from the facts that k is bounded with bounded support, and

n∑
i=1

1(Yi = Q̂(η,Xi;h)) ≤ 2 w.p. 1

because the probability of having three collinear points in a sample is equal zero.

Proof of Proposition B.1. It holds that

m̂NM(η, x0;h, h)− m̂(η, x0;h, h) =
Sn,2(Tn,0 −Ψn,0(h))− Sn,1(Tn,1 −Ψn,1(h))

Sn,2Sn,0 − S2
n,1

where Tn,j = 1
n

∑n
i=1 kh,iX

j
h,i

1
η
Yi1(Yi ≤ Q̂(η,Xi;h)), and Ψn,j(h) is defined in the proof of
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Theorem 1. From Lemma G.1 it immediately follows that

Tn,0 −Ψn,0(h) = Op((nh)−1),

Tn,1 −Ψn,1(h) =
1

η
q̂1(η;h)

h

n

n∑
i=1

kh,iX
2
h,i(1(Yi ≤ Q̂(η,Xi;h))− η) +Op((nh)−1)

=
1

η
q1(η)

h

n

n∑
i=1

kh,iX
2
h,i(1(Yi ≤ Q̂(η,Xi;h))− η) +Op(r

2
n).

Hence,

m̂NM(η, x0;h, h)− m̂(η, x0;h, h) = hSn,1q1(η)Op(rn) +Op(r
2
n),

which, combined with Lemma F.1, concludes the proof.

Proof of Proposition B.3. It holds that

m̂TS(η, x0;h, h) =
Ŝn,2Tn,0 − Ŝn,1Tn,1
Ŝn,2Ŝn,0 − Ŝ2

n,1

,

where Ŝn,j = 1
ηn

∑n
i=1 kh,iX

j
h,i1(Yi ≤ Q̂(η,Xi;h)), and Tn,j is defined in the proof of Proposition

B.1. It holds that

Ŝn,2Ŝn,0 − Ŝ2
n,1 = Sn,2Sn,0 − S2

n,1 +Op(rn).

Let m∗(η, x) = m(η, x0) + ∂1xm(η, x0)(x− x0). By plugging in the expression Yi = m∗(η,Xi) +

(Yi −m∗(η,Xi)) in the definition of m̂TS(η, x0;h, h), I obtain that

m̂TS(η, x0;h, h) = m(η, x0) +
Ŝn,2Un,0 − Ŝn,1Un,1
Ŝn,2Ŝn,0 − Ŝ2

n,1

,

where Un,j = 1
n

∑n
i=1 kh,iX

j
h,i

1
η
(Yi −m∗(η,Xi))1(Yi ≤ Q̂(η,Xi;h)).

Lemma F.6 yields that for j ∈ {0, 1}

Un,j =
1

n

n∑
i=1

kh,iX
j
h,i

1

η
(Yi −Q(η,Xi))1(Yi ≤ Q(η,Xi)),

+
1

n

n∑
i=1

kh,iX
j
h,i

1

η
(Q(η,Xi)−m∗(η,Xi))1(Yi ≤ Q̂(η,Xi;h)) +Op(r

2
n).

Moreover, by Lemma G.1 and a small modification of Lemma F.6 to handle Q(η,Xi) −
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Q∗(η,Xi) it holds

1

n

n∑
i=1

kh,i
1

η
(Q(η,Xi)−m∗(η,Xi)){1(Yi ≤ Q̂(η,Xi;h))− η} = Op(r

2
n),

1

n

n∑
i=1

kh,iXh,i
1

η
(Q(η,Xi)−m∗(η,Xi)){1(Yi ≤ Q̂(η,Xi;h))− η}

=
1

η
h(∂1xQ(η, x0)− ∂1xm(η, x0))

1

n

n∑
i=1

kh,iX
2
h,i{1(Yi ≤ Q̂(η,Xi;h))− η}+Op(r

2
n)

= h(∂1xQ(η, x0)− ∂1xm(η, x0))Op(rn) +Op(r
2
n).

