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Abstract

This paper studies information transmission in situations in which multiple senders com-

pete for the attention of a decision maker. Senders are partially informed about a state and

choose how to reveal information over time to attract maximal attention. A decision maker

wants to learn about the state but faces attention costs. I characterise an equilibrium with

simple strategies that lead to full information transmission in minimal time. The attention

each sender receives is proportional to the residual value of her information. With en-

dogenous information acquisition, increasing initial public information may decrease the

aggregate information in society.
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1 Introduction

Information providers compete for attention. Most online content, such as news, professional
product reviews, or weather forecasts, is offered free of charge, and the websites exploit the at-
tracted attention to create revenue, primarily through advertisements. Without monetary prices,
information providers compete through two key factors that determine their profits. First, they
have to decide how much and what type of information to acquire. Several papers studying this
question highlight the importance of attention as the currency in media markets.1 Second, pro-
viders have to decide how to reveal their information over time. This aspect – how to optimally
disseminate information when competing for attention – is the focus of this paper.

Attention is collected from a decision maker who is interested in the information held by
the providers. As attention requires time and effort, the decision maker decides sequentially
which providers to visit and when to stop, depending on the information previously observed.
Recent work has studied the design of optimal dynamic information policies from the perspect-
ive of the decision maker.2 Yet, in many situations, the power to design how information is
revealed over time lies with providers.

How much information can be transmitted from the providers to the decision maker and
what type of information processes arise when providers design offers to attract attention?

To answer these questions, I build a dynamic model in which information providers – the
senders – compete for the attention of a decision maker – the receiver. The receiver has to
take an action and wants to learn about an unknown state to maximise his utility. Senders are
interested in maximising the number of visits and do not care about the receiver’s action. At
the beginning of the game, each sender is endowed with imperfect information over the state
through a signal. Subsequently, there are multiple rounds of communication in which senders
compete for a visit by the receiver. At the beginning of each round, senders offer experiments
over their signals, that is, each sender commits to a distribution over messages, conditional on
the realisation of her signal. Senders cannot commit across rounds. The receiver observes all
offers. He either pays an attention cost to visit one sender and continue to the next round, or
he stops learning and takes the optimal action with the current level of information. The model
captures broad information and preference specifications with the condition that attention can
be split finely enough and each sender’s signal is informative enough so that it is worth at least
one unit of attention, independent of the information previously delivered by her competitors.

The main result characterises an equilibrium in which all information is transmitted from
the senders to the receiver. Each sender attracts attention proportional to the expected resid-
ual value of her information. This is a lower bound on attention for each sender. Therefore,
this equilibrium is receiver-preferred, information is transmitted in minimal time. Offers made
in equilibrium are of a simple class: each sender posts a probability with which the experi-

1See Galperti and Trevino (2018), Perego and Yuksel (2018), and Pant and Trombetta (2019).
2Most notably, Zhong (2019) characterises the optimal process designed by the decision maker with full flexibility.
See discussion below.
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ment reveals her initial signal fully. With the remaining probability, the experiment delivers no
information. I refer to this class as All-or-Nothing (AoN) offers.

The market for information considered in this paper features intertemporal externalities.
The information observed at any sender changes the receiver’s valuation for future information
as well as his probability assessment of other senders’ signals. Furthermore, the design of an
offer and its cost (in terms of attention) are closely intertwined. With externalities and in the
absence of prices or general contracts, the existence of an efficient equilibrium is not a foregone
conclusion.3 To construct the equilibrium mentioned above, this paper introduces a substitute
condition on the senders’ signals that requires that any sender’s information is more valuable
when her competitors have revealed less.

To gain intuition on the equilibrium and the class of AoN offers, consider the case of a
single sender. What is the maximal amount of attention a monopolist can extract from the
receiver? The receiver is willing to pay a total attention cost equal to the difference in expec-
ted utility from taking the action with or without the sender’s information. Due to the lack
of intertemporal commitment, the sender cannot simply require the receiver to visit her for a
fixed number of rounds and then reveal all her information at the last visit. In general, a non-
committed monopolist cannot give out more information than necessary to make the receiver
indifferent between spending another round of attention and taking the action at the current
information. A simple way to keep the receiver indifferent is to make an AoN offer as intro-
duced above. The sender chooses the AoN probability that all information is revealed as low
as possible so that the receiver accepts. AoN offers imply that no information is revealed until
a geometrically distributed arrival time, at which time all information is revealed.

When there are multiple senders, they design experiments facing Bertrand competition
in every round. Each sender offers an experiment that makes her indifferent between being
accepted and the lower bound of attention she can attract if she is not visited. This lower bound
consists of waiting until all competitors have revealed their information and, subsequently,
playing the strategy of the monopolist. At this point, the receiver’s information includes all
signals of her competitors, and the value of the lower bound depends on the realisations of these
signals. In equilibrium, every sender offers the AoN probability such that the expected attention
is equal to the current expectation of her lower bound. This expectation and the senders’ offers
change over time. Once only one sender is left, the receiver is indifferent between stopping and
accepting this last sender’s offer. As signals are substitutes, the receiver strictly prefers to accept
an offer when there are still multiple senders whose information he has not yet observed. Given
that senders require attention proportional to the residual value of their signal, concentrating a
fixed amount of information on fewer senders hurts the receiver. While all information is still
transmitted, the total required attention increases.

I provide examples of information and preference specifications that are captured by the
model together with applications that the literature has studied with these specifications. Among

3As shown by the example in Section 6, externalities may impede information transmission entirely.
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these is the application of the Gaussian-information, quadratic-loss specification to examine
competition in news markets. For this setup, I extend the game to consider optimal information
acquisition by two competing news outlets that face a tradeoff between checking further sources
more carefully and breaking the news as early as possible. This investigation race always leads
to specialisation into a less informed outlet that offers a more superficial report early and a more
informed outlet that investigates as long as possible to deliver high precision. If news outlets
have different efficiency levels ex ante, i.e. different rates at which their precision increases
over time, the more efficient newspaper is the one that investigates longer, thereby exacerbating
its initial advantage. Perhaps surprisingly, increasing the precision of initially available public
information may decrease the final precision at which the action is taken. The adverse effect
on the incentives to investigate can outweigh the direct increase in precision. If the government
considers increasing information on an issue through a campaign and ignores the incentives of
other providers informing on the same issue, such campaigns may have the opposite effect and
decrease information to the public.

After discussing the related literature below, Section 2 presents the model. Section 3 sets
the stage for the analysis, examining the value of information and introducing useful notation.
The equilibrium characterisation in Section 4 starts with the monopoly benchmark before de-
riving the results for multiple senders. The news application is considered in Section 5. Section
6 discusses modelling choices and the relation to Zhong (2019) in more detail. Concluding
remarks are presented in Section 7. Proofs not included in the main text can be found in the
Appendix.

Related Literature. This paper contributes to the literature on optimal dynamic information
acquisition by a decision maker, firstly, by endogenising the information processes chosen by
senders, and secondly, by considering attention maximisation. The tractable dynamic model
with multiple senders who are partially informed presents a technical contribution to the dy-
namic information design literature. With the application to news markets, the analysis sheds
light on the tradeoff between publishing news earlier or gathering more precise information.
The relation to these three strands of literature, among others, is discussed in detail below.

Optimal dynamic information acquisition by a decision maker has been introduced to
the economics literature by Wald (1947), where the decision maker decides when to stop ob-
serving an exogenous information process and take an action. Several papers enrich the de-
cision maker’s problem by allowing him to adjust the information intensity or to choose among
exogenous processes, see Moscarini and Smith (2001), Mayskaya (2017), Che and Mieren-
dorff (2019), Liang and Mu (2020), Liang et al. (2019), and others.4 The decision maker in
my paper faces a related acquisition problem but chooses among experiments that are offered
endogenously by the senders. More recently, Zhong (2019) characterises the optimal inform-

4See also Morris and Strack (2017) and Fudenberg et al. (2018) for recent developments on the Wald problem in
different directions.
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ation process designed by a decision maker with full flexibility facing a precision cost. He
shows that the optimal policy consists of a Poisson process that leads to immediate action after
arrival.5 The current paper contributes to the literature on optimal dynamic design by consid-
ering a related question from the opposite perspective. Senders choose flexibly how to provide
their information over time to maximise the attention they attract from the receiver. The offer
strategies presented in the current paper6 imply a geometrically distributed arrival of all inform-
ation from one sender. This is akin to a Poisson process in continuous time with fully revealing
news and where the absence of arrival allows no inference (there is no belief drift). Section 6.2
discusses the connection between Zhong (2019) and the single sender case in the current paper.
I identify the lack of intertemporal commitment as an additional motive for Poisson processes.

My paper is related to the literature on Bayesian persuasion, based on Kamenica and
Gentzkow (2011), in which a sender designs information to influence a receiver’s behaviour.
Senders in my model maximise attention and have no persuasion motive, that is, the action
eventually taken by the receiver does not affect the senders’ utilities. Most contributions model
information design using belief-based techniques. I use an experiment-based approach. Section
6.1 discusses the benefits of doing so for a setting with multiple senders who design how to
reveal partial information.

Dynamic information design has been studied in Au (2015), Che and Hörner (2017), Ely
(2017), Renault et al. (2017), Smolin (2017), Board and Lu (2018), Ball (2019), Che et al.
(2020), Ely and Szydlowski (2020), Guo and Shmaya (2019), Orlov et al. (2020), and others.
The main contrasts to the current paper are the persuasion motive mentioned above and the fo-
cus on single-sender7 environments. Ely and Szydlowski (2020) study the problem of a sender
with intertemporal commitment who wants to persuade the receiver to execute an option as
early as possible or as late as possible. The latter case may be interpreted as paying attention
for as long as possible before stopping, which relates to the single sender case in the current
paper. The optimal information processes in both papers share similar features: the receiver’s
belief is kept constant, and he is indifferent between stopping and continuing until the inform-
ation is fully revealed and he stops. As in Au (2015) and Che et al. (2020), senders in my
paper commit to the information offered within a period but cannot commit across periods.
The senders’ focus on the receiver’s costly attention connects the current paper and Che et al.
(2020), who examine optimal dynamic persuasion when the receiver has to pay an attention
cost.

Section 5 considers a concrete specification with Gaussian information and quadratic loss
for the receiver. This tractable setting is widely used in the literature on media competition.

5This gives a theoretical justification for the common use of Poisson processes to model information in dynamic
environments, partly due to its tractability laid out in Keller et al. (2005).

6Which attain the unique equilibrium payoff in the monopoly case and the receiver-preferred equilibrium with
competition.

7With the exception of Board and Lu (2018) who consider multiple sellers which are randomly matched with
potential buyers in a search market and want to induce buyers to buy from them rather than continuing to search.
For a cheap talk model that features multiple senders in a dynamic environment, see Margaria and Smolin (2018).
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This application to news markets is related to Mullainathan and Shleifer (2005), Besley and Prat
(2006), Gentzkow and Shapiro (2006), Galperti and Trevino (2018), Perego and Yuksel (2018),
and Pant and Trombetta (2019). These papers highlight the importance of capturing an audience
or maximising attention for media companies. They study aspects from information acquisition
to optimal provision. Mullainathan and Shleifer (2005), Gentzkow and Shapiro (2006), and
Pant and Trombetta (2019) consider optimal provision, which is the main focus of the current
paper. Yet, within the more tractable Gaussian setting, I extend the analysis and consider
information acquisition where precision levels arise from a market entry game. News outlets
face a tradeoff between investigating longer or breaking a story before the competition. Galperti
and Trevino (2018) and Perego and Yuksel (2018) study optimal static acquisition decisions
determined by competition for attention. Senders in Galperti and Trevino (2018) choose the
accuracy and the clarity of their news pieces at a cost, while receivers have a coordination
motive. Senders in Perego and Yuksel (2018) choose to report on more polarised issues due to
competition. The market entry game in the current paper focuses on accuracy levels only, and
I find that the investigation race to publish first leads to polarisation in accuracy, where the less
productive newspaper reports early and the more productive newspaper deepens her advantage
by investigating as long as possible.

