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Abstract

We study optimal mechanisms for a utilitarian designer who seeks to assign multiple

units of an indivisible good to a group of agents with unit demand. The agents have

heterogeneous marginal utilities of money, which implies that utility is not perfectly

transferable between them. Heterogeneous marginal utilities of money may naturally

arise in environments where agents have different wealth endowments. We show that

the ex post efficient allocation rule is not optimal in our setting. Firstly, a high will-

ingness to pay may stem from a low marginal utility of money. Moreover, the transfer

rule does not only facilitate implementation of the desired social choice function in our

setting, but also directly affects social welfare. In the optimal mechanism, rationing

may occur, which entails a conflict between ex ante and ex post efficiency. In an ex-

tension, we show that it is still not utilitarian optimal to allocate the good solely based

on willingness to pay even when redistribution is not possible. Finally, we highlight

how our mechanism can be implemented as an auction with minimum bids and bidding

subsidies.
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1 Introduction

Consider the following canonical mechanism design problem with a twist: The designer owns

one unit of an indivisible good and two people are vying for the allocation of this good. One

of those agents is an ordinary worker with little wealth, while the other agent is a billionaire.

Naturally, the ordinary worker has a much higher marginal utility of money than the bil-

lionaire. What allocation rule should a utilitarian designer choose? The canonical allocation

rule, which is ex post efficient, stipulates that the good should be allocated to the agent

that states the highest willingness to pay. Any other assignment rule would allow the agents

to find a mutually beneficial trade among each other, where the agent with the higher will-

ingness to pay purchases the good from the agent with the lower willingness to pay. Even

when the marginal utilities of money are heterogeneous, this argument still holds as it is

independent of the scaling of the utility functions. When all agents have the same marginal

utility of money, the utilitarian optimal allocation rule is equivalent to the ex post efficient

allocation rule. In that setting, the sole purpose of the transfer rule is to implement the

desired social choice function because transfers are neutral in terms of social welfare. When

the marginal utilities of money are heterogeneous, this is no longer true. This implies that

the equivalence of the ex post efficient allocation rule and the utilitarian optimal allocation

rule breaks down when agents have different marginal utilities of money.

Suppose that the billionaire, who gets very little utility from an additional unit of money,

has a very low appreciation for the good as such. As a result, the billionaire announces

a willingness to pay on the lower end of the support of his potential willingnesses to pay.

Assume that, for this type realization, the virtual valuation of the billionaire is negative. As

defined in Myerson [1981], the virtual valuation is the maximal amount of revenue that can

be raised from an agent in exchange for the allocation of the good. Suppose further that

the willingness to pay of the billionaire is still just above the willingness to pay that the

ordinary worker announces. In the standard mechanism, the good will thus be allocated to

the billionaire.

However, this allocation choice is not utilitarian optimal for two reasons: Firstly, the willing-

ness to pay of the billionaire is substantially affected by her low marginal utility of money. In

particular, a high willingness to pay does not necessarily imply a high consumption utility.

For the criterion of ex post efficiency, only the ratio between the valuation for the good and

the valuation for money, i.e. the willingness to pay, is relevant, and not the absolute levels

of these valuations. However, the low marginal utility of money of the billionaire implies
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that a given consumption utility is mapped into a much higher willingness to pay than for

the ordinary worker. This distortion must be taken into account. Secondly, the standard

allocation rule fails to accurately capture the opportunity cost of this particular allocation

decision. Because the virtual valuation of the billionaire is negative at her type announce-

ment, allocating the good to the billionaire after this announcement will reduce the expected

revenue the mechanism will receive from the billionaire. Under a budget balance condition,

any additional dollar that the billionaire receives from the mechanism ex ante is a dollar that

the ordinary worker loses ex ante. When all agents have the same marginal utility of money,

this transfer is neutral in terms of social welfare. However, in the above situation, money is

transferred to an agent who benefits from an additional dollar very little instead of an agent

who benefits greatly from an additional dollar. This implicit movement of money caused by

allocating the good to the billionaire when the billionaire’s virtual valuation is negative is

thus clearly not utilitarian optimal when the difference in the marginal utilities of money is

sufficiently large.

Economic inequality is pervasive in reality and affects the economic incentives of agents.

In particular, an individual’s wealth affects the marginal utility of money of the agent. As

indicated above, optimal mechanisms need to take this into account. We formalize the above

ideas in the following framework: The designer initially owns m units of an indivisible good

which can be allocated to N agents with unit demand for this good. We assume that the

good is scarce, i.e. m < N . Following Dworczak et al. [2019], an agent’s utility consists of

two parts. An agent receives utility vK when being allocated the good. Moreover, agents

attain utility from the money that they receive from the mechanism. The marginal util-

ity of money for an agent, which we call vM , is constant for each agent but varies across

agents. This reflects the idea that individuals may be heterogeneous in characteristics such

as wealth that directly impact their marginal utility of money. Both vK and vM are private

information. As in Dworczak et al. [2019], we abstract from wealth effects on an individual

level. This approach ensures the analytical tractability of our model while still capturing the

key working channels. In this framework, we characterize the utilitarian optimal mechanism

which obeys individual rationality, Bayesian incentive compatibility, and ensures that the

budget of the designer is balanced ex ante. The fact that we only require the budget to be

balanced ex ante and not in every possible state of the world is without loss of generality,

given the insights of Börgers and Norman [2009]. Further, our results enable us to analyse

the effect of economic inequality on the optimal mechanism.

We derive the optimal mechanism based on the following ideas: First, we note that a suffi-
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cient statistic for individual behavior is the willingness to pay, namely r = vK/vM . We show

that the designer has nothing to gain in terms of social welfare by eliciting both vK and vM ,

compared to a simpler mechanism that elicits only r. This result is based on an analogous

result in Dworczak et al. [2019]. Secondly, we note that, as outlined in Myerson [1981], the

revenue that can be raised from any agent in exchange for the allocation of the good is equal

to her virtual valuation. On the one hand, if the virtual valuation of an agent is negative,

allocating the good to this agent reduces the money that the designer can allocate ex ante.

On the other hand, allocating this unit will raise the consumption utility of this agent. If

any budget is allocated ex ante, it will go to the agent with the highest expected marginal

utility of money. These considerations represent a trade-off between efficient allocation and

redistributive concerns. A designer interested only in Pareto efficiency does not face such

a trade-off, since Pareto efficiency does not rank distributions of money, as long as all the

money is distributed. By contrast, a utilitarian designer would rather allocate a unit of

money to an agent with a high marginal utility of money, ceteris paribus.

This trade-off is captured by the key statistic of our model: The inequality adjusted val-

uation of an individual. The inequality adjusted valuation has three components: The first

component captures the designer’s desire to efficiently allocate the good as such. The second

component is the virtual valuation of the agent at her type realization, multiplied by the

difference between the agent’s expected marginal utility of money and the largest expected

marginal utility of money of all agents. Allocating the good to an agent changes the expected

transfer the designer pays to this agent by the virtual valuation. This change will impact

the money the designer allocates ex ante to the agent with the highest marginal utility of

money. The effect that this implicit movement of money has on social welfare is captured

by the second term. The third component deals with the ex interim uncertainty regarding

the marginal utility of money for a given agent. Whenever a realization of r implies that the

marginal utility of money is likely to be greater than the ex ante expected marginal utility

of money, chances are that the valuation for the good as such will be higher. This implies a

positive effect on the benefits of allocation, which is captured by this term.

To the best of our knowledge, we are the first to derive a utilitarian optimal allocation

rule in the above setting. The optimal allocation rule xi(ri, r−i) has a bang-bang property

and is defined as follows: The m individuals with the highest inequality adjusted valuations

will receive the good, provided their respective inequality adjusted valuations are positive.

Note that the good is not necessarily allocated to the agents with the highest willingnesses to

pay. The three components of the inequality adjusted valuation capture the aforementioned
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trade-off which the allocation rule needs to solve optimally. By allocating the object to

the agents with the highest positive inequality adjusted valuations, the designer maximizes

utilitarian social welfare. Moreover, allocating the good to agents with negative inequality

adjusted valuations is never optimal. Agents with negative inequality adjusted valuations

necessarily have negative virtual valuations. Therefore, allocating the good to these agents

reduces the revenue that can be raised from them. This reduction in revenue has opportu-

nity costs - namely allocating this money ex ante to the agent with the highest marginal

utility of money. When the inequality adjusted valuation is negative, these opportunity costs

outweigh the direct benefits of allocating the good to the agent.

It turns out that this allocation rule entails rationing for certain situations, where not all

units of the good are allocated. This is notable, since it implies that utilitarian social welfare

maximization comes at the cost of ex post efficiency. Formally, rationing occurs whenever

there are strictly fewer agents with positive inequality adjusted valuations than goods to be

allocated. As seen above, allocating the good to agents with negative inequality adjusted

valuations cannot be utilitarian optimal. As in Myerson [1981], rationing occurs because

of its effect on the revenue that can be raised from agents. We examine when rationing

will occur and analyse how the probability of rationing is impacted by the degree of wealth

inequality. In doing so, we shed light on a new working channel through which economic

inequality may affect the degree of allocative inefficiency.

In an extension, we investigate to what extent our results are driven by the redistribu-

tive motive of the designer. Formally, we introduce the additional constraint that no agent

may receive transfers from the mechanism in expectation. This implies that the designer

has no possibility for redistribution. In this setting, optimal allocation is based solely on

the inferred consumption utilities of the agents. The ex post efficient allocation rule remains

suboptimal. In the special case where the agents’ marginal utilities of money are determin-

istic, the designer is able to perfectly elicit the consumption utility of each agent. In this

case, the inequality adjusted valuation is exactly equal to the agent’s consumption utility.

The good is allocated to the agents with the highest inequality adjusted valuations, which

are not necessarily equal to the agent’s willingnesses to pay.

Finally, we describe how our mechanism can be implemented as an auction with minimum

bids and bidding subsidies. We show that agents with high conditional marginal utilities of

money receive bidding subsidies when competing with other agents. Thus, agents who are

poor receive bidding subsidies to allow them to compete with wealthier agents. We interpret
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our results as a rationale for income dependant fee structures which can be found in the

assignment of kindergarden places in Germany or in the assignment of college spots in the

US, where students from low income households are eligible to receive discounts.

The rest of our paper proceeds as follows: We lay out the related literature in section 2.

In section 3, we outline our framework. Section 4 is devoted to the characterization of the

optimal mechanism. Section 5 presents some examples. Section 6 concludes.

2 Related Literature

Our work broadly relates to three strands of literature. Firstly, our research has strong

connections to the contributions that characterize optimal mechanisms in non-quasilinear

settings. Secondly, our work relates to the contributions from various fields which investi-

gate the role of heterogenous marginal utilities of money. Thirdly, some of the key ideas

and results of our paper resemble insights from different research areas of the public finance

literature.

Previous extensions of the standard quasilinear framework incorporate one of the follow-

ing two features: Differences in the marginal utilities of money between agents and wealth

effects for any given agent. Our paper explicitly models settings where inequality induces

heterogeneity in the utility of money in between agents. While we abstract from wealth

effects, our work connects to the contributions in mechanism design that consider general-

izations of the quasilinear preference framework. One of the earliest such contributions was

Maskin and Riley [1984], who pin down the optimal auction in a setting with risk-averse

buyers. Esö and Futo [1999] pin down the optimal auction when the seller is risk-averse.

