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Abstract

A principal can allocate an indivisible good to an agent. The agent privately

learns the value of the good while the principal privately learns the cost. Value

and cost are correlated. The agent wants to have the good in any case. The

principal wants to allocate whenever the value exceeds the cost. She cannot

use monetary transfers to screen the agent.

I study how the principal utilizes her information in the optimal mechanism:

when the correlation is negative, she bases her decision only on the costs, and

when the correlation is positive, she screens the agent. To this end, she forgoes

her best allocation opportunities: when the agent reports high valuations but

her own costs are low. Under positive correlation, these realizations are unlikely;

the principal will find them too good to be true. In contrast to standard results,

this optimal mechanism may not allocate to a higher value agent with higher

probability. I discuss applications to intra-firm allocations, task-delegation, and

industry self-regulation.
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trade, delegation;
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1 Introduction

A principal (she) can allocate an indivisible good to an agent (he). She privately

learns her costs c of allocating the good to him. He privately learns his valuation v

for the good. She is benevolent and wants to allocate whenever v exceeds c. He does

not incorporate the costs and wants the good in any case. In many applications of

this setting, monetary transfers between the principal and the agent are not allowed.

However, their information is often correlated. Examples include the following: the

federal government decides whether to allocate a task to the local government, the

management of a company decides whether to buy a capital good and allocate it to

one of its departments, a regulator decides whether to approve a new product after

she has investigated one of its features, and the producer of the good reports his

assessment about the safety of the other features.

To my knowledge, this is the first study that analyzes the optimal mechanism in

this bilateral trade setting with correlated information and without transfers.

As a benchmark, consider this setting when the designer could use monetary trans-

fers to screen the agent. In this case, the efficient allocation could be implemented.

The principal could charge her cost as the price for the good. Then, the agent would

buy if and only if his valuation exceeds the cost.

In many situations, however, monetary transfers are not feasible. This can be

for organizational reasons (companies and state agencies do not want to introduce

internal budgets), for technological reasons (a website and its user might not have a

payment channel), or for moral and legal reasons.

Moreover, it is natural that valuation and costs are not independent but correlated:

If the federal government delegates a task to the local government, her opportunity

costs are given by the value she could have created in the task herself. In this example,

the values which the agent (local government) and the principal (federal government)

could create in the same task are positively correlated.

If the management buys the capital good from a third party, her costs are given

by the price. This price could be a quality signal. Then, the price and the valuation

for the good are positively correlated. If the regulator investigates one aspect of a

new product and the producer investigates another, these aspects are likely positively

correlated.

In my setting, the principal designs a mechanism that can be contingent on the
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realization of her cost. Her objective is to maximize the ex-ante expected efficiency of

the allocation. When she screens the agent to allocate efficiently, she has to discourage

an agent with a value below her costs to pretend to have a higher value. Without

money, she can only use the allocation itself as an incentive. Thus, she must offer a

low-value agent sufficiently high expected allocation probability to prevent him from

mimicking an agent with a higher value. However, allocating to low-value agents

distorts the expected efficiency. In the optimal mechanism, she has to square the

inefficiencies that screening entails with the efficiency gains that the information about

the agent’s value permits.

Results. The revelation principle applies in this setting. Therefore, it is sufficient

to study direct mechanisms. In a direct mechanism, the principal commits to a menu

of allocation schedules, with one allocation schedule for each valuation. An allocation

schedule specifies an allocation probability for any cost realization. The agent learns

his valuation, forms expectations about the cost, and then reports his valuation to

the principal. The principal learns the cost and allocates according to the schedule

for the reported valuation. Because cost and valuation can be correlated, agents of

different valuations form different expectations about the cost and evaluate allocation

schedules differently. The agent must find it optimal to report truthfully. Therefore,

he must expect the allocation schedule that corresponds to his true valuation to yield

him the highest probability of allocation.

When cost and valuation are independent or negatively correlated, the optimal

mechanism ignores the agent’s report and bases the allocation decision only on the

cost: the principal commits to implement the same allocation schedule after all val-

uation reports. She allocates if and only if the cost falls below a cutoff. The reason

is that with negative correlation, low costs tend to occur with high valuations and

vice versa. Therefore, basing the decision only on the costs is already quite efficient.

Screening the agent would only slightly increase the expected efficiency.

When costs and valuations are positively correlated, the optimal mechanism might

screen the agent. To illustrate this screening mechanism, suppose there are two

possible valuations vL < vH . If the agent reports the low valuation vL, the principal

sticks to a cutoff allocation schedule: she only allocates if the cost remains below a

cutoff, c < cL. If the agent claims to have high valuation vH , the allocation schedule

is characterized by two cost cutoffs cH ≤ cH that form an interval. If the cost is
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either too low or too high, the principal does not allocate the good. She allocates

only after intermediate cost realization between the two cutoffs, c ∈ (cH , cH). This

means that the principal does not allocate when the gains from allocation v − c are

the highest. The form of this allocation schedule exploits the difference in beliefs

of the two valuation types. Under positive correlation, an agent with vL finds low

costs likelier than an agent with vH . When the principal chooses to not allocate

after a high valuation report and low costs, she makes misreporting for the low type

unattractive. She forgoes the most efficient allocation opportunity; however this

allows her to allocate overall with a higher probability to vH without giving the agent

with vL incentives to misreport.

With more than two valuations, the structure from the above example extends. I

introduce a novel regularity assumption on the joint distribution. Under this assump-

tion, the allocation schedule for all valuation reports has interval form. Furthermore,

the intervals are ordered. For a higher valuation, both the upper and lower support of

the allocation schedule exceed the upper and lower support of the allocation schedule

of a lower valuation.

With correlated information, agents of different valuations hold different beliefs

about the costs. Therefore, the interim expected allocation probabilities are insuffi-

cient to describe the mechanism and the standard approaches fail. In particular, the

set of incentive compatible mechanisms cannot be easily characterized. Therefore, I

directly characterize the optimal mechanism. First, I use the new regularity assump-

tion to argue that the allocation schedules of the optimal mechanism are in interval

form (Proposition 1). This assumption is similar (but weaker) to an assumption Je-

witt (1988) uses in a moral hazard setting. I illustrate the role of this assumption by

introducing a related problem. In this related problem, agents of different valuations

share the same belief about the cost but differ in their risk preferences. The regularity

assumption then guarantees that in the related problem, agents with higher valuation

are more risk-averse. This leads to the interval form of the allocation schedules.

Next, I show that the allocation schedules are ordered (Proposition 2). When

an agent evaluates an allocation schedule, he weighs the probability of receiving the

good at a certain cost realization with his belief that this cost realization occurs.

This evaluation is as if the agent would have a Bernoulli utility function with respect

to costs that is equal to his belief and would evaluate a lottery that is given by

the allocation schedule. I establish that these utility functions have single-crossing
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expectational differences. Finally, I use the resulting monotone comparative statics

to show that the interval allocation schedules in the optimal mechanism are ordered.

In contrast to standard results, this interval monotonicity does not imply that the

interim allocation probabilities are monotone in the agent’s valuation.

Applications. The characterization of the optimal mechanism has many interesting

consequences for applications: if the principal buys the good from a third party to

allocate it to an agent inside her organization, her demand schedule is no longer

monotone. When the agent reports a high valuation, she will buy for intermediate

prices but will not buy for high or low prices.

The optimal mechanism under positive correlation gives a rationale for inefficient

governmental allocation of resources and tasks. This demands a high degree of com-

mitment from the principal. It might be difficult for a public official to defend the

decision to not allocate a task to a subordinate agency if (i) the subordinate agency

predicts to be very successful in the task whereas (ii) the principal agency expects to

perform poorly. This advocates for an intransparent allocation procedure, where the

performance predictions do not become public record. In contrast, under negative

correlation, the optimal mechanism can be transparently implemented: the principal

does not collect any information from the agent. Given only the realization of the

costs, her decision is efficient.

The possibility of using positive correlation for screening has interesting effects

on the value of correlation. I demonstrate this with a numerical example, wherein

the principal compares two joint distributions with equal marginal expectations for

costs and valuation. The second distribution exhibits a higher degree of positive

correlation than the first. As a benchmark, I consider the case without information

asymmetry, where the principal can observe the agent’s valuation. Here, she prefers

the first distribution because the higher positive correlation lowers her expected value

of the efficient allocation. However, if the valuation is the agent’s private information,

the efficient allocation is not implementable. Then, the principal prefers the second

distribution. The higher degree of positive correlation allows her to screen the agent

and to allocate more efficiently in the second-best solution.

Finally, I investigate whether a regulator can delegate parts of the certification

process of a new product to the producer. I model this long-standing practice of

industry self-regulation as follows. The regulator analyzes one aspect of the safety of
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the product and learns its value a1; a second aspect a2 is analyzed by the producer.

The two aspects are positively correlated and jointly determine the safety of the

product. To fit this setting into my model of valuation and cost v − c, I define

the principal’s cost as c = −a1 and the agent’s valuation as v = a2. With this

definition, cost and valuation are negatively correlated. In the optimal mechanism,

the regulator bases her decision only on the aspect that she herself analyzes. In this

model of industry self-regulation, delegation of an aspect implies ignoring it for the

assessment of the safety of the product.

Related literature Myerson and Satterthwaite (1983) introduce the bilateral trade

setting and show that with balanced transfers, the efficient allocation cannot be im-

plemented. I deviate from their setting in three dimensions: (i) I let the principal

(the seller in their terminology) design the mechanism. She can commit to make her

decision contingent on her information. In contrast to Myerson and Satterthwaite,

the optimal mechanism does not have to consider her incentive constraints. This also

sets my model apart from informed principal problems (Myerson (1983); Maskin and

Tirole (1990)). (ii) I allow cost and valuation to be correlated. (iii) I do not allow

for monetary transfers. If monetary transfers are allowed and the information of the

players is correlated, Cremer and McLean (1988); McAfee and Reny (1992); Riordan

and Sappington (1988); Johnson et al. (1990); Neeman (2004) have demonstrated

how and when a designer can exploit the differences in the beliefs of the players to

implement any social choice function. I revisit some of their results in Section 3.1.

My model also relates to the literature on delegation started by Holmstrom (1977).

To my knowledge, it is the first that studies delegation with two-sided information

asymmetry. The interval structure of the optimal mechanism is similar to the interval

delegation in Alonso and Matouschek (2008).

In settings without monetary transfers, the optimal mechanism often invents ar-

tificial money to screen agents. Hylland and Zeckhauser (1979) have agents trade

allocation probabilities for indivisible goods; Jackson and Sonnenschein (2007) have

voters trade the weights of their ballot in elections on different matters.

Bhargava et al. (2015) show how positively correlated beliefs among voters allow

overcoming the impossibility of nondictatorial voting rules established by Gibbard

(1973) and Satterthwaite (1975).

Guo and Hörner (2018) study a dynamic allocation problem between a benevo-
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lent principal and an agent. They use promises of future allocations as a means to

incentivizes the agent to report truthfully.

Another strand in the literature on mechanism design studies allocation problems

without money but allows for the costly verification of hidden information: Ben-

Porath et al. (2014); Kattwinkel and Knoepfle (2019); Mylovanov and Zapechelnyuk

(2017); Li (2017); Epitropou and Vohra (2019). Chakravarty and Kaplan (2013) study

an allocation with costly signaling.

