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October 29, 2020

Abstract

We consider individuals who are privately informed about the probabil-
ity of being infected by a potentially dangerous disease. Depending on its
private health signal, an individual may assign a positive or negative value
to getting tested for the disease. Individuals dislike social distancing. The
government has scarce testing capacities and scarce resources for enforcing
social-distance keeping. We solve the government’s problem of setting up an
optimal testing-and-social-distancing schedule, taking into account that indi-
viduals may lie about their private health signal. Rather than modelling the
infection dynamics, we take a snapshot view, that is, we ask what should be
done at a particular point in time to curb the current spread of the disease
while taking the current well-being of the individuals into account as well. If
testing capacities are sufficiently scarce, then it can be optimal to test only a
randomly selected fraction of those who want to be tested, and require max-
imal social distancing precisely for those individuals who wanted a test and
ended up not belonging to the tested fraction.

1 Introduction

Consider an individual who believes that she may have been infected by a
virus that is potentially dangerous. Initial symptoms caused by the virus
infection can be specific to the particular virus, but also may be rather un-
specific. For example, a person who may have been infected by Covid 19
may experience some rather unspecific respiratory problems, but may also
experience some more specific symptoms like a loss of her sense of smell.
Another typical situation is that the individual has no symptoms at all, but
knows that she has been in contact with a possibly infected person. Such an
individual faces a dilemma. If she quickly undergoes a test for the disease,
then she can expect an early treatment after a positive test result which can
be quite beneficial to her health. On the other hand, if she decides to not
undergo the test at this point in time, then she avoids the hassle of traveling

✯Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
through CRC TR 224, project B1, is gratefully acknowledged.
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to and spending time at a test facility, and she avoids the immediate personal
quarantine that will result in case her test result is positive.

The government cannot simply advise all individuals with sufficiently se-
vere symptoms or with contacts to possibly infected persons to undergo tests
or to remain socially distant, because any individual is, to a large extent,
privately informed about its health status, that is, an individual can down-
play or exaggerate its symptoms when communicating with medical personal,
and the individual can conceal or falsely claim recent contacts with possibly
infected persons.

In this paper, we analyze how a government should optimally design a
testing-and-social-distancing schedule in such a situation. We assume that
the government is concerned about both the current well-being of its citizens
and curbing the spread of the disease. Any individual that is infected and
is not quarantined causes a negative externality on the population of indi-
viduals because it may infect others. On the other hand, given that test
capacities may be scarce, spending a test unit on any particular individual
has an opportunity cost, and in addition there may be a surveillance cost of
making sure that the individual keeps any required social distancing or her
quarantine.

In contrast to a large fraction of the literature, we do not model the
dynamics of the infectious disease, but take a snapshot view. That is, fixing
a particular point in time with a particular state of diffusion of the disease,
we ask what should a government do in order to curb the current spread of
the disease while taking the current well-being of its citizens into account as
well. In this sense, our analysis is partial. Nevertheless, it provides very clear
insights. These insights should be useful as a building block for a dynamic
model that takes the incentive effects into account that we describe.

The most basic insight is that individuals who believe it to be sufficiently
unlikely that they are affected, in expectation, lose out from being tested
because the small chance of having the disease and thus getting a beneficial
early treatment is outweighed by the hassle of undergoing a test. On the
other hand, individuals who feel sufficiently ill, in expectation, gain from
being tested because the expected benefit from an early treatment outweighs
the hassle cost of undergoing the test. Formally, there exists a number p∗

such that any individual who assigns a probability larger than p∗ to the
event of being infected expects to gains from undergoing the test, while any
individual who believes that she has the disease with a probability smaller
than p∗ believes that she loses out from undergoing the test.

We call the individual’s personal probability assessment of being infected
her type. We assume that each individual is privately informed about her
type.1 Thus, when communicating with medical personal, she can claim
to be of a smaller type than her true type (i.e., downplay her symptoms
or conceal her contacts with possibly infected persons) and, alternatively,

1We are not assuming that individuals consciously do calculations with probabilities. Nev-
ertheless, thinking in terms of degrees of likelihood is common sense and is relevant to many
aspects of life beginning with the weather forecast. While psychological research has identified
many biases in decision-making under uncertainty (e.g., Gigerenzer (2008), Kahneman (2011)),
it is fair to say that the individuals in our model face quite simple decision problems, given the
optimal testing-and-social-distancing schedules that we propose.
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claim to be of a larger type (i.e., exaggerate her symptoms or claim to have
been in contact with a possibly infected person). The population consists
of individuals whose types are drawn independently from a given interval of
probabilities. The lowest feasible type (which may be equal to 0 or strictly
larger than 0) feels quite healthy, while the highest feasible type (which may
be equal to 1 or strictly below 1) feels rather ill.

The government sets up a testing-and-social-distancing schedule. That is,
it specifies, for each type of individual, a probability of being tested and a
degree of social distancing, a real number between 0 and 1, where 1 should be
interpreted as quarantine. We take a mechanism-design approach, that is, we
allow the government to optimize over all schedules that are mathematically
feasible. The optimal schedule turns out to be simple and intuitive.

If individuals could not misrepresent their types, computing the optimal
schedule would be straightforward. According to this so-called first-best solu-
tion, there would exist a threshold type such that all types above the threshold
type are tested and all types below the threshold type are not tested; the level
of the threshold type depends on the parameters of the environment such as
the government’s cost of a test, its cost of enforcing any social-distancing re-
quirements, and the weight it puts on an individual’s current utility relative
to the weight put on curbing the current spread of the disease. Depending
on the parameters, it can also be optimal to require maximal social distanc-
ing (i.e., quarantine) for a range of types below the threshold type of the
testing schedule. That is, it can be optimal to quarantine some individuals
rightaway, without testing them first.

A simple, but very important, observation is that, with the exception
of some special cases, the first-best solution is not implementable because
individuals of certain types have an incentive to downplay or exaggerate
their types. For concreteness, suppose that the parameters are such that
the threshold type of the testing schedule is below p∗. Then there exists a
range of types that are above the threshold type (and thus are supposed to
get tested) and are below p∗ (and thus lose out from being tested). Any indi-
vidual with such a type has an incentive to misrepresent her type by claiming
a type below the threshold type so that she avoids being tested. Similarly, if
the threshold type of the testing schedule is above p∗, individuals of certain
types have an incentive to claim a higher type than their true type. Fur-
ther incentive problems occur if some, but not all, of the untested individuals
are to be put in quarantine. These incentive problems prevent the first-best
solution from being implementable.

The main contribution of the paper is to solve the government’s problem of
setting up an optimal testing and social-distancing schedule, while taking the
individuals’ incentive constraints into account. That is, extending methods
from mechanism-design theory, we compute an optimal schedule, taking it as
given that any individual is free to lie about her type. The resulting solution
is called the second-best optimal schedule.

The second-best optimal schedule generally looks rather different from the
first-best schedule—the fact that each individual is privately informed about
their health status has a tremendous impact on the nature of the optimal
schedule.

We distinguish four different cases concerning the possible nature of the
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second-best solution. First of all, it can be optimal for the government to test
nobody (at the considered point in time) and quarantine everybody; testing
nobody should be interpreted here as saving any available testing capacity
for a different population of individuals or for use at a different point in time.
This extreme solution is incentive compatible because no individual is even
asked about their type—the same regulation is enforced on everyone. An
example of a situation in which this is the solution is when the government’s
overwhelming concern is curbing the current spread of the disease, while it
can enforce any social-distancing requirements at negligible cost. Let us turn
to the other three cases.

Secondly, it can be optimal for the government to not regulate anything.
We call this the null mechanism. Here, the government lets any individual
decide freely whether or not they want to be tested. No social distancing is
required for those who decide not to get tested. As a result, all individuals
with types above p∗ will be tested, and all individuals with types below p∗

will not be tested. We summarize this case by saying that the marginally
tested type, denoted p̌, is equal to p∗.

Third, it can be optimal to set up a testing-and-social-distancing schedule
such that the marginally tested type, p̌, is smaller than p∗. In other words,
there is now an interval of types, from p̌ to p∗, who are supposed to get tested
although they lose out from being tested. The trick to make individuals with
these types reveal themselves so they can be tested, is to require some social
distancing for any individual who decides to remain untested. This lowers
the payoff from not getting tested so that, if the level of social distancing is
chosen right, individuals of type p̌ become indifferent between being tested
and not being tested. Incentive compatibility is then satisfied. This form of
the testing-and-social-distancing schedule explains why it can be optimal to
require some social distancing even for those individuals who are quite sure
to not be infected.

The remaining, fourth, possibility for the optimum is that the marginally
tested type p̌ is higher than p∗. Now there is an interval of types, from p∗ to
p̌, who are supposed to not get tested although they gain from being tested.
A solution like this can be optimal if test capacities are rather scarce, that is,
if the opportunity cost of a test is very high. How are individuals with types
in between p∗ and p̌ prevented from snatching a test by claiming a higher
type than their true type? The optimal solution is to introduce probabilistic
testing. Only a randomly selected fraction of the individuals who claim to
have types above p̌ are tested. For any individual who claims a type above
p̌, if the randomization implies that this individual does not belong to the
tested fraction, maximal social distancing is required. Each individual now
faces a gamble if she claims a type above p̌: on the one hand, this allows her
to grab a test with some probability, but, on the other hand, it sends her in
quarantine for sure if (through the randomization) she ends up not getting
tested. Higher types are more willing than lower types to take such a gamble
because for them the test is more valuable, while the hassle of being put in
quarantine for those who do not get a test is type-independent.2

All four solution cases have in common that at most a binary informa-

2As for a concrete application example, imagine this schedule to be used for the group of
individuals who arrive at an airport on a given day if tests are too scarce to test everybody.
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tion is required from each individual: the individual is never asked anything
beyond the information whether it feels relatively healthy (type below p̌) or
rather ill (type above p̌).

In the paper, we also provide some detailed results and examples con-
cerning which of the four solution cases is second-best optimal, depending on
the exogeneous parameters of the model, and what are the properties of the
optimal testing threshold p̌.

Literature

There is a huge epidemological literature that analyzes the dynamics of in-
fectious diseases.3 A small subset of this literature investigates behavioral
aspects, that is, models individual choices of possibly infected individuals
(see the survey by Klein, Laxminarayan, Smith, and Gilligan (2007)). The
behavioral aspect that is modelled most frequently is that each individual
may choose their level of contacts with other, possibly infected, individuals.
A reason for government intervention may arise because of the negative exter-
nalities of any contact (see, e.g., Kremer (1996), considering the HIV/AIDS
epidemic, and Fenichel, Castillo-Chavez, Ceddia, Chowell, Parra, Hickling,
Holloway, Horan, Morin, Perrings, et al. (2011)). By modeling the individual
choice of undergoing a test, rather than the choice of the level of contacts,
we differ sharply from this literature.

An important building block of our model is the assumption that indi-
viduals are heterogenous with respect to the individual probability assess-
ments of being infected. Such heterogenous assessments have been modeled
by Gong (2015) and, similarly, Paula, Shapira, and Todd (2014), who show
empirically for the HIV/AIDS epidemic that these probability assessments
are behaviorally relevant. They find that the individual belief has a strong
impact on the individual level of contacts. Heterogenous individual health-
status beliefs are also modelled in Brotherhood, Kircher, Santos, and Tertilt
(2020), who introduce a state of “fever”.

Chen (2006) considers a disease for which, in contrast to the disease we
consider, a vaccination is available; each individual chooses whether to get
vaccinated, which incurs a personal cost. Due to the incentive effects of a
vaccination, its overall welfare effect can be ambiguous.

