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Carl Heese ❸
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Abstract

This paper studies theoretically how endogenous attention to politics af-

fects social welfare and its distribution. When information of citizens about

uncertain policy consequences is exogenous, a median voter theorem holds.

When information is endogenous, attention shifts election outcomes into a

direction that is welfare-improving. For a large class of settings, election out-

comes maximize a weighted welfare rule. The implicit decision weight of voters

with higher utilities is higher, but less so, when information is more cheap.

In general, decision weights are proportional to how informed voters are. The

results imply that uninformed voters have effectively almost no voting power,

that the ability to access and interpret information is a critical determinant

of democratic participation, and that elections are susceptible to third-party

manipulation of voter information.

1 Introduction

This paper studies how endogenous attention to politics affects social welfare

and its distribution. It is guided by the empirical observation that voters that

care more about a political issue will acquire more information about it.1

I propose a model of an election over a distributive reform with uncertain

consequences.Examples of such reforms are numerous: a trade reform opens

✯I am grateful for helpful discussions with Nageeb Ali, Johannes Hörner, Daniel
Krähmer, Stephan Lauermann, Philipp Strack, and Thomas Tröger as well as comments
from audiences at Bonn, Yale, the CRC TR 224 Conferences 2018 and 2019, CED 2019,
SAET 2019, Stony Brook 2019, CMID 20, the World Congress of the Econometric So-
ciety 2020, and the Young Economist Symposium 2020. The author gratefully acknowl-
edges financial support from the German Research Foundation (DFG) through CRC TR224
(Project B03) and financial support from the European Research Council (ERC 638115).

❸University of Bonn, Department of Economics, heese@uni-bonn.de.
1This is known as the “issue publics hypothesis” (Converse, 1964). See e.g. Krosnick

(1990) and Henderson (2014), and Carpini & Keeter (1996) for an overview about the
American public’s factual knowledge about politics.
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new markets for exporting firms but threatens the prospects in other sectors;a

public health policy reform makes certain treatments more accessible to some

citizens, while implying price increases for a range of pharmaceuticals needed

by others; and a new education reform benefits some children but affects

others negatively. In all these examples, some voters are ex-ante uninformed

about the consequences of the reform, e. g. which sectors gain from a trade

reform, or if their child benefits from education reform. However, they hold

private information about their exposure to the proposed reform, that is,

about the magnitude of their preference intensities: older people care more

about healthcare issues, while changes in education policy are more relevant

to citizens with children (Iyengar et al. , 2008).

Are referenda and elections efficient mechanisms of collective choice in such

situations? This paper considers a modified version of the canonical setting by

Feddersen & Pesendorfer (1997). Relative to Feddersen & Pesendorfer (1997),

the voters’ information about the policies is endogenous and the setting allows

that the voters have conflicting interests (distributive politics). There are two

possible policies: a reform and a status quo. Voters’ preferences over policies

are heterogeneous and depend on an unknown, binary state in a general way

(some voters may prefer the reform only in the first state, others may prefer

the reform only in the second state, while some “partisans” may prefer one

of the policies independently of the state). The preferences are each voter’s

private information. Besides, all voters can receive information about the state

in the form of a noisy signal, and each voter freely chooses the precision of her

private signal. More precise information is more costly. Upon receiving their

signals, all citizens vote simultaneously. The election determines the outcome

by simple majority rule. Feddersen & Pesendorfer (1997) have shown that

when voters receive conditionally i.i.d. signals of some exogenous quality and

their preferences are “monotone” in all equilibria of large elections the outcome

preferred by the median voter is elected state-by-state.2 In many situations

where voters have conflicting interests this is not the first-best outcome: for

example, when 51% of the citizens marginally benefit from a reform, while

the other 49% are severely impacted by it.

In our setting, elections either lead to the full-information outcome, but

otherwise lead to outcomes that are only preferred by a minority ex-post

2The preference distribution of the voters is “monotone” if a higher belief in the first
state entails that more voters prefer the reform.
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(Theorem 2). This is the case when a minority of the voters is more severely

affected by the reform. As a consequence, the minority will be better informed.

Importantly, the more information the minority voters acquire, the more they

correlate their vote with the unknown state of the world, thereby pushing the

outcome in their favorite direction in each state. When voters of the minority

group acquire substantially more information than others, they coordinate

well on voting for their preferred policy, and this policy will indeed be elected

in each state.

We provide the result that election outcomes are as if the decision weight

of a citizen is proportional to how informed she is, provided the cost of vot-

ers to acquire political information are not “too high”. This has important

implications: first, when information cost are extremely low, all voters are

relatively well informed, the implicit decision weights of citizens are approxi-

mately equal, and election outcomes almost always lead to majority-preferred

outcomes. Second, uninformed citizens have no voting power, similar to voters

that abstain due to voting being costly. Third, elections may be susceptible

to targeted informational interventions of third-parties, which we will discuss

in Section 6.

The main result characterizes which group of voters sharing a common

interest will win the election. For this, we aggregate the decision weights of

the citizens to describe the power of voter groups with common interests. A

group’s power increases in its size and the group’s welfare at stake. The main

result shows that the group with the larger power wins the election in each

state. Under an independence condition,this yields sharp welfare predictions:

elections lead to outcomes that maximize a weighted welfare rule. The weight

of a voter is higher when her utilities are higher, but less so, when information

is more cheap. For example, for intermediate cost, each citizen’s information

and weight turn out to be proportional to her utility. Then, elections lead to

utilitarian outcomes.3

The main result describes the properties of limit equilibria with state-

dependent election outcomes in large electorates. Thereby, we show, in par-

ticular, existence of such informative limit equilibria. This is economically

surprising since voters of a large electorate face a severe free-rider problem

3I also show that aggregate cost of the voters converge to 0 as the electorate grows large
such that the equilibrium sequences with utilitarian outcomes imply first-best results, even
when taking into account the cost of voters, see Lemma 10.
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when acquiring private information is costly, much similar to the reasoning in

Downs’ paradox of voting (Downs, 1957). The existence of informative limit

equilibria relies on the observation that information acquisition in elections

can be complementary, which we discuss in Section 4.5.4. This complementar-

ity also drives an equilibrium multiplicity. Citizens may coordinate on paying

much or very few attention to politics (Theorem 4).

In Section 6, we provide several extensions: first, we discuss the role of

polarization of utilities within voter groups, and show that a more polarized

group has a smaller electoral power and sufficiently much polarization, ceteris

paribus, will lead the group to lose the election (Theorem 6). Second, we

provide an extension where the cost of information of voters is heterogeneous,

capturing that citizens have different abilities to access and interpret politi-

cal information. Third, we discuss the potential of manipulative information

provision by third-parties and its effectiveness.

In Section 7, we discuss the paper’s contribution to the literature on vot-

ing cost and vote buying, especially Krishna & Morgan (2011) and Lalley &

Weyl (2018). We also discuss the contribution to the literature on distribu-

tive politics, especially Fernandez & Rodrik (1991), and to the literature on

information aggregation in elections: both modifications relative to Feddersen

& Pesendorfer (1997) that are made in this paper have been studied before,

but not together: Martinelli (2006) has studied a variant with endogenous

information, and shown that the median voter theorem also holds, but only

if voters can acquire relevant political information at a cost that is “not too

high,” thereby establishing the first existence result for informative equilib-

rium sequences.4 Bhattacharya (2013a) has shown that the median voter re-

sult generalizes to settings with conflicting interests.5 Importantly, his model

does not allow to study the role of the intensity of preferences since the result

is invariant to scaling the intensities of specific groups of voters. The paper

also relates to a literature studying the interaction of limited attention of vot-

ers and the policy choices of political platforms. Matějka & Tabellini (2017)

4Formally, what matters for the result is how fast cost goes to zero when a voter chooses
an arbitrarily uninformative signal. Basically, the critical condition is that elasticity of
the cost function at the precision of the uninformative signal is large enough. The same
condition is necessary in this paper for the existence of limit equilibria with non-trivial
state-dependent outcomes, as the electorate grows large.

5Bhattacharya (2013a) also shows that the result breaks down when preferences are non-
monotone; in particular, even minimal non-monotonicities turn around welfare predictions.

4



study this question in a probabilistic voting model.6 There, citizens who pay

attention are more responsive to policy changes, and as a consequence, polit-

ical candidates offer policies catered to more attentive citizens. What differs

is that in their work, endogenous attention distorts equilibrium policies away

from first-best policies; in other words, the welfare implication is in the op-

posite direction relative to this paper. Second, the mechanism how attention

affects policy outcomes is distinct from this paper, where information implic-

itly allows voter groups to coordinate more strongly, thereby enhancing their

electoral power.

A Two-Type Example

The following extreme setting shows how a minority can overcome the domi-

nance of a majority by correlating their vote more strongly with the state than

the majority. Thereby, we illustrate how utilitarian outcomes can be elected,

even when a majority of the voters do not prefer the outcome ex-post.7 There

are 2n+ 1 voters. With probability 1 > λ > 1
2
, a voter is aligned and prefers

the reform A over the status quo B only in α and B over A in β. Otherwise,

a voter is contrarian and prefers A in β and B in α.8 An aligned voter gets a

small utility of ǫ > 0 when her preferred policy is adopted, while a contrarian

voter gets a utility of 1 when her preferred policy is adopted. Each voter

can either get a private, perfect signal about the state at a given cost c > 0

or an uninformative signal at no cost. The common prior about the state is

uniform, i.e., Pr(α) = 1
2
. Let ǫ is sufficiently small such that ǫλ < (1 − λ);

hence, in order to maximize utilitarian welfare, the election should choose the

contrarians’ prefered policy.

Consider three scenarios: zero, intermediate and high cost. When cost is zero,

i.e. c = 0, all voters become perfectly informed about the state and the out-

come preferred by the median voter is elected in each state. When the cost

is very high, e. g. c > 1, nobody gets informed, and the policy elected is

independent of the state. Now, suppose that only the contrarians receive the

6See also Hu & Li (2018).
7We do not discuss the welfare effects of the cost for the example since it turns out

that the aggregate cost is arbitrarily small in the equilibria of the main model when the
electorate is large, n → ∞ (see Section 6.4).

8The terminology used to label the voter types carries no economic meaning whatsoever
but only relates to the notation. Aligned voters prefer the outcome that is “aligned” with
the state.
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perfect signal, and vote for their prefered outcome in each state; the aligned

have no information about the state and vote for each policy with the same

probability, i.e. 50 − 50. Then, in each state, the outcome preferred by the

contrarians is elected as the electorate grows large. We claim that this be-

haviour is an equilibrium for an intermediate range of cost c. The relevant

observation is that the value of information is higher for the contrarians since

ǫ < 1. As a consequence, there are intermediate levels of cost that exceed the

value of information for the aligned, but not for the contrarians.9

2 Model

There are 2n+ 1 voters (or citizens), two policies A and B, and two states of

the world ω ∈ {α, β} = Ω. The prior probability of α is Pr (α) ∈ (0, 1).

Voters have heterogeneous and state-dependent preferences. A voter’s

preference is described by a type t = (tα, tβ), where tω ∈ [−1, 1] is the utility

of A in ω. The utility of B is normalized to zero, so that tω is the difference be-

tween the utilities of A and B in ω. The types are identically distributed across

voters according to a cumulative distribution function H : [−1, 1]2 → [0, 1]

that has a continuous density h. A voter’s type is her private information.

Each voter privately observes a binary signal s ∈ {a, b} about the state. The

joint distribution of the type and the signal of a voter is independent of the

distribution of the signals and the types of the other voters conditional on the

state.

The voting game is as follows. First, nature draws the state and the profile of

types t according to H. Second, after observing her type, each voter chooses

a precision x(t) ∈ [0, 1
2
] of her signal, that is 1

2
+ x(t) = Pr(a|α) = Pr(b|β).

Then, private signals realize. After observing her private signal, each voter

simultaneously submits a vote for A or B. Finally, the submitted votes are

counted and the majority outcome is chosen.

There is a strictly increasing, strictly convex, and twice continuously differen-

9For completeness, note that without the private signal, a citizen is indifferent between
voting for either of the policies. First, recall that the prior is Pr(α) = 1

2 . Second, the
citizens do not infer anything about the state from conditioning on being pivotal for the
election outcome. This is because the event in which the citizen’s vote affects the outcome
is equally likely in each state in the candidate equilibrium since in β the reform wins with

the same margin of
[

λ 1
2 + (1− λ)

]

− 1
2 = 1

2 (1− λ) and in α the reform loses with a margin
1
2 (1− λ) in expectation.
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tiable cost function c : [0, 1
2
] → R+ and when choosing precision x, the voter

bears a cost c(x) where c(0) = 0. There is d > 1 such that10

lim
x→∞

c′(x)

xd−1
∈ R. (1)

A strategy σ = (x, µ) of a voter consists of a function x : [−1, 1]2 → [0, 1
2
]

mapping types to signal precisions and of a function µ : [−1, 1]2 × {a, b} →

[0, 1] mapping types and signals to probabilities to vote A, i.e., µ(t, s) is the

probability that a voter of type t with signal s votes for A. I consider only non-

degenerate strategies.11 I analyze the Bayes-Nash equilibria of the Bayesian

game of voters in symmetric strategies, henceforth called equilibria.

2.1 Preferences

Figure 1 shows the area of possible preference types. Voters having types t in

the north-east quadrant prefer A for all beliefs and voters having types t in

the south-west quadrant always prefer B (partisans). Voters having types t in

the south-east quadrant prefer A in state α and B in β (aligned voters), and

voters having types t in the north-west quadrant prefer B in state α and A

in β (contrarian voters). To simplify the exposition, in the rest of the paper,

we only consider strategies σ where the partisans use the (weakly) dominant

strategy to vote for their preferred policy.12

Aggregate Preferences. A central object of the analysis is the aggregate

preference function

Φ(p) = PrH({t : p · tα + (1− p) · tβ ≥ 0}), (2)

which maps a belief p ∈ [0, 1] about the state being α to the probability that a

10It will be a direct insight from the preliminary results in the next section that without
the condition d > 1, no voter acquires any information in equilibrium when n is sufficiently
large; see (18).