Gershkov et al. (2013); Manelli and Vincent (2010) analyze the equivalence be-

tween Bayesian optimal and ex-post incentive compatible implementation when mon-

etary transfers are feasible. Ben-Porath et al. (2014); Erlanson and Kleiner (2019)

and Kattwinkel and Knoepfle (2019) show that with costly verification and without

monetary transfers—similar to the results in this paper—the optimal mechanism is

ex-post incentive compatible if the values are independent or the correlation is nega-

tive. The screening mechanism I derive shows that in a setting without transfers and

with positively correlated information, this equivalence can fail.

Fieseler, Kittsteiner, and Moldovanu (2003) study the problem of efficient trade

with interdependent values. They find that only under negative interdependent val-

ues can balanced transfers implement efficiency. Like in my setting, in this case, the

expected conflict is small: small values of one agent occur with high values of the

others. Therefore, they can be mediated with money. In my setting, under nega-

tive correlation, screening offers only little efficiency improvement and the principal

abstains from screening.

The regularity assumption that I introduce is weaker than a similar assumption

that Jewitt (1988) uses to justify the first-order approach in a moral hazard prob-

lem. The intuition for why this assumption guarantees interval allocation schedules

argues with Diamond and Stiglitz’s (1974) notion of utility preserving spreads. More

generally, this intuition sheds light on a connection between belief heterogeneity and

the heterogeneity in risk preferences.

To prove that the allocation schedules are ordered, I use that the utility functions

of the players have single crossing-differences for ordered lotteries. The difference

from Kartik, Lee, and Rappoport (2019)’s result is that I need this property to

hold only for ordered lotteries. The result I use is a consequence of the variation

diminishing property of totally positive kernels (Schoenberg (1930); Motzkin (1936);

Karlin (1968)).
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2 Model

2.1 Setting

A principal (she) can allocate an indivisible good to an agent (he). Her allocation

decision is denoted by x ∈ {0, 1}. If she mixes, x ∈ [0, 1] denotes the probability of al-

location. The allocation is costly for the principal. These costs are a random variable

C taking values c ∈ R. Of course, these costs can also be interpreted as opportunity

costs. Then, C denotes the principal’s valuation for the good. The realization of the

costs is the principal’s private information. The agent has a valuation for the good V ,

which takes values v ∈ R++. The realization of V is the agent’s private information.

Valuation V and cost C are jointly distributed according to a cdf F (v, c). I assume

that the supports of the valuation and the costs are both finite and denote them by V
and C, respectively. Let f(v, c) denote the pdf. The assumption on the distribution

of the costs is generalized in Section 4.2.

The principal’s objective is to maximize social welfare; her Bernoulli utility func-

tion is given by,

w(v, c, x) = x · (v − c).

The agent does not bear the costs; his utility reads as follows:

u(v, c, x) = x · v.

because v > 0, he always prefers receiving the good. The agent’s outside option is

zero so that he is always willing to participate in the mechanism.

The correlation between the agent’s information V and the principal’s information

C is captured by the following likelihood ratios. For all v′ < v′′ ∈ V :

f(v′, c)

f(v′′, c)
. (1)

I distinguish three cases.

1. Negative affiliation: the likelihood ratios (1) are strictly increasing in c. The

higher the costs, the more likely is a low valuation by the agent.

2. Independence: the likelihood ratios (1) are constant in c. In this case, the costs

are not informative about the valuation.

3. Positive affiliation: the likelihood ratios (1) are strictly decreasing in c. The
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higher the costs, the more likely is a high valuation.

In the remainder I will use the term positive correlation for positive affiliation and

negative correlation for negative affiliation.

2.2 Mechanism

The principal announces and commits to a mechanism before she learns the costs.

The realization of the costs is contractible. The agent learns his valuation (but not

the costs) and then plays a Bayesian best response.

Formally, a mechanism is given by a message set M and an allocation function

x : M ×C → [0, 1] that specifies an allocation probability for any pair of message and

cost realization. The revelation principle applies so that it suffices to have valuations

as messages, M = V and to study mechanisms where the incentives are such that the

agent reports his type truthfully.

Given a valuation report v, a direct mechanism specifies an allocation probability

for all cost realization c ∈ C. Denote this vector

x(v) = (x(v, c))c∈C

and term it as v’s allocation schedule.

2.3 Agent’s problem

The agent takes a mechanism x as given. He does not know the costs of the good,

but forms expectations about it based on the realization of his valuation v. If he

reports truthfully, he faces the random allocation lottery x(v, C). If he reports v̂, he

faces a different lottery x(v̂, C). Therefore, the Bayesian incentive constraints read

as follows:

∀v, v̂ ∈ V : v · E [x(v, C) | V = v ] ≥ v · E [x(v̂, C) | V = v ] . (2)

Every type derives strictly positive utility from the good (v > 0 for all v ∈ V); it

follows that the intensity of type v’s preferences can be eliminated from the incentive
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constraint: the agent maximizes his expected allocation probability.

IC(v, v̂) =
∑
c∈C

f(v, c) [x(v, c)− x(v̂, c)] ≥ 0. (3)

This shows that the setting is equivalent to a setting where the valuation v does

not enter the utility of the agent: he has utility 1 if he receives the good and 0

otherwise. In this setting, the valuation v is the value of the principal. Formally, in

this equivalent setting, the principal’s utility function stays the same and the agent’s

utility is given by

u(x, v, c) = x.

Moreover, note that the expected allocation probability at a certain misreport is

not independent of the true valuation type, as different valuation types have different

conditional beliefs over the distribution of C. The interim expectations are therefore

insufficient to describe the mechanism.

2.4 Principal’s problem

The principal designs a mechanism that maximizes social welfare. If she could observe

the valuation of the agent, she would allocate the good efficiently: that is, if and only

if v − c ≥ 0. However, because she only observes the costs, she must incentivize

the agent to report his valuation. Her problem can be stated as the following linear

program:

max
0≤x≤1

E [ x(V,C) · (V − C) ] s.t. ∀(v, v̂) ∈ V × V : IC(v, v̂) ≥ 0. (4)

3 Optimal mechanism

3.1 If monetary transfers were feasible

If the principal could, in addition to the allocation decision x ∈ [0, 1], set a monetary

transfer t ∈ R that would enter the agent’s utility additively,

û(v, c, x, t) = u(v, c, x)− t = x · v − t,
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the efficient allocation could be achieved: the principal can offer the good at price c

to the agent and completely align the agent’s interest in the mechanism with hers.

To achieve efficiency, it is necessary that the agent’s valuation and the principal’s

valuation for the good coincide. In (3), it is shown that without transfers, it is not

relevant whether v enters the agent’s utility. This is not the case if transfers are

feasible. If the agent’s utility is not affected by v and is just 1 if he receives the good

and 0 otherwise, selling the good at price c does not induce the efficient allocation.

However, with transfers and correlation, there is another distinct way to achieve

efficiency. This method exploits the differences of the beliefs that agents of different

valuations v hold about the cost realization. It requires that the beliefs identify the

corresponding valuations. Therefore, it must not be the case that there exists a type

v′ and λ(v) ≥ 0 for all v ∈ V − {v′} such that,

f(c|v′) =
∑

v∈V−{v′}

λ(v) · f(c|v) for all c ∈ C. (5)

This rank condition1 ensures that the belief that an agent holds is a sufficient statistic

for the valuation v. If costs and valuation are independent, this condition is not

fulfilled.

Theorem 1 (Cremer and McLean (1988))

If monetary transfers are feasible and the spanning condition is met, for any x(v, c)

there exists t(v, c) implementing x with E[t(v, C)] = 0 for all v ∈ V.

The proof is an adaption of Cremer and McLean (1988)’s proof for the setting

studied here: if the rank condition is met, the principal offers the agent a menu of

lotteries whose payments depend on the realizations of the costs. For each valuation,

there is one lottery. An agent with this valuation expects the corresponding lottery to

pay out 0 and expects all other lotteries’ payout to be lower than some bound b < 0.

This bound b can be chosen uniformly for all valuations and can be set arbitrarily

low. By setting b arbitrarily low, the mechanism gives the agent an arbitrarily high

incentive to choose the lottery that corresponds to his valuation and thereby reveal it,

irrespective of the allocation rule that the principal implements with this information.

This mechanism also works if v does not enter into the agent’s utility.

1 An equivalent formulation of this condition is that the set of beliefs for all types are the extreme
points of their convex hull.
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3.2 Independence and negative correlation

In the case of independence ((1), case 2), the costs do not convey any information

about the agent’s value. In turn, agents of all valuations share the same belief about

the costs. The principal cannot use the difference in the agent’s belief to distinguish

between them. As a result, optimally, there is no meaningful communication between

the principal and the agent.

Ignorant mechanism A mechanism that ignores the agent’s report,

x(c, v′) = x(c, v′′) for all v′, v′′ ∈ V ,

is ex-post incentive compatible in the sense that an agent who would learn the cost

realization before reporting to the mechanism is still incentivized to report truthfully.

In practice, such a mechanism can be implemented by a procedure that does not ask

the agent for his valuation at all. The optimal ignorant mechanism is given2 by

x(c, v) = 1 if and only if E[V |C = c] ≥ c.

More surprisingly, there is also no ground for communication when the correlation is

negative.

Theorem 2

If costs and valuation are negatively correlated ( (1), case 1) or independent ( (1), case

2), then it is optimal for the principal to offer an ignorant mechanism. In these cases,

the optimal (ignorant) mechanism is given by a simple cutoff rule:

c = min{c ∈ C | E[V |C = c] ≥ c}.

and

x(c, v) = 1 if and only if c ≤ c.

The proof (in the appendix) introduces a relaxed problem: it disregards all in-

centive constraints for the agent to understate his valuation. For a fixed valuation

report v′ and two cost realizations c′ < c′′, there always exists a modification of the

2The optimal ignorant mechanism is unique except for the allocation probability after cost real-
izations c with E[V |C = c] = c. I assume that in this case, the principal allocates the good.
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allocation schedule for v′, x(v′)→ x̃(v′), that decreases the allocation probability af-

ter the high cost realization c′′, x(v, c′′) ↓, and in turn increases the probability after

the lower cost realization c′, x(v, c′) ↑, such that

E[x̃(v′, C) |V = v′] = E[x(v′, C) |V = v′]

and for all v < v′

E[x̃(v′, C) |V = v] ≤ E[x(v′, C) |V = v].

The existence of this modification follows from the negative correlation (negative

affiliation): an agent with lower valuation v puts relatively more likelihood on the

realizations of high cost than on the realizations of low compared with an agent with

a higher valuation v′. By shifting mass from high costs to low costs, one can keep

the high valuation type indifferent while harming a lower type. The principal strictly

prefers this modification because on average she has to bear lower costs while the

overall probability of allocation to this valuation type remains constant.

Under negative correlation, the interest of the principal and the higher valuation

type v′ are aligned (put mass on low costs) and are distinct from the interest of a

lower type v (put mass on high cost realization).

In the optimal mechanism, any allocation schedule must be in cutoff form. Oth-

erwise it could be improved by a modification of the above form. Finally, the proof

shows that these cutoff allocation schedule are optimally identical for all valuations.

Hence, the optimal (Bayesian) mechanism is ignorant.

3.3 Positive correlation

Under positive correlation, the optimal mechanism offers different allocation schedules

and the agents of different valuations sort themselves by their choice.

