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Asher Wolinsky as well as participants of the “KIT ECON Brown Bag Seminar” (Karlsruhe), the
“4th CRC TR 224 Workshop for Young Researchers”, the “BGSE Micro Workshop” (Bonn) and
the “CES Economic Theory Seminar” (Paris 1) for helpful comments and discussions. Rachidi
thanks the Paris School of Economics, where parts of this research were conducted, for its
hospitality. This work was supported by the Bonn Graduate School of Economics, the German
Research Foundation (DFG) under Germany’s Excellence Strategy EXC 2126/1 390838866
(Excellence Cluster “ECONtribute: Markets and Public Policy”) (Luxen), through the Hausdorff
Center for Mathematics (Rachidi), through CRC TR 224 (Project B01), by a grant from the
European Research Council (ERC 638115, awarded to Stephan Lauermann), the Studienstiftung
des deutschen Volkes (Rachidi), and the Deutsche Akademische Austauschdienst (Rachidi).
†Bonn Graduate School of Economics, E-Mail: luxen.christina@gmail.com
‡Bonn Graduate School of Economics, E-Mail: tobias.rachidi@uni-bonn.de



Abstract

This paper studies the design of committee search procedures. In each time pe-

riod, a set of candidates of fixed size arrives, and committee members vote whether

to accept a candidate out of this set or to continue costly search. We examine

the implications of different sample sizes per period on acceptance standards and

welfare, and we derive the welfare-maximizing number of candidates per period

for small magnitudes of search costs. There is a trade-off between the expected

value of a candidate conditional on stopping and the expected search costs. The

resolution of this trade-off depends on the voting rule and the shape of the search

cost function. In particular, we show that, for all cost functions and all qualified

majority voting rules other than unanimity, welfare is increasing in the number of

candidates per period if the magnitude of search costs is sufficiently small. This

result stands in contrast to the classic finding for the single decision-maker case

where the evaluation of multiple candidates per period does not improve welfare

relative to reviewing one candidate at a time if there are no economies of scale

in the simultaneous evaluation of multiple candidates. Keywords : Committee

Search; Sequential Search; Multiple Options

JEL Classification: D71, D83



1 Introduction

Academic hiring is mostly conducted by search committees. Often several candi-

dates are reviewed simultaneously after the application deadline has been reached,

and the committee either selects one suitable candidate or the hiring process starts

over if neither of the candidates satisfied the committee’s acceptance standards.1

So far, the literature on committee search has mainly focused on a search process

where candidates are reviewed “one at a time”, meaning, hiring is conducted on

a rolling basis. Define this search procedure as single-option sequential search.2

In this paper, we consider search technologies where committees evaluate a fixed

number of candidates simultaneously in each time period, which we denote by

multi-option sequential search. The number of candidates who are simultaneously

evaluated per period will be denoted by the sample size.

We compare single-option sequential search and multi-option sequential search

with different sample sizes in terms of acceptance standards and the ex ante

utilitarian welfare for the search committee. Moreover, we derive the welfare-

maximizing sample size per period if search costs are sufficiently small.

Under multi-option sequential search, committee members can directly compare

candidates. This has two implications: On the one hand, the expected value of

a candidate conditional on hiring increases with the sample size. On the other

hand, the probability of hiring a particular candidate decreases with the sample

size, and, thus, the expected search costs are altered. Generally, there is a trade-off

between these two objects that determine the committee’s welfare. The resolution

of this trade-off depends on the voting rule and the specification of search costs

associated with the simultaneous evaluation of multiple candidates. We find that

under unanimity voting, the ranking of the discussed search procedures depends

on how the search costs vary with the sample size. In contrast, under qualified

majority voting distinct from unanimity, this sensitivity to the shape of the cost

function partly disappears. In this case, we show that, independently of the shape

of the cost function, reviewing more candidates per period of time improves wel-

1See for example the descriptions of the hiring processes of the Columbia University in the
City of New York (2016), The University of Arizona (2019) or The University of California,
Berkeley (2019).

2In the search literature, this is mostly denoted as sequential search.

1



fare as long as the magnitude of the search costs is sufficiently small.

Note that search conducted by a single decision-maker is a special case of a commit-

tee operating under unanimity voting. Our results imply that the classic finding

for the single decision-maker case where evaluating multiple candidates at a time

instead of only one does not improve welfare if there are no related economies

of scale (see e.g. Manning and Morgan (1985)) does not extend to a committee

operating under a qualified majority voting other than unanimity. In other words,

unless the search committee operates under unanimity voting, the economic trade-

offs determining a good search rule for committees are significantly different from

those in the single decision-maker case. Thus, treating the committee as a single

agent would lead to systematically wrong predictions.

In our model, a search committee consisting of at least one member seeks to

hire one candidate. The committee reviews in each time period a fixed number

of candidates K ≥ 1 simultaneously. The time horizon is infinite, and rejected

candidates cannot be recalled.3 The committee members’ preferences feature in-

dependent private values. For every member, the value of a candidate is a random

variable, which is distributed independently and identically across time, members,

and candidates. Each committee member observes his or her own value realization

for every candidate and has distributional knowledge about the other members’

values.

We consider a class of voting rules where each member may either vote for one of

the available candidates or may opt to continue search. A candidate is then hired

if and only if the number of votes he or she receives exceeds a qualified majority

threshold ranging from simple majority to unanimity. This class of voting rules

is frequently used in practice, making it a natural choice when adopting an ap-

proach that is positive with regard to the voting rule, but normative with respect

to the search technology.4 For example, when abstracting from abstention, the

3Note that multi-option sequential search corresponding to the case in which K > 1 can
also be interpreted as delayed voting: Suppose that one candidate per period arrives. Then,
simultaneously evaluating K candidates in some round of the dynamic search procedure can be
viewed as taking voting decisions only every K periods instead of every single period. In other
words, choosing the sample size K can be viewed as selecting voting times. We thank Olivier
Compte for suggesting this interpretation.

4Since members have to decide about more than two alternatives under multi-option sequen-
tial search, other voting rules are also conceivable. We discuss this point in Section 7.
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default voting rule for collective decisions by the general assembly of registered

associations in Germany prescribes that any resolution requires the support of a

simple majority, independently of the number of alternatives (cf. Bundesrepublik

Deutschland (2019)).

If a candidate is hired, search stops; otherwise, search continues, and each commit-

tee member bears an additive search cost c ·h(K) > 0. We restrict the committee

members’ voting strategies to symmetric and neutral5 stationary Markov strate-

gies. Then, a member votes in favor of some candidate if and only if the candidate’s

value is the highest among all observed K values and it exceeds some cutoff rep-

resenting the member’s acceptance standard. Acceptance standards coincide with

welfare because values are private.6

To begin with, we prove the existence and uniqueness of a symmetric and neutral

stationary Markov equilibrium for all K ≥ 1 and for all qualified majority voting

rules including unanimity voting. The uniqueness of equilibrium is shown for value

distributions that admit a log-concave density. In the subsequent comparison of

search procedures, we maintain this distributional assumption.

Consider two search procedures with K ′ ≥ 1 and K ≥ 1 candidates per period,

and suppose that K ′ > K. First, we study the case of unanimity voting in detail.

We find that if the cost function h satisfies h(K′)
K′
≥ h(K)

K
, i.e., the search costs

per candidate are weakly higher if there are K ′ versus K candidates at a time,

evaluating K candidates per period yields higher acceptance standards and wel-

fare than reviewing K ′ candidates at a time.7 Intuitively, given some acceptance

standard, the expected value of a candidate conditional on stopping is higher if

there are K ′ than if there are K candidates per period. However, at the same

time, expected search costs are also higher because the probability of hiring a

particular candidate is lower and the function h satisfies h(K′)
K′
≥ h(K)

K
. We show

that the increase in the expected value conditional on stopping is limited and that

the overall trade-off is resolved in favor of the search procedure with K candidates

per period. This result implies in particular that single-option sequential search

is welfare-maximizing if the function h meets the condition h(K′)
K′
≥ h(1) for all

5A strategy is neutral if it does not condition on the identity of the candidate.
6To be precise, this holds if and only if the equilibrium cutoff is interior.
7This result does not require the density of the value distribution to be log-concave.
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K ′ > 1. In contrast, if h(K′)
K′

< h(K)
K

, reviewing K ′ candidates at a time yields

higher welfare than evaluating K candidates in every period if the magnitude

of search costs quantified by the parameter c is sufficiently small. Here, if c is

small, acceptance standards are close to the upper bound of the support of the

value distribution. Hence, while the probability of hiring a particular candidate

is higher under the search technology featuring K candidates per period, it is low

for both search procedure. Therefore, if c is sufficiently small, expected search

costs are actually lower if there are K ′ candidates at a time because h is assumed

to satisfy h(K′)
K′

< h(K)
K

. In addition, as before, the expected value conditional on

stopping for a sample size K ′ is not lower than the respective value for a sample

size K. Moreover, if the search costs per candidate are minimal for some form

of multi-option sequential search distinct from single-option sequential search and

for exogenous reasons at most K̄ <∞ candidates can be reviewed simultaneously,

the two discussed results imply together that multi-option sequential search with

a sample size that coincides with the smallest minimizer of the search costs per

candidate is welfare-maximizing as long as the magnitude of the search costs c

is sufficiently small. Extensions to interdependent values and correlated values

contained in Section 7 show the robustness of these findings.

Second, we investigate qualified majority voting rules that do not require full una-

nimity. Again, consider two search procedures with K ′ ≥ 1 and K ≥ 1 candidates

per period, and assume that K ′ > K. We find that reviewing K ′ candidates at

a time yields a higher welfare than evaluating K candidates per period for all

cost functions h as long as c is sufficiently small. Thus, the sensitivity to the

shape of the cost function h that we find for the unanimity rule partly disappears.

To prove this result, we first establish that the ranking of the expected values

conditional on stopping from the unanimity voting case carries over to qualified

majority, meaning, the respective expected value is higher if there are K ′ com-

pared to K candidates per period. Then, we show that if c is sufficiently small, this

increase in the expected value conditional on stopping outweighs the potential rise

in expected costs.8 Furthermore, this result has the following implication for the

8Depending on the shape of the cost function h, expected search costs might also decrease.
Of course, this only reinforces our reasoning.
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welfare-maximizing sample size per period. Suppose that for exogenous reasons at

most K̄ <∞ candidates can be evaluated simultaneously in each period of time.

Then, whatever the shape of the cost function h, multi-option sequential search

with K̄ candidates at a time is welfare-maximizing as long as the magnitude of

the search costs c is sufficiently small.

Consequently, the comparison of single-option to various forms of multi-option

sequential search differs considerably if the search committee operates under qual-

ified majority voting instead of unanimity voting. This is the main qualitative

insight of our paper. Moreover, as alluded to above, our results imply in partic-

ular that the conclusions for search conducted by a single decision-maker which

is a special form of committee search with unanimity voting do not carry over to

committee search with qualified majority voting.

Our theoretical results are empirically relevant for hiring problems. Abowd and

Kramarz (2003) as well as Kramarz and Michaud (2010) empirically study the

magnitude and the functional form of the hiring costs in France.9 Since their

definition of hiring costs excludes training costs, we believe that these empirical

findings generate plausible proxies for the search costs in our model. For long-

term contracts and highly skilled jobs, they find that the magnitude of costs is

rather small and that the cost function is increasing and concave.10 Therefore,

we conclude that our theoretical findings, which mostly focus on the case of small

magnitudes of costs, apply to hiring problems in practice. Moreover, the empirical

finding that the cost function is increasing, but concave suggests that multi-option

sequential search improves welfare relative to single-option sequential search for

the unanimity as well as for all qualified majority voting rules. This discussion

demonstrates that our theoretical findings have empirically relevant implications

for hiring problems.

The paper is organized as follows: Section 2 reviews the related literature, section

3 introduces the model, and section 4 proves the existence and uniqueness of the

equilibrium. Section 5 treats the unanimity voting case, and section 6 contains the

results for qualified majority voting rules. The next section 7 contains the exten-

9We thank Simon Gleyze for making us aware of these papers.
10Notice that these estimates are particularly relevant because hiring by committee is mostly

done for long-term contracts and highly skilled jobs.
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sions to interdependent and correlated values, and we discuss other voting rules.

The final section 8 concludes. Appendix A contains the proofs, and Appendix B

derives expressions for the probability of approving a particular candidate and the

expected value conditional on stopping.

2 Related Literature

Our paper contributes to the growing literature on committee search where a com-

mittee conducts search dynamically over time.11 Albrecht et al. (2010), Compte

and Jehiel (2010), and Moldovanu and Shi (2013) study different aspects of com-

mittee search while focusing exclusively on single-option sequential search. For

example, Albrecht et al. (2010) study the implications of different voting rules or

committee sizes while holding the search technology, i.e., single-option sequential

search, fixed. In contrast, our paper focuses on the effect of different search pro-

cedures on acceptance standards and welfare given the voting rule. Therefore, we

contribute to the literature on committee search by introducing multi-option se-

quential search and comparing these alternative search protocols to single-option

sequential search in terms of acceptance standards and welfare.

We know of only one other contribution that is concerned with the comparison

of different search technologies in the committee search environment.12 In inde-

pendent work, Cao and Zhu (2019) compare single-option sequential search with

simple majority voting to a fixed-sample-size search technology that can be de-

scribed as follows: First, the committee determines the total sample size via the

random proposer mechanism. Then, in each period, one alternative is drawn until

the predetermined sample size is reached. Finally, the committee selects an alter-

native according to plurality voting. Cao and Zhu (2019)’s main insight is that the

finding from the single decision-maker setting that single-option sequential search

always dominates fixed-sample-size search, as for example argued in Rothschild

11The static case of committee decision-making has also been analyzed in depth, cf. the survey
by Li and Suen (2009).

12In the literature on auctions, the comparison between different selling technologies has been
studied before. Wang (1993) compares auctions to posted-price selling in terms of revenue and
prices and finds that the ranking of the two technologies depends on the seller’s auctioning costs
and on the steepness of the marginal revenue curve.
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(1974), does not extend to the committee search setting. While Cao and Zhu

(2019) independently ask a similar research question to ours, they study a con-

ceptually different search technology, inducing different results driven by different

effects. Therefore, we view our paper to be complementary to their work.

