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Abstract

The decline in natural interest rates in advanced economies over the past decades
has been accompanied by a significant increase in the volatility of housing prices. We
show that the monetary policy implications of these macroeconomic trends depend—in
the presence of a lower-bound constraint on nominal rates—on the source of increased
housing price volatility. If housing price expectations are rational, increased housing
price volatility reflects more volatile housing demand shocks. Under optimal monetary
policy, average inflation then increases only minimally, as average natural rates fall and
housing shocks become more volatile. Instead, if housing price volatility is partly due to
speculative housing price beliefs, as suggested by survey data, then lower natural rates
endogenously trigger larger fluctuations in subjective housing price beliefs and housing
prices. A belief-driven increase in housing price volatility causes also the natural rate of
interest to become more volatile. This exacerbates the lower-bound problem, especially
when average natural rates are low. Under optimal monetary policy, average inflation
then rises much more strongly following a fall in natural rates, rationalizing larger
increases in the inflation target.

1 Introduction

The persistent fall in natural interest rates and long-term growth rates represent some of the
most troubling macroeconomic trends in advanced economies over the past decades (Holston
et al. (2017), Del Negro et al. (2017) and Fujiwara et al. (2016)). These trends have received
considerable attention in policy circles and in the academic literature and even led to a revival
of the secular stagnation hypothesis, 75 years after Hansen (1939) has coined the term to
describe periods with low interest rates, slow economic growth and dampened aggregate
demand (Summers (2014)).

∗Department of Economics, University of Mannheim, adam@uni-mannheim.de, oliver.pfaeuti@gess.uni-
mannheim.de, timo.reinelt@gess.uni-mannheim.de. The authors gratefully acknowledge financial support by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through CRC TR 224 (Project
C02).
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This paper documents that the fall in long-term growth rates and natural interest rates
has been associated with additional macroeconomic trends that are particularly troubling
from a monetary policy perspective: the U.S. and other advanced economies experienced also
a considerable increase in the volatility of housing prices. In addition, there are indications
that the volatility of natural rates and the volatility of housing investment rates have also
increased over time.

The goal of this paper is to assess how these macroeconomic trends affect the conduct
of optimal monetary policy and the optimal inflation target that monetary policy should
pursue. We do so by considering a sticky price model featuring a lower-bound constraint for
nominal interest rates and a housing sector. The model is consistent with lower growth rates
triggering lower natural rates, which in turn increase the volatility in housing markets. Yet,
the monetary policy implications of increased housing market volatility depends crucially on
the economic drivers responsible for the increase in housing price volatility.

If housing prices are driven purely by structural shocks, which may have increased in size
over time, then average inflation rises only mildly under optimal monetary policy when aver-
age natural rates fall. Instead, if housing price fluctuations are partly driven by speculative
housing price beliefs, as suggested by survey data on consumers’ capital gain expectations
in housing markets, then average inflation must rise considerably more as natural rates fall.
This is so because belief-driven increases in the volatility of housing prices also increase
the volatility of the natural rate. This exacerbates the lower-bound problem for monetary
policy, requiring it to promise higher inflation when being at the lower bound constraint,
even though higher inflation has adverse welfare consequences. As we show, it also makes it
optimal for monetary policy to lean against housing demand shocks, unlike in a setting with
rational housing expectations.

To analyze monetary policy in the presence of speculative private sector expectations, we
consider a setting in which households and firms are internally rational, i.e., maximize utility
(or profits) conditional on their subjective beliefs about variables outside of their control
(Adam and Marcet (2011)). Internal rationality encompasses fully rational expectations as
a special case, when subjective beliefs coincide with the objective outcomes generated by the
model.

Our analysis considers both a setting with rational housing price expectations and a
setting in which subjective beliefs give rise to extrapolation of past housing price movements
into the future, following Adam et al. (2016), and in line with survey evidence on consumers’
capital gain expectations in housing markets. Extrapolation generates housing prices that are
characterized by momentum as well as mean reversion, featuring occasional and long-lived
boom-bust patterns, consistent with the empirically observed behavior of housing prices
(Glaeser and Nathanson (2017)).1 To make the deviations from rational expectations as
parsimonious as possible, we assume throughout the paper that expectations about variables
other than housing prices (and associated rental rates) are rational at all times.

Internally rational agents condition their optimal consumption and investment plan on

1Experimental evidence on housing price expectations (Armona et al. (2019)) and survey evidence on
stock price expectations (Greenwood and Shleifer (2014), Adam et al. (2017)) provide additional support for
the extrapolative nature of housing price expectations implied by our subjective belief setup. Soo (2018) con-
structs a housing sentiment index based on media coverage of housing news, documenting the extrapolative
nature of house price expectations.
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Figure 1: Average Inflation under Optimal Monetary Policy
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their subjective beliefs about future housing price developments. Therefore, the real interest
rate that is consistent with the objectively efficient consumption allocation – the natural
interest rate – will respond to changes in subjective housing price beliefs. Since the subjective
housing price beliefs become endogenously more volatile as the average natural rate falls,
as we explain further in the main part of the paper, a fall in natural rates triggers larger
volatility of the natural rate. This exacerbates the lower bound problem for monetary policy
in a setting where natural rates are low and induce higher average inflation rates under
Ramsey optimal monetary policy.

We calibrate the model such that it matches the observed standard deviation of the price-
to-rent ratio and the natural interest rate in the United States before 1990. When moving
from a relatively high average value for the natural rate, as observed before the 1990s, to
the lower average level observed thereafter, the rational expectations model generates an
increase in the volatility of the price-to-rent ratio that is much smaller than in the data and
no additional volatility for the natural rate.2 As a result, even when the average natural
rates falls to a level of 0.25% per year, the average inflation rate under optimal monetary
policy increases only to 0.32% in our calibrated model. Under rational expectations and
optimal monetary policy, lower natural rates thus do not justify significant increases in the
inflation target, see figure 1.

In contrast, the model with subjective housing price beliefs matches the bulk of the
observed increase in housing volatility following the decline in natural rates after 1990,
without having to resort to increased volatility of housing demand shocks. This is the case
because lower natural rates amplify belief-driven fluctuations in housing prices and thereby
magnify momentum effects in prices. The more volatile housing beliefs contribute to a
considerable increase in the volatility of the natural rate, close to the one estimated for the
U.S. after 1990. In response, average inflation increases substantially more under Ramsey
optimal monetary policy compared to a setting with rational expectations. For an average

2Under rational expectations, housing-price-to-rent ratios are solely driven by housing preference shocks,
which themselves do not affect the natural rate.
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natural rate of 0.25% per year, optimal monetary policy gives rise to an average inflation rate
of 1.41%, i.e., to a much higher optimal inflation target than under rational expectations,
see figure 1.

Eggertsson et al. (2019) and Andrade et al. (2018) also study the implications of lower
natural rates for monetary policy. Consistent with our findings, they show that a substantial
increase in the inflation target is a promising monetary instrument to deal with the zero
lower bound (ZLB) problem. We add to their work by studying Ramsey optimal policy, by
considering a model featuring a housing sector, and by allowing for the presence of subjective
beliefs.

Earlier work discussed Ramsey optimal monetary policy in the presence of a ZLB con-
straint, but abstracted from housing markets and the presence of subjective beliefs. A
seminal early contribution is due to Eggertsson and Woodford (2003), which shows how
commitment to future inflation can help ameliorating the effects of not being able to lower
nominal rates further at the ZLB. The one-time nature of the shock in their analysis pre-
cluded, however, a discussion of the effects of the ZLB on average inflation. Adam and Billi
(2006) and Coibion et al. (2012) discuss Ramsey optimal monetary policy under rational
expectations in a setting where repeated shocks cause the ZLB to be occasionally binding.
They find that ZLB episodes tend to be short and infrequent under optimal policy, so that
average inflation increases by a few basis points only, compared to a setting that ignores the
existence of the ZLB constraint. The present paper shows that this conclusion is altered in
a model with housing, when the average natural interest rate falls and the resulting increase
in the volatility of housing prices causes also increases in the volatility of the natural rate.

As we show, the implications of asset price booms and busts for monetary policy generally
depend on the source of these fluctuations. Iacoviello (2005) introduces housing markets into
a monetary business cycle model and shows that output and inflation volatility are almost
independent of whether or not the monetary authority responds to house prices; a finding
documented for asset prices more generally in Bernanke and Gertler (2001) and Gilchrist and
Leahy (2002). In Iacoviello (2005), house price fluctuations are driven by structural shocks
and are thus efficient. In contrast, Adam and Woodford (2020) analyze optimal monetary
policy in a setting that allows for deviations from efficient house price fluctuations. As beliefs
differ from rational expectations, a monetary tightening in response to an increase in house
prices becomes optimal in the presence of positive housing subsidies. The same is true for the
present setting. In the presence of subjective beliefs, optimal monetary policy leans against
housing demand shocks, while this fails to be the case in a setting with rational housing
prices. Caines and Winkler (2020) also find that leaning against housing price increases can
be optimal when beliefs are distorted. We add to this literature by taking into account the
ZLB constraint on nominal interest rates and by considering a more parsimonious deviation
from rational expectations that allows only for deviations of housing price beliefs.

More generally, Kaplan et al. (2020) argue that subjective beliefs about future house
prices were the most important driver of housing prices in the U.S. economy during the
boom and bust phase around the Great Recession. Adam et al. (2012) find that subjective
housing price dynamics can explain the dynamics of housing booms and current accounts
in the G7 economies up until the Great Recession. Adelino et al. (2017) document that
rising home prices and increased housing price expectations were the main contributor to
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the observed increase in U.S. mortgage debt before the Great Recession.3 Section 5.3 in the
present paper shows that the housing price expectations of U.S. housholds are inconsistent
with the RE hypothesis. Taken together these contributions render credibility to the notion
that subjective housing price beliefs play an important role for housing price dynamics,
making it important to consider the monetary policy implications of such fluctuations in the
presence of a ZLB constraint.

The present paper abstracts from a number of economic features that can generate addi-
tional effects on the optimal inflation target, e.g., cash-distortions as analyzed in Khan et al.
(2003), nominal wage rigidity considered in Benigno and Ricci (2011), or the relative price
trends recently studied in Adam and Weber (2019, 2020).

The rest of the paper is structured as follows. Section 2 presents the empirical facts
about natural rates, housing prices and housing investment. Section 3 introduces the eco-
nomic model, which allows for subjective beliefs, and section 4 derives the nonlinear optimal
monetary policy problem. The two alternative drivers of house price fluctuations —housing
preference shocks and subjective housing price beliefs—are introduced in Section 5. Section
6 presents a quadratic approximation to the monetary policy problem, which allows to gain
analytic insights. We calibrate the model in section 7 and present our main results in section
8. Section 9 concludes.

2 Natural Rates and Housing Prices in Advanced

Economies

2.1 Natural Rates: Declining Levels and Rising Volatility

Natural real interest rates and long-term growth rates have displayed a steady downward
trend in the G7 economies over the past decades. Figure 2 illustrates these trends using the
estimated natural rates as well as long-term growth rates (both annualized) of Holston et al.
(2017) and Fujiwara et al. (2016).

While these facts have received considerable attention in the literature, the evolution
of the volatility of the natural rate over time has received virtually no attention. Figure 3
depicts the estimated standard deviation of the natural rate pre and post 1990 after taking
out a linear time trend. The figure reports the point estimates (the colored bars), the 90%
confidence bands (black lines), and the p-values for the null hypothesis that the volatility
has not changed from pre to post 1990. The point estimates have increased over time in all
currency areas, except for the U.K. Yet, since estimation uncertainty is relatively large, the
increase in the point estimates are not statistically significant, except for the United States
and Canada. We take this as tentative evidence that the documented fall in the level of the
natural rate is associated with an increase in its volatility in the G7 currency areas.

3Further evidence on the important role of expectations as drivers of house prices is documented, e.g.,
in Case and Shiller (1988), Shiller (2007), Piazzesi and Schneider (2009), Case et al. (2012), and Ben-David
et al. (2019).
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Figure 2: Natural Rates and Long-Term Growth Rates
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Source: Holston et al. (2017) and Fujiwara et al. (2016)

Figure 3: Volatility of Natural Rates
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Source: Holston et al. (2017) and Fujiwara et al. (2016) (natural rate estimates). The black lines
denote the 90%-confidence bands. The reported p-values are for the null hypothesis that volatility
has not changed from pre to post 1990.

2.2 The Rising Volatility of Housing Prices

We now show that the volatility of housing prices has increased markedly in the G7 economies
over the period 1970-2019. To the best of our knowledge, we are the first to document this
development.

It is generally difficult to estimate the volatility of housing prices in a precise manner
because housing prices tend to be rather volatile and also tend to display a high degree of
persistence over time. Table 1 considers the behavior of the annual price-to-rent (PR) ratios
in the G7 economies and reports the autoregressive coefficient of an estimated AR(1) process
in the PR ratios. The table reports estimates for the whole sample, as well as for the first
and last 30 years of the sample period.4 It shows that the price-to-rent ratios are overall

4The numbers below the estimated coefficients are the 95% confidence intervals.
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highly persistent and for some countries the point estimates are very close to 1, especially
after 1990.

Table 1: Annual Persistence of Price-to-Rent Ratios

Sample USA Japan Germany France UK Canada
All Periods 0.90 0.95 0.97 0.98 0.97 0.99

[0.79, 1.01] [0.85, 1.05] [0.92, 1.03] [0.92, 1.05] [0.88, 1.07] [0.95, 1.04]

Pre 1990 0.81 0.89 0.88 0.89 0.84 0.97
[0.52, 1.11] [0.59, 1.19] [0.63, 1.13] [0.68, 1.10] [0.47, 1.21] [0.80, 1.15]

Post 1990 0.91 0.99 0.98 0.97 0.96 0.99
[0.75, 1.06] [0.93, 1.06] [0.87, 1.08] [0.86, 1.07] [0.86, 1.07] [0.90, 1.08]

Source: OECD database, own calculations. The 95%-confidence intervals are reported in brackets.

To deal with these features of housing price behavior, we compare the volatility of the
price-to-rent ratio over 30-year long subsamples, i.e., for the years 1970-1989 and 1990-2019.
Figure 4 reports the estimated standard deviation of the G7 price-to-rent ratios for the
first and second subsample, together with 90%-confidence bands (black lines), and the p-
value of the null-hypothesis that the standard deviations have not changed across the two
subsamples.5 The point estimate of the standard deviation of the PR ratio has increased
in all G7 economies. Appendix B.1 shows that these results are robust to using different
sample split points. This said, due to the large estimation uncertainty, not all increases in
the point estimates are statistically significant at conventional significance levels: at the 10%
confidence level, 4 of the 6 observations are statistically significant.

Figure 4: Standard Deviation of the Price-to-Rent Ratio, 1970-1989 versus 1990-2019

p = 0.31p = 0.00 p = 0.05 p = 0.01p = 0.09p = 0.160.0

0.1

0.2

0.3

0.4

USA UK FRA GER CAN JAP

Pre 1990
Post 1990

Source: OECD database. The black lines denote the 90%-confidence bands. The p-values are for
the null hypothesis the standard deviation has not changed pre to post 1990.