Regularity Assumption. To study the optimal mechanisms under positive corre-

lation, I introduce a new regularity assumption on the joint distribution of cost and

valuation. Under positive correlation (positive affiliation) the likelihood ratios (1)

are strictly decreasing in c. The regularity assumption demands that these ratios are

convex decreasing. The next definition formalizes the convexity of a function on a

discrete set.
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Definition 1. A function l on C is strictly convex if for all c′ < c′′ and for all α ∈ (0, 1)

with α · c′ + (1− α) · c′′ ∈ C, l(α · c′ + (1− α) · c′′) < α · l(c′) + (1− α) · l(c′′).

If the set is convex,this definition coincides with the usual definition of convexity.

The regularity assumption reads as follows.

For all v′ < v′′ ∈ V , f(v′, c)

f(v′′, c)
is strictly convex in c. (6)

Jewitt (1988) introduces a similar condition in a moral hazard setting. He assumes

that the increasing function that maps c to

f(v′′, c)

f(v′, c)
=

1
f(v′,c)
f(v′′,c)

is concave. These conditions are very similar; in general, they demand that the

extent of the interference about the valuation decreases with increasing observed costs.

However, the condition used here is weaker than the condition in Jewitt (1988).

Corollary 1

If a function g : R→ R++ is increasing and concave, then the function 1
g

is decreasing

and convex. The reverse implication might not be true.

The proof is in the appendix. The regularity assumption is met by many distri-

butions. I list some of them in Section 4.2.

Next, the optimal mechanism is characterized.

Relaxation. Again, it is sufficient to consider a relaxed problem, where all incentive

constraints that prevent the agent from understating his type are disregarded and only

the upward incentive constraints,

IC(v, v̂) ≥ 0 for v < v̂ ∈ V ,

are considered.

3.3.1 Plateau mechanisms

The first characteristic of the optimal mechanism concerns the form of the allocation

schedules that the principal offers to the agents with different values.
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Definition 2 (Single plateau). Let x be a mechanism and v ∈ V be a valuation. The

allocation schedule x(v) has a single plateau if for all c′ < c′′ < c′′′ ∈ C it holds,

x(v, c′) > 0 and x(v, c′′′) > 0⇒ x(v, c′′) = 1.

A mechanism exhibits single plateaus if for all v ∈ V , the allocation schedule x(v)

has a single plateau.

The support of an allocation schedule with a single plateau is always an interval in

C: it is given by C ∩ [c, c] for some c, c ∈ C. The allocation probability in the interior

of this interval is always 1 and outside the interval is 0. Allocation probabilities

different from {0, 1} are only possible on the boundary of its support. In Section 4.2,

the case of continuously distributed costs is analyzed. In this case the mechanism is

deterministic: the allocation probability is either 0 or 1.

The allocation schedules studied in Section 3.2 allocate whenever the cost is below

a cutoff. These cutoff schedules also have a single plateau. But the plateau is not

interior. Intuitively, an allocation schedule with an interior single plateau allocates the

good for intermediate costs with certainty and for extreme costs with zero probability.

Proposition 1

If costs and valuations are positively correlated ((1), case 3) and the distribution meets

the regularity assumption (6), then the optimal solution to the relaxed problem has

single plateaus.

If an allocation schedule has a single plateau, then the following modification is

not feasible: for some triple c′ < c′′ < c′′′ ∈ C, decrease x(v, c′) ↓ and x(v, c′′′) ↓
while increasing x(v, c′′) ↑. To show that the optimal mechanism has single plateaus,

it sufficies to show that there always exists such a modification that respects the

relaxed incentive constraints while increasing the principal’s expected payoff.
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These shifts resemble the shifts of the payoffs that are used to study risk aversion

(Diamond and Stiglitz (1974)). The formal proof of the Lemma uses a version of

Farkas’ Lemma and is relegated to the appendix.

Instead, I present a related problem which makes the connection to risk preferences

transparent and illustrates how the regularity assumption leads to single plateau

allocation schedules.

Intuition: a related problem with homogeneous beliefs. Suppose there are

two valuations {vL, vH} with vH − c ≥ 0 for all c ∈ C. Let f(v, c) be a twice

differentiable interpolation of f for all c 6∈ C. Before describing the related problem,

I want to emphasize three important features of the setting that is studied in this

paper. (i) Agents of different valuations hold different beliefs about the costs. (ii)

The agent does not bear the costs of the allocation. (iii) The problem is equivalent to

a setting where all the agents of different valuations have the same utility function.

The related problem contrasts the original setting in these three respects: (i)

Agents of different valuations and the principal share a common belief about the

costs. (ii) The agent bears the costs of the allocation. (iii) Agents with different

valuations and the principal differ in their risk preferences with respect to the costs.

Suppose that the following related setting exists: costs are distributed according

to a pdf g. Again, g(c) denotes a twice differenteiable interpolation of g for all c 6∈ C.
There exist twice differentiable and increasing utility functions ũL(−c), ũH(−c), w̃(−c)
for the agent with low valuation vL, the agent with high valuation vH and the prin-

cipal, respectively. uH(−c) describes the utility an agent with valuation vH derives

from receiving the good if the cost realization is c. The utilities are such that the pref-

erences over allocation schedules for vH coincide with the preferences in the original

problem, formally:

ũH(−c) · g(c) = f(vH , c), (7)

ũL(−c) · g(c) = f(vL, c), (8)

w̃(−c) · g(c) = f(vH , c) · (vH − c). (9)

It follows from this equation, that the optimal mechanism in the original setting and

in the related problem coincide. Take any allocation schedule for vH as given. For
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c′ < c′′ < c′′′ ∈ C, consider the following modification of the mechanism:

decreases x(vH , c
′) ↓ and x(vH , c

′′′) ↓, and increase x(vH , c
′′) ↑, (10)

such that the utility for an agent with valuation vH remains constant. When does such

a modification simultaneously increase the principal’s expected utility and decrease

the expected utility of a low valuation agent?

Diamond and Stiglitz (1974) show that this is the case for all such modifications

if a player with utility w̃ is more risk averse than a player with ũH and a player with

ũH is more risk averse than a player with ũL, each in the sense of Arrow-Pratt:

w̃ ≥AP ũH ≥AP ũL.

This is equivalent (see for example Jewitt (1989)) to,

ũ′H(−c)
w̃′(−c)

and
ũ′L(−c)
ũ′H(−c)

are decreasing in c. (11)

In the appendix, I show that (7)–(9) and (11) can only hold together if

∂2

∂2c

(
f(vL, c)

f(vH , c)

)
≥ 0.

In the related problem, the players’ heterogeneity of beliefs is transformed into het-

erogeneity of their risk preferences. The regularity assumption ensures that these

risk preferences can be ordered in a way that makes the modification of the form (10)

simultaneously incentive compatible and worthwhile for the principal. In the optimal

mechanism this modifications must not be feasible. Therefore, it must have single

plateaus.

3.3.2 Plateau-monotone mechanisms

Because V is ordered, one can number its elements.

V = {v0, v1, . . . , vm−1}.

To state the second characteristic of the optimal mechanism—a form of monotonicity—

one needs to introduce a partial order on the set of allocation schedules {x(v) | v ∈ V}.
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Definition 3. Let x be a mechanism. Define the partial order � on {x(v) | v ∈ V}
such that for v′, v′′ ∈ V

x(v′′) � x(v′) :⇔ ∀c′ < c′′ ∈ C : x(v′′, c′) ≥ x(v′, c′)⇒ x(v′′, c′′) ≥ x(v′, c′′),

x(v′, c′′) ≥ x(v′′, c′′)⇒ x(v′, c′) ≥ x(v′′, c′).

Or equivalently,

x(v′′) � x(v′) :⇔ c 7→ x(v′′, c)− x(v′, c) is single-crossing from below.

Define the strict order x(v′′) � x(v′) if x(v′′) � x(v′) and x(v′′) 6= x(v′).

A mechanism is monotone if

v′′ > v′ ⇒ x(v′′) � x(v′)

or equivalently, a mechanism is monotone if x(·, ·) has single-crossing differences from

below.

Proposition 2

If costs and valuations are positively correlated ((1), case 3) and the distribution meets

the regularity assumption (6), then the optimal mechanism in the relaxed problem is

plateau-monotone.

Fix two valuations v′′ > v′ and consider a plateau-monotone mechanism. Denote the

upper and lower bounds of the support of the allocation schedule for v′′ by c′′ and c′′,

respectively. Denote the bounds for v′ respectively as c′ and c′. Then,

c′′ ≥ c′ and c′′ ≥ c′.

19



The plateau of the higher valuation type is shifted to the right.

Proof sketch. The formal proof is in the appendix.

Step 1: It is established, that if x is an optimal mechanism in the relaxed problem,

then the partial order � is total on {x(v) | v ∈ V}. For any pair of v′, v′′ ∈ V either

x(v′) � x(v′′) or x(v′′) � x(v′). Step 2: The following result about the variation

diminishing property of totally positive functions is used:

Lemma (Schoenberg (1930); Karlin (1968))

If a real function function K : V ×C → R is strictly totally positive of order 2 (STP2)

and there are allocation schedules: x(ṽ) � x(v), then for any v′ < v′′ ∈ V it holds∑
c∈C

K(v′, c) · (x(ṽ, c)− x(v, c)) ≥ 0 ⇒
∑
c∈C

K(v′′, c) · (x(ṽ, c)− x(v, c)) > 0,∑
c∈C

K(v′′, c) · (x(ṽ, c)− x(v, c)) ≤ 0 ⇒
∑
c∈C

K(v′, c) · (x(ṽ, c)− x(v, c)) < 0.

Or equivalently, v′ 7→
∑

c∈CK(v′, c) · (x(ṽ, c)− x(v, c)) crosses zero at most once and

then from below.3

When the players compare two allocation schedules x(ṽ) � x(v), they form expec-

tations about the costs C and then evaluate the difference between these two schedules

x(ṽ, C) − x(v, C). The above variation diminishing results ensure that the ranking

over the schedules is monotone in the valuation of the agents: setting K(v, c) = f(v, c)

yields, for example, that if an agent of valuation v′ ranks x(ṽ) over x(v) then an agent

with a higher valuation v′′ > v′ ranks these allocation schedules in the same way.

An analogue monotone comparative static result follows for the principal. Again,

suppose that x(ṽ) � x(v). Setting K(v, c) = f(v, c) · (v − c) yields that if assigning

the allocation x(ṽ) to an agent with valuation v′ yields her a higher expected payoff

than x(v) the same must hold true for an agent with a higher valuation v′′ > v′.

A key step,is to establish that the assumptions of Karlin’s lemma is met. The pdf

f(v, c) is strictly affiliated and strictly positive and therefore strictly totally positive

(STP2). Also, restricted on {(v, c) ∈ V × C | v > c}, the function (v, c) 7→ v − c is

STP2 and so is the productf(v, c) · (v− c). The proof in the appendix shows that all

relevant comparisons between allocations schedules take place in this restricted set.

3 A touching of zero is counted as a crossing.

20



Step 3: Suppose for this proof sketch, that the only relevant incentive constraints are

the local-upward incentive constraints of the form: IC(vk−1, vk) ≥ 0.

If an optimal mechanism was not plateau-monotonic, there would be some k such

that x(vk−1) � x(vk). Consider the following modification: offer vk the allocation

schedule x(vk−1). An agent with vk−1 ranks schedule x(vk−1) over x(vk). Because

x(vk−1) � x(vk), an agent with type vk ranks them in the same way (step 2). The

modification would therefore not violate any of the local-upward incentive constraints.