One interpretation of the setting in the current paper is to view senders as selling inform-
ation to a receiver requiring a price in units of attention time. For a survey on markets for
information, see Bergemann and Bonatti (2019). Bergemann et al. (2018) study the optimal
design and pricing of a menu of experiments to screen the receiver according to his willingness
to pay. In my paper, the receiver’s willingness to pay is known. The monopolist can require
attention proportional to the price charged by the monopolist in Bergemann et al. (2018), who
would only offer the fully revealing experiment if he knew the receiver’s willingness to pay. The
dynamic information market studied in the current paper shares two important features with dy-
namic price competition for standard goods. First, the product ‘information’ has important
externalities. Bergemann and Välimäki (2006) study repeated Bertrand price competition with
externalities – the surplus of each purchase depends on the history of previous purchases. For
the special case without inter-group externalities – where the surplus generated by a trade with
seller i depends only on the number previous trades with i – they show that a marginal con-
tribution equilibrium exists and leads to efficiency. Information generally features inter-group
externalities. Nevertheless, the receiver-preferred equilibrium presented in the current paper
is also constructed by considering each sender’s expected marginal contribution. The second
noteworthy feature of this market is the presence of capacity constraints: Each sender is initially
endowed with information. This fixed endowment is a capacity constraint, relating the current
paper to Dudey (1992), Martínez-de Albéniz and Talluri (2011), and Anton et al. (2014). As in-
formation is assumed to be always worth one visit in the current paper, the capacity constraint
is binding. Paralleling results in the above papers, this implies that each sender can extract
positive surplus despite the competition.
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Gossner et al. (2019) study attention with a different focus. They show that drawing atten-
tion to one of several considered options unequivocally increases the likelihood of this option
being chosen by an agent who uses a fixed threshold rule. This can be seen as an additional
rationale to compete for attention.

2 Model

2.1 Environment

One receiver and a finite number of senders i ∈ {1, · · · , I} interact in discrete rounds of com-
munication, k = 0, 1, . . . . There is a state of the world ω from the Polish8 space Ω that remains
constant and is not observed by any player. However, each sender i is endowed with partial in-
formation over the state, represented by a signal xi from the Polish space Xi. Let X = ×

i
Xi. The

state and signals are jointly distributed according to the commonly known prior µ̃ ∈ ∆(Ω × X).
The receiver has to take an irrevocable action a from the closed space A to maximise his

utility u(a, ω), where u : A × Ω → R is continuous and bounded. For this, the receiver relies
on information from the senders. In each round, k, he can either pay the attention cost c > 0
and visit one sender, or take an action with the information gathered so far. After the action is
taken, the game ends.

Senders offer experiments over their own signal. To avoid signalling, I assume that senders
do not observe their signal prior to revealing it through experiments. An experiment is a con-
ditional distribution over messages m from the Polish space M. The message space M is equal
for all senders and rich enough to contain all information about x = (x1, · · · , xI), i.e. X ⊂ M.
At the beginning of round k, each sender i simultaneously announces λi,k : Xi ×B(M)→ [0, 1],
a (regular) conditional probability such that λi,k(·,W) is measurable for all W ∈ B(M), and
λi,k(xi, ·) is a probability measure given any signal xi ∈ Xi. The set of possible experiments for
sender i is denoted by Λi. Senders compete for attention. In each round that sender i is visited,
she receives utility normalised to one.

2.2 Strategies, Payoffs, Equilibrium

First, nature draws the state ω and the signals x = (x1, · · · , xI). At the beginning of each
round k ≥ 0, if the receiver has not taken an action previously, all senders simultaneously offer
experiments λi,k.

The receiver observes the offers and chooses dk ∈ {0, 1, · · · , I}, where dk = 0 encodes that
he stops and dk = i ∈ {1, · · · , I} means that he pays cost c > 0 and visits sender i. When the
receiver stops, he takes an action a ∈ A, the game ends, and payoffs realise.9 Visiting sender

8A Polish space is a separable and completely metrisable space. This ensures the existence of the conditional
probability measures used below.

9For completeness, assume that dk = 0⇒ dk+1 = 0.
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i implies that he observes mi,k ∈ M drawn from the distribution λi,k and the game continues to
the next round.

A public history of the game is

hk =
((

(λi,1)I
i=1, d1,md1,1

)
, · · · ,

(
(λi,k)I

i=1, dk,mdk ,k

))
for k ≥ 0,

with initial history h−1 = ∅. All players observe all past offers, the receiver’s choices and the
message of the chosen sender. Hence, all senders observe the information revealed by their
competitors.10 Denote byH k the set of round-k histories.

A pure strategy for the receiver is a collection of maps
(
σR

k

)
k≥0

with

σR
k : H k−1 ×

(
×
i
Λi

)
→ {0, 1, · · · , I}.

Likewise, for each sender i ∈ {1, · · · , I}, a pure strategy is a collection
(
σi

k

)
k≥0

with

σi
k : H k−1 → Λi.

The receiver’s final payoff has two components. First, he gets utility u(a, ω) when stopping
with action a if the state is ω. Second, there are attention costs that depend on how many times
the receiver visits a sender before taking action. Each visit costs c > 0, so that the receiver’s
final payoff will be

u(a, ω) − c ·
∑
k≥0

1{dk,0}.

Senders maximise the attention they attract. Each visit gives utility normalised to 1. Sender
i’s final payoff is then ∑

k≥0

1{dk=i}.

The solution concept is a Perfect Bayesian Equilibrium, with the additional requirement
that beliefs are only updated with Bayes’ rule according to the chosen experiment. This re-
quirement ensures the ‘no-signalling-what-you-don’t-know’ property (see Fudenberg and Tir-
ole, 1991), whereby offers do not reveal information the senders do not hold. It also implies
that experiments from off-path offers would be interpreted correctly if they were accepted.

10It is plausible that the senders can also visit their competitors, given that experiments are offered publicly. With
Gaussian information considered in Section 5, I show how this assumption can be relaxed.
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2.3 Examples

Before moving to the analysis, I give two specific setups encompassed by the model presented
above. Applications for which these setups or a close variant have been used in the literature
are mentioned in square brackets. The News Markets application is considered more carefully
in Section 5.

Example 1: Gaussian Information and Quadratic Loss. [Global games: Morris and Shin
(2002), Bergemann and Morris (2013), Angeletos and Pavan (2007). Social learning: Vives
(1996). News markets: Chen and Suen (2019), Galperti and Trevino (2018)]

The receiver wants to learn the state of the world ω ∼ N(0, 1/p0) as precisely as possible.
His utility from the action is u(a, ω) = −(ω − a)2, so that the expected stopping utility is minus
the conditional variance Var (ω|ξ) given the current information.11 Each sender i ∈ {1, · · · , I}
is endowed with a conditionally independent signal xi ∼ N(ω, 1/pi), where pi > 0 is sender i’s
precision level.

Example 2: Additive Attributes. [Consumer search: Wolinsky (1986), Choi et al. (2018),
Ke and Lin (2020). Advertising: Anderson and Renault (2009), Sun (2011)]

Let the receiver be a consumer who considers buying one of two objects, A = {1, 2}. The
(net) utility of the two objects is ω = (ω1, ω2) ∈ R2, where each object’s utility is determined
by a common and an idiosyncratic attribute as follows:

ωi = Y + γi for i ∈ {1, 2},

where Y is the common component distributed according to F on [Y , Ȳ] and γi are distributed
independently according to Gi on [γ, γ̄]. Each sender holds information about one of the options
in the form of a noisy signal of the total utility but is unable to distinguish between the common
and the idiosyncratic component: x1 = ω1 + ε1 and x2 = ω2 + ε2 with εi

iid
∼ N(0, 1). Senders

in my model are indifferent about the receiver’s actions. This is the case if the sender does not
sell the product by herself, as with car or technology magazines on- and offline.

3 Updating and the Value of Information

This section introduces notation that will be used extensively in the remainder of the analysis.
To determine the optimal action and compute the expected utility from stopping, the receiver
has to form a belief about ω. The messages deliver information about signals x = (x1, · · · , xI).
Recall that the joint distribution over the state and signals is µ̃ ∈ ∆(Ω×X). I denote its marginal

11The fact that u is not bounded from below does not create problems here since the stopping utility at the prior is
equal to − 1

p0
> −∞.
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with respect to x, that is, the unconditional prior distribution of signals, by ξ0 ∈ ∆(X). It will
be convenient to work with the posterior signal-belief ξ in the rest of the paper.

The receiver’s stopping utility with belief ξ, i.e. the expected utility from the optimal
action, given that he currently holds posterior ξ, is

U(ξ) ≡ max
a∈A
Eω∼µ(ξ) [ u(a, ω) ] ,

where µ(ξ) denotes the belief about the state given that the belief about the signals is ξ. The
belief µ is not used in the analysis. The formula is given in Appendix A together with further
details on this section.

At the end of round k, the belief ξk is updated to ξk+1 by Bayes’ rule after observing message
mk resulting from the selected experiment λk. Denote the updating rule by ξ′ such that

ξk+1 = ξ′(ξk,m).

Note that the notation suppresses the chosen experiment in the updating rule. Appendix A

contains the updating rule in detail and shows that it is well defined. I denote by ξ′(ξ0, x−i) the
belief that results if the signals of all senders different from i are known and nothing has been
revealed about xi.

With this, define the value of offer λi at current belief ξ as

v (λi|ξ) ≡ Exi∼ξ

[
Em∼λi(xi,·)

[
U

(
ξ′(ξ,m)

)]]
− U(ξ).

The value is defined as the expected difference between the stopping utilities with and without
the additional information from λi. Note that v ≥ 0 always.

For the special case in which sender i’s experiment reveals her exact signal, let

v̄i(ξ) ≡ v
(
δ{xi}|ξ

)
denote the value of all her information given belief ξ. Here, the experiment that reveals i’s
signal precisely is denoted by the Dirac measure λi(xi, ·) = δ{xi}(·).

I assume that attention can be split finely enough to make every sender’s information worth
one unit of attention, independent of the realisation of her opponents’ signals.

Assumption 1. For all i ∈ {1, · · · , I} and for all x−i in the support of ξ0(Xi, ·):

v̄i

(
ξ′(ξ0, x−i)

)
> c. (A1)

This condition ensures that for any realisation of the other senders’ signals, even if the
receiver knows these exactly, sender i still has enough information to attract at least one visit.
In particular, condition (A1) implies that no sender has perfect information. Given the Bertrand
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competition, if at least two senders had perfect information, all senders would offer all inform-
ation in the first round, and the receiver would become perfectly informed after one visit.12

4 Equilibrium

This section identifies a simple class of information-transmission processes that is sufficient to
achieve the unique equilibrium payoffs in the case of a single sender and the receiver-preferred
equilibrium payoff with multiple senders, in which all information is transmitted in the shortest
amount of time possible.

4.1 Single Sender

Consider the case of a single sender, I = 1. What is the maximal expected attention cost the
receiver is willing to pay for the sender’s information? It is equal to the difference between
the stopping utility with no information and the expected stopping utility with all information.
This is precisely v̄1(ξ0). As each visit requires a cost of c, the maximal expected number of
visits the sender can attract is

v̄1

(
ξ0

)
c

.

If the sender could commit across rounds, the simplest strategy to implement this outcome
would require v̄1(ξ0)

c − 1 visits from the receiver at which no information is revealed, and then
all information would be revealed at the last visit.13 However, the sender lacks the intertemporal
commitment to credibly promise all information in the last round. She may, for example, repeat
the round-0 strategy.