Caplin and Eliaz (2003), in a static model, combine individual choices of
being tested and contact choices that are conditional on a certificate of the
test result. Fear of a positive test result is introduced as a psychological bias,
and the optimal certification policy of the government is determined.

Testing and social distancing as a design problem of the government has
been considered in the literature. Berger, Herkenhoff, and Mongey (2020) rec-
ognize the importance of testing asymptomatic individuals and applying con-
ditional quarantine. However, in their model the individuals cannot choose
anything, but the government’s policy is applied mechanically to all indi-
viduals depending on their health states. Acemoglu, Makhdoumi, Malekian,
and Ozdaglar (2020) distinguish agents with high and low values of social
contacts who choose their level of contacts in a network. Different types of

3See von Thadden (2020) for an adaptation to the epidemiological specifics of the current
Covid-19 pandemic.
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agents can react differently to policies, and optimal policies are generally type
dependent.

Brotherhood, Kircher, Santos, and Tertilt (2020) assume that individuals
choose their hours of work, domestic leisure, and leisure outside the house;
this choice implies, in particular, a level of contacts with possibly infected
persons.4 The main assumption of the paper is that individuals are het-
erogeneous with respect to a payoff-relevant observable characteristic, age.
The government can, and should, condition its testing and social-distancing
policies on this characteristic.5

Another strand of the literature models the government’s optimal testing
and social distancing policy as a control problem across the evolution of the
disease (Piguillem and Shi (2020), Kruse and Strack (2020)).

On a technical level, finding the second-best solution in our model is a
mechanism-design problem in which an individual’s required degree of social
distancing acts as a quasi-money that steers every individual’s incentives to
reveal her type. From the individual’s point of view, getting tested is like re-
ceiving a good that may have a positive or negative value for the individual.
The technical challenge of solving the government’s problem mainly arises
from the fact that the probability of becoming quarantined is restricted be-
tween 0 and 1, thus restricting the amount of quasi-money that can be paid
by any individual.6

2 Model

We consider an individual who is uncertain about whether or not she is in-
fected by a given disease. At time 0, the individual possesses a private signal,
her type p ∈ [p, p], that describes the individual’s personal probability assess-
ment that she is infected, given her current symptoms and recent contacts
with other people, where 0 ≤ p ≤ p ≤ 1. In most applications, it is reasonable
to assume that no individual can be absolutely sure to have the disease (i.e.,
p < 1), and also never be sure to be healthy (i.e., p > 0), but our model also
encompasses environments in which absolutely certain individuals may exist
(i.e., p = 0 and/or p = 1). Although our model considers a single individ-
ual, it is instructive to imagine a population of individuals out of which the

4Similarly, Jones, Philippon, and Venkateswaran (2020) introduce a choice of shopping time
and working time, inducing a level of social contacts.

5One way to capture age in our model would be by recognizing that the benefit from early
treatment is larger for old people than for young people, giving rise to a smaller threshold prob-
ability p∗ for old people, and a different second-best optimal schedule in an old population
compared to a young population. In order to capture a mixed-age poulation in our model, we
would need to define a welfare objective that puts positive weights on the welfare of different age
groups and recognizes the possibility of cross-infections.

6Again on a technical level, our setup may be seen as a case of mechanism design with costly
state-verification (see Ben-Porath, Dekel, and Lipman (2014)). In this literature, a designer
commits to verifying states and implementing outcomes conditional on agents’ reports when
agents have private information related to these states. In our setting, the government is able to
verify an individual’s health state by testing for the infection, but she is not able to verify the
agent’s type. The verification of the health state carries a cost not only to the government, but
is also costly to the individual.
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considered individual is a representative member.7

We assume that, across the population, individuals’ probability assesse-
ments are not systematically wrong, that is, for all p, among all individuals
who think that they are infected with probability p, the expected fraction p
is in fact infected.8 Let F denote the c.d.f. for the distribution of types p
in the population of individuals. We assume that F has a density f that is
strictly positive on the open interval (p, p).

At a point in time after time 0, the individual may develop clearer symp-
toms, at which point the individual may regret not having learned about its
infection at time 0, which would have opened the opportunity to begin an
early treatment. Our analysis focusses on time 0.

At time 0, the individual may be tested for the illness. The test perfectly
reveals the health state. Getting tested is a hassle for the individual; let
ct > 0 denote the individual cost of having the test done. On the other hand,
if the test comes out positive, then an early treatment can be started; let
b > 0 denote the individual’s anticipated benefit of being treated early.9

Social distancing (starting at time 0) may be enforced on the individual.
The degree of social distancing is a real number between 0 and 1. We use
the term quarantine to indicate the maximal social-distancing level, 1. For
the purposes of the model, any social-distancing level may be thought of as
a probability of being put into quarantine.

Being in quarantine is unpleasant; the cost for the individual is denoted
cq > 0. We assume that being quarantined is more unpleasant than being
tested:

cq > ct. (1)

A quarantined individual cannot spread the disease. Putting an infected
individual into quarantine yields a social benefit of bq > 0. Putting a non-
infected individual into quarantine has no benefit.

We assume that every positively tested individual will be quarantined,
and no negatively tested individual will be quarantined. Thus, an individual
of any type p expects to get quarantined with probability p after a test,
implying that the individual’s expected value of being tested is given by

v(p) = p(b− cq)− ct. (2)

7What defines a population depends on the application. A population may be large, such as
the group of citizens in a jurisdiction, or more confined, such as the group of individuals who
arrive at an airport on a given day.

8A model variation in which agents are systematically too pessimistic or optimistic, or have s-
shaped probability distortions as in prospect theory (see Kahneman (2011) for an introduction),
may also be considered. A psychological bias towards overestimating the probability of being
infected may be considered a plausible model variation in a population with a small rate of
infections when the illness nevertheless draws a lot of public attention.

9An interesting model extension would distinguish individuals with low b (young, no preex-
isting illnesses) and high b (old, preexisting illnesses). The social welfare function would then
depend on a convex combination of both groups’ expected utilities, with the weights depending
on the groups’ relative sizes in the population. The interaction between the groups would arise
from the possibility of cross-group infections.
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We assume that the benefit of the early treatment is so high that the expected
value of getting tested is positive for the highest type, that is,

p(b− cq) > ct.

The less likely an individual deems itself infected, the smaller the expected
value of getting tested; an individual who is sure to be healthy will have a
negative value because v(0) = −ct < 0. We assume that the lowest type is so
close to 0 that its expected value is negative,

p(b− cq) < ct.

The inequalities above mean that there is enough heterogeneity in the popu-
lation so that a conflict exists between those who, in the absence of any other
incentives, would like to get tested and those who do not want to get tested.
Let

p∗ = ct/(b− cq) (3)

denote the indifferent type, that is, v(p∗) = 0. By the assumptions above,
p < p∗ < p.

The government’s goal is to set up a rule for determining who gets tested
and what level of social distancing will be required.

Even before introducing the government’s welfare function, it is pretty
clear that the optimal testing-and-social-distancing rule will, in general, be
type-dependent. For all p, let m(p) denote the probability that an individual
of type p is tested, and let q(p) denote the required degree of social distancing
for such an individual, conditional on the event that the individual does not
get tested. Naturally,

0 ≤ m(p) ≤ 1 for all p. (4)

Similarly, recalling that any degree of social distancing is interpreted as a
probability of getting quarantined,

0 ≤ q(p) ≤ 1 for all p. (5)

The pair of functions (m, q) defines the government’s rule or (direct) mecha-
nism.

The main difficulty for the government is that, given any individual’s
personal cost of getting tested and cost of getting quarantined, individuals
may lie about their personal health signal. Due to the revelation principle,
there is no loss of generality in restricting attention to mechanisms (m, q) that
are incentive compatible, that is, direct mechanisms in which no individual
can gain from making a false claim about her type. In order to spell out this
condition, let

U(p̂, p) = v(p)m(p̂)− cq(1−m(p̂))q(p̂) (6)

denote the current expected utility of an individual of any type p who pretends
to be of some type p̂. The incentive-compability condition requires that

U(p, p) ≥ U(p̂, p) for all p̂ and p. (7)
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Our model does not attempt to capture the dynamic aspects of the spread
of the disease. Rather, we are interested in the problem which mechanism is
optimal at the given current point in time. Thus, we take it is given that the
goverment is concerned about two things: first, the current expected utility
of an (average) individual, which should be kept high; second, the probability
that any given individual spreads the disease, which should be kept low.

An individual can spread the disease if and only if it is infected and is
not quarantined. Let bq > 0 denote the social benefit of quarantining an
infected individual. The expected quarantining benefit that is achieved by the
goverment’s rule with respect to type p is equal to

bq(m(p)p+ (1−m(p))pq(p)).

This is because, in case the individual is tested (probability m(p)), the ben-
efit bq occurs if and only if the individual is infected (probability p) be-
cause the test is perfect; if, however, the individual is not tested (probability
1−m(p)), then being infected (probability p) and gettting quarantined (prob-
ability q(p)) are stochastically independent events, so that the benefit bq only
occurs with probability pq(p).

Denoting the government’s welfare weight on the individual’s utility by
w1 > 0,10 the government’s welfare objective is given by

W = Ep∼F
[
w1U(p, p) + bqp (m(p) + (1−m(p))q(p))

w1U(p, p)− cgtm(p)− cgq(1−m(p))q(p)
]
, (8)

where cgt > 0 denotes the government’s production cost of a test, and cgq ≥ 0
denotes the government’s surveillance cost of enforcing the quarantine of an
untested person.11

Interpreting cgt as an opportunity cost, we can view cgt as a measure of the
current scarcity of test medication units or test facilities, that is, the higher
cgt the higher is the cost of using a test unit for any particular individual. In
this view, cgt is the government’s value of saving a test unit for a different
point in time or of using it for an individual outside the considered population
of individuals.

The cost cgq can be interpreted as a measure of the availability of surveil-
lance and enforcement infrastructure. Furthermore, cgq can be seen as mea-
suring the lack of social norms towards voluntary quarantine keeping in the
considered population of individuals.

Since we do not set up a dynamic model, we cannot determine the optimal
value of w1.12 Instead we identify structural properties of the goverment’s
current welfare-maximizing rule, taking w1 as a given parameter.

10From a theoretical point of view, w1 is a redundant parameter. The relative weight of the
individual utility in the welfare objective could also be captured by scaling the parameters b, cq,
and ct appropriately. We keep the parameter w1 for convenience.

11For simplicity, we assume that there is no cost of enforcing the quarantine of a positively
tested person. While such a cost could be easily incorporated into our model, it is reasonable to
assume that a positively tested person will keep its quarantine voluntarily, or the medical facility
into which the person is transferred will enforce the quarantine without incurring significant extra
costs beyond the cost of caring for and treating the individual.

12In a dynamic model, because the fraction of infected individuals in the population becomes
a variable, the definition of an agent’s current expected utility must be altered such that she
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The government’s goal is to solve the following (second-best) welfare-
maximization problem:

max
m(·),q(·)

W s.t. (4), (5), (7),

where the expected utilities that occur in (7) are computed via (6).

First best

As a benchmark,13 we now discuss the rule the government would use if it
could directly observe the individual’s type and thus could set up any rule
without relying on the individuals’ type reports. Such an omniscient and
omnipotent government would solve the following first-best problem:

max
m(·),q(·)

W s.t. (4), (5).