Hence, this modification cannot be optimal for the principal:

E[(vk − C) · x(vk−1, C) |V = vk] ≤ E[(vk − C) · x(vk, C) |V = vk].

This implies (step 2) that

E[(vk − C) · x(vk−1, C) |V = vk−1] < E[(vk − C) · x(vk, C) |V = vk−1].

However, then the mechanism can not have been optimal in the first place: modifying

it such that it offers vk−1 the allocation schedule x(vk) would be a strict improvement

for the principal and would not violate the incentive constraints.

Theorem 3

If costs and valuations are positively correlated ((1), case 3) and the distribution meets

the regularity assumption (6), then the optimal mechanism has single plateaus and is

plateau-monotone. It fulfills all local-upward incentive constraints with equality, for

all 0 < k < m: ∑
c∈C

f(vk−1, c) · [x(vk−1, c)− x(vk, c)] = 0.

In the relaxed problem, the principal is not restrained by the incentive constraints

that prevent the agent from misrepresenting his valuation as the lowest v0. Therefore,

it cannot be the case that the principal allocates the good to the lowest type at some

cost c′′ but does not allocate with certainty at some lower costs c′ < c′′. If this were

the case, she could profitably shift the allocation probability from c′′ to c′, keeping

the lowest type indifferent. This rules out any interior single plateau as the allocation

schedule for the lowest valuation.

Corollary 2

Under the assumptions of Theorem 3, the allocation schedule for the lowest valuation

21



v0 is always in cutoff form.

x(v0, c) =

1, c < c̃

0, c > c̃
.

3.4 Monotonicity

Proposition 2 establishes that the optimal allocation schedules are plateau ordered.

Of course, the ignorant cutoff mechanisms that are optimal under negative correlation

are also ordered in this sense. However, in general, this monotonicity does not imply

that a higher valuation type receives the good with higher probability. Again, there is

a difference between positive and negative correlation. Under negative correlation, the

expected allocation probabilities in the optimal ignorant mechanism are increasing in

the agent’s valuation. That is because, the function x(c) =
{

1, c ≤ c

0, otherwise
is decreasing on

C. By negative affiliation, E[x(C) |V = v] is therefore increasing in v. If the optimal

mechanism under positive correlation is also ignorant, it must have the cutoff from.
4 However, in this case, the expected allocation probabilities are decreasing in the

agent’s valuation because under positive correlation E[x(C) |V = v] is decreasing in

v.

Example 4 shows that the interim expected allocation probabilities can be de-

creasing under positive affiliation, even if the optimal mechanism screens.

This difference with respect to standard results steams from the fact that the

agents of different valuations hold different beliefs. For v′′ > v′ by incentive compat-

ibility,

E[x(v′′, C) |V = v′′] ≥ E[x(v′, C) |V = v′′]

E[x(v′, C) |V = v′] ≥ E[x(v′′, C) |V = v′],

but because v′ and v′′ do not share the same belief, one cannot compare E[x(v′′, C) |V =

v′′] and E[x(v′, C) |V = v′] with the above equations.

4Otherwise, if the ignorant allocation schedule was interior, it could be shifted to lower costs,
keeping the expected allocation value constant but decreasing the expected allocation costs

22



4 Extensions

4.1 Discrete costs

In Section 2.1, I assumed that the support of the costs is finite. However, the proofs

in the appendix allow the support to be countably infinite. Therefore, the case of

many discrete cost distributions is covered.

Example 1. Suppose that valuations are finite: V = {v0, v1, . . . , vm−1}.
1. Suppose that conditional on the valuation V = vk, the cost C is binomally

distributed with equal number-of-trials parameter n and success probabilities

pk. Formally, f(C = i|V = vk) =
(
n
i

)
·pik ·(1−pk)n−i. The distribution is strictly

positively affiliated if and only if p0 < p1 < · · · < pm−1. Then, for all j < k

the decreasing likelihood ratio,
f(C=i|V=vj)

f(C=i|V=vk)
is also convex in i. Therefore, the

regularity assumption (6) is fulfilled.

2. Suppose that conditional on the valuation V = vk, the cost C is geometrically

distributed with failure probabilities pk. Formally, f(C = i|V = vk) = (1 −
pk)

i · pk. The joint distribution is strictly positively affiliated if and only if

p0 > p1 > · · · > pm−1. Then, the regularity assumption is also fulfilled.

3. Suppose that conditional on the valuation V = vk, the cost C has a Poison

distribution with parameter λk. Formally, f(C = i|V = vk) =
λike
−λk

i!
. The joint

distribution is strictly positively affiliated if and only if λ0 < λ1 < · · · < λm−1.

Then, the regularity assumption is also fulfilled.

4.2 Continuous costs

Here, I assume that the costs are continuously distributed on an interval while the val-

uations remain finitely distributed. Formally, there is a measurable positive function

f(v, c) such that for all B ⊂ R,

P(V = v, C ∈ B) =

∫
B

f(v, c) dc.

I assume that the cost distribution has the same interval as the support for all v, i.e.

there exists an interval C ⊂ R such that for all v ∈ V :

C = {c ∈ R|f(c, v) > 0}.
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Furthermore c 7→ f(v, c) is assumed to be continuous on C for all v ∈ V .

An allocation schedule for a valuation report v is given by a measurable function

x(v) : C → [0, 1], and a mechanism specifies an allocation schedule for all valuations

v ∈ V . I distinguish the same three cases for the likelihood ratios with v′′ > v′

f(c, v′)

f(c, v′′)
.

Of course, manipulations on a set B ⊂ C of measure zero, neither affect the

incentive constraints nor the principal’s expected payoff. Mechanisms that differ only

on a zero measure subset of C are equivalent. The regularity assumption (6) remains

the same.

Theorem 4 1. If costs and valuations are independent or negatively correlated, the

optimal mechanism is equivalent to an ignorant cutoff mechanism of the form

x(v, c) =

1, c ≤ c∗

0, c > c∗
,

for some c ∈ C.

2. If costs and valuations are positively correlated and the regularity assumption (6)

is met, the optimal mechanism is equivalent to a plateau-monotone mechanism

of the form

x(v, c) =

1, c(v) ≤ c ≤ c(v)

0, otherwise
,

with increasing functions c(v) ≤ c(v).

If the costs are continuous, there is always an optimal mechanism that is deter-

ministic.

Example 2. If the distribution of cost and valuation is of an exponential family, i.e.,

f(c|v) = h(c) · eη(v)·T (c)−A(v), then it is strictly positive affiliated if T ′(c) · (η(v′) −
η(v′′)) < 0 for all c and v′ < v′′. The regularity assumption (6) is met if (T ′(c) ·
(η(v′) − η(v′′))2 > T ′′(c) · (η(v′) − η(v′′)) for all c and v′ < v′′. This yields that the

regularity assumption is met if cost and valuation are jointly normally distributed and
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have positive correlation.5 Also, if conditionally on V = vk the cost is exponentially

distributed with parameter λk, then the distribution is positively affiliated if and only

if λ0 > λ1 > · · · > λm−1. In this case, the regularity assumption is also met.

Optimal ignorant mechanism. Under negative correlation or independence, the

optimal ignorant mechanism was a simple cutoff rule. Despite the regularity assump-

tion, the optimal ignorant mechanisms under positive affiliation can be quite irregular.

For sets C ′, C ′′ ⊂ C define C ′ ≤ C ′′ if for all c′ ∈ C ′ and c′′ ∈ C ′′: c′ ≤ c′′. An ignorant

mechanism x(v, c) = x(c) has a hole if there exist sets C ′ ≤ C ′′ ≤ C ′′′ ⊂ C of positive

measure such that x(c) > 0 for all c ∈ C ′ ∪C ′′′ and x(c) = 0 for all c ∈ C ′′. The holes

of a mechanism are counted in the following way:

sup{k ∈ N | ∃C1 ≤ B1 ≤ C2 ≤ B2 ≤ · · · ≤ Ck+1 : c ∈ Ci : x(c) = 0&c ∈ Bi : x(c) > 0}.

Lemma 1

For any k ∈ N ∪ {∞}, there exists a positively correlated (Item 3) joint distribution

that meets the regularity assumption such that the optimal ignorant mechanism x(c)

has k holes.

Under negative correlation, E[V |C = c] is decreasing in c. Therefore, E[V |C = c]−
c is also decreasing, and the optimal ignorant mechanism is always in the cutoff form.

Under positive correlation, E[V |C = c] is increasing and therefore E[V |C = c]− c can

cross zero infinitely many times. The proof (in the appendix) of Lemma 1 constructs

such an example.

An optimal mechanism is in plateau form and therefore has no holes. The reg-

ularity assumption separately guarantees the plateau form of all single allocation

schedules. However, the ignorant mechanism consists of one allocation schedule for

all v. The separate regularity of the single optimal schedules does not aggregate to

the regularity of the single optimal schedule for the ignorant mechanism. Finally

if the optimal ignorant mechanism is irregular, it can be strictly improved, by an

non-ignorant mechanism.

Corollary 3

If the optimal ignorant mechanism under positive affiliation has a hole, then the op-

timal mechanism is not ignorant.
5 Of course this paper does not cover this case, since I assume that valuation types are finite
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4.3 Binary values

When V = {vL < vH} and the costs are continuously distributed on an interval

C = [a, b) with a ∈ R and b ∈ R∪ {∞}, the optimal mechanism can be pinned down.

With binary values, there is only one likelihood ratio of interest:

l(c) =
f(vL, c)

f(vH , c)
.

As a convex function, l is almost surely differentiable.

Proposition 3

When costs and valuations are positively affiliated and [vL, vH ] ⊂ C, then either:

1. The optimal mechanism is ignorant and of a cutoff form:

x(v, c) = x(c) =

1, c ≤ c

0, otherwise
.

In this case, c ∈ C is the unique solution to

c ∈ [vL, vH ] :
f(vL, c)

f(vH , c)
=
vH − c
c− vL

. (12)

2. The optimal mechanism is not ignorant and of the following form:

x(vL, c) =

1, c ≤ cL

0, otherwise
, x(vH , c) =

1, cH ≤ c ≤ cH

0, otherwise
.

In this case, a < cH ≤ cH and cL < cH are the unique solution to:

l(cH) =
vH − cH
cL − vL

(13)

l(cH) =
vH − cH
cL − vL

(14)

F (cL|V = vL) = F (cH |V = vL)− FL(cH |V = vL). (15)

Remark 5. The system (12) always has a solution. If it is not unique then the

optimal ignorant mechanism has holes and by Corollary 3, the optimal mechanism

is not ignorant. Then case 2 applies. Only if the solution is unique the optimal
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mechanism can be ignorant.

The system (13)–(15) has at most one solution. If it has no solution then the

optimal mechanism is ignorant. If both (12) and (13)–(15) have a unique solution,

then they are the two candidates for the optimal mechanism. It cannot be the case

that simultaneously (12) is not unique and (13)–(15) do not have a solution.

When monetary transfers are feasible, any form of correlation can be exploited.

Without transfers, negative correlation is not used to screen the agent. The next

result shows that under positive correlation, the degree of correlation must exceed a

certain threshold at the lowest cost.

Lemma 2

Suppose that l′ is continuous at a. If

−l′(a)

l(a)
<

1

vH
,

then the optimal mechanism is ignorant.