11A strategy σ is degenerate if µ(t, s) = 1 for all (t, s) or if µ(t, s) = 0 for all (s, t).
When all voters follow the same degenerate strategy and there are at least three voters,
if one voter deviates to any other strategy, then the outcome is the same. Therefore, the
degenerate strategies with x = 0 are trivial equilibria.

12In fact, for any non-degenerate strategy, I show that the likelihood that a given voter
is pivotal for the election outcome is non-zero (see Section 3.1) such that voting for the
preferred policy while not acquiring any information is the unique strict best response for
all partisans.
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Figure 1: For any given belief p = Pr(α) ∈ (0, 1), the set of types t with a
threshold of doubt y(t) = p is given by tβ = −p

1−p
tα. Voter types north-east of

the indifference line (shaded area) prefer A given p.

random type t prefers A given p. Figure 1 illustrates Φ: the (colored) line cor-

responds to the set of types t = (tα, tβ) that are indifferent between policy A

and policy B when holding the belief p. Voters having types to the north-east

prefer A given p (shaded area); these types have mass Φ(p). The indifference

set has a slope of −p

1−p
and an increase in p corresponds to a clockwise rotation

of it. Given that H has a continuous density, Φ is continuously differentiable

in p.

I assume that

Φ(0) <
1

2
, and Φ(1) >

1

2
(3)

such that the median-voter preferred outcome is A in α and B in β. In

particular, this excludes the cases when there is a majority of partisans for

one policy in expectation. I also make the genericity assumption that Φ is not

constant on any open interval.13 Henceforth, I will call distributions H that

have a continuous density and satisfy (3) simply preference distributions. The

set of the aligned types is denoted L = {t : tα > 0, tβ < 0} and the set of the

contrarian types is denoted C = {t : tα < 0, tβ > 0} and g ∈ {L,C} is the

generic symbol for a voter group, aligned or contrarians.

13This assumption is known from the literature, see Bhattacharya (2013b).
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Threshold of Doubt and Preference Intensity It is useful to view

types as information about, first, the relative preference intensities across

states,

y(t) =
−tβ

tα − tβ
, (4)

and, second, the total intensity,

k(t) = tα − tβ. (5)

For any aligned type t, y(t) and k(t) together uniquely pin down t.14 Simi-

larly, for any contrarian type t, y(t) and k(t) together uniquely pin down t.

Recall that a strategy describes a voting choice and an information choice for

each type. Section 3 shows that the threshold of doubt y(t) determines the

voting choice of (non-partisan) types, and the total intensity determines the

information choice.

3 Citizens’ Votes and Information

3.1 Threshold of Doubt Pins Down Vote

Take any strategy σ = (x, µ) of the voters. The probability that a voter of

random type votes for A in state ω ∈ {α, β} is denoted q(ω; σ). A simple

calculation shows that

q (α; σ) =

∫

t∈[−1,1]2
(
1

2
+ x(t))µ(t, a) + (

1

2
− x(t))µ(t, b)dHt, (6)

and

q (β; σ) =

∫

t∈[−1,1]2
(
1

2
− x(t))µ(t, a) + (

1

2
+ x(t))µ(t, b)dHt. (7)

I also refer to q (ω; σ) as the (expected) vote share of A in ω.

Pivotal Voting. Take a single citizen, and fix a strategy σ′ of the other

voters. The given citizen’s vote determines the outcome only in the event

when the votes of the other citizens tie, denoted piv. Thus, a strategy is

14For t ∈ L, y(t)k(t) = tβ , and (1− y(t))k(t) = tα.
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optimal if and only if it is optimal conditional on the pivotal event piv. The

probability that the votes of the other citizens tie in ω is

Pr (piv|ω; σ′, n) =

(
2n

n

)

(q (ω; σ′))
n
(1− q (ω′; σ))

n
. (8)

since conditional on the state, the type and the signal of a voter is indepen-

dent of the types and the signals of the other voters. For any type t of the

given citizen, and given the precision choice x(t), let Pr(α|s, piv; σ′, n) be the

posterior probability of α conditional on having received the private signal s

and conditional on being pivotal when the other voters use σ′. We conclude

that, µ is part of a best response σ = (x, µ) if and only if for all t = (tα, tβ)

and for the signal precision x(t),

Pr(α|s, piv; σ′, n) · tα + (1− Pr(α|s, piv; σ′, n)) · tβ > 0 ⇒ µ (s, t) = 1, (9)

Pr(α|s, piv; σ′, n) · tα + (1− Pr(α|s, piv; σ′, n)) · tβ < 0 ⇒ µ (s, t) = 0, (10)

that is, a voter supports A if the expected value of A conditional on being

pivotal and s is strictly positive and otherwise supports B. Note that for each

aligned type t ∈ L, (9) and (10) are equivalent to

Pr(α|s, piv; σ′, n) > y(t) ⇒ µ(t, s) = 1, (11)

Pr(α|s, piv; σ′, n) < y(t) ⇒ µ(t, s) = 0; (12)

and for all contrarian types t ∈ C, (9) and (10) are equivalent to

Pr(α|s, piv; σ′, σ, n) > y(t) ⇒ µ(t, s) = 0, (13)

Pr(α|s, piv; σ′, σ, n) < y(t) ⇒ µ(t, s) = 1, (14)

We see that y(t) is the unique belief that a makes a voter of type t indifferent,

thereby qualifying the name threshold of doubt.

3.2 Preference Intensity Pins Down Information Level

What is the marginal value of information to a citizen? Take an aligned voter,

and fix the likelihood x(t) > 0 of her receiving a correct signal about the state.

At the end of this section, we establish that she votes A after a and B after b

10



(Lemma 1), that is, she votes for her preferred policy in each state whenever

receiving a “correct signal” . When she is not pivotal, the policy elected is

independent of her private precision x(t). In the pivotal event, using Lemma

1, her expected utility from the elected policy is

Pr(piv|σ′, n) Pr(α|piv; σ)(
1

2
+ x(t))tα (15)

in state α, and

Pr(piv|σ′, n) Pr(β|piv; σ)(
1

2
− x(t))tβ (16)

in state β, where we used that the utility from B is normalized to zero.15

Therefore, the marginal benefit of a higher precision x(t) is

MB(x(t); σ′, n) (17)

= Pr(piv|σ′, n)(Pr(α|piv; σ)tα − Pr(β|piv; σ)tβ)

= Pr(piv|σ′, n)k(t)c1(y(t))

for c1(y(t)) = Pr(α|piv; σ)(1 − y(t)) + Pr(β|piv; σ)y(t), where we used that

tα = k(t)(1 − y(t)) and tβ = k(t)y(t) for the last equation. We see that the

total intensity k(t) is decisive. Finally, for any type t for which it is optimal to

acquire some information, x(t) > 0, the precision is pinned down by equating

marginal benefits and marginal cost,

c′(x(t)) = MB(x(t); σ′, n) (18)

It follows from the strict convexity of c, that for any t, there is a unique

solution to (18), denoted x∗(t; σ′, n). Moreover, x∗(t; σ′, n) is continuously

differentiable by an application of the implicit function theorem, and, given

15Similarly, in the pivotal event, a contrarian’s expected utility when choosing x(t) is

Pr(piv;σ′, n) Pr(α|piv;σ)(
1

2
− x(t))tα

in state α, and

Pr(piv;σ′, n) Pr(β|piv;σ)(
1

2
+ x(t))tβ

in state β.
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(1),

x∗(t; σ, n) ≈ MB(x(t); σ′, n)
1

d−1 . (19)

Lemma 1 Take any strategy σ′. The function µ is part of a best response

σ = (x, µ) if and only if

∀t ∈ L : x(t) > 0 ⇒ µ(t, a) = 1 and µ(t, b) = 0, (20)

∀t ∈ C : x(t) > 0 ⇒ µ(t, a) = 0 and µ(t, b) = 1. (21)

The proof is in the Appendix.

3.3 Information Acquisition Region

The critical types t with y(t) = Pr(α|piv; σ′, n) are indifferent between A and

B without further information, given (11) - (14). Lemma 2 shows that, for

each total intensity k = k(t) ∈ [0, 2], only types in a certain interval around

the critical types acquire information.

Lemma 2 Let σ′ be a strategy with limn→∞ Pr(α|piv; σ′, n) ∈ (0, 1). When

n is large enough, for any k ∈ (0, 2) and any g ∈ {L,C} there are φ−
g (k) <

Pr(α|piv; σ′, n) < φ+
g (k) for such that for any best response σ = (x, µ) to σ′

and any type t ∈ g with k(t) = k,

x(t) > 0 ⇔ y(t) ∈ [φ−
g (k), φ

+
g (k)], (22)

The proof is in the Appendix. Figure 2 illustrates the functions φ−
g and φ+

g .

For intuition: one can show that y(t) ≥ φ−
g (k) if and only if

Pr(α|piv)

Pr(β|piv)

1
2
− x∗∗(t)

1
2
+ x∗∗(t)

≤
y(t)

1− y(t)
, (23)

and y(t) ≤ φ+
g (k) if and only if

y(t)

1− y(t)
≤

Pr(α|piv)

Pr(β|piv)

1
2
+ x∗∗(t)

1
2
− x∗∗(t)

, (24)

for x∗∗(t; σ, n) = x∗(t; σ, n)(1 − c(x∗(y,k;σ,n))
x∗(t;σ,n)c′(x∗(t;σ,n))

), where x∗(t; σ, n) is the so-

lution to the first-order condition (18). Thus, to decide if to acquire any

12
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Figure 2: Information Acquisition regions of group g with boundaries the
graphs of φ−

g (k) and φ+
g (k) (dashed lines).

information, a voter discounts the precision x∗(t; σ, n) of her optimal informa-

tive signal by a certain cost factor, and then considers if, given the discounted

precision, one of the signals, a or b, sways her opinion on which policy to vote

for or if none of the signals sways her.

For the later equilibrium analysis, it is key to observe that the region of

types acquiring information vanishes as n → ∞. This observation will allow

us to understand the aggregate information acquisition of large electorates by

local approximations.

Lemma 3 Take any σ′. Take the best response σ = (x, µ). Then, for any

k ∈ [0, 2],

lim
n→∞

φ+
g (k) = lim

n→∞
Pr(α|piv; σ′, n) = lim

n→∞
φ−
g (k). (25)

We claim that limn→∞ Pr (piv|σ, n) = 0, that is, the pivotal likelihood goes to

zero as n → ∞. In fact, a Stirling approximation of the binomial coefficient

and (8) yields16 17

Pr (piv|ω; σ, n) ≈ 4n(nπ)−
1

2

[

q(ω; σ)(1− q(ω; σ)
]n

, (26)

16The notation xn ≈ yn describes that two sequences (xn)n∈N and (yn)n∈N are asymp-

totically equivalent in the following sense: limn→∞
xn

yn

= 1.
17Stirling’s formula yields (2n)! ≈ (2π)

1

2 22n+
1

2n2n+ 1

2 e−2n and (n!)2 ≈ (2π)n2n+1e−2n.

Consequently,
(
2n
n

)
≈ (2π)−

1

2 22n+
1

2n− 1

2 = 4n(nπ)−
1

2 .
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and limn→∞ Pr (piv|σ, n) = 0 follows from (26) since q(1−q) is bounded above

by 1
4
on [0, 1]. Importantly, this implies

x∗(t; σ, n) → 0, (27)

given (19) and (17). Hence, x∗∗(t; σ, n) → 0. This, together with (23) and

(24) implies (25).

4 Informative Equilibrium Sequences

In the following, for the ease of the exposition, we take Φ to be strictly mono-

tone. The results in the general case do not differ qualitatively, and are

provided in Section 6. We consider a sequence of elections along which the

electorate’s size 2n + 1 grows. For each n and a strategy σn, we calculate

the probability that a policy z ∈ {A,B} wins the support of the majority of

the voters in state ω, denoted Pr(z|ω; σn, n). We are interested in the limits

of Pr(z|ω; σ∗
n, n) for equilibrium sequences (σ∗

n)n∈N. We are particularly in-

terested in equilibrium sequences where citizens vote in an informed manner

such that the election outcomes differ across the states,

lim
n→∞

Pr(A|α; σn, n) 6= lim
n→∞

Pr(A|β; σn, n), (28)

which we call informative.18

4.1 Information Weighted Majority

What will matter in informative equilibria is if the aligned voters or the con-

trarian voters acquire more information, that is if

∫

t∈L

x(t)dH(t) >

∫

t∈C

x(t)dH(t). (29)

The precision x(t) of a voter will play the role of an implicit decision weight

of each voter. We will show that, in large electorates, in all states, the policy

preferred by the aligned is elected when the sum of their decision weights is

18For large classes of settings, any typical efficiency measure, for example, full-
information equivalence or utilitarian efficiency, requires equilibrium sequences to be in-
formative.
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larger than that of the contrarians, and vice versa. A heuristic explanation is

this: when all citizens acquire some information, x(t) > 0,

q(α; σ∗
n) =

[ ∫

t∈L

1

2
+ x(t)dH(t) +

∫

t∈C

1

2
− x(t)dH(t)

]

, (30)

q(β; σ∗
n) =

[ ∫

t∈L

1

2
− x(t)dH(t) +

∫

t∈C

1

2
+ x(t)dH(t)

]

, (31)

given Lemma 1. Hence,

q(α; σ∗
n) >

1

2
> q(β; σ∗

n)

⇔

∫

t∈L

x(t)dH(t) >

∫

t∈C

x(t)dH(t). (32)

Thus, whenever (29) holds, a majority of citizens votes for A in α and B in

β, that is for the outcomes prefered by the aligned. What this heuristic does

not capture though is that the uninformed types, x(t) = 0, may play a role in

the election unless they randomize their vote 50− 50.