Hence,

Un,0 =
1

n

n∑
i=1

kh,i
1

η
(Yi −Q(η,Xi))1(Yi ≤ Q(η,Xi)) +Q(η,Xi)−m∗(η,Xi) +Op(r

2
n),

Un,1 =
1

n

n∑
i=1

kh,iXh,i
1

η
(Yi −Q(η,Xi))1(Yi ≤ Q(η,Xi)) +Q(η,Xi)−m∗(η,Xi)

+ h(∂1xQ(η, x0)− ∂1xm(η, x0))Op(rn) +Op(r
2
n).

In particular, Un,j = Op(rn), and hence

m̂TS(η, x0;h, h) = m(η, x0) +
Sn,2Un,0 − Sn,1Un,1
Sn,2Sn,0 − S2

n,1

= m̃(η, x0;h) + hSn,1(∂
1
xQ(η, x0)− ∂1xm(η, x0))Op(rn) +Op(r

2
n),

which, combined with Lemma F.1, concludes the proof.

G.4 Proofs of Propositions B.2 and B.4

To prove these propositions, I need an explicit expansion of the estimators in the coefficients

defining the trimming function.

Lemma G.2. Suppose that Assumptions 1, 2, and 4 hold. Then

q̂0(η; a)− q0(η) =
1

2
µ(x0)∂

2
xQ(η, x0)a

2 +
1
n

∑n
i=1 ka,i(µ2 − µ1Xa,i)[η − 1(Yi ≤ Q(η,Xi))]

fY |X(q0(η)|x0)f(x0)(µ2µ0 − µ2
1)

+ o(a2) + op((na
−1/2)).

Proof. This representation follows from the proof of Lemma F.10.
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Lemma G.3. Suppose that Assumptions 1, 2, and 4 hold. Then for j ∈ N it holds that

1

n

n∑
i=1

kh,iX
j
h,i1(Yi ≤ Q̂(η,Xi; a)) =

1

n

n∑
i=1

kh,iX
j
h,i1(Yi ≤ Q∗(η,Xi))

+
1

n

n∑
i=1

kh,iX
j
h,ifY |X(Q(η, x0)|x0){q̂0(η; a)− q0(η) + (q̂1(η; a)− q1(η))(Xi − x0)}+ op(rn).

Proof. A conditional on X version of Lemma F.9 implies that

1

n

n∑
i=1

kh,iX
j
h,i

{
1(Yi ≤ Q̂(η,Xi))− E[1(Y ≤ Li(b)|X = Xi]

∣∣
b=q̂(η)

}
=

1

n

n∑
i=1

kh,iX
j
h,i

{
1(Yi ≤ Q∗(η,Xi))− E[1(Y ≤ Q∗(η,X))|X = Xi]

}
+ op(rn)

The result follows by a Taylor expansion using continuity of fY |X(y|x).

Proof of Proposition B.2. Part (i). The result is an application of standard asymptotic theory

for local linear estimation, using the fact that

E

[(
1

η
Y 1(Y ≤ Q(η,X))−m(η,X)

)2

|X = x0

]

= E

[(
1

η
(Y −m(η,X))1(Y ≤ Q(η,X))− 1

η
m(η,X)(η − 1(Y ≤ Q(η,X)))

)2

|X = x0

]

=
1

η
Var(Y |Y ≤ Q(η,X), X = x0) +

(1− η)

η
m(η, x0)

2,

where I use the fact that

Var(Y |Y ≤ Q(η,X), X = x0) =
1

η
E[(Y −m(η,X))21(Y ≤ Q(η,X))|X = x0].