Example 3. If f(c|V = vω) = λωe
−λω ·c for ω ∈ {L,H} and λL > λH , the condition

from Lemma 2 translates to λL − λH < 1
vH

.

The characterizations of this section can be used to efficiently calculate numerical

examples:

Example 4. f(c, V = vω) = 1
2
· λωe−λω ·c for ω ∈ {L,H} with λL = 1, λH = 1/5

and vH = 5, vL = 0. The optimal mechanism screens. It is given by cL = 1.22

and (cH , cH) = (0.34, 4.88). The optimal ignorant mechanism has: c = 4.32. It

is worth noticing that the lower type has a higher expected allocation probability:

E[x(vL, C) |V = vL] = .71 > E[x(vH , C) |V = vH ] = 0.56.

4.4 General allocation values

The principal’s value from the allocation can be generalized from v − c to

w(x, v, c) = x · z(v, c)

with z increasing in v and decreasing in c. Under negative correlation or independence

the same results go through.
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Theorem 6

If costs and valuations are negatively correlated ((1), case 1) or independent ((1), case

2), then it is optimal for the principal to offer an ignorant mechanism. In these cases,

the optimal (ignorant) mechanism is given by a simple cutoff rule:

c = min{c ∈ C | E[z(V, c) |C = c] ≥ c}.

and

x(c, v) = 1 if and only if c ≤ c.

For the case of positive correlation, the regularity assumption generalizes to the

following: for all v′ < v′′ ∈ V and all c′ < c′′ < c′′′ ∈ C,

f(v′,c′′)
f(v′′,c′)

− f(v′,c′)
f(v′′,c′′)

f(v′,c′′)
f(v′′,c′′)

− f(v′,c′′′)
f(v′′,c′′′)

≥ z(v′′, c′)− z(v′′, c′′)

z(v′′, c′′)− z(v′′, c′′′)
. (16)

It demands that the decreasing likelihood ratio (on the left hand side) must be more

convex than the allocation value of the principal (on the right hand side). This

regularity assumption ensures the plateau form of the optimal mechanism in the

relaxed problem. To establish that the optimal mechanism is plateau-monotone, it

must be the case that z is log-supermodular on {(v, c) | z(v, c) > 0}, formally for all

v′′ > v′ and c′′ > c′,

if z(v′, c′′) > 0: z(v′′, c′′) · z(v′, c′) > z(v′′, c′) · z(v′, c′′).

Theorem 7

Under positive correlation ((1), case 3), if the generalized regularity assumption is

fulfilled and z is log-supermodular where it is positive, then the optimal mechanism

has single plateaus and is monotone. It fulfills all local-upward incentive constraints

with equality.
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5 Applications

5.1 Intra-firm allocation

A new computer model is about to enter the market. The management of a company

has to decide whether it should buy the new computer. Before the market opens,

the research department privately learns the value that the computer could generate

for the company. The management wants to buy whenever the value exceeds the

purchasing price; the research department wants to have the computer in any case.

Before the competitive market price realizes, the management can communicate with

the research department and commit to a demand schedule in the upcoming com-

petitive market. Can the management use future market information to counter the

internal information asymmetry?

Suppose that the correlation between market price and valuation stems from an

unobservable quality factor q ∈ [0, 1] with strictly positive density h(q). At t = 0,

the quality realizes and the research department learns the value for the firm. The

value is either low or high: v ∈ {vL < vH}. Let f(v | q) denote the probability that

valuation is v ∈ {vL, vH} if the quality level is q. Suppose that l(q) = f(vL | q)
f(vH | q)

is

twice differentiable and strictly decreasing. High quality indicates higher values. At

t = 1, a competitive market for the computer opens. The management learns the

rational expectation equilibrium price and can buy the computer at this price. The

market is abstractly modeled as an equilibrium price function, which defines for any

quality level q a price p(q). Suppose that the price is strictly increasing in the quality.

Defining the costs as c = p(q) puts this in the positive correlation case. The regularity

assumption then translates to l(p−1(p)) being convex; this is the case if

− l
′′

l′
> −p

′′

p′
. (17)

By assumption, l′ < 0 and p′ > 0. This condition is most easily fulfilled when the

price is a convex increasing function of the quality or if the price is linear and l is

convex. The price must react faster to an increase in quality than the value for the

firm.

If the condition is met and the optimal mechanism involves screening, the man-

agement’s demand schedule in the market is not monotone. Suppose the research

department reports that the value of the computer is high. Then, the management
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will buy for intermediate prices and will not buy if the price is too low or too high.

5.2 Task delegation

The state wants to open a new hospital in a city. She has to decide if she wants

to operate the hospital on her own or wants to delegate the operation to the city.

Both the state and the city privately know what benefit for the society they would

create as operators of the hospital. Denote the state’s value by vP and the city’s value

by vA. These values are positively correlated: whenever the state can create a high

value, it is more likely that the city could also create a high value. The state wants to

delegate the operation to whoever creates the highest social value. The city wants to

have control over the hospital in any case. If the state decides to delegate to the city,

she forgoes the social value that she could create. This opportunity cost c = −vP
represents her costs of allocation, whereas the social value that can the city can create

is the value of the allocation: v = vA. v and c are positively correlated, therefore the

optimal mechanism might screen. If there is any screening then x(supV , inf C) < 1.

The state has to commit that she will not delegate when the city reports the highest

possible value while she predicts the lowest possible value. Such a decision might be

difficult to publicly defend. This advocates for an intransparent procedure, where the

reported values are not part of the public record.

The next numerical example illustrates the effect of screening on the value of

correlation.

Numerical example: value of correlation. Suppose that the state can build

the hospital in one of two cities. After she builds the hospital, her and the city’s

operation value realize and she has to decide who operates it.

Both cities are with probability 1/2 good operators of the hospital and would

create a social value of v1H = v2H = 5 and with probability 1/2 bad operators creating

zero value. The states ability differs in the two cities. In the first city, her value is

exponentially distributed with parameter λ1H = 1/4 if the city itself is a good operator

and with parameter λ1L = 1/2 when the city is a bad operator. In the second city, the

respective parameters are λ1H = 1/5 and λ1L = 1. The unconditional expectation of

the state’s operation value is the same in both cities. However, the degree of positive

correlation is higher in city 2.
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Without asymmetric information, the principal would prefer to build the hospital

in city 1. If she could observe the realization of the city’s operation value, she would

implement the efficient allocation. This would yield her 2.146 for city 1 and 1.839 for

city 2. With more positive correlation, if one of the two values is low, it is likelier that

the other value is also low. In this sense, negative correlation serves as an insurance

against low values.

The state’s choice changes when she takes the asymmetric information into ac-

count. Now she prefers to build the hospital in city 2. The optimal mechanism in

city 1 is ignorant. It allocates whenever vP > 2.376. This yields the state 0.546. The

extent of the positive correlation is not sufficient to screen out the city’s type. In

city 2, the positive correlation is sufficiently strong. The optimal mechanism screens

the agent: When the city reports v2L, the state lets her operate the hospital whenever

vP < 1.222. when the city reports v2H , the principal lets her operate the hospital if

vp ∈ (0.338261, 4.87646). This yields her 0.5887 > 0.546.

5.3 Self-regulation

A firm seeks a regulator’s approval for a new product. There are two aspects, a1anda2,

that are positively correlated and jointly determine the probability that the product

is not faulty p(a1, a2). The probability increases in both aspects. An example could

be the approval of a new airplane model. If the regulator approves and the product

turns out to not be faulty a social benefit B > 0 is created. If the regulator approves

and the product is faulty, a social loss L > 0 occurs. The expected social benefit from

approving reads as follows.

p(a1, a2) ·B − (1− p(a1, a2)) · L.

If the product is not approved, the effect on social welfare is independent of whether

the product is faulty or not and normalized to zero.

It is a long-standing practice that regulators delegate parts of the certification

process to the producers of the product. In the case of airplanes, the Search Results

Web result with site links Federal Aviation Administration (FAA) fostered this de-

velopment with their ”Organizational Designation Authorization” program in 2005.6

The extend of the delegation is substantial; the Transportation Departments Inspec-

6see Federal Aviation Administration (2005).
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tor General (2005) reported, ”One aircraft manufacturer approved about 90 percent

of the design decisions for all of its own aircraft.”

The regulators argue that the delegation increases the efficiency of the process

whilst ensuring its safety.7

To analyze this claim, suppose that the regulator delegates the certification of the

first aspect to the producer and bases her decision on the reports from the producer

and her own investigation of the second aspect. Setting

w(x, v, c) = x · (p(v,−c) ·B − (1− p(v,−c)) · L)

as the principal’s objective translates the positive correlation between the aspects, a1

and a2, into negative correlation between valuation v = a1 and costs c = −a1. The

optimal mechanism therefore ignores the producer’s report about the first aspect and

bases the decision solely on the regulator’s own findings. Delegation of an aspect

implies that it is ignored it for the assessment of the safety of the product.

6 Conclusion

I study the bilateral trade setting with correlated information when monetary trans-

fers are not feasible and characterize the welfare maximizing mechanism. This mecha-

nism uses positive correlation to screen the agent; whereas under negative correlation,

the optimal mechanism does not elicit the agent’s valuation. My characterization

of the optimal mechanism has interesting consequences for applications. Screening

makes it necessary to forgo the highest gains from allocation. Also, the optimal mech-

anism may not allocate to higher valuation-types with higher probability. I introduce

a novel regularity assumption that ensures an interval form of the optimal mecha-

nism. The possibility of using positive correlation for screening opens interesting new

directions of future research. My characterization is the first step toward analyzing

a richer setting in which the principal endogenously chooses the degree of positive

correlation.

7See, for example, the testimony of the FAA’s acting administrator Daniel K. Elwell (2019) in a
senate hearing on the Boeing 737 Max crashes.
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A Proofs

All the proofs in this section are for the more general case of allocation values of the

form w(x, v, c) = x · z(v, c) with

• z(v, c) is increasing in v and decreasing in c.

• z(v, c) is log-supermodular on {(v, c) | z(v, c) > 0}.
This generalization is introduced in Section 4.4. The allocation value z(v, c) = v − c
is of this form, since

∂v∂c log(v − c) =
1

(v − c)2
≥ 0.

As V , C are assumed to be discrete and ordered one can number its elements:

V = {v0, v1, . . . , vm−1}, C = {c0, c1, . . . , cn−1}.

The support of C can be countably infinite, then n =∞.

Notation For two vectors a, b ∈ Rn let a · b denote their standard inner product.8

Let a ◦ b denote the vector of their element-wise products.

If there were monetary transfers

Independence and negative correlation

Proof of Theorem 2.

Take any incentive compatible mechanism x. If it is not ignorant and in cutoff form I

construct a modification of this mechanism that yields the principal a higher expected

utility while keeping the incentive constraints satisfied.

step 0: (Relaxation)

In a relaxation of the problem the designer maximizes the same objective but disre-

gards the incentive constraints for the agent not to report a lower type. The only

incentive constraints which a solution of the relaxed problem has to respect are:

∀v < v̂ : IC(v, v̂)

8If n = 1 than this denotes the standard product of two real numbers.
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step 1: For all v there exists a cutoff c(v) such that x(v, c) =
1, c < c(v)

0, c > c(v)
.