To solve this problem, we replace the expression (6) for U(p, p) in W and
rearrange terms,

W = Ep∼F
[
w1 (v(p)m(p)− cq(1−m(p))q(p)) + bqp (m(p) + (1−m(p))q(p))

w1U(p, p)− cgtm(p)− cgq(1−m(p))q(p)
]

= Ep∼F [C(p)m(p) +D(p)(1−m(p))q(p)] , (9)

where we use the shortcuts

C(p) = w1v(p) + bqp− cgt, (10)

D(p) = −w1cq + bqp− cgq. (11)

Note that both C and D are linear and strictly increasing functions of p, and
C is steeper than D because w1 > 0.

Using (9), the welfare-maximizing value of m(p) and q(p) can be deter-
mined separately for each p. Denoting by

pq =
w1cq + cgq

bq

the number such that D(pq) = 0, constraint (5) together with (9) shows that

an optimal quarantining schedule is given by14

q∗∗(p) =

{
1 if p ≥ pq,
0 otherwise.

(12)

Using this schedule, the welfare can be expressed as a function of the testing
schedule m:

W = Ep∼F [C(p)m(p) + max{0, D(p)}(1−m(p))] .

obtains a benefit from being healthy. The testing-and-social-distancing rule would be adapted
dynamically. The welfare-maximizing value of w1 would depend on the impact of the current
spread of the disease on the discounted expected utility of forward-looking agents.

13This section can be skipped on first reading.
14It is possible that pq < p, in which case everybody should be quarantined, or pq ≥ p, in which

case nobody should be quarantined.

10



Thus, by constraint (4), an optimal testing schedule is given by

m∗∗(p) =

{
1 if C(p)−max{0, D(p)} ≥ 0,
0 otherwise.

In order to achieve a more explicit form for the optimal testing schedule, we
distinguish two cases. Define pt such that C(pt) = 0, that is,

pt =
w1ct + cgt

w1(b− cq) + bq
.

Suppose first that C(pq) ≥ 0, that is,

pt ≤ pq. (13)

In this case, D(p) ≤ 0 for all p ≤ pt, implying m∗∗(p) = 0. For all p ∈ (pt, pq],
we have C(p) > 0 and D(p) ≤ 0, implying m∗∗(p) = 1. For all p > pq, it is
also true that m∗∗(p) = 1 because

C(p)−D(p) > C(pq)−D(pq) = C(pq) ≥ 0,

where the first inequality follows from the fact that C is steeper than D.
Summarizing the insights so far, we have seen that, if condition (13) holds,

then

m∗∗(p) =

{
1 if p ≥ pt,
0 otherwise.

Note that, under condition (13), the optimal quarantining required by (12)
never comes to play: due to (13), all types that are optimally quarantined if
they are not tested are tested anyway.

Secondly, consider the case in which (13) does not hold, that is, pq < pt.
In this case, C(p) < 0 for all p ≤ pq, implying m∗∗(p) = 0. For all p > pq,

we have D(p) > 0, implying

C(p)−max{0, D(p)} = C(p)−D(p).

Let pqt be such that C(pqt)−D(pqt) = 0, that is,

pqt =
cgt − cgq − w1(cq − ct)

w1(b− cq)
.

Because C(pq)−D(pq) = C(pq) < 0 and C is steeper than D, we have

pqt > pq,

and thus

m∗∗(p) =

{
1 if p ≥ pqt,
0 otherwise.

Thus, in the case where (13) does not hold, the range of types that are tested
is smaller than the range of types that are quarantined. In other words, there
is a range of intermediate types that are quarantined rightaway, without a
test being applied; only high types are tested. We summarize.
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Figure 1: Example of a government’s first-best optimal rule as a function of the cost
of a test unit, cgt. The blue curve given by the value of pt or, resp., pqt, indicates the
marginally tested type. The orange line indicates the marginally quarantined type. For
this diagram, it is assumed that w1 = 1, F is the uniform distribution on the interval
[p, p] = [0.1, 1], b = 8, cq = 4, ct = 1, bq = 8, cgq = 0.1. The computations were performed
using Mathematica 12.

Proposition 1. A first-best best testing-and-quarantining schedule is given
as follows. If condition (13) holds, then an individual is tested if and only if
her type is at least pt; no social distancing is required for untested individuals.
If condition (13) fails, then an individual is tested if and only if her type is at
least pqt; there is a nonempty interval of types—the types in [pq, pqt)—such
that an individual with such a type is quarantined rightaway, without being
tested; no social distancing is required for individuals with types in [p, pq).

We illustrate the first-best via a discussion of the comparative statics with
respect to the cost of testing, cgt.

If test capacities are abundant (i.e., cgt ≈ 0), then (13) is satisfied because

pt ≈
w1ct

w1(b− cq) + bq
<

w1cq

w1(b− cq) + bq
<
w1cq + cgq

bq
= pq.

All individuals with types above this threshold are tested, and no social dis-
tancing is required for untested types. Note that pt < p if p > 0 and bq

is sufficiently large. That is, unless some individuals are almost certainly
healthy (i.e., p = 0), all individuals will be tested if the public benefit bq is
sufficiently large.

As cgt increases, the marginally tested type pt increases, so that fewer
and fewer individuals are tested. There exists cgt such that pt = pq. If test
capacities become even scarcer, (13) fails. The set of tested types shrinks
ever more as cgt increases further, but the quarantining threshold pq remains
constant.

At some point, test capacity is so scarce that pqt ≥ p. Then nobody is
tested anymore, but quarantining of individuals with types in the interval
(pq, p] persists; depending on the parameters, it can be optimal to quarantine
nobody (if pq > p) or everybody (if pq ≤ p).

Figure 1 provides an illustration. It shows an example of the marginally
tested type and the marginally quarantined type as functions of the testing
cost cgt, keeping the other parameters fixed.

12



A simple, but very important, observation is that, with the exception
of extreme cases or non-generic cases, the first-best solution is not incentive
compatible. For concreteness, suppose that condition (13) is safisfied and that
the parameters are such that individuals with high types should be tested,
whereas individuals with sufficiently low types should not be not tested, that
is,

p < pt < p.

According to (6), in the first-best solution, the payoff of an individual with
type p who announces a type p̂ is given by

U(p̂, p) =

{
v(p) if p̂ > pt,
0 if p̂ ≤ pt.

If pt < p∗, then any individual with a type p ∈ (pt, p∗) can improve her payoff
by announcing a type p̂ < pt because

U(p, p) = v(p) < 0 = U(p̂, p).

By such a misrepresentation of the personal health signal, the individual
avoids an unwanted test.

Similarly, if pt > p∗, then any individual with a type p ∈ (p∗, pt) can
improve her payoff by announcing a type p̂ > pt. By such a misrepresentation
of the personal health signal, the individual snatches an undeserved test.

Only in the non-generic case where the parameters happen to be such
that pt = p∗, it is true that the first-best solution is incentive compatible.

The described misrepresentation of the personal health signal is not pos-
sible if all types are tested (i.e., pt ≤ p) or no type is tested (i.e., pt > p).
We should mention that incentive compatibility can be violated even if the
parameters are such that no type is tested. This violation happens if the first-
best solution requires that some, but not all, individuals are quarantined; i.e.,
p < pq < p. Incentive compatibility fails for individuals with types above pq;
they are supposed to be quarantined, but can avoid this by claiming that
their type is below pq.

Our conclusion that the first best typically fails to be incentive compatible
makes clear that, in order to achieve its welfare goal, the government must
take the individual’s incentive compatibiliy conditions into account. Our
results will show that this approach leads to a rather different solution of the
government’s problem.

3 Results

In this section, we provide a general solution of the government’s problem,
we consider a number of important special cases, and we discuss the role of
certain exogeneous parameters, that is, we consider comparative statics.

Proposition 2 is our fundamental result that describes how the govern-
ment optimally combines testing and social distancing to resolve the tradeoff
between maximizing the individual’s current expected utility and curbing the
spread of the disease, while taking the incentive-compatibility conditions into
account.

13



Proposition 2. It is either optimal for the government to test nobody and
quarantine everybody, or the government’s problem has a solution (m∗, q∗)
that takes the following form. There exists p̌ ∈ [p, p] such that, for all types
p, the optimal testing schedule is

m∗(p) =

{
0 if p < p̌,
m̌ if p ≥ p̌,

where

m̌ =
cq

cq +max{v(p̌), 0}
. (14)

If p̌ ≤ p∗, then the optimal quarantining probability is

q∗(p) =
−v(p̌)

cq
for all p < p̌.

If p̌ > p∗, then the optimal quarantining probability is

q∗(p) = 0 for all p < p̌,

and

q∗(p) = 1 for all p ≥ p̌.

It should come as no surprise that it can be optimal for the government
to test nobody and quarantine everybody (at the considered point in time);
testing nobody should be interpreted here as saving any available testing
capacity for a different population of individuals or for use at another point
in time. This extreme solution applies, for example, if the government puts
almost zero weight on the current expected utility of the individual (i.e.,
w1 ≈ 0), and has almost zero cost of surveillance of the quarantine (i.e.,
cgq ≈ 0), so that, essentially, its only concern is the spread of the disease (cf.
Corollary 2). The other possible form of the solution described in Proposition
2 is more interesting.

In the described optimum, there exists a fixed testing probability m̌ and a
marginal type, p̌, such that an individual may be tested only if she claims to be
feeling sufficiently ill (i.e., be at or above the marginal type); all individuals
with types above the marginal type are tested with the same probability.
Accordingly, only two different quarantining probabilities are applied in any
given solution: one probability for those who claim to be of the marginal type
or higher, and one for those who claim to be below. Thus, the mechanism only
makes use of a binary information: in essence, it asks whether the individual
feels relatively healthy (type below p̌) or rather ill (type at or above p̌).

The quarantining probability q∗(p) is designed such that, for each type p,
an individual of type p is willing to reveal her type truthfully to the mech-
anism. In other words, no individual has an incentive to lie about their
personal health signal.

The simplest solution possibility is that the marginal type p̌ = p∗, that is,
v(p̌) = 0. This solution features m̌ = 1, that is, the types above p∗ are tested
for sure, whereas the types below p∗ are not tested at all. This is exactly

14



what the individual would like to happen in the absence of any additional
incentives. Accordingly, no social distancing is required in the optimum (i.e.,
q∗(p) = 0).

Another possibility for the optimum is that p̌ < p∗, that is, the marginal
type has a negative test value, v(p̌) < 0. In this case, it is still optimal to
use the testing probability m̌ = 1, that is, all those who feel relatively ill
are tested for sure. But now there is an interval of types, from p̌ to p∗, who
are supposed to get tested, but would refuse so in the absence of additional
incentives. In order to make individuals with these types reveal themselves
so they can be tested, some social distancing (i.e., q∗(p) > 0) is enforced for
individuals who remain untested. This lowers each individual’s payoff from
not getting tested. Thus, an individual of type p∗, who would otherwise be
indifferent, now strictly prefers to be tested, and so do the types in between p̌
and p∗. For any individual with a type p ≥ p̌, the value of q∗(p) is irrelevant
because individuals with such types p are tested for sure; in the proposition,
q∗(p) is specified only for the types p < p̌.

Note that, within the cases with p̌ < p∗, an extreme possibility is that
p̌ = p, that is, everybody is tested; the individual will be quarantined if and
only if the test is positive.