Baisa and Burkett [2019] design an auction for a setting where bidders have interdependent

values and non-quasilinear preferences. Dughmi and Peres [2018] show that any allocation

rule which is dominant-strategy-implementable when agents have quasilinear preferences is

also dominant-strategy-implementable when players have concave utility of money in com-

bination with a modified payment rule. Kesselheim and Kodric [2018] study the price of

anarchy in settings with risk-averse agents. Several other papers incorporate generalized

features of real-life decision situations other than risk-aversion into the mechanism design

framework. Eisenhuth [2019] characterizes the revenue-maximizing auction when agents are

loss averse and the reference point is endogenous to the choice of the mechanism. Pai and

Vohra [2014] and Kotowski [2020] analyse, among others, allocation problems where buyers

5



face heterogenous budget constraints.

Another strand of this literature focuses on characterizing the set of mechanisms that retain

certain desiderata in non-quaslinear settings. Saitoh and Serizawa [2008] study the set of

mechanisms that satisfy the VCG desiderata in a setting where m goods are to be allocated

to people with non-quasilinear preferences. Hashimoto and Saitoh [2010] provide a general-

ization of the Clarke-mechanism that retains certain desiderata in non quasilinear settings.

Kos and Messner [2013] pin down general necessary conditions for incentive-compatibility in

a single-agent setting. Morimoto and Serizawa [2015] characterize the set of allocation rules

that satisfy pareto efficiency, individual rationality, strategy proofness and a condition stat-

ing that people who are not allocated the good receive no transfers under weak assumptions

on preferences. Kazumura et al. [2020] study necessary and sufficient conditions for a mech-

anism to be dominant-strategy incentive compatible in non-quasilinear preference domains.

Our modeling technique, in particular the utility function with two dimensional types, is

based on the setup in Dworczak et al. [2019]. While the methodology of our paper closely

resembles theirs, the focus is different. Dworczak et al. [2019] pin down optimal trading

mechanisms in markets with a distinct buyer and seller side where the designer chooses the

mechanism. We characterize the optimal mechanism for the allocation of a number of in-

divisible goods to a finite number of agents when the designer owns all the goods ex ante.

Moreover, Dworczak et al. [2019] model a continuum of agents on both sides of the market

while we focus on a finite number of agents. We purposefully work with a finite number of

agents, since this is reflected in a number of real world allocation problems we attempt to

model. Many of these applications are ”local” allocation problems, for example the alloca-

tion of kindergarden places to students or the allocation of organs to potential recipients.

In terms of outcomes, the results of Dworczak et al. [2019] mirror ours in the sense that

rationing, i.e. when a designer does not allocate some goods even though some agents still

demand it, can be a necessary tool to attain the social optimum in both papers. In the

mechanism design framework, this comes at the cost of ex-post optimality.

The two papers most closely related to our work are Huesmann [2017] and Akbarpour et al.

[2020]. Akbarpour et al. [2020] consider a setting with a unit mass of agents that have

different willingnesses to pay for quality. The planner, who has an exogenous preference to

raise revenue, initially owns an exogenously given distribution of qualities to assign. The

problem laid out in Akbarpour et al. [2020] does not include any case by case feasibility con-

straint on the allocation rule due to the large markets assumption. By contrast, we consider
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local markets where feasibility constraints have to hold for every possible type realization.

Akbarpour et al. [2020] assume that the designer has an exogenously given desire to raise

revenue and cannot grant positive transfers to the agents. In contrast, we assume that the

designer faces a balanced budget constraint and can grant transfers of any sign. The budget

constraint endogenously pins down the strength of the designer’s preference to raise revenue

in our work. Thus, we determine the strength of the designer’s desire to raise revenue which

is left unspecified in their model when the designer faces a balanced budget constraint. Fur-

ther, depending on the strength of the designer’s revenue motive, which is exogenously given

in Akbarpour et al. [2020], random allocation may be optimal. In our framework, random

allocation is never optimal.

Huesmann [2017] examines the problem of assigning a number of indivisible goods to a

number of agents. There are two types of individuals: rich and poor people with high/low

ex ante wealth levels. All agents have the same underlying utility function and have concave

utility-for-money. Agents only differ in their wealth levels and an agent’s wealth is private

information. Thus, wealth levels have to be elicited through the mechanism whereas con-

sumption benefits do not. There are several subtle, but important differences between the

contribution of Huesmann [2017] and our work. Most importantly, Huesmann [2017] assumes

that an agent’s preferences are fully pinned down by the agent’s wealth. Our framework ac-

commodates this as a special case while maintaining a general formulation that is able to

include all sorts of characteristics that may influence an agent’s marginal utility of money.

Furthermore, she assumes that the utility an agent receives when consuming the good is

identical across agents. Our framework allows for the idea that a higher willingness to pay

may be either a reflection of higher wealth or a stronger preference for the good. On the

other hand, her framework incorporates the possibility of wealth effects, which our model

does not. Following the framework of Dworczak et al. [2019], we focus on the idea that agents

may have different marginal utilities of money but abstract from wealth effects for any given

agent. Finally, Huesmann [2017] models a situation with a continuum of agents, whereas we

model a finite number of agents to understand the local allocation problems we have in mind.

Most fundamentally, we derive an optimal mechanism for a vastly different environment

than the one presented in Huesmann [2017]. In doing so, we uncover, among others, the

following results not present in Huesmann [2017]: We connect our utilitarian optimal allo-

cation rule to the virtual valuation as defined in Myerson [1981] and show, in addition, how

stochasticity of the marginal utility of money enters the optimal allocation rule. Further, we

highlight how our mechanism can be implemented by a simple auction with bidding subsi-
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dies and minimum bids. Finally, one should note the following important difference between

our results and the results of Huesmann [2017]. Optimal mechanisms in Huesmann [2017]

require transfers of a given agent to only depend on the reported type of this agent and

on nothing else. More specifically, they cannot be directly linked to the ex post allocation

decision. If payments are not directly linked to the ex post allocation decision, situations

can arise where agents have to a pay a transfer without receiving the good. Such payment

schemes are typically not observed in the practical applications we have in mind.

The notion that wealth affects the marginal utility of money is incorporated in some pre-

vious contributions from neighbouring fields in economics. Esteban and Ray [2006] study a

lobbying framework where different lobby groups have different wealth levels and the costs

of lobbying fall in wealth. Thus, wealthier groups will have stronger incentives to lobby and

resources are diverted from sectors where they would be most productive to sectors that

have strong lobbies because they are wealthy. Condorelli [2013] studies the optimal alloca-

tion of goods under generalized objectives of the planner - in particular, when the goal is not

necessarily welfare or revenue maximization. Kang and Zheng [2019] characterize the set of

interim-pareto-optimal mechanisms in a setting where one ”good” and one ”bad” are to be

allocated. In their framework, agents have identical values for the ”good” and the ”bad”,

but have different (constant) marginal values of money.

Moreover, our contribution is linked to some integral strands of the public finance litera-

ture. The idea of assigning different agents heterogenous welfare weights based on their

economic standing was already voiced by Diamond and Mirrlees [1971] and Atkinson and

Stiglitz [1976]. This is complemented by recent contributions such as Saez and Stantcheva

[2016]. Here, welfare weights are based partially on variables such as wealth that enter an

agent’s utility but are also substantially generalized to incorporate a society’s wishes for re-

distribution, poverty alleviation, or equality of opportunity. Our paper is also related to the

contributions which analyse the usefulness of quantity controls and, in particular, rationing,

to achieve the social optimum in the presence of economic inequality. Weitzman [1977] anal-

yses when a simple rationing scheme in which all consumers get the same amount of a good

is preferable to a market price mechanism in a stylized framework. Not surprisingly, the

advantage of the price based system is rising in the heterogeneity of taste for the product

and falling in the level of inequality. Using an envelope theorem argument, Guesnerie and

Roberts [1984] make the point that a small quota can improve social welfare when there is

a wedge between the social marginal costs of a commodity and the consumer price for this

commodity. Lee and Saez [2012] show that the desirability of a minimum wage is closely
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related to the type of rationing it induces on the labor market. They show that a necessary

condition for a binding minimum wage to be welfare-improving is that the minimum wage

must induce workers that provide the least surplus to society to lose their jobs first.

The idea of using the public provision of goods as a redistributive tool is the main con-

tribution of Besley and Coate [1991] and Gahvari and Mattos [2007]. Besley and Coate

[1991] study a market for an indivisible and rivalrous good such as healthcare, education,

etc. that can be provided either by the state or the private sector. Individuals demand at

most one unit of this good but care about the quality of this good. The government can

choose the quality of this good and the provision of this good is financed via a lump-sum

tax. A state with utilitarian objectives will then provide an intermediate quality of the good

at no costs - this will induce high-income individuals to buy this good at higher quality from

the private sector while low-income individuals will buy the state-offered good. This is a

redistributive act in the face of lump-sum taxation, as poor individuals will benefit from this

scheme while rich individuals will not. Notably, this scheme is associated with a deadweight

loss due to the in-kind nature of the redistributive program. Gahvari and Mattos [2007]

build on the framework of Besley and Coate [1991] and show that there is a way to avoid

this deadweight loss when the state has the availability to provide cash transfers, conditional

on consuming the publicly provided good.

3 Framework

We study a finite but arbitrary number of agents i ∈ {1, 2, .., N} with unit demand for an

indivisible good. Initially m < N units of this good are owned by the mechanism designer

and to be allocated among the agents. Our model specification largely follows Dworczak

et al. [2019] and assumes that the agents’ behavior is described by the utility function

ui = vKi xK
i + vMi xM

i , where vKi represents the valuation for the good and xK
i is a binary

variable that describes whether or not the agent has received the good. What sets this

specification apart from most of the literature is that the marginal utility of money may

vary across agents. More precisely, the utility derived from money consists of two parts: it

equals the marginal utility of money of the agent, namely vMi , multiplied by the amount of

money received or paid by the agent in the mechanism, namely xM
i . Both vKi and vMi are

assumed to be private information. We assume that the mechanism designer is utilitarian
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and wants to maximize the ex ante welfare given by

N∑

i=1

E[vKi xK
i + vMi xM

i ] (1)

subject to incentive compatibility, individual rationality and budget balance constraints.

Everything else equal, moving money between the agents thus impacts social welfare. We

denote the allocation rule by xi and the transfer rule by ti. In line with the standard

definitions of the literature we say that a mechanism is (Bayesian) incentive compatible if

and only if for all agents i and possible types (vKi , vMi )

E−i[v
K
i xi(v

K
i , vMi , vK−i, v

M
−i) + vMi ti(v

K
i , vMi , vK−i, v

M
−i)]

≥ E−i[v
K
i xi(v̂

K
i , v̂Mi , vK−i, v

M
−i) + vMi ti(v̂

K
i , v̂Mi , vK−i, v

M
−i)] (2)

holds for all other possible type reports (v̂Ki , v̂Mi ). We say that participation in a mechanism

is individually rational if and only if for all agents and possible types (vKi , vMi )

E−i[v
K
i xi(v

K
i , vMi , vK−i, v

M
−i) + vMi ti(v

K
i , vMi , vK−i, v

M
−i)] ≥ U i (3)

where U i denotes the utility attached to each agent’s outside option. Because utility func-

tions are linear in both components, it can be justified that the outside option is type

independent. The utility of the outside option is the utility the agent receives when she does

not own the good and owns her initial level of wealth. Thus, one can interpret the transfer

as the money the agent receives from or pays to the mechanism. Together with the fact that

vK represents the utility gain achieved when receiving the good, the outside option then can

be normalized to 0. In the following, we thus set U i = 0.

We require our mechanism to only be budget balanced ex ante and not ex post. We say that

a mechanism is budget balanced ex ante if and only if

N∑

i=1

E[ti(v
K
i , vMi , vK−i, v

M
−i)] ≤ 0 (4)

Due to Börgers and Norman [2009], this assumption is without loss of generality, as for

every ex ante budget balanced mechanism it is possible to find an ex post budget balanced

mechanism with the same allocation rule and interim transfers for all types of all agents.