Suppose there exists v′′ and c′ < c′′ with x(v′′, c′) < 1 and x(v′′, c′′) > 0. Consider the

following modification of the mechanism:

• allocate with probability x(v′′, c′) + dx(v′′, c′) after (v′′, c′)

• and with x(v′′, c′′) + dx(v′′, c′′) after (v′′, c′′),

with

dx(v′′, c′′) = − f(v′′, c′)

f(v′′, c′′)
· dx(v′′, c′)

and dx(v′′, c′) > 0 small enough such that: x(v′′, c′) + dx(v′′, c′) ≤ 1 and x(v′′, c′′) +

dx(v′′, c′) ≥ 0. It follows that

f(v′′, c′) · dx(v′′, c′) + f(v′′, c′′) · dx(v′′, c′′) = 0,

i.e. the probability of allocation for type v′ (if he reports truthfully) remains the same

in the modified mechanism. Since the allocation probability for all reports v′′′ > v′′

were not modified, v′′ has no new incentives to report a higher type. The principal’s

expected value increases:

f(v′′, c′) · dx(v′′, c′) · (−c′) + f(v′′, c′′) · dx(v′′, c′′) · (−c′′) = f(v′′, c′) · (c′′ − c′) > 0.

Furthermore for any v′ ≤ v′′,

f(v′, c′)·dx(v′′, c′)+f(v′, c′′)·dx(v′′, c′′) = dx(v′′, c′)·f(v′, c′′)·
(
f(v′, c′)

f(v′, c′′)
− f(v′′, c′)

f(v′′, c′′)

)
≤ 0,

i.e. for lower types misreporting their type as v′′ becomes less attractive. Since the

original mechanism was assumed to be incentive compatible in the relaxed problem,

it follows that the modified mechanism remains compatible to the relaxed problem.

We set c(v) such that9

x(v, c) =


1, c < bc(v)c

c(v)− bc(v)c, c = bc(v)c

0, c > c(v)

.

9If c(v) = 3.7 the corresponding allocation is given by x(v, ·) = (1, 1, 1, 0.7, 0, · · · ). If c(v) = 3 the
allocation is x(v, ·) = (1, 1, 0, 0, · · · )
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step 2: There exists x : C → [0, 1] with x(v, c) = x(c) for all v.

First, it can be ruled out that there exists v′ < v′′ such that c(v′) < c(v′′) since this

would violated IC(v′, v′′). Suppose next, there exists v′ < v′′ such that c(v′) > c(v′′).

Define

v′ = sup{v ∈ V | ∃v′′ > c : c(v) > c(v′′)}, (18)

v′′ = inf{v ∈ V | v > v′, c(v) < c(v′)}. (19)

Suppose there was v ∈ V with v′ < v < v′′. From v < v′′ it follows that c(v) ≥ c(v′)

and from v > v′ that c(v) ≤ c(v′′). Together this yields a contradiction to the

assumption that c(v′) > c(v′′). Therefore v′ and v′′ must be successors. This entails

that all of v′ incentive constraints in the relaxed problem must slack: c(v′) > c(v′′) ≥
c(v′′′) for all v′′′ ≥ v′′. If the mechanism is optimal in the relaxed problem, it must

be the case that w(v′, bc(v′)c) ≥ 0. As w(·, ·) is increasing in the first component and

decreasing in the second, it follows that w(v′′, c) ≥ 0 for all c ≥ bc(v)c.
step 3: By step 2 we can assume that the optimal mechanism is ignorant. Since

any ignorant mechanism is incentive compatible, the optimal ignorant mechanism is

a solution to the relaxed and to the original problem.

Positive correlation

Proof of Corollary 1.

Suppose g(c) is concave. For all c′ < c′′ and for all rational α ∈ (0, 1) ∩Q we have

1

g(α · c′ + (1− α) · c′′)
≤ 1

α · g(c′) + (1− α) · g(c′′)

Since α was assumed to .be rational there are natural numbers j < n ∈ N such that

α = j
n
. But then it follows that

n

j · g(c′) + (n− j) · g(c′′)
≤ j

n
· 1

g(c′)
+
n− j
n
· 1

g(c′′)
,

since the arithmetic mean exceeds the harmonic mean. For α ∈ (0, 1) not rational,

it can be expressed as limit of rational αs, and the result follows as a limit. Note

that as g is assumed to be concave it must be continuous on all interior points of its

support. Since α ∈ (0, 1) the point α · c′ + (1 − α)c′′ is always in the interior of the
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support.

To see that the reverse might not be true consider the function c 7→ 2−
√
c on (0, 1)

it is strictly convex but c 7→ 1
2−
√
c

is not concave on (0, 1).

The next result gives an equivalent characterization fo convexity for a decreas-

ing function. It both applies when the function is defined on a interval and when

the function is defined on a discrete set and convexity is discrete convexity. (See

Definition 1)

Corollary 4

A real decreasing function g defined on some set I ⊂ R is strictly convex iff ∀c′ <
c′′ < c′′′ ∈ I :

(g(c′)− g(c′′)) · (c′′ − c′) > (g(c′′)− g(c′′′)) · (c′′′ − c′′).

Proof. For α = c′′′−c′′
c′′′−c′ it holds that c′′ = α · c′ + (1 − α) · c′′′. Plugging this into the

definitions yields the result.

This corollary shows that if z(v, c) = v − c as in the main body, the generalized

formulation of the regularity assumption (16) coincides with convexity of the liklihood

ratios. Now, we are all set for the proof of Theorem 3. The proof proceeds in several

steps. First I show that all the allocation schedules of the optimal mechanism in the

relaxed problems have single plateaus.

Proof of Proposition 1.

Suppose the allocation schedule for vj, x(vj), was not having a single plateau. This

means that there exists c′ < c′′ < c′′′ with x(vj, c
′) > 0, x(vj, c

′′) = 0 and x(vj, c
′′′) > 0.

The remainder shows that under the regularity assumption there exists a modification

of the mechanism, given by

x̃(v, c) =

x(v, c) + dx(v, c), if v = vj and c ∈ {c′, c′′, c′′′}

x(v, c), otherwise
, (20)

with dx(vj, c
′) < 0, dx(vj, c

′′′) < 0 and dx(vj, c
′′′) > 0. This proof uses a form of

Farkas’ Lemma (Farkas’ Alternative) which I restate here:

Lemma (Farkas’ )

Suppose that A ∈ Rk,l, b ∈ Rl then exactly one of these two alternatives is true:
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1. ∃p ∈ Rl with

• Ap ≥ 0.

• p · b < 0.

• p > 0 :⇔ p ≥ 0 ∧ p 6= 0.

2. ∃y ∈ Rk with

• y′A ≤ b.

• y ≥ 0.

A proof for this version of Farkas’ Lemma can be found in Gyula Farkas’ original

paper, Farkas (1902). The above formulation is taken from Border (2013), Corollary

11. Setting

A =


f(v0, c

′) −f(v0, c
′′) f(v0, c

′′′)
... −...

...

f(vj−1, c
′) −f(vj−1, c

′′) f(vj−1, c
′′′)

−f(vj, c
′) f(vj, c

′′) −f(vj, c
′′′)

 ∈ Rj+1×3, b =

 z(v′, c′) · f(v′, c′)

−z(v′, c′′) · f(v′, c′′)

z(v′, c′′′) · f(v′, c′′′)



establishes equivalence between alternative 1 and the existence of a feasible, strictly

profitable deviation of the form (20), which is then given bydx(vj, c
′)

dx(vj, c
′)

dx(vj, c
′)

 :=

−p1p2

−p3

 .

The last entry of Ap ≥ 0 guaranties that all incentive constraints, IC(vj, v
′′) ≥ 0

for v′ ≥ vj are fulfilled in the modified mechanism. The other entries ensure that

IC(v′, vj) ≥ 0 for all v′ ≤ vj. No other incentive constraints in the relaxed are

affected by the modification. Therefore the modified mechanism is also incentive

compatible. Furthermore, 0 > b · p = ensures strict profitability.

To conclude the proof one needs only to rule out alternative 2 under the regularity

assumption. Suppose alternative 2 was true, then ∃y ∈ Rj+1
+ such that y′A ≤ b. This

implies, that

yj + z(vj, c
′) ≥

j−1∑
i=0

f(vi, c
′)

f(vj, c′)
yi (21)
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yj + z(vj, c
′′) ≤

j−1∑
i=0

f(vi, c
′′)

f(vj, c′′)
yi (22)

yj + z(vj, c
′′′) ≥

j−1∑
i=0

f(vi, c
′′′)

f(vj, c′′′)
yi (23)

(21)− (22) yields:

z(vj, c
′)− z(vj, c

′′) ≥
j−1∑
i=0

yi ·
(
f(vi, c

′′)

f(vj, c′)
− f(vi, c

′)

f(vj, c′′)

)
(24)

(23)− (22) yields:

z(vj, c
′′′)− z(vj, c

′′) ≥
j−1∑
i=0

yi ·
(
f(vi, c

′′′)

f(vj, c′′′)
− f(vi, c

′′)

f(vj, c′′)

)
(25)

⇔ z(vj, c
′′)− z(vj, c

′′′) ≤
j−1∑
i=0

yi ·
(
f(vi, c

′′)

f(vj, c′′)
− f(vi, c

′′′)

f(vj, c′′′)

)
(26)

Note that by affiliation of the distribution and since z(vj, c) is decreasing c, all terms

of the sum in (24) and (26) are positive.

Therefore (24) / (26) yields:

z(vj, c
′)− z(vj, c

′′)

z(vj, c′′)− z(vj, c′′′)
≥

∑j−1
i=0 yi ·

(
f(vi,c

′′)
f(vj ,c′)

− f(vi,c
′)

f(vj ,c′′)

)
∑j−1

i=0 yi ·
(
f(vi,c′′)
f(vj ,c′′)

− f(vi,c′′′)
f(vj ,c′′′)

) (27)

⇔
j−1∑
i=0

yi · (z(vj, c
′)− z(vj, c

′′)) ·
(
f(vi, c

′′)

f(vj, c′′)
− f(vi, c

′′′)

f(vj, c′′′)

)
(28)

≥
j−1∑
i=0

yi · (z(vj, c
′′)− z(vj, c

′′′) ·
(
f(vi, c

′′)

f(vj, c′)
− f(vi, c

′)

f(vj, c′′)

)
(29)

But by the regularity assumption and since yi ≥ 0 it holds ∀i ∈ {1, . . . , j − 1}:

yi · (z(vj, c
′)− z(vj, c

′′)) ·
(
f(vi, c

′′)

f(vj, c′′)
− f(vi, c

′′′)

f(vj, c′′′)

)
(30)

≤ yi · (z(vj, c
′′)− z(vj, c

′′′) ·
(
f(vi, c

′′)

f(vj, c′)
− f(vi, c

′)

f(vj, c′′)

)
(31)
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Finally suppose that ∀i ∈ {1, . . . j − 1} : yi = 0. Then (26) would imply that,

z(vj, c
′′)−z(vj, c

′′′) ≤ 0. Contradiction since z(vj, c) is assumed to be strictly decreas-

ing!

So we can assume that the above equation (31) holds strictly for at most one i ∈
{1, . . . j − 1} contradicting therefore (29). Thus, alternative 2 can be ruled out.

To proof monotonicity the following Lemma is used:

Lemma 3. Suppose plateau allocation rules x′′, x′ : C → [0, 1] are strictly ordered:

x′′ � x′. If there is v ∈ V with

f(v) · (x′′ − x′) = 0

then it must hold that

f(v) ◦ w(v, c) · (x′′ − x′) < 0

Proof. Define

C ′′ = {c ∈ C |x′′(c)− x′(c) > 0}, C ′ = {c ∈ C |x′′(c)− x′(c) < 0.