In the literature on search conducted by a single decision-maker, not only single-

option sequential search due to McCall (1970) but also other search technologies

have been discussed and contrasted.13 In Morgan (1983) as well as Manning and

Morgan (1985), search is conducted by a single decision-maker, and they consider

general classes of search procedures, where, in each period, the single agent de-

cides how many alternatives to draw in the following period if search continues

and whether to stop search in the current period. Therefore, multi-option sequen-

tial search conducted by a single decision-maker is part of the search technologies

studied in Morgan (1983) as well as Manning and Morgan (1985).

Morgan (1983) derives properties of the optimal sample size in each time period

depending on the searcher’s recall, time horizon, and outside option, but he does

not analytically identify conditions on the primitives of the model under which

single-option sequential search is optimal. However, he mentions numerical simu-

lations indicating in particular that single-option sequential search might not be

optimal if there is no recall and there are intraperiodic economies of scale in the

simultaneous evaluation of multiple alternatives. To some extent, our analytical

result for committee search with unanimity voting and cost functions h satisfying

h(K′)
K′

< h(K)
K

with K ′ > K ≥ 1 specialized to the single-agent case addresses this

point.

Manning and Morgan (1985) show analytically that single-option sequential search

conducted by a single agent is optimal if the time horizon is infinite, there is full

recall, and the single searcher bears additive search costs that are increasing and

convex in the number of alternatives per period. This result resembles our find-

ing for committee search with unanimity voting and cost functions h satisfying

h(K′)
K′
≥ h(1) for all K ′ > 1 when specializing it to the single-searcher case. Note

that Manning and Morgan (1985) assume full recall, whereas we assume that re-

jected alternatives cannot be recalled. Yet, as long as the sample size per period

13See for instance Stigler (1961), Rothschild (1974), and Burdett and Judd (1983).
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does not depend on calendar time as it is the case under single-option as well as

multi-option sequential search, in the single-agent case, the no recall assumption

is without loss.14 Therefore, our finding for committee search with unanimity

voting and functions h satisfying h(K′)
K′
≥ h(1) for all K ′ > 1 specialized to the

single-agent case can be derived from Manning and Morgan (1985)’s result.15

3 Model

A committee consisting of members N := {1, ..., N} with N ≥ 1, who are indexed

by i, seeks to hire one candidate. In each discrete period of time t, a set of can-

didates K := {1, ..., K} with 1 ≤ K < ∞ arrives. If K = 1, we call the resulting

search procedure single-option sequential search, whereas, if K > 1, the search

technology is termed multi-option sequential search. K is also denoted as sample

size.

Preferences feature independent private values. For each committee member

i ∈ N , the value of hiring candidate k ∈ K is governed by the random variable Xk
i ,

where Xk
i is distributed independently and identically across time periods, can-

didates, and members according to the cumulative distribution function F with

density f . We assume that the distribution of Xk
i has full support on the bounded

interval [0, x̄] with x̄ > 0. Let µ denote the mean of the random variable Xk
i .

For all candidates k ∈ K, committee member i ∈ N observes the realization of

Xk
i perfectly and has only distributional knowledge about the value Xk

j that any

committee member j other than i assigns to candidate k.

The timing is as follows: In every time period, member i observes a realization

of the vector of random variables (X1
i , . . . , X

K
i ), that is, K values. Then, mem-

bers simultaneously cast a vote, voting either for one candidate k (action k) or

for the option to continue search (action 0). Candidate k is hired and search is

stopped if and only if the number of votes in favor of k is larger than or equal

to the (qualified) majority threshold M ∈ {1, . . . , N}, with M > N
2

.16 This class

14For single-option sequential search and a single decision-maker, this point has been made
previously by Albrecht et al. (2010).

15However, note that our assumption on the shape of the cost function is more general.
16The assumption M > N

2 ensures that no two distinct candidates meet the (qualified) ma-
jority requirement at the same time.
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of voting rules encompasses, for instance, unanimity voting corresponding to the

case where M = N or simple majority voting with an odd number of members,

that is, M = N+1
2

. If search is continued, each committee member incurs a per

period cost of c·h(K) > 0, where h(K) is the value of some function h : N+ → R>0

evaluated at K, and c > 0 represents a scaling parameter. Finally, we assume that

the search horizon is infinite, and that rejected candidates cannot be recalled.

4 Equilibrium Analysis

Committee member i’s strategy is a sequence of functions σi = {σi(Ht)}t, mapping

from any history Ht until period t to ∆({0}∪K), i.e., all probability distributions

over the set of actions {0} ∪ K that are available in each period. As is common

in the literature on committee search, we restrict strategies to be (1) Markovian,

meaning, the action that member i’s strategy prescribes in period t does not de-

pend on the entire history up to period t, but only on the evaluation of the most

recent K candidates, and we focus on (2) stationary and (3) symmetric equilibria,

that is, the equilibrium strategies are neither sensitive to calendar time nor to

the identity of the committee member. In addition, we assume strategies to be

(4) neutral, that is, they have to be invariant with respect to permutations of the

candidates’ labels.17 Essentially, neutrality rules out stationary and symmetric

equilibria in Markov strategies in which voters coordinate on ignoring one or more

candidates. Apart from conditions (1) - (4), we also impose that search termi-

nates in finite time, excluding dominated equilibria in which all members always

vote to continue search, independently of the value realizations. Subsequently, we

simply write equilibrium when referring to a stationary and symmetric Markov

equilibrium in neutral strategies.

Strategies that satisfy these refinements are characterized by cutoffs z ∈ [0, x̄).

More specifically, in any time period, upon observing the value realizations

(x1
i , ..., x

K
i ) ∈ [0, x̄]K , member i ∈ N votes in favor of candidate k ∈ K if and only

17Any stationary Markov strategy can be described by a mapping s : [0, x]K → ∆({0}∪K). A
strategy s satisfies neutrality if, for all (x1, . . . , xK) ∈ [0, x]K , it holds that s(xρ(1), . . . , xρ(K)) =
(s0(x1, . . . , xK), sρ(1)(x1, . . . , xK), . . . , sρ(K)(x1, . . . , xK)) for any permutation ρ of the set K.
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if

xki ≥ max
l 6=k

xli and xki ≥ z.

We call these strategies maximum-strategies with cutoff. In words, every member

chooses the best among the K available candidates and approves this candidate

whenever the associated value exceeds the cutoff, or acceptance standard, z. In-

tuitively, since candidates are identical ex ante and because members treat candi-

dates in a neutral way, all candidates have the same chance to be elected from the

perspective of an individual member. Consequently, no member has an incentive

to vote in favor of any candidate but the best.18

Interior equilibrium cutoffs z ∈ (0, x̄) solve z = v, where v is the continuation

value implied by this strategy profile.19 The continuation value which coincides

with the ex ante utilitarian welfare per committee member is given by

v = − c · h(K)

K · Pr(candidate k hired)
+ E[Xk

i |candidate k hired].

The continuation value amounts to the difference between the expected value

conditional on stopping E[Xk
i |candidate k hired] and the expected search costs

c·h(K)
K·Pr(candidate k hired)

. Let QK(z,N,M) be the cumulative distribution function of

the Binomial distribution with parametersN and Pr(Xk
i ≥ z and Xk

i ≥ maxl 6=kX
l
i)

evaluated at M−1. Also, for any b ∈ N0 with b ≤ N , qK(z,N, b) denotes the corre-

sponding probability mass function evaluated at b. Further, we argue in Appendix

B.2 that

Pr(Xk
i ≥ z and Xk

i ≥ max
l 6=k

X l
i) =

1

K
[1− F (z)K ].

Then, the equilibrium equation can be written as

z = − c · h(K)

K · [1−QK(z,N,M)]
+ E[Xk

i |candidate k hired]. (1)

18Note that mixed strategies do not arise in equilibrium.
19Boundary solutions, i.e., equilibria involving some maximum strategy with cutoff z = 0, may

arise if the search costs c · h(K) are large. Subsequently, we take care of this issue.
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Intuitively, acceptance standards z arising in equilibrium are calibrated in a

way such that a member is indifferent between stopping and continuing search

whenever the value of some candidate coincides with the cutoff z. A derivation of

the equilibrium strategies and the equation characterizing the equilibrium cutoffs

can be found in Appendix A.1.

4.1 Equilibrium Existence

We claim that there exists an equilibrium. The reasoning in the previous part

implies that there exists an equilibrium if and only if there either exists 0 ≤

z < x that solves equation (1), or there is a boundary equilibrium, in which the

maximum-strategy with cutoff z = 0 forms an equilibrium.

Proposition 1. There exists an equilibrium.

We prove the existence of an equilibrium while making use of the intermediate

value theorem. Similar existence arguments appear in Albrecht et al. (2010),

Compte and Jehiel (2010), and Moldovanu and Shi (2013).

4.2 Equilibrium Uniqueness

We turn to the problem of equilibrium uniqueness. Apart from being of interest

in itself, the uniqueness of equilibrium is important for a transparent comparison

between single-option sequential search and multi-option sequential search. It

turns out that the equilibrium is unique if we impose the assumption that the

density f is log-concave.

Proposition 2. If the density f is log-concave, the equilibrium is unique.

Many well-known distributions including, for instance, the uniform distribution

or the truncated normal distribution meet this requirement.20

Conceptually, the proof strategy follows Albrecht et al. (2010), but, as discussed

below, the presence of more than one candidate per period requires a substantial

amount of supplementary steps that are not needed if K = 1. The arguments from

20For a comprehensive list of distributions that admit a log-concave density, we refer to Bagnoli
and Bergstrom (2005).
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the previous parts imply that there is a unique equilibrium if and only if either

equation (1) admits exactly one solution and there is no supplementary boundary

equilibrium or there is a boundary equilibrium and the equilibrium equation has

no solution. Rearrange equation (1):

c · h(K)

K · [1−QK(z,N,M)]
= E[Xk

i |candidate k hired]− z.

The essential part of the proof is to establish that the left-hand side of this equa-

tion is increasing in z, whereas the right-hand side is decreasing in z. Then, the

uniqueness result follows from the opposite monotonicities of the discussed func-

tions.

First, it is straightforward to derive that the left-hand side is increasing in z. Intu-

itively, if the acceptance standard z increases, the probability of voting in favor of

some candidate k decreases, and, hence, the probability of hiring this candidate k

and the overall probability of stopping decrease as well. Thus, the expected search

costs increase. Consequently, it remains to show that E[Xk
i |candidate k hired]− z

is decreasing in z. This claim is stated as Lemma 1.21 Define SK(z,N,M) :=

E[Xk
i |candidate k hired] to emphasize that the expected value conditional on hir-

ing depends on K and M .

Lemma 1. Consider any K ≥ 1. If the density f is log-concave, the function

SK(z,N,M)− z

is decreasing in z.

Subsequently, we discuss the proof of Lemma 1. Introduce the following two

objects:

µKa (z) := E[Xk
i |Xk

i ≥ z and Xk
i ≥ max

l 6=k
X l
i ], and

µKr (z) := E[Xk
i |Xk

i < z or Xk
i < max

l 6=k
X l
i ].

21For single-option sequential search, i.e., K = 1, this property has been shown in Albrecht
et al. (2010).
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These conditional expectations capture the expected value of an arbitrary candi-

date k ∈ K for an arbitrary member i ∈ N conditional on approving or rejecting

this candidate, respectively. We argue in Appendix B.1 that

E[Xk
i |candidate k hired] = wK(z)µKa (z) + [1− wK(z)]µKr (z), (2)

with wK(z) being defined as

wK(z) :=
N∑
l=M

qK(z,N, l)

1−QK(z,N,M)

l

N
.22

Intuitively, conditional on stopping, the accepted candidate k might be supported

or rejected by an arbitrary member. Therefore, the expected value of k conditional

on stopping amounts to an average of the expected values conditional on support-

ing as well as rejecting candidate k. The weight wK(z) represents the expected

share of members supporting k conditional on k meeting the majority requirement.

Note that under unanimity voting, hired candidates must be accepted by every

member. Thus, in this case, the expected value conditional on hiring simplifies to

E[Xk
i |candidate k hired] = µKa (z).

After some intermediate steps that are similar to those in the proof of Albrecht

et al. (2010) we obtain that, for z ∈ (0, x̄),

dE[Xk
i |candidate k hired]

dz
< wK(z)

dµKa (z)

dz
+ [1− wK(z)]

dµKr (z)

dz
.

Hence, the key proof step is to show that dµKa (z)
dz
≤ 1 and dµKr (z)

dz
≤ 1. Notice that

if K = 1, these conditional expected values are truncated means:

µ1
a(z) = E[Xk

i |Xk
i ≥ z], and µ1

r(z) = E[Xk
i |Xk

i < z].

It is well-known that log-concavity of f implies the desired Lipschitz conditions on

the truncated means, i.e., dµ
1
a(z)
dz
≤ 1 and dµ1r(z)

dz
≤ 1 (see e.g. Bagnoli and Bergstrom

(2005)). However, for K > 1, the discussed implications are not standard because

22This kind of representation of the expected value conditional on stopping is due to Albrecht
et al. (2010).
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the involved expected values conditional on rejecting or supporting a candidate do

no longer constitute truncated means. To obtain that dµKa (z)
dz
≤ 1, we establish that

the conditional density Pr(Xk
i = x|Xk

i ≥ maxl 6=kX
l
i) is log-concave by employing

the fact that log-concavity is preserved under integration, which has been shown

in Prékopa (1973). Then, like in the case of K = 1, log-concavity implies the

desired Lipschitz condition on µKa (z). Next, we show that dµKr (z)
dz
≤ 1 by directly

invoking the log-concavity of f as well as its implications. Again, the preservation

of log-concavity under integration due to Prékopa (1973) is important. Taking

both aspects together, Lemma 1 follows, and we obtain that the right-hand side

of the equation above is decreasing in z. When comparing the welfare induced by

single-option sequential search and multi-option sequential search, we repeatedly

make use of Lemma 1. We believe that the technical property established in

Lemma 1 might be useful beyond its application in this paper.