In Section 4.2, we describe
∫

t∈g
x(t)dH(t) in terms of the primitives of the

model, thereby uncovering how the properties of a voter group g determine

the endogenous information and the electoral power of the group. In Section

4.3, we state and prove the main result, characterizing all informative equi-

librium sequences, thereby showing the somewhat surprising implication that

the uninformed types (mis)coordinate on voting 50− 50 in the aggregate.

4.2 Information and Power of Voter Groups

The following result shows that, when n is large, the information
∫

t∈g
x(t)dH(t)

acquired by a voter group is proportional to the mass of the critical types in

the voter group and proportional to a weighted mean of the intensities of these

critical types. The weight of the intensities depends on the limit elasticity of

the cost function, d = limx→0
c′(x)x
c(x)

, which can be interpreted as a measure of

how “cheap” information of low precision is.19 The proof uses Lemma 3 and

is provided in Section 4.2.1 and Section 4.2.2.

19For illustration, take e.g. cd(x) = xd. Then limx→0
cd(x)
c
d′
(x) = ∞ if d′ > d.
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Lemma 4 Let g ∈ {L,C}. Take any strategy σ′. Let p̂ = limn→∞ Pr(α|piv; σ′, n) ∈

(0, 1), and

W (g, p̂) = Pr({t : t ∈ g}) Pr({t : y(t) = p̂}|t ∈ g)
︸ ︷︷ ︸

likelihood of critical types

E(k(t)
2

d−1 |y(t) = p̂, t ∈ g)
︸ ︷︷ ︸

weighted mean intensity of critical types

.

For the best response σ = (x, µ) to σ′,

∫

t∈g

x(t)dH(t) ≈ W (g, p̂) Pr(piv|σ′, n)
2

d−1 c2, (33)

where c2 > 0 is a constant independent of g.

Note that, in the following, we sometimes denote types by (y, k) instead of t.

4.2.1 How Many Voters Acquire Information and How Much

Fix k = k(t). Given Lemma 3, when n is large, only types close to critical

type with y(t) = Pr(α|piv; σ, n) acquire information, x(t) > 0. We show that,

as a consequence, all such types choose asymptotically equivalent precisions

as n → ∞. In the following, we sometimes drop σ and n to shorten notation.

Claim 1 Take any strategy σ′. Take the sequence of best responses. Let

k ∈ [0, 2]. Take any converging sequence (yn)n∈N. If x(yn, k) > 0 for all n,

xn(yn, k)

xn(Pr(α|piv), k)
≈ 1. (34)

Proof. Differentiating the first-order condition (18) implicitly, we show

lim
n→∞

∂x∗(y, k; σn, n)

∂y
= 0. (35)

in the Appendix. Together with Lemma 3, (35) implies (34).

We show that the interval of types acquiring information, x(t) > 0, is

asymptotically symmetric around the critical type with y(t) = Pr(α|piv).

Claim 2 Take any sequence σ′
n. Take the sequence of best responses σn =

(xn, µn). Then, for any k ∈ (0, 2),

x∗∗
n (Pr(α|piv), k)

φ+
g (k)− Pr(α|piv)

≈
x∗∗
n (Pr(α|piv), k)

Pr(α|piv)− φ−
g (k)

≈ c3, (36)
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for x∗∗
n (y, k) = xn(y, k)(1 − c(xn(y,k))

c′(xn(y,k))xn(y,k)
), and where c3 is a constant that

only depends on limn→∞ Pr(α|piv).

Proof. The proof of Lemma 2 provides also an equivalent description of

the boundary conditions (23) and (24): the information acquisition interval

[φ−
g (k), φ

+
g (k)] is implicitly given by

1

2
− x∗∗(φ−

g (k), k) = χ(φ−
g (k)), (37)

1

2
+ x∗∗(φ+

g (k), k) = χ(φ+
g (k)), (38)

for χ(y) = Pr(β|piv)y
Pr(α|piv)(1−y)+Pr(β|piv)y

.20 Since φ−
g (k) → Pr(α|piv) and φ+

g (k) →

Pr(α|piv) (see Lemma 3) and since χ(Pr(α|piv)) = 1
2
, Taylor approximations

of χ(φ−
g (k)) and χ(φ−

g (k)) give

χ′(Pr(α|piv))
[

φ+
g (k)− Pr(α|piv))

]

≈ x∗∗(φ+
g (k)), (39)

χ′(Pr(α|piv))
[

Pr(α|piv)− φ−
g (k)

]

≈ x∗∗(φ−
g (k)). (40)

Finally, (36) follows from (39), (40), (34), and the continuity of c.

4.2.2 Aggregate Information of a Voter Group

Denote by f the density of the cumulative distribution function of the thresh-

old of doubt y(t). Now, we finish the proof of Lemma 4. For this, we show

that, fixing the total intensity k = k(t), the average precision of citizen types

is proportional to the likelihood of the critical type and the weighted intensity

k(t)
2

d−1 ,

E(x(t)|k(t) = k, t ∈ g)

≈ f(Pr(α|piv)|k(t) = k, t ∈ g)
︸ ︷︷ ︸

likelihood of critical type

k
2

d−1

︸︷︷︸

weighted intensity

Pr(piv)
2

d−1 c1. (41)

for a constant c1 > 0 that only depends on Pr(α|piv). Then, we aggregate

over k to obtain (36). Details for this aggregation are in the Appendix.

20To see how (37) and (23) relate, rewrite (23),
1

2
−x∗∗(t)

1

2
+x∗∗(t)

≤ Pr(β|piv)
Pr(α|piv)

y(t)
1−y(t) , and rewrite

further, 1
2 − x∗∗(t) ≤ χ(y). Similarly, for (38) and (24).
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First, given Lemma 3, Taylor approximations of the c.d.f yield

f(Pr(α|piv) | k(t) = k, t ∈ g)
[

φ−
g (k)− φ+

g (k)
]

Pr({t : φ−
g (k) ≤ y(t) ≤ φ+

g (k)} | k(t) = k, t ∈ g)
≈ 1. (42)

Combining (34), (36), and (42), for any k,

E(x(t)|k(t) = k, t ∈ g)

≈ xn(Pr(α|piv), k)x
∗∗
n (Pr(α|piv), k)f(Pr(α|piv)|k(t) = k, t ∈ g)c4

≈ xn(Pr(α|piv), k)
2f(Pr(α|piv)|k(t) = k, t ∈ g)c5. (43)

for constants c4 6= 0 and c5 6= 0 and where, for the last line, we used that

x∗∗
n (Pr(α|piv), k) ≈ d−1

d
xn(Pr(α|piv), k) since 1

d
= limx→0

c(x)
c′(x)x

. We see that

what matters are the likelihood and the precision of the critical type. The

precision of the critical type scales with the total intensity,

x(Pr(α|piv), k)2 ≈ k(t)
2

d−1

[

Pr(piv)c1(Pr(α|piv))
] 2

d−1

, (44)

given (18), so that (44) and (43) imply (41).

4.2.3 Power of a Voter Group

We call

W (g) = W (g, p̂) (45)

the power of a voter group, where p̂ is the unique belief p̂ for which the

electorates preferences are split, Φ(p̂) = 1
2
. The next lemma shows that for

any informative equilibrium sequence, the threshold of doubt of the critical

types converges to p̂, so that, given Lemma 4, W (g) measures the amount of

information acquired by the group in any such equilibrium sequence.

Lemma 5 Let Φ(p̂) 6= 1
2
. Then, for any informative equilibrium sequence

(σ∗
n)n∈N,

lim
n→∞

Pr(α|piv; σ∗
n, n) = p̂. (46)

The proof is provided in the Appendix. There, we show that when (46) does
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not hold, the vote shares q(ω; σ∗
n) do not converge to 1

2
, and as a consequence,

the citizens choose exponentially low levels of precision. This, in turn, implies

that the difference in the vote shares in α and β is exponentially small. Finally,

we show that this implies that the distribution of the election outcome is

asymptotically the same in both states as n → ∞, which cannot be true in

any informative equilibrium sequence.

4.3 Result

The main result shows that for all informative equilibrium sequences, the

outcome preferred by the group with the larger power is elected as n → ∞.

Moreover, there exists an informative equilibrium sequence when information

of low precision x ≈ 0 is sufficiently cheap; this will be captured by a condition

on the elasticity at zero, limx→0
c′(x)x
c(x)

.21 We call W (L) 6= W (C), W (L) 6=, and

W (C) 6= 0 the genericity conditions.

Theorem 1 Let limx→0
c′(x)x
c(x)

> 3. Take any preference distribution H satis-

fying the genericity conditions and Φ(Pr(α)) 6= 1
2
.

1. For all informative equilibrium sequences (σ∗
n)n∈N,

lim
n→∞

Pr(A|α; σ∗
n, n) = lim

n→∞
Pr(B|β; σ∗

n, n)

=







0 if W (L) < W (C),

1 if W (L) > W (C).
(47)

2. There is an informative equilibrium sequence (σ∗
n)n∈N.

4.4 Proof: Power Rule

This section proves the first item of Theorem 1, showing that the order of the

power of aligned and contrarians determines election outcomes. First of all,

q(α; σ∗
n) > q(β; σ∗

n) ⇔
∫
t∈L

x(t)dH(t)
∫
t∈C

x(t)dH(t)
> 1,22 so that, given Lemma 4, the order

21The same condition appears in Martinelli (2006)’s model as a sufficient condition for
informative and determinate equilibrium outcomes.

22First, partisans vote the same in both states. Second, for aligned types the likelihood
to vote A in α differs by 2x(t) from the likelihood to vote A in β. Third, for contrarian
types the likelihood to vote A in α differs by −2x(t) from the likelihood to vote A in
β. Together, q(α;σ∗

n) − q(β;σ∗
n) =

∫

t∈L
2x(t)dH(t) −

∫

t∈C
2x(t)dH(t), which implies the

equivalence stated.
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of W (g) pins down the order of the vote shares: for n large enough,

q(α; σ∗
n) > q(β; σ∗

n) ⇔
W (L)

W (C)
> 1, (48)

The key step is to establish that when the elasticity of the cost function at zero

is sufficiently large, limx→0
xc′(x)
c(x)

= d > 3, then, for any equilibrium sequence

(σ∗
n)n∈N outcomes are determinate as n → ∞,

lim
n→∞

Pr(A|ω; σ∗
n, n) ∈ {0, 1}. (49)

in each state ω. For informative equilibrium sequences, this implies that A is

elected in one state, and B in the other. When the vote share for policy A is

higher in α than in β, A is elected in α, and B in β and vice versa when the

vote share for policy A is higher in β than in α. We conclude that (48) and

(49) together imply (47). The following section proves (49).

4.4.1 Determinate Outcomes

We show that, given d > 3, for any sequence of equilibria, the outcomes are

determinate, as n → ∞, that is, we prove (49).

For this, for any sequence of strategies (σn)n∈N and any n, let q(σn) =

(q(α; σn), q(β; σn)), and denote by s(ω;q(σn)) =
[

q(ω; σn)(1 − q(ω; σn)(2n +

1)
] 1

2

the standard deviation of the vote share in ω. Let

δ(ω) = lim
n→∞

2n+ 1

s(ω;q(σn))

[

q(ω; σn)−
1

2

]

(50)

be the normalized distance of the expected vote share to the majority thresh-

old as n → ∞.

The proof of (49) proceeds in three steps. The first step shows that,

as a consequence of the central limit theorem, as n → ∞, the asymptotic

distribution of the outcome policies only depends on the distance of the vote

share to the majority threshold in terms of standard deviations, i.e. δ(ω).

The proof of this step is in the Appendix.

Observation 1 Take any sequence of strategies (σn)n∈N and any state ω ∈
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{α, β}. The probability that A gets elected in ω converges to

lim
n→∞

Pr(A|ω; σn) = Φ(δ(ω)),

where Φ(·) is the cumulative distribution of the standard normal distribution.

What determines the equilibrium distance of the vote shares to each other,

and thereby their distance to the majority treshold, is how much information

the voters acquire in equilibrium,

q(α; σn)− q(β; σn) = 2
[ ∫

t∈L

x(t)dH(t)−

∫

t∈C

x(t)dH(t)
]

. (51)

For the second step, suppose that the election is not determinate in a state ω,

e.g. in α. Given Observation 1, δ(α) ∈ R. We show that q(α; σn)− q(β; σn) is

of of an order larger than inverse of the standard deviation of the vote share,

lim
n→∞

[

q(α; σn)− q(β; σn)
]

s(ω;q(σn)) ∈ {∞,−∞}. (52)

if d > 3. To prove (52), first, we show that

lim
n→∞

[

q(α; σn)− q(β; σn)
]

Pr(piv|σn, n)
−1 = ∞. (53)

if d > 3. To see why, note that

∫

t∈L

x(t)dH(t)−

∫

t∈C

x(t)dH(t)

≈
[

W (L)−W (C)
]

Pr(piv|σ∗
n, n)

2

d−1 c2, (54)

given Lemma 4. Using that the pivotal likelihood goes to zero as n → ∞, (53)

follows from (51), (54), and the genericity conditions. Second, using the local

central limit theorem, we show that, for all strategies with vote shares close

to the majority threshold as in the lemma, the pivotal likelihood is inversely

proportional to the the standard deviation of the vote share.

Observation 2 For any sequence of strategies (σn)n∈N. If limn→∞ q(ω; σn) ∈

(0, 1), then

lim
n→∞

Pr(piv|ω; σn)s(ω;q(σn)) = φ(δ(ω)), (55)

21



where φ the probability density function of the standard normal distribution.

The proof is an application of the local central limit theorem, and provided

in the Appendix.23 Observation 2 and (53) together yield (52).

Finally, we prove (49). Note that we can write δ(ω) = limn→∞ s(ω;q(σn))
[

q(ω; σn)−

1
2

]

. Hence, (52) implies δ(α) − δ(β) ∈ {∞,−∞}. Since δ(α) ∈ R, we have

δ(β) ∈ {∞,−∞}. Then, Lemma 2 implies that the inference from the piv-

otal event is not bounded, and limn→∞ Pr(α|piv, s; σ∗
n) = 0 for s ∈ {a, b}.