Note that we do not require transfers to be negative.
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Before deriving the optimal mechanism, we establish some preliminary results following

the approach of Dworczak et al. [2019]. A sufficient statistic for agent behavior is the rate

of substitution between the good and money of an agent

ri =
vKi
vMi

(5)

Note that von Neumann-Morgenstern utility functions are only unique up to affine transfor-

mations. Therefore, an agent’s rate of substitution will be sufficient to describe her behavior.

While r is sufficient to describe the agents’ behavior, the mechanism designer himself is still

interested in the actual values of vKi and vMi . As derived in Dworczak et al. [2019], the rate

of substitution r is informative about the other parameters. Note that:

E[vKi xK + vMi xM ] = Eri [E[v
M
i |ri]

︸ ︷︷ ︸

λi(ri)

(rix
K + xM)] (6)

The mechanism designer can infer the expected valuation of money of an agent, given her

rate of substitution ri. We assume that for every agent i the rate of substitution ri is inde-

pendently and continuously distributed on an interval [ri, r̄i]. The cdf of ri will be denoted

by Gi(ri). Further, assume that vK and vM are distributed such that λi(ri) = E[vMi |ri] is

weakly decreasing in ri. This assumption reflects the idea that a high willingness to pay

is most likely to be supported, ceteris paribus, by a relatively low expected valuation for

money. Further note that the factor λi(ri) represents a Pareto weight as commonly used in

public finance, as discussed by Chang et al. [2018], for example.

Given that the parameter r is sufficient for understanding agent behavior, it is natural to

ask whether or not the designer should elicit both vK and vM or if it sufficient to restrict the

mechanism to the rate of substitution r. One might argue that the additional information

that is available when eliciting vK and vM should allow the designer to achieve a more efficient

allocation of the good and distribution of money compared to a situation where only the rate

of substitution r is revealed. This line of reasoning falls short as we recall a key observation:

due to the fact that utility functions are invariant to affine transformations, the behavior

of two agents with different values of vK and vM that yield the same rate of substitution r

is indistinguishable from one another. Therefore, any attempt at treating these two agents

differently can not be successful. This intuition is formalized in the following proposition

due to Dworczak et al. [2019]
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Proposition 1 (Dworczak et al. [2019], Theorem 8) If a mechanism is feasible (re-

spectively, optimal) in the two dimensional model, then there exists a payoff-equivalent mech-

anism eliciting only ri that is feasible (respectively, optimal) in the one dimensional model

with Gi being the distribution of ri under the joint distribution Fi for vKi and vMi , where λi

is given by:

λi(ri) = Ei[v
M
i |ri]

Conversely, if a mechanism is feasible (respectively, optimal) in the one dimensional model,

there exists a joint distribution Fi for vKi , vMi such that this mechanism is feasible (respec-

tively, optimal) in the two dimensional model where ri is distributed according to Gi and

λi(ri) is defined as above.

Proof. See Dworczak et al. [2019].

In light of this result we restrict ourselves to mechanisms that elicit only the rate of sub-

stitution ri. Due to the revelation principle, we are also free to restrict our attention to

direct mechanisms subject to incentive compatibility constraints. As derived in Dworczak

et al. [2019], characterizing incentive compatibility is straightforward and follows the familiar

formulation of the literature. Let Xi(ri) = E−i[xi(ri, r−i)] be the expected allocation proba-

bility of agent i, given type report ri, and let Ti(ri) = E−i[ti(ri, r−i)] be the expected transfer

of agent i, given type report ri. Incentive compatibility is characterized by the following

proposition:

Proposition 2 (Incentive Compatibility) A mechanism {xi(ri, r−i), ti(ri, t−i)}
N
i=1 is in-

centive compatible if and only if

1. Xi(ri) is non-decreasing in ri (Monotonicity)

2. riXi(ri) + Ti(ri) = Ui(ri) +
∫ ri

ri
Xi(s)ds (Integrability)

Proof. The result follows directly from rescaling the agents’ utility functions and applying

the standard results from the literature.

By integrability, the expected transfer of an agent is given by

E[Ti(r)] = Ui(ri)−

∫ r̄i

ri

Xi(r) Ji(r)
︸︷︷︸

r−
1−Gi(r)

gi(r)

dGi(r) (7)
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where Ji(r) denotes the virtual valuation of an agent as defined in Myerson [1981]. Note

that the integrability condition implies that participation of an agent in the mechanism is

individually rational if and only if it is individually rational for the lowest type of any agent.

4 Optimal Mechanisms

4.1 Derivation of the optimal mechanism

Following Dworczak et al. [2019], we can use the integrability condition to rewrite the ex

ante utilitarian welfare as follows:

∑

i

E[λi(ri)(rXi(ri) + Ti(ri))] =
∑

i

(

E

[

λi(ri)

(

Ui(ri) +

∫ r

ri

Xi(s)ds

)])

(8)

=
∑

i



E[vMi ]
︸ ︷︷ ︸

Λi

Ui(ri) +

∫ r̄i

ri

∫ r̄i

s

Xi(s)λi(ri)dGi(ri)ds



 (9)

=
∑

i







ΛiUi(ri) +

∫ r̄i

ri

Xi(s)

∫ r̄i

s
λi(ri)dGi(ri)

gi(s)
︸ ︷︷ ︸

Πi(s)

dGi(s)








(10)

where the expression is simplified using a change of the order of integration. We remark that

we defined

Πi(s) :=

∫ r̄i

s
λi(ri)dGi(ri)

gi(s)
(11)

Note that for λi(ri) = 1, we have Πi(ri) =
1−Gi(ri)
gi(ri)

, the standard inverse hazard rate formu-

lation. Therefore, it seems instructive to think about the function Πi(ri) as an inequality

adjusted inverse hazard rate.

To define our optimization problem, we plug in the expected transfers into the welfare

objective and into the budget constraint. Then, the optimization problem boils down to

choosing the optimal allocation rule and the optimal utility levels for the lowest type of each

13



agent. Thus, our problem can be stated as:

max
{xi(ri,r−i),Ui(ri)}

N
i=1

∑

i

(

ΛiUi(ri) +

∫

Πi(ri)xi(ri, r−i)dG(ri, r−i)

)

s.t.
∑

i

(

Ui(ri)−

∫

Ji(ri)xi(ri, r−i)dG(ri, r−i)

)

≤ 0 (Budget)

0 ≤ xi(ri, r−i) ≤ 1 (Prob)
∑

i

xi(ri, r−i) ≤ m (Feas)

Xi(ri) non-decreasing (Mono)

Ui(ri) ≥ 0 (IR)

We define Λ∗ = max{Λi}. The key statistic for our allocation rule, which we call the

inequality adjusted valuation, is:

Definition 1 (Inequality adjusted valuation) We define the expression

ϕi(r) := Πi(r) + Λ∗Ji(r) (12)

to be the inequality adjusted valuation of agent i.

It is instructive to consider this expression in the standard case, i.e. when λi(r) = 1. We

can easily verify that in this situation the inequality adjusted valuation ϕi(r) = 1−Gi(r)
gi(r)

+

r− 1−Gi(r)
gi(r)

= r equals the valuation as the inequality adjusted inverse hazard rate equals the

inverse hazard rate. For the purposes of our analysis, we will assume the following about

the agents’ inequality adjusted valuations:

Assumption 1 The inequality adjusted valuation ϕi(r) = Πi(r)+Λ∗Ji(r) is non decreasing

for all agents.

Assumption 1 will simplify the derivation of the optimal allocation rule considerably. If we

find this assumption to be violated, we would have to consider an ironing procedure as in

Myerson [1981]. We are now ready to state the core result of our paper.

Proposition 3 (Optimal Mechanism) The optimal mechanism assigns the good to the

m agents with the highest inequality adjusted valuations ϕi(ri) = Πi(ri)+Λ∗Ji(ri), given that

they are positive.

Proof. We provide the proof in the appendix.

14



We outline the core idea and intuition of the proof while the detailed proof can be found in

the appendix. Notice that there is a single budget constraint that forces the budget to be

balanced in expectation and not on a case by case basis. This constraint has to be binding

in the optimum as it is always possible to allocate any left-over funds ex ante to an agent.

The key step of the proof is to find the Lagrange multiplier associated with this constraint,

which represents the marginal increase in welfare after a marginal increase in the available

budget. Given any Lagrange parameter µ, note that the Lagrangian of the maximization

problem (neglecting the other constraints for now) reads

max
{xi(ri,r−i),Ui(ri)}

N
i=1

∑

i

(

(Λi − µ)Ui(ri) +

∫

(Πi(ri) + µJi(ri))xi(ri, r−i)dG(ri, r−i)

)

(13)

The solution to this maximization problem is a combination of an allocation rule and a La-

grange parameter. For any given µ, the optimal allocation rule is to assign the good to the

m agents with the highest Πi(ri) + µJi(ri). This allocation rule induces a certain Lagrange

multiplier. In the optimal solution, the Lagrange multiplier will be a fixed point of this

mapping. We will argue that our allocation rule corresponds to a Lagrange multiplier value

equal to Λ∗, constituting a fixed point. This is proven by showing that a marginal increase

in budget leads to a marginal increase in welfare of Λ∗, given our allocation rule.

It is instructive to separately consider situations in which the virtual valuation Ji(ri) of an

agent is positive and when it is negative. Note that the inequality adjusted valuation of an

agent can only be negative when the virtual valuation of an agent is negative. When Ji(ri)

is positive, allocating the good to the agent will raise the total revenue that can be extracted

from the agent. When Ji(ri) is negative, allocating the good to agent i decreases the revenue

that can be extracted from the agent.

We start off with the case of negative values of Ji(ri). We note that there is a key trade-off

within the optimal mechanism: a budgetary surplus can either be distributed to an agent

ex ante through the utility level of the lowest type Ui(ri) or it can be used to subsidize

the allocation of the good yielding Πi(ri) at the cost of Ji(ri). If any agent receives ex ante

transfers, this money must be allocated to the agent with the highest value of Λi, namely Λ∗.

Otherwise, reallocating money ex ante from an agent i with a lower value of Λi to an agent

j with a higher value of Λj would yield an immediate increase in welfare. Thus, the increase

in welfare from using a marginal unit of money to fund ex ante transfers is Λ∗. This implies

that the shadow value of an additional unit of budget is at least Λ∗. When subsidizing the

allocation of the good to agent i, the additional social welfare obtained per unit of money
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spent is Πi(ri)/(−Ji(ri)). We conclude that it is optimal to use an additional unit of budget

to fund ex ante transfers rather than using it to subsidize allocation if and only if:

Λ∗ >
Πi(ri)

−Ji(ri)
(14)

⇐⇒ 0 > Πi(ri) + Λ∗Ji(ri) = ϕi(ri) (15)

This argument yields our result that the subsidized allocation of a good to an agent is only

desirable if her inequality adjusted valuation is positive. Otherwise, the budget balance con-

dition implies that the opportunity costs of allocating this additional unit in terms of the

money that can be spent ex ante outweighs its benefits.

Now, we consider situations where the virtual valuation Ji(ri) is positive. Allocating the

good to agent i in any given situation directly yields Πi(ri) units of welfare from the incen-

tive compatible allocation of the good. Further, it raises Ji(ri) units of revenue that can

be distributed ex ante or used to subsidize allocation when Ji(ri) is negative. When the

marginal value of an additional unit of budget is Λ∗, the inequality adjusted valuation sum-

marizes the total benefit minus opportunity cost of allocating the good to a certain individual.