Panel (a) in Figure 5 reports further evidence on the standard deviation of the residential
investment to output ratio (RIY-ratio) in the first and second part of the sample. It shows

5The reported standard deviations are expressed in terms of % deviation from the sample mean of the
considered period, so as to be consistent with the theoretical model developed later on. Considering instead
the absolute standard deviation across the two subperiods leads to identical conclusions, see Appendix B.1.
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that all countries, except for Japan, saw the point estimate for the standard deviation of
the RIY-ratio increase, which suggests that the increase in the volatility of the PR ratio
documented above was associated with an increase in the volatility of the RIY ratio, even if
the increase in investment tends not to be statistically significant. Appendix B.1 shows that
these results are again quite robust to using different sample split points.

Panel (b) in Figure 5 depicts the time-series correlation between the PR-ratio and the
RIY-ratio in the two sample periods. While the correlation in the first sample period is
statistically insignificant for three of the considered countries, the correlation is very positive
and statistically significant in the latter sample period in all countries. This is suggestive of
the fact that more volatile PR-ratios in the second half of the sample have been associated
with stronger association between housing investment and housng prices.

Figure 5: Housing Volatility Increased Over the Last Decades.

(a) Standard Deviation of Residential (b) Correlation of Price-to-Rent Ratios and
Investment Pre and Post 1990. Residential Investment Pre and Post 1990.
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Source: Holston et al. (2017) and Fujiwara et al. (2016) (natural rate estimates) and OECD
database (PR and RIY ratios), own calculations. The black lines denote the 90%-confidence
bands. The p-values correspond to the test whether or not the values changed from pre to post
1990.

3 A Sticky Price Model with Housing

We build in our analysis on the sticky price model with housing and subjective beliefs de-
veloped in Adam and Woodford (2020). We augment it by considering a rental market for
housing and by explicitly incorporating a zero lower bound constraint for nominal interest
rates.6 We also allow for more general forms of belief distortions in the private sector, includ-
ing subjective beliefs that imply that private decisionmakers may not know the equilibrium

6The existence of an occasionally binding ZLB constraint critically complicates the nature of the optimal
policy problem because the consumption Euler equation is then an implementability constraint that needs
to be taken into account when designing optimal monetary policy. When the ZLB is assumed to be never
binding, one can ignore the consumption Euler equation when determining Ramsey optimal monetary policy,
because interest rates can be determined ex-post to make the Euler equation hold.
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mapping from fundamentals to market outcomes.7 Admitting these more general forms of
belief distortions allows the model to generate realistic amounts of housing price volatility,
without having to resort to the presence of large housing preference shocks, and it allows
replicating important features of the structure of housing forecast errors, as observed in
survey data.

Following Adam and Marcet (2011), we consider an economy populated by internally ra-
tional decisionmakers. Households (firms) maximize utility (profits), but entertain a poten-
tially subjective probability measure P , which assigns probabilities to all external variables,
i.e., to all variables that agents take as given in their decision problem. These variables in-
clude fundamental shocks, as well as competitive market prices (wages, goods prices, housing
prices and rents). The setup delivers rational expectations in the special case when P is the
rational probability measure.

The economy is made up of identical infinitely-lived households, each of which maximizes
the following objective function8

U ≡ EP0

∞∑
t=0

βt
[
ũ(Ct; ξt)−

∫ 1

0

ṽ(Ht(j); ξt)dj + ω̃(Dt +DR
t ; ξt)

]
, (1)

subject to a sequence of flow budget constraints

Ct +Bt + (Dt − (1− δ)Dt−1)
qut

ũC(Ct; ξt)
+ kt +RtD

R
t =

d̃(kt; ξt)
qut

ũC(Ct; ξt)
+

∫ 1

0

wt(j)Ht(j)dj +
Bt−1

Πt

(1 + it−1) +
Σt

Pt
+
Tt
Pt
, (2)

where Ct is an aggregate consumption good, Ht(j) is the quantity supplied of labor of type
j and wt(j) the associated real wage, Dt the stock of owned houses, DR

t the units of rented
houses, δ ∈ [0, 1] the housing depreciation rate, qut the real price of houses in marginal utility
units, defined as

qut ≡ qtũC(C; ξt),

where qt is the real house price in units of consumption. The variable qut provides a measure of
whether housing is currently expensive or inexpensive, in units that are particularly relevant
for determining housing demand. The variable kt denotes investment in new houses and
d̃(kt; ξt) the resulting production of new houses.9 The variable Bt ≡ B̃t/Pt denotes the

real value of nominal government bond holdings B̃t, Pt the nominal price of consumption,
Πt = Pt/Pt−1 the inflation rate, it the nominal interest rate, Rt the real rental rate for
housing units, and ξt is a vector of exogenous disturbances, which may induce random shifts
in the functions ũ, ṽ, ω̃ and d̃. The variable Tt denotes nominal lump sum transfers (taxes

7The setup in Adam and Woodford (2020) assumed absolute continuity between subjective and objec-
tive beliefs over arbitrary finite horizons, which implies that agents know the equilibrium mapping from
fundamentals to market outcomes. The present setting nest this setup as a special case.

8It cannot be common knowledge to households that they are representative whenever P deviates from
the rational measure.

9We consolidate housing production into the household budget constraint. It would be equivalent to have
instead a separate housing production section that is owned by households.
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if negative) from the government and Σt nominal profits accruing to households from the
ownership of firms.

Households discount future payoffs at the rate β ∈ (0, 1). Since our model is formulated in
terms of growth-detrended variables, the discount rate β jointly captures the time preference
rate β̃ ∈ (0, 1) and the steady-state growth rate of marginal utility. Letting gc ≥ 0 denote
the steady-state growth rate of consumption in non-detrended terms, we have

β ≡ β̃
ũC(C(1 + gc); ξ)

ũC(C; ξ)
, (3)

where ξ denotes the steady state value of the disturbance ξt. When the growth rate gc of the
economy falls, then the discount rate β increases because marginal utility falls less fast. We
can thus capture the fall in economic growth rates via a simple increase in the time discount
rate β. In line with the empirical evidence, the increase in the discount rate β will cause
safe interest rates to fall.

The aggregate consumption good is a Dixit-Stiglitz aggregate of each of a continuum of
differentiated goods,

Ct ≡
[∫ 1

0

ct(i)
η−1
η di

] η
η−1

, (4)

with an elasticity of substitution η > 1. We further assume isoelastic functional forms

ũ(Ct; ξt) ≡
C1−σ̃−1

t C̄ σ̃−1

t

1− σ̃−1 ,

ṽ(Ht(j); ξt) ≡
λ

1 + ν
(Ht(j))

1+ν H̄−νt ,

ω̃(Dt +DR
t ; ξt) ≡ ξdt

(
Dt +DR

t

)
, (5)

d̃(kt; ξt) ≡
Adt
α̃
kα̃t ,

where σ̃, ν > 0, α̃ ∈ (0, 1) and {C̄t, H̄t, ξ
d
t , A

d
t } are bounded exogenous and positive distur-

bance processes which are among the exogenous disturbances included in the vector ξt.
Our specification includes two housing related disturbances, namely ξdt which captures

shocks to housing preferences and Adt shocks to the productivity in the construction of new
houses. We impose linearity in the utility function (5) as this greatly facilitates the charac-
terization of optimal policy, with rented and owned housing units being perfect substitutes.
We could introduce a weight on rental units relative to housing units that would allow us to
perfectly match the average price-to-rent ratio we observe in the data. But since this does
not change any other results, we abstract from such a scaling parameter and assign equal
weight to housing and renting in the utility.

The housing demand shock ξdt evolves according to

ξdt /ξ
d =

(
ξdt−1/ξ

d
)ρξ

eε
d
t , (6)

where ξd is the steady state value of the housing demand disturbance, εdt an i.i.d. innovation

satisfying E[eε
d
t ] = 1, and |ρξ| < 1 captures the persistence of housing demand disturbances.
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Each differentiated good is supplied by a single monopolistically competitive producer;
there is a common technology for the production of all goods, in which (industry-specific)
labor is the only variable input,

yt(i) = Atf(ht(i)) = Atht(i)
1/φ, (7)

where At is an exogenously varying technology factor, and φ > 1. The Dixit-Stiglitz prefer-
ences (4) imply that the quantity demanded of each individual good i will equal10

yt(i) = Yt

(
pt(i)

Pt

)−η
, (8)

where Yt is the total demand for the composite good defined in (4), pt(i) is the (money) price
of the individual good, and Pt is the price index,

Pt ≡
[∫ 1

0

pt(i)
1−ηdi

] 1
1−η

, (9)

corresponding to the minimum cost for which a unit of the composite good can be purchased
in period t. Total demand is given by

Yt = Ct + kt + gtYt, (10)

where gt is the share of the total amount of composite goods purchased by the government,
treated here as an exogenous disturbance process.

3.1 Household Optimality Conditions

Internally rational households choose state-contingent sequences for the choice variables{
Ct, Ht(j), Dt, D

R
t , kt, Bt

}
so as to maximize (1), subject to the budget constraints (2), taking

as given their beliefs about the processes {Pt, wt(j), qut , Rt, it,Σt/Pt, Tt/Pt}, as determined
by the (subjective) measure P .

We shall be particularly interested in the policy implications generated by subjective
housing price beliefs. To insure that an optimum exists in the presence of potentially dis-
torted beliefs about the housing price qut , we require housing choices to lie in some compact
choice set Dt ∈ [0, Dmax], where Dmax < ∞ is an arbitrarily large but finite upper bound
on the quantity of housing the household can purchase. We choose Dmax large enough, such
that it will never bind in equilibrium.

The first order conditions give rise to an optimal labor supply relation

wt(j) =
ṽH(Ht(j); ξt)

ũC(Ct; ξt)
, (11)

10In addition to assuming that household utility depends only on the quantity obtained of Ct, we assume
that the government also cares only about the quantity obtained of the composite good defined by (4), and
that it seeks to obtain this good through a minimum-cost combination of purchases of individual goods.
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a consumption Euler equation

ũC(Ct; ξt) = βEPt

[
ũC(Ct+1; ξt+1)

1 + it
Pt+1/Pt

]
, (12)

an equation characterizing optimal investment in new houses

kt =

(
Adt q

u
t

C σ̃−1

t

C̄ σ̃−1

t

) 1
1−α̃

, (13)

an optimality condition for rental units

ξdt = RtũC(Ct, ξt), (14)

and a set of conditions determining the optimal housing demand Dt :

qut < ξdt + β(1− δ)EPt qut+1 if Dt = Dmax

qut = ξdt + β(1− δ)EPt qut+1 if Dt ∈ [0, Dmax]
qut > ξdt + β(1− δ)EPt qut+1 if Dt = 0.

(15)

With rational expectations, the upper and lower holding bounds never bind.11 We are,
however, interested in how the presence of belief distortions about future housing values
affect equilibrium outcomes. With subjective housing price expectations, the holding bounds
in equation (15) can potentially bind under the subjectively optimal plans. This explains
why an internally rational household can hold subjective housing price expectations, even if
it holds rational expectations about the preference shocks ξdT in equation (15).12

Forward-iterating on equation (12), which holds with equality under all belief-specifications,
delivers a present-value formulation of the consumption Euler equation

ũC(Ct; ξt) = lim
T→∞

EPt

[
ũC(CT ; ξT )βT

T−t∏
k=0

1 + it+k
Pt+k+1/Pt+k

]
, (16)

which will be convenient to work with, especially under subjective belief specifications.
Household choices must also satisfy the transversality constraint

lim
T→∞

βTEPt (ũC(CT ; ξT )BT +DT q
u
T ) = 0. (17)

Optimal household behavior under potentially distorted beliefs is jointly characterized by
equations (11) and (13)-(17).

11The upper bound Dmax has been chosen sufficiently large for this to be true. The lower bound is never
reached because the housing production function satisfies Inada conditions.

12See Adam and Marcet (2011) for a detailed discussion of this point.
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3.2 Optimal Price Setting by Firms

The producers in each industry fix the prices of their goods in monetary units for a random
interval of time, as in the model of staggered pricing introduced by Calvo (1983) and Yun
(1996). Producers use the representative households’ subjectively optimal consumption plans
to discount profits and are assumed to know the product demand function (8). They need to
formulate beliefs about the future price levels PT , industry wages wT (j), aggregate demand
YT , and productivity AT .

Let 0 ≤ α < 1 be the fraction of prices that remain unchanged in any period. A supplier
i in industry j that changes its price in period t chooses its new price pt(i) to maximize

EPt

∞∑
T=t

αT−tQt,TΠ (pt(i), PT , wT (j), YT , AT ) , (18)

where EPt denotes the expectations of price setters conditional on time t information, which
are identical to the expectations held by consumers. Firms discount random nominal income
in period T using households’ subjective stochastic discount factor Qt,T , which is given by

Qt,T = βT−t
ũC (CT , ξT )

ũC (Ct, ξt)

Pt
PT

.

The term αT−t in equation (18) captures the probability that a price chosen in period t will
not have been revised by period T , and the function Π (pt(i), ...) indicates the nominal profits
of the firm in period t, as discussed next.

Profits are equal to after-tax sales revenues net of the wage bill. Sales revenues are
determined by the demand function (8), so that (nominal) after-tax revenue equals

(1− τt) pt(i)Yt
(
pt(i)

Pt

)−η
.

Here τt is a proportional tax on sales revenues in period t, {τt} is treated as an exogenous
disturbance process, taken as given by the monetary policymaker. We assume that τt fluc-
tuates over a small interval around a non-zero steady state level τ . We allow for exogenous
variations in the tax rate in order to include the possibility of “pure cost-push shocks” that
affect the equilibrium pricing behavior while implying no change in the efficient allocation
of resources.

The labor demand of firm i at a given industry-specific wage wt(j) can be written as

ht(i) =

(
Yt
At

)φ
pt(i)

−ηφP ηφ
t , (19)

which follows from (7) and (8). Using this, the nominal wage bill is given by

Ptwt(j)ht(i) = Ptwt(j)

(
Yt
At

)φ
pt(i)

−ηφP ηφ
t .

Subtracting the nominal wage bill from the above expression for nominal after tax revenue,
we obtain the function Π (pt(i), PT , wT (j), YT , AT ) used in (18).
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Each of the suppliers that revise their prices in period t chooses the same new price p∗t ,
that maximizes (18). The first-order condition with respect to pt(i) is given by13

EPt

∞∑
T=t

αT−tQt,TΠ1 (pt(i), PT , wT (j), YT , AT ) = 0.

The equilibrium choice p∗t , which is the same for each firm i in industry j, is the solution to
this equation. Letting pjt denote the price charged by firms in industry j at time t, we have
pjt = p∗t in periods in which industry j resets its prices and pjt = pjt−1 otherwise.

Under the assumed isoelastic functional forms, the optimal choice has a closed-form
solution (

p∗t
Pt

)1+η(φ−1)

=
EPt
∑∞

T=t α
T−tQt,T

η
η−1

φwT (j)
(
YT
AT

)φ (
PT
Pt

)ηφ+1

EPt
∑∞

T=t α
T−tQt,T (1− τT )YT

(
PT
Pt

)η . (20)

The price index evolves according to a law of motion

Pt =
[
(1− α) p∗1−ηt + αP 1−η

t−1

] 1
1−η , (21)

as a consequence of (9). The equilibrium inflation in any period is characterized by

(
Pt
Pt−1

)η−1

=
1− (1− α)

(
p∗t
Pt

)1−η

α
. (22)

The welfare loss from price adjustment frictions can be captured by price dispersion, which
is defined as

∆t ≡
∫ 1

0

(
pjt
Pt

)−η(1+ω)

dj ≥ 1, (23)

where
ω ≡ φ(1 + ν)− 1 > 0

is the elasticity of real marginal cost in an industry with respect to industry output.
Using equation (21) together with the fact that the relative prices of the industries that

do not change their prices in period t remain the same, one can derive a law of motion for
the price dispersion term ∆t of the form

∆t = h(∆t−1, Pt/Pt−1), (24)

with

h(∆t, Pt/Pt−1) ≡ α∆t

(
Pt
Pt−1

)η(1+ω)

+ (1− α)

1− α
(

Pt
Pt−1

)η−1

1− α


η(1+ω)
η−1

.