Hence, as n → ∞, citizens vote as if they know that β holds, so that

limn→∞ q(α; σ∗
n) = Φ(0) < 1

2
, which contradicts δ(α) ∈ R. The assumption

that the election outcome is determinate in β similarly leads to a contradic-

tion.

4.5 Proof: Existence

This section proves existence of an informative equilibrium sequence when

limx→0
c′(x)x
c(x)

> 3. For this, first, we provide a convenient equilibrium repre-

sentation.

4.5.1 Equilibrium Representation through Vote Shares

It follows from the analysis of the best response in Section 2 that, for n large

enough, an equilibrium is a (non-degenerate) strategy σ = (x, µ) that satisfies

(11)-(14), with σ′ = σ, (18) for all types t with x(t) > 0, and (22).

I claim that equilibrium can be alternatively characterized in terms of the

vector of the expected vote shares of outcome A in state α and β, i.e.,

q(σ) = (q(α; σ), q(β; σ)). (56)

Note that for any σ and any ω ∈ {α, β}, the vote share q(ω; σ) pins down

the likelihood of the pivotal event conditional on ω, given (8). Given (11)-

(14), (18), and (37)-(38), the vector of the pivotal likelihoods is a sufficient

statistic for the best response, and therefore q(σ) as well. Given some vector

of expected vote shares q = (q(α), q(β)) ∈ (0, 1) , let σq be the best response

to q. Then, σ∗ is an equilibrium, if and only if, σ∗ = σq(σ∗). Conversely, an

23See Gnedenko (1948), and Davis & McDonald (1995) for the local limit theorem for
triangular arrays of integer-valued variables.
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equilibrium can be described by a vector of vote shares q∗ that is a fixed point

of q(σ−), i.e.,24

q∗ = q
(
σq

∗)
. (57)

In the following, I use the notation Pr(α|piv;q) to denote the posterior

consistent with (8) and the vote shares q, and also further analogous notation.

The next two sections provide an analysis of the best response function q(σ−)

in two steps. Section 4.5.2 describes the pivotal inference given vote shares

q. Section 4.5.3 describes the vote shares of the best response, given some

pivotal inference about the state.

4.5.2 Inference in Large Elections

We record the intuitive fact that voters update toward the substate in which

the vote share is closer to 1/2, that is, in which the election is closer to being

tied in expectation.

Lemma 6 Take any strategy σ for which Pr (piv|β; σ, n) ∈ (0, 1). If

∣
∣
∣
∣
q (α; σ)−

1

2

∣
∣
∣
∣
< (≤)

∣
∣
∣
∣
q (β; σ)−

1

2

∣
∣
∣
∣
, (58)

then
Pr (piv|α; σ, n)

Pr (piv|β; σ, n)
> (≥)1. (59)

Proof. The function q(1−q) has an inverse u-shape on [0, 1] and is symmetric

around its peak at q = 1
2
. So,

∣
∣q − 1

2

∣
∣ < (≤)

∣
∣q′ − 1

2

∣
∣ implies that q(1 − q) >

(≥)q′(1− q′). Thus, it follows from (8) that (58) implies (59).

Moreover, Lemma 6 extends in an extreme form as the electorate grows

large (n → ∞): the event that the election is tied is infinitely more likely in

the state in which the election is closer to being tied in expectation. In fact,

the likelihood ratio of the pivotal event diverges exponentially fast.

24The ability to write an equilibrium as a finite-dimensional fixed point via (57) is a
significant advantage. Similarly, a reduction to finite dimensional equilibrium beliefs has
been useful in other settings; see Bhattacharya (2013b), Ahn & Oliveros (2012) and Heese
& Lauermann (2017).
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Lemma 7 Consider any sequence of strategies (σn)n∈N. If,

lim
n→∞

∣
∣
∣
∣
q(α; σn)−

1

2

∣
∣
∣
∣
< (>) lim

n→∞

∣
∣
∣
∣
q(β; σn)−

1

2

∣
∣
∣
∣
, (60)

then, for any κ ≥ 0,

lim
n→∞

Pr(piv|α; σn, n)

Pr(piv|β; σn, n)
n−κ = ∞(0). (61)

Proof. Let

kn =
q(α; σn)(1− q(α; σn))

q(β; σn)(1− q(β; σn))
.

From (8), the left-hand side of (61) is (kn)
n

nκ . The function q(1−q) has an inverse

u-shape on [0, 1] and is symmetric around its peak at q = 1
2
, as is illustrated

in Figure 3 in the Appendix. Therefore, (60) implies that limn→∞ kn > 1. So,

limn→∞ (kn)
n = ∞. Moreover, (kn)

n diverges exponentially fast and, hence,

dominates the denominator nκ, which is polynomial.

4.5.3 Vote Shares and the Citizen’s Inference

We show that, as n → ∞, under the best response, the expected vote share

for policy A in ω is given by the mass of types preferring A given the pivotal

belief Pr(α|piv; σ′.n), that is Φ(Pr(α|piv; σ′
n)).

Lemma 8 Take any sequence of strategies (σ′
n)n∈N. Take the sequence of best

responses σn. For any ω ∈ {α, β},

lim
n→∞

q(ω; σn) = lim
n→∞

Φ(Pr(α|piv; σ′
n)). (62)

The proof is provided in the Appendix. The basic intuition is that, as

n → ∞, the precision of all types signals goes to zero uniformly, (27), so that,

given (11)- (14), “in the limit” voters decide simply according to the pivotal

belief.

4.5.4 Intuition: Information Acquisition can be a Complement

Lemma 8 is key to get an intuition why informative equilibrium sequences ex-

ist. The relevant economic observation coming from the lemma is that infor-

mation acquisition can be complementary as a result of the pivotal inference:
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Take the case Φ(Pr(α)) > 1
2
. Without pivotal inference, Pr(α|piv; σn, n) =

Pr(α). Then, under the best response, A is elected with a positive margin

as n → ∞, limn→∞ q(ω; σ∗
n) >

1
2
, using Lemma 8 and the weak law of large

numbers. Since A is elected with a positive margin, the incentives to get

informed are small, in fact, exponentially small, see (26). However, if citi-

zens acquire more information, so that q(α; σn) and q(β; σn) differ sufficiently

much, voters may make an inference about the state when conditioning on the

election being tied in a way, so that limn→∞ Φ(Pr(α|piv; σn, n)) =
1
2
. Then,

under the best response, the election is close to being tied, thereby creating

incentives to get informed. This illustrates how information acquisition can

spur even more information acquisition, that is information acquisition may

be complementary.

4.5.5 Fixed Point Argument

This section uses a fixed point argument to show that there is a sequence

of equilibrium vote shares (q∗
n)n∈N such that the corresponding sequence of

equilibrium strategies are informative. We provide the proof for the case

when Φ(Pr(α)) < 1
2
and when the minority group has the higher power,

W (L) < W (C). The proof proceeds in two steps. First, we show that for any

vote share q(α) in α close to 1
2
, we find a vote share q∗n(β) such that the best

response to (q(α), q∗n(β)) has again the same vote share in α.

Step 1 Let Φ(Pr(α)) < 1
2
and W (L) < W (C). For any ǫ > 0 small enough,

any 1
2
− ǫ

2
≤ q(α) ≤ 1

2
, and any n large enough, there is q∗n(β) ≥

1
2
such that

q(α) = q(α; σ(q(α),q∗n(β))). (63)

and q∗n(β) is continuous in q(α).

Take 1
2
− ǫ

2
≤ q(α) ≤ 1

2
, and let q = (q(α), q(β)) in the following.

Substep 1 If q(β) = 1
2
+ǫ , then, for ǫ > 0 small enough and n large enough,

q(α; σq) > q(α). (64)

The election is more close to being tied in α, and, by Lemma 7, voters become

convinced that the state is α, i.e., limn→∞ Pr(α|piv;q, n) = 1. It follows from
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Lemma 8 that limn→∞ q(α; σq) = Φ(1). Finally, (64) follows when ǫ is small

enough since Φ(1) > 1
2
.

Substep 2 If q(β) = 1
2
, then for ǫ > 0 small enough and any n,

q(α; σq) < q(α). (65)

The election is more close to being tied in β, and, by Lemma 6, voters update

towards β, i.e. Pr(α|piv;q, n) ≤ Pr(α). Since Φ(Pr(α)) < 1
2
, Lemma 8 implies

that limn→∞ q(α; σq) < 1
2
. Finally, (65) follows when ǫ is small enough.

Since q(α; σq) is continuous in q(β), it follows from Substep 1, Substep 2,

and the intermediate value theorem that, for n large enough, there is q∗n(β)

such that (63) holds. It follows from the implicit function theorem that q∗n(β)

is continuous in q(α).

Step 2 For any n large enough, there is q∗n(α) such that

q∗n(β) = q(β; σ(q∗n(α),q
∗
n(β))). (66)

Substep 1 For q(α) = 1
2
, and any n large enough,

q(β; σ(q(α),q∗n(β))) > q∗n(β), (67)

Recall that Φ is strictly increasing. Lemma 8 together with (63) implies

limn→∞ Pr(α|piv;qn, n) = p̂ ∈ (0, 1) for qn = (1
2
, q∗n(β)). We claim that

δ(β)(qn) ∈ R, (68)

where the notation highlights that δ(β) = limn→∞(q∗n(β)−
1
2
) 2n+1
s(β;qn)

depends on

qn. Otherwise, since δ(α)(qn) = limn→∞(q(α) − 1
2
) 2n+1
s(α;qn)

= 0, Observation 2

implies limn→∞ Pr(α|piv;qn, n) = 1, which contradicts the earlier observation

limn→∞ Pr(α|piv;qn, n) ∈ (0, 1). We claim that

lim
n→∞

[

q(β; σqn)− q(α; σqn)
]

s(β; σqn) ∈ {∞,−∞}. (69)

For this, we show that

lim
n→∞

[

q(β; σqn)− q(α; σqn)
]

Pr(piv|qn, n)
−1 = ∞. (70)
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To see why, note that

q(β; σqn)− q(α; σqn) = 2
[ ∫

t∈L

x(t)dH(t)−

∫

t∈C

x(t)dH(t)
]

≈
[

W (L)−W (C)
]

Pr(piv|qn, n)
2

d−1 c2, (71)

where the first equality restates (51), and the second line follows from Lemma

4. Using that the pivotal likelihood goes to zero as n → ∞, (70) follows

from d > 3, (71), and the genericity conditions. Then, (69) follows from (70),

Observation 2 and δ(ω)(qn) ∈ R. Note that q(α; σqn = 1
2
, given (63), and that

q(β; σqn) > q(α; σqn) for n large, given (48) and W (L) < W (C). Therefore,

(68) and (69) together imply (67).

Substep 2 For q(α) = 1
2
− ǫ, and any n large enough,

q(β; σ(q(α),q∗n(β))) < q∗n(β), (72)

Lemma 8 together with (63) implies limn→∞ q(β; σ(q(α),q∗(β))) = 1
2
− ǫ. Since

q∗n(β) >
1
2
by construction, (72) holds for n large enough.

Finally, using (72) and (67) and that q(β; σ(q(α),q∗n(β))) is continuous in

q(α), the claim of Step 2 follows from an application of the intermediate value

theorem .

It follows from Step 1 and Step 2 that for any n large enough, there is

a pair of vote shares q∗n(α) such that q∗
n = (q∗n(α), q

∗
n(β)) is a fixed point

of q(σ−). Moreover q∗n(α) ≤ 1
2

≤ q∗n(β) by construction, implying that

limn→∞ Pr(A|α; σq, n) ≤ 1
2
≤ limn→∞ Pr(A|β; σq, n). Recalling that limit

equilibrium outcomes are determinate when d > 3 (see (49)), this implies

that the equilibrium sequence is informative. This concludes the proof when

W (C) > W (L) and Φ(Pr(α)) < 1
2
. The other cases are analogous.

4.6 Weighted Welfare Rules

This section shows that for a large class of settings, elections lead to outcomes

that maximize a weighted welfare rule. Roughly speaking, the result holds

under independence conditions which imply that the utilities of the critical

types are representative of the whole population.
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Independence Conditions. We consider preference distributions for

which the conditional distribution of the threshold of doubt, F (·|t ∈ g), is

independent of the voter group, i.e. for all g ∈ {L,C},

F (·|t ∈ g) = F. (73)

The conditional distribution J(·|t ∈ g) of the total intensities of types t ∈ g

is independent from F , that is, for all g ∈ {C,L} and all y ∈ [0, 1]

J(·|t ∈ g, y(t) = y) = J(·|t ∈ g). (74)

Recall that partisans stay uninformed and simply vote for their preferred

policy, so that the information cost cannot screen their intensities. Therefore,

we consider settings without partisans,25

Pr({t ∈ L}) ∪ Pr({t ∈ C}) = 1. (75)

Weighted Welfare. For any κ ∈ [0, 1], any state ω, the κ-weighted

welfare of A is

∑

i=1,...,2n+1

(tω(i))
κ, (76)

where we added the label i of each citizen to the notation. The κ-weighted wel-

fare of B is zero. Given the independence assumptions (73) and (74), W (L) >

W (C) ⇔ Pr({t : t ∈ L})E(k(t)
2

d−1 |t ∈ L) > Pr({t : t ∈ C})E(k(t)
2

d−1 |t ∈ C).