As a second step, we now show that this allocation rule corresponds to a Lagrange pa-

rameter exactly equal to Λ∗ by making a case distinction. Suppose firstly that there are less

agents with a positive inequality adjusted valuation than goods to be allocated for a given

type profile. Recall that agents with negative inequality adjusted valuations necessarily have

negative virtual valuations. By the above arguments, any additional unit of budget would

thus be optimally used to fund an ex ante transfer to the agent with the highest marginal

utility of money, yielding Λ∗ of additional social welfare. Suppose alternatively that there

are more agents with a positive inequality adjusted valuation than goods to be allocated,

in which case the feasibility constraint binds. Consider a situation in which an agent has a

positive inequality adjusted valuation, but she is currently not receiving the good. Recall

that our allocation rule demands that the good is allocated to the agents with the m highest

inequality adjusted valuations ϕi(ri) = Πi(ri) + Λ∗Ji(ri) given that ϕi(ri) ≥ 0. This implies

that in any situation where an agent i has a positive inequality adjusted valuation but cur-

rently does not receive the good, there are at least m other agents with higher inequality

adjusted valuations. If the designer wants to assign the good to agent i, he would necessarily

have to take the good away from another agent j who is receiving the good, as all goods are
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already assigned, but this change in allocation is only desirable if

ϕi(ri) ≥ ϕj(rj) (16)

which can not hold true as agent i’s inequality adjusted valuation is lower than that of agent

j. Overall, this implies that there are no remaining situations in which subsidizing the al-

location of the good is desirable and therefore a marginal unit of extra budget would have

to be assigned to the agent with the largest value of Λi. This implies that the Lagrange

multiplier in our optimization problem is equal to Λ∗.

Recall that the above results rely on assumption 1. We now provide a condition under

which assumption 1 holds.

Remark 1 Assume that the marginal utility of money is non-stochastic for all agents.

1. Assumption 1 holds if the environment is regular as defined in Myerson [1981], i.e.

when the virtual valuations are non-decreasing for all agents.

2. Assumption 1 holds if and only if the cdfs of vKi , call these Fi, and the corresponding

pdfs fi satisfy the following for all agents:

∂

∂vK

[
1− Fi(v

k)

fi(vk)

]

≤ 1 +
Λi

Λ∗ − Λi

Naturally, it is of interest to investigate when our allocation rule simplifies to the well known

ex post efficient allocation rule which allocates the good to the m agents with the highest

valuations ri, given that they are positive. As pointed out before, our model simplifies to

the standard framework when λi(r) = 1 for all agents and thus yields the ex post efficient

allocation rule in that case. More interestingly, our allocation rule also simplifies to the

standard allocation in the well studied i.i.d. environment as is shown in the next corollary:

Corollary 1 Suppose that either of the following conditions is met:

1. λi(ri) = 1 for all i and ri

2. The pair (vKi , vMi ) is i.i.d. for all agents i and ϕi(ri) is strictly increasing

Then, the optimal assignment rule is equal to the standard assignment rule, i.e. the good is

assigned to the m agents with the highest valuations ri, given that they are positive.
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Proof. The proof of 1. is immediate after plugging in λi(ri). To argue why condition 2

implies the standard allocation rule, we note that when (vKi , vMi ) is i.i.d. for all agents i,

we have ϕi(r) = ϕj(r) for all i, j. By assumption, ϕi(ri) is strictly increasing. This implies

that ϕ(ri) is a strictly increasing transformation of ri and therefore ri ≥ rj if and only if

ϕ(ri) ≥ ϕ(rj). Further, due to the i.i.d assumption on (vKi , vMi ), it holds that Λ∗ = Λi for

all i. Mathematically, this implies that ϕi(ri) ≥ 0 if and only if ri ≥ 0.

Case 1 of the corollary simply highlights that the standard quasi linear model is nested as

a special case of the model. Case 2 is more intricate. When (vKi , vMi ) is i.i.d. among all

agents, the planner does not ex ante consider any agent more or less likely to be rich or poor.

This reflects the idea that even though he does not know the exact valuations of money vM ,

he considers each agent to be in the same situation ex ante. We recall from the discussion

of proposition 3 that redistribution in the optimal mechanism is facilitated through ex ante

redistribution to the agent with the highest expected marginal utility of money. However,

if every agent is considered equally rich or poor ex ante, then the designer finds himself un-

willing and unable to engage in any kind of redistribution and therefore follows the standard

allocation rule.

To build further intuition for our results, we now present a decomposition of the inequality

adjusted valuation into three components that highlight the trade-offs that the designer

faces. Consider the following decomposition of the inequality adjusted valuation:

ϕi(ri) = Πi(ri) + Λ∗Ji(ri) (17)

=

∫ r̄i

ri
λi(s)dGi(s)

gi(ri)
+ Λiri + (Λ∗ − Λi)ri − Λ∗1−Gi(ri)

gi(ri)
(18)

= Λiri
︸︷︷︸

Efficient allocation

+(Λ∗ − Λi)Ji(ri)
︸ ︷︷ ︸

Ex ante transfers

+

∫ r̄i

ri
λi(s)− ΛidGi(s)

gi(ri)
︸ ︷︷ ︸

Ex interim uncertainty

(19)

The first component highlights the desire to allocate the goods efficiently. Agents with a

larger rate of substitution ri should receive the good. The second component highlights

that raising revenue through the virtual valuation Ji(ri) is beneficial for the designer. Any

revenue can be redistributed ex ante to the poorest agent increasing welfare by Λ∗ at the

cost of the ex ante marginal utility of money of the agent from which the revenue was

generated. The third component captures the fact that the marginal utility of money of

an agent is not deterministic. Whenever the expected valuation of money given the rate of
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substitution, namely λi(ri), is larger than the ex ante expected valuation of money Λi, the

inequality adjusted valuation increases. However, incentive compatibility demands that this

comparison does not enter the inequality adjusted valuation solely on a case by case basis,

but through a more complicated expression.

4.2 Rationing

We note that rationing may occur if more than N −m agents have an inequality adjusted

valuation that is negative. There is a particularly interesting connection between the ex ante

expected valuation of money of each agent, namely Λi, and whether or not an agent may be

subject to rationing. We say that an agent is subject to rationing when some units of the

good are not allocated but this agent still has demand for the good.

Proposition 4 (Rationing) Let i∗ denote the index of the agent with Λi∗ = Λ∗. Then

1. Agent i∗ is never subject to rationing

2. All agents i 6= i∗ may be subject to rationing

Proof. Consider the inequality adjusted valuation ϕi(ri) at the lowest possible realization

ri:

ϕi(ri) = Πi(ri) + Λ∗Ji(ri) (20)

=

∫ r̄i

ri
λ(s)dGi(s)

gi(ri)
+ Λ∗

(

ri −
1−Gi(ri)

gi(ri)

)

(21)

= Λ∗ri +
Λi − Λ∗

gi(ri)
(22)

We note that for agent i∗, this expression is weakly positive if and only if ri ≥ 0. Therefore,

the only reason to not allocate the good to agent i∗ would be that she has a negative valuation

for the good. For the other agents, the expression is weakly positive if and only if

Λ∗ri +
Λi − Λ∗

gi(ri)
≥ 0 (23)

which will generally subject them to rationing unless ri is sufficiently large.

Corollary 2 Let ri = 0 for all i. Then, all agents except agent i∗ are subject to rationing

Proof. Follows directly from the proof of proposition 4
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Rationing is a key source of allocative inefficiency in our model and hence plays an im-

portant role for social welfare. Thus, it is instructive to understand how wealth inequality

affects the incidence of rationing in our framework. To understand the quantitative magni-

tude of rationing in a given setting, we consider the probability that rationing occurs, i.e.

the fraction of possible type realizations for which rationing would occur. We assume that

the valuations for money are fixed for any agent, but can vary across agents. This allows us

to obtain the following results:

Proposition 5 (Inequality and the probability of rationing) Assume that the marginal

utility of money of all agents is non stochastic. Then, it holds that:

1. ∂Pr(ϕi(ri)<0)
∂Λ∗

≥ 0 holds for all agents i 6= i∗. Thus, when Λ∗ increases, the probability

with which rationing occurs weakly increases.

2. When ∂Pr(ϕi(ri)<0)
∂Λi

< 0, a decrease of Λi 6= Λ∗ will imply an increase of the prob-

ability with which rationing will occur. Note that ∂Pr(ϕi(ri)<0)
∂Λi

< 0 holds true if the

inverse hazard rates for the distribution of vK are monotonically decreasing, i.e. when

∂
∂νK

[

1−Fi(v
K)

fi(vK

]

≤ 0. Any such distribution is regular in the sense of Myerson [1981].

Proof. See appendix.

Note that a higher probability of rationing reflects a greater extent of allocative inefficiency.

Modelling the effects of an increase in wealth inequality offers several degrees of freedom. In

general, the effect of such a change on the probability with which rationing occurs depends

on how an increase in inequality is modelled. Proposition 5 sheds some light on these issues

and allows us to make the following definitive statements: When the wealth of the poorest

members of society decreases, which is reflected by an increase in Λ∗, the probability with

which rationing occurs increases, ceteris paribus. Result 2 yields insights into the effects of

an increase in wealth inequality along the lines of the development of real wages of men in

the USA over the years 1990-2010. In these years, real wages of men have stagnated at the

10th percentile and 50th percentile, while they have gone up by around 1% (annualized) at

the 90th percentile - see Donovan and Bradley [2019]. Thus, over this period, the real wages

of the 90th percentile have risen by 22%. Within our model, this can be viewed as a decrease

of Λi for the wealthier members of the distribution, while all other Λi’s are left unchanged.

Result 2 shows that the probability with which rationing occurs will increase as a result of

these developments.
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Quantifying the impact of a mean-preserving spread of the Λ’s on the probability of ra-

tioning is challenging in general settings. Such a mean-preserving spread would imply an

increase of Λj for at least one agent j and a decrease of Λi for at least another agent i with

Λi < Λj. Result 2 highlights that such an exogenous change will yield opposing effects on

the probability with which rationing occurs under the stated conditions. Determining which

effect dominates algebraically requires specific distributional assumptions. Consider, for in-

stance, that there are two goods to be allocated and vK is drawn from a uniform distribution

on [0, 1] for all agents. Consider a marginal increase of Λj and a marginal decrease of Λi for

agents where Λi < Λj by the same magnitude. Such a mean-preserving spread will reduce

the probability of rationing in these circumstances. This is because the negative effect of the

rise in Λj on the probability of rationing dominates the effect running through the change in

Λi. This result shows that, in general, the effect of an increase in wealth inequality on the

probability of rationing depends on the modelling choices.

4.3 Connection to auction theory

In this section we describe how our mechanism can be implemented as an auction. First,

we give a brief description of the auction rules: consider a sealed bid auction in which every

bidder submits a bid ri. However, the winner of the auction is not necessarily the bidder with

the highest bid. To implement our allocation rule, the auctioneer transforms these bids ri by

applying the transformation ϕi(ri). The winners of the auction are the m bidders that have

submitted bids ri, which have resulted in the highest values of ϕi(ri), given that ϕi(ri) ≥ 0.

Payments of the auction are given by the integrability condition, i.e. the payment rule of

the auction satisfies

riXi(ri) + Ti(ri) = Ui(ri) +

∫ ri

ri

Xi(s)ds (24)

We note that by the revenue equivalence principle it does not matter whether we consider

an auction format where bidders only pay when they win or whether they always pay, given

a particular bid ri. The allocation rule determines the expected transfers that are associated

with a particular bid fully. Incentive compatibility of the mechanism implies that in equilib-

rium, every bidder submits a bid equal to her willingness to pay. However, the bidders that

submit the highest willingness to pay do not necessarily win the auction.