13Note that supplier i’s profits in (18) are a concave function of the quantity sold yt(i), since revenues are

proportional to yt(i)
η−1
η and hence concave in yt(i), while costs are convex in yt(i). Moreover, since yt(i)

is proportional to pt(i)
−η, the profit function is also concave in pt(i)

−η. The first-order condition for the
optimal choice of the price pt(i) is the same as the one with respect to pt(i)

−η; hence the first-order condition
with respect to pt(i) is both necessary and sufficient for an optimum.
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As is commonly done, we assume that the initial degree of price dispersion is small (∆−1 ∼
O(2)).

Equations (20), (22), and (24) jointly define a short-run aggregate supply relation be-
tween inflation, output and house prices (via the aggregate demand equation (10) and (13)),
given the current disturbances ξt, and expectations regarding future wages, prices, output,
consumption and disturbances. Equation (24) describes the evolution of the costs of price
dispersion over time.

For future reference, we remark that all firms together make total profits equal to

Σt

Pt
= (1− τt)Yt − wtHt, (25)

where wtHt =
∫ 1

0
wt(j)Ht(j)dj.

3.3 Government

The government consumes goods gtYt, imposes a sales tax τt, issues nominal bonds B̃t ≡ PtBt,
and pays for lump sum transfers Tt to households. The government budget constraint is given
by

Bt = Bt−1
1 + it−1

Pt/Pt−1

+
Tt
Pt

+ (gt − τt)Yt.

For simplicity, we assume that lump sum transfers (taxes if negative) are set such that they
keep real government debt constant at some initial level B−1. This implies that government
transfers are given by

Tt
Pt

= −(gt − τt)Yt +Bt−1

(
1− 1 + it−1

Pt/Pt−1

)
. (26)

3.4 Market Clearing Conditions

Using (10) and (13), one can express the market clearing condition for the consumption/investment
good as

Yt =
Ct + ΩtC

σ̃−1

1−α̃
t

1− gt
, (27)

where

Ωt ≡
(
Adt C̄

−σ̃−1

t qut

) 1
1−α̃

> 0 (28)

is a term that depends on exogenous shocks and belief distortions in the housing market
only, see equation (15). The previous two equations implicity define a function

Ct = C(Yt, q
u
t , ξt), (29)

which delivers the market clearing consumption level, for a given output level Yt, given
housing prices qut and given exogenous disturbances ξt.

The market clearing condition for housing is

Dt = (1− δ)Dt−1 + d̃(kt; ξt), (30)
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and rental market clearing requires
DR
t = 0. (31)

Labor market clearing requires that the supply of labor of type j in (11) is equal to labor
demand of industry j, which is given by (19), as all firms in the industry charge the same
price. This delivers

wt(j) =
ṽH(Ht(j); ξt)

ũC(Ct; ξt)
=
λ (Ht(j))

ν H̄−νt

C−σ̃
−1

t C̄ σ̃−1

t

= λ
H̄−νt
C̄ σ̃−1

t

(
Yt
At

)νφ
C σ̃−1

t

(
pjt
Pt

)−νηφ
, (32)

where pjt = p∗t in periods where industry j can adjust prices and pjt = pjt−1 otherwise.

3.5 Internally Rational Expectations Equilibrium

We are now able to define an internally rational expectations equilibrium (IREE).

Definition 1 An internally rational expectations equilibrium is a bounded stochastic process
for {Yt, Ct, kt, Dt, {wt(j)}, p∗t , Pt,∆t, q

u
t , it}

∞
t=0 satisfying the aggregate supply equations (20),

and (22), the law of motion for the evolution of price distortions (24), the household opti-
mality conditions (13), (15), (16), and the market clearing conditions (27), (30) and (32),
where the latter has to hold for all industries j.

The equilibrium features ten variables (counting the continuum of wages as a single
variable) that must satisfy nine conditions, leaving one degree of freedom to be determined
by monetary policy.14 In the special case with rational expectations, EPt [·] = Et[·], the IREE
is a rational expectations equilbrium (REE).

Given the equilibrium outcomes, the remaining model variables can be determined as
follows. Equilibrium profits are given by equation (25) and equilibrium taxes by equation
(26). Equilibrium labor supply Ht(j) follows from equation (11) for each type of labor j.
Equilibrium bond holdings satisfy Bt = B−1 and equilibrium inflation is

Πt ≡ Pt/Pt−1.

Equilibrium rental units follow from equation (31) and equilibrium rental prices from equa-
tion (14).

4 The Nonlinear Optimal Policy Problem

We shall consider Ramsey optimal policies in which the policymaker chooses the sequence of
policy rates, prices and allocations to maximize household utility under rational expectations,
subject to the constraint that prices and allocations constitute an Internally Rational Expec-
tations Equilibrium. The policymaker thus maximizes utility under a probability measure
that is different from the one entertained by households, whenever the latter hold distorted
beliefs. Benigno and Paciello (2014) refer to such a policymaker as being ’paternalistic’.

14The transversality condition (17) must also be satisfied in equilibrium, but is not imposed as an equi-
librium condition, as it will hold for all belief specifications considered below.
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The objective of the policymaker is to maximize household utility. Using equation (8) to
express the relative quantities demanded of the differentiated goods each period as a function
of their relative prices and the linear dependence of utility on the stock of assets, we can
write the utility flow to the representative household in the form

u(Yt, q
u
t ; ξt)− v(Yt; ξt)∆t + ξ̄

d
t

Adt
α̃
kα̃t ,

with

u(Yt, q
u
t ; ξt) ≡ ũ(C(Yt, q

u
t , ξt); ξt)

v(yjt ; ξt) ≡ ṽ(f−1(yjt/At); ξt),

where ∆t, defined in equation (23), captures the misallocations from price dispersion. The
term

ξ̄
d
t ≡

∞∑
T=t

Et[(1− δ)T−t βT−tξdT ]

captures the present value contribution from new housing investment. We can use (13), and
(29) to express kt in terms of Yt, q

u
t and exogenous shocks. Hence, we can express the policy

maker’s objective of maximizing (1) under rational expectations, as maximizing

U = E0

∞∑
t=0

βtU(Yt,∆t, q
u
t ; ξt),

where the flow utility is given by

U(Yt,∆t, q
u
t ; ξt) ≡

C̄ σ̃−1

t C(Yt, q
u
t , ξt)

1−σ̃−1

1− σ̃−1

− λ

1 + ν
H̄−νt

(
Yt
At

)1+ω

∆t

+
Adt ξ̄

d
t

α̃
Ω(qut , ξt)

α̃ C(Yt, q
u
t , ξt)

α̃
1−α̃ σ̃

−1

, (33)

which is a monotonically decreasing function of ∆ given Y , qu and ξ and where Ω(qu, ξ)
is the function defined in (28). The only endogenous variables that are thus relevant for
evaluating the policymaker’s objective function are Yt, ∆t and qut . Note that the policymaker
holds rational expectations about these variables and maximizes expected utility under the
rational probability measure, while agents might hold subjective beliefs.

The non-linear optimal monetary policy problem is then given by

max
{Yt,qut ,p∗t ,wt(j),Pt,∆t,it≥0}

E0

∞∑
t=0

βtU(Yt,∆t, q
u
t ; ξt) (34)
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subject to

(
p∗t
Pt

)1+η(φ−1)

=
EPt
∑∞

T=t (α)T−tQt,T
η
η−1

φwT (j)
(
YT
AT

)φ (
PT
Pt

)ηφ+1

EPt
∑∞

T=t (α)T−tQt,T (1− τT )YT

(
PT
Pt

)η (35)

wt(j) = λ
H̄−νt
C̄ σ̃−1

t

(
Yt
At

)φν
C (Yt, q

u
t , ξt)

σ̃−1

(
p∗t
Pt

)−ηφν
(36)

(Pt/Pt−1)η−1 =
1− (1− α)

(
p∗t
Pt

)1−η

α
(37)

∆t = h(∆t−1, Pt/Pt−1) (38)

ũC(C(Yt, q
u
t , ξt); ξt) = lim

T→∞
EPt

[
ũC(CT ; ξT )βT

T−t∏
k=0

1 + it+k
Pt+k+1/Pt+k

]
(39)

qut = ξdt + β(1− δ)EPt qut+1 (40)

where the initial price level P−1 and the initial price dispersion ∆−1 are given. Equation (36)
insures that wages clear current labor markets. Similarly, by setting Ct = C(Yt, q

u
t , ξt) on the

left-hand side of the consumption Euler equation (39), we impose market clearing for output
goods in period t. Similarly, setting qut equal to the value defined in (40) insures market
clearing in the housing market.15 Firms’ subjective expectations about future wages and
households’ subjectively optimal consumption plans for the future, however, will generally
not be consistent with labor market or goods market clearing in the future, whenever beliefs
deviate from rational ones.

To be able to analyze the policy problem (34) further, it will be necessary to be more
specific about the beliefs P entertained by households and firms about external variables
entering their decision problem.

5 Housing Prices Dynamics: Alternative Views

We shall now consider two alternative belief settings that give rise to different drivers for
housing price dynamics.16

The first setting we consider is entirely standard and assumes that agents hold rational
expectations (RE) about all variables. Housing prices will then exclusively be driven by
housing demand shocks. While this is a useful benchmark to consider, the assumption of
rational housing price expectations is not supported by empricial evidence available from
survey expectations about future housing prices, as we show in section 5.3 below. We
therefore consider a second setting that allows for subjective housing price and rental rate

15This holds as long as Dmax is chosen sufficiently large, such that it never binds along the equilibrium
path.

16Recall from our earlier discussion that firms must hold beliefs about future values of Pt, wt(j), Yt and
that households must hold beliefs about future values of (Pt, wt(j), q

u
t , Rt, it,Σt/Pt, Tt/Pt). Both actors must

additionally hold beliefs about the fundamental shocks entering their decision problem. We always assume
that these beliefs are rational.
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beliefs. We maintain the assumption of rational expectations for all other variables to make a
minimal deviation from the standard setting. The setting with subjective housing beliefs will
align well with the properties of survey expectations, as we document in section 5.3. Housing
prices will then depend on two economic forces: housing demand shocks and subjective
optimism/pessimism about future housing prices.

5.1 Housing Prices under Rational Expectations

The following lemma summarizes the housing price dynamics under rational expectations
(RE):17

Lemma 1 Under RE, the equilibrium housing price is

qu,REt = ξ̄
d
t , (41)

where

ξ̄
d
t ≡

∞∑
T=t

Et[(1− δ)T−t βT−tξdT ] (42)

captures the present value contribution to household utility from new housing investment.
The price-to-rent (PR) ratio is

PRRE
t =

qu,REt

ξdt
. (43)

To a first-order approximation, we have

q̂u,REt =
1− β(1− δ)

1− β(1− δ)ρξ
ξ̂
d

t , (44)

P̂R
RE

t =

(
β(1− δ)

(
ρξd − 1

)
1− β(1− δ)ρξd

)
ξ̂
d

t (45)

where hatted variables denote percent deviations from steady state.

Proof. See Appendix C.

Equations (44) and (45) show that housing prices display large and persistent variations over

time, whenever housing demand shocks ξ̂
d

t display large and persistent variations. In fact,
housing demand shocks are a commonly used modelling approach for generating large and
persistent housing price fluctuations in the RE literature (Iacoviello (2005)). The approach
pre-supposes that the observed housing prices fluctuations are in fact efficient, as they reflect
preference fluctuations.18

17Under the RE hypothesis, households hold rational expectations about the prices {Pt, wt(j), qut , Rt, it},
firms hold rational expectations about {Pt, wt(j), Yt}, and all actors hold rational expectations about the
exogenous fundamentals. Household expectations about {Σt/Pt, Tt/Pt} are given by equations (25) and
(26), evaluated with rational output expectations and the optimal choices for {Ht, kt, Bt}.

18Under RE, this is also the case in the present setup: actual housing prices fluctuate as much as efficient
housing prices.
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Equations (44) and (45) show that lower natural rates, i.e., a higher value for β, increase
the volatility of house prices, in line with the empirical evidence. Yet, the effect of lower
natural interest rates on housing price volaility is bounded, because the coefficients premul-
tiplying ξdt in equations (44) and (45) is never larger than one, when ρξ ∈ (0, 1). As we shall
see, this will cause the predicted increase in housing price volatility, when considering a drop
in the natural rate from pre-1990 levels to post-1990 levels, to fall short of the empirically
observed increase. To match the increase in housing price volatility under RE one thus has
to assume that the volatility of housing demand shocks has increased over the period in over
which natural rates decreased.

5.2 Housing Prices with Subjective Housing Price Beliefs

Our second belief setting considers a single deviation from the rational expectations assump-
tion, which allows for the presence of subjective capital gain expectations in housing markets
and associated subjective beliefs for rental prices for an arbitrarily long but finite amount
of time t ≤ T̄ < ∞.19 We will discuss the empirical plausibility of the subjective belief
specification in the next subsection.

To isolate the effects of speculative housing and rent price expectations, we continue to
assume that households hold rational expectations about all other prices at all times, i.e.,
about {Pt, wt(j), it}. Likewise, firms hold rational expectations about {Pt, wt(j), Yt} all times
and all actors continue to hold rational expectations about the exogenous fundamentals.
Beliefs about profits and lump sum taxes, {Σt/Pt, Tt/Pt} continue to be determined by
equations (25) and (26), evaluated with rational output expectations and the subjectively
optimal choices for {Ht, kt, Bt}.

The introduction of subjective housing price expectations is motivated by the observation
that reconciling survey expectations about future return expectations with the actual be-
havior of future returns requires introducing some departure from the rational expectations
hypothesis (Adam et al. (2017)). These departures could take the form of extrapolative
expectations (Barberis et al. (2015), Adam and Merkel (2019)), learning about underlying
trends in price growth (Adam et al. (2016)), or learning from life-time experience (Collin-
Dufresne et al. (2016), Nagel and Xu (2019), Malmendier and Nagel (2011, 2016)).20 We
show in Section 5.3 that our subjective belief model matches observed patterns in survey
expectations about future housing prices.

We employ the subjective belief setup of Adam et al. (2016) and consider households

19The fact that agents will eventually hold rational housing and rental price expectations can be interpreted
as agents learning to make rational predictions in the long-run. On a technical level, this will insure that
the transversality condition holds for agents’ subjectively optimal plans.