A simple sender strategy to overcome the non-commitment issue and to deal with potential
integer problems is to offer revealing x1 with probability λ∗ ∈ [0, 1] and revealing no informa-
tion with probability 1 − λ∗.14 Offers in this class are denoted as All-or-Nothing (AoN) offers.
To give a simple example of an AoN offer, assume that the sender’s signal is the result of a
coin flip, x1 ∈ {0, 1}, with ξ0 = 0.6 prior probability that x1 = 1. Let the receiver’s utility be
1 if he guesses the signal correctly and 0 otherwise. That is, ω = x1 ∈ {0, 1}, A = {0, 1}, and
u(a, ω) = 1{a=ω}.15

12See Section 5 for the equivalent of (A1) for Example 1. For Example 2, one sufficient condition for (A1) is that
the noise term of each sender has sufficient variance.

13This intuitive argument neglects non-divisibilities that make this potential strategy suboptimal as it could only
achieve integer amounts of visits.

14I abuse the notation by letting λ∗ denote a probability in [0,1], while λ generally denotes distributions over
messages. Formally, the AoN experiment is represented by the conditional distribution λ(x1, ·) = λ∗δ{x1} + (1 −
λ∗)δ{m} for an arbitrary message m ∈ M\Xi that conveys no information.

15Here, state and signal are identical. For this section, the general model could equivalently be specified with
ω = x. However, in Section 5, signals are chosen endogenously by the senders, so that modelling the payoff-
relevant state separately allows keeping the endogenous signals and the exogenous state distribution apart.
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Figure 1: AoN experiment with binary signal

Figure 1 shows the receiver’s expected utility as a function of the belief as a solid black
line. The three arrows indicate the possible jumps in belief induced by the AoN experiment.
As the middle arrow shows, with probability 1− λ∗, the experiment reveals no information and
the belief remains unchanged. With probability λ∗, the sender’s signal is revealed perfectly so
that with probability λ∗(1 − ξ0), the belief jumps left to 0, and with probability λ∗ξ0, the belief
jumps right to 1.

The following result shows that an equilibrium in AoN strategies generally exists in the
monopoly game. Equilibrium payoffs are unique.

Lemma 1. Let I = 1. There is an AoN equilibrium in which, in each round, the sender offers

AoN probability

λ∗1(ξ0) =
c

v̄1(ξ0)
.

The receiver accepts every round until x1 is revealed. In any equilibrium of the monopoly game

the expected payoffs are v̄1(ξ0)
c for the sender and U

(
ξ0

)
for the receiver.

Note that assumption (A1) ensures that λ∗1(ξ0) < 1. If the sender’s strategy prescribes AoN
offers until all information is transmitted, the receiver’s continuation payoff in the event of no
revelation (which happens with probability 1 − λ∗1(ξ0)) remains at his initial payoff. Hence, the
AoN probability λ∗1(ξ0) that makes the receiver indifferent between taking action immediately
and accepting the offer, has to satisfy

U
(
ξ0

)
= −c + λ∗1(ξ0) Ex1∼ξ0

[
U

(
ξ′(ξ0, x1)

)]
+ (1 − λ∗1(ξ0))U

(
ξ0

)
.

Accepting the offer creates attention cost c. With probability λ∗1(ξ0), the receiver learns x1 and
stops with utility U(ξ′(ξ0, x1))). With probability 1− λ∗1(ξ0), the receiver learns no information,
which gives utility U(ξ0) as the sender will keep him indifferent in the following round again.
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The offer λ∗1(ξ0) is accepted by the receiver in every round until the information is even-
tually revealed. The number of rounds until revelation follows a geometric distribution with
parameter λ∗1(ξ0), so that the expected number of rounds is 1

λ∗1(ξ0) . As the receiver is indifferent
between accepting and stopping in every round, it should not be a surprise that solving the
above indifference condition for λ∗ gives

λ∗1(ξ0) =
c

v̄1
(
ξ0) .

The expected attention is precisely the upper bound the receiver is willing to spend.
Depending on the information structure, there may be other strategies that resolve the

sender’s non-commitment and attract the maximal amount of attention.16 The attractiveness
of the AoN strategy lies in the fact that it works for general information structures and in its
simplicity. It leads to a stationary information-arrival process. Furthermore, the lack of inter-
temporal commitment requires that any experiment delivers, in expectation, a strictly positive
increase in the stopping utility. In Section 6.2, I discuss in detail that this strict increase requires
beliefs to jump with positive probability whenever the action set is finite and how – even in the
limit as the period length shrinks – the information process necessarily features a Poisson-jump
component. Thereby, this identifies an additional driver of Poisson information, stemming from
the lack of commitment, rather than risk preferences induced by discounting (see Zhong, 2019).
The above results are robust to discounting; the analysis remains almost unchanged when the
receiver and the sender share a common discount factor.

4.2 Multiple Senders

In the general case with I ≥ 2 senders, equilibrium payoffs are no longer unique. The sub-
sequent analysis focuses on receiver-preferred equilibria. This selection best captures the
tradeoff between the amount and the speed of information transmission since information has
no instrumental value for the senders. The welfare-maximising equilibrium crucially depends
on the normalisation of the value the senders derive from each visit. In particular, if c = 1,
maximising welfare is equivalent to maximising the amount of information transmitted as vis-
its from the receiver to any sender have no impact on welfare. Whenever c ≥ 1, the receiver-
preferred equilibrium is also welfare-maximising.

With multiple senders, there are informational externalities that may impede information
transmission. For illustration, consider the following example with the detailed argument
presented in Section 6.3. Suppose there are two senders. Each sender’s signal is an inde-
pendent, fair coin flip. The receiver has to guess whether the two coins match or not. For

16The sender could reveal some information every round, successively increasing the receiver’s stopping utility to
commit herself to offer even more information in the following round. Appendix A.3 includes an example of
such a process when information is normally distributed. The special feature of the Gaussian distributions allows
the sender to achieve information transmission in a deterministic number of visits (modulo integer problems).
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this decision problem, the signals form complements. Each signal is valuable only in conjunc-
tion with the other. Since senders cannot commit across rounds, complements cause a hold-up
problem: after one sender has revealed her information, the following sender would require
maximal attention, keeping the receiver at the current stopping utility with one signal only.
Anticipating this, the receiver is not willing to spend any attention for the first signal given that
it delivers no value on its own.

To rule out this class of problems and ensure information transmission, I introduce the
following condition.

Definition 1. The senders’ signals are substitutes if, for all i and for all beliefs ξ with supp(ξ) ⊆
supp(ξ0) :

v̄i (ξ) ≥ Ex−i∼ξ

[
v̄i

(
ξ′(ξ, x−i)

)]
. (SU)

Signals are substitutes if the current value of xi at belief ξ is greater than the expected
value after knowing all other senders’ signals.17 That sender i’s information is more valuable
the less is known from her competitors is consistent with many applications. This is especially
the case when senders report on a single issue or, as in Example 2, when the signals allow
inference about a common component that affects all options. In both examples above, signals
are substitutes.

In equilibrium, competing senders make offers that make them indifferent between being
accepted or rejected. Constructing an AoN equilibrium requires determining the maximal AoN
probability a competing sender is willing to offer. Consider the situation in which all senders
but i have revealed their signals, and sender i has revealed no information at all. That is, x−i

is known and the belief is ξ′(ξ0, x−i). Sender i can extract maximal attention from the receiver.
The receiver is willing to visit her

v̄i

(
ξ′(ξ0, x−i)

)
c

rounds to learn xi.
As will be shown below, a lower bound on the attention sender i can extract is given by

waiting until all competitors have revealed their information and offering AoN probability

λ∗i
(
ξ′(ξ0, x−i)

)
=

c
v̄i

(
ξ′(ξ0, x−i)

) .
17Börgers et al. (2013) introduce notions of substitutes and complements for a pair of signals. Viewing xi and

x−i as two signals, (SU) corresponds to the notion of substitutability in Börgers et al. (2013) for given ξ and
restricted to the specific decision problem considered here. Their requirement is independent of the decision
problem and therefore stronger.
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However, this value depends on the realisations of x−i, so that its expectation – taken over
all competitors’ signals given the current information – changes over time. Suppose the AoN
probability offered by each sender is such that her expected payoff is precisely the expectation
of the outside option mentioned above, assuming that this offer was repeatedly accepted until
revelation. The following result shows that, if signals are substitutes, these strategies form an
equilibrium. In addition, this equilibrium attains full information transmission in the shortest
possible time among all equilibria, making it receiver-preferred.

Theorem 1. If senders’ signals are substitutes, there is an equilibrium with the following

strategies. At belief ξ, senders whose information has not been revealed make AoN offers

with probability

λ∗i (ξ) =
c

Ex−i∼ξ

[
v̄i

(
ξ′(ξ0, x−i)

)] . (1)

The receiver is indifferent between visiting any of the senders whose information has not been

revealed and visits them in arbitrary order until all information is transmitted. This equilibrium

is receiver-preferred.

Proof. Note that the result characterises a class of equilibria rather than a single equilibrium as
the receiver’s behaviour is not fixed. By (A1), we have that λ∗i (ξ) < 1 for all i whose information
has not been revealed. The proof is organised in three claims:

Claim 1. Fix any strategies by senders ,i and assume the receiver is playing a best response.

Let the current belief be ξ and assume sender i has not revealed any information. Then, playing

the AoN strategy from the theorem secures sender i an expected payoff of 1
λ∗i (ξ) .

Proof of Claim 1. First, we show that the AoN strategy ensures that the receiver will not
stop without observing sender i’s information. Formally, for all beliefs ξ,

−c + λ∗i (ξ)Exi∼ξ

[
VR

(
ξ′(ξ, xi)

)]
+ (1 − λ∗i (ξ))VR (ξ) ≥ U (ξ) .

Here, VR denotes the receiver’s continuation value (suppressing history and strategy). Clearly,
VR(ξ) ≥ U(ξ), as the receiver always has the option to stop. For the above inequality to hold,
substituting and rearranging gives that it is sufficient to show that

Exi∼ξ

[
U

(
ξ′(ξ, xi)

)]
− U (ξ) ≥

c
λ∗i (ξ)

.

The left-hand side of this inequality is the definition of v̄i (ξ). Replacing λ∗i on the right-hand
side with (1) shows that this inequality is equivalent to the definition of substitutes in (SU).

Second, we show that the expected payoff for sender i from using the AoN strategy is
exactly 1

λ∗i (ξ) . To illustrate this concisely, the remainder of the argument for Claim 1 considers
Markov strategies, so that the belief ξ determines the senders’ payoffs. This restriction is not
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necessary for the result and a detailed argument without it is included in Appendix A. Observe
that i’s valuation satisfies:

Vi(ξ) =

1 + λ∗i (ξ)0 + (1 − λ∗i (ξ))Vi(ξ) if i is chosen

0 + Ex j∼ξ

[
Em j∼λ j(x j,·)

[
Vi(ξ′(ξ,m j))

]]
if j , i is chosen.

In the first line, i is visited and her continuation value is 0 if her information is revealed and
remains unchanged if no information is given out. The value 1

λ∗i (ξ) follows immediately from
re-arranging. In the second line, depending on the realisation of m j and the receiver’s choice in
the following round, the value Vi(ξ′(ξ,m j)) is either 1

λ∗i (ξ′(ξ,m j))
if sender i is chosen in that round,

or
Vi(ξ′(ξ,m j)) = Ex`∼ξ′(ξ,m j)

[
Em`∼λ`(x`,·)

[
Vi(ξ′(ξ′(ξ,m j),m`))

]]
,

if a sender ` , i is chosen. As c > 0, there can be at most finitely many rounds and realisations
before sender i is chosen so that, eventually, we arrive at realisations with belief ξ̂ and Vi(ξ̂) =

1
λ∗i (ξ̂)

.
Since, by definition,

1
λ∗i (ξ̂)

= Ex−i∼ξ̂

[
v̄i

(
ξ′(ξ0, x−i)

)] 1
c
,

we have that

Ex j∼ξ

[
Em j∼λ j(x j,·)

[
1

λ∗i (ξ′(ξ,m j))

]]
= Ex j∼ξ

[
Em j∼λ j(x j,·)

[
Ex−i∼ξ′(ξ,m j)

[
v̄i

(
ξ′(ξ0, x−i)

)] 1
c

]]
= Ex−i∼ξ

[
v̄i

(
ξ′(ξ0, x−i)

) 1
c

]
=

1
λ∗i (ξ)

.