Using tα = k(t)(1− y(t)) and tβ = k(t)y(t) and the assumption that the total

intensity k(t) is independent of the threshold of doubt y(t),

W (L) > W (C)

⇔ Pr({t : t ∈ L})E(t
2

d−1

ω |t ∈ L) > Pr({t : t ∈ C})E(t
2

d−1

ω |t ∈ C). (77)

25In fact, all results hold under the weaker condition that the welfare at stake is, in
expectation, the same for A-partisans and B-partisans,

Pr({t : tα > 0, tβ > 0})EH(|tω||ω, {t : tα > 0, tβ > 0})

= Pr({t : tα < 0, tβ <})EH(|tω||ω, {t : tα < 0, tβ < 0}).

for all ω ∈ {α, β}.
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for any state ω. Therefore, Theorem 1 together with the weak law of large

numbers yields:

Theorem 2 Let limx→0
c′(x)x
c(x)

> 3. Take any preference distribution H satis-

fying the genericity conditions and the independence conditions (73)- (75).

For all informative equilibrium sequences, the elected policy maximizes κ-

weighted welfare, for κ = 2
d−1

with probability converging to 1, as n → ∞.

5 Non-Informative Equilibrium Sequences

This section shows that there are two types of non-informative equilibrium

sequences, thereby finishing the complete characterization of equilibrium se-

quences.

5.1 Voting According to the Prior is a Limit Equilib-

rium

There is an equilibrium sequence where, as n → ∞, all citizens vote according

to the prior belief. Hence, A is elected when a majority prefers A given the

prior belief, Φ(Pr(α)) > 1
2
, and B is elected when a majority prefers B given

the prior belief, Φ(Pr(α)) < 1
2
. The proof is in the Appendix.

Theorem 3 Let Φ(Pr(α)) 6= 1
2
. There exists an equilibrium sequence (σ∗

n)n∈N

for which

lim
n→∞

Pr(A|α; σ∗
n, n) = lim

n→∞
Pr(A|β; σ∗

n, n) =







1 if Φ(Pr(α)) > 1
2
,

0 if Φ(Pr(α)) < 1
2
,

(78)

Theorem 3 and Theorem 1 show that citizens may coordinate on acquiring

much information, but they may also (mis)coordinate on acquiring very few

information. The proof of Theore 3 highlights the role of the complementarity

of information acquisition. Given the equilibrium sequence that converges to

“voting according to the prior”, citizens acquire very few information, so that

the vote shares are approximately the same in each state. As a consequence,

the pivotal event contains no information, limn→∞ Pr(α|piv; σ∗
n, n) = Pr(α),

and limn→∞ q(ω; σ∗
n) = Φ(Pr(α)) 6= 1

2
(see Lemma 8), so that either policy A

or policy B wins by a clear margin. Anticipating this, citizens have in fact
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low incentives to get informed since the individual likelihood of affecting the

outcome is exponentially small.

5.2 All Other Equilibria

We complete the characterization of equilibrium sequences. We show that

when limx→0
c′(x)x
c(x)

> 3, there is a third type of equilibrium sequence. This

equilibrium sequence leads to the outcome that is preferred by the voter group

with the larger power given the prior belief. The proof is in the Appendix.

Theorem 4 Take any preference distribution H satisfying the genericity con-

ditions.

1. If limx→0
c′(x)x
c(x)

< 3, all equilibrium sequences satisfy (78).

2. If limx→0
c′(x)x
c(x)

> 3, there are three types of equilibrium sequences. There

is an informative equilibrium sequence satisfying (47). There is an equi-

librium satisfying (78), and there is an equilibrium sequence (σ∗
n)n∈N

with

lim
n→∞

Pr(z(ω)|α; σ∗
n, n) = lim

n→∞
Pr(A|β; σ∗

n, n) = 1 (79)

where z(ω) is the outcome preferred by the group g′ with the larger power,

g′ = argmaxg∈{L,C} W (g).

3. Any equilibrium sequence satisfies either (47), (78), or (79).

The basic intuition for why there is another equilibrium sequence comes again

from the observation that information acquisition of citizens can be comple-

mentary, as discussed in Section 4.5.3.

For illustration, let p̂ > Pr(α), so a majority prefers B given the prior.

We argue that, when the contrarians have a larger power, W (L) < W (C),

then, there is an equilibrium sequences where A is elected in both states. To

construct such an equilibrium sequence, we employ a fixed point argument

similar to the one for the informative equilibrium sequence in Section 4.5.5, .

We show that there are equilibrium vote shares q∗
n = (q(α)n, q(β)n), satisfying

Φ(Pr(α)) <
1

2
< qn(α) < qn(β) (80)
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for n large such that Φ(Pr(α|piv;q∗
n)) → 1

2
as n → ∞. Policy A is elected

in both states cince equilibrium outcomes are determinate, as n → ∞, when

limx→0
c′(x)x
c(x)

> 3 (see (49)). Information acquisition is complementary in the

following sense: citizens acquire information such that the inference about

the state implies Φ(Pr(α|piv;qn, n) ≈
1
2
. Thus, the resulting vote shares are

close to 1
2
by (8), making the election close to being tied, and thereby creating

incentives for all citizens to acquire information.

6 Discussion and Extensions

6.1 Heterogenous Information Access and Skills

Access to information sources and the ability to interpret information vary

widely across citizens. We can capture this in the alternative model where

the attention cost of the citizens depends on a private type γ ∈ [ 1
M
,M ] for

M > 0, and γ is drawn i.i.d. across voters from some absolutely continuous

distribution with strictly positive density. For a given cost function c, a voter

of effort type γ pays c(γ, x) = γc(x) for a signal of precision x.

It turns out that the previous analysis already captures this alternative

model since cost and preference intensities are strategically equivalent: pre-

cisely, the best response of an aligned or contrarian voter with effort type γ,

total intensity k and threshold of doubt y is the same as that of the voter with

effort type γ′ = 1, total intensity k
γ
and threshold of doubt y, given the char-

acterization of the best response, (11)-(14), (18), (37) and (38). Therefore, it

is without loss to treat the additional heterogeneity in terms of cost as part of

the preference type distribution; for any distribution of γ and H, call Ĥ the

induced preference distribution, capturing both types of heterogeneity.

When the effort type is independent of the preference types and signals

of the voters, the previous welfare results (e.g. Theorem 2) carry over. This

is for two reasons: first, independence implies that the policies maximizing

κ-weighted welfare are the same under H and Ĥ as n → ∞.26 Second, if H

satisfies the independence conditions (73)-(75), then so does Ĥ.

More interesting are the situations where attention cost and preference

types are correlated. It can happen that such correlation hinders welfare-

26Since γ and t are independent, E(( 1
γ
k(t)y(t))κ) = E( 1

γ

κ
)E(k(t)y(t))κ). Thus

E(( 1
γ
k(t)y(t))κ) > 0 is equivalent to E(k(t)y(t))κ) > 0.
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efficient outcomes. An example: suppose that elder people prefer policies

aligned with the state and younger people do not. Empirically, elder people

care a lot about healthcare issues. Thus, suppose that it is utilitarian to

choose their preferred policy. Typically, elder people are also less educated in

information technologies. One can show, that, when, ceteris paribus, effort

cost are much higher for the elder, their electoral power W (L) is relatively

low, and their preferred policy is not elected in any informative equilibrium,

given limx→0
c′(x)x
c(x)

> 3.

6.2 Third-Party Manipulation: Obfuscation of Voters

From the entertainment of the arena in ancient rome to hollow media cam-

paigns on social media platforms nowadays, diverting the attention of the

people from important economic and political issues, is an ubiquitous tool of

politicians for managing democracies. We ask: how manipulable are elections

by hollow information provision of third-parties? To analyze this question, we

consider the alternative model where a third party can send a signal to specific

voters, and the signal is uninformative for the issue relevant to the election

(“obfuscation”). The game is as before, except that voters of the targeted

group draw an uninformative signal with a given probability q̃, and else the

costly signal with the precision x(t) as acquired. Obfuscation has two effects.

First, there is a direct effect on the precision of targeted voters; the average

precision of a targeted voter choosing x(t) is

(1− q̃)x(t). (81)

There is also an indirect effect since the targeted voter anticipates drawing

an uninformative signal. This reduces the excepted benefit as well as the

expected marginal benefit of her private information. One can show, that, as

a consequence, a voter of a given type t is less likely to acquire any information

when targeted relative to when not, and also chooses a lower precision.

Now—similar to the analysis before— the decision weight of each individ-

ual voter is given by her average precision. The obfuscated power of a voter

group g is

W̃ (g, q̃) = (1− q̃)W (g). (82)
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The analogue of Theorem 1 holds: when limx→0
c′(x)x
c(x)

> 3, in any informative

equilibrium sequence, the policy preferred by the voter group with the larger

power W̃ (g, q̃) is elected. This illustrates the effectiveness of the obfuscation

of voters, and implies:

Theorem 5 Let limx→0
c′(x)x
c(x)

> 3. Take any preference distribution H satis-

fying the genericity conditions and Φ(Pr(α)) 6= 1
2
. There is q̄ < 1, so that,

if the third-party obfuscates a group g with a likelihood q̃ > q̄, then, for all

informative equilibrium sequences (σ∗
n)n∈N,

lim
n→∞

Pr(z(ω)|ω; σ∗
n, n) = 0

for all ω ∈ {α, β}, where z(ω) is the policy preferred by the obfuscated voter

group in ω.

6.3 Polarized Preferences

This section shows that groups of voters that share common interests are less

likely to win an election when the preference intensities vary more strongly

across the voters in the group.

First, Lemma 9 shows that the relative power of a voter group is smaller

when the preference intensities are more dispersed within the group. A pref-

erence distribution H ′ is a g-intensity spread of H if, ceteris paribus,

J(−|t ∈ g;H) <mps J(−|t ∈ g;H ′), (83)

where J(−|t ∈ g;H) is the conditional distribution of the (total) intensities

k(t) of the types t ∈ g, and where (83) means that J(−|t ∈ g;H ′) is a mean-

preserving spread of J(−|t ∈ g;H), and by ceteris paribus, we mean that the

conditional distribution of the preference types t ∈ g′ 6= g is unchanged as

well as the conditional distribution of the threshold of doubt y(t) of the types

t ∈ g and also the likelihood of a type being aligned or contrarian.

Lemma 9 Let d = limx→0
c′(x)x
c(x)

> 3. Let g ∈ {C,L}. Take any preference

distributions H,H ′ satisfying (73) - (75) and the genericity conditions.

1. If H ′ is an L-intensity spread of H,

WH′(L)

WH′(C)
<

WH(L)

WH(C)
. (84)
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2. If H ′ is a C-intensity spread of H,

WH′(L)

WH′(C)
>

WH(L)

WH(C)
. (85)

The proof is in the Appendix. The basic argurment is that, when d > 3, the

power of the group, W (g), is proportional to the mean of a concave function

of the intensities, E(k(t)
2

d−1 ) see the definition in (4). The result will follow

from an application of Jensen’s inequality.

We lift the restriction that t ∈ [−1, 1]2, and allow for more extreme pref-

erence types t ∈ [−M,M ]2 for M > 0. When M is arbitrarily large, there can

be arbitrarily large within-group preference dispersion. Theorem 1 still holds,

and based on it, we show that, when, ceteris paribus, the intensities within

a given voter group are sufficiently dispersed, for all informative equilibrium

sequences, the outcome preferred by the voter group is elected with proba-

bility going to 0 as n → ∞. The formal statement and the proof are in the

Appendix in Section G.

6.4 Further Remarks

Median-Voter Outcomes. Whenever the contrarians have a larger power,

W (L) < W (C), then, the vote shares are ordered as q(α; σ∗
n) < q(β; σ∗

n) in

any equilibrium when n is large, see (48). This implies, in particular, that the

median voter-preferred policy is less likely to be elected in one of the states

since the median voter prefers A only in α.

Median-Voter Theorem with Common Interests. Suppose that all

voters share a common interest, PrH({t ∈ C}) = 0. For such situations, The-

orem 1 implies that whenever information of low precision x ≈ 0 is sufficiently

cheap, d > 3, there is an equilibrium of the large election where the median-

voter preferred outcome is elected state-by-state. In particular, outcomes

are equivalent to the outcome with publicly known states (“full-information

equivalence”). This has only been known for certain symmetric settings so far

(Martinelli (2006), Oliveros (2013b)).

Aggregate Cost. We show that the sum of the voters’ cost converges to

zero in all equilibrium sequences when limx→0
c′(x)x
c(x)

6= 3. The proof is in the

Appendix.
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Lemma 10 Let limx→0
c′(x)x
c(x)

6= 3. Take any preference distribution satisfying

the genericity conditions. Take any equilibrium sequence (σ∗
n)n∈N and let xi

be the realisation of the precision of voter i ∈ {1, . . . , 2n+ 1}. Then,

lim
n→∞

[ ∑

i=1,...,2n+1

c(xi)
]

= 0. (86)

The lemma qualifies the discussion of welfare implications in Section 4.6 that

does not take into account the costs of the voters.

Non-Monotone Preferences. So far, we provided the analysis assum-

ing that the aggregate preference function Φ is strictly monotone. When Φ

is non-motone, there may be multiple beliefs p̂ for which Φ(p̂) = 1
2
. One

can show that, for any such p̂, there will be two equilibrium sequences, both

satisfying limn→∞ Pr(α|piv; σ∗
n, n) = p̂. There is one informative equilibrium

sequence, for which the outcome preferred by the group with the larger power

W (g, p̂) is elected state-by-state. And, there is one non-informative equilib-

rium sequence, for which the outcome preferred by the group with the larger

power W (g, p̂) given the prior belief, is elected; compare to Theorem 4. In

particular, it may happen that different outcomes arise in different informa-

tive equilibria since the power of a voter gorup is a local notion when Φ is

non-monotone.27

7 Literature

Information Aggregation Literature. This paper contributes to the liter-

ature on information aggregation in large elections. Condorcet’s Jury Theo-

rem (1785) states that if voters have common interests, but the information is

dispersed throughout the electorate, then majority rule results in socially op-

timal outcomes. Information aggregates in the sense that electoral outcomes

correspond to the choices of a fully informed welfare-maximizing social plan-

ner. Austen-Smith & Banks (1996), Feddersen & Pesendorfer (1998) have

established a “modern” version of Condorcet’s Jury Theorem in a setting

where citizens vote strategically. Their results show that election outcomes

27These results mirror known results for the model with exogenous information: if cit-
izens were to receive a binary, conditionally i.i.d. signal about the state and Φ is non-
monotone, it is known that there is a multiplicity of equilibrium sequences, some of which
do not aggregate information (Bhattacharya (2013a)).
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are “ full-information equivalent”, that is, as if citizens have no uncertainty

about the state. However, full-information equivalent outcomes are not neces-

sarily socially optimal when voters have conflicting interests: take a situation

where 51% of citizens marginally benefit from a reform, while the other 49%

are severely impacted by it. This paper points at an empirical observation

that has been mostly overlooked in this context: namely, that the dispersion

of the voters’ information is endogenous. We show how, for a large class of

settings, the information being endogenous leads to equilibria with outcomes

that maximize a weighted welfare rule (Theorem 2).