20Adam et al. (2020) show that this discrepancy between survey return expectations and actual return
behavior cannot be explained away by assuming that survey repondents confound beliefs and preferences
when answering the survey questions and report, for instance, risk-neutral or pessimistically tilted expec-
tations. Armona et al. (2019) provide experimental evidence for extrapolative expectation formation about
house prices. Soo (2018) documents the extrapolative nature of housing expectations based on a constructed
housing sentiment index.
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who perceive (for all periods t ≤ T̄ ) risk-adjusted price growth to follow

qut
qut−1

= bt + εt, (46)

where bt is an unobserved persistent growth component given by

bt = bt−1 + νt

and εt ∼ iiN(0, σ2
ε) and νt ∼ iiN(0, σ2

ν) are independent transitory shocks. Adam et al.
(2016) show that Bayesian belief updating implies that subjective conditional expectations
are given by:21

EPt

(
qut+1

qut

)
= βt, (47)

where βt evolves according to

βt = min

{
βt−1 +

1

α

(
qut−1

qut−2

− βt−1

)
, βU

}
, (48)

with 1/α denoting the Kalman gain, which depends on the subjectively perceived values for
(σ2

ε , σ
2
ν), and where the upper bound βU < (β(1− δ))−1 insures that optimism is bounded

from above, so as to keep subjectively expected utility finite.22

Equation (48) implies that subjective optimism rises (falls), when agents observe risk-
adjusted capital gains that exceed (fall short of) their prior expectations. Since realized
housing prices qut will depend positively on expected future housing price growth βt, this
setup can generate persistent housing booms (busts) from endogenous belief dynamics: as
housing prices increase (decrease), they trigger rising (falling) optimism and therefore future
housing price increases (decreases), consistent with the empirical observation that capital
gains in housing markets display considerable auto-correlation over time.

Associated with the subjective housing price expectations are subjectively optimal con-
sumption plans, as determined by the Euler equation (16). These subjective consumption
plans satisfy the transversality condition (17), as shown in Appendix C.1, when agents’
housing price expectations are rational in the arbitrarily distant future. We insure this by
assuming that from some (arbitarily distant) period T̄ < ∞ onwards, housing price beliefs
are given by

qut = ξ̄
d
t for all t ≥ T̄ ,P almost surely,

instead of by equation (46), where ξ̄
d
t is the housing price under rational expectations.

The subjectively optimal consumption plans determine, according to equation (14), the
subjective rental price expectations that households must entertain together with their sub-
jective housing price expectations. These subjective rental price expectations are required to

21This assumes that agents entertain normally distributed conjugate prior belief about the unobserved
persistent component bt.

22The bounding function in (48) is a special case of the bounding function used in equation (27) in Adam
et al. (2016), which is obtained by setting βL = βU .
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make the household’s subjective beliefs consistent with internal rationality.23 The long-run
beliefs about housing price and rental rate beyond period T̄ are rational, with housing price
expectations being given by equation (41).

The following lemma derives the equilibrium PR-ratio and housing price under the con-
sidered subjective belief specification:

Lemma 2 With subjective housing price expectations, the equilibrium housing price for pe-
riods t < T̄ is given by

qu,Pt =
1

1− β(1− δ)βt
ξdt , (49)

where βt evolves according to (48). The percent deviation of housing prices from steady state
is

q̂u,Pt =
1− β(1− δ)

1− β(1− δ)βt
ξ̂
d

t +
β(1− δ)(βt − 1)

1− β(1− δ)βt
(50)

= q̂u,REt +
β(1− δ) (βt − 1)

1− β(1− δ)βt
+

(1− β(1− δ)) β(1− δ) (βt − ρξ)
(1− β(1− δ)βt) (1− β(1− δ)ρξ)

ξ̂
d

t , (51)

where hatted variables denote percent deviations from steady-state values.
Therefore, we can express the expected housing price under subjective beliefs as follows

EPt

[
q̂u,Pt+1

]
= Et

[
q̂u,REt+1

]
+ (βt − 1)

[
1 +

β(1− δ)
1− β(1− δ)βt

]
(52)

+ (1− β(1− δ)ρξ − (1− β(1− δ)βt) ρξ)
(1− β(1− δ))

(1− β(1− δ)βt) (1− β(1− δ)ρξ)
ξ̂
d

t ,

(53)

which becomes

EPt

[
q̂u,Pt+1

]
= Et

[
q̂u,REt+1

]
+ (βt − 1)

[
1 +

β(1− δ)
1− β(1− δ)βt

(
1 + ξ̂

d

t

)]
(54)

as ρξ → 1.

Proof. See Appendix C.

The lemma shows that housing prices under subjective beliefs fluctuate because of fluctu-

ations in the fundamental shocks ξ̂
d

t and because of fluctuations in the subjective beliefs
βt.

In the special case without subjective belief fluctuations (βt = 1 for all t < T̄ ) and with
a unit root in the fundamental shocks (ρξ → 1), the housing price under subjective beliefs is

equal to the one under rational expectations at all times, in particular q̂u,Pt = q̂u,REt . Since

23Households’ subjective beliefs are otherwise inconsistent with the household first-order conditions. This
shows how internal rationality imposes restrictions on what rational agents can plausibly believe about
external variables.
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ρξ will be close to one in the calibration used later on, the subjective belief setup would
generate close-to-rational expectations absent belief-fluctuations.24

In general, fluctuations in housing price expectations generate additional housing price
fluctuations, which then feed back into housing price expectations. Adam et al. (2016) show
that these fluctiations take the form of persistent boom-bust cycles, in line with the observed
dyanmics of housing prices in the data.

As the steady-state natural interest rate falls, i.e., as the discount factor β moves closer
to one, the subjective belief dynamics will display more instability and thereby generate
more variable housing prices. This is illustrated in Figure 6, which depicts the standard
deviation of the housing price qut as a function of the steady-state natural interest rate, using
the calibrated subjective belief model presented later on. The reason for the downward
sloping pattern of housing price volatility is that housing prices become more sensitive to
belief revisions as the term β(1−δ) in the denominator of equation (49) moves closer to one:
the denominator 1 − β(1 − δ)βt then fluctuates around numbers that are closer to zero, so
that any given revision of beliefs has larger pricing implications. This again feeds back into
larger belief revisions.

In contrast to the RE model, the subjective belief model will thus be able to generate a
sufficiently strong increase in house price volatility, following a drop in the average natural
rate, without having to resort to changes in the volatility of housing demand shocks ξdt .
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Figure 6: Unconditional standard deviation of housing prices qut
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24A setting with constant growth expectations βt = 1 is in fact a special setting of the subjective belief
setup. It requires that initial beliefs (1) assign probability one to b0 = 1 and (2) probability one to σ2

ν = 0.
Bayesian updating then implies 1/α = 0 in equation (48). More generally, however, if prior beliefs are such
that σ2

ν > 0, then α < ∞ and realized growth rates of housing prices will influence subjective expectations
about future housing price growth.

25Section 7 shows that the subjective belief model is indeed capable of generating the observed volatility
in the data.
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5.3 Empirical Evidence on Housing Price Expectations

In this section, we show that survey expectations about housing prices are inconsistent with
full-information rational expectations. Our model under subjective beliefs, on the other
hand, matches the empirical findings. Notably, the model’s quantitative predictions, given
the calibration outlined in Section 7, align well with their empirical counterparts, even though
none of these moments was targeted in our calibration strategy.

First of all, we find that expected capital gains are positively correlated with current price-
to-rent ratios. For actual capital gains, on the other hand, we find a negative relationship.
This difference in the cyclicality of actual versus expected capital gains is at odds with the
rational expectations hypothesis. Second, we show that ex post forecast errors about house
prices are positively correlated with ex ante revisions in expectations. This finding points
towards a sluggish belief adjustment, consistent with our model under subjective beliefs.
Again, these findings are inconsistent with full-information rational expectations as in that
case forecast errors are unpredictable.

5.3.1 Cyclicality of Actuals versus Expected Capital Gains

We obtain data on housing price expectations from the Survey of Consumers from the Uni-
versity of Michigan. Survey respondents report how much they expect housing prices to grow
over the next four quarters.26 Data on nominal housing prices is taken from the Case-Shiller
House Price Index.

Table 2: Expected vs. actual capital gains

bias ·103 p-value
ĉ · 103 ĉ · 103 −E(ĉ− ĉ) H0 : c = c

Nominal Housing Prices
Mean 0.607 -0.462 0.023 0.000
Median 0.187 -0.462 0.106 0.0571
Real Housing Prices
Mean 0.607 -0.532 0.022 0.000
Median 0.187 -0.532 0.105 0.0351

We follow Adam et al. (2017) and regress expected and realized capital gains on the level
of the PR ratio and test whether the two coefficients are equal, which would be true under
rational expectations. Furthermore, we correct for small sample bias. Thus, we run the
following two regressions

EPt [CGt+4] = a+ c · PRt + ut (55)

CGt+4 = a + c · PRt + ut (56)

26The exact variable we use for the expected gross growth rate is the answer to the following question: By
about what percent do you expect prices of homes like yours in your community to go (up/down), on average,
over the next 12 months?
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and test whether c and c are equal. Here, EPt [CGt+4] ≡ HPt+4

HPt
and CGt+4 ≡ HPt+4

HPt
denote

the expected and actual capital gains for the next four quarters. We do this for nominal
housing prices as well as for real housing prices for which we divide nominal housing prices
by the GDP deflator.

Table 2 shows the results. While a high PR ratio is usually associated with low future
capital gains, the expected capital gains are higher when PR ratios are high. From the last
column we observe that this difference in the cyclicality of actual versus expected capital
gains is statistically significant. We therefore reject the rational expectations hypothesis.

To compare these results with the model predictions, we re-run regressions (55) and (56)
on model-simulated data. For the expected capital gain expectation four periods ahead, we
use the fact that households in our model perceive housing-price growth to follow a random

walk. Therefore, EPt [CGt+4] = β4
t . Actual capital gains are given by CGt+4 =

qut+4

qut
, and the

PR ratio is given by PRt =
qut
ξdt

as shown in Appendix C.

Table 3 shows the results for different average natural rates. We observe the same pattern
in the model as we observed in the data. Actual capital gains are countercyclical with respect
to price-to-rent ratios, while expected capital gains are procyclical. The point estimates lie
in the ballpark of the empirical estimates, especially for relatively low natural rates.

Table 3: Expected vs. actual capital gains

Model Michigan Survey

Specification rn = 3.34% rn = 1.91% rn = 1% rn = 0.25% Mean Median

ĉ · 103 1.000 0.601 0.395 0.220 0.607 0.187
ĉ · 103 -1.815 -1.161 -0.756 -0.527 -0.462 -0.462

5.3.2 Sluggish Adjustment of Housing Price Expectations

Following Coibion and Gorodnichenko (2015), we regress forecast errors about the level of
housing prices on the revisions in these forecasts. We therefore compute the expected level
of housing prices by multiplying the expected housing-price growth rates, EPt

[
ght+4

]
with the

current level
EPt [HPt+4] =

(
1 + EPt

[
ght+4

])
·HPt, (57)

where HP denotes real house prices. We consider average and median responses as our
measure of expected house price growth. In the model, we focus on house prices in terms of
marginal utility of consumption, denoted by qut . If we assume that marginal consumption—
which is indeed relatively stable over time in the data—is constant, the model and the data
coincide up to a constant scaling factor.

Forecast errors in house price expectations are given by Errort ≡ HPt+4 − EPt [HPt+4],
and revisions are computed as Revisionst ≡ EPt [HPt+4]− EPt−1 [HPt+3].

We run the following regression

Errort = α + βCG ·Revisionst + εt, (58)
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where the coefficient of interest, βCG, carries the subscript CG as a shorthand notation for
Coibion and Gorodnichenko (2015).

Table 4 shows the results. In the first two columns, we see the empirical regression
coefficients for two different sample periods. The last four columns show the model-implied
coefficients for different average natural rates. Both empirical estimates are positive and
highly statistically significant, even though the sample size is quite small. We control for
serial correlation and heteroskedasticity in the error term by using the Newey-West estimator
including four lags.27

We observe that the estimates are quite close to the model-implied ones, especially for
relatively low natural rates. These results are robust to using median survey expectations
instead of averages as well as other specifications, such as using an instrumental-variable
regression in which we instrument forecast revisions with monetary policy shocks obtained
via high-frequency identification (see Appendix D.1 for the robustness of our results). Al-
together, the data—consistently with our model under subjective beliefs—indicates that if
consumers revise their house price expectations, they do so insufficiently.

The positive sign of βCG is consistent with previous findings on survey expectations, con-
cerned with other macroeconomic variables such as output, inflation or unemployment (see,
e.g., Coibion and Gorodnichenko (2015), or Angeletos et al. (2020)). Bordalo et al. (2018)
provide similar evidence for a number of variables, including residential investment and new
housing starts. Note, βCG 6= 0 is inconsistent with full-information rational expectations as
forecast errors should not be predictable by forecast revisions. The regression coefficient βCG
coming from the model under rational expectations is therefore equal to zero.

Table 4: Sluggish Adjustment of Housing Price Expectations

2007 - 2019 2010 - 2019 rn = 3.34% rn = 1.91% rn = 1% rn = 0.25%
βCG 2.14∗∗∗ 1.54∗∗∗ 0.73 1.15 1.71 2.96

(0.540) (0.509)

Note: The first two columns show the empirical estimates for different samples. The last four columns show
the model-implied regression coefficients for different levels of the average natural rates.
Significance levels: ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1

In Appendix D, we show that these results are robust to using median instead of mean
expectations, to using monthly data instead of quarterly data, and to an IV approach in
which we instrument the forecast revisions. Additionally, we divide the survey respondents
into three groups based on their income and show that we observe very similar patterns of
forecast errors in all three groups.

6 Quadratic Approximation of the Policy Problem

One can obtain analytic insights into the nature of the nonlinear optimal monetary policy
problem by considering a quadratic approximation to the objective (34) and a linear approx-

27The results are robust to using different lag lengths.
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imation to the constraints (35)-(40), keeping the lower-bound constraint on nominal interest
rates in its nonlinear form.28

Appendix A shows that under the considered belief setting, the Lagrangian of the optimal
policy problem can be approximated as follows:

max
{πt,ygapt ,q̂ut ,it≥i}

min
{ϕt,λt}

(59)

E0

∞∑
t=0

βt

{
− 1

2

(
Λππ

2
t + Λy (ygapt )2

)
+ ϕt [πt − κyygapt − κq (q̂ut − q̂u∗t )− ut − βEtπt+1] (60)

+ λt

[
ygapt − lim

T
Ety

gap
T + ϕEt

∞∑
k=0

(
it+k − πt+1+k − rn,REt+k

)
+
Cq
CY

(q̂ut − q̂u∗t )

]
(61)

− ϕ−1π0 − λ−1

(
ϕπ0 − ygap0 − Cq

CY
(q̂u0 − q̂u∗0 )

)}
.

The variable πt denotes inflation, ygapt the output gap, it nominal interest rates, and q̂ut − q̂u∗t
the housing price gap. The housing price gap is the difference between the housing price q̂ut
and its efficient welfare-maximizing level q̂u∗t , which (in nonlinear terms) is given by29

qu∗t = ξ
d

t . (62)

Nominal interest choices are subject to an effective lower bound it ≥ i, where the lower
bound i < 0 is expressed in terms of deviation from the interest rate in a zero-inflation steady
state. For the case with a zero lower bound on nominal rates, we have i = −(1− β)/β.

Constraint (60), which features the Lagrange multiplier ϕt, is the New Keynesian Phillips
Curve for our model with housing and depends on the housing price gap. The coefficients
κq < 0 and κy > 0 are defined in appendix A.3 and imply that a positive housing price
gap has a negative cost-push effects. This is so because high housing prices increase housing
investment. For a given output gap, higher housing investment raises the marginal utility of
non-housing consumption, thereby depressing wages and marginal production costs.