5 Unanimity Voting

Having established equilibrium existence and uniqueness, in this section we as-

sume that the committee employs unanimity voting, i.e., we set M = N . We

compare single-option sequential search and different forms of multi-option se-

quential search in terms of acceptance standards and welfare and show how the

superiority of different search technologies depends on the search cost structure.

Moreover, for sufficiently small magnitudes of search costs, we derive the welfare-

maximizing sample size, depending on the shape of the search cost function. In

particular, we identify conditions on the search cost function under which single-

option sequential search is optimal and suboptimal respectively.

Consider multi-option sequential search with K ′ ≥ 1 and K ≥ 1 candidates

per period, and assume that K ′ > K.

To begin with, as a first cost regime, we study cost functions h that satisfy

h(K′)
K′
≥ h(K)

K
. This restriction on the function h means that the search costs per

candidate when there are K ′ candidates per period are at least as high as under

14



the search technology featuring K candidates per period. For instance, this con-

dition is met if h(K ′) = (K ′)α and h(K) = (K)α for some α ≥ 1.

Denote the ex ante utilitarian welfare per committee member in the game with

K ′ and K candidates per period by vK′ and vK respectively. Proposition 3 estab-

lishes that the welfare under multi-option sequential search with K ′ candidates per

period is strictly lower than the welfare when there are K candidates per period.

Proposition 3. Suppose that the voting rule is unanimity, i.e., M = N , and

consider any K ′, K ≥ 1 with K ′ > K.

If the function h satisfies

h(K ′)

K ′
≥ h(K)

K
,

the committee’s ex ante utilitarian welfare is higher under multi-option sequential

search with K candidates per period relative to multi-option sequential search with

K ′ candidates per period, i.e., vK > vK′.

In words, under unanimity voting, weakly higher search costs per candidate

when the sample size is larger imply that the welfare of the search procedure

featuring a larger sample size is strictly lower. This conclusion holds for all mag-

nitudes of search costs as quantified by the parameter c. Moreover, the result

does not require the density of the value distribution f to be log-concave23 and it

applies to all equilibria of the discussed search procedures in case a search tech-

nology admits more than one equilibrium.

The basic trade-off when moving from K to K ′ candidates per period is that, on

the one hand, the expected value conditional on stopping rises, but on the other

hand, expected search costs rise, too. The former effect arises because unanimity

voting means that, conditional on stopping, all members vote in favor of the hired

candidate, and, when there K ′ instead of K candidates per period, members only

approve some candidate if the associated value is the maximum out of the K ′ in-

stead of the K values they observe. The latter effect is due to two aspects: First,

the probability of hiring an arbitrary candidate k is smaller if K ′ versus K can-

didates are reviewed simultaneously, and, second, the search costs per candidate

23We thank an anonymous referee for pointing this out.
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are weakly higher if there are K ′ compared to K candidates per period. Thus, a

priori, the ranking of the two search procedures in terms of welfare is ambiguous.

The key proof step is to show that the increase in the expected value conditional

on stopping is limited when moving from multi-option sequential search with K

to K ′ candidates per period. This aspect is captured in Lemma 2.

Lemma 2. Consider any K ′, K ≥ 1 with K ′ > K. For all zK , zK′ ∈ [0, x) such

that zK ≤ zK′, it holds

µK
′

a (zK′)− zK′
µKa (zK)− zK

<
1
K

[1− F (zK)K ]
1
K′

[1− F (zK′)K
′ ]
.

Take any possibly non-equilibrium cutoffs zK , zK′ ∈ [0, x) such that zK ≤ zK′ ,

and consider the ratio of the expected values conditional on stopping net of a cutoff

when there are K ′ candidates and the cutoff is zK′ versus having K candidates

and the cutoff being zK . Lemma 2 reveals that an upper bound of this ratio is

given by the ratio of the probability that an individual member votes in favor of a

candidate k if there K candidates and the cutoff is zK to this probability if there

are K ′ candidates and the cutoff is zK′ . We believe that this technical property

might be useful beyond its application in this paper.

Now, let us sketch the proof of Proposition 3 for interior cutoffs. In this case,

acceptance standards coincide with welfare.24 Consider the ratio of the expected

value conditional on stopping net of the cutoff when there are K ′ candidates

compared to the net value when there are K candidates, that is,

E[Xk
i |Xk

i ≥ maxl∈{1,...,K′}:l 6=kX
l
i , X

k
i ≥ zK′ ]− zK′

E[Xk
i |Xk

i ≥ maxl∈{1,...,K}:l 6=kX l
i , X

k
i ≥ zK ]− zK

,

where zK′ and zK denote equilibrium cutoffs when there are K ′ and K candidates,

respectively. Towards a contradiction, assume that zK ≤ zK′ . By the equilibrium

equation, i.e., equation (1), the considered ratio is equal to the ratio of the ex-

pected search costs when there are K ′ versus K candidates. Then, the assumption

h(K′)
K′
≥ h(K)

K
on the search cost function yields a lower bound on this ratio of ex-

pected search costs. Moreover, while invoking zK ≤ zK′ and applying Lemma 2,

24We emphasize that the result also holds if some equilibria constitute boundary solutions.
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we obtain an upper bound on the discussed ratio of expected values conditional

on stopping. It turns out that the derived lower bound is larger than the upper

bound, which constitutes the desired contradiction.

Recall that K ′ > K. Let us turn now to the second cost regime and focus

on cost functions h that satisfy h(K′)
K′

< h(K)
K

. This assumption is reasonable

if there are fixed costs associated with the hiring process or if there are cost

savings when multiple candidates can be considered. For example, it is satisfied if

h(K ′) = (K ′)β and h(K) = (K)β for some β < 1. Proposition 4 reveals that under

this assumption on the search costs, the conclusion of the previous part of this

section is partly reversed: If the magnitude of the search costs as quantified by

the parameter c is sufficiently small, evaluating K ′ candidates at a time improves

welfare relative to reviewing K candidates at a time.

Proposition 4. Suppose that the voting rule is unanimity, i.e., M = N , assume

that the density f is log-concave, and consider any K ′, K ≥ 1 with K ′ > K.

If the function h satisfies

h(K ′)

K ′
<
h(K)

K

there exists c̄K′,K > 0 such that for all c < c̄K′,K, the committee’s ex ante utilitarian

welfare is higher under multi-option sequential search with K ′ candidates per period

relative to multi-option sequential search with K candidates per period, i.e., vK′ >

vK.

To verbalize Proposition 4, under unanimity voting, strictly lower search costs

per candidate if the sample size is larger imply that the welfare of the search

technology with a larger sample size is strictly higher as long as the magnitude of

search costs is sufficiently low.

Intuitively, again, the expected value conditional on stopping is not lower when

there are K ′ relative to K candidates at a time. However, in contrast to the

previous cost regime, here, for sufficiently small magnitudes of search costs c, the

expected search costs are actually lower if there K ′ compared to K candidates per

period, yielding a higher welfare for the committee if K ′ instead of K candidates
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are evaluated simultaneously in every period of time.

Let us sketch the proof of Proposition 4 in more detail. Assume, by contradiction,

that for all c̄K′,K > 0, there exists c < c̄K′,K such that vK ≥ vK′ . Without loss

of generality, suppose that both cutoffs are interior. Then, they coincide with

welfare and, thus, we have that zK ≥ zK′ . First, we show that given zK ≥ zK′ ,

the expected value conditional on stopping is increasing when moving from K to

K ′ candidates per period. This is a consequence of the log-concavity of f and,

more precisely, the Lipschitz condition dµK
′

a (z)
dz

≤ 1 we derived in Lemma 1. The

equilibrium condition (1) then implies that the expected search costs have to be

higher if K ′ compared to K candidates are evaluated simultaneously. However, if

c becomes small, under both search procedures, the equilibrium acceptance stan-

dards are close to the upper bound of the support of the value distribution, x̄.

This conclusion crucially relies on the fact that the voting rule is unanimity and

fails in the case of qualified majority rules distinct from unanimity. Then, even

though the probability of hiring an arbitrary candidate k is higher for K than for

K ′, this probability is small for K and for K ′. In fact, if c is small enough, the

difference is low enough such that, given h(K′)
K′

< h(K)
K

, the expected search costs

are overall actually smaller for K ′ than for K candidates at a time. This is the

desired contradiction.

Finally, Propositions 3 and 4 allow us to characterize the welfare-maximizing

sample size if the magnitude of search costs is sufficiently small. First, if h(K′)
K′
≥

h(1) for all K ′ > 1, meaning, the search costs per candidate are minimal if one

candidate is evaluated at a time, it is immediate from Proposition 3 that single-

option sequential search is optimal for all magnitudes of costs as measured by the

parameter c. This finding is stated as Corollary 1.

Corollary 1. Suppose that the voting rule is unanimity, i.e., M = N . If the

function h satisfies h(K′)
K′
≥ h(1) for all K ′ > 1, the committee’s ex ante utilitarian

welfare is higher under single-option sequential search relative to any form of multi-

option sequential search, i.e., v1 > vK′ for all K ′ > 1.

In contrast, if the search costs per candidate are minimal for some form of

multi-option sequential search distinct from single-option sequential search and
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for exogenous reasons at most K̄ <∞ candidates can be reviewed simultaneously,

Propositions 3 and 4 together imply that multi-option sequential search with a

sample size that coincides with the smallest minimizer of the search costs per

candidate is welfare-maximizing as long as the magnitude of the search costs c is

sufficiently small. Corollary 2 captures this result.

Corollary 2. Suppose that the voting rule is unanimity, i.e., M = N , assume

that the density f is log-concave, and impose that h(1) > min1≤K≤K̄
h(K)
K

for some

1 < K̄ <∞. Consider the smallest 1 < K ′ ≤ K̄ such that

h(K ′)

K ′
= min

1≤K≤K̄

h(K)

K
.

There exists c̄ > 0 such that for all c < c̄, the committee’s ex ante utilitarian

welfare is higher under multi-option sequential search with K ′ candidates per pe-

riod relative to single-option or any other form of multi-option sequential search

featuring at most K̄ candidates at a time, i.e., vK′ > vK for all 1 ≤ K ≤ K̄ such

that K 6= K ′.

Overall, we conclude that the ranking of single-option sequential search and

different forms of multi-option sequential search in terms of welfare as well as the

welfare-maximizing number of candidates per period is mainly determined by the

shape of the search cost function.

6 Qualified Majority Voting

Having studied the case of unanimity voting, in this section, we turn to qualified

majority voting, considering a majority requirement M such that M < N . We

compare the unique equilibria of different forms of multi-option sequential search

in terms of acceptance standards and welfare, and, again, we derive the welfare-

maximizing number of candidates per period for small magnitudes of search costs.

As before, consider multi-option sequential search with K ′ ≥ 1 and K ≥ 1

candidates per period, and suppose that K ′ > K. Again, let vK′ and vK be

the ex ante utilitarian welfare per committee member if there are K ′ and K
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candidates per period respectively. As already stated, the welfare induced by a

search procedure is determined by two ingredients: The expected value conditional

on hiring and the expected search costs. To start, we compare in Lemma 3 the

expected values conditional on stopping when there are K ′ versus K candidates

per period. Recall that SK
′
(z,N,M) and SK(z,N,M) denote the expected value

conditional on hiring if there are K ′ and K candidates at a time respectively.

Lemma 3. Consider any K ′, K ≥ 1 with K ′ > K. For all z ∈ [0, x̄), it holds

SK(z,N,M) < SK
′
(z,N,M).

Lemma 3 reveals that, when fixing a cutoff value z, the expected value con-

ditional on stopping when the sample size is K ′ is higher than the corresponding

object when the sample size is K. If the voting rule is unanimity, this conclusion

is immediate because, in this case, K ′ > K directly yields

SK(z,N,N) =E[Xk
i |Xk

i ≥ z and Xk
i ≥ max

l∈{1,...,K}:l 6=k
X l
i ]

<E[Xk
i |Xk

i ≥ z and Xk
i ≥ max

l∈{1,...,K′}:l 6=k
X l
i ] = SK

′
(z,N,N).

Yet, if the voting rule is qualified majority, the conclusion is not obvious because

there are two forces pulling in opposite directions. Consider the average repre-

sentations of the expected values conditional on hiring for both discussed search

technologies as introduced in equation (2):

SK
′
(z,N,N) = wK

′
(z)µK

′

a (z) + [1− wK′(z)]µK
′

r (z) and

SK(z,N,N) = wK(z)µKa (z) + [1− wK(z)]µKr (z).

Note that for M < N , in contrast to unanimity, it does neither hold that wK
′
(z) =

1 nor wK(z) = 1, but these objects depend non-trivially on the number of candi-

dates per period. Fix a potentially non-equilibrium cutoff value z. Observe that

µK
′

a (z) > µKa (z) as well as µK
′

r (z) > µKr (z), that is, both the expected value con-

ditional on approving as well as conditional on rejecting an arbitrary candidate

k are higher if there are K ′ versus K candidates at a time. Similar to the case
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of unanimity voting, µK
′

a (z) > µKa (z) holds since a member approves a candidate

only if the candidate’s value is the highest among the K ′ versus K values that

this member observes. Further, the intuition behind µK
′

r (z) > µKr (z) is as follows:

If the value of some candidate is above the cutoff z, but some member does not

vote in favor of this candidate, this means that this candidate’s value is not the

maximum out of the K ′ versus K values this member observes, implying that the

considered expected value is lower in the latter case. However, at the same time,

we have that wK
′
(z) < wK(z): Conditional on stopping, the expected share of

members who approve some candidate k decreases when increasing the sample

size from K to K ′. This holds because the probability that a single member ap-

proves a candidate k decreases when moving from K to K ′, since the candidate’s

value has to be the maximum out of K ′ instead of K values in addition to being

above the cutoff z. Finally, since µK
′

a (z) > µK
′

r (z) as well as µKa (z) > µKr (z), the

overall effect on the expected value conditional on stopping is a priori ambiguous.