Therefore, by taking expectations as many times as necessary from the last realisation to the
current stage with belief ξ, we get the claimed payoff.

Claim 2. Let all senders play the AoN strategies from the theorem and assume the receiver is

playing a best response. Then, no sender has a profitable deviation.

Proof of Claim 2. The receiver visits all senders on the equilibrium path by Claim 1.
Suppose the on-path belief is ξ and that only information from senders 1, · · · , j − 1 has been
observed. Then, the equilibrium continuation utility of the receiver can be expressed as

VR (ξ) = Ex∼ξ

[
U

(
ξ′(ξ0, x)

)]
− c

I∑
i= j

Vi(ξ), (2)

where the proof of the last claim showed that Vi(ξ) = 1
λ∗i (ξ) for all i.
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Suppose now that one sender i′ deviates to an offer that gives an expected payoff higher
than 1

λ∗i′ (ξ)
if accepted. By visiting the remaining, non-deviating senders, the receiver achieves

an expected payoff of

Ex−i′∼ξ

[
U

(
ξ′(ξ0, x−i′)

)]
− c

I∑
i= j
i,i′

1
λ∗i (ξ)

. (3)

The λ∗i are chosen such that, at the last sender, the receiver is indifferent between stopping
without her information or paying the corresponding attention cost to obtain her information.
Hence, the values (2) and (3) are equal. Even if the alternative strategy of sender i′ would lead
to all her information being revealed, the receiver still prefers to reject any offer yielding i′ an
expected payoff higher than 1

λ∗i′ (ξ)
.

Claim 3. The AoN equilibrium achieves the maximal payoff for the receiver among all equilib-

ria.

Proof of Claim 3. The action is always taken with all information. As the value of inform-
ation is always positive and, by claim 1, no sender can receive less attention in expectation, the
AoN equilibrium is receiver-preferred.

�

Theorem 1 yields a simple computation of the equilibrium payoffs of the receiver and the
senders. It suffices to compute the expected residual value of each sender’s signal. After the
following remark, the next subsection makes use of this to show that, if signals are substitutes,
concentrating information on fewer senders slows down transmission.

Remark 1. Note that the on-path strategies in this equilibrium are Markov. Senders’ actions

are fully determined by the state, ξ. The receiver’s actions are fully determined by the state

and the offers made in the current round. The state ξ is not strictly payoff-relevant in that two

distinct posterior beliefs over signals may lead to the same belief µ over states and, therefore,

to the same stopping utility. One might argue that µ is a more appropriate state variable.

However, it is easy to verify that the belief µ captures too little information to determine optimal

behaviour in the continuation game: consider a case with two senders who have symmetrically

distributed signals. One of the two has revealed this signal to the receiver but the other has not.

The same belief µ may be derived from sender 1’s signal or sender 2’s signal being known, but

the value of future offers from senders 1 and 2 depends crucially on this distinction.
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4.3 Concentration of Information

As the action is taken after all information is transmitted, the receiver’s expected total payoff is

Ex∼ξ0

[
U

(
ξ′(ξ0, x)

)]
− c

I∑
i=1

1
λ∗i (ξ0)

.

Each sender’s attention is proportional to the residual value of her information so that the re-
ceiver’s total payoff is equal to

Ex∼ξ0

[
U

(
ξ′(ξ0, x)

)]
−

I∑
i=1

Ex−i∼ξ0

[
Exi∼ξ′(ξ0,x−i)

[
U

(
ξ′(ξ0, x)

)]
− U

(
ξ′(ξ0, x−i)

)]
.

Consider increasing the concentration of information by merging the signals of senders i = 1
and i = 2 into a single signal x1,2 = (x1, x2) held by sender 2. Sender 1 has no information and
is excluded from the game.

This decreases the speed of information transmission. To see this, consider the receiver’s
utility after the concentration. The first term remains the same as the overall information has
not changed. The attention required by senders i ∈ {3, · · · , I} also remains unaffected. The
change comes from the attention required for signal x1,2, which is now equal to

Ex∼ξ0

[
U

(
ξ′(ξ0, x)

)]
− Ex−{1,2}∼ξ0

[
U

(
ξ′(ξ0, x−{1,2})

)]
. (4)

Before the concentration, observing x1 and x2 required the attention of

Ex∼ξ0

[
U

(
ξ′(ξ0, x)

)]
− Ex−1∼ξ0

[
U

(
ξ′(ξ0, x−1)

)]
+ Ex∼ξ0

[
U

(
ξ′(ξ0, x)

)]
(5)

− Ex−2∼ξ0

[
U

(
ξ′(ξ0, x−2)

)]
.

To see that the cost after concentrating the information in (4) is greater than the cost before in
(5), consider the difference:

Ex−1∼ξ0

[
U

(
ξ′(ξ0, x−1)

)]
+ Ex−2∼ξ0

[
U

(
ξ′(ξ0, x−2)

)]
−Ex−{1,2}∼ξ0

[
U

(
ξ′(ξ0, x−{1,2})

)]
− Ex∼ξ0

[
U

(
ξ′(ξ0, x)

)]
.

This can be rearranged to

Ex−{1,2}∼ξ0

[
v̄1(ξ′(ξ0, x−{1,2}))

]
− Ex−1∼ξ0

[
v̄1(ξ′(ξ0, x−1))

]
,

which is positive since signals are substitutes. Hence, concentrating the same amount of in-
formation on fewer senders slows down information transmission and hurts the receiver.
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5 News Markets

This section applies the main results to the specification in Example 1 to derive and interpret
further comparative statics and extend the model by endogenous information acquisition. Vari-
ants of this Gaussian setting have been applied to study various aspects of media markets in
Galperti and Trevino (2018), Chen and Suen (2019), and others.

The receiver wants to be informed about the state of the world ω ∼ N(0, 1/p0). He wants
to match the state with his action a and gets utility u(a, ω) = −(a − ω)2. Each newspaper i

holds some information about the state represented by a signal that is independent conditional
on the state: xi ∼ N(ω, 1/pi) where pi > 0 is called i’s precision level. The receiver’s optimal
action at belief ξ is a∗(ξ) = Eω∼µ(ξ) [ω], and the expected utility from stopping with belief ξ is
−Eω∼µ(ξ)

[
(a∗(ξ) − ω)2

]
= −Var (ω | ξ). Hence, the receiver’s stopping utility at prior inform-

ation is − 1
p0

. The reduction in variance caused by any sender’s signal is independent of the
realisation of her own or her opponents’ signal. In particular, if the receiver knows the signals
of all senders, his stopping utility is − 1

p0+p1+...+pI
. Precision increases linearly.

5.1 Exogenous Precision

To characterise the AoN equilibrium analogous to Theorem 1, define by

P ≡ p0 +

I∑
i=1

pi,

the precision level of all senders plus p0, the precision of the state distribution. Let P−i = P− pi

denote the total precision without sender i. In this case, assumption (A1) boils down to the
requirement that, for all i:

1
P−i
−

1
P−i + pi

> c,

so that the residual value of sender i’s information exceeds the attention cost c.

Corollary 1. There is an AoN equilibrium analogous to Theorem 1 in which each sender i

offers AoN probability

λ∗i = c
P−i(P−i + pi)

pi

in every round until her signal is revealed.

In this AoN equilibrium, sender i expects to attract the total attention of

1
λ∗i

=
pi

cP−i(P−i + pi)
.
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With higher precision, she can attract more attention. A higher precision of her competitors’
signals or of the initial distribution both lead to a higher P−i and decrease sender i’s expected
attention.

The receiver’s final payoff is

−
1
P
− c

I∑
i=1

pi

cP−i(P−i + pi)
.

Hence, fixing the total precision level P, the reader is better off, the smaller is

I∑
i=1

pi

P − pi
=

I∑
i=1

(
P

P − pi
− 1

)
.

The highest utility the receiver can get is trivially achieved at maximal prior precision with
p0 = P and pi = 0 for all i ≥ 1. If we fix P and p0, does the receiver prefer the remaining
precision to be distributed evenly among all newspapers or to be skewed with some papers
holding a lot and others holding very little information? The fraction on the right side of the
equality is convex in pi. The receiver prefers a uniform distribution of precision levels over
senders, that is, pi =

P−p0
I for all i ∈ {1, · · · , I}.

5.2 Information Acquisition

In practice, the precision of a newspaper’s information is endogenously determined by its in-
vestigation process and editorial policies. One crucial factor that affects precision is the time at
which a story is reported. Investigating a newsworthy issue features a natural tradeoff between
checking further sources more carefully and running a story as early as possible.18

This subsection considers an investigation race between two newspapers to examine how
this time tradeoff affects precision levels. Each paper’s precision is determined by the time
elapsed until it starts reporting the story. The following results show that the investigation race
leads to specialisation of the two papers into an early reporter with lower precision and a late
reporter with higher precision. This is the case even if their productivity levels, the increase
in precision per investigated time, are identical. More than that, when the precision levels
are unequal, the investigation race exacerbates the inequality: the more productive newspaper
will deepen its advantage by investigating longer than the less productive competitor. Further
comparative statics offered below show that increasing initial public precision may lead to a
decrease of total final precision.

To allow for cleaner exposition, the following results are presented in terms of a continuous-
time game in which newspaper i’s precision level is kρi after market entry at time k. The
increase in precision per instant, ρi, can be interpreted as the investigation productivity of

18See the paper ‘The thirst to be first’ by Lewis and Cushion (2009) for a discussion of the importance of breaking
news earlier than competitors.
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newspaper i. That is, investigating from time 0 until some time k ≥ 0 results in a signal
xi ∼ N(ω, 1

kρi
).19 Appendix A.3 presents the discrete-time game underlying this subsection.

The outcomes presented here are to be interpreted as equilibrium results in the discrete-time
game, considering arbitrarily short periods. I assume that the receiver incurs attention costs
only after the first sender entered the market. One interpretation is that the issue at hand only
becomes eminent for the receiver after the first piece of news is offered. Furthermore, I as-
sume senders are productive enough so that their investigation is initially worthwhile from the
receiver’s perspective: the marginal increase in utility, ∂

∂k
−1

p0+ρik
, at k = 0 is higher than the

marginal cost, or, equivalently:

Assumption 2. For both newspapers i = 1, 2:

ρi > p2
0c. (A2)

I focus on pure-strategy equilibria and restrict attention to equilibria in AoN strategies such
that, after both newspapers entered the market, they play the AoN equilibrium from the previous
subsection. In what follows, such equilibria are called pure AoN equilibria. This restriction
rules out collusive equilibria in which the equilibrium selection after the second paper enters
is used to punish or reward specific entry choices. See Appendix A.3 for a discussion of other
equilibria.

The first result for the entry game states that there cannot be a pure AoN equilibrium in
which both newspapers enter the market at the same time. Consequently, I will refer to the first
paper to enter the market as the leader and to the second paper as the follower.

Lemma 2. In any pure AoN equilibrium of the investigation race, senders enter at different

times. Suppose the leader, i = `, enters at time k`. Then,

i) the follower, i = f , enters only after the leader has revealed all information.

ii) the leader’s expected payoff is

E[k f ] − k` =
1
c

(
−1

p0 + k`ρ`
−
−1
p0

)
.

iii) if the follower enters at k f , her expected payoff is

1
c

(
−1

p0 + k`ρ` + k fρ f
−

−1
p0 + k`ρ`

)
.