Constraint (61), which features the Lagrange multiplier λt, is the linearized (and forward-
iterated) IS equation. The coefficients Cq < 0 and CY > 0 are the derivatives of the
function C(·) defined in (29) with respect to qu and Y , respectively, evaluated at the efficient
steady state. The long-run output gap expectations limT Ety

gap
T in the IS curve are the ones

28This will deliver a valid second-order approximation to the problem for small shock disturbances, when-
ever (i) the steady-state Lagrange multipliers associated with the constraints are of order O(1), which is the

case when the steady state output distortion Θ ≡ log
(

η
η−1

1−g
1−τ

)
is of order O(1), and (ii) the gap between

the steady-state interest rate and the lower bound, i.e., 1
β − 1, is also of O(1). Eggertsson and Singh (2019)

compare the exact solution of the New Keynesian model with lower bound to the solution of the linear-
quadratic approximation with lower bound and show that the quantitative deviations are modest, even for
extreme shocks of the size capturing the 2008 recession in the U.S..

29See the derivation in appendix C.2.
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associated with a setting in which agents hold rational housing expectations.30 The initial
Lagrange multipliers (ϕ−1, λ−1) capture initial pre-commitments.

Interestingly, the expectations showing up in the monetary policy problem (59) are all
rational. Therefore, subjective housing price expectations affect the monetary policy problem
solely through their effects on housing price gaps. These gaps are determined differently
under RE and under subjective beliefs, see section 5.

An interesting novel feature of our setup is that the housing price gap also enters the
IS equation (61), which is key for understanding the quantitative results presented later on.
The RE natural interest rate rn,REt entering the IS equation is thereby defined in the usual
way: it is the real interest rate consistent with the optimal consumption level in a setting
with flexible prices and rational expectations.31 Importantly, the restrictions that the IS
constraint (61) imposes on monetary policy choices depend on the belief setting, as we dis-
cuss next.

Rational Housing Price Expectations. With fully rational expectations, it follows from
lemma 1 and equation (62) that

q̂ut = q̂u∗t . (63)

The housing price gap is thus always zero. In particular, the housing price gap is independent
of monetary policy and economic shocks. While policy can affect the level of raw housing
prices (q̂t), it cannot affect the housing price in marginal utility units (q̂ut ). This will also be
true for the setting with subjective housing beliefs and explains why one can ignore utility
contributions from the housing price gap in the objective function of problem (59), despite
the fact that the nonlinear utility function (34) depends on qut .

Equation (63) implies that under RE the IS equation simplifies to

ygapt = lim
T
Ety

gap
T − Et

(
∞∑
k=0

ϕ
(
it+k − πt+1+k − rn,REt+k

))
,

so that setting real interest rates equal to natural rates each period, i.e., choosing

it − Etπt+1 = rn,REt for all t, (64)

causes the IS equation to be consistent with a constant output gap ygapt = limT Ety
gap
T for

all t, as in the simple New Keynesian model without housing. In the presence of a zero
lower bound constraint on nominal rates, however, it will generally not be optimal (or even
impossible) to implement (64) at all times.

The RE housing investment gap k̂t − k̂∗t is given by32

k̂t − k̂∗t =
σ̃−1CY
1− α̃

ygapt , (65)

30Recall that we assume housing expectations to be rational in the long-run for all our belief settings. Our
numerical solution approach solves for the long-run expectations together with the state-contingent optimal
policy functions.

31See appendix A.4 for the precise definition.
32Equation (65) follows from linearizing equation (13) and using the linearized version of equation (29) to

substitute consumption.
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which shows that housing investment under RE is purely driven by movements in the output
gap. This is so because the house price gap is 0, so that additional output will be allocated
with constant shares to housing and non-housing consumption. For the calibration used
later on, we have σ̃−1CY

1−α̃ > 0, so that the output gap comoves positively with the housing
investment gap.

Subjective housing price expectations. With subjective housing price beliefs, the
efficient level of housing prices continues to be given by equation (62), but housing prices
are now jointly determined by equations (48) and (50).33 As a result, the housing price gap
q̂ut − q̂u∗t will generally differ from zero, with the housing price gap exceeding (falling short of)
zero, whenever agents’ subjective capital gain expectations βt are larger than one (smaller
than ρξ).

34

With subjective housing price beliefs, a policy that sets real interest rates equal to the
RE natural real rate rn,REt ceases to deliver a constant output gap. In particuarl, the IS
equation then implies

ygapt = lim
T
Ety

gap
T − Cq

CY
(q̂ut − q̂u∗t ) ,

which shows that high house price gap (q̂ut − q̂u∗t > 0) will then be associated with a more pos-
itive output gap (recall that Cq/CY < 0): high housing prices stimulate housing investment
and thus output.

The following lemma derives the natural rate rn,Pt that - in a setting with subjective
beliefs - causes the IS equation to be consistent with a constant output level. As in the case
with RE, it will generally not be optimal (or not even feasible) to set interest rates equal to
this natural rate level at all times in the presence of a lower bound constraint on nominal
rates:

Lemma 3 Define the natural rate under subjective beliefs as

rn,Pt ≡ rn,REt − 1

ϕ

Cq
CY

(
(q̂ut − q̂u∗t )− Et

(
q̂ut+1 − q̂u∗t+1

))
for all t, (66)

where Et[·] denotes the rational expectations operator. When real interest rates are equal to
rn,Pt for all t, the IS equation is consistent with

ygapt = lim
T
Ety

gap
T for all t.

Proof. See Appendix C.

Equation (66) generalizes the natural interest rate definition under RE to a setting with
potentially subjective beliefs. In the special case with a constant housing price gap, we have

33Since the equations do not depend on policy, one can again treat the housing price gap as an exogenous
process, as in the case with RE.

34In the intermediate range βt ∈ (ρξ, 1), the ranking depends also on other paramaters. ρξ will be close
to one in our calibration.
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rn,Pt = rn,REt . More generally, predictable fluctuations in the housing price gap will contribute
to fluctuations in the natural rate of interest. To the extent that housing prices and thus
the housing price gap becomes more volatile as the average natural rate falls, natural rate
volatility will go up in line with housing price volatility, as is the case in the data.

Consider, for instance, a setting where the housing price gap is high but expected to
go down over time. We then have Et

(
q̂ut+1 − q̂u∗t+1

)
< (q̂ut − q̂u∗t ) and the natural rate under

subjective beliefs will exceed its RE level. Conversely, if the housing price gap is low or even
negative, but expected to rebound over time, then natural rates will be lower than under
RE.

With subjective beliefs, the housing investment gap is given by

k̂t − k̂∗t =
σ̃−1CY
1− α̃

ygapt +
1 + σ̃−1Cq

1− α̃
(q̂ut − q̂u∗t ) . (67)

Unlike in the case with RE, the housing investment gap is also driven by housing prices.

Given the calibration considered later on, which implies 1+σ̃−1Cq
1−α̃ > 0, a housing price boom

will go hand in hand with a housing investment boom. Therefore, larger housing price
volatility translates into larger housing investment volatility, as tends to be the case in the
data.

In order to solve the problem in (59), we recursify the problem as proposed in Marcet and
Marimon (2019) and solve for the associated value functions and optimal policies. Details
of the recursive formulation can be found in Appendix C.4.

7 Calibration

We calibrate the model to the pre-1990 period in the U.S., matching salient features of the
behavior of natural interest rates and housing prices. We then test the model by considering
its predictions for lower natural rate levels, as observed post 1990.

Table 5 summarizes the model parameterization. The quarterly discount factor β is
chosen such that the steady-state natural rate equals the pre-1990 average of the U.S. natural
rate of 3.34%, as estimated by Holston et al. (2017). The interest rate elasticity of output
ϕ, the slope of the Phillips curve κy, and the welfare weight Λy

Λπ
are taken from table 2 in

Adam and Billi (2006). The Phillips Curve coefficient κq and the ratio Cq/Cy are set as in
Adam and Woodford (2020).35 Details of the calibration are spelled out in Appendix C.6.

We now dicuss parameterization of the exogenous shock processes. We assume that the
RE natural rate follows an AR(1) process with

rn,REt = ρrr
n,RE
t−1 + εnt , (68)

where εnt ∼ iiN(0, σ2
rn). We set ρrn,RE = 0.8 following Adam and Billi (2006) and the

persistence of housing demand shocks ρξd = 0.99, following Adam and Woodford (2020).
The mark-up shock is set to a constant value, so as to economize on the number of state

35The calibration target for the ratio Cq/Cy is the ratio of residential fixed investment over the sum of
nonresidential fixed investment and personal consumption expenditure, which is on average approximately
equal to 6.3% in the US. This and the remaining parameters then imply κq = −0.0023.

30



Table 5: Model Parameterization

Parameter Value Source/Target

Preferences and technology
β 0.9917 Average U.S. natural rate pre 1990
ϕ 1 Adam and Billi (2006)
κy 0.057 Adam and Billi (2006)
Λy
Λπ

0.007 Adam and Billi (2006)

κq −0.0023 Adam and Woodford (2020)
Cq
CY

−0.29633 Adam and Woodford (2020)

δ 0.03/4 Adam and Woodford (2020)

Exogenous shock processes
ρrn 0.8 Adam and Billi (2006)
σrn 0.2940% (RE) Adam and Billi (2006)

0.1394% (subj beliefs)
ρξd 0.99 Adam and Woodford (2020)
σξd 0.0233 (RE) Std. dev. of price-to-rent ratio pre 1990

0.0165 (subj. beliefs)

Subjective belief parameters
α 1/0.007 Adam et al. (2016)
βU 1.0031 Max percent deviation of PR-ratio from mean

variables in the model.36 This is justified by the fact that - given their size and persistence
- mark-up shocks tend to be quantitatively irrelevant for driving the economy towards the
lower bound constraint (Adam and Billi (2006)). Specifically, setting ut = 0 implies that
the model collapses under RE to the setup in Adam and Billi (2006) for the case where one
abstracts from mark-up shock disturbances.

The standard deviations of the innovations to the housing preference and natural rate
shocks are set differently under RE and subjective beliefs, because housing volatility and
natural rate volatility differ across the two specifications.

Under RE, we set σξd so that the model matches the unconditional standard devation of
the percent deviation of the price-to-rent ratio of 6% observed over the period 1970-1990 in
the U.S..37 The standard deviation of the innovation to the natural rate, σrn,RE , is set equal
to the value in Adam and Billi (2006). The implied annual unconditional standard deviation
of the natural rate is then 1.96%.38

For the subjective belief model, we choose again εdt to match the unconditional standard
deviation of the price-to-rent ratio. This is achieved by simulating equations (48) and (49)
and using PRPt = qu,Pt /ξdt to compute the price-to-rent ratio. Doing so requires specifying

36Solving for optimal policy still requires solving an optimization problem featuring six state variables.
37This calibration is based on equation (45). The reported standard deviation refers to ratio of the housing

price over quarterly rent.
38We prefer this calibration approach to matching the standard deviation estimated in Holston et al.

(2017), because Adam and Billi (2006) identify the standard deviation of the natural rate in a way that is
consistent with our structural model, while Holston et al. (2017) use an empirically motivated model.

31



the subjective belief parameters α and βU , which enter equation (48). We set α = 1/0.007
following Adam et al. (2016) and determine σξd and βU jointly such that (1) the volatility of
the price-to-rent ratio is 6% and (2) the simulated data matches the maximum deviation of
the price-to-rent ratio from its sample mean, which is a statistic that identifies βu. This yields
βU = 1.0031 and σξd = 0.165. Note that the innovations to the housing demand disturbance
are less volatile than under RE because part of the fluctuations in housing prices are now
generated by fluctuations in subjective beliefs.

It only remains to determine σrn,RE for the subjective belief model. We choose its
value, such that the generalized natural rate for the subjective belief model, as defined
in equation (66), has the same volatility as the natural rate in the RE model. This yields
σrn,RE = 0.1393%, which is lower than under RE, because belief fluctuations also contribute
to fluctuations in the natural rate.

Figure 7 compares the predictions of the RE and subjective belief model for various
steady-state levels of the natural rate of interest. Since the steady-state level of the natural
rate is purely a function of the time discount factor factor, we vary the discount factor
accordingly. As discussed before, variations in the discount factor may well be driven by
variations in the long-term growth rate of the economy.

Panel (a) in figure figure 7 depicts the standard deviation of the price-to-rent ratio and
panel (b) the standard deviation of the natural rate.39 The dots in the figures report the data
values for the pre- and post 1990 U.S. sample, in which the average natural rate was equal
to 3.34% and 1.91%, respectively.40 Since the model has been calibrated to the pre-1990
period, the RE and subjective belief model both match the pre-1990 data point.

The subjective belief model also performs quite well in matching the post-1990 outcome,
despite the fact that it has not been targeted in the calibration. In particular, the standard
deviation of the price-to-rent ratio and the standard deviation of the natural rate endgoe-
nously increase as the natural rate falls, with the magnitudes roughly matching the increase
observed in the data. In contrast, the RE model produces no increase in the volatility of
the natural rate and an insufficiently strong increase in the volatility of the price-to-rent
ratio. Matching the increase in housing price volatility under RE would require increasing
the volatility of housing demand shocks. However, under RE these shocks are irrelevant for
monetary policy and inflation outcomes, allowing us to ignore volatility increases in hous-
ing preference shocks. Matching the increase in the natural rate volatility would require
increasing the σrn .

8 Quantitative Findings

This section discusses the quantitative impliations of falling natural rates for optimal mone-
tary policy. We start with a discussion of the inflation target implications, then discuss the
effects of shocks for optimal stabilization policy under subjective beliefs and RE.

39These predictions follow directly from the calibration and are independent of policy.
40The reported increase in the standard deviation of the natural rate is based on the estimates in Holston

et al. (2017).
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Figure 7: Standard deviation of Price-to-Rent Ratio and Natural Rate

(a) Standard deviation of price-to-rent ratio (b) Standard deviation of the natural rate
(relative to corresponding mean) relative to case with rn,RE = 3.34%
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8.1 Optimal average inflation

Figure 8 depists the optimal inflation target for different levels of the natural rate of interest,
where changes in the natural rate are brought about by varying the discount factor β.41

The figure shows that a fall in the natural rate leads only to a small increase in the optimal
inflation under rational expectations, as indicated by the red line. Even though lower natural
rates trigger larger housing price fluctuations, these increased fluctuations are efficient, thus
do not require a monetary policy response. In addition, the natural rate of interest is - under
RE - independent of housing fluctuations. Therefore, even at very low levels of the natural
rate, the annualized optimal inflation rate is barely above zero. This shows that the findings
in Adam and Billi (2006) are surprisingly robust towards assuming a lower average natural
rate of interest.

Under subjective beliefs, the optimal inflation target is over all higher and also rises more
strongly as the natural rate falls. In fact, a fall in the steady-state natural rate to 0.25%
causes the optimal inflation target to increase to 1.41%. Already at the pre-1990 average of
the natural rate (3.34%), the inflation target with subjective beliefs is larger than under RE
for any considered level of the natural rate. This is case even though the volatility of the
natural rate is calibrated at this point to be equal across the RE and subjective belief models.
This shows that fluctuations in the natural rate that are induced by belief fluctuations affect
the inflation target more than fluctuations in the natural rate induced by other disturbances.

To illustrate this point, the yellow line in figure 8 shows the optimal inflation rate under
rational expectations, when we set the volatility of the (exogenous) natural rate in the RE
model such that it matches the volatility of implied by the subjective belief model at each
considered natural rate level. While the optimal inflation rate increases relative to the

41Recall that a falling steady-state growth rates is associated with a rise in the discount factor and thus
a decrease in the steady-state real interest rate.
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Figure 8: Average Inflation under Optimal Monetary Policy
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benchmark RE setting, the level of the optimal inflation target still falls short of the one
implied by subjective beliefs.