We prove Lemma 3 by employing a technical result from Albrecht et al. (2010)

related to the expected share of members who approve some candidate k condi-

tional on stopping. In Proposition 5, we claim that multi-option sequential search

with more candidates at a time increases welfare independently of the shape of

the cost function as long as the magnitude of the search costs is sufficiently small.

Proposition 5. Suppose that the voting rule is qualified majority distinct from

unanimity, i.e., M < N , assume that the density f is log-concave, and consider

any K ′, K ≥ 1 with K ′ > K.

There exists c̄K′,K > 0 such that for all c < c̄K′,K, the committee’s ex ante util-

itarian welfare is higher under multi-option sequential search with K ′ candidates

per period relative to multi-option sequential search with K candidates per period,

i.e., vK′ > vK.

Intuitively, the increase in the expected value conditional on hiring when in-

creasing the sample size from K to K ′ as revealed by Lemma 3 outweighs the

potential rise of expected search costs25 if the magnitude of the search costs c is

25We write potential rise of expected search costs because depending on the shape of the
function h the expected search costs might also be lower if there K ′ versus K candidates in each
period of time. Of course, if that is the case, this only reinforces our reasoning.
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sufficiently small. We emphasize once again that this result does not depend on

the form of the cost function. For any function h, there are cost levels c such that

evaluating K candidates at a time is dominated by reviewing K ′ candidates in

each period of time.26

Let us discuss the proof of Proposition 5. To the contrary, suppose that for all

c̄K′,K > 0, there exists c < c̄K′,K such that vK ≥ vK′ . Again, without loss of

generality, focus on interior cutoffs. Thus, we have that zK ≥ zK′ where, again,

zK and zK′ denote the equilibrium cutoffs if there are K and K ′ candidates per

period respectively. Recall Lemma 1: The log-concavity of f is sufficient for

dSK(z,N,M)
dz

≤ 1. When employing this Lipschitz condition, we obtain that the

difference SK
′
(zK , N,M) − SK(zK , N,M) is bounded above by the difference in

expected search costs between the search procedures involving K ′ and K candi-

dates at a time. Now, in contrast to unanimity voting, if M < N , the equilibrium

cutoffs arising under both discussed search technologies do not converge to the

upper bound of the support of the value distribution as the magnitude of the

search costs c becomes small, but they remain bounded away from x̄. For the case

of single-option sequential search, this observation has been made previously in

Albrecht et al. (2010) as well as Compte and Jehiel (2010). The intuition for this

result is as follows: Under qualified majority voting, conditional on stopping, a

candidate might be hired even though some member did not vote in favor of this

candidate. Taking that scenario, which does not arise under unanimity voting, into

account, members do not become arbitrarily picky if search costs become small.

Consequently, if c goes to 0, the difference in expected search costs discussed above

vanishes. However, due to Lemma 3, the difference SK
′
(zK , N,M)−SK(zK , N,M)

remains strictly positive.27 This is the desired contradiction.

Moreover, Proposition 5 allows us to characterize the welfare-maximizing sample

size per period for small magnitudes of search costs. Suppose that for exogenous

reasons at most K̄ <∞ candidates can be reviewed simultaneously in each period

of time. Then, Proposition 5 implies the following: Whatever the shape of the

26However, as indicated in Proposition 5, the threshold c̄K′,K depends on the precise values
of K ′ and K as well as on the shape of the function h.

27This step fails if the voting rule is unanimity because, in this case, if c goes to 0, zK converges
to x̄ and, thus, the difference SK

′
(zK , N,N)− SK(zK , N,N) would vanish as well.
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cost function h, multi-option sequential search with K̄ candidates per period is

welfare-maximizing as long as the magnitude of the search costs c is sufficiently

small. Corollary 3 records this implication.

Corollary 3. Suppose that the voting rule is qualified majority distinct from una-

nimity, i.e., M < N , assume that the density f is log-concave, and consider any

1 < K̄ <∞.

There exists c̄ > 0 such that for all c < c̄, the committee’s ex ante utilitarian

welfare is higher under multi-option sequential search with K̄ candidates per pe-

riod relative to single-option or any other form of multi-option sequential search

featuring at most K̄ candidates at a time, i.e., vK̄ > vK for all 1 ≤ K < K̄.

Our analysis reveals that the ranking of different forms of multi-option sequen-

tial search as well as the welfare-maximizing number of candidates per period for

the single-searcher case do not generally extend to the committee search case.

Again, note that the single decision-maker case is equivalent to the case of a com-

mittee with size N = 1 operating under the unanimity voting rule. Thus, our

results from Section 5 apply to the single-agent case. To emphasize the drastically

different findings, again, suppose that for exogenous reasons at most K̄ <∞ can-

didates can be evaluated simultaneously in every period. If the function h satisfies

h(K′)
K′
≥ h(1) for all K ′ > 1 and the magnitude of search costs c is small, single-

option sequential search is welfare-maximizing under unanimity voting, whereas

multi-option sequential search featuring K̄ candidates at a time is optimal under

qualified majority voting. What drives these considerably different conclusions?

Again, consider multi-option sequential search with K ′ ≥ 1 and K ≥ 1 candidates

per period, and assume that K ′ > K. If the voting rule is unanimity, there is a race

between the difference in the expected values conditional on stopping and the dif-

ference in the expected search costs between the search technologies involving K ′

and K candidates at a time: If c becomes small, the difference in expected search

costs between K ′ and K vanishes, and, in addition, the difference in the expected

values conditional on hiring also goes to 0. In contrast, under qualified majority

voting, if c becomes small, as in the unanimity voting case, the difference in the

expected search costs goes to 0. However, in contrast to the unanimity voting

case, the difference in the expected values conditional on stopping does not vanish
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because equilibrium cutoffs do not converge to the upper bound of the support of

the value distribution, but they stay bounded away from x̄. This discrepancy ex-

plains why the ranking of the two types of search procedures is different when the

voting rule is qualified majority instead of unanimity. Therefore, when comparing

the single-searcher case with the committee search case, the choice of the voting

rule crucially matters.

7 Extensions and Discussion

In the main model, the committee members’ preferences feature independent pri-

vate values. For the case of unanimity voting, we provide extensions to interde-

pendent as well as correlated values. Moreover, we briefly discuss other voting

rules.

7.1 Interdependent and Correlated Values

For the unanimity voting rule, we explore the robustness of our results via two

extensions: Allowing for interdependent values instead of private values, and al-

lowing for correlated values instead of independent values.28

First, regarding interdependent values, we follow the approach in Moldovanu and

Shi (2013), assuming that the value a member derives from hiring some candidate

is a weighted average of his or her own observed signal and the signals of all other

members. We establish that the ranking of the acceptance standards implied by

different search technologies carries over from the analysis under private values.

As far as welfare is concerned, note that under the assumption of interdependent

values, acceptance standards and welfare no longer coincide even if the equilibrium

cutoff is interior (cf. Moldovanu and Shi (2013)). We find that Proposition 4 ex-

tends from the private-values case to interdependent values. Overall, this suggests

that our results concerning unanimity voting are not driven by the private-values

assumption on preferences.

Second, to relax the assumption that candidates’ values are distributed indepen-

dently across committee members, we introduce an unknown state of the world

28The arguments for these extensions are available on request from the authors.
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sk for each candidate k ∈ K, which we assume to be independently and identi-

cally distributed across time and candidates. Conditional on the state realization

sk, the values associated with candidate k are then independently and identically

distributed across committee members. The state-dependent value distributions

are assumed to be stochastically ranked according to the likelihood-ratio order-

ing. While relaxing the independence of values across members, we maintain the

assumption that committee members’ preferences feature private values. Thus,

acceptance standards and welfare again coincide whenever the equilibrium is in-

terior. We find that all results for the unanimity voting rule carry over from the

private-values case to correlated values. Therefore, we conclude that, while the

assumption of independently distributed values is admittedly strong, it does not

drive our results for the unanimity voting rule.

7.2 Other Voting Rules

Let us discuss the class of simple voting rules on which we focus. Recall that

each member may either vote for one of the available candidates or may opt to

continue search, and a candidate is hired if and only if the number of votes he

or she receives exceeds some threshold. Again, as argued in the introduction,

considering these voting rules is a natural choice when adopting an approach

that is positive with regard to the voting rule, but normative with respect to the

search technology. That being said, since members have to decide about more

than two alternatives under multi-option sequential search, other voting rules are

also conceivable. Inspired by approval voting,29 one might allow the members

to approve any number of candidates instead of only one candidate, and assume

that, subject to some tie-breaking rule, a candidate is hired if and only if he or

she is approved by more members than any other candidate and the number of

supporters of this candidate exceeds some threshold. However, the analysis of

the equilibrium voting behavior under these approval-based voting rules is much

more complicated. Suppose that there are two candidates per period, i.e., K = 2,

and assume that the mentioned threshold coincides with unanimity, meaning, it

29For an overview about several aspects related to approval voting, we refer to Laslier and
Sanver (2010).
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equals the committee size N . Even in this simple case, for instance, the strategy

“approve all candidates above some cutoff” does not constitute an equilibrium:

Whether approving the second-best candidate is beneficial for a member does not

only depend on the aspect whether the value of this candidate is above or below

the cutoff, but it also matters how much the value of this candidate falls below the

value of the best candidate and how much it exceeds the cutoff or continuation

value. If the values of the two candidates are both above the cutoff and they are

very close to each other, members might want to approve both candidates. In

contrast, if the two values are above the cutoff, the value of the best candidate is

close to the upper bound of the support of the value distribution, but the value of

the second-best candidate is only slightly above the continuation value, members

might want to approve only their best candidate. This discussion reveals that

already the analysis of the equilibrium voting behavior under these alternative

voting rules is rather involved. Consequently, studying the ranking of the search

procedures in terms of welfare—which is the focus of this paper—under these

alternative voting rules does not seem to be tractable.

8 Conclusion

In this paper, we contrast the well-known sequential search procedure, in which

candidates are evaluated “one at a time”, and different forms of multi-option se-

quential search, in which, in each period, committees simultaneously evaluate a

set of candidates of fixed size. We study the equilibrium behavior under these

search procedures and show equilibrium existence as well as equilibrium unique-

ness within some reasonably restricted class of equilibria. Based on the equilibrium

analysis, we compare single-option and various types of multi-option sequential

search in terms of acceptance standards and welfare. We identify circumstances

under which the “one at a time” policy commonly studied in the committee search

literature is not optimal. Generally, the superiority of one or the other search tech-

nology depends on two important ingredients of the search problem: The voting

rule and the specification of the search costs associated with the simultaneous

evaluation of multiple candidates.
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If the committee operates under the unanimity rule, the comparison of different

search protocols is sensitive to the shape of the cost function. This dependence on

the form of the cost function partly vanishes when committees employ a qualified

majority rule different from unanimity. In this case, evaluating more candidates

at a time improves welfare for any type of cost function as long as the magni-

tude of the search costs is sufficiently small. Consequently, the assessment of the

studied search procedures as well as the underlying trade-offs considerably change

when moving from the unanimity rule to qualified majority rules. This is the main

qualitative insight of this paper. Again, note that search conducted by a single

agent is a special case of committee search with unanimity voting. Consequently,

our analysis reveals that the results for the single decision-maker case (see e.g.

Manning and Morgan (1985)) do not carry over to the committee setting, but the

presence of a committee alters the search design problem and implies different

rankings of search procedures.
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Appendix A Proofs

A.1 Characterization

To begin with, we claim that the best response of any member i ∈ N against an

arbitrary neutral stationary Markov strategy that is symmetric across all other

members amounts to a maximum-strategy with cutoff, that is, member i votes in

favor of candidate k ∈ K if and only if

xki ≥ max
l 6=k

xli and xki ≥ z

with z ∈ [0, x̄) being some cutoff.

Assume that all members except for member i ∈ N in some period t behave

according to a common Markovian strategy that is stationary and neutral. First of

all, let v be the continuation value member i obtains when search continues. Note

that v does not depend on past or current actions or value realizations since the

continuation strategy adopted by all members in periods following t is Markovian.

Also, it is neither sensitive to the identity i of the member nor to calendar time

because continuation strategies are symmetric across members and stationary.

Now, suppose that member i observes the value realizations (x1
i , . . . , x

K
i ) in period

t. Member i is pivotal for candidate k if and only if exactly M−1 out of the other

N − 1 members choose action k in the given period, that is, approve candidate k.

Let pk(a, b) > 0 with a ∈ N, b ∈ N0 and b ≤ a denote the probability that exactly

b out of a members choose action k in the given period. Similarly, Pk(a, b) > 0

with a, b ∈ N and b ≤ a describes the probability that at most b − 1 out of a

members select action k. Then, the probability that member i is pivotal in favor

of candidate k is given by pk(N − 1,M − 1).

The expected utility that member i obtains when approving candidate k can be

expressed as follows:

[(1− Pk(N − 1,M)) + pk(N − 1,M − 1)][xki ] +
∑

l∈{1,...,K}:l 6=k

[1− Pl(N − 1,m)][xli]

+[Pk(N − 1,M)− pk(N − 1,M − 1)−
∑

l∈{1,...,K}:l 6=k

(1− Pl(N − 1,M))][v].
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The expected payoff of member i when voting in favor of continuing search, i.e.,

selecting action 0, amounts to

∑
l∈{1,...,K}

[1− Pl(N − 1,M)][xli] + [1−
∑

l∈{1,...,K}

(1− Pl(N − 1,M))][v].

Since the stationary Markov strategy that is commonly adopted by members dis-

tinct from i is neutral, it holds that Pd(a, b) = Pe(a, b) as well as pd(a, b) = pe(a, b)

for all d, e ∈ K. For simplicity, write P (a, b) and p(a, b) to denote these probabil-

ities. Consequently, the expected utility of choosing action k can be reformulated

in the following way:

p(N − 1,M − 1)[xki ] + [1− P (N − 1,M)][
∑

l∈{1,...,K}

xli]

+ [1−K(1− P (N − 1,M))− p(N − 1,M − 1)][v].