We now highlight how this particular set of auction rules includes bidding subsidies. As
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described above agent i receives the good over agent j if and only if:

ϕi(ri) ≥ ϕi(rj) (25)

⇐⇒ ri ≥ rj +
1

Λ∗

[
1−Gi(ri)

gi(ri)
(Λ∗ − E[λi(s)|ri ≤ s ≤ r̄i])−

1−Gj(rj)

gj(rj)
(Λ∗ − E[λj(s)|rj ≤ s ≤ r̄j])

]

(26)

Agent i thus receives a bidding subsidy, enabling her to win the auction despite her bid ri

not being higher than agent j’s bid rj in the following circumstances: Ceteris paribus agent

i receives a bidding subsidy when competing with agent j when (i) her expected marginal

utility of money, given that her willingness to pay for the good is at least ri, is high and/or

(ii) agent j’s expected marginal utility of money, given that her willingness to pay for the

good is at least rj, is low. This can be interpreted as agent i being poor, while agent j

is comparatively rich. The designer recognizes this situation and introduces the bidding

subsidy. This bidding subsidy is optimal because it allows the poorer agent to compete

with the richer agent, which offers two advantages: Firstly, it increases the revenue that the

mechanism will elicit. Secondly, it ensures that the good is more likely to be allocated to

the agent who derives the higher utility from consuming the good as such.

Other tools that are commonly used in auction theory are minimum bids or reserve prices.

For now, consider the single unit case. Here, it is possible to find a general minimum bid that

is not specific to the individual bidders. This is desirable for practical applications. We recall

that the designer will not assign the good to an agent with a negative inequality adjusted

valuation. Due to the bidding subsidy that is implied by the inequality adjusted valuation,

any agent that is to win the auction must have a positive inequality adjusted valuation.

Given that the poorest agent’s inequality adjusted valuation is always weakly positive, the

good must always be allocated to somebody. The only minimum bid compatible with this

feature of the allocation rule is a minimum bid of 0.

Now consider the case with m > 1 identical units of the good. We denote by ri the bids

that solve ϕi(ri) = 0. For the multi-unit case, the auction that implements our mechanism

sets a minimum bid of 0 for one unit of the good and bidder-specific minimum bids for the

rest of the goods. One unit of the good is always allocated in our mechanism - thus, the

minimum bid for this good must be zero. Moreover, consider the situation in which one unit

of the good was already allocated to the poorest agent and two agents i, j have submitted

bids ri, rj which are higher than the other agents bids (including bidding subsidies) and such

that ri < ri < rj < rj. We note that a non bidder specific minimum bid may not exceed ri
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to ensure the implementation of our allocation rule. If the minimum bid would exceed ri,

then agent i would never receive the good in this auction when ri is in between ri and the

minimum bid. But this would not correspond to our allocation rule in the above situation.

By a similar argument, the minimum bid cannot be below ri, as it would imply the possible

allocation of the good to an agent with a negative inequality adjusted valuation. Now sup-

pose that the minimum bid exactly equals ri. Note that ϕj(rj) is continuous as a result of

our assumptions which implies that for rj < rj sufficiently close to rj we have ϕi(ri) < ϕj(rj)

which implies that agent j is awarded the good in the auction. However, this is not in in

accordance with the allocation rule that was to be implemented, as rj < rj. Therefore, the

general m good scenario requires bidder specific minimum bids for m− 1 goods where each

agent i faces a minimum bid of ri.

4.4 A framework without redistributive concerns

At this stage, one may wonder to what extent our results are driven by the redistributive

motive the designer possesses as a direct implication of the budget constraint. To investigate

this, we now impose additional restrictions on the transfer rule which make redistribution

from one agent to another impossible. This exercise places the spotlight on the pure alloca-

tive inefficiencies caused by allocating objects solely based on the stated willingness to pay.

For this section, we assume that the expected transfer of any agent must be non-negative,

i.e. that:

E[Ti(r)] ≤ 0 ∀i (27)

These constraints eliminate the planner’s ability to provide ex ante (positive) transfers to

any agent. As a conclusion of our previous results, the above constraint is equivalent to:

E[Ti(r)] = Ui(ri)−

∫ r̄i

ri

Xi(r)Ji(r)dGi(r) ≤ 0 (28)
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In such a setting, the planner thus solves the following problem:

max
{xi(ri,r−i),Ui(ri)}

N
i=1

∑

i

(

ΛiUi(ri) +

∫

Πi(ri)xi(ri, r−i)dG(ri, r−i)

)

s.t. Ui(ri)−

∫

Ji(ri)xi(ri, r−i)dG(ri, r−i) ≤ 0 ∀i (Transfers)

0 ≤ xi(ri, r−i) ≤ 1 (Prob)
∑

i

xi(ri, r−i) ≤ m (Feas)

Xi(ri) non-decreasing (Mono)

Ui(ri) ≥ 0 (IR)

In the optimal solution to the above problem, all transfer constraints must bind. Suppose,

for a contradiction, that the transfer constraint is slack for some agent i in the optimal

solution. Then, the designer could increase Ui(ri) according to this constraint. This change

would not violate any other constraint and would raise social welfare. Thus, our starting

mechanism could not have been optimal.

Remark 2 Consider the functions γi(ri) which are defined as follows

γi(ri) = Πi(ri) + ΛiJi(ri)

Given this definition, note that γi(ri) ≥ 0 ∀ri holds for all agents.

Proof. See appendix.

Having established this, we state the optimal mechanism.

Proposition 6 When ex ante transfers must be weakly negative, the optimal mechanism

assigns the good to the m agents with the highest γi(ri). There is no rationing.

Proof. See appendix.

Note that the expression γi(ri) closely resembles the inequality adjusted valuation ϕi(ri) =

Πi(ri) + Λ∗Ji(ri), which was decomposed as follows:

ϕi(ri) = Λiri
︸︷︷︸

Efficient allocation

+(Λ∗ − Λi)Ji(ri)
︸ ︷︷ ︸

Ex ante transfers

+

∫ r̄i

ri
λi(s)− ΛidGi(s)

gi(ri)
︸ ︷︷ ︸

Ex interim uncertainty

(29)
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Having noted this, consider the following decomposition of γi(r):

γi(ri) = Πi(ri) + ΛiJi(ri) (30)

=

∫ r̄i

ri
λi(s)dGi(s)

gi(ri)
+ Λiri − Λi

1−Gi(ri)

gi(ri)
(31)

= Λiri
︸︷︷︸

Efficient allocation

+

∫ r̄i

ri
λi(s)− ΛidGi(s)

gi(ri)
︸ ︷︷ ︸

Ex interim uncertainty

(32)

The only difference between ϕi(ri) and γi(ri) is that the second term of ϕi(ri) is absent in

γi(ri). This holds because the second term of ϕi(ri) captured the designer’s desire to raise

revenue for redistribution, which is impossible in this setting and will thus not be present in

the optimal solution.

Proposition 6, together with the decomposition of γi(ri), reinforces to the core result of

our paper. In terms of utilitarian social welfare maximization, it is simply not optimal to

allocate the goods to the agents with the highest willingnesses to pay. A high willingness

to pay does not necessarily imply a high consumption utility, in particular for agents with

a high expected marginal utility of money. In general, it is utilitarian optimal to allocate

the good to the agent with the highest consumption utility as such. When all agents have

deterministic marginal utilities of money, γi(ri) is exactly equal to vKi . When the marginal

utility of money is stochastic, the inferences regarding the consumption utility as such need

to be carefully weighted based on the likely distribution of the marginal utility of money.

As we have shown, redistributive concerns will influence the utilitarian optimal allocation

rule when redistribution is possible. However, redistributive concerns are not the sole reason

for the difference in between the utilitarian optimal allocation rule and the ex post efficient

allocation rule in our setting. The main cause of this difference is the fact that the mapping

from consumption utility into willingness to pay depends on the marginal utility of money

of an agent.

Not surprisingly, there will be no rationing in this setting. Formally, this follows from

remark 2, which states that γi(ri) will never be negative. This implies that the feasibility

constraint is never slack, which means that all goods will be allocated. This is intuitive,

given that rationing was a byproduct of the revenue raising motive of the designer that was

present in the original setting, which was now shut down.
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5 Numerical illustrations and policy implications

To further emphasize the key points of our paper, we provide some numerical illustrations.

The first subsection is devoted to an example where the agents have heterogeneous, but non-

stochastic marginal utilities of money. In this example, we firstly visualize the difference

between the ex post efficient allocation rule and the utilitarian optimal allocation rule. We

also plot the expected transfer of agents in the two mechanisms. Afterwards, we move on to

show how the expected transfer rules respond to mean preserving spreads of the marginal

utilities of money. We further investigate how such a mean preserving spread affects the

probability with which rationing occurs to re-emphasize the link between inequality and

allocative efficiency present in our model. Afterwards, we consider an example where the

marginal utility of money is stochastic to provide further insights.

5.1 Deterministic marginal utility of money

In this subsection, we consider the following simplified example. There are N = 5 agents

and m = 2 goods to be allocated. The valuation for money vMi of every agent is non-

stochastic such that vMi = Λi holds for all agents. The valuation for the good vKi is drawn

from a uniform distribution with support [0, 1] for all agents. In the numerical solution, we

discretize this example by assuming that vKi is drawn from a finite grid. Assume that agents

are ordered such that Λ1 ≤ Λ2 ≤ Λ3 ≤ Λ4 ≤ Λ5. Assume further that that marginal utilities

of money are spread evenly such that:

Λi = µ+ 0.5(i− 3)σ ∀i = {1, .., 5}

Increases in the parameter σ thus constitute a mean preserving spread of the marginal

utilities of money. Assume, for the first part of this example, that µ = 0.01 and σ = 0.005.

For these parameters, we now plot the interim allocation probabilities both for the ex post

efficient allocation rule and the utilitarian optimal allocation rule.
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Figure 1: Interim allocation probabilities

Note the following key features: Agents 1,2,3, and 4 may be subject to rationing. Agents 1

and 2 with the relatively low marginal utilities of money have uniformly lower interim prob-

abilities of receiving the good in the utilitarian optimal rule as long as these probabilities

are interior. The converse holds true for Agent 5, who has the highest marginal utility of

money. Agents 3 and 4 both have relatively similar interim allocation probabilities in the two

different rules for low values of r. However, as r increases, these agents receive comparatively

higher interim allocation probabilities in the utilitarian optimal rule. The intuition for these

results mirrors the components of the inequality-adjusted valuations. Firstly, comparatively

low values of Λi as such will reduce the interim allocation probability for a given ri. When Λi

is lower, the distribution of implied vKi ’s, conditional on ri, gets shifted down. Allocating the

good to an agent for a given ri will thus have a lower positive effect on social welfare when

Λi is lower, ceteris paribus. This working channel pushes the interim allocation probability

of the agents i = 1, 2 in the utilitarian optimal allocation rule below the one in the ex post

efficient allocation rule. Secondly, for the agents i = 1, 2, 3, 4 with Λi < Λ∗, negative virtual

valuations make allocation less beneficial and vice versa. The virtual valuation is rising in
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ri and crosses 0 in the interior of the support of ri. Thus, higher values of ri will imply a

higher interim probability of allocation via this channel. This working channel implies that

the interim allocation probability for agents 1 and 2 approaches 1 for high values of r in the

utilitarian optimal rule. For agents 3 and 4, this effect drives the spread in the two allocation

rules that is created for high values of r. Agent 5 has a uniformly higher interim allocation

probability under the utilitarian optimal allocation rule. This is because the second working

channel is shut down for this agent and the first working channel implies a uniformly positive

effect on the interim allocation probability.