Figure 9: Zero lower bound episode
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8.2 Optimal Policy Responses at the Lower Bound

To understand why the optimal inflation target is higher under subjective beliefs than under
rational expectations, we consider a specific shock episode that pushes the economy towards
its zero-lower-bound constraint. We do so by considering a steady-state natural rate of
1.91%, which is the post-1990 mean for the United States.
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We initialize the state variables of the economies with RE and subjective beliefs at their
respective ergodic means. We then cause an initial fall in the natural rate and keep the
natural rate at this level for 6 quarters, with no other shocks occuring during this period,
see the panel in the center in the lower row of figure 9. After quarter 6, all shocks operate
again as usual. We then report the mean response of the economy (solid lines in figure 9),
as well as the 1st and 99th percentiles of the response distribution (dashed lines in figure 9).

The fall in the natural rate depresses the output gap and inflation. The monetary pol-
icymaker lowers the nominal rate to counteract this and indeed, the ZLB starts binding in
both economies. The loss, measured by −(Λππ

2
t + Λy (ygapt )2), increases in both cases. After

that, however, the two economies evolve quite differently. First of all, the higher inflation
rate under subjective beliefs induces a lower real rate. This allows the economy to escape
the lower bound faster. Especially in a “worst-case scenario”, indicated by the lower dashed
lines, the optimal policy response in the economy under subjective beliefs is to raise interest
rates shortly after the natural rate starts recovering. The economy under rational expecta-
tions, on the other hand, is kept at the lower bound for a longer time. This is true even
though the potential worst-case scenario is worse under subjective beliefs as housing demand
shocks may exacerbate the situation, as indicated by the evolution of rnt .

While the economy escapes the lower bound faster under subjective beliefs, the hike in
nominal rates is more pronounced under rational expectations if the recovery is supported by
favorable shocks, indicated by the upper dashed lines. This is mirrored in the faster recovery
of the real rate under rational expectations, which is especially driven by the large increase
if future shocks are positive (move the economy away from the bound).

The slower recovery of the real rate under subjective beliefs is nevertheless accompanied
by a greater loss than in a RE setting. This illustrates that the lower bound poses a more
severe problem under subjective beliefs and that it is optimal to allow for a substantially
higher inflation rate.

8.3 Leaning Against Housing Demand Shocks

We now examine the optimal monetary policy response to housing demand shocks.42

Under RE, the housing demand shocks only affect the housing price, but leave nominal
rate, the output gap and inflation unaffected. In contrast, under subjetive beliefs, it becomes
optimal to lean against housing demand shocks, with the optimal response being asymmetric
when faced with positive and negative shocks.

The top row in figure 10 shows the response of housing-related variables. A positive
housing demand shock increases house prices and housing price expectations. As anticipated,
our subjective belief formulation generates momentum in housing prices. In this specific
scenario, the initial shock pushes housing prices up by about 5%, with belief momentum
generating another 5% approximately. As actual house price increases start to fall short of
the expected house price increases, the housing boom slows down and house prices eventually
reverts direction.

42As before, we initialize the economy at its ergodic mean. We then hit the economy with one-time shocks
and average the subsequent response over the possible future shock realizations. As before, the impulse
responses assume a state natural rate of 1.91%, which is the post-1990 mean for the United States.
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Figure 10: Impulse responses to a housing preference shock
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Higher housing prices push up housing investment, which increases the output gap. As
discusse before the increase in housing prices and investment increases marginal utility of
consumption, hence, dampens wages and marginal costs. The result of a positive housing
demand shock is thus a disinflationary housing boom episode.

Optimal monetary policy leans strongly against the housing price increase. In particular,
the policy response is much stronger than when policy faced with a negative housing demand
shock.

9 Conclusion

This paper documents new facts about the changing volatility patterns in housing markets
and the natural rate. In advanced economies, the standard deviation of the price-to-rent
ratio and of the natural rate increased have both increase as the average levels of the natural
rate fell.

We examine the implications of these macroeconomic trends for monetary policy in a New
Keynesian model featuring a housing market and a zero lower bound on nominal interest
rates. Lower natural rates trigger larger volatility in house prices and investment. The
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policy implications of these developments depend on the source of the increased housing price
volatility. If agents hold rational house price expectations, house price fluctuations are driven
by efficient housing demand shocks and optimal policy implies that average inflation should
rise only by very little, following a fall in natural rates. Instead, if housing price volatility is
driven by speculative beliefs about future housing prices, then falling natural rates require
a much stronger increase in average inflation under optimal policy. Larger housing price
fluctuations endogenously trigger more volatility in natural interest rates, which exacerbates
the lower bound problem. Ameliorating the adverse effects of the lower bound then requires
implementing on average higher inflation rates.
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A Quadratic Approximation of the Policy Problem

This appendix derives the linear-quadratic approximation to the nonlinear policy problem
in section 4.

A.1 Optimal Dynamics and the Housing Price Gap

It will be convenient to determine the welfare-maximizing level of output and the welfare-
maximizing housing price under flexible prices, so as to express output and housing prices
in terms of gaps relative to these maximizing values. We thus define (Y ∗t , q

u∗
t ) as the values

(Yt, q
u
t ) that maximize U(Yt, 1, q

u
t ; ξt), which are implicitly defined by43

UY (Y ∗t , 1, q
u∗
t ; ξt) = Uqu(Y ∗t , 1, q

u∗
t ; ξt) = 0.

In particular, we have

qu∗t = ξ
d

t , (69)

as shown in Appendix C.2. We have

q̂u,REt = q̂u∗t , (70)

which shows that housing price fluctuations are indeed efficient under RE.
Under subjective beliefs, it follows from equations (44) and (50) that

q̂u,Pt − q̂u∗t =

(
1− β(1− δ)

1− β(1− δ)βt
− 1− β(1− δ)

1− β(1− δ)ρξ

)
ξ̂
d

t +
β(1− δ)(βt − 1)

1− β(1− δ)βt
. (71)

Again, for the case where βt = 1 and with persistent housing demand shocks (ρξ → 1), the
housing price gap under subjective beliefs is equal to the housing price gap under RE. Belief
fluctuations, however, now contribute to fluctuations in the housing price gap.

For the real house price gap, q̂t − q̂∗t , this implies

q̂t − q̂∗t =
(
1 + σ̃−1Cq

)
(q̂ut − q̂u∗t ) + σ̃−1CY y

gap
t . (72)

A.2 Quadratically Approximated Welfare Objective

A second-order approximation to the utility function delivers44

1

2
UŶ Ŷ (ŷt − ŷ∗t )

2 +
1

2
Uq̂uq̂u (q̂ut − q̂u∗t )2 +

1

2
γ∗h22π

2
t + t.i.p.,

where t.i.p. denotes terms independent of policy and γ∗ is the Lagrange multiplier associated
with equation (38) at the optimal steady state.The dependence of the objective function on
inflation follows from a second-order approximation of the constraint (38), which allows

43The optimal path for {Y ∗
t , q

u∗
t } can then be used to determine optimal dynamics for the remaining

variables. In particular, equation (29) determines C∗
t , equation (13) determines k∗t and thus D∗

t , and equation
(7) determines H∗

t .

44See Appendix C.3 for a detailed derivation.

38



expressing the second-order utility losses associated with price distortions ∆t as a function
of squared inflation terms.

Since the fluctuations in the housing price gap, q̂ut − q̂u∗t , are either constant (with RE)
or determined independently of policy (under subjective beliefs, see (71)), the endogenous
part of the loss function can be written as

∞∑
t=0

βt
1

2

(
Λππ

2
t + Λy (ygapt )2

)
,

where ygapt ≡ ŷt−ŷ∗t denotes the output gap; the log-difference of output from its dynamically
optimal value.

A.3 New Keynesian Phillips Curve

We now linearize equations (35)-(37) to derive the linearized Phillips curve. The condition
for the equilibrium wage (36) in period T in industry j in which firms last updated their
prices in period t is given by

wT (j) = w̃T (j)

(
pjt
Pt

)−ηφν (
PT
Pt

)ηφν
,

where

w̃T (j) ≡ λ
H̄−νT
C̄ σ̃−1

T

(
YT
AT

)φν
C (YT , q

u
T , ξT )σ̃

−1

.

Since the firms’ expectations about wT (j) and PT are rational, their expectations about
w̃T (j) are rational as well.

Using the expression for wT (j), noting that pt(i) = pjt = p∗t , and writing out Qt,T , it
follows that

(
p∗t
Pt

)
=

EPt
∑∞

T=t (αβ)T−t η
η−1

φC̄ σ̃−1

T C−σ̃
−1

T w̃T (j)
(
YT
AT

)φ (
PT
Pt

)η(1+ω)

EPt
∑∞

T=t (αβ)T−t C̄ σ̃−1

T C−σ̃
−1

T (1− τT )YT

(
PT
Pt

)η−1


1

1+ωη

. (73)

Log-linearizing equation (73) delivers45

p̂∗t − P̂t =
1− αβ
1 + ωη

{̂̃wt(j) + φ
(
ŷt − Ât

)
− τ̂ t − ŷt + αβEPt

[
1 + ωη

1− αβ

(
p̂∗t+1 − P̂t+1 + πt+1

)]}
.

(74)

45This follows from the the fact that in steady state, we have p∗ = P , so that

η

η − 1
φC̄ σ̃

−1

C−σ̃−1

w̃(j)

(
Y

A

)φ
= C̄ σ̃

−1

C−σ̃−1

(1− τ)Y.

The steady state value of the numerator in (73) is thus given by 1
1−αβ

η
η−1φC̄

σ̃−1

C−σ̃−1

w̃(j)
(
Y
A

)φ
and the

steady state value of the denominator by 1
1−αβ C̄

σ̃−1

C−σ̃−1

(1− τ)Y .
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As the expectation in (74) is only about variables about which the private agents hold
rational expectations, we can replace EPt [·] with Et[·].46 Therefore, (37) can be used in period
t and t+ 1, which in its linearized form is given by

p̂∗t − P̂t =
α

1− α
πt.

Substituting ̂̃wt(j) with the linearized version of the equilibrium condition (36) delivers the
linearized New Keynesian Phillips Curve:

πt = κyy
gap
t + κq (q̂ut − q̂u∗t ) + βEtπt+1 + ut, (75)

where the coefficients κ are given by

κy =
1− α
α

1− αβ
1 + ωη

(ky − fy) > 0

κq = −1− α
α

1− αβ
1 + ωη

fq < 0,

with ky = ∂ log k/∂ log y, fy = ∂ log f/∂ log y, fq = ∂ log f/∂ log qu, such that

ky − fy = ω + σ̃−1

(
1− g

)
Y

C + σ̃−1

1−α̃k
= ω + σ̃−1CY > 0

fq = σ̃−1

k
1−α̃

C + σ̃−1

1−α̃k
= −σ̃−1Cq > 0,

where Cq ≡ qu

C
∂C
∂qu

and CY ≡ Y
C
∂C
∂Y

, and where the functions f (Y, qu; ξ) ≡ (1− τ) C̄ σ̃−1

Y C (Y, qu; ξ)−σ̃
−1

and k (y; ξ) ≡ η
η−1

λφ H̄−ν

A1+ωY
1+ω are the same as in Adam and Woodford (2020), for the current

period in which markets clear and the internally rational agents observe this.
The cost-push shock ut is given by

ut =
(1− α) (1− αβ)

α (1 + ωη)
(Θ + τ̂ t − ĝt) ,

where

τ̂ t = − log

(
1− τt
1− τ̄ t

)
ĝt = − log

(
1− gt
1− ḡt

)
define deviations of τt and gt from their second-best steady state values.

As in the standard New Keynesian model, a linearization of (38) implies that the state
variable ∆t is zero to first order under the maintained assumption that initial price dispersion
satisfies ∆−1 ∼ O(2). This constraint, together with the assumption that the Lagrange
multipliers are of order O(1), thus drops out of the quadratic formulation of the optimal
policy problem. The second-order approximation of (38) is, however, important to express
the quadratic approximation of utility in terms of inflation.

46The subjective consumption plans showing up in the stochastic discount factor drop out at this order of
approximation.
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A.4 Linearized IS Equation with Potentially Non-Rational Hous-
ing Price Beliefs

We now linearize constraint (39). One difficulty with this constraint is that it features the
limiting expectations of the subjectively optimal consumption plan on the right hand side.
Generally, this would require solving for the subjectively optimal consumption paths, which
is generally difficult.

Under our beliefs specifications, housing prices beliefs are rational in the limit. This
insures that we do not have to solve for the subjectively optimal consumption plan, instead
can derive the IS equation directly in terms of the output gap.

We can now define the natural rate of interest:

Definition 2 The natural rate rn,REt is the one implied by by the consumption Euler equation
(12) or (39), rational expectations, and the welfare-maximizing consumption levels under
flexible prices {C∗t }. It satisfies

ũC(C∗t ; ξt) = βEt

[
uC(C∗t+1; ξt)(1 + rn,REt+k )

]
. (76)

Using the previous definition, we obtain the linearized Euler equation under potentially
subjective housing prices beliefs:

Lemma 4 For the considered belief specifications, the log-linearized household optimality
condition (39) implies for all t

ygapt = lim
T
Ety

gap
T − Et

(
∞∑
k=0

ϕ
(
it+k − πt+1+k − rn,REt+k

))
− Cq
CY

(q̂ut − q̂u∗t ) , (77)

where limT Ety
gap
T is the (rational) long-run expectation of the output gap, and ϕ ≡ − ũc

ũccC
1
CY

>
0. The coefficients Cq < 0 and CY > 0 are the ones defined in the derivation of the linearized
Phillips Curve.

Proof. See Appendix C.
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B Online Appendix - Not for publication

B.1 Robustness of Empirical Results

Panel (a) in Figure 11 confirms that not only the standardized volatility of the price-to-
rent ratio increased post 1990 compared to the period before 1990, but also the absolute
standard deviations of the price-to-rent ratio increased. Panel (b) shows that the volatility
of the (non-detrended) natural rate increased in all currency areas, except for the UK.

Figure 11: Absolute Standard Deviation of the Price-to-Rent Ratio Pre and Post 1990.

(a) Absolute Standard Deviation of the (b) Standard Deviation of Natural Rate
Price-to-Rent Ratio Pre and Post 1990. Pre and Post 1990.
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Source: Holston et al. (2017) and Fujiwara et al. (2016) (natural rate estimates), OECD database,
own calculations. The black lines denote the 90%-confidence bands. The p-value corresponds to
the test whether or not the values changed from pre to post 1990.

Figure 12 shows that the documented increase in housing volatility is not specific to the
chosen periods, but also holds when choosing another cutoff year. This is especially visible
for the US where independent of the cutoff, price-to-rent ratios and residential investment
always exhibit larger volatility in more recent years compared to previous periods.
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Figure 12: Housing Volatility Increased Over the Last Decades.

(a) Standard Deviation of the Price-to-Rent (b) Standard Deviation of Residential
Ratios for Different Sample Splits. Investment for Different Sample Splits.
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C Proofs

Proof of Lemma 1

Proof. Result (41) follows from iterating forward on (15). Log linearizing (41), we have

q̂ut = ξ̂
d

t ,

and log-linearizing (6) delivers

ξ̂
d

t = ρξ ξ̂
d

t−1 + εdt .