This paper also contributes to the literature on elections with costly infor-

mation acquisition by studying a general setup that allows the voters to have

conflicting interests. Thereby, we capture many relevant economic applica-

tions; for example, distributive reforms. The previous literature has studied

information aggregation in situations where all voters share a common inter-

est.28 For the common interest case, we generalize the result of the literature

showing that information aggregation is possible under a condition on the cost

function provided in Martinelli (2006). We show that the possibility result

extends to general continuous preference distributions, see the discussion in

Section 6.4. Also, we characterize all the equilibria of the voting game, reveal-

ing an equilibrium multiplicity, and establishing that, generically, information

aggregation only occurs in one of three equilibria (Theorem 4).

Vote Buying and Costly Voting Literature. This paper is related

to work on elections with voting cost and vote-buying. Krishna & Morgan

(2011, 2015) have shown that elections yield first-best outcomes when voting

is voluntary and costly. In a companion paper Heese (2020), we show that

analogous results hold when voters have the binary choice between a cost-

less uninformative signal and a given costly informative signal, similar to the

binary choice between voting at a cost and not voting.

The model in this paper is more closely related to the literature on vote-

buying. Lalley & Weyl (2018) have shown that equilibrium outcomes in large

electorates are utilitarian when each voter can buy any number of votes at

a total price that is quadratic in the number of votes bought. Similarly,

28See Martinelli (2006) and Oliveros (2013a)), and the more distantly related papers
Triossi (2013) and Martinelli (2007) who study heterogeneous cost in common interest
setups, and Oliveros (2013b) who studies the relationship of abstention and information
cost.
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this paper shows that when information is costly and cost are arbitrarily

close to “cubic”, e.g. c(x) = x3+ǫ, there are equilibrium sequences where

limit outcomes maximize utilitarian welfare for a large class of preference

distributions.29

Eguia & Xefteris (2018) show that vote-buying mechanisms with general

price functions implement a set of weighted welfare rules. Similarly, we have

shown that a subset of the same weighted welfare rules arises when political

infomation is costly (Theorem 2).

Distributive Politics Literature. A rich literature in distributive poli-

tics seeks to understand if, and when, elections select policies that maximize

social welfare. See e.g. Fernandez & Rodrik (1991), Alesina & Rodrik (1994)

and Persson & Tabellini (1994). This paper introduces a novel aspect into

this discussion; namely, endogenous attention to politics.30 Fernandez & Ro-

drik (1991) study the effect of asymmetric information on distributive politics:

there is a group of citizens who gain from a reform with certainty; however,

for a majority, the individual consequences are uncertain, and given the prior,

each majority voter’s expected gain is negative. Without further information,

this leads to rejection of the reform in a simple majority vote, even when

the reform enhances the utilitarian welfare of the electorate as a whole. We

would like to point out that these results may not carry over when citizens

can acquire information about the distributive consequences. Future work

may investigate the closer connection to this literature.

8 Conclusion

A modified version of the classical setting by Feddersen & Pesendorfer (1997)

captures applications like distributive reforms, e.g. health care or education

reforms. Election results are driven by how much demographic groups pay

attention to politics. In all limit equilibria with state-dependent outcomes, the

implicit decision weight of a voter is proportional to how much attention she

29Given the assumptions of Theorem 2, the informative equilibrium sequences lead to
outcomes maximizing 1

1+ǫ
-weighted welfare. Note that utilitarian welfare is what we call

1-weighted welfare. Hence, these equilibrium sequences are utilitarian except for the small
set of preference distributions where the policy maximizing 1-and 1

1+ǫ
-weighted welfare is

not the same.
30Similar to this paper, Ali et al. (2018) transports the informational approach to

elections to the literature on distributive politics.
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pays to politics. This is a structural insight with wide-reaching consequences.

Since citizens with higher utilities pay more attention, elections screen the

voter’s utilities, and the result implies strong welfare properties of elections

for a large class of settings. Elections lead to policies maximizing a certain

weighted welfare rule.

The results, albeit implying a positive welfare theorem when information

cost are symmetric across voters, point at the scope of manipulability of elec-

tions through informational campaigns. Politicians and third parties may

successfully affect elections by diverting attention of targeted groups, thereby

reducing their effective electoral power. They may successfully affect elections

by hampering the physical access to information, or by spreading confusion

among target groups; in other words, by making it more costly to acquire

knowledge about policies and their consequences. We believe that this paper

can be a starting point for the analysis of many current topics concerning the

role of information in elections.

Appendices

A Auxiliary Results

The auxiliary results are used in the proofs of this Appendix. Some of the

auxiliary results will be restated as lemmas or observations in the main text

when needed for the arguments there.

A.1 Pivotal Likelihood Ratio

For any sequence of strategies (σn)n∈N and any n, let q(σn) = (q(α; σn), q(β; σn)),

and denote by s(ω;q(σn)) =
[

q(ω; σn)(1−q(ω; σn)(2n+1)
] 1

2

the standard de-

viation of the vote share in ω. Let

δn(ω) =
2n+ 1

s(ω;q(σn))

[

q(ω; σn)−
1

2

]

(87)

be the normalized distance of the expected vote share to the majority thresh-

old, and δ(ω) = limn→∞ δn(ω).
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Lemma 11 For any sequence of strategies (σn)n∈N,

Pr(piv|α; σn, n)

Pr(piv|β; σn, n)
=

[

1−
1

2n+ 1
xn

]n

. (88)

for

xn =
q(α; σn)(1− q(α; σn))

q(β; σn)(1− q(β; σn))
δn(α)

2 − δn(β)
2. (89)

Proof. Recall the definitions of δn(ω) and s(ω;q(σn)),

δn(ω) =
2n+ 1

s(ω;q(σn))
(q(ω; σn)−

1

2
)

= (2n+ 1)
1

2

q(ω; σn)−
1
2

q(ω; σn)(1− q(ω; σn))
. (90)

The ratio of the likelihoods of the pivotal event in the two states is

Pr(piv|α; σn, n)

Pr(piv|β; σn, n)

=
[q(α; σn)(1− q(α; σn)

q(β; σn)(1− q(β; σn)

]n

.

=
[

1−
(q(α; σn)−

1
2
)2 − (q(β; σn)−

1
2
)2

q(β; σn)(1− q(β; σn)

]n

=
[

1−
1

2n+ 1
(
q(α; σn)(1− q(α; σn))

q(β; σn)(1− q(β; σn)
δn(α)

2 − δn(β)
2
]n

.

where we used (90) for the equality on the last line. Plugging in (89) yields

(88).

Lemma 12 Take any sequence of strategies (σn)n∈N. If limn→∞ δn(α)−δn(β) =

0, then

lim
n→∞

Pr(piv|α; σ∗
n, n)

Pr(piv|β; σ∗
n, n)

= 1, (91)

Proof. Recalling Lemma 11, we rewrite (88),

Pr(piv|α; σ∗
n, n)

Pr(piv|β; σ∗
n, n)

= (
[

1−
1

2n+ 1
xn

]n

− e−
1

2
xn) + e−

1

2
xn (92)

with xn given by (89). In the following, we analyse the two summands
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separately. Note that limn→∞ δn(α) − δn(β) = 0 implies limn→∞ q(α; σn) −

q(β; σn) = 0, and therefore

lim
n→∞

xn = 0. (93)

This yields

lim
n→∞

e−
1

2
xn = 1, (94)

Second, using the Lemmas 4.3 and 4.3 in Durrett (1991) [p.94], for all n ∈ N,

|(1−
xn

(2n+ 1)
)n − e−xn | ≤

x2
n

(2n+ 1)3
(95)

Finally, (91) follows from (92) - (95).

A.2 Proof of Observation 1: Outcome Distribution

Observation 1 Take any sequence of strategies (σn)n∈N and any state ω ∈

{α, β}. The probability that A gets elected in ω converges to

lim
n→∞

Pr(A|ω; σn) = Φ(δ(ω)),

where Φ(·) is the cumulative distribution of the standard normal distribution.

Proof. Let qn = q(ω, σn). By using the normal approximation31

B(2n+ 1, qn) ≃ N ((2n+ 1)qn, (2n+ 1)qn(1− qn)),

we see that the probability that A wins the election in ω converges to

Φ(
1
2
(2n+ 1)− (2n+ 1) · qn

((2n+ 1)qn(1− qn))
1

2

).

31For this normal approximation, we cannot rely on the standard central limit theorem,
because qn varies with n. Recall that for any undominated strategy, types t with tα >

0, tβ > 0 vote A and types t with tα < 0, tβ < 0 vote B. Hence, since the type distribution
has a strictly positive density, there exists ǫ > 0 such that ǫ < qn < 1 − ǫ for all n ∈ N.
As a consequence, we can apply the Lindeberg-Feller central limit theorem (see Billingsley
(2008), Theorem 27.2). To see why, one checks that a sufficient condition for the the
Lindeberg condition is that (2n + 1)qn(1 − qn) → ∞ as n → ∞ since this implies that for
n sufficiently large the indicator function in the condition takes the value zero.

40



Taking limits n → ∞, gives

lim
n→∞

Φ(
1
2
(2n+ 1)− (2n+ 1) · qn

(2n+ 1)qn(1− qn))
1

2

)

= lim
n→∞

Φ(
(2n+ 1)1

2
− (2n+ 1)(1

2
+ (qn −

1
2
))

((2n+ 1)
1

2 (qn(1− qn))
1

2

)

= lim
n→∞

Φ((qn −
1

2
)
[ (2n+ 1)

qn(1− qn)

] 1

2

)

= Φ(δ(ω)),

where the equalities on the last two lines hold both when δ(ω) ∈ {∞,−∞}

and when δ(ω) ∈ R. For the equality on the last line, I used that the formula

s(ω;q(σn)) =
[

q(ω; σn)(1− q(ω; σn)(2n+ 1)
] 1

2

.

A.3 A Lemma on the Optimal Precision

Lemma 13

lim
n→∞

∂x∗(y, k; σn, n))

∂y
= 0. (96)

uniformly for all (y, k).

Proof. Implicit differentiation of the first-order condition (18) shows

∂x∗(y, k; σ′
n, n))

∂y
=

MB′(y)

c′′(x∗(y, k; σ′
n, n))

. (97)

Using (17) and (18),MB′(y) = Pr(piv|σ′, n)
[

Pr(β|piv; σ′, n)−Pr(α|piv; σ′, n)
]

=

c′(x∗(y, k; σ′
n, n))c2 for some constant c2 ∈ R. Therefore, (27) together with

limx→0
c′(x)
c′′(x)

= limx→0
x

d−1
= 0 imply (35).

A.4 Proof of Lemma 8: Limit Vote Shares

Lemma 8 Take any sequence of strategies (σ′
n)n∈N. Take the sequence of best

responses σn. For any ω ∈ {α, β},

lim
n→∞

q(ω; σn) = lim
n→∞

Φ(Pr(α|piv; σ′
n)). (62)

Proof. Recall that Pr(piv|σ′
n) → 0 as n → ∞. Therefore, the first-order
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condition (18) implies that x(t) → 0 uniformly. Hence, for any private signal

realization s of a voter type, limn→∞ Pr(α|piv, s; σ∗
n, n)−Pr(α|piv; σ∗

n, n) = 0.

Thus, (11)-(14) imply limn→∞ q(ω; σ∗
n) = Φ(limn→∞ Pr(α|piv; σ∗

n)). Finally,

(62) follows since Φ is continuous.

B Proof of Lemma 1

Since signal a is indicative of α and b of β, voters with a signal a believe state

α to be more likely than voters with a signal b. In fact, given any x > 0, we

show below that the posteriors are ordered as

Pr (α|b, piv; σ′, n) < Pr (α|a, piv; σ′, n) . (98)

We argue that x(t) > 0 implies

Pr(α|b, piv, σ′, n) < y(t) < Pr(α|b, piv, σ′, n). (99)

Otherwise, given (11)-(14), there is a policy z ∈ {A,B} that the voter weakly

prefers, independent of her private signal s ∈ {a, b}. But then, she would

be strictly better off by not paying for the information x(t) > 0 and simply

voting the same after both signals. Finally, (11)-(14), and (99) together imply

(20).

B.1 Proof of (98)

Note that the posterior likelihood ratio of the states conditional on a signal

s ∈ {a, b} with precision x(t) and the event that the voter is pivotal is

Pr (α|s, piv; σ′, n)

Pr (β|s, piv; σ′, n)
=

Pr (α)

Pr (β)

Pr (piv|α; σ′, n)

Pr (piv|β; σ′, n)

Pr(s|α; σ)

Pr(s|β; σ)
, (100)

if Pr (piv|β; σ′, n) > 0, where I used the conditional independence of the types

and signals of the other voters from the signal of the given voter. Then, the

order of the likelihood ratios in (98) follows from Pr(a|α; σ) = 1
2
+ x and

Pr(a|β; σ) = 1
2
− x, and the analogous formula for s = b.
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C Proof of Lemma 2

Step 1 There is n0 ∈ N such that for all n ≥ n0: take any strategy σ′. For

any t, x(t) > 0 if and only if

1

2
+ x∗∗(t) ≥ χ(y(t)) ≥

1

2
− x∗∗(t) (101)

for χ(y) = Pr(β|piv;σ′,n)y
Pr(α|piv;σ′,n)(1−y)+Pr(β|piv;σ′,n)y

and x∗∗(t; σ′, n) = x∗(t; σ′, n)(1 −
c(x∗(t;σ′,n))

x∗(t;σ′,n)c′(x∗(t;σ′,n))
), where x∗(t; σ′, n) is the unique solution to the first-order

condition (18).