The remaining possibility for the optimum is that p̌ > p∗, that is, the
marginal type has a positive test value, v(p̌) > 0. In this case, it is optimal to
use a testing probability m̌ < 1, that is, even those who feel rather ill are not
tested for sure. Applying a testing probability m̌ below 1 may be interpreted
as randomly selecting a fraction m̌ from the group of individuals who claim
to be relatively ill and test only those. In the absence of additional incentives
via quarantining, individuals with types in between p∗ and p̌ would pretend
to be rather sick in order to snatch a test. In order to prevent this, the testing
is probabilistic, that is, only a randomly selected fraction m̌ of the individuals
who claim to have types above p̌ are tested, and each individual of such a
type that does not belong to the tested fraction is put in quarantine for sure.
Each individual now faces a gamble if she volunteers to get tested: with some
probability she is then not tested and is still put in quarantine, whereas she
would not have been put in quarantine had she not volunteered. Individuals
with higher types are more willing than those with lower types to take such a
gamble because for them the test is more valuable, while the hassle of being
put in quarantine for those who do not get a test is type-independent.

Note that one possibility is that p̌ = p. Such a solution is essentially equiv-
alent to no-testing-no-quarantining (strictly speaking, the highest type, p, is
tested with a positive probability, but this exact type occurs with probability
0, and the government may as well not test this type).

What is missing from Proposition 2 is the characterization (in terms of
the exogeneous parameters of the model) of the cases in which it is optimal
to test nobody and quarantine everybody, and, concerning the other cases,
a characterization of the optimal threshold p̌. This gap will be closed via
Proposition 3. Some auxiliary functions must be specified. These functions
are defined via the exogeneous parameters of the model. For all types p,
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define

B(p) =

(

−(b− cq)w1p− cgt −
cgq

cq
v(p)

)

F (p)

+

(

(b− cq)w1 + bq +
bq

cq
v(p)

)

Ep′∼F [p
′|p′ ≤ p]F (p). (15)

For all λ ≥ 0 and all types p, define

Aλ(p) = B(p) + 1p>p∗ · v(p)(λ− λ∗), (16)

where

λ∗ = −w1 +
bqEp′∼F [p

′]− cgq

cq
.

For all λ ≥ 0, define

αλ = −min
p
Aλ(p) +A0(p)− λcq. (17)

The following lemma implies that the function λ 7→ αλ is strictly decreasing
on [0,∞), and, by the intermediate-value theorem, intersects the horizontal

axis. Thus, there exists a unique λ̌ such that αλ̌ = 0. The proof is straight-
forward and is relegated to the Appendix.

Lemma 1. The function λ 7→ αλ is Lipschitz continuous. Its derivative
satisfies the inequalities −v(p)− cq ≤ dαλ/dλ ≤ −cq. Moreover, α0 ≥ 0, and
αλ ≤ 0 for all sufficiently large λ.

The following result determines which of the solutions that are described
in Proposition 2 applies. Proposition 3 not only characterizes the optimal
solution, but also provides a computational path to solving the government’s
problem for any parameter constellation.

Proposition 3. Let λ̌ ≥ 0 be such that αλ̌ = 0. If λ̌ ≤ λ∗, then the gov-
ernment’s problem has a solution such that nobody is tested and everybody is
quarantined.

Alternatively, suppose that λ̌ ≥ λ∗. Let p̌ be a minimizer of Aλ̌. Then p̌
yields a solution for the government’s problem as described in Proposition 2.

The proof of Proposition 2 and Proposition 3 is relegated to Section 4.
Examples will be provided below.

Concerning the form of the solution of the government’s problem, the
most fundamental distinction occurs between four different categories of so-
lutions (cf. the explanations below Proposition 2): first, no-testing-always-
quarantining, second, a mechanism that sets up testing incentives (i.e., p̌ <
p∗), third, testing disincentives (i.e., p̌ > p∗), and fourth, the “null” mecha-
nism that is characterized by the absence of testing incentives or disincentives,
that is, the individual behavior remains unregulated (i.e., p̌ = p∗).

Proposition 4 provides conditions on the model parameters that can be
verified directly in order to check which of the four possibilities applies in any
particular environment. In order to formulate these conditions, additional
notation is needed. Let

B = min
p≤p∗

B(p),
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l =
1

cq
(A0(p)−B), and λ = max{0, l}.

For any λ ≥ 0, define

Aλ = min
p≥p∗

Aλ(p).

Also note that, if λ∗ ≥ 0 and (17) is evaluated at λ = λ∗, then the definition
simplifies to

αλ
∗

= −min
p
B(p) +B(p)− (v(p) + cq)λ∗. (18)

The conditions provided in Proposition 4 refer to the four numbers λ∗, αλ
∗

,

B, and Aλ. Computing these numbers is relatively easy: λ∗ is defined directly
in terms of the exogeneous model parameters, and to compute each of the
other three numbers, a single one-dimensional minimization problem must be
solved. Thus, computing the four numbers is easier than fully computing the
function λ 7→ αλ, which would be required to apply Proposition 3 directly.
On the other hand, Proposition 3 fully specifies a solution to the government’s
problem, whereas Proposition 4 mainly serves to characterize four different
categories of solution possibilities; in particular, in Proposition 4 the exact
value of p̌ is not specified in the case in which testing disincentives are optimal
(i.e., p̌ > p∗).

Note that, while this is not explicit from the statement, Proposition 4
allows to distinguish cases in which setting up testing incentives is optimal
(i.e., p̌ < p∗) from cases in which the null mechanism is optimal (i.e., p̌ = p∗):
if the restriction of B to the interval [p, p∗] is minimized at p∗, then the null
mechanism is optimal; if it is minimized at a point below p∗, setting up testing
incentives is optimal.

Proposition 4. If λ∗ ≥ 0 and αλ
∗

≤ 0, then the government’s problem has
a solution such that nobody is tested and everybody is quarantined.

Alternatively, suppose that λ∗ < 0, or λ∗ ≥ 0 and αλ
∗

> 0. Then there
exists a solution to the government’s problem with marginal type p̌ as defined
in Proposition 3 such that the following holds.

If B ≤ Aλ, then p̌ ∈ argminp≤p∗ B(p).

If B > Aλ, then p̌ > p∗.

Here is a sketch of the proof. The condition for the optimality of no-
testing-always-quarantining means that the strictly decreasing function λ 7→
αλ has already dipped below the horizontal axis when it reaches the point
λ = λ∗. Thus, it intersects the horizontal axis to the left of the point λ∗, which
corresponds to the condition on λ̌ given in Proposition 3. To understand
where the other conditions arise, suppose for simplicity that l ≥ 0, that is,
λ = l. Then

0 = −B +A0(p)− λcq,

that is, λ is the number at which we would have αλ = 0 if the minimizer p̌ of

Aλ belonged to [p, p∗], that is, if B ≤ Aλ. In this case, by Proposition 3, the

government’s problem has a solution with λ̌ = λ and thus p̌ ≤ p∗. Similar

17



1.5 2.0 2.5 3.0 3.5 4.0

0.5

1.0

1.5

cgt

β

Figure 2: Examples of parameter constellations such that setting up testing incentives is
optimal (orange dots), leaving behavior unregulated is optimal (blue dots), and setting up
testing disincentives is optimal (green dots). For this diagram, it is assumed that w1 = 1,
p = 1, p = 0.1, F (p) = ((p − p)/(p − p))β , b = 8, cq = 4, ct = 1, bq = 8, cgq = 0.1.
Consequently, p∗ = 0.25. Each orange dot represents a pair (cgt, β) such that p̌ < p∗;
each blue dot represents a pair (cgt, β) such that p̌ = p∗; each green dot represents a pair
(cgt, β) such that p̌ > p∗. The computations were performed using Mathematica 12.

arguments imply that, if the opposite inequality B > Aλ holds, then λ̌ > λ
and the minimizer p̌ of Aλ̌ cannot belong to [p, p∗], that is, p̌ > p∗. The
details of the proof of Proposition 4 are relegated to the Appendix.

Figure 2 illustrates Proposition 4. Fixing all other parameters, we consider
testing costs that range from 1 to 4, and type distributions that are indexed
by a parameter β that ranges from 0.1 to 1.5. Specifically, we assume that
the lowest type p = 0.1, the highest type p = 1, and consider the distribution

F (p) =

(
p− p

p− p

)β

.

This specification is meant to capture that, the larger β, the more ill is the
population, that is, the more probability mass is shifted to higher types.

Each blue dot in Figure 2 represents a pair (cgt, β) such that no regulation
is optimal (i.e., p̌ = p∗); each orange dot represents a pair (cgt, β) such that
it is optimal to test more than in the absence of regulation, that is, setting
up testing incentives is optimal (i.e., p̌ < p∗); each blue dot represents a pair
(cgt, β) such that it is optimal to test less than in the absence of regulation,
that is, setting up testing disincentives is optimal (i.e., p̌ > p∗). Naturally,
the more ill is the population (i.e., the higher is β), the larger is the range
of testing-cost levels cgt such that setting up testing incentives is optimal,
and the smaller is the range of testing-cost parameters such that setting up
testing disincentives is optimal.

In order to provide more insight into the nature of the solution of the
government’s problem, we now present a number of special cases.

Special cases and comparative statics

First of all, we have the following benchmark:
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Corollary 1. If, for given values of the other parameters, the public cost and
benefit parameters cgt, cgq, and bq, are sufficiently close to 0, then p̌ = p∗,
that is, it is optimal to leave the individual behavior unregulated.

The benchmark considered here is a situation in which the spread of the
disease is considered almost irrelevant, so that the individual’s current ex-
pected utility is essentially the only important design aspect. The govern-
ment’s motivation for any regulation is the externality of the individual’s
behavior concerning the spread of the disease. If this motivation ceases to be
relevant, the optimum is the null contract.

To obtain a heuristic argument towards the proof, consider the hypotheti-
cal limit case cgt = cgq = bq = 0. By definition of λ∗, we have λ∗ = −w1 < 0.
Hence, by Proposition 3 there exists a solution with a marginal type p̌.

Also note that (15) implies that

B(p) = (b− cq)w1Ep′∼F [1p′≤p · (−p+ p′)],

which has the slope

B′(p) = −(b− cq)w1F (p) < 0,

implying that B is strictly decreasing.
On the other hand, (16) together with λ∗ = −w1 implies that, for all

p > p∗ and all λ ≥ 0,

Aλ(p) = B(p) + v(p)(λ+ w1),

which has the slope

(Aλ)′(p) = B′(p) + (b− cq)(λ+ w1) ≥ (b− cq)w1(1− F (p)) > 0,

implying that Aλ is strictly increasing for all p ≥ p∗.
We conclude that Aλ, and in particular Aλ̌, is minimized at p∗, showing

that p̌ = p∗ by Proposition 3. The arguments above are easily extended to
the case in which the parameters cgt, cgq, and bq are not exactly equal to 0,
but are sufficiently close to 0; the details are omitted.

Note that, according to the first-best solution described in Proposition 1,
if the public cost and benefit parameters cgt, cgq, and bq are close to 0, but
not exactly equal to 0, then, generically, pt 6= p∗. In these cases, the first-
best solution differs from the null mechanism while the null mechanism is
still second-best optimal, as shown in Corollary 1. In other words, while the
omniscient and omnipotent government’s optimal rule reacts with stipulating
some regulation to even the slighest concern about public costs and benefits,
a government that must take the incentive constraints into account optimally
sticks to the null mechanism if public costs and benefits are small.

Next we consider the opposite extreme case where the government does
not care much about the individual’s current expected utility, that is, w1 is
close to 0 and, in addition, the quarantine can be enforced at almost zero
cost.