Similarly, the expected payoff of action 0 simplifies to the expression

[1− P (N − 1,M)][
∑

l∈{1,...,K}

xli] + [1−K(1− P (N − 1,M))][v].

Thus, voting in favor of candidate k is optimal for member i if and only if, for all

m ∈ K with m 6= k,

p(N − 1,M − 1)[xki ] + [1− P (N − 1,M)][
∑

l∈{1,...,K}

xli]

+ [1−K(1− P (N − 1,M))− p(N − 1,M − 1)][v]

≥ p(N − 1,M − 1)[xmi ] + [1− P (N − 1,M)][
∑

l∈{1,...,K}

xli]

+ [1−K(1− P (N − 1,M))− p(N − 1,M − 1)][v],
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and, at the same time,

p(N − 1,M − 1)[xki ] + [1− P (N − 1,M)][
∑

l∈{1,...,K}

xli]

+ [1−K(1− P (N − 1,M))− p(N − 1,M − 1)][v]

≥[1− P (N − 1,M)][
∑

l∈{1,...,K}

xli] + [1−K(1− P (N − 1,M))][v].

The former condition is equivalent to requiring that xki ≥ maxl 6=j x
l
i. The lat-

ter condition reduces to xki ≥ v. This means that there exists a cutoff value

zi(t) ∈ [0, x) such that this condition is met if and only if xji ≥ zi(t). Moreover,

the cutoff value solves zi(t) = v whenever it is interior. Hence, given an arbitrary

neutral stationary Markov strategy commonly adopted by all members except for

member i in period t, it is optimal for member i to employ a maximum-strategy

with cutoff zi(t) in this period.

In the following, we make use of this claim, and we establish the sufficiency and

the necessity part separately.

With regard to necessity, it is immediate from the previous claim that any symmet-

ric stationary Markov equilibrium in neutral strategies must involve a maximum-

strategy with cutoff z ∈ [0, x̄) solving z = v whenever being interior, and that

this strategy is commonly adopted by all members since, otherwise, at least one

member has a profitable deviation. In particular, the cutoffs are neither sensitive

to the members’ identities nor to calendar time because, by assumption, equilibria

are symmetric and stationary. Moreover, the consistency of continuation values

and equilibrium strategies implies that v must satisfy

v = −c · h(K) + [1−K(1− P (N,M))]v

+K · [1− P (N,M)]E[Xk
i |candidate k hired].

Rearranging this equation yields

v = − c · h(K)

K · [1− P (N,M)]
+ E[Xk

i |candidate k hired].
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Therefore, equilibrium cutoffs solve the equation

z = − c · h(K)

K · [1− P (N,M)]
+ E[Xk

i |candidate k hired]

whenever they are interior. Finally, recall that P (N,M) denotes the probability

that at most M−1 out of N members approve some candidate k. Thus, when using

the notation introduced in the main text, we have that P (N,M) = QK(z,N,M).

This concludes the proof of the necessity part.

Next, we turn to sufficiency. First of all, observe that strategy profiles in which all

members adopt the same maximum-strategy with cutoff z ∈ [0, x) are symmetric,

neutral, and stationary Markov. Furthermore, as argued in the necessity part of

this proof, these strategy profiles give rise to continuation values satisfying

v = − c · h(K)

K · [1−QK(z,N,M)]
+ E[Xk

i |candidate k hired].

Consequently, it remains to verify that these strategy profiles constitute equilibria.

To this end, consider any strategy with cutoff z ∈ [0, x) solving

z = v = − c · h(K)

K · [1−QK(z,N,M)]
+ E[Xk

i |candidate k hired]

whenever the cutoff z is interior. First, by construction, the consistency of con-

tinuation values and strategies is fulfilled. Second, if all members apart from

member i ∈ N in period t adopt the discussed strategy, the claim above implies

that it is optimal for member i to follow the same strategy in period t, that is, the

maximum-strategy with cutoff zi(t) solving zi(t) = v = z whenever it is interior.

Now, the one-shot deviation principle implies that no member has a profitable

deviation. Thus, the maximum-strategy with cutoff z solving

z = v = − c · h(K)

K · [1−QK(z,N,M)]
+ E[Xk

i |candidate k hired]

whenever being interior constitutes an equilibrium. This completes the sufficiency

part.
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A.2 Existence and Uniqueness

Proof of Proposition 1.

Recall that SK(z,N,M) = E[Xk
i |candidate k accepted]. Rewriting equation (1)

which characterizes equilibrium cutoff values yields

c · h(K)

K · [1−QK(z,N,M)]
= SK(z,N,M)− z.

Suppose that z = 0. In this case, the left-hand side amounts to c·h(K)
K·[1−QK(0,N,M)]

=

c
h(K)
K

1−QK(0,N,M)
and the right-hand side reduces to SK(0, N,M). In contrast, if z → x̄,

the left-hand side goes to∞ whereas the right-hand side amounts to SK(x̄, N,M)−

x̄ ≤ 0.

Depending on the magnitude of the search costs c, we perform a case distinction:

1)
c
h(K)
K

1−QK(0,N,M)
< SK(0, N,M)

In this case, we observe that the left-hand side is strictly smaller than the right-

hand side of the equilibrium equation when evaluating both sides at z = 0. In

contrast, if z is sufficiently close to x, the left-hand side is strictly larger than the

right-hand side. Moreover, note that both sides of the equation involve functions

that are continuous in z. Hence, the intermediate value theorem yields the exis-

tence of a cutoff z that solves equation (1).

2)
c
h(K)
K

1−QKk(0,N,M)
= SK(0, N,M)

Here, the cutoff z = 0 solves the equilibrium equation which means that the

maximum-strategy with cutoff z = 0 constitutes an equilibrium.

3)
c
h(K)
K

1−QK(0,N,M)
> SK(0, N,M)

In this case, suppose that all members apart from member i ∈ N in period t adopt

the maximum-strategy with cutoff z = 0. In this case, the arguments in Appendix

A.1 still apply, and, thus, it is optimal for member i to follow some maximum-

strategy with cutoff. However, since v = − c
h(K)
K

1−QK(0,N,M)
+ SK(0, N,M) < 0 by

assumption, the optimal cutoff for member i in the given period is z = 0. The

reason is that member i wants to stop search as quickly as possible, and the prob-

ability of voting in favor of some candidate k is maximized at z = 0. Alluding

to the one-deviation-principle, this shows that there exists a boundary equilib-

rium such that the maximum-strategy with cutoff amounting to z = 0 forms an
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equilibrium.

Proof of Lemma 1.

We establish that SKz (z,N,M) ≤ 1 which implies that the function SK(z,N,M)−

z is non-increasing in z. Subsequently, again, we make use of the notation

µKa (z) = E[Xk
i |Xk

i ≥ z and Xk
i ≥ max

l 6=k
X l
i ] and

µKr (z) = E[Xk
i |Xk

i < z or Xk
i < max

l 6=k
X l
i ].

Then, as shown in Appendix B.1, SK(z,N,M) can be expressed as

SK(z,N,M) = wK(z)µKa (z) + (1− wK(z))µKr (z),

where wK(z) is given by

wK(z) =
N∑
l=M

qK(z,N, l)

1−QK(z,N,M)

l

N
.

Further, to simplify the notation, define

1−RK(z) := Pr(Xk
i ≥ max

l 6=k
X l
i , X

k
i ≥ z).

First, we obtain that dwK(z)
dz
≤ 0.30 Observe that wK(z) constitutes the average of

terms of form l
N

with weights

wKl (z) :=
qK(z,N, l)

1−QK(z,N,M)
.

We claim that, for all l < l′,
wK

l (z)

wK
l′ (z)

is non-decreasing in z. This means that increas-

ing z yields a stochastic decrease according to the likelihood-ratio ordering which,

as is well-known, implies a stochastic decrease in terms of first-order stochastic

dominance. Hence, exploiting the average structure of wK(z), when increasing z,

the average wK(z) decreases. In other words, we have dwK(z)
dz
≤ 0. In order to see

30The argument yielding dwK(z)
dz ≤ 0 is analogous to step 2 in the proof of Lemma 1 in Albrecht

et al. (2010).
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that
wK

l (z)

wK
l′ (z)

is increasing in z, note that

wKl (z)

wKl′ (z)
=

(
N
l

)(
N
l′

)RK(z)l
′−l(1−RK(z))l−l

′
,

and, therefore, straightforward differentiation yields

d
wK

l (z)

wK
l′ (z)

dz
=

(
N
l

)(
N
l′

) dRK(z)

dz
(l′ − l)RK(z)l

′−l−1(1−RK(z))l−l
′−1.

The derivation in Appendix B.2 reveals that

1−RK(z) =
1

K
[1− F (z)K ].

Thus, dRK(z)
dz

= F (z)K−1f(z) ≥ 0 and we obtain that
d
wK
l (z)

wK
l′

(z)

dz
≥ 0 which is the

desired claim. Therefore, we conclude that dwK(z)
dz
≤ 0.

Second, we show that µKa (z) − z is non-increasing or, in other words, dµKa (z)
dz
≤ 1.

Consider the density

gK(x) : = Pr(Xk
i = x|Xk ≥ max

l 6=k
X l
i)

=
Pr(Xk

i = x,Xk
i ≥ maxl 6=kX

l
i)

Pr(Xk
i ≥ maxl 6=kX l

i)

=
Pr(Xk

i = x, x ≥ maxl 6=kX
l
i)

Pr(Xk
i ≥ maxl 6=kX l

i)

=
Pr(Xk

i = x) Pr(x ≥ maxl 6=kX
l
i)

Pr(Xk
i ≥ maxl 6=kX l

i)

= Kf(x)[F (x)]K−1.

We know from Prékopa (1973) that the log-concavity of the density f implies that

the cdf F is also log-concave. Moreover, since the product of log-concave functions

must be again log-concave, we obtain that the density gK is log-concave as well.

Therefore, as is well-known, the log-concavity of gK implies that the random

variable Xk
i |Xk

i ≥ maxl 6=kX
l
i has the decreasing mean residual life property which
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means that µKa (z)− z is non-increasing.31 Thus, we conclude that dµKa (z)
dz
≤ 1.

Third, we establish that dµKr (z)
dz
≤ 1. By the law of total expectation, we obtain

µ = E[Xk
i ] = µKa (z)[1−R(z)] + µKr (z)R(z).

Again, in Appendix B.2, we derive that

1−RK(z) =
1

K
[1− F (z)K ].

Thus,

µ = µKa (z)[
1

K
(1− F (z)K)] + µKr (z)[1− 1

K
(1− F (z)K)].

Let GK be the cdf of the random variable Xk
i |Xk

i ≥ maxl 6=kX
l
i . Hence, rearranging

yields

µKr (z) =
µ− µKa (z)[ 1

K
(1− F (z)K)]

1− 1
K

(1− F (z)K)

=

∫ x̄
0
sf(s)ds− [ 1

K
(1− F (z)K)]

∫ x̄
z
s gK(s)

1−GK(z)
ds

1− 1
K

(1− F (z)K)

=

∫ x̄
0
sf(s)ds−

∫ x̄
z
sf(s)F (s)K−1ds

1− 1
K

(1− F (z)K)
.

31Bagnoli and Bergstrom (2005) discuss the relationship between log-concave densities and
concepts from reliability theory.
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Taking the derivative of µKr (z) with respect to z yields

dµKr (z)

dz

=
(zf(z)F (z)K−1)) · (1− 1

K
(1− F (z)K))

[1− 1
K

(1− F (z)K)]2

−
(
∫ x̄

0
sf(s)ds−

∫ x̄
z
sf(s)F (s)K−1ds) · f(z)F (z)K−1

[1− 1
K

(1− F (z)K)]2

=
f(z)F (z)K−1

[1− 1
K

(1− F (z)K)]2

· [z(1− 1

K
) + z

1

K
F (z)K − sF (s)

∣∣∣x̄
0

+

∫ x̄

0

F (s)ds+ s
1

K
F (s)K

∣∣∣x̄
z
−
∫ x̄

z

1

K
F (s)Kds]

=
f(z)F (z)K−1

[1− 1
K

(1− F (z)K)]2

· [z(1− 1

K
) + z

1

K
F (z)K − x̄(1− 1

K
)− z 1

K
F (z)K +

∫ x̄

0

F (s)ds−
∫ x̄

z

1

K
F (s)Kds]

=
f(z)F (z)K−1[(z − x̄)(1− 1

K
) +

∫ x̄
0
F (s)ds−

∫ x̄
z

1
K
F (s)Kds]

[1− 1
K

(1− F (z)K)]2

=
f(z)F (z)K−1[

∫ x̄
0
F (s)ds−

∫ x̄
z

[1− 1
K

(1− F (s)K)]ds]

[1− 1
K

(1− F (z)K)]2

=
f(z)F (z)K−1[

∫ z
0
F (s)ds+

∫ x̄
z
F (s)ds−

∫ x̄
z

[1− 1
K

(1− F (s)K)]ds]

[1− 1
K

(1− F (z)K)]2

=
f(z)F (z)K−1[

∫ z
0
F (s)ds+

∫ x̄
z
F (s)− [1− 1

K
(1− F (s)K)]ds]

[1− 1
K

(1− F (z)K)]2
.

Since we have dµKr (z)
dz

∣∣∣
z=0

= 0 ≤ 1, for the remainder of the proof of dµKr (z)
dz
≤ 1,

suppose that z 6= 0.

Again, due to Prékopa (1973), log-concavity is preserved under integration. Hence,

since the density f is log-concave, the cdf F (z) =
∫ z

0
f(s)ds is also log-concave

and, consequently, the left-hand integral
∫ z

0
F (s)ds must be log-concave as well.

By definition of log-concavity, this means that
∫ z

0
F (s)ds ≤ F (z)2

f(z)
.32

32Again, for a discussion of these kinds of implications, we refer to Bagnoli and Bergstrom
(2005).
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Moreover, note that, for all s ∈ [0, x̄],

1

K
(1− F (s)K) = 1−RK(s) = Pr(Xk ≥ max

l 6=k
X l and Xk ≥ s)

≤ Pr(Xk ≥ s) = 1− F (s).