Since the steady-state value of ξ
d

is

ξ
d

=
ξd

1− β(1− δ)
,

the log-linearization of (42) delivers

ξ̂
d

t = (1− β (1− δ))
[
ξ̂
d

t + β(1− δ)Etξ̂
d

t+1 + ...
]

= (1− β (1− δ))
[
ξ̂
d

t + β(1− δ)ρξ ξ̂
d

t + ...
]

= (1− β (1− δ))
∞∑
T=t

(β (1− δ) ρξ)T−t ξ̂
d

t

= ξ̂
d

t

1− β(1− δ)
1− β(1− δ)ρξ

.

The results for the price-to rent ration follow by noticing that equation (14) implies

PRt ≡
qt
Rt

=
qut
ξdt
. (78)

Proof of Lemma 2

Proof. From equation (15), which has to hold with equality in equilibrium, and equation
(47) we get

qu,Pt =
1

1− β(1− δ)βt
ξdt
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The percent deviation of housing prices from the steady state, in which βt = 1 and ξdt = ξd,
is then given by

q̂u,Pt =

1
1−β(1−δ)βt ξ

d
t − 1

1−β(1−δ)ξ
d

1
1−β(1−δ)ξ

d

=
1− β(1− δ)

1− β(1− δ)βt
ξdt
ξd
− 1

=
1− β(1− δ)

1− β(1− δ)βt

(
1 + ξ̂

d

t

)
− 1

=
1− β(1− δ)

1− β(1− δ)βt
ξ̂
d

t +
β(1− δ)(βt − 1)

1− β(1− δ)βt
(79)

Note, that we can decompose the housing price under subjective beliefs into the housing
price under RE and terms that are driven by beliefs:

q̂u,Pt = q̂u,REt +
β(1− δ) (βt − 1)

1− β(1− δ)βt
+

(1− β(1− δ)) (β(1− δ) (βt − ρξ))
(1− β(1− δ)βt) (1− β(1− δ)ρξ)

ξ̂
d

t . (80)

Note, that

EPt

[
qu,Pt+1

]
= βtq

u,P
t .

Therefore, a log-linear approximation around the optimal steady state, in which β = 1, yields

EPt

[
q̂u,Pt+1

]
= q̂u,Pt + (βt − 1) .

From this, we can add and subtract on the right-hand side

Et

[
q̂u,REt+1

]
= ρξ ξ̂

d

t

1− β(1− δ)
1− β(1− δ)ρξ

,

which, after plugging in the expression from (79), delivers

EPt

[
q̂u,Pt+1

]
= Et

[
q̂u,REt+1

]
+ (βt − 1)

[
1 +

β(1− δ)
1− β(1− δ)βt

]
+ (1− β(1− δ)ρξ − (1− β(1− δ)βt) ρξ)

(1− β(1− δ))
(1− β(1− δ)βt) (1− β(1− δ)ρξ)

ξ̂
d

t .

In the limit ρξ → 1, this boils down to

EPt

[
q̂u,Pt+1

]
= Et

[
q̂u,REt+1

]
+ (βt − 1)

[
1 +

β(1− δ)
1− β(1− δ)βt

(
1 + ξ̂

d

t

)]
This proves the Lemma.
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Proof of Lemma 4

Proof. Log-linearizing equation (39) around the optimal steady state delivers

ũCCCĉt + ũCξξξ̂t = EPt

∞∑
k=0

ũC (it+k − πt+1+k) + lim
T→∞

EPt

(
ũCCCĉT + ũCξξξ̂T

)
,

and log-linearizing (76) gives

ũCCCĉ
∗
t + ũCξξξ̂t = Et

∞∑
k=0

ũCr
n,RE
t+k + lim

T→∞
Et

(
ũCCCĉ

∗
T + ũCξξξ̂T

)
.

Subtracting the previous equation from (81) delivers

ĉt − ĉ∗t = EPt

∞∑
k=0

ũC
ũCCC

(
it+k − πt+1+k − rn,REt+k

)
+ lim

T→∞
EPt
(
ĉT+1 − ĉ∗T+1

)
, (81)

where we used EPt ξT = EtξT and EPt ĉ
∗
T+1 = Etĉ

∗
T+1, which hold because agents hold rational

expectations about fundamentals.
In all periods in which the subjectively optimal plan is consistent with market clearing

in the goods sector, the plan satisfies equation (29). Log-linearizing equation (29) delivers

ĉt = CY ŷt + Cq q̂
u
t + Cξ ξ̂t, (82)

where ξ̂t is a vector of exogenous disturbances (involving Adt , C̄t, gt). Evaluating this equation
at the optimal dynamics defines the optimal consumption gap ĉ∗t :

ĉ∗t ≡ CY ŷ
∗
t + Cq q̂

u∗
t + Cξ ξ̂t.

Subtracting the previous equation from (82) delivers

ĉt − ĉ∗t = CY (ŷt − ŷ∗t ) + Cq (q̂ut − q̂u∗t )

= CY y
gap
t + Cq (q̂ut − q̂u∗t ) (83)

Since the current consumption market in period t clears, equation (83) holds in period t and
can be used to substitute the consumption gap on the l.h.s. of equation (81). Similarly, since
housing price expectations are rational in the limit, the consumption market also clears in the
limit under the subjectively optimal plans, i.e., equation (29) holds for t ≥ T ′. We can thus
use equation (83) also to substitute the consumption gap on the r.h.s. of equation (81). Using
the fact that housing price expectations are rational in the limit (limT E

P
t (q̂ut − q̂u∗t ) = 0),

we obtain

ygapt = lim
T
EPt y

gap
T − Et

(
∞∑
k=0

ϕ
(
it+k − πt+1+k − rn,REt+k

))
− Cq
CY

(q̂ut − q̂u∗t ) .

Since we assumed that agents’ beliefs about profits and taxes are given by equations (25)
and (26), respectively, evaluated using rational income expectations, the household holds
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rational expectations about total income. This can be seen by substituting (25) and (26)
into the budget constraint (2). We thus have limT E

P
t y

gap
T = limT Ety

gap
T in the previous

equation, which delivers (77).

Proof of Lemma 3

Proof. Under the proposed policy that sets it −Etπt+1 equal to the natural rate defined in
equation (66), we have

ygapt = lim
T
Ety

gap
T − Et

(
∞∑
k=0

ϕ
(
it+k − πt+1+k − rn,REt+k

))
− Cq
CY

(q̂ut − q̂u∗t )

= lim
T
Ety

gap
T − Et

(
∞∑
k=0

ϕ

(
rn,REt+k −

1

ϕ

Cq
CY

((
q̂ut+k − q̂u∗t+k

)
− Et+k

(
q̂ut+k+1 − q̂u∗t+k+1

))
− rn,REt+k

))

− Cq
CY

(q̂ut − q̂u∗t )

= lim
T
Ety

gap
T + Et

(
∞∑
k=0

(
Cq
CY

((
q̂ut+k − q̂u∗t+k

)
−
(
q̂ut+k+1 − q̂u∗t+k+1

))))
− Cq
CY

(q̂ut − q̂u∗t )

= lim
T
Ety

gap
T + Et

(
Cq
CY

(
(q̂ut − q̂u∗t )− lim

k
Et
(
q̂ut+k+1 − q̂u∗t+k+1

)))
− Cq
CY

(q̂ut − q̂u∗t )

= lim
T
Ety

gap
T +

(
Cq
CY

(q̂ut − q̂u∗t )

)
− Cq
CY

(q̂ut − q̂u∗t )

= lim
T
Ety

gap
T ,

which proves that with this policy, the output gap is indeed constant, and rn,P is the real
rate that implies a constant output gap.

C.1 Transversality Condition Satisfied with Subjective Housing
Price Beliefs

This appendix shows that under the considered subjective belief specifications, the opti-
mal plans satisfy the transversality constraint (17). Since Dt ∈ [0, Dmax] and EPt q

u
T =

Etξ
d

T for T ≥ T ′, we have limT→∞ β
TEPt (DT q

u
T ) = 0. We thus only need to show that

limT→∞ β
TEPt

C̄σ̃
−1

T

Cσ̃
−1

T

BT = 0. Combining the budget constraint (2) with (25) and (26) we

obtain

Ct +Bt +
(
Dt − (1− δ)Dt−1 − d̃(kt; ξt)

)
qut
C σ̃−1

t

C̄ σ̃−1

t

+ kt = (1− gt)Yt +Bt−1.

For t ≥ T ′ the subjectively optimal plans satisfy market clearing in the housing market, i.e.,

Dt − (1− δ)Dt−1 − d̃(kt; ξt) = 0
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so that the budget constraint implies

Ct +Bt + kt = (1− gt)Yt +Bt−1. (84)

Furthermore, for t ≥ T ′ subjectively optimal plans also satisfy market clearing for consump-
tion goods, i.e.,

Ct + kt = (1− gt)Yt.

It thus follows that the subjectively optimal debt level Bt in the budget constraint (84) is
constant under the subjectively optimal plan, after period t ≥ T ′. Furthermore, the expecta-
tions about Yt in the budget constraint (84) is rational under the assumed lump sum transfer
expectations, so that the household’s subjective consumption expectations are the same as
in a rational expectations equilibrium. (The subjectively optimal investment decisions kt are
driven by rational housing price expectations). Since the limit expectations C̄ σ̃−1

T /C σ̃−1

T are

bounded in the rational expectations equilibrium, it follows that limT→∞ β
TEPt

C̄σ̃
−1

T

Cσ̃
−1

T

BT = 0.

C.2 Optimal House Price Absent Price Rigidities

The following derivation closely follows Adam and Woodford (2020). We obtain Uqu (Yt,∆t, q
u
t , ξt)

from differentiating equation (33) with respect to qut and set it equal to 0:

Uqu (Yt,∆t, q
u
t , ξt) = C̄ σ̃−1

t Cqu (Yt, q
u
t , ξt)C (Yt, q

u
t , ξt)

−σ̃−1

+ Adt ξ
d

t

∂Ω (qut , ξt)

∂qut
Ω (qut , ξt)

α̃−1C (Yt, q
u
t , ξt)

α̃
1−α̃ σ̃

−1

+
σ̃

1− α̃
Adt ξ

d

tΩ (qut , ξt)
α̃C (Yt, q

u
t , ξt)

α̃
1−α̃ σ̃

−1−1Cqu (Yt, q
u
t , ξt) = 0,

where
∂Ω (qut , ξt)

∂qut
=

1

qut

1

1− α̃
Ω (qut , ξt) ,

and when defining χ ≡ σ̃−1

1−α̃ − 1, we get

Cqu(Yt, q
u
t ; ξt) ≡

∂C(Yt, q
u
t ; ξt)

∂qu
=
− 1
qut

1
1−α̃Ω(qut , ξt)C(Yt, q

u
t , ξt)

χ+1

1 + (1 + χ) Ω(qut , ξt)C(Yt, qut , ξt)
χ
.

Taking everything together, we get

Uqu (Yt,∆t, q
u
t , ξt) =

1
qut

1
1−α̃Ω(qut , ξt)C(Yt, q

u
t , ξt)

χ+1

1 + (1 + χ) Ω(qut , ξt)C(Yt, qut , ξt)
χ
C̄ σ̃−1
t

(
ξ
d

t

qut
− 1

)
.

In order for Uqu to be zero, we need to have that

qu∗t = ξ
d

t ,

as stated in equation (69).
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C.3 Quadratically Approximated Welfare Objective

This derivation follows Adam and Woodford (2020). In the optimal steady state, we have
UY = Uqu = UY qu = 0, as well as U∆ + γ (βh1 − 1) = 0. Given the assumption ∆−1 ∼ O(2),

it follows ∆t ∼ O(2) for all t ≥ 0. Additionally, we have h2 ≡ ∂h(∆,Π)
∂Π

= 0 at the optimal
steady state. Therefore, a second-order approximation of the contribution of the variables
(Yt,∆t, q

u
t ,Πt, ξt) to the utility of the household yields

1

2
UŶ Ŷ (ŷt − ŷ∗t ) +

1

2
Uq̂uq̂u (q̂ut − q̂u∗t ) +

1

2
γ∗h22π

2
t + t.i.p.,

where t.i.p. contains all terms independent of policy. Under rational expectations, we have
that (q̂ut − q̂u∗t ) = 0 and is thus constant and independent of (monetary) policy. Under
subjective beliefs, (q̂ut − q̂u∗t ) is purely driven by beliefs βt and housing demand shocks ξdt ,
see equation (71), both independent of policy. Therefore, we include 1

2
Uq̂uq̂u (q̂ut − q̂u∗t ) in

t.i.p..
The term UŶ Ŷ is given by UŶ Ŷ ≡ Y ∂

∂Y

(
UŶ
)
≡ Y ∂

∂Y
(Y UY ) = Y ∗UY + (Y ∗)2 UY Y . At the

optimal steady state, we have

Λπ = −1

2
γ∗h22 > 0

Λy = −1

2
(Y ∗)2 UY Y > 0,

where

UY Y = −σ̃−1
(
1− g

)
C̄
σ̃−1

C
(
Y , qu, ξ

)−σ̃−1−1
CY

Y ∗

C
(
Y , qu, ξ

)
− λ

1 + ν
(1 + ω)ω

H̄
−ν

A1+ωY
ω−1 < 0

h22 =
αη (1 + ω) (1 + ωη)

1− α
> 0

γ∗ =
U∆

1− αβ
< 0,

with

U∆ = −
Y ∗
(
1− g

)
1 + ω

(
C̄ σ̃−1

C
(
Y ∗, qu∗, ξ

))σ̃−1

< 0.

C.4 Recursifying the Optimal Policy Problem with Lower Bound

We apply the techniques of Marcet and Marimon (2019) to recursify the optimal policy
problem with forward-looking constraints (59). We thereby assume that the Lagrangian
defined by problem (59) satisfies the usual duality properties that allow interchanging the
order of maximization and minimization, which we then show numerically to hold. The value
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function for t = T ′ is given by the RE value function WRE(·). For t ≤ T ′ we have a value
function Wt(·) which satisfies the following recursion:

Wt(ϕt−1, µt−1, ut, r
n,RE
t , βt, ξ

d
t , q

u
t−1)

= max
(πt,ygapt ,it≥i)

min
(ϕt,λt)

−1

2

(
Λππ

2
t + Λy (ygapt )2

)
+ (ϕt − ϕt−1) πt − ϕt (κyy

gap
t + κq (q̂ut − q̂u∗t ) + ut)

+λt

[
ygapt − lim

T
Ety

gap
T + ϕ

(
it − Et

∞∑
k=0

rn,REt+k

)
+
Cq
CY

(q̂ut − q̂u∗t )

]
+µt−1ϕ (it − πt) + γt (it − i)

+βEt

Wt+1(ϕt, β
−1 (λt + µt−1)︸ ︷︷ ︸

=µt

, ut+1, r
n,RE
t+1 , βt+1, ξ

d
t+1, q

u
t

 (85)

where the next period state variables (βt+1,qut ) are determined by equations (48) and (49)
and (q̂ut − q̂u∗t ) is determined by equation (71). Here we assume that rn,REt follows a Markov
process, such that the term Et

∑∞
k=0 r

n,RE
t+k showing up in the current-period return can be

expressed as a function of the current state rn,REt . The future state variables (ϕt, µt, βt+1, q
u
t )

are predetermined in period t. The expectation about the continuation value is thus only
over the exogenous states (ut+1, r

n,RE
t+1 , ξdt+1). The endogenous state variable ϕt−1 is simply

the lagged Lagrange multiplier on the NK Phillips curve with housing. The endogenous state
variable µt−1 is given for all t ≥ 0 by

µt = β−(t+1) (λ0 + µ−1) + β−tλ1 + ...+ β−1λt.