Proof. Take an aligned type. Recall that, if x(t) > 0, then, x(t) = x∗(t; σ′, n),

and her expected utility from the policy elected in the pivotal event is given by

(15) in α and by (16) in β. Hence, an aligned type prefers choosing precision

x = x∗(t; σ′, n) over voting A without further information if

Pr(piv|σ′, n)
[

Pr(α|piv; σ′, n)(
1

2
+ x)tα + Pr(β|piv; σ′, n)(

1

2
− x)tβ

]

− c(x)

≥ Pr(piv|σ′, n)
[

Pr(α|piv; x, σ′, n)tα + Pr(β|piv; σ′, n)tβ

]

. (102)

Rearranging,

Pr(piv|σ′, n)
[

(
1

2
+ x)

[

Pr(α|piv; σ′, n)tα − Pr(β|piv; σ′, n)tβ

]

+ Pr(β|piv; σ′, n)tβ

]

− c(x)

≥ Pr(piv|σ′, n)
[

Pr(α|piv; σ′, n)tα − Pr(β|piv; σ′, n)tβ + 2Pr(β|piv; σ′, n)tβ

]

(103)

Plugging (17) and (18) into (103),

(
1

2
+ x)c′(x)− c(x) + Pr(piv|σ′, n) Pr(β|piv; σ′)tβ

≥ c′(x) + 2Pr(piv|σ′, n) Pr(β|piv; σ′, n)tβ. (104)

We divide by c′(x) rearrange, and use (18) and (17) again,

(
1

2
+ x)−

c(x)

c′(x)
≥ 1 +

Pr(β|piv; σ′, n)tβ
Pr(α|piv; σ′, n)tα + Pr(β|piv; σ′, n)(−tβ)

. (105)

Using tα = k(t)(1− y(t)) and tβ = k(t)y(t),

(
1

2
+ x)−

c(x)

c′(x)
≥ 1 +

−Pr(β|piv; σ′, n)y(t)

Pr(α|piv; σ′, n)(1− y(t)) + Pr(β|piv; σ′, n)y(t)
. (106)
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Rearranging gives the right inequality of (101). In the same way one shows

that an aligned type prefers choosing precision x = x∗(t; σ′, n) over voting

B without further information only if the left inequality of (101) holds. The

argument for the contrarian types is analogous.

Step 2 For any g ∈ {L,C}, any k > 0 and any ǫ > 0, there is δ > 0 such

that the derivatives of

1

2
+ x∗∗(y, k)− χ(y), and, (107)

1

2
− x∗∗(y, k)− χ(y) (108)

are negative and bounded above by −δ.

Proof. Since limx→0
c′(x)x
c(x)

= d, Lemma 13 implies that the derivative of

x∗∗(y, k; σ′, n) with respect to y converges to zero uniformly as n → ∞. Not

that χ is continuously differentiable in y; moreover, for any ǫ > 0, there is

δ > 0 such that χ′(y) > δ for any y ∈ (ǫ, 1 − ǫ) and any n.32 For n large,

enough, (107) and (108) follow.

Now, we finish the proof of Lemma 2. Note that χ(ŷn) =
1
2
and x∗∗(ŷn, k) >

0 for ŷn = Pr(α|piv; σ′, n). Thus, χ(ŷn) < 1
2
+ x∗∗(ŷn, k) and χ(ŷn) > 1

2
−

x∗∗(ŷn, k). It follows from Step 1 and Step 2 and since limn→∞ x∗∗(ŷn, k) = 0,

that, for any n large enough, there are φ−
g (k), φ

+
g (k) with φ−

g (k) < Pr(α|piv; σn, n) <

φ+
g (k) such that it is optimal to acquire information if and only if y(t) ∈

[φ−
g (k), φ

+
g (k)].

32For any p ∈ (0, 1), ∂
∂y

( py
py+(1−p)(1−y) ) = (1−p)p

(p(2y−1)−y+1)2 . Thus, for any ǫ > 0, there

is δ > 0 such that for all p ∈ (ǫ, 1 − ǫ), ∂
∂y

( py
py+(1−p)(1−y) ) > δ. The assumption

limn→∞ Pr(α|piv;σ′, n) ∈ (0, 1) implies that, moreover, there is δ > 0 such that χ′(y)
is uniformly bounded below by a positive constant for any n large enough.
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D Proof of Lemma 4: Aggregation over k =

k(t)

Here, we finish the proof of Lemma 4. We have

∫

t∈g

x(t)dH(t) = Pr(t ∈ g)E(x(t)|t ∈ g)

= Pr(t ∈ g)E(E(x(t)|t ∈ g, k(t) = k))

= Pr(t ∈ g)

∫

k=k(t)

E(x(t)|t ∈ g, k(t) = k)dH(k(t)|t ∈ g),

where we used the law of iterated expectations for the second equality and

where H(k(t)|t ∈ g) is the conditional distribution of the total intensity of the

types t ∈ g. Using (41),

∫

t∈g

x(t)dH(t)

≈ Pr(t ∈ g)

∫

k=k(t)

f(Pr(α|piv)|k(t) = k, t ∈ g)k
2

d−1dH(k(t)|t ∈ g)

Pr(piv)
2

d−1 c2

for a constant c2 6= 0 that only depends on Pr(α|piv). Rewriting,

∫

t∈g

x(t)dH(t)

≈ Pr(t ∈ g)f(Pr(α|piv)|t ∈ g)E
[

k(t)
2

d−1 |t ∈ g, y(t) = Pr(α|piv)
]

Taking limits n → ∞,

∫

t∈g

x(t)dH(t) ≈ W (g, p̂) Pr(piv)
2

d−1 c2,

for p̂ = limn→∞ Pr(α|piv; σ, n).

E Proof of Lemma 5

Suppose that limn→∞ Pr(α|piv; σ∗
n) 6= p̂. Then, Lemma 8 implies limn→∞ q(ω; σn) 6=

1
2
for ω ∈ {α, β}. Then, (26) implies that the pivotal likelihood is exponen-

tially small, which in turn implies that x(t) is exponentially small for all t,
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given (19) and (17). Therefore, the difference in the vote shares is exponen-

tially small, which implies
[

q(α; σ∗
n)−q(β; σ∗

n

]

s(ω; σ∗
n) = 0 for ω ∈ {α, β} since

the standard deviation of the realized votes is of order n
1

2 . Hence δ(α) = δ(β).

Finally, Lemma 1 implies limn→∞ Pr(A|α; σ∗
n) = limn→∞ Pr(A|β; σ∗

n). But this

contradicts with the assumption that (σ∗
n)n∈N is an informative equilibrium

sequence.

F Proof of Observation 2

Fix a voter and a state ω. The number of realized A-votes among the votes

of the other citizens is the sum of 2n i.i.d. Bernoulli variables with mean

q(ω; σn). Let Xk,n = B(1, q(ω; σn)) for any 1 ≤ k ≤ 2n and n ∈ N. Recall

the assumption limn→∞ q(ω; σn) ∈ (0, 1), and check that the conditions of

Theorem 2 in Davis & McDonald (1995) are satisfied forXk,n, an = 2nq(ω; σn),

and bn =
[

q(ω; σn)(1− q(ω; σn)
] 1

2

)(2n)
1

2 . Note that bn ≈ s(ω;q(σn)). Further

note that Pr(piv|ω; σn, n) = Pr(Tn = n) for Tn =
∑

i=1,...,2n Xk,n. Application

of Theorem 2 in Davis & McDonald (1995) gives

lim
n→∞

Pr(piv|ω; σn, n)s(ω, σn) = φ(δ(ω)). (109)

G Proof of Lemma 9

Proof. Recall limx→0
c′(x)x
c(x)

= d. Since k
2

d−1 is strictly concave when d > 3,

an application of Jensen’s inequality shows that for any g-intensity spread H ′

of H,

E(k
2

d−1 |t ∈ g;H ′) < E(k
2

d−1 |t ∈ g;H) (110)

It follows from the definition of a g-intensity spread that for g 6= g′ ∈ {L,C},

E(k
2

d−1 |t ∈ g′;H ′) = E(k
2

d−1 |t ∈ g′;H). (111)

Since H and H ′ satisfy (74), E(k
2

d−1 |t ∈ g′;H ′) = E(k
2

d−1 |t ∈ g′, y(t) = p̂;H)

and E(k
2

d−1 |t ∈ g′;H ′) = E(k
2

d−1 |t ∈ g′, y(t) = p̂;H) for all g′ ∈ {L,C}.

Therefore (110), (111), the definition of W (g) (see (45)) and the definition a

g-intensity spread together imply (84) for g = L and (85) for g = C, which
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finishes the proof of the lemma.

Theorem 6 Let limx→0
c′(x)x
c(x)

> 3. Let g ∈ {L,C}. Take any preference

distribution H satisfying the genericity conditions and the independence con-

ditions (73) - (75). When M is large enough, there is a g-intensity spread H ′

of H such that

lim
n→∞

Pr(z(ω)|ω; σ∗
n, n) = 0 (112)

for all ω ∈ {α, β}, where z(ω) is the policy preferred by the voter group g in

ω.

Consider the case g = L. Given Lemma 1 and Lemma 4, it remains to show

that for any H there is an L-intensity spread H ′, so that

WH′(L)

WH′(C)
< 1. (113)

For this, it suffices to show that for any ǫ, we can choose H ′, so that

EH′(k(t)
2

d−1 |t ∈ g) < ǫ (114)

since the genericity conditions ensure that WH(C) = WH′(C) > 0. Take

L-intensity spreads H ′(κ) of H, so that

Pr({t : κ ≤ k(t) ≤ κ+ δ}|t ∈ L;H ′(κ))

+Pr({t : 0 ≤ k(t) ≤ δ}|t ∈ L;H ′(κ)) ≥ 1− δ (115)

for some κ > 0 and δ > 0. Since the mean of the intensities is preserved under

the L-intensity spread, the iterated law of expectation gives limδ→0 Pr({t :

κ ≤ k(t) ≤ κ+ δ}|t ∈ L;H ′(κ))κ = E(k(t)|t ∈ L;H ′(κ)). Hence,

lim
δ→0

E(k(t)
2

d−1 |t ∈ L;H ′(κ)) = lim
δ→0

Pr({t : κ ≤ k(t) ≤ κ+ δ}|t ∈ L;H ′(κ))κ
2

d−1

=
E(k(t)|t ∈ L;H ′(κ))

κ
κ

2

d−1
κ→∞
→ 0, (116)

where I used that d > 3 and hence 2
d−1

< 1. We conclude that for κ large

enough and κ < M , we find an L-intensity spread of H, so that (113) holds.

This finishes the proof for g = L. The proof for g = C is analogous.
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H Proof of Theorem 3

Recall that equilibrium can be alternatively characterized in terms of the

vector of the expected vote shares of outcome A in state α and β, (56). Let

Qǫ,n = {q = (q(α), q(β)) : |q− (
1

2
,
1

2
)| > ǫ and |q(α)− q(β)| <

1

n2
} (117)

We claim that when δ is small enough and n large enough, the best response

is a self-map on Bδ,n,

q ∈ Qǫ,n ⇒ q(σq) ∈ Qǫ,n. (118)

The proof consists of three steps: Take q ∈ Qǫ,n. First, the vote shares in the

two states are almost identical; in particular, the probability of a tie is also

almost the same in the two states. Therefore, the pivotal event contains no

information as n → ∞,

lim
n→∞

Pr(α|piv; σq, n) = Pr(α), (119)

To see why, recall that for any q ∈ Qǫ,n, q(α) − q(β)| ≤ 1
n2 . Recalling (90),

this implies limn→∞ δn(α) − δn(β) = 0. Then, (119) follows from Lemma 12.

Using Lemma 8, (119) implies q(σq)− (1
2
, 1
2
)| > δ when ǫ is small enough and

n large enough.

Second, the likelihood of the pivotal event is exponentially small, given

(26). Thus, also q(α; σq)− q(β; σq) is exponentially small, given Lemma 4.

Finally, an application of Kakutani’s fixed point theorem shows that there

is a sequence of equilibrium vote shares (q∗
n)n∈N, that is, vote shares satisfying

(56), and, given (119) and Lemma 8,

lim
n→∞

q∗n(ω) = Φ(Pr(α)). (120)

for all states ω. The theorem follows from the weak law of large numbers and

Φ(Pr(α)) 6= 1
2
.
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I Proof of Theorem 4

I.1 Third Item of Theorem 4

Take any equilibrium sequence (σ∗
n)n∈N. with p̂ = limn→∞ Pr(α|piv; σ∗

n, n).

Given (48), the order of the vote shares is pinned down by the order of the

voter groups’ power W (g). Inspection of the cases shows that it is sufficient to

show that when W (L) > W (C), there is no equilibrium sequence for which,

in both states, the outcome preferred by the contrarians is elected given the

prior belief.

Case 1 Φ(Pr(α)) > 1
2
.

Suppose limn→∞ Pr(A|α; σ∗
n, n) = limn→∞ Pr(A|α; σ∗

n, n) = 0. Hence, q(ω; σ∗
n) ≤

1
2
for n large. The orderW (L) > W (C) pins down the order of the vote shares,

q(α; σ∗
n) > q(β; σ∗

n) for n large. Thus, Pr(piv|α; σ∗
n, n) ≥ Pr(piv|β; σ∗

n, n) for

n large enough. Since Φ is strictly increasing, limn→∞ Φ(Pr(piv|α; σ∗
n, n)) >

Φ(Pr(α)). Lemma 8 implies limn→∞ q(ω; σ∗
n) > 1

2
. The weak law of large

numbers implies limn→∞ Pr(A|α; σ∗
n, n) = limn→∞ Pr(A|α; σ∗

n, n) = 1, contra-

dicting the initial assumption.