Lemma 2 states further that (i) the follower will enter the market only once the leader
has no private information. At this point, not entering would induce the receiver to stop. As

19This arises for example if we assume that paper i observes a Brownian motion with drift ω and instantaneous
variance 1

ρi
.
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long as the leader has enough private information to keep the receiver engaged, the follower
prefers to increase her precision and enter later. More precision gives the follower a higher
payoff in the AoN equilibrium after she enters. In turn, the leader will not risk the receiver
stopping as long as she has enough private information. Item (ii) says that the leader keeps the
receiver indifferent between stopping at prior information (with utility −1

p0
) and observing the

leader’s information.20 Similarly for item (iii), the follower is a monopolist once she enters the
market21 and keeps the receiver indifferent between stopping at the current information (utility
−1

p0+k`ρ`
) and stopping with both senders’ information (utility −1

p0+k`ρ`+k f ρ f
).

The two papers separate into different editorial processes. The leader starts informing
after checking fewer sources, and the follower investigates as long as possible to deliver more
in-depth information.

The payoffs in Lemma 2 pin down the expected payoffs in the investigation race as a
function of the leader’s identity and her entry time k`. Let Li(k`) be paper i’s payoff if it enters
as the leader (` = i) at time k`. Let Fi(k`) be paper i’s payoff if it becomes the follower as paper
` , i enters at time k`. The following result collects the properties of the functions Li and Fi

that allow characterising the unique pure AoN equilibrium of the investigation race.

Theorem 2. For both newspapers i = 1, 2;

• the leader’s payoff Li(k`) is strictly increasing for all k` ≥ 0.

• there is a time k∗i > 0 with the property that, for all k` ≤ k∗i , we have Fi(k`) ≥ Li(k`), and

for all k` > k∗i , we have Fi(k`) < Li(k`).

• k∗1 < k∗2 if and only if ρ1 < ρ2.

In the unique pure AoN equilibrium of the investigation race, the less productive paper starts

reporting first at time k∗ = max{k∗1, k
∗
2}.

To gain intuition for this result, consider Figure 2, which depicts the case in which ρ2 > ρ1.
After k∗ = max{k∗1, k

∗
2} = k∗2, both papers strictly prefer to enter as the leader. By continuity,

for any potential leader entry time later than k∗, the follower prefers to undercut slightly. For
paper i, entering the market as the leader at any k < k∗i is dominated by entering at k∗i : if the
competitor does not enter before, this is due to the monotonicity of Li, if the competitor does
consider entry before, this is due to Fi > Li. Paper 2 will not enter as the leader before k∗2,
the time at which she is indifferent between entering and becoming the leader or becoming the
follower by 1’s entry. If 2 does not stop at k∗2 (but at any time strictly later), the best response
of paper 1, is to enter as the leader at k∗2.

20By item (i), there are no competing offers from the follower.
21The leader’s information was fully revealed before.
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Figure 2: Leader and Follower Payoffs

Theorem 2 shows that the investigation race presented in this model exacerbates the in-
equality in precision levels. The more productive paper investigates longer. This resonates
with a news cycle in which the ‘yellow press’ paper first runs a news story with less careful
fact-checking, and a more investigative newspaper informs the receiver later but more precisely.

With Theorem 2, we can do comparative statics on the total information discovered in
equilibrium. Assume from now on that ρ2 ≥ ρ1, so that newspaper 1 is the first one to enter the
market at k∗ = k∗2. Then, the expected utility of the receiver from the action is Ek2

[
−1

p0+k∗ρ1+k2ρ2

]
.

This gives a measure for the total information obtained in this game. The following result
considers how it changes in parameter values.

Lemma 3. Holding all other parameters fixed, in the investigation-race equilibrium, the value

Ek2

[
−1

p0+k∗ρ1+k2ρ2

]
is

i) decreasing in c, and

ii) decreasing in p0 for all p0 ∈ [0, p] with p > 0.

Point i) states that lower attention costs lead to a higher level of knowledge reached in
equilibrium. According to point ii), interestingly, the overall information may decrease if p0

increases. Hence, if society considers a measure that delivers public information initially, the
incentive effect on the papers that will investigate less as a response may outweigh the first-
order effect and lead to less overall information.

The intuition for this last result is as follows. How long the follower investigates is de-
termined by the time the leader can report on an issue with her own information. As the prior
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precision becomes very small, the leader can attract a lot of attention even with little informa-
tion gathered previously. The follower can then investigate for a long time.

6 Discussion

6.1 Experiment-Based vs Belief-Based Modelling

I model information using a signal-/experiment-based approach instead of the commonly used
belief-based approach of working directly in the space of distributions over posterior beliefs.
See Kamenica and Gentzkow (2011) for static and Ely et al. (2015) for dynamic settings. The
experiment-based approach is more convenient for games with multiple senders and dynamic
games in particular.

Gentzkow and Kamenica (2016) study a static multiple-sender game with belief-based
techniques. They introduce Blackwell connectedness, a condition on the information senders
can offer. It ensures that each sender can unilaterally deviate to any feasible but more informat-
ive posterior distribution. In a simultaneousmove one-shot game, this condition allows them to
consider Nash equilibria in which senders choose the same posterior distribution, and no sender
has an incentive to deviate to a more informative posterior distribution. In the setting presented
here, Blackwell connectedness holds if and only if all senders have one identical signal. Due
to the competition, this case is rather uninteresting in my model. There is a competitive equi-
librium in which all senders offer all their information in the first round. The receiver chooses
randomly which sender to visit, after which all information is observed and the game ends.

Another reason for the experiment-based approach is that different beliefs over signal xi

may arise depending on the information observed previously. Identical offers would give dif-
ferent distributions over posterior beliefs depending on the current belief. Alonso and Camara
(2016) identify a bijection between the posteriors that emerge when players with different pri-
ors update their beliefs through a commonly understood signal. Given that histories are public
in my game, this connection would allow me to set up the model with the belief-based ap-
proach: letting the sender choose the posterior distribution for some baseline belief and keep
track of the resulting posterior distributions corresponding to different beliefs. However, with a
large set of possible beliefs that can emerge in any round, this is not tractable. Furthermore, the
model with experiments can be easily extended to the case with multiple receivers who may
have observed different realisations before choosing from the same set of signals, and the case
in which senders cannot observe the realisations of their competitors.22

22Section 5 allows for the second possibility.
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6.2 Lack of Commitment and Poisson Arrival

I relate my result of the single-sender case to Zhong (2019) and identify the lack of intertem-
poral commitment by the sender as an additional driver in favour of Poisson processes against
Gaussian processes.

Zhong (2019) shows that Poisson learning is uniquely optimal for a decision maker who
designs an optimal information process subject to costs proportional to the expected reduction
in entropy. His paper shows that this is driven by discounting and the resulting risk preferences.
With linear time-costs instead of discounting, Poisson and Gaussian information are both op-
timal for the decision maker. Featuring no discounting, my model identifies another channel
that requires a jump component in the revelation of information – namely, the lack of intertem-
poral commitment by the sender. Together with the non-concavity in the value of information,
this requires discrete jumps in the receiver’s belief with positive probability, even in the limit
as the length of a period goes to 0.

To illustrate this, consider the following example. The receiver has to guess the outcome
of a coin flip, which is the information a single sender holds. That is, Ω = X1 = A = {0, 1} with
x1 = ω. Let the receiver get utility 1 whenever he guesses correctly and 0 otherwise. Then, for
belief ξ = Pr[ω = 1], we have U(ξ) = max{ξ, 1− ξ}. If the current belief is ξ, Lemma 1 implies
that the monopolist gets (1 −max{ξ, 1 − ξ}) 1

c rounds of attention. This holds for all rounds and
beliefs.23 For the receiver to be willing to pay the attention cost c in the current round, any
experiment has to satisfy

Em
[
max{1 − ξ′(ξ,m), ξ′(ξ,m)}

]
− c ≥ max{1 − ξ, ξ}.

It follows that the message m resulting from the offered experiment has to change the receiver’s
optimal action with positive probability. If the chosen action stays constant,

Em
[
max{1 − ξ′(ξ,m), ξ′(ξ,m)}

]
= max

{
Em

[
1 − ξ′(ξ,m)

]
,Em

[
ξ′(ξ,m)

]}
= max{1 − ξ, ξ}

and the experiment’s value is 0. Whenever the current belief ξ is different from 1
2 , this implies

that, with positive probability, the experiment has to induce a discrete jump in the belief.

23As long as (1 −max{ξ, 1 − ξ}) ≥ c. If this is not fulfilled, no further information transmission is possible.
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Figure 3: Experiments without and with action change

The left panel in Figure 3 shows an experiment with value 0. Since the action is un-
changed at both possible posteriors, and U is linear in between, the expected stopping utility
is unchanged. To deliver positive value, any experiment has to change the action with pos-
itive probability, which implies for the example in the graph that a posterior belief < 1

2 has
to be reached with positive probability, as shown in the right panel. This is certainly true for
discrete rounds that require cost c > 0. Yet, jumps in the revelation remain necessary, even
in the continuous-time limit with attention cost cdt per interval with length dt. Zhong (2019)
shows that without loss, any posterior belief process can be decomposed into a Poisson com-
ponent with jumps and a gradual Gaussian component. Letting the period length go to 0, the
probability of a belief change induced by a Gaussian process vanishes exponentially. Together
with the above observation, we can conclude that the information offered by the sender has to
include at least some jump component, even as periods become arbitrarily small. Note that the
reason for Poisson here is different from the risk preferences induced by discounting in Zhong
(2019). In the current model without discounting, Poisson is required by lack of intertemporal
commitment on the side of the sender.

6.3 Complementary Signals and Hold-Up Problem

To illustrate how complementarities in the senders’ information hinder transmission in equi-
librium, consider two senders. Each sender observes the outcome of an independent, fair coin
flip. The receiver has to guess whether the two coins match or not. Let the receiver’s utility
again be 1 if he guesses correctly and 0 otherwise. In this case, the two signals (coin flips) are
perfect complements. In particular, the value of observing one signal without any information
about the other is 0.

Suppose that sender 1 has revealed the result of her coin flip. Sender 2 is a monopolist and
requires 1

c
1
2 visits in expectation to reveal her information.24 Anticipating this, the receiver’s

24The value of sender 2’s information after knowing x1 is the difference between being able to guess correctly for
sure or with probability 1

2 .
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willingness to pay for sender 1’s signal is 0. The receiver is not willing to invest a single visit,
even if sender 1 offers to reveal her information for sure. The cost c > 0 is too high.

There can be no information transmission in equilibrium due to this hold-up problem that
arises with one sender after having observed the other sender’s information.

Going away from the case where the first sender offers to reveal her information perfectly,
suppose that sender 1 revealed partial information, and for concreteness, let the current belief
about x1 be ξ1 with 1

2 < ξ1 < 1. Then, the value of sender 2’s information is v̄2(ξ1) = ξ1 −

1
2 . After knowing the result of the second coin, the receiver guesses correctly whether they
match or not with probability ξ1 >

1
2 . Sender 2 can extract at least v̄2(ξ1)/c units of attention

with the corresponding AoN strategy. Note that, as signals are complements, the value of her
information will increase in expectation with further revelations about x1.

7 Concluding Remarks

This paper presents a tractable model to study dynamic information provision by senders who
are interested in maximising attention. A simple class of processes suffices to transmit all
information from senders to the receiver with minimal attention. For the single sender case,
I identify the lack of intertemporal commitment as a novel driver for Poisson information.
With competition, I identify a condition on the informational externalities that ensures that all
information can be transmitted. The concentration of information on fewer senders decreases
the receiver-payoff in his preferred equilibrium. In the case of Gaussian information where each
sender’s informational endowment can be parametrised by a single number, equal precision
levels among senders are preferable for the receiver.