Now we visualize the expected transfers of the agents under the two allocation rules. As is

to be expected, the transfers of agents 1-4 are lower in the utilitarian optimal mechanism

than under the ex-post efficient rule and vice versa for agent 5.

Figure 2: Ex ante transfers

Next, we visualize the expected transfers for all agents and the probability with which

rationing will occur under different degrees of inequality in the society. To model different

levels of inequality in the society, we will vary the parameter σ. In particular, we will

consider possible realizations of σ in the interval [0.001, 0.009], where a rise in σ represents

a mean-preserving spread of the Λi’s. The effects of such a spread on the transfer rules and

the probability with which rationing occurs are graphed now:
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Figure 3: Transfer rules and inequality

Figure 4: Inequality and the probability of rationing

A rise in σ raises the slope with which expected transfers rise as we move from agents with

low Λi’s to agents with higher Λi’s. Whenever the marginal utility of an agent goes up, the

utilitarian optimal mechanism will elicit less money from this agent and vice versa. A rise

in σ will thus reduce the expected transfers for agents with low values of Λi and raise the

expected transfers for agents with comparatively high values of Λi.
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A rise in σ has a strictly positive and monotonous effect on the probability with which

rationing occurs. Recall that rationing occurs for a given realization of types whenever there

are less positive inequality adjusted valuations than goods to be allocated. Consider a rise

in σ. For both agents i = 1, 2, this induces a fall in Λi and vice versa for the two agents

i = 4, 5. In particular, Λ∗ will rise. By proposition 5, this will raise Pr(ϕi(r) < 0) for

all agents i ≤ 4. By proposition 5, the fact that Λi falls for agents i = 1, 2 implies that

Pr(ϕi(r) < 0) increases for these two agents, given that the uniform distribution is regular

in the sense of Myerson [1981]. While the increase of Λ4 implies an effect that goes in the

opposite direction as compared to the effects listed previously, the latter dominate in this

scenario.

5.2 Stochastic marginal utility of money

In the following section, we visualize some of our key insights for a setting where the marginal

utilities of money are stochastic. Assume that there are two agents i = 1, 2 with vKi ∼ U [0, 1]

and vM1 ∼ Pareto(k = 3, xmin = 1.5) while vM2 ∼ Pareto(k = 3, xmin = 1) with pdfs f1 and

f2 respectively. The parameter k of the Pareto distribution describes the behavior of the

distribution in the tails, where higher values of k imply thinner tails. Note that the support

of the Pareto distribution is [xmin,∞). Therefore, agent 2 has support on lower values

of vM than agent 1. This can naturally arise in a setting where agent 2 is ex ante more

wealthy than agent 1, but there is still uncertainty about the marginal utility of money due

to idiosyncrasies in consumption behaviour. Alternatively, this setup can reflect the notion

that agent 2 is seen as ex ante more likely to be the wealthier of the two agents. Imagine

that the designer is able to verify that agent 2 lives in a more expensive neighbourhood than

agent 1 and therefore it is likely that agent 2 is wealthier than agent 1. To calculate the

optimal mechanism for this example, we need to determine certain expressions of interest.

For the sake of brevity, we omit the details of the calculations and provide the results only.

Recall that our mechanism assigns the good to the agent with the largest inequality adjusted

valuation, provided that it is positive. First, we determine the cdf Gi(ri) and pdf gi(ri) for

each agent through straightforward computations:

Gi(ri) =
1

1− k
(rxmin)

k −
k

1− k
rxmin (33)

gi(ri) =
k

1− k
rk−1xk

min −
k

1− k
xmin (34)

30



Note that these have support on [0, 2/3] for agent 1 and [0, 1] for agent 2. The next step

is to determine the expected valuation of money, given the rate of substitution, namely

λi(ri) = E[vMi |ri]. This is:

λi(ri) =
(k − 1)(x2−k

min − rk−2)

(k − 2)(x1−k
min − rk−1)

(35)

Using this, we determine the inequality adjusted hazard rate. Furthermore, recall that our

regularity condition requires that Π(r)+Λ∗J(r) is non decreasing. That this regularity con-

dition holds true in this particular example can be easily verified.

This example demonstrates how the allocation rule is modified in the presence of inequality.

We recall that our optimal assignment rule assigns the good to agent i if and only if Πi(ri)+

Λ∗Ji(ri) ≥ Πk(rk) + Λ∗Jk(rk) and Πi(ri) + Λ∗Ji(ri) ≥ 0. For our particular example, the

utilitarian optimal allocation rule is illustrated in figure 5. The red line illustrates the ex

post efficient allocation rule where an agent is assigned the object if and only if her rate of

substitution r exceeds that of the other agent. The blue line represents the utilitarian optimal

allocation rule. We recall that vM1 ∼ Pareto(k = 3, xmin = 1.5) and vM2 ∼ Pareto(k =

3, xmin = 1). Note that our example featured a setting where agent 1 was perceived to be

poorer than agent 2 in the sense of having higher marginal utilities of money, on average.

Our mechanism takes this inequality between the two agents into account and as a result

agent 1 receives the good more often than under the standard assignment rule. This result

is driven by two forces:

Figure 5: Utilitarian optimal allocation rule vs. ex post efficient allocation rule

First, the mechanism realizes that a low willingness to pay r = vK/vM does not necessarily
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imply that the valuation of the good, vK , is low. When the poor agent reports low values

of r this is often driven by a high marginal utility of money, not by a low consumption utility.

Second, the designer has a preference to redistribute money from the rich agent to the poor

agent. When the rich agent has a negative virtual valuation, the designer is not able to

generate revenue for redistribution. This working channel does not exist for the poorer

agent, since money would always be redistributed to her.

5.3 Policy implications

Our results provide a rationale for why a mechanism in a local allocation situation should use

information about the wealth of the agents that participate. This explains, for example, why

parents have to reveal their income when applying for kindergarden places for their children

in German cities such as Munich, Hamburg, Cologne, or Bonn. For an overview of this,

see Geis-Thöne [2018]. Our numerical results indicate that ignoring wealth inequality does

not only imply that the utilitarian optimum will not be reached, but also favors wealthier

people. Firstly, the optimal transfers wealthier people pay are lower in the standard setup

where all agents have the same marginal utility of money. Secondly, our numerical results

indicate that wealthier people receive the good more often in the standard ex-post efficient

allocation rule than in the utilitarian optimal mechanism. Our results provide a rationale

for some allocative tools that are already applied in practice. Our result that wealthier peo-

ple should pay higher transfers in the optimal mechanism is mirrored in the fact that the

transfer schemes for kindergarden place allocations are progressive in parental wealth in the

aforementioned cities.

6 Discussion and Conclusion

We have derived the utilitarian optimal mechanism for an assignment problem in which the

designer initially owns m units of an indivisible good which are to be distributed among

a finite number N of agents, where N > m. In contrast to the usual assumption of the

literature, our model works with heterogeneous marginal utilities of money. This implies

that utility is not perfectly transferable between agents. We have formalized this notion

by adapting the model of Dworczak et al. [2019] to our framework. While they analyze a

two sided market with a clear distinction of buyers and sellers and a designer who sets the

market rules, we consider a designer who owns the goods and wants to assign them.
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The utilitarian optimal mechanism revolves around a key statistic which we call the inequal-

ity adjusted valuation. The inequality adjusted valuation condenses three critical considera-

tions. First, the designer would like to allocate the good as efficiently as possible. Second,

the designer is aware that transfers are not welfare-neutral and must thus consider how the

allocation rule is linked to the transfer rule via the incentive compatibility condition. Third,

there is ex interim uncertainty about each agent’s marginal utility of money as the reported

rate of substitution ri is not perfectly informative about the marginal utility of money of a

certain agent.

We showed that the mechanism which optimally balances these three considerations allo-

cates the good to an agent if and only if (i) her inequality adjusted valuation is among the m

highest inequality adjusted valuations and (ii) her inequality adjusted valuation is positive.

Further, we have shown that the framework with perfectly transferable utility is included

in our framework as a special case. In that special case, the inequality adjusted valuation

of an agent simplifies to the standard valuation. Therefore, the ex post efficient allocation

rule corresponds to the utilitarian optimal allocation rule. Further, we have shown that the

ex post efficient allocation rule also arises when the inequality adjusted valuations satisfy a

regularity condition and the preference parameters are distributed independently and iden-

tically. Under these assumptions, the inequality adjusted valuation is a strictly increasing

transformation of the willingness to pay, which implies that the ex post efficient allocation

rule is utilitarian optimal. In general, the optimal mechanism may feature rationing. Ra-

tioning is a byproduct of the revenue motive of the designer and may occur for all agents,

except for the poorest agent. Whether the other agents are subject to rationing depends

on the specific distributional assumptions, mirroring Myerson [1981], and the question of

whether or not the virtual valuation of an agent is negative.

We have illustrated our results with two examples and have shown that agents who are

perceived to be poorer have a higher chance of receiving the good in the utilitarian optimal

mechanism than in the ex post efficient allocation rule. Their high marginal utility of money

results in a comparatively low willingness to pay for the good, which the inequality adjusted

valuation takes into account. Further, we investigated how wealth inequality, which we

incorporate into our model through the heterogeneous marginal utilities of money, affects

the probability of rationing. While rationing is useful to facilitate redistribution, it creates

ex post inefficiencies that are undesirable. This highlights a novel channel through which

wealth inequality contributes to allocative inefficiency.
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Report 50/2018, Köln, 2018. URL http://hdl.handle.net/10419/190947.

Roger Guesnerie and Kevin Roberts. Effective policy tools and quantity controls. Econo-
metrica: Journal of the Econometric Society, pages 59–86, 1984.

Kazuhiko Hashimoto and Hiroki Saitoh. Domain expansion of the pivotal mechanism. Social
Choice and Welfare, 34(3):455–470, 2010.

Katharina Huesmann. Public assignment of scarce resources under income effects. Working
paper, 2017.

Mingshi Kang and Charles Z Zheng. Necessity of auctions for redistributive optimality.
Technical report, Working Paper, 2019.

Tomoya Kazumura, Debasis Mishra, and Shigehiro Serizawa. Mechanism design without
quasilinearity. Theoretical Economics, 15(2):511–544, 2020.

Thomas Kesselheim and Bojana Kodric. Price of anarchy for mechanisms with risk-averse
agents. arXiv preprint arXiv:1804.09468, 2018.

Nenad Kos and Matthias Messner. Incentive compatibility in non-quasilinear environments.
Economics Letters, 121(1):12–14, 2013.

Maciej H Kotowski. First-price auctions with budget constraints. Theoretical Economics, 15
(1):199–237, 2020.

David Lee and Emmanuel Saez. Optimal minimum wage policy in competitive labor markets.
Journal of Public Economics, 96(9-10):739–749, 2012.

Eric Maskin and John Riley. Optimal auctions with risk averse buyers. Econometrica:
Journal of the Econometric Society, pages 1473–1518, 1984.

Shuhei Morimoto and Shigehiro Serizawa. Strategy-proofness and efficiency with non-quasi-
linear preferences: A characterization of minimum price walrasian rule. Theoretical Eco-
nomics, 10(2):445–487, 2015.

Roger B Myerson. Optimal auction design. Mathematics of operations research, 6(1):58–73,
1981.

Mallesh M Pai and Rakesh Vohra. Optimal auctions with financially constrained buyers.
Journal of Economic Theory, 150:383–425, 2014.

35



Emmanuel Saez and Stefanie Stantcheva. Generalized social marginal welfare weights for
optimal tax theory. American Economic Review, 106(1):24–45, 2016.

Hiroki Saitoh and Shigehiro Serizawa. Vickrey allocation rule with income effect. Economic
Theory, 35(2):391–401, 2008.