Part (ii). It holds that

m̂NM(η, x0; a, h) =
Sn,2Tn,0(a)− Sn,1Tn,1(a)

Sn,2Sn,0 − S2
n,1

where Tn,j(a) = 1
n

∑n
i=1 kh,iX

j
h,i

1
η
Yi1(Yi ≤ Q̂(η,Xi; a)).
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I consider the numerator

Tn,j(a) =
1

n

n∑
i=1

kh,iX
j
h,i

[1

η
(Yi −Q∗(η,Xi))1(Yi ≤ Q∗(η,Xi)) +

1

η
Q∗(η,Xi)1(Yi ≤ Q̂(η,Xi; a))

]
+Op(r

2
n)

=
1

n

n∑
i=1

kh,iX
j
h,i

1

η
Yi1(Yi ≤ Q∗(η,Xi))

+
1

n

n∑
i=1

kh,iX
j
h,ifY |X(q0(η)|x0)

1

η
q0(η){q̂0(η; a)− q0(η) + (q̂1(η; a)− q1(η))(Xi − x0)}+ op(rn)

+
1

n

n∑
i=1

kh,iX
j
h,ifY |X(q0(η)|x0)

1

η
q1(η)(Xi − x0){q̂0(η; a)− q0(η) + (q̂1(η; a)− q1(η))(Xi − x0)}.

The last term is of order Op(rnh). Let u∗i (η) = 1
η
Yi1(Yi ≤ Q∗(η,Xi)) − m∗(η,Xi), e

∗
i (η) =

1
η
{η − 1(Yi ≤ Q∗(η,Xi))}, and

En,j(a, h) =
1

n

n∑
i=1

kh,iX
j
h,iu

∗
i (η) +

1

n

n∑
i=1

ka,iX
j
a,i

1

η
q0(η)e∗i (η).

It follows that

m̂NM(η, x0; a, h) = m(η, x0) +
µ2En,0(a, h)− µ1En,1(a, h)

(µ2µ0 − µ2
1)f(x0)

+ op(rn)

The bias expressions follow from the facts that

d2

dx2
E[u∗i (η)|X = x]|x=x0 = ∂2xm(η, x0)−

1

η
fY |X(q0(η)|x0)q0(η)∂2xQ(η, x0),

d2

dx2
E[e∗i (η)|X = x]|x=x0 =

1

η
fY |X(q0(η)|x0)q0(η)∂2xQ(η, x0).

The variance expression follows from the following calculations. Recall that h/a→ ρ. It holds

that

Var(u∗(η)|X = x0) =
1

η
Var(Y |Y ≤ Q(η,X), X = x0) +

1− η
η

m(η, x0)
2,

Var(e∗(η)|X = x0) =
1− η
η

,

where the first line is derived in part (i) above. Moreover,
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Var(kh(µ2 − µ1Xh)
1

η
m(η, x0)e

∗(η) + ka(µ2 − µ1Xa)
1

η
Q(η, x0)e

∗(η))

=

∫ [1

h
k
(x− x0

h

)(
µ2 − µ1

x− x0
h

)1

η
m(η, x0) +

1

a
k
(x− x0

a

)(
µ2 − µ1

x− x0
a

)1

η
Q(η, x0)

]2
× Var(e∗(η)|X = x)fX(x)dx

= h

∫ [1

h
k(v)(µ2 − µ1v)

1

η
m(η, x0) +

ρ

h
k(vρ)(µ2 − µ1vρ)

1

η
Q(η, x0)

]2
× Var(e∗(η)|X = x0 + vh)fX(x0 + vh)dv

=
1

h

∫ [
k(v)(µ2 − µ1v)

1

η
m(η, x0) + ρk(vρ)(µ2 − µ1vρ)

1

η
Q(η, x0)

]2
dv

× Var(e∗(η)|X = x0)fX(x0)(1 + o(1)).

Proof of Proposition B.4. Part (i). It holds that

m̃TS(η, x0;h) = m(η, x0) +
S̃n,2Ũn,0 − S̃n,1Ũn,1
S̃n,2S̃n,0 − S̃2

n,1

,

where

Ũn,j ≡
1

n

n∑
i=1

kh,iX
j
h,i

1

η
(Yi −m∗(η,Xi))1(Yi ≤ Q(η,Xi)) = Op(rn),

S̃n,j ≡
1

ηn

n∑
i=1

kh,iX
j
h,i1(Yi ≤ Q(η,Xi)) = µjfX(x0) + op(1).