Corollary 2. If, for given values of the other parameters, w1 and cgq are
sufficiently close to 0, then testing nobody and quarantining everybody is op-
timal.

19



Again, we obtain a heuristic argument towards the proof by considering
the hypothetical limit case where w1 = 0 and cgq = 0. By definition,

λ∗ =
bq

cq
E[p′] > 0

and

B(p) =
(
−cgt

)
F (p) +

(

bq +
bq

cq
v(p)

)

E[p′|p′ ≤ p]F (p). (19)

In particular,

B(p) = −cgt +

(

bq +
bq

cq
v(p)

)

E[p′] = −cgt + (cq + v(p))λ∗.

Thus, using (18),

αλ
∗

= −min
p
B(p)− cgt = −min

p
(B(p) + cgt). (20)

Note also that v(p) ≥ −ct ≥ −cq, implying v(p)/cq + 1 ≥ 0. Hence,

bq +
bq

cq
v(p) ≥ 0. (21)

This together with (19) implies that B(p) + cgt ≥ 0. Thus, (20) implies that
αλ

∗

≤ 0. Thus, testing nobody and quarantining everybody is optimal by
Proposition 4. Combining the above arguments with appropriate continuity
arguments leads to the proof of Corollary 2; the details are relegated to the
Appendix.

Next we consider comparative statics with respect to the government’s
cost of testing the individual, cgt. We distinguish the case in which the
current individual utility is relatively important (i.e., w1 above a threshold)
and the opposite case where curbing the spread of the disease is considered
relatively more important (i.e., w1 below the threshold). In the first case,
the marginally tested type p̌ is increasing in the cost cgt until a cost level cgt

is reached at which no-testing-no-quarantining is optimal; this remains the
solution at all higher cost levels.

In the remaining oppositive case where the current individual utility is
less important (i.e., w1 below the threshold), the marginally tested type is
increasing in the cost cgt until a cost level cgt is reached at which no-testing-
always-quarantining is optimal; this remains the solution at all higher cost
levels.

Corollary 3. (Comparative statics with respect to cgt, keeping the other pa-
rameters fixed.)

Consider the case w1 ≥
bqEp′∼F [p′]−cgq

cq
. Then there exists a marginally

tested type p̌. Moreover, choosing either the minimal or the maximal p̌ in
case of multiplicity, p̌ is weakly increasing in cgt, and p̌→ p as cgt → ∞.

Consider the case w1 <
bqEp′∼F [p′]−cgq

cq
. Then there exists a threshold cgt

such that, for all cgt < cgt, the marginally tested type p̌ (choose the minimal
or maximal p̌ in case of multiplicity) is weakly increasing in cgt; no-testing-
always-quarantining is optimal for all cgt ≥ cgt.
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Figure 3: Example of a government’s second-best optimal marginally tested type, p̌, as a
function of the government’s cost of a test unit, cgt. The cases in which cgt > cgt, where
no-testing-always-quarantining is optimal, are represented via a negative value of p̌. For
this diagram, it is assumed that w1 = 1, F is the uniform distribution on the interval
[p, p] = [0.1, 1], b = 8, cq = 4, ct = 1, bq = 8, cgq = 0.1. The computations were performed
using Mathematica 12.

The proof of Corollary 3 is relegated to the Appendix. Figure 3 illustrates
the case w1 < (bqEp′∼F [p

′]− cgq)/cq in Corollary 3. In this example, p∗ =
0.25. If the testing cost cgt is small, it is optimal to test everybody, that is
p̌ = p. Then there is a range of testing costs in which it is optimal to set up
testing incentives, but not everybody is tested, that is, p < p̌ < p∗. This is
followed by a range of testing costs such that the null mechanism is optimal.
If the testing cost is even higher, it becomes optimal to provide ever stronger
testing disincentives. At the point cgt ≈ 9.4, testing capacity is is so scarce
that no-testing-always-quarantine is optimal if the cost is even higher.

Note that the second-best solution is strikingly different from of the first-
best solution at the same parameters that was illustrated in Figure 1. At
low testing costs (cgt below ≈ 5.1), the first best relies on testing some types
without extra quarantining of untested types; such a solution violates incen-
tive compatibility and thus is not feasible; in the second best, type-revelation
incentives are provided via social-distancing of untested types or randomized
testing, and this also changes the optimal testing schedule relative to the first
best.

At very high testing costs (cgt above ≈ 7.1), since testing is now very
expensive, tests are not applied at all in the first-best solution—the first best
then relies entirely on quarantining of individuals with sufficiently high types,
which again violates incentive compatibility and thus is not feasible; in the
second best, some tests are still applied, in an incentive-compatible way, until
the testing cost is so high that the government gives up on testing and resorts
to quarantining everybody.

Figure 4 illustrates the case w1 > (bqEp′∼F [p
′]− cgq)/cq in Corollary 3.

This case is reached because now we assume that p = 0.0001—some types
are almost sure to not be infected. These types remain untested even if the
testing cost cgt is very close to zero, implying that p̌ is strictly increasing
essentially from the start. As in the previous example, there is a range of
testing costs such that the null mechanism is optimal, and if testing cost are
even higher, it becomes optimal to provide ever stronger testing disincentives.
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Figure 4: Example of the government’s second-best optimal marginally tested type, p̌,
as a function of the government’s cost of a test unit, cgt. If the testing cost is sufficiently
high, then p̌ = p, that is, no-testing-no-quarantining is optimal. For this diagram, it is
assumed that w1 = 1, F is the uniform distribution on the interval [p, p] = [0.0001, 1],
b = 8, cq = 4, ct = 1, bq = 8, cgq = 0.1. The computations were performed using
Mathematica 12.

In contrast to the previous example, however, no-testing-no-quarantining is
optimal if testing capacities are sufficiently scarce.

4 Proof of Proposition 2 and Proposition 3

As a first step, we rewrite the government’s problem as a convex maximiza-
tion problem over testing schedules m(·). As a second step, we show that the
solution m∗(·) described in Proposition 2 and Proposition 3 satisfies the (La-
grangian first-order) sufficient conditions for solving the problem as rewritten
in the first step. As a third step, we show that the optimal quarantining
schedule q∗(·) described in Proposition 2 and Proposition 3 is a consequence
of the optimal testing schedule m∗(·).

Step 1: rewriting the government’s problem

Using standard techniques from mechanism design (see, e.g., Börgers (2015),
Chapter 3), we have the following result.

Lemma 2. A rule (m, q) is incentive compatible if and only if

U(p, p) = (b− cq)

∫ p

p

m(p′)dp′ + U(p, p) for all p, (22)

and m(p) ≤ m(p′) for all p < p′ (23)

The first condition (22) is an envelope or integrability condition that yields
a “revenue-equivalence” result: the testing schedule m(·) determines the indi-
vidual’s expected utility as a function of the type, up to the constant U(p, p).
Thus, by equating the integrability condition with the individual utility ex-
pression (6), we get, for each type p, a condition for the quarantine probability
q(p) such that the integrability condition is satisfied:

v(p)m(p)− cq(1−m(p))q(p) = (b− cq)

∫ p

p

m(p′)dp′ + U(p, p).
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Rearranging, we can express the joint probability of remaining untested and
being quarantined:

(1−m(p))q(p) =
1

cq

(

v(p)m(p)− (b− cq)

∫ p

p

m(p′)dp′ − U(p, p)

)

.

︸ ︷︷ ︸

≡ ψU(p,p),m(p)

(24)

Now consider a testing schedulem(·) that satisfies the monotonicity condition
(23) and the probability condition (4).

We would like to characterize the set of m(·) such that (m, q) is incen-
tive compatible for some quarantining schedule q(·). Given some m(·), the
question is then whether or not there exists q(·) that satisfies the probability
condition (5) together with the equation (24), where (setting p̂ = p = p in
(6))

U(p, p) = v(p)m(p)− cq(1−m(p))q(p).

Note that this last equation already follows from (24) as applied with p = p.
Thus, we can treat the number U(p, p) as a variable that can take any value
that satisfies (24).

Multiplying (5) with 1 −m(q), we obtain the essentially equivalent con-
dition

0 ≤ (1−m(p))q(p) ≤ 1−m(p) for all p, (25)

(Note that this condition, in contrast to (5), leaves q(p) undetermined if
m(p) = 1; this change, however, is inessential because the quarantining prob-
ability q(p) is irrelevant for an individual who is tested for sure.)

Plugging (24) into (25), we obtain a condition on m(·) that is necessary
and sufficient for the existence of a q(·) such that (m, q) is incentive compat-
ible:

0 ≤ ψU(p,p),m(p) ≤ 1−m(p) for all p, (26)

The next step is to express the welfareW as a function of the testing schedule
m(·) and the number U(p, p). This is achieved by plugging into (8) the
expressions obtained in (22) and (24), giving

W = Ep∼F

[

w1

(

(b− cq)

∫ p

p

m(p′)dp′ + U(p, p)

)

∫ p

p

+ bqp
(

m(p) + ψU(p,p),m(p)
)

− cgtm(p)− cgqψU(p,p),m(p)

]

. (27)

The government’s goal is to solve the following problem:

max
U(p,p), m(·)

W

s.t. (4), (23), (26)

The left condition in (26) is satisfied for all p if and only if it is satisfied for
the p that minimizes the function ψU(p,p),m(p). The minimizer is p = p∗; to
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see this, consider any p 6= p∗ and note that15

(

ψU(p,p),m(p)− ψU(p,p),m(p∗)
)

cq

= v(p)m(p)− (b− cq)

∫ p

p∗
m(p′)dp′

= (b− cq)(p− p∗)m(p)− (b− cq)

∫ p

p∗
m(p′)dp′.

Due to (23), the last integral is bounded above by (p−p∗)m(p), showing that
ψ(p) ≥ ψ(p∗).

Thus we can replace the left condition in (26) by the simpler condition
0 ≤ ψU(p,p),m(p∗) or, equivalently, using (24), by the condition

U(p, p) ≤ −(b− cq)

∫ p∗

p

m(p′)dp′. (28)

The right condition in (26) is satisfied for all p if and only if it is satisfied
for the p that maximizes the function ψU(p,p),m(p)+m(p). The maximizer is
p = p; to see this, consider any p < p and note that

(

ψU(p,p),m(p) +m(p)− ψU(p,p),m(p)−m(p)
)

cq

= (v(p) + cq)m(p)− (v(p) + cq)m(p)− (b− cq)

∫ p

p

m(p′)dp′

︸ ︷︷ ︸

≤(p−p)m(p) by (23)

.

Due to (1), v(p)+ cq > 0. Thus, again using that m(p) ≤ m(p) from (23), we
can continue the above equation via the estimation

≥ (v(p) + cq)m(p)− (v(p) + cq)m(p)− (b− cq)(p− p)m(p)

= (v(p)− v(p))m(p)− (b− cq)(p− p)m(p)

= 0,

where the last equality relies on the definition of v in (2).
Thus, we can replace the right condition in (26) by the simpler condition

ψU(p,p),m(p) ≤ 1−m(p) or, equivalently, using (24), by the condition

(v(p) + cq)m(p)− (b− cq)

∫ p

p

m(p′)dp′ − cq ≤ U(p, p). (29)

At this point, it is useful to take stock: we have replaced the condition (26),
which is required for all p, by two one-dimensional conditions: (28) provides
an upper bound for U(p, p), and (29) provides a lower bound for U(p, p).

The first step towards solving the government’s problem is to eliminate
the variable U(p, p).