If the senders’ precision levels are determined in an investigation race, however, they are
polarised. The more efficient newspaper exacerbates its informational advantage by investigat-
ing longer than the less efficient competitor. An exogenous increase of initially available public
information may decrease the newspapers’ incentives to investigate enough to decrease the fi-
nal precision reached in society. Hence, measures that deliver public information on an issue
may be counterproductive and lead to less total information on this issue.

The model lends itself to several extensions that are beyond the scope of this paper. While
I assumed that all messages are publicly observable, modelling information as experiments can
handle heterogeneous priors. Heterogeneous priors may arise if the senders do not observe
the message of the visited competitor or if they do not observe the receiver’s visit history.
Incorporating such non-observabilities would allow a welfare comparison between the case in
which information providers can track their users across sites and the case in which they are
not permitted to do so.

Other interesting avenues for future research are different aspects of information acquis-
ition, such as the choice of issues to report on or the decision between seeking more or less
correlation with other newspapers. The tractable computation of equilibrium payoffs in this
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model can be used as a reduced-form of the payoffs and applied to those questions. Lastly, the
introduction of prices in addition to attention allows for comparing membership-based business
models to advertisement-based business models.
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Appendix

A Additional Results and Omitted Proofs

A.1 Updating of Information
The belief about the state, µ(ξ), if the signal-belief is ξ, is given by

µ(ξ)(·) =

∫
X
µ0
|x(x, ·)dξ(x),

where µ0
|x is the conditional probability of the state ω, given the signals x. Note that two different signal-posteriors

ξ , ξ̂ may induce the same state-belief µ(ξ). As discussed after the proof of Theorem 1, working with µ as the
state variable would not, therefore, contain enough information. As the signal space X is complete and separable,
a regular conditional probability exists. It has the properties that µ0

|x(·,W) is measurable for all W ∈ B(Ω) and
µ0
|x(x, ·) is a probability measure for all x ∈ X.

At the end of round k, the receiver uses message mk resulting from the selected experiment λk to update the
belief from ξk to ξk+1. If, in the following expression, the denominator on the right-hand side is non-zero, the
receiver forms ξk+1 through Bayes’ rule as follows:

ξk+1(·) =

∫
·

λk(xdk ,mk)dξk(x)∫
X
λk(xdk ,mk)dξk(x)

.

In order to define the updating rule ξ′(ξk,m) more generally, note that Lk(·) ≡
∫

X λk(xdk , ·)dξ
k(x) constitutes a

probability measure over M. The updating rule ξ′(ξk,m) is the non-negative function that satisfies∫
M′
ξ′(ξk,m)(·)dLk(m) =

∫
·

λk(xdk M′)dξk(x), for all M′ ∈ B(M).

Such a function ξ′ exists and is unique Lk-almost everywhere by the Radon-Nikodym Theorem, as for any
X′ ∈ B(X), the right-hand side, interpreted as a measure on M, is absolutely continuous with respect to Lk (see
Billingsley, 1995, p. 422).

An experiment from sender i contains information only about xi directly, i.e. λ(xi, ·) is independent of x j

for all j , i. However, the receiver’s belief about x j will still change through the correlation among signals. If
dk = i, the likelihood ratio for two distinct x−i, x′−i, given xi will not be changed through the updating. That is,
ξk+1(xi,x−i)
ξk+1(xi,x′−i)

=
ξk(xi,x−i)
ξk(xi,x′−i)

for all xi.
Lastly, v ≥ 0 always, since

U(ξ) = max
a∈A
Eω∼µ(ξ) [ u(a, ω) ]

= max
a∈A
Em|ξ

[
Eω∼µ(ξ′(ξ,m)) [ u(a, ω) ]

]
≤ Em|ξ

[
max
a∈A
Eω∼µ(ξ′(ξ,m)) [ u(a, ω) ]

]
,

where I shorten the notation from Exi∼ξEm∼λ(xi,·) to Em|ξ. The second equality is due to the martingale property of
beliefs, which ensures that Em|ξ

[
ξ′(ξ,m)

]
= ξ for any experiment.
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A.2 Proofs for General Model

Proof of Lemma 1

The AoN equilibrium follows from the text following Lemma 1. Further,

v̄1

(
ξ0

)
c

is clearly an upper bound for the expected rounds of attention. The AoN strategy ensures the sender this payoff so
that she is not willing to deviate to any strategy with a strictly lower payoff. �

Proof of Theorem 1 without Markov Restriction

This proof refers to the proof of Theorem 1, regarding the second step of Claim 1. Let sender i play the AoN
strategy from the theorem. By the first step of the claim, the receiver does not stop before sender i’s information
is revealed. We can therefore determine the number of visits sender i attracts as

E

∑
n≥0

n∏
m=1

(
1 − λ∗i (ξk(m))

) , (A.1)

where n counts the number of visits to sender i and k(m) is the round in which sender i is visited the m’th time.
The process

(
E

[
v̄(ξ′(ξ0, x−i))

∣∣∣ Fk

])
k≥0

is a martingale. I write the sigma algebra Fk explicitly instead of the belief

ξk. The definition (1) shows that λ∗ is a convex function of the above process, so that the process
(
λ∗(ξk)

)
k≥0

is
a submartingale. For any finite m, the stopping time k(m) is finite almost surely. Further, λ∗ ∈ [0, 1], so that the
submartingale has bounded increments. This implies that we can apply the optional stopping theorem to derive
that, for any m′ > m:

1 − λ∗i (ξk(m)) ≥ E
[ (

1 − λ∗i (ξk(m′))
)∣∣∣∣ Fk(m)

]
.

The following steps show that this permits deriving a lower bound for the number of visits in (A.1) given by

∑
n≥0

(
1 − λ∗i (ξ0)

)n
=

1
λ∗i (ξ0)

. (A.2)

To see how this is derived, consider, for illustration, the sum in (A.1) until n = 2, which satisfies

E
[
1 +

(
1 − λ∗i (ξk(1))

) (
1 +

(
1 − λ∗i (ξk(2))

))∣∣∣∣ F0

]
≥ E

[
1 + E

[ (
1 − λ∗i (ξk(2))

)∣∣∣∣ Fk(1)

] (
1 +

(
1 − λ∗i (ξk(2))

))∣∣∣∣∣ F0

]
= E

[
1 + E

[ (
1 − λ∗i (ξk(2))

)∣∣∣∣ Fk(1)

] (
1 + E

[ (
1 − λ∗i (ξk(2))

)∣∣∣∣ Fk(1)

])∣∣∣∣∣ F0

]
.

The inequality uses (A.2) and the equality follows from the tower property of conditional expectations. This step
can be reiterated. By Doob’s martingale convergence theorem, the limit

lim
k→∞
E

[ (
1 − λ∗i (ξk)

)∣∣∣∣ Fk(m)

]
exists and is smaller or equal to

(
1 − λ∗i (ξ0)

)
. Applying these steps for all n ∈ N0, where the submartingale

inequality and the tower property have to be used repeatedly for terms with n > 2, gives the desired result. �
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A.3 Proofs for Investigation Race
This section presents the discrete time investigation race underlying Section 5. As before, the state distribution
is N(0, 1/p0). The length of each time period is ∆ > 0. Each newspaper’s precision is determined endogenously
in the following stopping game. To obtain information about the state, the papers can investigate before entering
the market to disseminate news. Investigating in round n, i.e. from time n∆ until (n + 1)∆, means that newspaper
i is endowed with signal xi,k ∼ N(ω, 1

ρi

1
∆

). Conditional on the state, signals are independent across senders and
rounds. Entering the market allows the newspaper to offer news from that round onward. Note that the normal
distribution implies that the signals gathered by sender i from round 0 up to market entry at round n are equivalent
to observing a normal signal with precision level nρi∆. The senders get payoff ∆ per round. The receiver’s cost is
c∆ and, as mentioned above, he incurs costs only after the first newspaper entered.

Timing

k k + 1
Senders:
-enter market
- or continue
investigating

Senders who
entered:
offer news

Senders who
investigate:
xi,k realises

Receiver:
–visit i
–action a∗

News realisation

The timing in each round is as follows. Senders decide whether to enter the market. This decision is publicly
observed. Senders who entered in this round or before, offer news. For senders who continue investigating, signal
xi,k realises. News offers become public, and the receiver decides whether to visit one of the senders who offers
news or take the action.

In the main text, I introduced the assumption, ρi > p2
0c, to ensure that each newspaper is efficient enough so

that investigation is efficient initially. For period length ∆, the corresponding assumption is that the first round of
investigation be efficient:

−
1

p0 + ρi∆
− c∆ > −

1
p0
⇔ ρi(1 − p0c∆) > cp2

0. (A.3)

Note that this assumption implies that for any length ∆, p0c∆ < 1. As ∆ goes to zero, (A.3) reduces to the
assumption in the main text.

As in the main text, I focus on pure strategy equilibria, and I rule out that different entry times are rewarded
or punished through the equilibrium that is played after both senders enter the market by focusing on equilibria in
which, after both senders are in the market, they play the AoN continuation equilibria corresponding to Theorem
1. However, different from the main text, this section also considers different equilibrium strategies by the leader
while she is the only sender in the market.

Results

Lemma A.1. Suppose the leader has entered the market in round n` and the follower has not entered. In any
equilibrium of the continuation game, the follower does not enter the market before the leader has revealed all
her information to the receiver.
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Proof. Playing the AoN equilibria after the follower’s market entry implies that her payoff, as a function of entry
rounds n` of the leader and n f of the follower, is(

n fρ f ∆

c(p0 + n`ρ`∆)(p0 + n`ρ`∆ + n fρ f ∆)

)
1
{

n f ρ f
c(p0+n`ρ`∆)(p0+n`ρ`∆+n f ρ f ∆)>1}.

The indicator function whenever

−1
p0 + n`ρ`∆ + n fρ f ∆

−
−1

p0 + n`ρ`∆
> c∆.

This is condition (A1), ensuring that the information held by the follower is worth at least one round of attention.
If the precision of the leader grows too large and her information is revealed too early, the follower cannot attract
any attention.

This payoff is increasing in n f (both the value and the likelihood that the indicator function is one), so that
the follower will enter the market only if the receiver would otherwise stop in this round. In the case that the
follower does not enter, what makes the receiver stop? If the leader has revealed too much information so that
giving out her exact signal is worth less than c∆, the receiver stops. Waiting one more round and hoping that the
follower will enter is not profitable as the follower will extract all the surplus from the receiver. For the leader, it is
optimal to replace any such realisations that would lead the receiver to stop (absent entry of the follower) with full
information revelation. To see why, consider the leader’s payoff in such a round. That is, in a round n in which she
offers an experiment λ, such that the set Mst ≡ {m : 1

p0+ρ`n`∆(1− Var(E[x` |ξ
′ (ξn ,m)])

Var(x` ) )
− 1

p0+ρ`n`∆
< c∆} occurs with positive

probability. Mst includes all messages that make the information about the leader’s signal x` precise enough so
that the receiver is not willing to spend a further c∆, even with the promise of getting all information.25 Clearly,
the leader cannot attract any further visit after a message in Mst has realised. The following change in the offered
experiment increases the leader’s expected utility and ensures that the receiver still accepts. Consider the overall
probability of such a message

Ln(Mst) =

∫
X

∫
Mst

λ(x`, dm)ξn(dx)

and replace all messages in this set by revealing no information with probability αLn(Mst) and all information
with probability (1 − α)Ln(Mst). To ensure the same continuation value for the receiver, α is chosen such that

α
−1

p0 + n`ρ`∆(1 − Var(E[x` |ξn])
Var(x`)

)
+ (1 − α)

−1
p0 + n`ρ`∆

=
1

Ln(Mst)

∫
X

∫
Mst

−1

p0 + ρ`n`∆(1 − Var(E[x` |ξ′(ξn,m)])
Var(x`)

)
λ(x̃`, dm)ξn(d x̃).