As the allocation rules are in plateau form an ordered there exists c∗ ∈ C with

∀c′′ ∈ C ′′ ∀c′ ∈ C′ : c′ ≤ c∗ ≤ c′′.

As w(v, ·) is strictly increasing it follows that

∑
cinC′′

f(v, c) · w(v, c) · (x′′(c)− x′(c)) ≤ w(v, c∗) ·

(∑
c∈C′′

f(v, c) · (x′′(c)− x′(c))

)

= w(v, c∗) ·

(∑
c∈C′

f(v, c) · (x′′(c)− x′(c))

)
≤
∑
c∈C′

f(v, c) · w(v, c) · (x′′(c)− x′(c)).

As x′′ � x′ at least one of the two inequalities must be strict.

I also use the following result about totally positive kernels and adapt its formu-

lation to my setting:
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Lemma 4 (Schoenberg (1930); Karlin (1968)). If a real function function K : V×C →
R is strictly totally positive of order 2 (STP2) and there are allocation schedules:

x(ṽ) � x(v) then for any v′ < v′′ ∈ V it holds∑
c∈C

K(v′, c) · (x(ṽ, c)− x(v, c)) ≥ 0 ⇒
∑
c∈C

K(v′′, c) · (x(ṽ, c)− x(v, c)) > 0,∑
c∈C

K(v′′, c) · (x(ṽ, c)− x(v, c)) ≤ 0 ⇒
∑
c∈C

K(v′, c) · (x(ṽ, c)− x(v, c)) < 0.

Or equivalently, v′ 7→
∑

c∈CK(v′, c) · (x(ṽ, c)− x(v, c)) crosses zero at most once and

then from below.10

A proof can be found in Karlin (1968). Setting K(v′, c) = f(v′, c) or K(v′, c′ =

f(v′, c) · z(v, c)

Proof of Proposition 2.

Let x be a solution to the relaxed problem. With Proposition 1 we can assume that

the mechanism is in plateau form. Let

k = min{0 < i < m |x(vi) � x(vi−1)}

If k = 1, the mechanism is plateau monotone. Otherwise we have ¬[x(vk) �
x(vk−1)]. This means

¬[c(vk) ≥ c(vk−1) and c(vk) ≥ c(vk−1)].

One has to to distinguish three cases:

1. c(vk) ≤ c(vk−1) and c(vk) ≥ c(vk−1) with at least one inequality strict. This

case can be ruled out immediately, since if this were the case, then

f(vk−1) · x(vk−1) < f(vk−1) · x(vk),

which would be a violation of IC(vk−1, vk).

2. c(vk) > c(vk−1) and c(vk) ≤ c(vk−1) with at least one inequality strict.

For all j < k it holds,

f(vj) · x(vj) ≥ f(vj) · x(k−1) > f(vj) · x(vk).

10 A touching of zero is counted as a crossing.
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Since j ≤ k − 1, the first inequality follows from incentive compatibility. The

second strict inequality follows from the initial assumption about xk and xk−1.

As a consequence, all incentive constraints IC(vj, v,k ) for j < k slack. This

could have only been optimal if for all c ≤ bck−1c it was the case that w(vk, c) ≤
0. But then as w is strictly increasing in v it follows that w(vk−1, v) < 0 for all

c ≤ bck−1c. But this is a contradiction since, for all l ≥ k it holds:

f(vk−1) · x(vk − 1) > f(vk−1) · x(vk) ≥ f(vk−1) · x(vl).

The first inequality is again by the initial assumption and the second follows

since xl � xk. This means that all incentive constraints IC(vk−1, vl) for l > k−1

slack. So the choice of xk−1 could not have been optimal in the first place.

3. c(vk) ≤ c(vk−1) and c(vk) ≥ c(vk−1) with at least one inequality strict.

step 1: Define the upper end of the support of x(vk−1) as c, i.e. c = dc(vk−1)−
1e. In this step I show that: w(vk−1, c) > 0.

First suppose that w(vk−1, ) ≤ 0. If

f(vk−1) · x(vk−1) = f(vk−1) · x(vk)

then allocating the good after vk−1 according to allocation rule x(vk) instead of

x(vk−1) does not generate new profitable deviations. But since x(vk) � x(vk−1

it would strictly improve the principals expected utility (Lemma 3). We can

therefore assume that IC(vk−1, vk) > 0. But since for all l ≥ k

f(vk) · x(vk) ≥ f(vk) · x(vl)⇒ f(vk−1) · x(vk) ≥ f(vk−1) · x(vl),

it follows that IC(vk−1, vj) > 0. Since there are only finitely many types there

is ε > 0 such that IC(vk−1, vl) ≥ ε ,i.e. vk−1 incentive constraints slack uni-

formly. This result directly in a contradiction if w(vk−1, c) < 0 since then

x(vk−1, dc(vk−1)−1e) could be lowered to increase the principals expected payoff.

If w(vk−1, c) = 0 then x(vk−1, c) could still be lowered until either IC(vk−1, vk)

binds or if the incentives still slack with x(vk−1, c) = 0 one could proceed and

lower x(v, c−). In the former case, one could now improve the principals payoff

by allocating the good after vk−1 according to allocation rule x(vk) instead of

the modified x(vk−1).
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step 2: Consider the following modification of the mechanism: after vk allo-

cate according to x(vk−1) instead of x(vk). This change does not introduce new

profitable deviations since,

f(vk−1) · x(vk−1) ≥ f(vk−1) · x(vk)⇒ f(vk) · x(vk−1) ≥ f(vk) · x(vk).

Therefore, this modification cannot yield a higher expected value for the prin-

cipal:

f(vk) ◦ w(vk) · x(vk−1) ≤ f(vk) ◦ w(vk) · x(vk)

It follows by Lemma 4 and since w(vk−1, c) > 0 that

f(vk−1) ◦ z(vk−1) · x(vk−1) < f(vk−1) ◦ z(vk−1) · x(vk)

For any α ∈ (0, 1) it would be strictly profitable to modify the mechanism in the

following way: after vk−1 allocate according to αx(vk) + (1− α)x(vk−1) instead

of x(vk−1). It must therefore be the case that any such modification would

violate the incentive constraints. This can only be the case if there is a binding

incentive constraint for vk−1, i.e. there exists l ≥ k such that

f(vk−1) · x(vk−1) = f(vk−1) · x(vl).

and x(vl) � x(vk). Otherwise — if x(vl) = x(vk) — there would be no incentive

violation in the modified mechanism.

As IC(vk−1, vk) ≥ 0, it follows that

f(vk−1) · x(vl) ≥ f(vk−1) · x(vk).

But since x(vl) � x(vk) it follows that l > k and

f(vk) · x(vl) > f(vk) · x(vk),

a contradiction to IC(vk, vl) ≥ 0.

Lemma 5. In the optimal solution to the relaxed problem all local incentive con-
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straints are binding. That is for all 0 < k < m IC(vk−1, vk) = 0, i.e.

f(vk−1) · x(vk−1) = f(vk−1) · x(vk − 1).

Proof. Suppose there was some k with IC(vk−1, vk) > 0. It cannot be the case that

xk = xk−1. Therefore xk � xk−1. By Lemma 4 it follows for all j < k that

f(vj) · x(vk−1) > f(vj) · x(vk)

For all j < k the relaxed incentive compatibility implies

f(vj) · x(vj) ≥ f(vj) · x(vk),

it follows that for all j < k the incentive constraints slack, IC(vj, vk) > 0. As

x(vk) � x(vj) and f(vk−1) · x(vk−1) > f(vk−1) · x(vk), it must be the case that

x(vk, c0) < 1. Choose u = max{i : 0 < i < n, x(vk, ci) > 0}. Since all incentive

constraints slack one can freely shift mass from x(vk, cu) ↓ to x(vk, c0) ↑ at a rate that

keeps vk’s expected allocation probability constant,

dx(vk, c0) · f(vk, c0) = −dx(vk, cu) · f(vk, cu),

by Lemma 3 this modification would strictly improve the principal’s expected utility.

Contradiction.

Lemma 6. The plateau-monotonic solution to the relaxed problem is a solution to

the original problem.

Proof. Let x be the plateau-monotonic solution to the relaxed problem. Suppose

that x was not a solution to the original problem. This means that a high type has

incentive to misrepresent himself as a lower type. Set

k = min{l ∈ N | 0 < l < m, ∃j < l with f(vl) · x(vl) < f(vl) · x(vj)}.

It follows that x(vk) � x(vj). By Lemma 5 it holds that,

f(vk−1) · x(vk) = x(vk−1).
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By Lemma 4 an since x(vk) � x(vk−1) (monotonicity) it follows that

f(vk−1) · x(vk) = x(vk−1).

One can deduce that k − 1 > j. Therefore, since x is monotone: x(vk−1) � x(vj).

k was chosen minimally, therefore:

f(vk−1) · x(vk−1) ≥ f(vk−1) · x(vj).

But then again by Lemma 4 it follows that,

.f(vk) · x(vk−1) ≥ f(vk) · x(vj).

Contradicting, the initial assumption that IC(VK , vj) < 0.

Taking all these results together proofs Theorem 3.

Continuous Costs

Lemma 7 (Lemma 1). For any k ∈ N∪ {∞} there exists a positively affiliated joint

distribution that fulfills the regularity assumption (R) such that the optimal ignorant

mechanism x(c) has k holes.

Proof. Suppose that there are only two valuations vL < vH . The optimal ignorant

mechanism reads:

x(c) =

1, E[V |C = c] > c

0, E[V |C = c] < c
.

For c ∈ (vL, vH):

E[V |C = c] > c⇔ f(vL, c)

f(vH , c)
<
vH − c
c− vL

.

Setting vH = 3, vL = 0 and

f(vH , c) =

K, c ∈ (1, 2)

0, otherwise
, f(vL, c) =

K ·
(
vH−c
c−vL

+ ε · sin
(

1
c−1

)
(c− 1)4

)
, c ∈ (1, 2)

0, otherwise

vH−c
c−vL

is a strictly convex decreasing function. For vH = 3, vL = 0 vH−c
c−vL

, −
(
vH−c
c−vL

)′
, and
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(
vH−c
c−vL

)′′
are all bounded from below by a strictly positive bound on the whole support

(1, 2). Since | sin
(

1
c−1

)
(c− 1)4|, |

(
sin
(

1
c−1

)
(c− 1)4

)′ | and |
(
sin
(

1
c−1

)
(c− 1)4

)′′ | are

bounded from above on (1, 2) there exists ε > 0 such that for all K > 0 f(vL, c) > 0

and f(vL,c)
f(vH ,c)

is decreasing convex. Since
∫ 2

1
sin
(

1
c−1

)
(c − 1)4 dc exists and is bounded

K > 0 can be chosen such that f(v, c) is a density.

Proof of Theorem 4.

The proof essentially replicates all the arguments from the finite realization case.

First we show that it is in plateau form, which corresponds to intervals in this new

setting:

Let λ denote the Lebesgue measure. Let C ′, C ′′, C ′′′ be measurable subset of C with

positive measure that are ordered in the following sense: ∀(c′, c′′, c′′′) ∈ C ′×C ′′×C ′′′:
c′ ≤ c′′ ≤ c′′′. The sets are assumed to be distinct on a positive measure: λ(C ′∆C ′′) >

0, λ(C ′′∆C ′′′) > 0 and λ(C ′∆C ′′′) > 0, where ∆ denotes the symmetric differences of

sets.