Martin L Weitzman. Is the price system or rationing more effective in getting a commodity
to those who need it most? The Bell Journal of Economics, pages 517–524, 1977.

36



Appendices

A Proofs

A.1 Proof of proposition 3:

The optimal mechanism needs to solve:

max
{xi(ri,r−i),Ui(ri}

N
i=1

∑

i

(

ΛiUi(ri) +

∫

Πi(ri)xi(ri, r−i)dG(ri, r−i)

)

s.t.
∑

i

(

Ui(ri)−

∫

Ji(ri)xi(ri, r−i)dG(ri, r−i)

)

≤ 0 (Budget)

0 ≤ xi(ri, r−i) ≤ 1 (Prob)
∑

i

xi(ri, r−i) ≤ m (Feas)

Xi(ri) non-decreasing (Mono)

Ui(ri) ≥ U i (IR)

We ignore the monotonicity constraint for now and later show that this will be fulfilled in
the optimal solution we present. Then the corresponding Lagrangian with the Kuhn-Tucker
constraints is:

L =
∑

i

[

ΛiUi(ri) +

∫

Πi(ri)xi(ri, r−i)dG(ri, r−i) + µ

(∫

Ji(ri)xi(ri, r−i)dG(ri, r−i)− Ui(ri)

)]

+

∑

i

µ1,i(ri, r−i)
(
xi(ri, r−i)

)
+
∑

i

µ2,i(ri, r−i)
(
1−xi(ri, r−i)

)
+ρ(ri, r−i)

(

m−
∑

i

xi(ri, r−i)

)

+

∑

i

δi (Ui(ri)− U i)

The first-order-conditions on xi(r) and Ui(ri) then are:

∂L

∂xi(r)
= Πi(ri)g(r) + µJi(ri)g(r) + µ1,i(r)− µ2,i(r)− ρ(r) = 0

∂L

∂Ui(ri)
= Λi − µ+ δi = 0

Define the j-th order statistic for a collection of N random variables {xi}
N
i=1 as xj:N . Note

that the IR constraints will bind for all agents except agent i∗. To see this, consider an agent
i 6= i∗ and assume that Ui(ri) > U i.

Then, consider a reduction of Ui(ri). This only affects the budget constraint and allows
for an increase of Ui∗(ri∗). This increase implies a rise of the objective by Λ∗ > Λi, which is
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thus optimal. This also implies that the budget constraint, which will bind in the optimum,
can be rewritten as:

Ui∗(ri∗) =

∫

Ji(ri)xi(ri, r−i)dGi(ri, r−i)

Claim: The following is a solution to the above Kuhn-Tucker problem, with appropriate
Lagrange multipliers on the other constraints:

µ = Λ∗ = max
i

Λi

xi(r) =

{

1 Πi(ri) + Λ∗Ji(ri) > 0 & Πi(ri) + Λ∗Ji(ri) ≥ [Πi(ri) + Λ∗Ji(ri)]N−m+1:N

0 else

We first prove why the above allocation rule is optimal for a general value of µ. Note that
the budget constraint must always be binding in the optimal solution (otherwise it is always
possible to raise ex ante transfers, which raises social welfare, without violating any other
constraints).

Thus, it is without loss of generality to take the first line of the above Lagrangian as the
objective function and maximize this subject to the remaining constraints. Note that this is
linear in xi(r), which implies that the optimal allocation rule has a bang-bang property.

When Πi(r) + µJi(r) < 0, it is optimal to set xi(r) = 0. Setting xi(r) < 0 is not possi-
ble. Setting xi(r) > 0 is not optimal, since moving to xi(r) = 0 would be better. This
change would not violate any constraints if the original point was a solution and would raise
the objective function.

Suppose Πi(r) + µJi(r) ≥ 0 and is among the m highest inequality adjusted valuations
for a given r. Setting xi(r) equal to 1 is optimal, since it respects all constraints and there
is no other allocation that would yield a higher utility.

Reducing the allocation probability xi(r) for any of these agents would, as such, reduce
the objective function. In compensation, you could only increase xi(r) for an agent who
has not received any of the good yet, but such an agent must have, by construction of the
allocation rule, an inequality adjusted valuation below the one of the agent listed above.
Thus, this allocation rule is optimal.

Setting xi(r) = 0 when Πi(r) + µJi(r) ≥ 0, but is not among the m highest inequality
adjusted valuations is also optimal. Suppose xi(r) > 0 for such a situation. Then, there
must exist another agent with a higher inequality-adjusted valuation for which the proba-
bility constraints are not yet binding who should receive the good instead.

We now prove that µ = Λ∗ = maxi Λi. We prove this by making a fixed point claim.
Suppose that the Lagrange parameter on the feasibility constraint is Λ = Λ∗.
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To understand the shadow value of an additional unit of budget, note that an additional
unit of budget can either be used to raise ex-ante transfers or to change the allocation rule
xi(r) for some type combination r. When tweaking the allocation rule, an additional unit of
budget can be used to raise the allocation probability for an agent with a negative virtual
valuation or to reduce the allocation probability for an agent with a positive virtual valuation.

Consider first type realizations r where the feasibility constraint binds, i.e. where ρ(r) > 0.
This means there are more agents with positive inequality adjusted valuations than goods
to be allocated. Note that the allocation rule stipulates that the individuals with the high-
est inequality adjusted valuations already receive the good for this realization of the vector r.

The only agents with a negative virtual valuation where more of the good can still be
allocated must not have received the good yet. Consider such an agent i and examine the
impacts of an increase in xi(r). This will change Ui∗(ri∗) by Ji(ri)g(r). This changes the
objective function marginally by Λ∗. The total effect on the objective function is thus:

[
Πi(ri) + Λ∗Ji(ri)

]
g(r)

Given that the feasibility constraint binds, such a rise in xi(r) must be compensated by a fall
of xj(r) (of the same magnitude) for an agent j who has already received the good. Similar
arguments can be made for the reduction of xj(r), which will have the following total effect
on the objective function:

[
Πj(rj) + Λ∗Jj(rj)

]
g(r)

The total effect of this change on the objective function is thus:

[
(
Πi(ri) + Λ∗Ji(ri)

)
−
(
Πj(rj) + Λ∗Jj(rj)

)
]

g(r) < 0

This is negative because ϕi(ri) < ϕj(rj) holds by the allocation rule, given that i has not
yet received the good but j has received the good. By analogous arguments, there exist no
optimal reductions of xj(r) for agents with positive virtual valuations.

Consider realizations of r such that the feasibility constraint is slack, i.e. that ρ(r) = 0.
This implies that [Πi(ri) + Λ∗Ji(ri)]N−m+1:N < 0. For all people that have already received
the good, no more of the good can be allocated - see the solution for xi(r).

All people that have not yet received the good must have [Πi(ri) + Λ∗Ji(ri)] < 0. The
key point is that it is not optimal to raise these values of xi(r). We show this as follows.

For the agents i for which nothing is allocated sofar, it holds that:

Πi(ri) + Λ∗Ji(ri) < 0 ⇐⇒ Πi(ri) < −Λ∗Ji(ri)
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For these agents, Ji(ri) < 0 must hold. Thus, the above implies that:

Πi(ri) < −Λ∗Ji(ri)

⇐⇒

−Πi(ri) > Λ∗Ji(ri) ⇐⇒
−Πi(ri)

Ji(ri)
< Λ∗

Suppose the BC is made marginally slacker. The designer can either raise Ui(ri) by 1 for agent
i with Λ∗ = maxj Λj. Alternatively, the designer can raise such an xi(r) by −1/Ji(ri)g(r).
Such a rise in xi(r) will imply a rise of the original objective by:

−Πi(ri)g(r)/Ji(ri)g(r)

But this is worse than just raising Ui(ri), as shown above. This completes the proof. The
designer would always use additional funds in the budget to raise Ui(ri), which implies that
the Lagrange multiplier of the budget constraint corresponds to Λ∗.

Thus, no changes in the allocation rule are optimal.

Finally, it remains to show that the monotonicity constraint will hold in the optimal so-
lution. This requires that Xi(ri) is non-decreasing. To see this, note that:

Xi(ri) = ✶[ϕi(ri) > 0]Pr(ϕi(ri) ≥ [ϕj]N−m+1:N)

Note our key assumption that ϕi(ri) is increasing in ri. For values of ri where the inequality
adjusted valuation is negative, monotonicity holds. Now consider values of ri where ϕi(ri) >
0. Here, since ϕi(ri) is rising in ri, this implies that the above probability cannot be falling.

A.2 Proof of Remark 1:

Assume that the marginal utility of money is non-stochastic for all agents, such that Λi =
λi(ri) = vMi

Part 1: Since vM is deterministic, we have that:

ϕi(ri) = Λiri + (Λ∗ − Λi)Ji(ri)

When the environment is regular, i.e. when the virtual valuation Ji(r) is rising in r, then
the inequality-adjusted valuation will also be increasing in r.

Part 2:

We are interested in the distribution Gi(r) for the random variable r = pi(v
K), with

pi(x) = x/Λi. Naturally, the derivative of p−1
i (r) is Λi. Thus, when the pdf of vK is fi,
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one can show that:
Gi(r) = Fi(Λir) =⇒ gi(r) = Λifi(Λir)

We thus have:
1−Gi(s)

gi(s)
=

1− Fi(Λis)

Λifi(Λis)

Recall that:

Ji(r) = r −
1−Gi(r)

gi(r)
=⇒

∂Ji(r)

∂r
= 1−

∂

∂r

[
1−Gi(r)

gi(r)

]

The necessary and sufficient condition for the inequality adjusted valuation to weakly rise
in ri when vM is deterministic is thus:

∂ϕi

∂r
= Λi + (Λ∗ − Λi)

∂Ji(r)

∂r
≥ 0 ⇐⇒

Λi

Λ∗ − Λi

≥ −
∂Ji(r)

∂r
= −1 +

∂

∂r

[
1−Gi(r)

gi(r)

]

⇐⇒

1 +
Λi

Λ∗ − Λi

≥
∂

∂r

[
1−Gi(r)

gi(r)

]

Finally, we can note the following by the chain rule:

∂

∂r

[
1−Gi(r)

gi(r)

]

=
∂

∂r

[
1− Fi(Λir)

Λifi(Λir)

]

= (Λi/Λi)
∂

∂vK

[
1− Fi(v

K)

fi(vK)

]

This translates into the following necessary and sufficient condition:

∂

∂vK

[
1− Fi(v

K)

fi(vK)

]

≤ 1 +
Λi

Λ∗ − Λi

A.3 Proof of Proposition 5

Preliminaries

We suppose that the marginal utility of money is fixed for all agents, such that vMi = Λi. In
this case, the inequality-adjusted valuation is:

ϕi(ri) = Λiri + (Λ∗ − Λi)Ji(ri)

Note that:

Ji(ri) = ri −
1−Gi(ri)

gi(ri)
= ri −

1

Λi

1− Fi(Λiri)

fi(Λiri)

The first component of the inequality adjusted valuation is only 0 at ri = 0, at which we
have:

Ji(0) = 0−
1

Λi

1− Fi(0)

fi(0)
= −

1

Λi

1

fi(0)
< 0

Given that we work with distributions without mass points, we can note the following: Defin-
ing r̂ as the valuation which solves ϕ(r̂) = 0, it must hold that r̂ > 0. Also note continuity
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of Ji(r) in r.

Proof of point 1:

We need to show that:
∂Pr(ϕi(r) > 0)

∂Λ∗
≥ 0

Consider any agent i and note the following:

∂ϕi(r)

∂Λ∗
= Ji(r) ∀r ∈ [ri, r̄i]

To understand the effect of a rise in Λ∗ on the probability with which agent i is rationed ,
note firstly that the stochastic variable is ri.