The initial values (ϕ−1, µ−1) are given at time zero and equal to zero in the case of time-
zero-optimal monetary policy.

For periods t < T ′, where T ′ is the period from which housing price expectations are
rational and the lower bound constraint ceases to bind, the value functions depend on time,
thereafter they are time-invariant. Likewise for sufficiently large T ′, the value functions Wt(·)
and Wt+1(·) will become very similar.

We can numerically solve for the value function Wt(·) by value function iteration, starting
with WT ′ which is the value function associated with the LQ problem with RE and without
lower bound.

C.5 Optimal Targeting Rule

Differentiating (85) with respect to {πt, ygapt , it} yields:

∂Wt

∂πt
= −Λππt + (ϕt − ϕt−1)− µt−1ϕ = 0

∂Wt

∂ygapt

= −Λyy
gap
t − ϕtκy + λt = 0

∂Wt

∂it
= γt + λtϕ+ µt−1ϕ = 0 and γt (it − i) = 0.
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Combining these first-order conditions, we can derive the following targeting rule which
characterizes optimal monetary policy

Λππt +
Λy

κy

(
ygapt − ygapt−1

)
+
λt−1

κy
+ µt−1

(
ϕ+

1

κy

)
+

γt
ϕκy

= 0,

where γt is the Lagrange multiplier associated with the lower bound on interest rates. If
the lower bound on the nominal interest rate does not bind in the current period, we have
γt = 0. Furthermore, if the lower bound has not been binding up to period t, the IS equation
has not posed a constraint for the monetary policymaker. Thus, λt−1 = λt−k = 0 for all
k = 0, 1, ..., t. For an initial value of µ−1 = 0, it follows that µt−1 = 0. The targeting rule
then collapses to

Λππt +
Λy

κy

(
ygapt − ygapt−1

)
= 0,

which is the same as in Clarida et al. (1999).
The Lagrange multiplier γt ≤ 0 captures the cost of a currently binding lower bound. If

γt < 0, the optimal policy requires a compensation in the form of a positive output gap or
inflation. The multipliers λt−1 and µt−1 capture promises from past commitments when the
lower bound was binding.

Another way to express equation (86) is to write it as

Λππt +
Λy

κy

(
ygapt − ygapt−1

)
+

1

ϕκy

[
γt −

1 + β + ϕκy
β

γt−1 +
γt−2

β

]
= 0. (86)

House prices do not enter the optimal target criterion directly but larger fluctuations in
house prices make the lower bound bind more often and for a longer period of time. The
optimal policy, thus, requires larger compensations in terms of positive output gaps and
inflation. To implement this, the nominal interest rate needs to be kept longer at the lower
bound.

C.6 Calibration of Cq/CY

To calibrate Cq/CY , the ratio of the consumption elasticities to housing prices and income,
respectively, note that from appendix ”Second-Order Conditions for Optimal Allocation” in
Adam and Woodford (2020), we have

Cqu(Yt, q
u
t ; ξt) ≡

∂C(Yt, q
u
t ; ξt)

∂qu
=
− 1
qut

1
1−α̃Ω(qut , ξt)C(Yt, q

u
t , ξt)

χ+1

1 + (1 + χ) Ω(qut , ξt)C(Yt, qut , ξt)
χ

where χ ≡ σ̃−1

1−α̃ − 1. In our formulation, we have defined

Cq ≡
∂C(Yt, q

u
t ; ξt)

∂ ln qut

=
∂C(Yt, q

u
t ; ξt)

∂qut

∂qut
∂ ln qut

= Cqu(Yt, q
u
t ; ξt)

qut
Ct
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so that we have

Cq = −
1

1−α̃Ω(qut , ξt)C(Yt, q
u
t , ξt)

χ+1

C(Yt, qut , ξt) + (1 + χ) Ω(qut , ξt)C(Yt, qut , ξt)
χ+1

.

From the appendix in Adam and Woodford (2020) we also have

CY (Yt, q
u
t , ξt) ≡

∂CY (Yt, q
u
t , ξt)

∂Yt
=

1− gt
1 + Ω(qut , ξt) (1 + χ)C(Yt, qut , ξt)

χ

so that in our notation

CY ≡
∂CY (Yt, q

u
t , ξt)

∂ lnYt
=

(1− gt)Yt
C(Yt, qut , ξt) + Ω(qut , ξt) (1 + χ)C(Yt, qut , ξt)

χ+1
.

We then have

Cq
CY

=

− 1
1−α̃Ω(qut ,ξt)C(Yt,qut ,ξt)

χ+1

C(Yt,qut ,ξt)+(1+χ)Ω(qut ,ξt)C(Yt,qut ,ξt)
χ+1

(1−gt)Yt
C(Yt,qut ,ξt)+Ω(qut ,ξt)(1+χ)C(Yt,qut ,ξt)

χ+1

= − 1

1− α̃
Ω(qut , ξt)C(Yt, q

u
t , ξt)

χ+1

(1− gt)Yt
.

In the steady state, we have Y (1 − g) = C + ΩC
χ+1

, which says that privately consumed
output Y (1 − g) is divided up into consumption C and resources invested in the housing

sector, ΩC
1+χ

. We thus have that

ΩC
χ+1

Y (1− g)
= 1− C

Y (1− g)

= 1− C

C + ΩC
χ+1

= 1− 1

1 + ΩC
χ .

Following Adam and Woodford (2020), we set this to the share of housing investment to
total consumption, ΩC

χ
, equal to 6.3%, so that in steady state we have

Cq
CY

= − 1

1− α̃

(
1− 1

1.063
.

)
Finally, following Adam and Woodford (2020), we set the long-run elasticity of housing
supply equal to five, which implies α̃ = 0.8, so that

Cq
CY

= −5

(
1− 1

1.063

)
≈ −0.29633.
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From this, it follows that

CY =
(1− g)Y

C + (1 + χ) ΩCχ+1

=
C + k

C + σ̃−1

1−α̃k

=
1 + k

C

1 + σ̃−1

1−α̃
k
C

=
1 + 0.063

1 + 5 · 0.063

= 0.80836

and hence,
Cq = −0.29633 · 0.80836 = −0.23954.

D Survey Expectations and Model Expectations

To see how we construct Revisionst from the model, given our belief-formation, note that
we have EPt

[
qut+1

]
= βtq

u
t and

EPt−1

[
qut+1

]
= EPt−1

[
EPt
[
qut+1

]]
by the law of iterated expectations. It then follows that

EPt−1

[
qut+1

]
= EPt−1 [βtq

u
t ]

= βt−1E
P
t−1 [qut ]

= β2
t−1q

u
t−1,

where the second line follows from βt being a random walk. Similarly, for four and five
periods ahead expectations, we have

EPt
[
qut+4

]
= β4

t q
u
t

EPt−1

[
qut+4

]
= β5

t−1q
u
t−1.

Revisions in expectation in the model are thus given by

Revisionst ≡ EPt
[
qut+4

]
− EPt−1

[
qut+4

]
= β4

t q
u
t − β5

t−1q
u
t−1. (87)
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D.1 Robustness of Survey Expectations and Model-Implied Ex-
pectations

Forecast Errors and Housing Prices An equivalent version of the test from Adam
et al. (2017) that we presented in Section 5.3 is proposed by Kohlhas and Walther (2018).
In this case, we regress forecast errors on the level of the current housing price. We therefore
estimate

Errort = α + βAMB ·HPt + εt. (88)

Table 6 shows the results. In the data, we find a negative, statistically significant coeffi-
cient when considering the whole period from 2007 to 2019. If we restrict the sample to start
in 2010, we still find a negative, but not significant, estimate. In general, we can state that
consumers tend to become too optimistic when they observe high housing prices, inconsis-
tent with rational expectations (as in Adam et al. (2017), Kohlhas and Walther (2018) and
Angeletos et al. (2020)). The last four columns show the model-implied coefficients. We see
that the model predicts, consistent with the data, a negative sign.

Table 6: Forecast Errors and Housing Prices

2007 - 2019 2010 - 2019 rn = 3.34% rn = 1.91% rn = 1% rn = 0.25%
βAMB -0.36∗∗ -0.08 -0.07 -0.07 -0.08 -0.11

(0.147) (0.109)

Note: The first two columns show the empirical estimates for different samples. The last four columns show
the model-implied regression coefficients for different levels of the average natural rates.
Significance levels: ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1

Median Expectations. Table 7 shows our results when using median expectations instead
of averages. Overall, the results are robust to this change.

Table 7: Survey Estimates using Median Expectations (One-Year Ahead Expectations)

Data: RHP 2007-19 RHP 2010-19
βCG 2.72∗∗∗ 2.04∗∗∗

(0.519) (0.602)
βAMB −0.31∗ 0.00

(0.162) (0.119)

Significance levels: ∗∗∗ : p < 0.01, ∗∗ : p < 0.05,
∗ : p < 0.1

Instrumental Variable Regression To make sure that the forecast revisions are not
correlated with the error term in regression (58), we follow Coibion and Gorodnichenko
(2015) and use an IV approach to estimate it, using monetary policy shocks as an instrument.
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Table 8 shows the first-stage F -statistic is about 20. The results show that our results are
robust to using this IV approach. The estimated coefficients are positive and significantly
different from 0.

Table 8: Instrumental Variable Regression

Survey Average Survey Median

b p-value b p-value

Michigan, 1yr 2.851 0.0230 3.834 0.010

1st stage F -stat. 21.88 17.78

Significance levels: ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1

Monthly Data In the following, we show that our results are robust if we move from
quarterly frequency to monthly frequency. To compute real house prices, we again use the
Case-Shiller Home Price Index but deflate it with the CPI instead of the GDP deflator. The
revisions will, consistent with our main exercise, be the change in the expectations from one
quarter to the next. Table 9 shows the results.

Table 9: Survey Estimates using Monthly Data

Data: RHP 2007-19 RHP 2010-19
Mean Expectations
βCG 2.13∗∗∗ 1.29∗∗∗

(0.323) (0.391)
βAMB −0.329∗∗∗ −0.079

(0.098) (0.067)
Median Expectations
βCG 2.60∗∗∗ 1.74∗∗∗

(0.337) (0.435)
βAMB −0.278∗∗∗ −0.007

(0.105) (0.072)

Significance levels: ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1

Nominal Forecast Errors We now show that our results are robust to using nominal
forecast errors and revisions in the expectations about nominal housing prices instead of
real forecast errors and revisions in expectations about real housing prices. Given the trend
in the level of the nominal house prices, however, we still regress the forecast error on the
real house price to estimate βAMB. Table 10 shows the results at the quarterly and monthly
frequency.
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Table 10: Survey Estimates using Nominal Housing Price Data

Data: NHP 2007-19 NHP 2010-19 NHP 2007-19 NHP 2010-19
(quarterly) (quarterly) (monthly) (monthly)

Mean Expectations
βCG 2.17∗∗∗ 1.49∗∗∗ 2.02∗∗∗ 1.24∗∗∗

(0.503) (0.508) (0.418) (0.387)
βAMB −0.34∗∗ -0.05 −0.288∗∗∗ -0.06

(0.156) (0.121) (0.090) (0.068)
Median Expectations
βCG 2.77∗∗∗ 2.02∗∗∗ 2.63∗∗∗ 1.78∗∗∗

(0.498) (0.606) (0.423) (0.452)
βAMB -0.29 0.04 −0.23∗∗ 0.03

(0.175) (0.131) (0.100) (0.073)

Significance levels: ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1

Expectations across the income distribution. We now divide the survey respondents
into three groups, according to their reported income. Table 11 shows the results. The first
column gives the estimated coefficients from a panel regression, using income-tertile-specific
fixed effects. The next three column looks at the three groups separately, in increasing order.
We see that our results are robust, and additionally that the results do not systematically
differ along the income distribution. In fact, we cannot reject in any case the nullhypothesis
that the regression coefficients differ across income groups.

Table 11: Survey Estimates for Different Income Groups

Panel Bottom 33% Middle 33% Top 33%
(monthly) (monthly) (monthly) (monthly)

Mean Expectations
βCG 1.98∗∗∗ 1.98∗∗∗ 2.04∗∗∗ 1.91∗∗∗

(0.085) (0.345) (0.341) (0.320)
βAMB −0.31∗∗∗ −0.32∗∗∗ −0.33∗∗∗ −0.29∗∗∗

(0.024) (0.110) (0.107) (0.102)
Median Expectations
βCG 2.49∗∗∗ 2.71∗∗∗ 2.50∗∗∗ 2.28∗∗∗

(0.090) (0.327) (0.339) (0.329)
βAMB −0.26∗∗∗ −0.25∗∗ −0.27∗∗ −0.27∗∗

(0.026) (0.117) (0.111) (0.107)

Significance levels: ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1
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Optimists vs. pessimists In the following, we test whether our results are driven by
either optimists or pessimists. To do so, we re-run the CG and the AMB regressions as before,
but instead of considering mean or median expectations, we look at the 25th and the 75th

percentile, respectively. For this, we use monthly data and consider real and nominal house
prices. Table 12 shows the results. We observe the expected difference in the magnitude of
the coefficients (higher βCG and less negative βAMB for the pessimists). Nevertheless, the
signs are the same in all cases, and we reject the rational expectations hypothesis.

Table 12: Survey Estimates: Pessimists (25th percentile) vs. Optimists (75th percentile)

25th pct, Real HP 25th pct, Nominal HP 75th pct, Real HP 75th pct, Nominal HP
(monthly) (monthly) (monthly) (monthly)

βCG 2.45∗∗∗ 2.49∗∗∗ 1.86∗∗∗ 1.80∗∗∗

(0.357) (0.453) (0.320) (0.341)
βAMB −0.25∗∗ −0.20∗ −0.39∗∗∗ −0.35∗∗∗

(0.109) (0.105) (0.095) (0.083)

Significance levels: ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1

Information set concerns A potential concern with the stated result that house price
growth expectations are higher in times of higher current house prices might be that house-
holds are not aware of the level of current house prices. In order to account for this, we
re-run the regression. But instead of using the current house price as the independent vari-
able, we use the household’s perceived change of the value of its own home over the last year,
taken from the Survey of Consumers. More specifically, we include the share of households
that state that their own home increased in value as well as the share of households that
say their house value decreased over the last 12 months as independent variables. The first
column of Table 13 shows the results. The two coefficients β̂Up and β̂Down correspond to
the share of households that state that their house value went up or down, respectively. We
see that house price expectations are higher after periods in which many people think their
own house value increased, and vice-versa. In the second column, we report the results if we
additionally control for lagged perceived house price growth in the previous period.

To further strengthen this result, we use monthly data from the Survey of Consumers
by region. The four regions are North Central, North East, South, and West. This leaves
us with much more observations. Furthermore, we can control for time- and region-specific
fixed effects. The last three columns of Table 13 show that the sign of the coefficients are
unaltered. Only the exact values change across specification.
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Table 13: Expected and Perceived House Prices

Dependent Variable: EPt [∆HPt,t+4]

Data Panel Panel

β̂Up 0.026∗∗∗ 0.044∗∗∗

(0.0038) (0.0055)

β̂Down −0.041∗∗∗ −0.037∗∗∗

(0.0042) (0.0062)

N 636 636
Time FE × X
Region FE X X

Significance levels: ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1
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