According to (24) and (27), the government’s objective W is linear with
respect to U(p, p), with slope

w1 −
bqEp∼F [p]− cgq

cq
= −λ∗.

15By convention, an integral
∫

p

p∗
. . . with p∗ > p is equal to −

∫
p
∗

p
. . . .
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In the following computations, we have to distinguish two cases, depending
on the sign of λ∗. Suppose first that

λ∗ ≤ 0. (30)

ThenW is weakly increasing in U(p, p). Thus, there exists an optimal U(p, p)
that hits the upper bound provided by (28), that is,

U(p, p) = −(b− cq)

∫ p∗

p

m(p′)dp′. (31)

Plugging (31) into (29), we have

(v(p) + cq)m(p)− (b− cq)

∫ p

p

m(p′)dp′ − cq ≤ −(b− cq)

∫ p∗

p

m(p′)dp′.

This (one-dimensional) condition replaces (26) in the government’s optimiza-
tion. Rearranging, we obtain the equivalent condition

(v(p) + cq)m(p)− (b− cq)

∫ p

p∗
m(p′)dp′ ≤ cq. (32)

Next we rewrite the welfareW by plugging into (27) the expression for U(p, p)
that was obtained in (31):

W = Ep∼F

[

w1(b− cq)

∫ p

p∗
m(p′)dp′

∫ p

p

+ (bqp− cgt)m(p) + (bqp− cgq)ψU(p,p),m(p)

]

.

Similarly, U(p, p) can be substituted on the right-hand side of (24), yielding

ψU(p,p),m(p) =
1

cq

(

v(p)m(p)− (b− cq)

∫ p

p∗
m(p′)dp′

)

. (33)

In summary, we obtain the expression

W = Ep∼F

[

w1(b− cq)

∫ p

p∗
m(p′)dp′

∫ p

p

+ (bqp− cgt)m(p) + (bqp− cgq)
1

cq

(

v(p)m(p)− (b− cq)

∫ p

p∗
m(p′)dp′

)]

= Ep∼F

[(

w1(b− cq)−
bqp− cgq

cq
(b− cq)

)∫ p

p∗
m(p′)dp′

]

+Ep∼F

[(

bqp− cgt +
bqp− cgq

cq
v(p)

)

m(p)

]

= −

∫ p

p

∫ p

p∗
(b− cq)κ(p)m(p′)dp′dp +

∫ p

p

L(p)m(p)dp, (34)
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where we have used the auxiliary functions

κ(p) =

(

−w1 +
bqp− cgq

cq

)

f(p) (35)

and L(p) =

(

bqp− cgt +
bqp− cgq

cq
v(p)

)

f(p). (36)

The first of the two terms in (34) can be rewritten into a more useful form.
To do this, we split it into two integrals:

−

∫ p

p

∫ p

p∗
m(p′)κ(p)dp′dp =

∫ p∗

p

∫ p∗

p

m(p′)κ(p)dp′dp−

∫ p

p∗

∫ p

p∗
m(p′)κ(p)dp′dp.

Each of these double integrals can be simplified via changing the order of
integration.

∫ p∗

p

∫ p∗

p

m(p′)κ(p)dp′dp =

∫ p∗

p

∫ p′

p

m(p′)κ(p)dpdp′ =

∫ p∗

p

K(p′)m(p′)dp′,

where we have used the auxiliary function

K(p) =

∫ p

p

κ(p′)dp′ (37)

Similarly, the second integral can be written as

−

∫ p

p∗

∫ p

p∗
m(p′)κ(p)dp′dp = −

∫ p

p∗

∫ p

p′
m(p′)κ(p)dpdp′ =

∫ p

p∗
(K(p′)−K(p))m(p′)dp′.

Summing up,

−

∫ p

p

∫ p

p∗
m(p′)κ(p)dp′dp =

∫ p

p

(K(p′)− 1p≥p∗ ·K(p))m(p′)dp′.

Note that

K(p) = λ∗.

Thus, (34) has been simplified as

W =

∫ p

p

((b− cq)K(p) + L(p)− 1p≥p∗ · (b− cq)λ∗)m(p)dp. (38)

So far we have achieved the following reformulation of the government’s prob-
lem

(case λ∗ ≤ 0) s.t. max
m(·)

(38)

s.t. (4), (23), (32).

We can use, e.g., the space PC[p, p] of piecewise continuous and right-continuous
functions for the testing schedules m(·); this is a linear vector space. The
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constraints (23) and (4) define a convex subset Ω of PC[p, p]. Then the
government’s problem can be written as

(case λ∗ ≤ 0) s.t. max
m(·)∈Ω

(38)

s.t. (32).

Now suppose that

λ∗ ≥ 0. (39)

Then the government’s objective W is weakly decreasing in U(p, p). Hence,
it is optimal to choose U(p, p) such that it hits the lower bound provided by
(29), that is,

U(p, p) = (v(p) + cq)m(p)− (b− cq)

∫ p

p

m(p′)dp′ − cq. (40)

Plugging (40) into (28) yields the same constraint (32) that we obtained when
we plugged (31) into (29).

Recall that the (one-dimensional) condition (32) replaces (26) in the gov-
ernment’s optimization.

Next we rewrite the welfare W by plugging into (27) the expression for
U(p, p) that was obtained in (40):

W = Ep∼F

[

w1

(

−(b− cq)

∫ p

p

m(p′)dp′ + (v(p) + cq)m(p)− cq

)

∫ p

p

+ bqp
(

m(p) + ψU(p,p),m(p)
)

− cgtm(p)− cgqψU(p,p),m(p)

]

.

Similarly, U(p, p) can be substituted on the right-hand side of (24), yield-
ing

ψU(p,p),m(p) =
1

cq

(

v(p)m(p) + (b− cq)

∫ p

p

m(p′)dp′ − (v(p) + cq)m(p)

)

+ 1.

(41)
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In summary, we obtain the expression

W = Ep∼F

[

w1

(

−(b− cq)

∫ p

p

m(p′)dp′ + (v(p) + cq)m(p)− cq

)

+(bqp− cgt)m(p)

+
bqp− cgq

cq

(

v(p)m(p) + (b− cq)

∫ p

p

m(p′)dp′ − (v(p) + cq)m(p)

)

∫ p

p

+ bqp− cgq

]

.

= Ep∼F

[(

−w1 +
bqp− cgq

cq

)

(b− cq)

∫ p

p

m(p′)dp′

+

(

bqp− cgt +
bqp− cgq

cq
v(p)

)

m(p)

+

(

w1 −
bqp− cgq

cq

)

(v(p) + cq)m(p)

∫ p

p

− w1cq + bqp− cgq

]

=

∫ p

p

(

κ(p)(b− cq)

∫ p

p

m(p′)dp′ + L(p)m(p)

∫ p

p

− κ(p)(v(p) + cq)m(p) + κ(p)cq

)

dp, (42)

where we have used the functions defined in (35) and (36).
The first of the four terms in (42) can be rewritten into a more useful form.

The double integral can be simplified via changing the order of integration.

∫ p

p

∫ p

p

m(p′)κ(p)dp′dp =

∫ p

p

∫ p′

p

m(p′)κ(p)dpdp′ =

∫ p

p

K(p′)m(p′)dp′,

where we have used the function K defined in (37). Thus, (42) can be written
as

W =

∫ p

p

((b− cq)K(p) + L(p))m(p)dp−K(p) ((v(p) + cq)m(p)− cq) .

(43)

So far we have achieved the following reformulation of the government’s prob-
lem:

(case λ∗ ≥ 0) s.t. max
m(·)

(43)

s.t. (4), (23), (32).

Analogously to the earlier case λ∗ ≤ 0, the government’s problem can also be
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written as

(case λ∗ ≥ 0) s.t. max
m(·)∈Ω

(43)

s.t. (32).

Step 2: solving the rewritten problem

We will now show that the solution m∗ described in Proposition 2 and Propo-
sition 3 solves the government’s problem as reformulated in Step 1.

As in Step 1, we distinguish two cases depending on the sign of λ∗. Sup-
pose first that λ∗ ≤ 0.

Consider the reformulated problem from Step 1 (case λ∗ ≤ 0). The fol-
lowing two Lagrangian conditions are sufficient for a solution (see, e.g., Lu-
enberger (1968), Chapter 8). First, there exists a number λ ≥ 0 (“Lagrange
multiplier”) such that m∗(·) solves the problem

max
m(·)∈Ω

∫ p

p

((b− cq)K(p) + L(p)− 1p≥p∗ · (b− cq)λ∗)m(p)dp

− λ

(

(v(p) + cq)m(p)− (b− cq)

∫ p

p∗
m(p′)dp′

)

. (44)

Second, (32) is satisfied with equality at m = m∗.
In order to show that m∗ satisfies these conditions, we begin by rewriting

the objective of the Lagrangian problem (44):

Wλ =

∫ p

p

≡aλ(p)
︷ ︸︸ ︷

((b− cq)K(p) + L(p) + 1p≥p∗ · (b− cq) (λ− λ∗))m(p)dp

−λ(v(p) + cq)m(p). (45)

In order to rewrite Wλ, we introduce additional notation. For any type p,
define the conditional expectations

η(p) = Ep′∼F [p
′|p′ ≤ p],

η2(p) = Ep′∼F [(p
′)2|p′ ≤ p].

Thus, using integration by parts,
∫ p

p

F (p′)dp′ = −

∫ p

p

p′f(p′)dp′ + pF (p) = (p− η(p))F (p). (46)

Similarly,

∫ p

p

∫ p′

p

f(p′′)dp′′dp′ = −

∫ p

p

(p′)2f(p′)dp′ + p

∫ p

p

f(p′′)dp′′ (47)

= (pη(p)− η2(p))F (p). (48)

Using (35) and (37),

K(p) = −

(

w1 +
cgq

cq

)

F (p) +
bq

cq

∫ p

p

p′f(p′)dp′.
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Thus, using (46) and (48),

∫ p

p

K(p′)dp′ = −

(

w1 +
cgq

cq

)

(p− η(p))F (p) +
bq

cq
(pη(p)− η2(p))F (p).

Using the definition (36),

L(p) =

(

−cgt +
cgq

cq
ct
)

f(p) +

(

bq −
bq

cq
ct −

cgq

cq
(b− cq)

)

pf(p)

+
bq

cq
(b− cq)p2f(p).

Thus,

∫ p

p

L(p′)dp′ =

(

−cgt +
cgq

cq
ct
)

F (p) +

(

bq −
bq

cq
ct −

cgq

cq
(b− cq)

)

η(p)F (p)

+
bq

cq
(b− cq)η2(p)F (p). (49)

Combining the derived expressions,

∫ p

p

((b− cq)K(p′) + L(p′)) dp′ =

(

−(b− cq)

(

w1 +
cgq

cq

)

p− cgt +
cgq

cq
ct
)

F (p)

+

(

(b− cq)

(

w1 +
bq

cq
p

)

+ bq −
bq

cq
ct
)

η(p)F (p)

=

(

−(b− cq)w1p− cgt −
cgq

cq
v(p)

)

F (p)

+

(

(b− cq)w1 + bq +
bq

cq
v(p)

)

η(p)F (p)

= B(p).

where we have used the definition (15). Thus, by definition of the function
aλ,

∫ p

p

aλ(p′)dp′ =

∫ p

p

((b− cq)K(p′) + L(p′) + 1p′≥p∗ · (b− cq) (λ− λ∗)) dp′

= B(p) + 1p≥p∗ · (b− cq)(p− p∗)
︸ ︷︷ ︸

=v(p) by (3)

(λ− λ∗)

= Aλ(p),

where the last equality follows from (16).
With this in mind, we apply integration by parts to the right-hand side

of (45), yielding

Wλ = −

∫ p

p

Aλ(p)dm(p) +Aλ(p)m(p)− λ(v(p) + cq)m(p),

where m is interpreted as a c.d.f..
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Note that, using the definition (16),

Aλ(p) = B(p) + v(p)(λ− λ∗).