Case 2 Φ(Pr(α)) < 1
2
.

The proof is analogous to the case Φ(Pr(α)) > 1
2
.

I.2 First Item of Theorem 4

Take any equilibrium sequence (σ∗
n)n∈N.

Case 1 limn→∞ Φ(Pr(α|piv; σ∗
n, n)) 6=

1
2

Given (26), the likelihood of the pivotal event is exponentially small. As a con-

sequence, the difference of the vote shares q(α; σ∗
n)− q(β; σ∗

n) is exponentially

small, given Lemma 4 and (51). This implies δn(α)− δn(β) → 0 (see the defi-

nition (87)). It follows from Lemma 12 that limn→∞ Pr(α|piv; σ∗
n, n) = Pr(α).

Then, it follows from the weak law of large numbers that the equilibrium

sequence satisfies (78). This was to be shown.

Case 2 limn→∞ Φ(Pr(α|piv; σ∗
n, n)) =

1
2
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Recall that p̂ is the unique belief with Φ(p̂) = 1
2
, thus p̂ = limn→∞ Pr(α|piv; σ∗

n, n).

Recall the definition of δn(ω), that is (90). We show that

lim
n→∞

δn(α)− δn(β) = 0. (121)

For this, first, we show

lim
n→∞

[

q(α; σn)− q(β; σn)
]

Pr(piv|σn, n)
−1 = 0. (122)

if d < 3. To see why, note that

∫

t∈L

x(t)dH(t)−

∫

t∈C

x(t)dH(t)

≈
[

W (L)−W (C)
]

Pr(piv|σ∗
n, n)

2

d−1 c2, (123)

given Lemma 4. Using that the pivotal likelihood goes to zero as n → ∞,

(122) follows from (51), (123) and d < 3. Given Observation 2, the pivotal

likelihood is of an order weakly smaller than s(ω; σ∗
n)

−1. Hence, (122) implies

limn→∞

[

q(α; σn)− q(β; σn)
]

s(ω; σ∗
n) = 0, and thereby (121).

Now, Lemma 12 and (121) imply limn→∞ Pr(α|piv; σ∗
n) = Pr(α). However,

this yields a contradiction to limn→∞ Φ(Pr(α|piv; σ∗
n) =

1
2
since Φ(Pr(α)) 6= 1

2

by assumption. Hence, all equilibrium sequences satisfy the condition of Case

(1), and we have already shown that this condition implies (78), which was

to be shown.

I.3 Second Item of Theorem 4

This section uses a fixed point argument to show that there is a sequence

of equilibrium vote shares (q∗
n)n∈N such that the corresponding sequence of

equilibrium strategies satisfies (79). We provide the proof for the case when

Φ(Pr(α)) < 1
2
and when the minority group has the higher power, W (L) <

W (C). The proof proceeds in two steps. First, we show that for any vote

share q(α) in α close to 1
2
, we find a vote share q∗n(β) such that the best

response to q = (q(α), q∗n(β)) has again the same vote share in α.

Step 1 Let Φ(Pr(α)) < 1
2
and W (L) < W (C). For any ǫ > 0 small enough,
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any 1
2
≤ q(α) ≤ 1

2
+ ǫ

2
, and any n large enough, there is q∗n(β) ≥

1
2
such that

q(α) = q(α; σ(q(α),q∗n(β))). (124)

and q∗n(β) is continuous in q(α).

Let q = (q(α), q(β)) in the following.

Substep 1 If q(β) = 1
2
+ ǫ , then, for ǫ small enough and n large enough,

q(α; σq) > q(α). (125)

The election is more close to being tied in α, and, by Lemma 7, voters become

convinced that the state is α, i.e., limn→∞ Pr(α|piv;q, n) = 1. It follows from

Lemma 8 that limn→∞ q(α; σq) = Φ(1). Finally, (64) follows when ǫ is small

enough since Φ(1) > 1
2
.

Substep 2 If q(β) = 1
2
, then for ǫ small enough and any n,

q(α; σq) < q(α). (126)

The election is more close to being tied in β, and, by Lemma 6, voters update

towards β, i.e. Pr(α|piv;q, n) ≤ Pr(α). Since Φ(Pr(α)) < 1
2
, Lemma 8 implies

that limn→∞ q(α; σq) < 1
2
. Finally, (65) follows when ǫ is small enough.

Since q(α; σq) is continuous in q(β), it follows from Step 1, Step 2, and

the intermediate value theorem that, for n large enough, there is q∗n(β) such

that (124) holds. It follows from the implicit function theorem that q∗n(β) is

continuous in q(α).

Step 2 For any n large enough, there is q∗n(α) such that

q∗n(β) = q(β; σ(q∗n(α),q
∗
n(β))). (127)

Substep 1 For q(α) = 1
2
, and any n large enough,

q(β; σ(q(α),q∗n(β))) > q∗n(β), (128)

Recall that Φ is strictly increasing. Lemma 8 together with (124) implies
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limn→∞ Pr(α|piv;qn, n) = p̂ ∈ (0, 1) for qn = (1
2
, q∗n(β)). We claim that

δ(β)(σqn) = lim
n→∞

(q∗n(β)−
1

2
)s(β; σqn) ∈ R. (129)

Otherwise, since δ(α)(σqn) = limn→∞(q(α) − 1
2
)s(β; σqn) = 0, Observation 2

implies limn→∞ Pr(α|piv;qn, n) = 1, which contradicts the earlier observation

limn→∞ Pr(α|piv;qn, n) ∈ (0, 1). Recall (53); together with Observation 2 and

δ(ω)(σqn) ∈ R for ω ∈ {α, β},

lim
n→∞

[

q(β; σ(q(α),q∗n(β)))− q(α; σ(q(α),q∗n(β))
]

s(β; σqn) ∈ {∞,−∞}. (130)

Since q(α; σ(q(α),q∗n(β))) = 1
2
, given (63), and since q(β; σ(q(α),q∗n(β)) > q(α; σ(q(α),q∗n(β))

for n large, given (48) and W (L) < W (C), (129) and (130) together imply

(128).

Substep 2 For q(α) = 1
2
+ ǫ, and any n large enough,

q(β; σ(q(α),q∗n(β))) < q∗n(β), (131)

Recall Lemma 8, which states limn→∞ q(ω; σ(q(α),q∗(β))) = limn→∞ Φ(Pr(α|piv; σn, n)).

Given (124), limn→∞Φ(Pr(α|piv; σn, n)) =
1
2
+ ǫ. Since Φ is strictly increas-

ing, this implies limn→∞ Pr(α|piv;qn) > Pr(α), given that Φ(Pr(α)) < 1
2
.

Recalling Lemma 11, this implies that

lim
n→∞

xn = lim
n→∞

q(α)(1− q(α)

(q(β)(1− q(β))
δn(α;qn)

2 − δn(β;qn)
2 ∈ (0, 1) (132)

Note that, in particular, this implies q∗n(β) →
1
2
+ ǫ. Now, we study the best

response σqn . The pivotal likelihood given qn is exponentially small since

limn→∞ q∗n(β) = q(α) = 1
2
and (26). Hence, given Lemma 4 and (51),

q(α; σqn)− q(β; σqn) ≤ yn (133)

for some 0 < y < 1. This together with (132) implies (131) for n large enough.

Finally, using (128) and (131) and that q(β; σ(q(α),q∗n(β))) is continuous in

q(α), the intermediate value theorem implies Step 2.

It follows from Step 1 and Step 2 that for any n large enough, there is

a pair of vote shares q∗n(α) such that q∗
n = (q∗n(α), q

∗
n(β)) is a fixed point
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of q(σ−). Moreover q∗n(α) ≤ 1
2

≤ q∗n(β) by construction, implying that

limn→∞ Pr(A|α; σq, n) ≤ 1
2
≤ limn→∞ Pr(A|β; σq, n). Recalling from (49) that

limit equilibrium outcomes are determinate when d > 3, this implies that the

equilibrium sequence is informative. This concludes the proof of existence of

informative equilibrium sequences when W (C) > W (L) and Φ(Pr(α)) < 1
2
.

The proof for the other cases is analogous.

J Proof of Lemma 10

Case 1 limn→∞ Φ(Pr(α|piv; σ∗
n)) 6=

1
2
.

Then, (26) implies that the likelhood of the pivotal event is exponentially

small,

Pr(piv|α; σ∗
n) < zn (134)

for some 0 < z < 1 and for n large enough. Hence, for all t,

x∗(t) < znc2 (135)

for some c2 ∈ R, given (19). Finally, this implies that (2n + 1)E(c(x(t)) → 0

as n → ∞ since c(x) is approximately polynomial for x small enough, given

(1). An application of the weak law of large number shows that the realized

sum of the votes converges to 0 as n → ∞.

Case 2 limn→∞ Pr(α|piv; σ∗
n, n) = p̂.

Recall that Φ(p̂) = 1
2
. Fix g ∈ {ℓ, s}. We use the notation (y, k) = (y(t), k(t))

for types t ∈ g, noting that (y, k) pin down the type uniquely. Let α =

argmax (|q(α; σ∗
n)−

1
2
|, |q(α; σ∗

n)−
1
2
|). The other case will be analogous. First,

lim
n→∞

Pr(piv|α; σ∗
n)

Pr(piv|β; σ∗
n)

=
Pr(β)

Pr(α)

p̂

1− p̂
. (136)

Multiplication of the first-order condition (18) by n
1

2 together with (136) yields

n
1

2 c′(x∗(Pr(α|piv; σ∗
n, n), 1))

= n
1

2 Pr(α) Pr(piv|α; σ∗
n, n)k(t)

[

(1− y(t))− y(t)
Pr(piv|β; σ∗

n, n)

Pr(piv|α; σ∗
n, n)

]

.(137)
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Note that

4n(q(1− q))n = 4n
[

(
1

2
− (

1

2
− q))(

1

2
+ (

1

2
− q)

]n

= 4n(
1

4
− (

1

2
− q)2)n

= (1− 4
(n

1

2 (1
2
− q))2

n
)n. (138)

for all q ∈ (0, 1). Combining (26) with (137) and (138) gives

n
1

2 c′(x∗(Pr(α|piv; σ∗
n, n), 1)) ≈ c2(1− 4

(n
1

2 (1
2
− q(α; σ∗

n))
2

n
)n

for some constant c2 > 0. Multiplication of both sides with δn = n
1

2 |q(α; σ∗
n)−

1
2
| yields

δnn
1

2 c′(x∗(Pr(α|piv; σ∗
n, n), 1)) ≈ c3δne

−4δ2n + δn

[

(1− 4
δ2n
n
)n − e−4δ2n

]

. (139)

for some constant c3 > 0. Using Lemmas 4.3 and 4.3 in Durrett (1991),

(1− 4
δ2n
n
)n − e−4δ2n ≤

16δ4n
n3

. (140)

Therefore, limn→∞ δn

[

(1−4 δ2n
n
)n−e4δn

]

= 0. Since, given d > 3, all equilibrium

sequences are determinate by (49), Observation 1 implies limn→∞ δn = ∞,

which in turn implies limn→∞ δne
−4δn = 0. I conclude,

lim
n→∞

δnn
1

2 c′(x∗(Pr(α|piv; σ∗
n, n), 1)) = 0. (141)

Recall (51),

q(α; σ∗
n)− q(β; σ∗

n) = 2
[ ∫

t∈ℓ

x(t)dH(t)−

∫

t∈s

x(t)dH(t)
]

. (142)

Recall (109) and (44), which imply
∫

t∈g
x(t)dH(t) ≈ c4x

∗(p̂, 1)2W (g) for

some constant c4 6= 0. Hence,

x∗(p̂, 1)2 ≈ c5

[

q(α; σ∗
n)− q(β; σ∗

n)
]
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for some constant c5 6= 0. Then,

x∗(p̂, 1)2 ≤ 2c5

[

|q(α; σ∗
n)−

1

2
|+ |q(β; σ∗

n)−
1

2
|
]

≤ 4c5
δn

n− 1

2

, (143)

where I used the triangle equality on the first inequality and α = argmax (|q(α; σ∗
n)−

1
2
|, |q(α; σ∗

n)−

for the second inequality. Hence, (141) implies

lim
n→∞

nx∗(Pr(α|piv; σ∗
n, n), 1)

2c′(x∗(Pr(α|piv; σ∗
n, n), 1)) = 0 (144)

Using (1),

lim
n→0

x2c′(x)

xc(x)
= d. (145)

Recall (27), hence x∗(Pr(α|piv; σ∗
n, n), 1) → 0 as n → ∞. Thus, combining

(144) and (145),

lim
n→∞

nx∗(Pr(α|piv; σ∗
n, n), 1)c(x

∗(Pr(α|piv; σ∗
n, n), 1)) = 0. (146)

We claim that any equilibrium sequence (σ∗
n)n∈N satisfies

∫

t∈g

c(x(t))dH(t) ≈
2(d− 1)

d

c(x∗(p∗, 1))x∗(p∗, 1)

χ′(p∗)
W (g). (147)

The proof follows from previous arguments: the proof is a verbatim to the cal-

culations in section 4.2.2, except that we need to replace x(Pr(α|piv; σ∗
n, n), k)

with c(x(Pr(α|piv; σ∗
n, n), k)) at the appropriate places. Then, (146) and (147)

imply

lim
n→∞

(2n+ 1)
[ ∫

t∈[−1,1]2
c(x(t))dH(t)

]

= 0. (148)

Finally, the lemma follows from the weak law of large numbers.

9 Additional Figures
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Figure 3: The function q(1 − q) for q ∈ [0, 1]. If |q − 1
2
| < |q′ − 1

2
|, then

q(1− q) > q′(1− q′).
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