Firstly, consider realizations of ri where ϕi(ri) < 0 ex ante. Because ϕi(ri) < 0, it must
hold that Ji(ri) < 0 at these realizations of ri. For these realizations, a rise in Λ∗ will thus
reduce ϕi(ri), keeping this negative for all these realizations of ri.

Secondly, consider realizations of ri where ϕi(ri) ≥ 0 and Ji(ri) ≥ 0 holds true. For these
realizations of ri, the rise in Λ∗ will imply a weak increase of ϕi(ri), such that ϕi(ri) ≥ 0 will
still hold after the rise in Λ∗.

Thirdly and finally, consider realizations of ri where ϕi(ri) ≥ 0 and Ji(ri) < 0 holds true.
For these realizations of ri, the rise in Λ∗ will imply a (weak) decrease of ϕi, which can po-
tentially push those into the negative region, even though they were positive ex ante. This
working channel has a weakly positive effect on the probability that this agent is rationed.

It remains to show that the rise in Pr(ϕi < 0) implies a rise in the probability with which
rationing occurs.

To do this, we introduce some terminology. Consider agent i, for which we know that
Pr(ϕi < 0) has increased due to some exogenous change.

Profile of Agents A profile of agents is a certain arrangement of the signs of the in-
equality adjusted valuations for all agents i ∈ I, where either ϕi(r) < 0 or ϕi(r) ≥ 0 holds.

Partial profile of agents A partial profile of agents is a certain arrangement of the signs
of the inequality adjusted valuations for all agents j 6= i, where either ϕj(r) < 0 or ϕj(r) ≥ 0
holds.

We focus on the probability with which rationing occurs. This probability is a sum over
profiles of agents where at least N −m+ 1 agents have negative inequality adjusted valua-
tions.
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In this probability, we can loop over partial profiles of agents.

Consider first partial profiles of agents where weakly less than N − m − 1 agents j have
ϕj < 0. These partial profiles will not enter the probability of rationing, since rationing
would not occur for such a partial profile, no matter the realization of ϕi. An increase of
Pr(ϕi < 0) will thus have no effect for these type profiles.

Consider now partial profiles where weakly more than N − m + 1 agents have ϕj < 0.
For these partial profiles, rationing will occur, no matter the realizations of ϕi. Thus, for
every such partial profile, there are two profiles that enter the probability with which ra-
tioning occurs. Raising Pr(ϕi > 0) will then have zero effect on the probability of rationing
via these partial profiles, since the effects exactly cancel out.

Consider finally partial profiles where exactly N −m agents j 6= i have negative inequality
adjusted valuations. For these partial profiles, ϕi < 0 must hold for rationing to occur.
Hence, only one profile with such a partial profile will enter the probability of rationing,
namely the one where ϕi < 0, with the corresponding probabilities. When Pr(ϕi < 0) in-
creases, you will unambiguously raise the probability of rationing for these profiles.

Point 2:

It was shown previously that an increase of Pr(ϕi(r) < 0) will imply an increase in the
probability with which rationing occurs. This implies the first sentence of this point.

We thus only have to show:

•
∂

∂νK

[

1−Fi(v
K)

fi(vK

]

≤ 0 =⇒ ∂Pr(ϕi(ri)<0)
∂Λi

< 0.

Consider any agent i. The derivative of ϕi with respect to Λi is:

∂ϕi(ri)

∂Λi

= ri+(Λ∗−Λi)
∂Ji(ri)

∂Λi

+(−1)Ji(ri) = ri+(Λ∗−Λi)
∂Ji(ri)

∂Λi

+(−1)

[

ri−
1−Gi(ri)

gi(ri)

]

=

(Λ∗ − Λi)
∂Ji(ri)

∂Λi

+
1−Gi(ri)

gi(ri)

When the virtual valuation is weakly rising in Λi, the inequality adjusted valuation will
uniformly rise in Λi.

A uniform increase in ϕi(ri) as a result of a change in in Λi implies that the probability
with which rationing occur will fall.

Recall that:

Ji(ri) = ri −
1−Gi(ri)

gi(ri)
= ri −

1

Λi

1− Fi(Λiri)

fi(Λiri)
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The derivative is thus:

∂Ji(r)

∂Λi

= +
1

Λ2
i

1− Fi(Λiri)

fi(Λiri)
−

1

Λi

∂(Λiri)

∂Λi

[

∂

∂vK
1− Fi(v

K)

fi(vK)

]

=

1

Λ2
i

1− Fi(Λiri)

fi(Λiri)
−

1

Λi

ri

[

∂

∂vK
1− Fi(v

K)

fi(vK)

]

Sufficient for this derivative to be positive is hence that

∂

∂vK
1− Fi(v

K
i )

fi(vKi )
≤ 0

A.4 Proof of remark 2:

We need to show that γi(ri) ≥ 0 for all i, where:

γi(r) = Πi(r)+ΛiJi(ri) =

∫ r̄i

r
λi(s)dGi(s)

gi(r)
+Λi

(

r −
1−Gi(r)

gi(r)

)

= Λiri+

∫ r̄i

r
λi(s)− ΛidGi(s)

gi(r)

The first component is positive. To see that the second component is positive, note that
λi(s) is rising in s by assumption. This implies that:

∫ r̄i

r

(λi(s)− Λi) gi(s)ds = [1−Gi(r)]

∫ r̄i

r

λi(s)
gi(s)

1−Gi(r)
ds− [1−Gi(r)]Λi =

[1−Gi(r)]

(

E[λi(s)|s ≥ r]− E[λi(s)]

)

≥ 0

A.5 Proof of proposition 6

max
{xi(ri,r−i),Ui(ri)}

N
i=1

∑

i

(

ΛiUi(ri) +

∫

Πi(ri)xi(ri, r−i)dG(ri, r−i)

)

s.t. Ui(ri)−

∫

Ji(ri)xi(ri, r−i)dGi(ri, r−i) ≤ 0 ∀i (Transfers)

0 ≤ xi(ri, r−i) ≤ 1 (Prob)
∑

i

xi(ri, r−i) ≤ m (Feas)

Xi(ri) non-decreasing (Mono)

Ui(ri) ≥ 0 (IR)

One can easily show that the transfer constraints must bind for all agents.
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Thus, we can set up the following Lagrangian (ignoring monotonicity constraint for now):

L =
∑

i

(

ΛiUi(ri) +

∫

Πi(ri)xi(ri, r−i)dG(ri, r−i)

)

+
∑

i

µi

(∫

Ji(ri)xi(ri, r−i)dGi(ri, r−i)− Ui(ri)

)

+...

For a given set of Lagrange parameters {µi}i∈I , the optimal allocation rule is to allocate the
good to the agents with the highest values of Πi(r) + µiJi(r). It remains to pin down the
Lagrange parameters.

Consider an arbitrary agent i. We now show that µi = Λi for all agents. Suppose this
holds.

Consider a marginal increase of the expected transfer that can be allocated to agent i. What
can the designer do with this additional dollar? Firstly, the designer could change the al-
location rule and raise xi(r) for a realization r for which agent i has not yet received the good.

Suppose the feasibility constraint binds for this realization of r. Then, you could raise
xi(r) only when you reduce xj(r) for another agent j who has previously received the good.
This has a direct negative effect on the social welfare equal to −Πj(rj). In addition, via the
binding transfer constraint of agent j, Uj(rj) will change by −Jj(rj), which impacts social
welfare by Λj. Conversely, the total rise of the objective function via the utility of agent i
is Πi(ri) + ΛiJi(ri). However, this change will then not be optimal by the above allocation
rule.

The feasibility constraint can never be slack under the above Lagrange parameters. This
holds because γi can never be negative - see remark 2. Assuming that the feasibility con-
straint is slack quickly leads to a contradiction.

This completes the proof. Whenever the transfer constraint becomes marginally slacker,
the only way the designer can use this additional dollar is to raise Ui(ri), which yields addi-
tional social welfare equal to Λi.

Monotonicity will also hold in the above setting, given that γi is rising in ri and the al-
location probability is rising in γi.

A.6 Results for uniform distribution and a mean-preserving spread

We have to show:

Assume vK is uniformly distributed on [0, 1] and that there are two goods to be allocated.
When Λi < Λj, it holds that:

Pr(ϕi(ri) < 0)
∂Pr(ϕj(rj) < 0)

∂Λj

− Pr(ϕj(rj) < 0)
∂Pr(ϕi(ri) < 0)

∂Λi

< 0
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Assume m = 2, vMi is fixed for all agents, and vK ∼ U [0, 1]. Then, rationing will oc-
cur whenever all the agents except the poorest agent have a negative inequality adjusted
valuation. Hence, the probability that rationing occurs is:

∏

k 6=i∗

Pr(ϕk(r) < 0)

Suppose you raise Λj marginally and reduce Λi by the same magnitude. The effect of this
on the probability with which rationing occurs will be:

∏

k 6=i,j,i∗

Pr(ϕk(r) < 0)

(
∂Pr(ϕj(rj) < 0)

∂rj
Pr(ϕi(ri) < 0)−

∂Pr(ϕi(ri) < 0)

∂ri
Pr(ϕj(rj) < 0)

)

For any person k 6= i∗, ϕk(r) becomes the following in the above setting:

ϕk(r) =
(
1− Λ∗/Λk

)
+ ri

(
2Λ∗ − Λi

)

Let’s compute the probability that this is below 0:

Pr(ϕk < 0) = Pr

(
(
1− Λ∗/Λk

)
+ rk

(
2Λ∗ − Λk

)
< 0

)

=

Pr

(

rk <
Λ∗/Λk − 1

2Λ∗ − Λk

)

= Gk

(
Λ∗/Λk − 1

2Λ∗ − Λk

)

=
Λ∗ − Λk

2Λ∗ − Λk

Taking the derivative with respect to Λi yields that:

∂

∂Λk

[

Pr

(

rk <
Λ∗/Λk − 1

2Λ∗ − Λk

)]

=
(2Λ∗ − Λk)(−1)− (Λ∗ − Λk)(−1)

(2Λ∗ − Λk)2
= −

(2Λ∗ − Λk)− (Λ∗ − Λk)

(2Λ∗ − Λk)2
=

−
Λ∗

(2Λ∗ − Λk)2
< 0

Now consider two agents i, j with Λi < Λj.

Pr(ϕi(ri) < 0)
∂Pr(ϕj(rj) < 0)

∂Λj

− Pr(ϕj(rj) < 0)
∂Pr(ϕi(ri) < 0)

∂Λi

This is smaller than 0 iff:

Pr(ϕi < 0)
∂Pr(ϕj < 0)

∂Λj

< Pr(ϕj < 0)
∂Pr(ϕi < 0)

∂Λi

=

Λ∗ − Λi

2Λ∗ − Λi

(

−
Λ∗

(2Λ∗ − Λj)2

)

<
Λ∗ − Λj

2Λ∗ − Λj

(

−
Λ∗

(2Λ∗ − Λi)2

)

⇐⇒
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Λ∗(Λ∗ − Λi)

(2Λ∗ − Λi)(2Λ∗ − Λj)2
>

Λ∗(Λ∗ − Λj)

(2Λ∗ − Λj)(2Λ∗ − Λi)2
⇐⇒

(Λ∗ − Λi)

(2Λ∗ − Λj)
>

(Λ∗ − Λj)

(2Λ∗ − Λi)
⇐⇒ (Λ∗ − Λi)(2Λ

∗ − Λi) > (Λ∗ − Λj)(2Λ
∗ − Λj)

Note that:
∂

∂Λk

[

(Λ∗ − Λk)(2Λ
∗ − Λk)

]

< 0

This implies that the above inequality always holds true,since Λj > Λi.
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