The result follows from standard calculations using the fact that

1

η2
E[(Y −m∗(η,X))21(Y ≤ Q(η,X))|X = x0] =

1

η
Var(Y |Y ≤ Q(η,X), X = x0).

Part (ii). It holds that

m̂TS(η, x0;h, h) = m(η, x0) +
Ŝn,2Un,0(a, h)− Ŝn,1Un,1(a, h)

Ŝn,2Ŝn,0 − Ŝ2
n,1

,

where

Un,j(a, h) =
1

n

n∑
i=1

kh,iX
j
h,i

1

η
(Yi −m∗(η,Xi))1(Yi ≤ Q̂(η,Xi; a)),

Ŝn,j(a) =
1

ηn

n∑
i=1

kh,iX
j
h,i1(Yi ≤ Q̂(η,Xi; a)) = µjfX(x0) + op(1).
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Lemma F.6 yields

Un,j(a, h) =
1

n

n∑
i=1

kh,iX
j
h,i

1

η
(Yi −Q∗(η,Xi))1(Yi ≤ Q∗(η,Xi))

+
1

n

n∑
i=1

kh,iX
j
h,i

1

η
(Q∗(η,Xi)−m∗(η,Xi))1(Yi ≤ Q̂(η,Xi;h)) +Op(r

2
n)

=
1

n

n∑
i=1

kh,iX
j
h,i

1

η
(Yi −Q∗(η,Xi))1(Yi ≤ Q∗(η,Xi))

+
1

n

n∑
i=1

kh,iX
j
h,i

1

η
(Q∗(η,Xi)−m∗(η,Xi))1(Yi ≤ Q∗(η,Xi))

+
1

n

n∑
i=1

kh,iX
j
h,i

1

η
(Q∗(η,Xi)−m∗(η,Xi))fY |X(Q(η, x0)|x0)

× {q̂0(η; a)− q0(η) + (q̂1(η; a)− q1(η))(Xi − x0)}+ op(rn).

It follows that

m̂TS(η, x0;h, h) = m(η, x0) +
Ŝn,2U

∗
n,0(a, h)− Ŝn,1U∗n,1(a, h)

Ŝn,2Ŝn,0 − Ŝ2
n,1

+
1

η
(Q∗(η, x0)−m∗(η, x0))fY |X(Q(η, x0)|x0)(q̂0(η; a)− q0(η)),

where U∗n,j(h) = 1
n

∑n
i=1 kh,iX

j
h,iu

∗∗
i (η) with u∗∗i (η) = 1

η
(Yi −m∗(η,Xi))1(Yi ≤ Q∗(η,Xi)).

The claim follows from the variance calculations in the proof of Proposition B.2 and from

the fact that

d2

dx2
E[u∗∗(η)|X = x]|x=x0 = ∂2xm(η, x0)−

1

η
fY |X(q0(η)|x0)(q0(η)−m(η, x0))∂

2
xQ(η, x0).

G.5 Proof of Proposition B.5

Proof. Note that

l(x) ≡ E[ψ(X,Q(η,X))− ψ(X,Q(η, x0))|X = x]

=
1

η

∫ Q(η,x)

Q(η,x0)

(y −Q(η, x0))fY |X(y|x)dy.

By the Leibniz integral rule, it holds that

l′(x) =
1

η
∂1xQ(η, x)(Q(η, x)−Q(η, x0))fY |X(Q(η, x)|x) +

1

η

∫ Q(η,x)

Q(η,x0)

(y −Q(η, x0))∂xfY |X(y|x)dy.
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Furthermore,

l′′(x0) =
1

η

(
∂1xQ(η, x0)

)2
fY |X(Q(η, x0)|x0),

which concludes the proof.
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