Thus, we obtain, for all s ∈ [0, x̄], that

F (s)− [1− 1

K
(1− F (s)K)] ≤ 0,

and, in particular, it holds that∫ x̄

z

F (s)− [1− 1

K
(1− F (s)K)]ds ≤ 0.

Also, observe that F (z)− [1− 1
K

(1− F (z)K)] ≤ 0 is equivalent to

1

1− 1
K

(1− F (z)K)
≤ 1

F (z)
.

Employing the derived inequalities yields

dµKr (z)

dz
=
f(z)F (z)K−1[

∫ z
0
F (s)ds+

∫ x̄
z
F (s)− [1− 1

K
(1− F (s)K)]ds]

[1− 1
K

(1− F (z)K)]2

≤
f(z)F (z)K−1

∫ z
0
F (s)ds

[1− 1
K

(1− F (z)K)]2

≤
f(z)F (z)K−1 F (z)2

f(z)

[1− 1
K

(1− F (z)K)]2

=
F (z)K+1

[1− 1
K

(1− F (z)K)]2

≤ F (z)K+1

F (z)2

= F (z)K−1

≤ 1.

Therefore, we conclude that dµKr (z)
dz
≤ 1.

Further, note that µKa (z) > µKr (z) or, equivalently, µKa (z) − µKr (z) > 0. Taking
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together the three ingredients dwK(z)
dz
≤ 0, dµKa (z)

dz
≤ 1 and dµKr (z)

dz
≤ 1, we have

SKz (z,N,M) =
d[wK(z)µKa (z) + (1− wK(z))µKr (z)]

dz

=
d[wK(z)[µKa (z)− µKr (z)] + µKr (z)]

dz

=
dwK(z)

dz
[µKa (z)− µKr (z)] + wK(z)[

dµKa (z)

dz
− dµKr (z)

dz
] +

dµKr (z)

dz

=
dwK(z)

dz
(µKa (z)− µKr (z)) + wK(z)

dµKa (z)

dz
+ [1− wK(z)]

dµKr (z)

dz

≤ wK(z)
dµKa (z)

dz
+ [1− wK(z)]

dµKr (z)

dz

≤ wK(z) + [1− wK(z)]

= 1.

In conclusion, as desired, we infer that SKz (z,N,M) ≤ 1 which, implies that

the function SK(z,N,M) − z is non-increasing in z. Additionally, the argument

reveals that SKz (z,N,M) < 1 whenever z 6= 0 and, thus, SK(z,N,M)−z is strictly

decreasing in z.

Proof of Proposition 2.

To begin with, by Proposition 1, there exists an equilibrium. Moreover, we know

from Lemma 1 that the function SK(z,N,M) − z is decreasing in z. Next, we

show that the function

c · h(K)

K · [1−QK(z,N,M)]

is increasing in z.

Again, to simplify the notation, define

1−RK(z) := Pr(Xk
i ≥ max

l 6=k
X l
i , X

k
i ≥ z).

Taking the derivative of the discussed function with respect to z yields

d

dz
[

c · h(K)

K · [1−QK(z,N,M)]
] =

c · h(K) ·QK
z (z,N,M)

K · [1−QK(z,N,M)]2
.
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Further, using the relationship between the Binomial and the Beta distribution,33

we have

QK(z,N,M) =
M−1∑
l=0

(
N

l

)
(1−RK(z))l ·RK(z)N−l

=
N !

(N −M)! · (M − 1)!

∫ RK(z)

0

sN−M(1− s)M−1ds.

Taking the derivative of QK(z,N,M) with respect to z yields

QK
z (z,N,M) =

N !

(N −M)! · (M − 1)!

dRK(z)

dz
RK(z)N−M(1−RK(z))M−1.

Again, the derivation in Appendix B.2 reveals that

1−RK(z) =
1

K
[1− F (z)K ].

Thus, we have that dRK(z)
dz

= F (z)K−1f(z) ≥ 0. Hence, we obtain that

QK
z (z,N,M) ≥ 0, yielding the desired inference that

d

dz
[

c · h(K)

K · [1−QK(z,N,M)]
] =

c · h(K) ·QK
z (z,N,M)

K · [1−QK(z,N,M)]2
≥ 0.

Additionally, the argument shows that this derivative is strictly larger than 0

whenever z 6= 0 and, hence, c·h(K)
K·[1−QK(z,N,M)]

is strictly increasing in z.

Consider the equation characterizing equilibrium cutoff values

SK(z,N,M)− z =
c · h(K)

K · [1−QK(z,N,M)]
=

ch(K)
K

1−QK(z,N,M)
.

Depending on the magnitude of the search costs, we perform a case distinction:

1)
c
h(K)
K

1−QK(0,N,M)
< SK(0, N,M)

In this case, all cutoffs associated with equilibrium strategies are interior, sat-

isfying z 6= 0. In particular, these cutoffs must solve the equilibrium equation.

However, due to Lemma 1, the left-hand side of the discussed equation is strictly

decreasing and the right-hand side is strictly increasing. Therefore, both sides of

33cf. Casella and Berger (2002)
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the equation have at most one intersection which establishes uniqueness of equi-

librium.

2)
c
h(K)
K

1−QK(0,N,M)
≥ SK(0, N,M)

Here, the cutoff z = 0 is part of an equilibrium. Either z = 0 solves the equilib-

rium equation or there is a boundary equilibrium involving the cutoff z = 0. To

the contrary, suppose that there is another equilibrium with some cutoff z′ > 0.

This cutoff must solve the equilibrium equation because it is interior. However,

employing the monotonicity properties of the functions involved in the equilibrium

equation that are partly derived in Lemma 1, we have

ch(K)
K

1−QK(z′, N,M)
>

ch(K)
K

1−QK(0, N,M)
≥ SK(0, N,M) > SK(z′, N,M)− z′.

Hence, the cutoff z′ > 0 cannot be part of an equilibrium which constitutes the

desired contradiction.

A.3 Unanimity Voting

Proof of Lemma 2.

Consider any K ′, K ≥ 1 with K ′ > K. Suppose, by contradiction, that there exist

some zK , zK′ ∈ [0, x) with zK ≤ zK′ such that

µK
′

a (zK′)− zK′
µKa (zK)− zK

=
E[Xk

i |Xk
i ≥ maxl∈{1,...,K′}:l 6=kX

l
i , X

k
i ≥ zK′ ]− zK′

E[Xk
i |Xk

i ≥ maxl∈{1,...,K}:l 6=kX l
i , X

k
i ≥ zK ]− zK

≥
1
K

[1− F (zK)K ]
1
K′

[1− F (zK′)K
′ ]

=
K ′

K

[1− F (zK)K ]

[1− F (zK′)K
′ ]
.

Rewriting the left-hand side of the inequality yields

E[Xk
i |Xk

i ≥ maxl∈{1,...,K′}:l 6=kX
l
i , X

k
i ≥ zK′ ]− zK′

E[Xk
i |Xk

i ≥ maxl∈{1,...,K}:l 6=kX l
i , X

k
i ≥ zK ]− zK

=

∫ x
zK′

f(s)F (s)K
′−1sds

1
K′ [1−F (zK′ )

K′ ]
− zK′∫ x

zK
f(s)F (s)K−1sds

1
K

[1−F (zK)K ]
− zK

=
K ′

K

[1− F (zK)K ]

[1− F (zK′)K
′ ]

∫ x
zK′

f(s)F (s)K
′−1sds− zK′ [ 1

K′
(1− F (zK′)

K′)]∫ x
zK
f(s)F (s)K−1sds− zK [ 1

K
(1− F (zK)K)]

,
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where the first step uses the fact that

Pr(Xk
i ≥ max

l∈{1,...,K′}:l 6=k
X l
i , X

k
i ≥ zK′) =

1

K ′
[1− F (zK′)

K′ ] and

Pr(Xk
i ≥ max

l∈{1,...,K}:l 6=k
X l
i , X

k
i ≥ zK) =

1

K
[1− F (zK)K ],

which is derived in Appendix B.2.

Thus, we obtain that

∫ x
zK′

f(s)F (s)K
′−1sds− zK′ [ 1

K′
(1− F (zK′)

K′)]∫ x
zK
f(s)F (s)K−1sds− zK [ 1

K
(1− F (zK)K)]

≥ 1. (3)

Observe that
∫ x
zK
f(s)F (s)K−1sds−zK [ 1

K
(1−F (zK)K)] > 0 because this inequality

is equivalent to µKa (zK) > zK . Therefore, inequality (3) is equivalent to

∫ x

zK′

f(s)F (s)K
′−1sds− zK′ [

1

K ′
(1− F (zK′)

K′)]

≥
∫ x

zK

f(s)F (s)K−1sds− zK [
1

K
(1− F (zK)K)] =: g(zK).

The right-hand side of this inequality is non-increasing in zK . To see this, compute

the derivative

g′(zK) = −f(zK)F (zK)K−1zK −
1

K
[1− F (zK)K ] + zKF (zk)

K−1f(zk)

= − 1

K
[1− F (zK)K ] ≤ 0.

Therefore, because of zK ≤ zK′ , it follows that∫ x

zK′

f(s)F (s)K
′−1sds− zK′ [

1

K ′
(1− F (zK′)

K′)]

≥
∫ x

zK′

f(s)F (s)K−1sds− zK′ [
1

K
(1− F (zK′)

K)].

Rearranging yields∫ x

zK′

f(s)s[F (s)K
′−1 − F (s)K−1]ds ≥ zK′ [

1

K ′
(1− F (zK′)

K′)− 1

K
(1− F (zK′)

K)].
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Since zK′ < x̄ and K ′ > K,∫ x

zK′

f(s)s[F (s)K
′−1 − F (s)K−1]ds < zK′

∫ x

zK′

f(s)[F (s)K
′−1 − F (s)K−1]ds

= zK′ [
1

K ′
(1− F (zK′)

K′)− 1

K
(1− F (zK′)

K)].

Hence, we have that

zK′ [
1

K ′
(1− F (zK′)

K′)− 1

K
(1− F (zK′)

K)]

>

∫ x

zK′

f(s)s[F (s)K
′−1 − F (s)K−1]ds

≥zK′ [
1

K ′
(1− F (zK′)

K′)− 1

K
(1− F (zK′)

K)],

which is the desired contradiction.

Proof of Proposition 3.

We begin by deriving conditions for when boundary solutions of either of the

search procedures arise.

First of all, note that the proof of Proposition 1 reveals that under multi-option

sequential search with K candidates per period, there is a boundary equilibrium

if and only if

c ≥ SK(0, N,N)[1−QK(0, N,N)]
h(K)
K

=
µKa (0)[ 1

K
]N

h(K)
K

=: cK .

Similarly, if there are K ′ candidates per period, a corner solution arises if and only

if

c ≥ SK
′
(0, N,N)[1−QK′(0, N,N)]

h(K′)
K′

=
µK

′
a (0)[ 1

K′
]N

h(K′)
K′

=: cK
′
.

We claim that cK
′
< cK .

Suppose not, i.e., assume that cK
′ ≥ cK . By definition, this means that

µK
′

a (0)[ 1
K′

]N

h(K′)
K′

≥
µKa (0)[ 1

K
]N

h(K)
K

.
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Applying Lemma 2 while setting zK = zK′ = 0 yields

µK
′

a (0)

µKa (0)
<
K ′

K
.

Combining the two inequalities, we obtain

µK
′

a (0)[ 1
K′

]N

h(K′)
K′

≥
µKa (0)[ 1

K
]N

h(K)
K

>
µK

′
a (0)[ 1

K
]N

h(K)
K

K

K ′
.

Hence, since, by assumption, h(K′)
K′
≥ h(K)

K
, we have that

µK
′

a (0)[ 1
K′

]N

h(K′)
K′

>
µK

′
a (0)[ 1

K
]N

h(K)
K

K

K ′
≥
µK

′
a (0)[ 1

K
]N

h(K′)
K′

K

K ′
.

Simplifying yields

[
1

K ′
]N−1 > [

1

K
]N−1.

If N = 1, the inequality reduces to 1 > 1 and, in the case where N ≥ 2, we must

have that K > K ′. Thus, in both cases, we derived the desired contradiction.

We are now ready to perform a case distinction depending on the magnitude of

the scaling parameter c:

1) c ≥ cK > cK
′

In this case, both search procedures give rise to a unique boundary equilibrium

with equilibrium cutoffs zK = zK′ = 0. In order to see that there are no additional

interior equilibria, consider the search procedure with K ′ candidates per period.

The argument for the search protocol with K candidates at a time is analogous.

Towards a contradiction, suppose that there exists an equilibrium with cutoff

z′K′ ∈ (0, x). Since this cutoff is interior, it solves the equilibrium equation

c
h(K ′)

K ′
= [

1

K ′
(1− F (z′K′)

K′)]N [µK
′

a (z′K′)− z′K′ ].
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Making use of z′K′ > 0 and rewriting yield the inequality

c
h(K ′)

K ′
< [

1

K ′
(1− F (z′K′)

K′)]NµK
′

a (z′K′) = [
1

K ′
(1− F (z′K′)

K′)]N−1

∫ x

z′
K′

f(s)F (s)K
′−1sds.

Now, observe that the right-hand side of this inequality is decreasing in the cutoff.

Therefore, it follows that

c
h(K ′)

K ′
< [

1

K ′
]NµK

′

a (0),

which is equivalent to c < cK
′
. This is the desired contradiction.

The respective welfare levels induced by the unique boundary equilibria of the two

search procedures amount to

vK = µKa (0)− c · h(K)

K[ 1
K

]N
= µKa (0)− (K)Nc

h(K)

K
and

vK′ = µK
′

a (0)− c · h(K ′)

K ′[ 1
K′

]N
= µK

′

a (0)− (K ′)Nc
h(K ′)

K ′
.

Towards a contradiction, suppose vK′ ≥ vK . Applying Lemma 2 while setting

zK = zK′ = 0 and using h(K′)
K′
≥ h(K)

K
, we obtain that

µKa (0)− (K)Nc
h(K)

K
= vK ≤ vK′ = µK

′

a (0)− (K ′)Nc
h(K ′)

K ′

< µKa (0)
K ′

K
− (K ′)Nc

h(K)

K
.