Thus, we obtain the simplified formula

Wλ = −

∫ p

p

Aλ(p)dm(p) + (B(p)− v(p)λ∗ − λcq)m(p)

= −

∫ p

p

Aλ(p)dm(p) +
(
A0(p)− λcq

)
m(p). (50)

Now consider specifically the Lagrange multiplier λ = λ̌ from Proposition 3.
Fixing any m(p) (0 ≤ m(p) ≤ 1), W λ̌ is maximized if m puts all of the mass

m(p) on a point p̌ where Aλ̌ is minimized, that is,

m(p) =

{
0 if p < p̌,
m(p) if p ≥ p̌.

Given such an m, the value of the Lagrangian can be written as

W λ̌ =

(

−min
p
Aλ̌(p) +A0(p)− λ̌cq

)

m(p)

= αλ̌m(p)

= 0,

because αλ̌ = 0 according to the assumption in Proposition 3.
In particular, m∗ as described in Proposition 2 maximizes W λ̌. Thus, the

first of the two Lagrangian conditions is satisfied.
It remains to verify the second condition, that the constraint (32) is sat-

isfied with equality.
Suppose that p̌ ≤ p∗. Then m∗(p) = m̌ = 1 according to the formula

given for m̌ in Proposition 2. Thus, (32) is satisfied with equality because

(v(p) + cq)m∗(p)− (b− cq)

∫ p

p∗
m∗(p′)dp′

= (v(p) + cq)m̌− (b− cq)(p− p∗)m̌

= cqm̌

= cq,

where we have used the definitions of v(p) and p∗.
Now suppose that p̌ > p∗. Then at m(p) = 1 the left-hand side of (32)

would be strictly larger than cq. Thus, there exists m̌ < 1 such that, at
m(p) = m̌, (32) is satisfied with equality. It is straighforward to check that
the formula for m̌ given in Proposition 2 yields the required value.

Now suppose that λ∗ ≥ 0.
Consider the reformulated problem from Step 1 (case λ∗ ≥ 0). The fol-

lowing three Lagrangian conditions are sufficient for a solution (see, e.g., Lu-
enberger (1968), Chapter 8). First, there exists a number λ2 ≥ 0 (“Lagrange
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multiplier”) such that m∗(·) solves the problem

max
m(·)∈Ω

∫ p

p

((b− cq)K(p) + L(p))m(p)dp− λ∗ ((v(p) + cq)m(p)− cq)

− λ2

(

(v(p) + cq)m(p)− (b− cq)

∫ p

p∗
m(p′)dp′

)

. (51)

Second, (32) is satisfied at m = m∗. Third, if (32) is satisfied with strict
inequality at m = m∗, then λ2 = 0.

In order to show that m∗ satisfies these conditions, we begin by rewriting
the objective of the Lagrangian problem (51):

=

∫ p

p

((b− cq)K(p) + L(p) + λ2(b− cq)1p≥p∗)m(p)dp− (λ2 + λ∗)(v(p) + cq)m(p) + λ∗cq

= Wλ2+λ
∗

+ λ∗cq, (52)

where the last equality is immediate from a comparison with (45). Note that
the term λ∗cq is constant and thus can be dropped from the maximization
problem.

First we consider the case λ̌ ≤ λ∗. Fix the Lagrange multiplier λ2 = 0.
Then,

αλ2+λ
∗

≤ 0 (53)

because α is a decreasing function.
Fixing any m(p) (0 ≤ m(p) ≤ 1) and applying (50) with λ = λ2 + λ∗, we

see that the objective of the Lagrangian problem is maximized if m puts all
of the mass m(p) on a point p̌ where Aλ2+λ

∗

is minimized, that is,

m(p) =

{
0 if p < p̌,
m(p) if p ≥ p̌.

Given such an m, the value of the Lagrangian can be written as

Wλ2+λ
∗

= αλ2+λ
∗

m(p) + λ∗cq,

and, due to (53), this expression is maximized by setting m(p) = 0. That is,
no testing is optimal. The constraint (32) is obviously satisfied.

Now suppose that λ̌ ≥ λ∗. Then, we consider the Lagrange multiplier
λ2 = λ̌− λ∗. Using the fact that the Lagrangian can be written in the form
(52), the rest of the proof is as in the case λ∗ ≤ 0 that was treated above.

Step 3: optimal quarantining schedule

As in Step 1 and in Step 2, we distinguish two cases depending on the sign
of λ∗. Suppose first that λ∗ ≤ 0.

Consider first the case p̌ ≤ p∗. Then m̌ = 1. Using (31),

U(p, p) = −(b− cq)

∫ p∗

p̌

m̌dp′ = −(b− cq)(p∗ − p̌) = v(p̌).
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Thus, for all p < p̌, (24) with m = m∗ implies that

q∗(p) =
1

cq
(
−U(p, p)

)
=

−v(p̌)

cq
,

as was to be shown.
Now consider the case p̌ > p∗. Then m̌ < 1. Using (31),

U(p, p) = 0.

Thus, for all p < p̌, (24) with m = m∗ implies that q∗(p) = 0, as was to be
shown.

For all p ≥ p̌, (24) with m = m∗ implies that

(1− m̌)q∗(p) =
1

cq

(

v(p)m̌− (b− cq)

∫ p

p̌

m̌dp′ − 0

)

=
1

cq
(v(p)− (b− cq)(p− p̌)) m̌

=
1

cq
v(p̌)m̌.

Dividing both sides by 1− m̌ yields the formula

q∗(p) = v(p̌)
m̌

(1− m̌)cq
for all p ≥ p̌.

Plugging into the right-hand side the formula (14), we obtain the desired
conclusion q∗(p) = 1.

Now suppose that λ∗ ≥ 0.
Consider first the case that testing nobody is optimal, m(p) = 0 for all p.

Then (40) implies

U(p, p) = −cq.

Thus, (24) implies that q(p) = 1 for all p, that is, everybody will be quaran-
tined, as was to be shown.

Now consider the remaining possibility for the optimum, that is, the case
with a marginally tested type p̌.

Using (40),

U(p, p) = (v(p) + cq)m̌− (b− cq)(p− p̌)m̌− cq

= (v(p) + cq)m̌− (v(p)− v(p̌))m̌− cq

= (v(p̌) + cq)m̌− cq

Thus, for all p < p̌, (24) with m = m∗ implies that

q∗(p) =
1

cq
(
−U(p, p)

)
=

−v(p̌)

cq

= −
v(p̌) + cq

cq
m̌+ 1. (54)

In particular, if p̌ ≤ p∗ so that m̌ = 1, then

q∗(p) = −
v(p̌)

cq
,
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as was to be shown.
Finally, suppose that p̌ > p∗. Then (14) implies that

m̌ =
cq

cq + v(p̌)
.

Plugging this into the formula (54) yields that, for all p < p̌,

q∗(p) = −
v(p̌) + cq

cq
m̌+ 1 = 0,

as was to be shown.
For all p ≥ p̌, (24) with m = m∗ implies that

(1− m̌)q∗(p) =
1

cq

(

v(p)m̌− (b− cq)

∫ p

p̌

m̌dp′ − ((v(p̌) + cq)m̌− cq)

)

=
1

cq
(−(cqm̌− cq))

= 1− m̌.

Dividing both sides by 1− m̌ yields that

q∗(p) = 1,

as was to be shown. This completes the proof of Proposition 2 and Proposi-
tion 3.

5 Conclusion

The timing of individuals when deciding to get tested for an infectious disease
can be crucial. Getting tested at an early stage when the symptoms are still
ambiguous can be very helpful towards curbing the spread of the disease.
We emphasize the government’s role in providing such incentives via putting
a testing-and-social-distancing schedule in place that takes the individuals’
private health signals into account.

6 Appendix

Proof of Lemma 1. Because Aλ(p) is strictly increasing in λ if p > p∗ and is
independent of λ if p ≤ p∗, the expression minpA

λ(p) is weakly increasing in
λ, showing that αλ is weakly decreasing in λ.

To show that α 7→ αλ is Lipschitz continuous, it remains to verify that
there exists a number L > 0 such that, for all λ2 > λ1,

αλ2 − αλ1 ≥ −L(λ2 − λ1). (55)

To see this, let p1 denote a minimizer of Aλ1 . Then minpA
λ2(p) ≤ Aλ2(p1),

implying

αλ2−αλ1 ≥ −Aλ2(p1)+A
λ1(p1)−(λ2−λ1)c

q = −1p1>p∗ ·v(p1)(λ2−λ1)−c
q(λ2−λ1),
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so that Lipschitz continuity is satisfied with L = v(p) + cq.
By Lipschitz continuity, the derivative dαλ/dλ exists almost everywhere.

Using the envelope theorem (Milgrom and Segal (2002)), and letting pλ de-
note a minimizer of Aλ,

dαλ

dλ
= −

d

dλ
min
p
Aλ − cq = −1pλ>p∗ · v(pλ)− cq,

from which the inequalities stated in the lemma are immediate.
Note that α0 ≥ 0 from (17).
If we choose λ larger than − 1

b−cq
minp>p∗ dB/dp, then A

λ is strictly in-

creasing on the interval (p∗, p], showing that any minimizer of Aλ belongs to
the interval [p, p∗]. For all p in this interval, we have Aλ(p) = B(p). Thus,
for all sufficiently large λ,

αλ = − min
p≤p∗

B(p) +A0(p)− λcq,

showing that αλ < 0 if λ is sufficiently large.

Proof of Proposition 4. Suppose that λ∗ ≥ 0 and αλ
∗

≤ 0. By Lemma 1,
there exists λ̌ ≤ λ∗ such that αλ̌ = 0. Thus, Proposition 3 implies that
no-testing-always-quarantining solves the government’s problem.

Now suppose that λ∗ < 0, or λ∗ ≥ 0 and αλ
∗

> 0. By Lemma 1, there
exists λ̌ ≥ max{0, λ∗} such that αλ̌ = 0. Thus, Proposition 3 implies that the
government’s problem has a solution with a threshold p̌. Choose p̌ minimal
if multiple solutions exist.

Note that, for all λ ≥ 0 and all p ≤ p∗, Aλ(p) = B(p). Thus,

min
p≤p∗

Aλ(p) = B.

Consider first the case B ≤ Aλ. Thus,

B = min
p
Aλ(p) ≤ Aλ(p).

This implies l ≥ 0 because otherwise we would have λ = 0, implying B ≤
A0(p) by the inequality above, implying l ≥ 0 by the definition of l.

Thus, λ = l.

Suppose that λ̌ < λ. Then Aλ̌ ≤ Aλ, implying

αλ̌ = −min{Aλ̌, B}+A0(p)−λ̌cq > −min{Aλ, B}+A0(p)−λcq = −B+A0(p)−lcq = 0,

contradicting the definition in Proposition 3.

Thus, λ̌ ≥ λ. In the case B < Aλ, we cannot have a solution with p̌ > p∗

because this would imply

Aλ̌(p̌) ≥ Aλ(p̌) ≥ Aλ > B,

contradicting the fact that p̌ minimizes Aλ̌ on the interval [p, p].
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Similarly, in the case B = Aλ and λ̌ > λ, we cannot have a solution with
p̌ > p∗ because this would imply

Aλ̌(p̌) > Aλ(p̌) ≥ Aλ = B,

again contradicting the fact that p̌ minimizes Aλ̌ on the interval [p, p].