Suppose that x is an optimal mechanism and there exists v′ ∈ V with:∫
C′
x(v, c) dc > 0,

∫
C′′

(1− x(v, c)) dc > 0,

∫
C′′′

x(v, c) dc > 0

It is without loss to assume that x(v′, c) > 0 for all c ∈ C ′ ∪ C ′′′ and x(v′, c) < 1 for

all c ∈ C ′′ and that c′ < c′′ < c′′′. Otherwise use C ′−C ′′−C ′′′−{c ∈ C |x(v′, c) = 0}
instead of C ′ and corresponding subsets of C ′′ and C ′′′.

Since for any measurable C ⊂ C the function b 7→ λ(C ∩ [−b, b]), is continuous,

there exists C̃ ′ ⊂ C ′, C̃ ′′ ⊂ C ′′, and C̃ ′′′ ⊂ C ′′′ with λ(C̃ ′) = λ(C̃ ′′) = λ(C̃ ′′′) > 0.

There exist measure preserving bijections φ : C̃ ′ → C̃ ′′ and ψ : C̃ ′ → C̃ ′′ (see for

example Alós-Ferrer (1999) , Lemma 3). For all c′ ∈ C̃ ′ we can apply ? to c′ <

φ(c′) < ψ(c′′). This gives for any c′ that the set of feasible, incentive compatible

and strictly profitable deviations dx(v′, c′), d(v′, c′′), dx(v′, c′′) is not empty. One

needs to argue why this correspondence exhibits a measurable selection. The usual

measurable selection theorems are formulated for closed correspondences. But since

the deviations here must be strictly profitable the definition of the correspondence

includes a strict inequality. To get around this, consider the correspondence that

maps c to the set of deviations which are feasible, incentive compatible and profitable

or neutral for the principal. This does not involve strict inequalities therefore it is
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compact valued. It is also weakly measurable, denote it by Γ.

From above we know that the most profitable deviation in Γ(c′) is a strictly

profitable deviation. Also, the function which evaluates the profitability of a deviation

(c′, x1, x2, x3) 7→ f(v′, c′) ·x1 + f(v′, φ(c′)) ·x2 + f(v′, ψ(c′)) ·x3 is measurable in c′ and

continuous in (x1, x2, x3). Hence, it is a Caratheodory function.

With this we can apply a measurable maximum theorem (Aliprantis and Border

(2006), Theorem 18.19) and get a measurable selection of the most profitable devia-

tion, which is strictly profitable. Denote it by γ(c′) = (γ1(c
′), γ2(c

′), γ3(c
′)). With this

we can construct a new measurable mechanism x̃, which has x̃(v′, c′) = x(v′, c)+γ1(c
′),

x(v′, φ(c′)) = x(v′, φ(c′)) + γ2(c
′), and x(v′, φ(c′)) = x(v′, φ(c′)) + γ3(c

′) for all c′ ∈ C̃ ′

and equals x elsewhere. This new mechanism has a strictly higher payoff for the

principal on a set with positive measure. Therefore the original mechanism can not

have been optimal.

It follows that the optimal mechanism to the relaxed problem can be characterized

by two functions: c, c : V → C with ∀v ∈ V : c(v) ≤ c(v). Define an analogous partial

order on the set of allocation schedules in plateau form:

x(v′′) � x(v′)⇔ c(v′′) ≥ c(v′) and c(v′′) ≥ c(v′).

The variation diminishing property also holds for kernels that are continuous in c:

Lemma (Schoenberg (1930); Karlin (1968))

If a real function function K : V ×C → R is strictly totally positive of order 2 (STP2)

and there are allocation schedules: x(ṽ) � x(v) then for any v′ < v′′ ∈ V it holds∫
C
K(v′, c) · (x(ṽ, c)− x(v, c)) dc ≥ 0 ⇒

∫
C
K(v′′, c) · (x(ṽ, c)− x(v, c)) dc > 0,

∫
C
K(v′′, c) · (x(ṽ, c)− x(v, c)) dc ≤ 0 ⇒

∫
C
K(v′, c) · (x(ṽ, c)− x(v, c)) dc < 0.

The cost-continuous analog of Lemma 3 directly follows, if in its proof the sums

are replaced by integrals.

With these results in hand, all the other steps of the proof with finite realizations

can be replicated analogously.
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Binary valuation

Proof of Proposition 3.

First, since vH ∈ (a, b), there always exists d > a such that the ignorant mecha-

nism x(c) =
{

1, c ∈ [a, d)

0, c ∈ [d, b)
dominates the mechanism that never allocates. Similarly,

the ignorant mechanism x(c) =
{

1, c ∈ [a, vH )

0, c ∈ [vH , b)
dominates the mechanism that always

allocates.

Suppose first, that the optimal mechanism x screens, i.e. cL < cH and cH > a. I

consider two feasible infinitesimal deviations that keep the incentives intact. Then it

must be the case for each of them that they do not increase the principal’s expected

utility:

1. Change cL and cH simultaneously such that

f(vL, cL) · dcL = f(vL, cH) · dcH (32)

The principal’s expected utility changes by

f(vH , c) · (vH − cH) · dcH + f(vL, cL) · (vL − cL)dcL.

Plugging in (32) yields:

f(vL, cL) ·
(
f(vH , cH)

f(vL, cH)
· (vH − cH) + (vL − cH)

)
· dcL

To rule out any strictly profitable modification of the mechanism it must be the

case:

f(vH , cH)

f(vL, cH)
· (vH − cH) + (vL − cH) = 0⇔ vH − cH

cH − vL
=
f(vL, cH)

f(vH , cH)
= l(cH). (33)

2. Change cL and cH simultaneously such that

f(vL, cL) · dcL = f(vL, cH) · dcH . (34)

Again, the principal’s expected utility cannot be strictly improved if,

vH − cH
cL − vL

=
f(vL, cH)

f(vH , cH)
. (35)
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From Theorem 3 we know that IC(vL, vH) = 0. This gives a third equation

F (cL|vL) = F (ch|vL)− F (cH |vL). (36)

These three equations ((33),(35),(36)) uniquely pin down the optimal mechanism with

screening, since the optimum must fulfill them and I will show that they have at most

one solution.

For a a fix cL consider the function c 7→ vH−c
cL−vL

on c ∈ [vL, vH ]. This linear function

can be described as a straight line that hits zero at c = vH . For higher cL its slope

gets less negative. This linear function intersects at most twice with the convex

decreasing function l(c). denote—if existent—the lower intersection point by cH(cL)

and the higher intersection point by cH(cL). By the convexity of l it follows that for

cH(cL)− cH(cL) is decreasing in cL. Therefore

F (cL|vL)− (F (cH(cL)|vL)− F (cH(cL)|vL))

is increasing in cL It follows that there is at most one cL solving the equations

(33), (35), (36) simultaneously.

Suppose now that the optimal mechanism is ignorant. Then the optimal cutoff

c ∈ [vl, vH ] must be locally optimal:

0 = f(vH , c) · (vH − c) · dc+ f(vL, c) · (vL − c) · dc⇔
vH − c
c− vL

= l(c)

If this equation is not unique then we know by Corollary 3 that the optimal mechanism

is not ignorant. Then it must be uniquely characterized by the equations of the

screening case.

Proof of Lemma 2.

Under which circumstances can we rule out that the system (33), (35) and (36) has a

solution. One of this instances is given, if the tangent at a of l crosses zero before vH .

Since then no linear function crossing zero at vH can twice intersect with l. Formally

this is the case if:

l(a) + l′(a) · vH < 0⇔ vH >
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B Related Problem

ũH(y) · g(y) = f(v′,−y) = f(v′, c)

ũL(y) · g(y) = f(v,−y) = f(v, c)

0 ≤
(
ũ′L(y)

u′H(y)

)′
= (−l′(−y) · ξ(x)ũL(y)) · g(y) = f(v,−y)

w̃(y) · g(y) = f(v′,−y) · (v′ + y)

It follows:

ũL(x)

ũH(x)
=
f(v,−x)

f(v′,−x)
=: l(x)

w̃(x)

ũH(x)
= x.

From that we get,

ũ′L(y) = −l′(y) · ũL(y) + l(y) · ũL(y) (37)

w̃′(y) = ũH(y) + y · ũ′H(y) (38)

To have the principal with utility w̃ to be more risk avers than an agent with utility

ũH we need to have,

0 ≥
(
w̃′(y)

ũ′H(y)

)′
=

 ũH(y)

ũ′H(y)︸ ︷︷ ︸
=:ξ(y)

+y


′

= ξ′(y) + 1

To also have an agent with utility function ũH be more risk averse than an agent with

utility function ũL it must be the case, that

0 ≤
(
ũ′L(y)

u′H(y)

)′
= (−l′(−y) · ξ(y) + l(−y))

′
= l′′(−y) · ξ(y)− l′(−y) · ξ′(y)− l′(y)

putting both conditions together yields:

l′′(y) · ξ(y) ≥ l′(−x) · (ξ′(y) + 1) ≤ 0
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Assuming that ũH , u
′
H ≥ 0 and l′ ≤ 0 we conclude,

l′′(−y) ≥ 0.

50



References

Aliprantis, C. D. and K. Border (2006): Infinite dimensional analysis, Springer.

Alonso, R. and N. Matouschek (2008): “Optimal delegation,” The Review of

Economic Studies, 75, 259–293.

Alós-Ferrer, C. (1999): “Dynamical systems with a continuum of randomly

matched agents,” Journal of Economic Theory, 86, 245–267.

Ben-Porath, E., E. Dekel, and B. L. Lipman (2014): “Optimal allocation with

costly verification,” American Economic Review, 104, 3779–3813.

Bhargava, M., D. Majumdar, and A. Sen (2015): “Incentive-compatible voting

rules with positively correlated beliefs,” Theoretical Economics, 10, 867–885.

Border, K. C. (2013): “Alternative linear inequalities,” Cal Tech Lecture Notes.

Chakravarty, S. and T. R. Kaplan (2013): “Optimal allocation without transfer

payments,” Games and Economic Behavior, 77, 1–20.

Cremer, J. and R. P. McLean (1988): “Full extraction of the surplus in Bayesian

and dominant strategy auctions,” Econometrica: Journal of the Econometric So-

ciety, 1247–1257.

Daniel K. Elwell (2019): “Statement before the Senate Committee on Commerce,

Science, and Transportation, Subcommittee on Aviation and Space on the State

of Airline Safety: Federal Oversight of Commercial Aviation,” https://www.faa.

gov/news/testimony/news_story.cfm?newsId=23514.

Diamond, P. A. and J. E. Stiglitz (1974): “Increases in risk and in risk aversion,”

Journal of Economic Theory, 8, 337–360.

Epitropou, M. and R. Vohra (2019): “Optimal On-Line Allocation Rules with

Verification,” in International Symposium on Algorithmic Game Theory, Springer,

3–17.

Erlanson, A. and A. Kleiner (2019): “A note on optimal allocation with costly

verification,” Journal of Mathematical Economics, 84, 56–62.

51

https://www.faa.gov/news/testimony/news_story.cfm?newsId=23514
https://www.faa.gov/news/testimony/news_story.cfm?newsId=23514
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