Thus, we conclude that

µKa (0)[
K ′

K
− 1] > c

h(K)

K
[(K ′)N − (K)N ].

Since K ′ > K and c ≥ cK =
µKa (0)[ 1

K
]N

h(K)
K

, we have that

µKa (0)[
K ′

K
− 1] > c

h(K)

K
[(K ′)N − (K)N ] ≥

µKa (0)[ 1
K

]N

h(K)
K

h(K)

K
[(K ′)N − (K)N ].
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Simplifying yields

K ′

K
> (

K ′

K
)N .

In the case of N = 1, there is a contradiction. If N ≥ 2, we must have that

K ′ < K which constitutes a contradiction as well.

2) cK > c ≥ cK
′

Here, if there are K candidates per period, the corresponding search procedure

admits only interior equilibria described by cutoff values zK > 0. In contrast, if

there are K ′ candidates per period, as argued above, there is a unique boundary

equilibrium with cutoff zK′ = 0. Therefore, the resulting welfare levels of both

search procedures are given by

vK = zK and

vK′ = µK
′

a (0)− c · h(K ′)

K ′[ 1
K′

]N
= µK

′

a (0)− (K ′)Nc
h(K ′)

K ′
.

By definition of cK
′

and because of c ≥ cK
′
, we directly obtain that vK′ ≤ 0. In

contrast, it holds that vK = zK > 0, directly implying vK′ < vK .

3) cK > cK
′
> c

In this case, both search technologies give rise to interior equilibria. Denote the

equilibrium cutoff values in the game with K ′ candidates per period by zK′ and

the cutoff values in the search game with K candidate per period by zK . Given

private value preferences, cutoff values, or acceptance standards, coincide with

welfare, i.e., vK′ = zK′ and vK = zK .

Assume, by contradiction, that there are equilibria such that vK = zK ≤ zK′ =

vK′ . The equilibrium cutoff values satisfy the following equations:

SK(zK , N,N)− zK =
c · h(K)

K · [1−QK(zK , N,N)]
and

SK
′
(zK′ , N,N)− zK′ =

c · h(K ′)

K ′ · [1−QK′(zK′ , N,N)]
.
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In the following, we derive bounds on the ratio

SK
′
(zK′ , N,N)− zK′

SK(zK , N,N)− zK
=

E[Xk
i |Xk

i ≥ maxl∈{1,...,K′}:l 6=kX
l
i , X

k
i ≥ zK′ ]− zK′

E[Xk
i |Xk

i ≥ maxl∈{1,...,K}:l 6=kX l
i , X

k
i ≥ zK ]− zK

.

First, since zK ≤ zK′ , Lemma 2 yields

SK
′
(zK′ , N,N)− zK′

SK(zK , N,N)− zK
<
K ′

K

[1− F (zK)K ]

[1− F (zK′)K
′ ]
.

Second, by the equilibrium conditions, we have that

SK
′
(zK′ , N,N)− zK′

SK(zK , N,N)− zK
=

c
h(K′)
K′

1−QK′ (zK′ ,N,N)

c
h(K)
K

1−QK(zK ,N,N)

=
h(K ′)

K ′
K

h(K)

[Pr(Xk
i ≥ maxl∈{1,...,K}:l 6=kX

l
i , X

k
i ≥ zK)]N

[Pr(Xk
i ≥ maxl∈{1,...,K′}:l 6=kX l

i , X
k
i ≥ zK′)]N

.

Since h(K′)
K′
≥ h(K)

K
, we obtain

h(K ′)

K ′
K

h(K)

[Pr(Xk
i ≥ maxl∈{1,...,K}:l 6=kX

l
i , X

k
i ≥ zK)]N

[Pr(Xk
i ≥ maxl∈{1,...,K′}:l 6=kX l

i , X
k
i ≥ zK′)]N

≥
[Pr(Xk

i ≥ maxl∈{1,...,K}:l 6=kX
l
i , X

k
i ≥ zK)]N

[Pr(Xk
i ≥ maxl∈{1,...,K′}:l 6=kX l

i , X
k
i ≥ zK′)]N

=[
K ′(1− F (zK)K)

K(1− F (zK′)K
′)

]N ,

where the last step uses expressions for the involved probabilities that are derived

in Appendix B.2. Therefore, we get that

SK
′
(zK′ , N,N)− zK′

SK(zK , N,N)− zK
≥ [

K ′(1− F (zK)K)

K(1− F (zK′)K
′)

]N .

Putting both bounds on
SK′ (zK′ ,N,N)−zK′
SK(zK ,N,N)−zK

together, we conclude that

K ′(1− F (zK)K)

K(1− F (zK′)K
′)
> [

K ′(1− F (zK)K)

K(1− F (zK′)K
′)

]N .
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If N = 1, there is a contradiction. If N ≥ 2, this inequality is equivalent to

1 >
1
K

[1− F (zK)K ]
1
K′

[1− F (zK′)K
′ ]
.

Because of zK ≤ zK′ , it follows that

1 >
1
K

[1− F (zK)K ]
1
K′

[1− F (zK)K′ ]
.

Now, observe that the term on the right-hand side of this inequality is the ratio

of the probabilities of voting in favor of a candidate k when there K compared to

K ′ candidates per period for a fixed cutoff zK . Since this probability is smaller

for K than for K ′ candidates per period, this ratio must be strictly larger than 1.

This is the desired contradiction. Consequently, it must be true that vK = zK >

zK′ = vK′ .

Proof of Proposition 4.

To begin with, denote the unique equilibrium cutoff values in the games with K ′

and K candidates per period by zK′ and zK respectively. To the contrary, suppose

that for all c̄K′,K > 0 there exists c < c̄K′,K such that vK ≥ vK′ . Without loss of

generality, restrict attention to sufficiently small values of c such that the equilibria

under both procedures are interior. Then, cutoff values coincide with welfare, i.e.,

vK = zK and vK′ = zK′ .

The respective equilibrium thresholds satisfy the following equations:

SK(zK , N,N)− zK =
c · h(K)

K · [1−QK(zK , N,N)]
and

SK
′
(zK′ , N,N)− zK′ =

c · h(K ′)

K ′ · [1−QK′(zK′ , N,N)]
.

Lemma 1 implies that

SK
′
(zK , N,N)− zK′ = E[Xk

i |Xk
i ≥ max

l∈{1,...,K′}:l 6=k
X l
i , X

k
i ≥ zK′ ]− zK′

is non-increasing in zK′ .
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Therefore, the assumption zK ≥ zK′ yields the inequality

E[Xk
i |Xk

i ≥ max
l∈{1,...,K′}:l 6=k

X l
i , X

k
i ≥ zK ]− zK

≤E[Xk
i |Xk

i ≥ max
l∈{1,...,K′}:l 6=k

X l
i , X

k
i ≥ zK′ ]− zK′ .

Moreover, since K ′ > K, it holds that

E[Xk
i |Xk

i ≥ max
l∈{1,...,K}:l 6=k

X l
i , X

k
i ≥ zK ]

≤E[Xk
i |Xk

i ≥ max
l∈{1,...,K′}:l 6=k

X l
i , X

k
i ≥ zK ].

Therefore, it follows that

E[Xk
i |Xk

i ≥ max
l∈{1,...,K}:l 6=k

X l
i , X

k
i ≥ zK ]− zK

≤E[Xk
i |Xk

i ≥ max
l∈{1,...,K′}:l 6=k

X l
i , X

k
i ≥ zK′ ]− zK′ .

This inequality is the same as

SK(zK , N,N)− zK ≤ SK
′
(zK′ , N,N)− zK′ .

Exploiting the equilibrium equations, we get that

ch(K)
K

1−QK(zK , N,N)
≤

ch(K′)
K′

1−QK′(zK′ , N,N)
.

Rewriting this inequality yields

[Pr(Xk
i ≥ max

l∈{1,...,K′}:l 6=k
X l
i , X

k
i ≥ zK′)]

N

≤h(K ′)

K ′
K

h(K)
[Pr(Xk

i ≥ max
l∈{1,...,K}:l 6=k

X l
i , X

k
i ≥ zK)]N .
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Furthermore, because of zK ≥ zK′ , we have that

Pr(Xk
i ≥ max

l∈{1,...,K}:l 6=k
X l
i , X

k
i ≥ zK)

≤Pr(Xk
i ≥ max

l∈{1,...,K}:l 6=k
X l
i , X

k
i ≥ zK′).

Thus, we obtain that

[Pr(Xk
i ≥ max

l∈{1,...,K′}:l 6=k
X l
i , X

k
i ≥ zK′)]

N

≤h(K ′)

K ′
K

h(K)
[Pr(Xk

i ≥ max
l∈{1,...,K}:l 6=k

X l
i , X

k
i ≥ zK′)]

N .

Rearranging this inequality while employing expressions for the involved proba-

bilities derived in Appendix B.2 implies that

[
1
K′

(1− F (zK′)
K′)

1
K

(1− F (zK′)K)
]N ≤ h(K ′)

K ′
K

h(K)
.

Since, by assumption, h(K′)
K′

< h(K)
K

, we have that the right-hand side of this

inequality is strictly smaller than 1. We claim that, no matter the fixed value of

0 < h(K′)
K′

K
h(K)

< 1, as long as the cost parameter c is sufficiently small, the left-

hand side of the inequality is below 1, but arbitrarily close to it. The first part of

this statement is true because the discussed term is the ratio of the probabilities of

accepting a candidate k when there K ′ compared to K candidates per period for

a fixed cutoff zK′ . To see the second part, note that as c→ 0, zK′ → x̄, implying

that F (zK′)→ 1. Then, l’Hôpital’s rule yields

lim
c→0

[
1
K′

(1− F (zK′)
K′)

1
K

(1− F (zK′)K)
]N = [lim

c→0

−F (zK′)
K′−1f(zK′)

−F (zK′)K−1f(zK′)
]N = [lim

c→0
F (zK′)

K′−K ]N = 1.

Thus, as c→ 0, the left-hand side of the inequality converges to 1. Consequently,

eventually, for small c, the left-hand side of the inequality exceeds the right-hand

side because h(K′)
K′

K
h(K)

< 1. This is the desired contradiction.

49



A.4 Qualified Majority Voting

Proof of Lemma 3.

To begin with, take any K ′, K ≥ 1 with K ′ > K, and fix any value z ∈ [0, x̄).

In order to improve readability, we often drop the dependence of the involved

functions on z. The subsequent argument does not apply to the case in which

K = 1 and z = 0. We tackle this case separately at the end of this proof.

First, we derive an expression for SK(z,N,M) in terms of wK(z), µKa (z), F (z)

and µ. By the law of total expectation, we have

µKr =
µ− 1

K
(1− FK)µKa

1− 1
K

(1− FK)

and, consequently, we obtain

µKa − µKr = µKa −
µ− 1

K
(1− FK)µKa

1− 1
K

(1− FK)
=

µKa − µ
1− 1

K
(1− FK)

.

Therefore, SK(z,N,M) can be written as

SK(z,N,M) = wKµKa + [1− wK ]µKr

= µKr + wK [µKa − µKr ]

=
µ− 1

K
(1− FK)µKa

1− 1
K

(1− FK)
+ wK

µKa − µ
1− 1

K
(1− FK)

= µ[
1− wK

1− 1
K

(1− FK)
] + µKa [

wK − 1
K

(1− FK)

1− 1
K

(1− FK)
]

= µ+ [
wK − 1

K
(1− FK)

1− 1
K

(1− FK)
][µKa − µ].

Further, the law of total expectation yields

SK(z,N,M) =
wK − 1

K
(1− FK)

1− 1
K

(1− FK)
[µKa − µ] +

1

K ′
(1− FK′)µK

′

a + [1− 1

K ′
(1− FK′)]µK

′

r .
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Second, we develop an expression for µK
′

a − µK
′

r as well as a lower bound on this

term. The law of total expectation implies

µK
′

r =
µ− 1

K′
(1− FK′)µK

′
a

1− 1
K′

(1− FK′)
.

Thus, we obtain

µK
′

a − µK
′

r = µK
′

a −
µ− 1

K′
(1− FK′)µK

′
a

1− 1
K′

(1− FK′)

=
µK

′
a − µ

1− 1
K′

(1− FK′)

≥ µKa − µ
1− 1

K′
(1− FK′)

,

where the inequality follows from the assumption K ′ > K which implies µK
′

a ≥ µKa .

Now, suppose to the contrary that SK(z,N,M) ≥ SK
′
(z,N,M). This means that

SK(z,N,M) =
wK − 1

K
(1− FK)

1− 1
K

(1− FK)
[µKa − µ] +

1

K ′
(1− FK′)µK

′

a + [1− 1

K ′
(1− FK′)]µK

′

r

≥ µK
′

a w
K′ + µK

′

r [1− wK′ ] = SK
′
(z,N,M).

Rearranging this inequality yields

wK − 1
K

(1− FK)

1− 1
K

(1− FK)
[µKa − µ] + µK

′

r [1− 1

K ′
(1− FK′)− 1 + wK

′
]

≥µK′a [wK
′ − 1

K ′
(1− FK′)],

which is equivalent to

wK − 1
K

(1− FK)

1− 1
K

(1− FK)
[µKa − µ] ≥ [µK

′

a − µK
′

r ][wK
′ − 1

K ′
(1− FK′)].

Employing the lower bound on µK
′

a − µK
′

r , we have

wK − 1
K

(1− FK)

1− 1
K

(1− FK)
[µKa − µ] ≥ µKa − µ

1− 1
K′

(1− FK′)
[wK

′ − 1

K ′
(1− FK′)]
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because wK
′ − 1

K′
(1− FK′) > 0. To see the latter point, observe that

wK
′
=

N∑
l=M

qK
′
(z,N, l)

1−QK′(z,N,M)

l

N

≥ M

N

N∑
l=M

qK
′
(z,N, l)

1−QK′(z,N,M)
=
M

N
>

1

2
.