The right-hand side is the expected value after a message of set Mst (note that even with the follower entering, the
receiver will be left at her current stopping utility because of the follower’s monopoly power). The left-hand side
equals this expected utility, either giving no further information or all information held by the leader. Note that
α ∈ [0, 1] since for all m, Var(E[x` |ξn]) ≤ Var(E[x` |ξ′(ξn,m)]) ≤ Var(x`). The leader is better off, the probability
with which this round is her last round of attention decreases, and with positive probability, she reached the next
round with the receiver’s belief remaining unchanged. �

Knowing that the follower keeps investigating instead of competing actively as long as the leader still holds
private information gives rise to the following result, akin to Lemma 1 in the main text with the leader in the role
of the monopolist. In every round after she enters, the leader will not offer more information than necessary to

25Note that the set Mst depends on the current belief and the experiment offered.

32



keep the receiver indifferent between stopping and visiting.

Lemma A.2. Suppose the leader enters in round n`. Let n f − 1 be the round in which all her information is
revealed. Then, her expected payoff, (E[n f ] − n`)∆, is equal to

(E[n f ] − n`)∆ =
1
c

(
1
p0
−

1
p0 + n`ρ`∆

)
=

n`ρ`∆
cp0(p0 + n`ρ`∆)

.

This pins down the follower’s expected entry time n f .26 The realisation of n f , however, depends on the
leader’s offer strategy applied from n` onward. There are several such strategies. The main text focused on the
equilibrium in which the leader plays an AoN strategy from n` onward until her information finally realises. There-
fore, I will first consider this equilibrium in what follows and provide the proofs for the main text. Subsequently,
I consider different strategies to argue that the effects and results presented in the main text do not hinge on this
equilibrium selection.

The AoN offer for the leader entering in round n` reveals her information in each period with probability

λ`(n`) =
cp0(p0 + n`ρ`∆)

n`ρ`
.

By the assumptions above, this is smaller than one for any n` ≥ 1.
Fixing the leader’s strategy, the payoffs of leader and follower in the investigation race are determined by the

identity of the leader (` = 1 or ` = 2) and the entry time n`. For the leader, i = `:

Li(n`) =
1
c

n`ρi∆

p0(p0 + n`ρi∆)
=

1
λi(n`)

. (A.4)

For the follower, i = f and j = `:

Fi(n`) =

∞∑
n f =n`+1

(
1 − λ j(n`)

)n f−(n`+1)
λ j(n`)

1
c

n fρi∆1{
n f ρi

c(p0+n`ρ j∆)(p0+n`ρ j∆+n f ρi∆)>1}

(p0 + n`ρ j∆)(p0 + n`ρ j∆ + n fρi∆)
. (A.5)

If both newspapers enter in the same period:

Bi(n`) =1{ 1
c

n`ρi
(p0+n`ρ j∆)(p0+n` (ρ1+ρ2)∆)>1}

1
c

n`ρi∆

(p0 + n`ρ j∆)(p0 + n`(ρ1 + ρ2)∆)

+(1 − 1{ 1
c

n`ρi
(p0+n`ρ j∆)(p0+n` (ρ1+ρ2)∆)>1}) max{0,

1
c

n`ρi∆

(p0 + n`ρ j∆)(p0 + n`(ρ1 + ρ2)∆)

+∆ −
1
c

n`ρ j∆

(p0 + n`ρi∆)(p0 + n`(ρ1 + ρ2)∆)
}.

For the follower i, each round n f > n` is reached with probability
(
1 − λ j(n`)

)n f−(n`+1)
. If the leader’s inform-

ation hits, which happens with probability λ j(n`), the follower receives attention that makes the receiver indifferent
between only the leader’s or both the leader’s and the follower’s information. However, as mentioned above, this
is only if the difference is worth at least one visit, as captured by the indicator function.

The next results show that if ∆ is small enough, there cannot be an equilibrium in which both papers enter
the market at the same time, unless both enter in the very first round.

Lemma A.3. There exist ε > 0 such that for any ∆ ≤ ε, for all n > 1, for i = 1, 2:

Fi(n) > Bi(n).

26For completeness, I call n f the follower’s entry time, even if the indicator function above is 0 and she cannot
attract any attention.
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Proof.

Fi(n) > Bi(n)

⇐=

∞∑
n f =n+1

(
1 − λ j(n)

)n f−(n+1)
λ j(n)

n fρi∆

(p0 + nρ j∆)(p0 + nρ j∆ + n fρi∆)

>
nρi∆

(p0 + nρ j∆)(p0 + n(ρ1 + ρ2)∆)
.

Note that the second line inequality is sufficient because in the cases where the indicator function in any term in
F is 0, it is also 0 for B. In the opposite case, one of the claimed inequalities is always fulfilled. Furthermore,
the fraction is increasing in n f , so that any term of the left-hand sum is greater than the right-hand fraction. It is
multiplied with the probability function of a geometric distribution, which sums to one so LHS has to be greater
than RHS. �

This shows that there cannot be a pure strategy equilibrium in which the senders enter the market in the same
round. The next result shows that if ∆ is small enough, the follower’s payoff in early periods strictly exceeds the
leader’s payoff for both players. This, together with the fact that the leader’s payoff is increasing in n`, implies
that entering as the leader is strictly dominated by investigating in early periods.

Lemma A.4. There exist ε > 0 such that for any ∆ ≤ ε, for both papers, i = 1 and i = 2: there exists n∗i >1, such
that Fi(n`) > Li(n`) for all n` < n∗i .

Proof. To take care of the indicator function in Fi, characterised in (A.5), note that the term on the LHS of the
inequality is increasing in n f . Therefore, we can define

n j(n`) ≡ min
{

n ∈ N

∣∣∣∣∣∣ n ≥ n` + 1 ∩
nρ j

c(p0 + n`ρi∆)(p0 + n`ρi∆ + nρ j∆)
> 1

}
.

We can write Li(n`) < Fi(n`) as

n`ρi∆

p0(p0 + n`ρi∆)
<

∞∑
n f =ni(n`)

(
1 − λ j(n`)

)n f−(n`+1)
λ j(n`)

n fρi∆

(p0 + n`ρ j∆)(p0 + n`ρ j∆ + n fρi∆)
.

The last fraction in the sum satisfies

n fρi∆

(p0 + n`ρ j∆)(p0 + n`ρ j∆ + n fρi∆)
=

1
p0 + n`ρ j∆

(
1 −

p0 + n`ρ j∆

p0 + n`ρ j∆ + n fρi∆

)
.
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The entire sum is then equal to

∞∑
n f =ni(n`)

(
1 − λ j(n`)

)n f−(n`+1)
λ j(n`)

1
p0 + n`ρ j∆

−

∞∑
n f =ni(n`)

(
1 − λ j(n`)

)n f−(n`+1)
λ j(n`)

1
p0 + n`ρ j∆ + n fρi∆

=
(
1 − λ j(n`)

)ni(n`)−(n`+1)
λ j(n`)

1
p0 + n`ρ j∆

∞∑
m=0

(
1 − λ j(n`)

)m

−

∞∑
n f =ni(n`)

(
1 − λ j(n`)

)n f−(n`+1)
λ j(n`)

1
p0 + n`ρ j∆ + n fρi∆

=
(
1 − λ j(n`)

)ni(n`)−(n`+1) 1
p0 + n`ρ j∆

− λ j(n`)
∞∑

m=0

(
1 − λ j(n`)

)m 1
p0 + n`ρ j∆ + (n` + 1)ρi∆ + mρi∆

 .
If ∆ and n` are small enough, we get ni(n`) = n` + 1 so that the above term is larger than(

1
p0 + n`ρ j∆

−
1

p0 + n`ρ j∆ + (n` + 1)ρi∆

)
=

(n` + 1)ρi

(p0 + n`ρ j∆)(p0 + n`ρ j∆ + (n` + 1)ρi∆)
.

With this, a sufficient condition for Li(n`) < Fi(n`) is

n` + 1
n`

p0

p0 + n`ρ j∆

p0 + n`ρi∆

p0 + n`ρ j∆ + (n` + 1)ρi∆
> 1,

which is satisfied for ∆ small enough as the second and third fraction become arbitrarily close to 1 as ∆ decreases
to 0. For fixed ∆, if n j(ni) = ni + 1, then n j(n) = n + 1 for all n ≤ ni. The existence of an n∗i as in the lemma follows
as the term above is decreasing in n`. �

Considering the limit of (A.4) and (A.5) as ∆ goes to 0 and n` goes to∞ fixing the time k = n∆, we get that

Li(k`) =
1

λi(k`)
=

k`ρi

cp0(p0 + k`ρi)
,

and

Fi(k`) =
1

p0 + k`ρ j
−

∫ ∞

0
e−kλ j(k`)λ j(k`)

1
p0 + k`(ρ j + ρi) + kρi

=
1

p0 + k`ρ j
−
λ j(k`)
ρi

e
λ j (k` )
ρi

(p0+k`(ρi+ρ j))
∫ ∞

λ j (k` )
ρi

(p0+k`(ρi+ρ j))

e−s

s
ds.

Proof of Theorem 2

The next results on F and L prove Theorem 2. With the above characterisation, we have for both i that

lim
k`↓0

Li(k`) = lim
k`↓0

Fi(k`) = 0.
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Taking the derivative with respect to k` and considering the limit, gives:

lim
k↓0

(
∂Li(k)
∂k

)
=

ρi

cp2
0

and

lim
k↓0

(
∂Fi(k)
∂k

)
=

ρi

cp2
0

+
ρiρ j

c2 p4
0

.

Hence, the follower’s payoff is higher initially. Furthermore,

lim
k`→∞

Li(k`) =
1

cp0
and

lim
k`→∞

Fi(k`) = 0.

This shows that Fi crosses Li from above at least once. To show that this happens at only one k` > 0, I show that
the derivative of Fi(k`) − Li(k`) crosses 0 at most twice. This is sufficient to rule out a second positive intersection
point since we have established limk`↓0

∂
∂k`

(Fi(k`) − Li(k`)) > 0 and limk`→∞ (Fi(k`) − Li(k`)) < 0. At the first
intersection, Fi crosses Li from above. If there were a second intersection point, Fi would again lie above Li.
For limk`→∞ (Fi(k`) − Li(k`)) < 0 to hold, this would require a third intersection which, in turn, requires that the
derivative be 0 at least three times. Define

ψi(k`) ≡
cp0(p0 + k`ρ j)(p0 + k`(ρi + ρ j))

k`ρiρ j
,

and consider

Fi(k`) − Li(k`)

=
1

c(p0 + k`ρ j)
−

p0(p0 + k`ρ j)
k`ρiρ j

eψi(k`)
∫ ∞

ψi(k`)

e−s

s
ds −

k`ρi

cp0(p0 + k`ρi)

=
p2

0 − k2
`ρiρ j

cp0(p0 + k`ρi)(p0 + k`ρ j)
−

p0(p0 + k`ρ j)
k`ρiρ j

eψi(k`)
∫ ∞

ψi(k`)

e−s

s
ds

Multiply the term with

k`ρiρ j

p0(p0 + k`ρ j)
e−ψi(k`) > 0.

and consider the derivative

∂

∂k`

 (p2
0 − k2

`ρiρ j)(p0 + k`(ρi + ρ j))
p0(p0 + k`ρi)(p0 + k`ρ j)

e−ψi(k`)

ψi(k`)
−

∫ ∞

ψi(k`)

e−s

s
ds


=e−ψi(k`)

c(p0 + k`ρi)(p0 + k`ρ j)
(
p2

0 − k2
`ρiρ j

) (
p2

0 − k2
`ρ j(ρi + ρ j)

)
ck`p0(p0 + k`ρi)2(p0 + k`ρ j)3

− e−ψi(k`)
k`ρiρ j

(
k3
`
ρiρ j(2ρi + ρ j) + 5k2

` p0ρiρ j + k`p2
0ρ j − p3

0

)
ck`p0(p0 + k`ρi)2(p0 + k`ρ j)3

+ e−ψi(k`)
(p2

0 − k2
`ρ j(ρi + ρ j)

k`(p0 + k`ρ j)(p0 + k`(ρi + ρ j))
.
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This is equal to 0 iff

c(p0 + k`ρi)(p0 + k`ρ j)
(
p2

0 − k2
`ρiρ j

) (
p2

0 − k2
`ρ j(ρi + ρ j)

)
cp0(p0 + k`ρi)2(p0 + k`ρ j)2

−
k`ρiρ j

(
k3
`
ρiρ j(2ρi + ρ j) + 5k2

` p0ρiρ j + k`p2
0ρ j − p3

0

)
cp0(p0 + k`ρi)2(p0 + k`ρ j)2

+
p2

0 − k2
`ρ j(ρi + ρ j)

(p0 + k`(ρi + ρ j))
= 0.