In the case B = Aλ and λ̌ = λ, the function Aλ̌ has a minimizer that is
≤ p∗, showing that p̌ ≤ p∗, as claimed.

Now consider the case B > Aλ. This implies

min{Aλ, B} < B.

Suppose first that l ≥ 0. Then λ = l, implying

αλ = −min{Aλ, B}+A0(p)− λcq > −B +A0(p)− lcq = 0,

Thus, λ̌ > λ because αλ is decreasing.

Suppose that p̌ ≤ p∗. This would imply B ≤ Aλ̌, thus

αλ̌ = −B +A0(p)− λ̌cq < −B +A0(p)− lcq = 0,

contradicting the definition of λ̌.
Finally, consider the case l < 0, that is, A0(p) − B < 0. Suppose that

p̌ ≤ p∗. This would imply B ≤ Aλ̌, thus

αλ̌ = −B +A0(p)− λ̌cq ≤ −B +A0(p) < 0,

contradicting the definition of λ̌.

Proof of Corollary 2. By Proposition 4, it is sufficient to show that λ∗ ≥ 0
and αλ

∗

≤ 0.
In the following, we view λ∗, B, and αλ

∗

as functions of w1 and cgq.
Accordingly, we use the notation λ∗ = λw

1,cgq , B = Bw
1,cgq , and αλ

∗

=
αw

1,cgq .
Note that all these quantities are continuous in w1 and cgq, where B

is endowed with the max-norm for continuous functions on [p, p], and the

continuity of (w1, cgq) 7→ αw
1,cgq follows from Berge’s maximum theorem.

Thus, it is sufficient to show that λ0,0 > 0 and α0,0 < 0.
By definition of λ∗,

λ0,0 =
bq

cq
E[p′] > 0.

Note that, for all p,

B0,0(p) =
(
−cgt

)
F (p) +

(

bq +
bq

cq
v(p)

)

E[p′|p′ ≤ p]F (p).

Using the same arguments as in the heuristics provided below the statement
of Corollary 2 (cf. (20)),

α0,0 = −min
p

(B0,0(p) + cgt). (56)
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Fix ǫ > 0 such that

ǫ < max
{
cgt(1− F (p∗)), bqE[p′|p′ ≤ p∗]F (p∗)

}
.

Using the definition of B0,0 and (21),

B0,0(p) + cgt ≥ cgt(1− F (p)) for all p ∈ [p, p].

Thus, if p ≤ p∗, then

B0,0(p) + cgt ≥ cgt(1− F (p∗)) > ǫ.

If p ≥ p∗, then

B0,0(p) + cgt ≥ bqE[p′|p′ ≤ p∗]F (p∗) > ǫ.

Thus, (56) implies that α0,0 ≤ −ǫ < 0, as was to be shown.

Proof of Corollary 3. We indicate the dependence of Aλ on cgt by using the
notation Aλcgt . Similarly, we will use the notation αλcgt .

For any λ ≥ 0 and any cgt > 0, let pλcgt denote the smallest minimizer of
Aλcgt(p); the proof will be identical if we select the largest minimizer for all
λ and all cgt. Recalling the definition (16), the envelope theorem (Milgrom
and Segal (2002)) yields that the function cgt 7→ minpA

λ
cgt(p) is Lipschitz

continuous and its derivative is, for Lebesgue-almost every cgt, given by

d

dcgt
min
p
Aλcgt(p) =

∂Aλcgt

∂cgt
(pλcgt) = −F (pλcgt).

Similarly,
∂

∂cgt
A0
cgt(p) = −1.

Thus, using (17),
∂

∂cgt
αλcgt = F (pλcgt)− 1. (57)

For any cgt, let λ̌(cgt) denote the unique point λ where αλcgt = 0 (cf. Lemma
1).

By (57), ∂αλcgt/∂c
gt ≤ 0. Together with the fact that αλcgt is strictly

decreasing in λ (cf. Lemma 1), this implies that the function cgt 7→ λ̌(cgt) is
weakly decreasing. Next we show that this function is Lipschitz continuous,
implying that its derivative exists almost everywhere.

Consider any two cost levels cgt1 < cgt2 . Then

0 = α
λ̌(cgt2 )

c
gt
2

− α
λ̌(cgt1 )

c
gt
1

= α
λ̌(cgt2 )

c
gt
2

− α
λ̌(cgt2 )

c
gt
1

−
(

α
λ̌(cgt1 )

c
gt
1

− α
λ̌(cgt2 )

c
gt
1

)

=

∫ c
gt
2

c
gt
1

∂

∂cgt
α
λ̌(cgt2 )

cgt
dcgt −

∫ λ̌(cgt1 )

λ̌(cgt2 )

∂αλ
c
gt
1

∂λ
dλ. (58)

Thus, using (57) and the estimate −dαλ/dλ ≥ cq from Lemma 1,

0 ≥ (−1)(cgt2 − cgt1 ) +
(
λ̌(cgt1 )− λ̌(cgt2 )

)
cq,
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implying that

λ̌(cgt1 )− λ̌(cgt2 ) ≤
1

cq
(cgt2 − cgt1 ).

This completes the proof that the function cgt 7→ λ̌(cgt) is Lipschitz continu-
ous. Because the function is also weakly decreasing,

λ̌′(cgt) ≤ 0 for Lebesgue-almost every cgt.

Using (16), for all p,

d

dcgt
A
λ̌(cgt)
cgt

(p) = −F (p) + 1p>p∗v(p)λ̌
′(cgt).

Thus, for all p1, p2 with p2 > p1, and all cgt1 , cgt2 with cgt2 > cgt1 ,

A
λ̌(cgt2 )

c
gt
2

(p2)−A
λ̌(cgt2 )

c
gt
2

(p1)−
(

A
λ̌(cgt1 )

c
gt
1

(p2)−A
λ̌(cgt1 )

c
gt
1

(p1)
)

= A
λ̌(cgt2 )

c
gt
2

(p2)−A
λ̌(cgt1 )

c
gt
1

(p2)−
(

A
λ̌(cgt2 )

c
gt
2

(p1)−A
λ̌(cgt1 )

c
gt
1

(p1)
)

= − (F (p2)− F (p1))
︸ ︷︷ ︸

>0

(cgt2 − cgt1 )
︸ ︷︷ ︸

>0

+(1p2>p∗v(p2)− 1p1>p∗v(p1))
︸ ︷︷ ︸

≥0

(
λ̌(cgt2 )− λ̌(cgt1 )

)

︸ ︷︷ ︸

≤0

< 0. (59)

Recall that

p
λ̌(cgt1 )

c
gt
1

∈ argmin
p
A
λ̌(cgt1 )

c
gt
1

(p)

and

p
λ̌(cgt2 )

c
gt
2

∈ argmin
p
A
λ̌(cgt2 )

c
gt
2

(p).

Thus, for all p < p
λ̌(cgt1 )

c
gt
1

,

A
λ̌(cgt1 )

c
gt
1

(p
λ̌(cgt1 )

c
gt
1

)−A
λ̌(cgt1 )

c
gt
1

(p) ≤ 0.

Applying (59) with p2 = p
λ̌(cgt1 )

c
gt
1

and p1 = p, we conclude that

A
λ̌(cgt2 )

c
gt
2

(p
λ̌(cgt1 )

c
gt
1

)−A
λ̌(cgt2 )

c
gt
2

(p) < 0.

Thus,

p 6∈ argmin
p
A
λ̌(cgt2 )

c
gt
2

(p),

implying that16

p
λ̌(cgt2 )

c
gt
2

≥ p
λ̌(cgt1 )

c
gt
1

.

16For a general background of this type of monotone-comparative-statics argument, see Mil-
grom and Shannon (1994)).
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Thus, the marginal-type function cgt 7→ p
λ̌(cgt)
cgt

is weakly increasing. An
analogous argument shows that, for all λ ≥ 0, the marginal-type function

cgt 7→ pλcgt is weakly increasing, implying that p
λ̌(cgt2 )

cgt
≤ p

λ̌(cgt2 )

c
gt
2

for all cgt ≤ cgt2 .

Thus, for any two cost levels cgt1 < cgt2 , (57) implies that

∫ c
gt
2

c
gt
1

∂

∂cgt
α
λ̌(cgt2 )

cgt
dcgt = −

∫ c
gt
2

c
gt
1

(

1− F
(

p
λ̌(cgt2 )

cgt

))

dcgt

≤ −(cgt2 − cgt1 )
(

1− F
(

p
λ̌(cgt2 )

c
gt
2

))

.

On the other hand, the estimate −dαλ/dλ ≤ cq+v(p) from Lemma 1 implies
that

−

∫ λ̌(cgt1 )

λ̌(cgt2 )

∂αλ
c
gt
1

∂λ
dλ ≤

(
λ̌(cgt1 )− λ̌(cgt2 )

)
(cq + v(p)) .

In summary, (58) implies that

0 ≤ −(cgt2 − cgt1 )
(

1− F
(

p
λ̌(cgt2 )

c
gt
2

))

+
(
λ̌(cgt1 )− λ̌(cgt2 )

)
(cq + v(p)) .

Rearranging this yields the inequality

λ̌(cgt1 )− λ̌(cgt2 )

cgt2 − cgt1
≥

1

cq + v(p)

(

1− F
(

p
λ̌(cgt2 )

c
gt
2

))

.

Taking the limit cgt1 → cgt2 yields that

−λ̌′(cgt2 ) ≥
1

cq + v(p)

(

1− F
(

p
λ̌(cgt2 )

c
gt
2

))

. (60)

This implies

lim
cgt→∞

p
λ̌(cgt)
cgt

= p

because otherwise the derivative (60) is bounded away from zero for all cgt,
contradicting the fact that λ̌(cgt) ≥ 0.

Next, we show that

lim
cgt→∞

λ̌(cgt) = 0. (61)

Otherwise there exists a sequence (cgtn )n=1,2,... with c
gt
n → ∞ and a number

ǫ > 0 such that λ̌(cgtn ) > ǫ for all n. Then (17) implies that

lim sup
n
α
λ̌(cgtn )

c
gt
n

≤ lim sup
n

(

−A
λ̌(cgtn )

c
gt
n

(p
λ̌(cgtn )

c
gt
n

) +A0
c
gt
n
(p)
)

− lim inf
n
λ̌(cgtn )cq

≤ lim sup
n

(

−A
λ̌(cgtn )

c
gt
n

(p) +A0
c
gt
n
(p)
)

+ lim sup
n

(

A
λ̌(cgtn )

c
gt
n

(p)−A
λ̌(cgtn )

c
gt
n

(p
λ̌(cgtn )

c
gt
n

)
)

− lim inf
n
λ̌(cgtn )cq

≤ − v(p)ǫ+ 0− ǫcq < 0,
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contradicting the optimality condition α
λ̌(cgtn )

c
gt
n

= 0 from Proposition 3.

The condition w1 ≥
bqEp′∼F [p′]−cgq

cq
is equivalent to the condition λ∗ ≤ 0.

The opposite condition w1 <
bqEp′∼F [p′]−cgq

cq
means that λ∗ > 0. From

(61), there exists cgt be such that λ̌(cgt) = λ∗.

Setting p̌ = p
λ̌(cgt)
cgt

, the desired claims hold by Proposition 3.
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