Moreover, since K ′ > K ≥ 1, we have

1

K ′
(1− FK′) ≤ 1

2
(1− FK′) ≤ 1

2
.

Hence, it holds that wK
′ − 1

K′
(1− FK′) > 0.

Next, we note that [µKa − µ] > 0 because F has full support and, by assumption,

z > 0. Thus, we arrive at the following expression:

wK − 1
K

(1− FK)

1− 1
K

(1− FK)
≥
wK

′ − 1
K′

(1− FK′)

1− 1
K′

(1− FK′)
.

Rewriting this inequality yields

1− wK ≤
1− 1

K
(1− FK)

1− 1
K′

(1− FK′)
[1− wK′ ]. (4)

Now, Albrecht et al. (2010) provide an alternative expression for the weight w1

as a function of the probability that some member votes in favor of the available

candidate. They rely on the Gaussian hypergeometric function as well as the

Euler integral.34 We apply those expressions to the weights wK and wK
′
. In order

to simplify the notation, let AK and AK
′

be the probability of approving some

candidate k if there are K or K ′ candidates respectively. In other words, define

AK(z) :=
1

K
(1− FK), as well as

AK
′
(z) :=

1

K ′
(1− FK′).

34See for example Abramowitz and Stegun (1965).
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Making use of this notation, the expressions in Albrecht et al. (2010) read as

follows:35

wK = AK +
M

N
(1− AK){

∫ 1

0

[1 +
AK

1− AK
(1− y

1
M )]N−Mdy}−1 and

wK
′
= AK

′
+
M

N
(1− AK′){

∫ 1

0

[1 +
AK

′

1− AK′
(1− y

1
M )]N−Mdy}−1.

Therefore, we obtain

1− wK = 1− AK − M

N
(1− AK){

∫ 1

0

[1 +
AK

1− AK
(1− y

1
M )]N−Mdy}−1

= [1− AK ] · [1− M

N
{
∫ 1

0

[1 +
AK

1− AK
(1− y

1
M )]N−Mdy}−1]

= [1− 1

K
(1− FK)] · [1− M

N
{
∫ 1

0

[1 +
AK

1− AK
(1− y

1
M )]N−Mdy}−1],

as well as

1− wK′ = 1− AK′ − M

N
(1− AK′){

∫ 1

0

[1 +
AK

′

1− AK′
(1− y

1
M )]N−Mdy}−1

= [1− AK′ ] · [1− M

N
{
∫ 1

0

[1 +
AK

′

1− AK′
(1− y

1
M )]N−Mdy}−1]

= [1− 1

K ′
(1− FK′)] · [1− M

N
{
∫ 1

0

[1 +
AK

′

1− AK′
(1− y

1
M )]N−Mdy}−1].

Then, inequality (4) becomes

[1− 1

K
(1− FK)] · [1− M

N
{
∫ 1

0

[1 +
AK

1− AK
(1− y

1
M )]N−Mdy}−1]

≤
1− 1

K
(1− FK)

1− 1
K′

(1− FK′)
· [1− 1

K ′
(1− FK′)]

· [1− M

N
{
∫ 1

0

[1 +
AK

′

1− AK′
(1− y

1
M )]N−Mdy}−1].

Simplifying and rearranging this inequality yields

∫ 1

0

[1 +
AK

1− AK
(1− y

1
M )]N−Mdy ≤

∫ 1

0

[1 +
AK

′

1− AK′
(1− y

1
M )]N−Mdy.

35The derivation can be found on pages 1403 f. in Albrecht et al. (2010).
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In the following, we claim that, for all y ∈ [0, 1),

[1 +
AK

1− AK
(1− y

1
M )]N−M > [1 +

AK
′

1− AK′
(1− y

1
M )]N−M ,

which implies that the former inequality cannot be true.

To begin with, note that AK = AK(z) > AK
′
(z) = AK

′
since z 6= x and K ′ > K.

Now, take any y ∈ [0, 1) and observe that

AK > AK′

⇔ AK

1− AK
>

AK
′

1− AK′

⇔ 1 +
AK

1− AK
(1− y

1
M ) > 1 +

AK
′

1− AK′
(1− y

1
M )

⇔ [1 +
AK

1− AK
(1− y

1
M )]N−M > [1 +

AK
′

1− AK′
(1− y

1
M )]N−M .

This establishes the claim, yielding the desired contradiction. Therefore, overall,

we conclude that SK(z,N,M) < SK
′
(z,N,M) for all z ∈ (0, x̄).

Finally, it remains to tackle the case in which K = 1 and z = 0. Here, observe

that S1(0, N,M) = µ. Towards a contradiction, suppose that µ = S1(0, N,M) ≥

SK
′
(0, N,M). By the law of total expectation, we obtain

µ =[
1

K ′
(1− [F (0)]K

′
)]µK

′

a + [1− 1

K ′
(1− [F (0)]K

′
)]µK

′

r

≥SK′(0, N,M) = µK
′

a w
K′ + µK

′

r [1− wK′ ].

Rearranging this inequality yields

0 ≥ [µK
′

a − µK
′

r ][wK
′ − 1

K ′
].

However, we have that

0 ≥ [µK
′

a − µK
′

r ][wK
′ − 1

K ′
] > 0

because µK
′

a − µK
′

r > 0 as well as wK
′ − 1

K′
(1 − [F (0)]K

′
) > 0. The latter point

is implied by K ′ > 1 and it has been established in the first part of this proof.
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Hence, we arrive at the desired contradiction.

Proof of Proposition 5.

Consider any K ′, K ≥ 1 with K ′ > K. To the contrary, suppose that for all

c̄K′,K > 0 there exists c < c̄K′,K such that vK ≥ vK′ . Without loss of generality,

restrict attention to sufficiently small values of c such that the unique equilibria

under both procedures are interior. Let zK and zK′ denote the equilibrium cutoffs

corresponding to multi-option sequential search with K and K ′ candidates per

period respectively. These cutoffs solve the respective equilibrium equations

SK(zK , N,M)− zK =
ch(K)

K

1−QK(zK , N,M)

SK
′
(zK′ , N,M)− zK′ =

ch(K′)
K′

1−QK′(zK′ , N,M)
,

and they coincide with welfare, meaning, zK = vK as well as zK′ = vK′ . Thus,

by assumption, zK ≥ zK′ . Lemma 1 implies that the function SK(z,N,M) − z

is decreasing in z. Making use of this property and employing the equilibrium

equations as well as zK ≥ zK′ , we obtain

ch(K)
K

1−QK(zK , N,M)
= SK(zK , N,M)− zK

≤ SK(zK′ , N,M)− zK′

= SK(zK′ , N,M) +
ch(K′)

K′

1−QK′(zK′ , N,M)
− SK′(zK′ , N,M).

Rearranging this inequality yields

SK
′
(zK′ , N,M)− SK(zK′ , N,M) ≤

ch(K′)
K′

1−QK′(zK′ , N,M)
−

ch(K)
K

1−QK(zK , N,M)
.

(5)

Now, we claim that there exists B < x̄ such that for all c > 0, it holds zK < B

and zK′ < B.

First, towards a contradiction, suppose that for all BK < x̄ there exist c > 0

such that zK ≥ BK . By the equilibrium equation and the monotonicity properties
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of the involved functions established in the proofs of Lemma 1 and Proposition

2, we have that zK is weakly decreasing in c. Thus, the previous assumption

requires that zK → x̄ as c → 0. Consider the following rearranged version of the

equilibrium equation:

zK = SK(zK , N,M)−
ch(K)

K

1−QK(zK , N,M)
.

If we take the limit on both sides of the equation as c→ 0, we obtain

x̄ = lim
c→0

[zK ] = lim
c→0

[SK(zK , N,M)−
ch(K)

K

1−QK(zK , N,M)
]

≤ lim
c→0

[SK(zK , N,M)] < x̄,

which constitutes the desired contradiction. Recalling the average representation

of SK(zK , N,M), the final inequality holds because limc→0 µ
K
r (zK) = µ < x̄ as

well as limc→0w
K(zK) = M

N
< 1 which is implied by M < N . Therefore, there

exists BK < x̄ such that for all c > 0, it holds that zK < BK .

Second, applying the same argument in an analogous way to multi-option sequen-

tial search with K ′ candidates per period, we infer that there exists BK′ < x̄ such

that for all c > 0, it holds that zK′ < BK′ .

Consequently, setting B := max{BK , BK′}, we conclude that zK < B and zK′ < B

for all c > 0.

Making use of this feature, we obtain the following upper bound on the right-hand

side of inequality (5):

ch(K′)
K′

1−QK′(zK′ , N,M)
−

ch(K)
K

1−QK(zK , N,M)

<
ch(K′)

K′

1−QK′(B,N,M)
−

ch(K)
K

1−QK(0, N,M)

=c[
h(K′)
K′

1−QK′(B,N,M)
−

h(K)
K

1−QK(0, N,M)
].

Note that this upper bound does not depend on the equilibrium cutoffs of the two

considered procedures zK and zK′ .

Let us perform a case distinction:
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1)
h(K′)
K′

1−QK′ (B,N,M)
−

h(K)
K

1−QK(0,N,M)
≤ 0

In this case, inequality (5) and the upper bound on the right-hand side of this

inequality yield

SK
′
(zK′ , N,M)− SK(zK′ , N,M) ≤ 0,

which contradicts Lemma 3 because of K ′ > K. Let c̄K′,K be the cost value such

that for all c < c̄K′,K , the unique equilibrium under both search procedures is

interior. That is, set

c̄K′,K := min{S
K′(0, N,M)[1−QK′(0, N,M)]

h(K′)
K′

,
SK(0, N,M)[1−QK(0, N,M)]

h(K)
K

} > 0,

recalling the proofs of Propositions 1 and 2. Then, the established contradiction

implies that, for all these levels of c, we have vK < vK′ .

2)
h(K′)
K′

1−QK′ (B,N,M)
−

h(K)
K

1−QK(0,N,M)
> 0

To begin with, define

r := min
s∈[0,B]

[SK
′
(s,N,M)− SK(s,N,M)].

Observe that r is well-defined because the involved minimum exists due to the

extreme value theorem. Further, Lemma 3 implies that r > 0. Also, note that r

does not depend on zK , zK′ and c. Moreover, we have that the left-hand side of

inequality (5) is bounded below by r, meaning,

SK
′
(zK′ , N,M)− SK(zK′ , N,M) ≥ r.

Taking the upper bound on the right-hand side of inequality inequality (5) together

with this lower bound on the left hand-side of the discussed inequality, we arrive

at the following inequality:

r < c[
h(K′)
K′

1−QK′(B,N,M)
−

h(K)
K

1−QK(0, N,M)
].
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Now, set

c̄K′,K :=
r

h(K′)
K′

1−QK′ (B,N,M)
−

h(K)
K

1−QK(0,N,M)

.

Note that c̄K′,K > 0 since
h(K′)
K′

1−QK′ (B,N,M)
−

h(K)
K

1−QK(0,N,M)
> 0 by assumption and,

again, r > 0 because of Lemma 3. Then, for all c < c̄K′,K , we have that

r < c[
h(K′)
K′

1−QK′(B,N,M)
−

h(K)
K

1−QK(0, N,M)
]

<
r

h(K′)
K′

1−QK′ (B,N,M)
−

h(K)
K

1−QK(0,N,M)

· [
h(K′)
K′

1−QK′(B,N,M)
−

h(K)
K

1−QK(0, N,M)
]

= r.

This constitutes the desired contradiction.
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Appendix B Derivations

B.1 Expected Value Conditional on Stopping

First, we derive the expression for the value quality of some candidate k ∈ K for

some member i ∈ N conditional on stopping:

SK(z,N,M) = E[Xk
i |candidate k hired]

=
N∑
l=M

Pr(#k supporters = l|k hired)E[Xk
i |k hired and #k supporters = l]

=
N∑
l=M

qK(z,N, l)

1−QK(z,N,M)
E[Xk

i |#k supporters = l]

=
N∑
l=M

qK(z,N, l)

1−QK(z,N,M)
·

{Pr(voter i supports k|#k supporters = l)E[Xk
i |voter i supports k]

+ Pr(voter i rejects k|#k supporters = l)E[Xk
i |voter i rejects k]}

=
N∑
l=M

qK(z,N, l)

1−QK(z,N,M)
[
l

N
µKa (z) +

N − l
N

µKr (z)]

= wK(z)µKa (z) + [1− wK(z)]µKr (z),

where wK(z) is defined as

wK(z) :=
N∑
l=M

qK(z,N, l)

1−QK(z,N,M)

l

N
.

B.2 Probability of Acceptance

Second, we derive the expression for the probability that some member i ∈ N

votes in favor of some candidate k ∈ K as a function of K, F and the employed
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cutoff z:

Pr(Xk
i ≥ max

l 6=k
X l
i , X

k
i ≥ z)

=

∫ x

0

Pr(Xk
i ≥ s,Xk

i ≥ z) Pr(max
l 6=k

X l
i = s)ds

=

∫ x

0

Pr(Xk
i ≥ max{s, z}) Pr(max

l 6=k
X l
i = s)ds

=

∫ z

0

Pr(Xk
i ≥ z) Pr(max

l 6=k
X l
i = s)ds+

∫ x

z

Pr(Xk
i ≥ s) Pr(max

l 6=k
X l
i = s)ds

= [1− F (z)]

∫ z

0

dF (s)K−1

ds
ds+

∫ x

z

[1− F (s)](K − 1)F (s)K−2f(s)ds

= [1− F (z)]F (z)K−1 +

∫ x

z

(K − 1)F (s)K−2f(s)ds

−
∫ x

z

(K − 1)F (s)K−1f(s)ds

= [1− F (z)]F (z)K−1 +

∫ x

z

dF (s)K−1

ds
ds−

∫ x

z

d[K−1
K
F (s)K ]

ds
ds

= [1− F (z)]F (z)K−1 + [1− F (z)K−1]− K − 1

K
+
K − 1

K
F (z)K

= F (z)K−1 − F (z)K + 1− F (z)K−1 − 1 +
1

K
+ F (z)K − 1

K
F (z)K

=
1

K
[1− F (z)K ].
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