Multiplying and rearranging yields(
p0 + k`(ρi + ρ j)

) (
c(p0 + k`ρi)(p0 + k`ρ j)

(
p2

0 − k2
`ρiρ j

) (
p2

0 − k2
`ρ j(ρi + ρ j)

))
−

(
p0 + k`(ρi + ρ j)

) (
k`ρiρ j

(
k3
`ρiρ j(2ρi + ρ j) + 5k2

` p0ρiρ j + k`p2
0ρ j − p3

0

))
+ cp0(p0 + k`ρi)2(p0 + k`ρ j)2

(
p2

0 − k2
`ρ j(ρi + ρ j)

)
= 0.

Collecting k` with equal exponents gives

+ck6
`ρiρ

2
j (ρi + ρ j)2 + k5

`

(
cp0ρ

2
j (ρi + ρ j)2 + cp0ρiρ j(ρi + 3ρ j)(ρi + ρ j)

)
+k4

`

(
cp2

0ρiρ j(ρi + ρ j) + cp2
0ρ j(ρi + ρ j)(ρi + 3ρ j) − ρiρ j(ρi + ρ j)(2ρi + ρ j)

)
+k3

`

(
−cp3

0ρ
2
i − 3cp3

0ρiρ j + cp3
0ρ j(ρi + ρ j) − p0ρiρ j(7ρi + 6ρ j)

)
+k2

`

(
−3cp4

0ρi − 3cp4
0ρ j − p2

0ρ j(6ρi + ρ j)
)

+ k`
(
p3

0ρi − 2cp5
0

)
+ p4

0 = 0.

The factor after k3
`

is negative since ρi > cp2
0 for both i. Therefore, there are exactly two ‘sign changes’ in the

sequence, and by the rule of signs, the number of positive roots is at most two. Next, I show that the intersection
point k∗i as defined in Theorem 2 is lower for the less efficient newspaper (with lower ρi). For this, consider again
the equation Fi − Li = 0. This is equivalent to

(p2
0 − k2

`ρiρ j)(p0 + k`(ρi + ρ j))
p0(p0 + k`ρi)(p0 + k`ρ j)

= ψi(k`)eψi(k`)
∫ ∞

ψi(k`)

e−s

s
ds. (A.6)

with

ψi(k`) =
cp0(p0 + k`ρ j)(p0 + k`(ρi + ρ j))

k`ρiρ j
.

Note that the left-hand side is symmetric, so that it is the same whether i = 1 or i = 2. Further, ψi(k`) > ψ j(k`) if
and only if ρi < ρ j. The function on the right-hand side, xex

∫ ∞
x

e−s

s ds, is increasing in x, so that the term on the
right crosses the term on the left (from below) at an earlier k` for higher ψi. Hence, the higher efficiency newspaper
has a later intersection point. This concludes the proof of Theorem 2. �

Proof of Lemma 3

To establish Lemma 3, suppose wlog that ρ1 < ρ2, so that paper 1 is the leader and enters the market at k∗ = k∗2. To
avoid cluttering the notation, I will drop the follower’s index from the stopping time and auxiliary function. That
is, k∗ = k∗2 and ψ = ψ2 for the remainder of the paper. This allows me to write partial derivatives as, for example,
ψc. Consider the expected precision with which the receiver stops. By Lemma 2, the two papers extract all surplus
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from the receiver, so that the expected utility from the action, Ek2

[
−1

p0+ρ1k∗+k2ρ2

]
, is equal to

−1
p0

+ c (L1(k∗) + F2(k∗)) .

Using the formula for L1 given above and the fact that k∗ was defined such that F2(k∗) = L1(k∗), this simplifies to

−1
p0

+
k∗ρ1

p0(p0 + k∗ρ1)
+

k∗ρ2

p0(p0 + k∗ρ2)
= −

p2
0 − (k∗)2ρ1ρ2

p0(p0 + k∗ρ1)(p0 + k∗ρ2)

Part i). First, consider the change in precision caused by c:

d
dc

− p2
0 − k∗(c)2ρ1ρ2

p0(p0 + k∗(c)ρ1)(p0 + k∗(c)ρ2)

 = kc
4kp0ρ1ρ2 + p2

0(ρ1 + ρ2) + k2ρ1ρ2(ρ1 + ρ2)
(p0 + kρ1)2(p0 + kρ2)2

∣∣∣∣∣∣
k=k∗

. (A.7)

Hence, to show that the total precision is decreasing in c, it is sufficient to show that kc < 0.
By the implicit function theorem and the definition of k∗ in (A.6), we can determine the partial derivative kc

as

kc =

− ∂
∂c

(
(p2

0−k2ρ1ρ2)(p0+k(ρ1+ρ2))
p0(p0+kρ1)(p0+kρ2)

)
ψ +

(
(p2

0−k2ρ1ρ2)(p0+k(ρ1+ρ2))
p0(p0+kρ1)(p0+kρ2)

)
ψc (ψ + 1) − ψcψ

∂
∂k

(
(p2

0−k2ρ1ρ2)(p0+k(ρ1+ρ2))
p0(p0+kρ1)(p0+kρ2)

)
ψ −

(
(p2

0−k2ρ1ρ2)(p0+k(ρ1+ρ2))
p0(p0+kρ1)(p0+kρ2)

)
ψk (ψ + 1) + ψkψ

∣∣∣∣∣∣∣∣∣∣
k=k∗

,

Recall that the condition used to determine k∗ was F2 − L2 = 0. As established above, F2 crosses L2 from above,
so that the denominator of the last expression is negative at k = k∗.

It follows that kc < 0 if and only if

−
∂

∂c

 (p2
0 − k2ρ1ρ2)(p0 + k(ρ1 + ρ2))

p0(p0 + kρ1)(p0 + kρ2)

ψ
+

 (p2
0 − k2ρ1ρ2)(p0 + k(ρ1 + ρ2))

p0(p0 + kρ1)(p0 + kρ2)

ψc (ψ + 1) − ψcψ > 0

⇐⇒
(p2

0 − k2ρ1ρ2)(p0 + k(ρ1 + ρ2))
p0(p0 + kρ1)(p0 + kρ2)

>
ψ

ψ + 1

Applying again the definition of k∗, the fraction on the left is equal to ψeψ
∫
ψ

e−s

s ds. The exponential integral
satisfies the equation ψeψ

∫
ψ

e−s

s ds > ψ
ψ+1 . The comparative static on c follows.

Part ii). To determine the change in p0, consider the definition of k∗:

k∗ =

k > 0 :
(p2

0 − k2ρ1ρ2)(p0 + k(ρ1 + ρ2))
p0(p0 + kρ1)(p0 + kρ2)

= ψeψ
∫ ∞

ψ

e−s

s
ds

 . (A.8)

The expected final precision is given by

−
(p2

0 − k2ρ1ρ2)
p0(p0 + kρ1)(p0 + kρ2)

.

Given the definition of k∗, we have

−
(p2

0 − k2ρ1ρ2)
p0(p0 + kρ1)(p0 + kρ2)

= −
ψ

(p0 + k(ρ1 + ρ2))
eψ

∫ ∞

ψ

e−s

s
ds.
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Note that ψ
(p0+k(ρ1+ρ2)) =

cp0(p0+kρ1)
kρ1ρ2

=
cp2

0
kρ1ρ2

+
cp0
ρ2

goes to zero fast enough so that we must have

lim
p0↓0

− (p2
0 − k2ρ1ρ2)

p0(p0 + kρ1)(p0 + kρ2)

 = 0.

Note that the disutility is weakly negative everywhere. For the term to remain at zero, we need k =
p

√
ρ1ρ2

everywhere. This, however, gives strictly positive values on the right-hand side of the definition of k∗.
By continuity, this implies that there must be a p > 0, such that

d
dp0

− p2
0 − k(p0)2ρ1ρ2

p0(p0 + k(p0)ρ1)(p0 + k(p0)ρ2)

 < 0

for all p0 ≤ p. �

Gradual Information Release by Leader

While the leader’s payoff is fully determined by k` in any pure strategy equilibrium, the follower’s payoff depends
on the leader’s revelation strategy. The analysis above considered the case where the leader makes AoN offers.
However, the leader could choose different distributions, as long as E

[
k f

]
− k` =

k`ρ`
cp0(p0+k`ρ`)

and the receiver
is willing to pay attention in each round. This subsection considers the equilibrium with maximal information
precision. As the senders extract all surplus from the receiver and the leader’s payoff is fixed for fixed k`, this is
equivalent to maximising the follower’s payoff.27

Fixing k` and the resulting E
[
k f

]
, the expected payoff of the follower is

E

[
k fρ f

c(p0 + k`ρ`)(p0 + k`ρ` + k fρ f )

]
.

This is maximised at minimal variance of k f . With this, we can characterise the information-maximal equilibrium
of the stopping game. The payoffs in the stopping game for the leader are

Li(k`) =
1
c

k`ρi

p0(p0 + k`ρi)
,

and for the follower

Fi(k`) = E

[
1
c

k2(k`)ρ j

(p0 + k`ρi)(p0 + k`ρi + k2(k`)ρ j)

]
.

In the information-maximal equilibrium, k2 takes values k` + b
k`ρ1

cp0(p0+k`ρ1) c and k` + d
k`ρ1

cp0(p0+k`ρ1) e.
In the limit as time periods become small, we get

Fi(k) =
1
c

(k` +
k`ρ1

cp0(p0+k`ρ1) )ρ j

(p0 + k`ρi)(p0 + k`ρi + (k` +
k`ρ1

cp0(p0+k`ρ1) )ρ j)

=
k`ρ2(cp0(p0 + k`ρ1) + ρ1)

c(p0 + k`ρ1)(cp0(p0 + k`ρ1)(p0 + k`(ρ1 + ρ2)) + k`ρ1ρ2)
.

The leader cannot commit to giving out more information than necessary to attract the receiver’s attention.
To make sure all her information is revealed by k f = k` +

k`ρ`
cp0(p0+k`ρ`)

with probability one, she therefore has to
release news gradually, so that the receiver is indifferent between stopping and visiting the sender from k` until

27Note that maximising precision for a fixed stopping time of the leader does not directly imply that the resulting
equilibrium of the investigation race has maximal precision. However, this will be the case here as increasing
the follower’s payoff across all k` leads to an increase in the entry equilibrium level, k∗` .
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k f . For k ∈ [k`, k f ), let τ(k) be the non-decreasing precision level transmitted from the leader to the receiver.The
indifference condition prescribes that at all k:

−
1

p0 + τ[k]ρ`
− c(k − k`) = −

1
p0

⇔ τ[k] =
cp2

0(k − k`)
ρ`(1 − cp0(k − k`))

.

The information that the leader gives out per instant is then τ′[k], which increases gradually as time passes from
k` to k f . The more informed the receiver is, the faster his precision has to increase to keep him from stopping.
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