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Abstract

This paper examines the effect of price competition on the location choices of

retail pharmacies in large cities. I exploit a regulatory change in 2004 that introduced

price competition for non-prescription drugs to estimate the parameters of a dynamic

spatial entry model, using a comprehensive panel dataset of retail pharmacy locations.

The dynamic model is estimated by means of a nested fixed point approach, because

the asymmetric nature of the entry game renders conventional two-step estimators

inapplicable. The computational burden of this approach is alleviated by tailoring

the concept of oblivious equilibrium, developed by Weintraub et al. (2008), to the

spatial nature of the game. I find that the regulatory change lead to more intense local

competition and lower entry costs. The estimated structural model is then used to

decompose the effects of the regulatory change on market structure and consumers’

travel distances. I find that one third of the total decline in the number of pharmacies

between 2004 and 2016 is attributable to increased local interaction, whereas it caused

the consumers’ distance to the nearest pharmacy to increase only marginally. This

suggests that price competition is beneficial for consumers not only because it lowers

retail prices, but also because it leads to a more efficient spatial distribution of retail

pharmacies.

*This work was supported by the University of Mannheim’s Graduate School of Economic and Social

Sciences. Financial support by the Germand Science Foundation (DFG) through CRC TR224 (Project

B06) is gratefully acknowledged. The author’s email address is <firstname>.<lastname>@hotmail.de.



1 Introduction

Modern developed economies spend about a tenth of their national incomes on health

care, and pharmaceuticals contribute a sizeable portion of this spending block. Figure

1 shows that the expenditure share of pharmaceuticals alone is close to two percent

in major industrial nations. And while online pharmacies are pushing into this large

market, the majority of prescription drugs is still sold in retail pharmacies:1 their emblem

is ubiquitous in many cities. This is also true in Germany, the world’s fourth largest

market for pharmaceuticals: In 2004, one fifth of all pharmacies were located closer than

110 metres apart from their nearest competitor.2 But to the consumer (or patient) in

need of a prescription drug, two adjacent pharmacies are in no way better than just one

single pharmacy, because prescription drugs are subject to quality and price regulations.

Therefore, a more dispersed spatial allocation that reduces travel costs would be preferable

from a consumers’ perspective. In this paper, I develop a spatial entry model to show that

such a pattern has gradually emerged in Germany as a result of a regulatory change in

2004 which introduced price competition for non-prescription drugs. The topic is of current

interest because the European Commission and the European Court of Justice have recently

challenged the German system of fixed prices for prescription drugs. My contribution

is twofold: First, I document a case where the introduction of price competition had a

profound impact on the spatial market structure. Second, I develop a feasible method to

estimate a dynamic spatial entry model with a large number of asymmetric agents and

a very flexible notion of “space”. I motivate my research with an illustrative theoretical

model of space-then-price competition.

I illustrate the mechanism through which price competition affects location choices by

means of a simple variant of the classical Hotelling model. In this model, retail firms

typically face the trade-off between choosing a central location to attract high demand

(“market share effect”) and differentiating themselves from their competitors to increase

their local market power (“market power effect”). The market share effect should lead

to spatial clustering, while the market power effect should lead to spatial dispersion. If

competition is mitigated due to price regulation, the market power effect should therefore

become more dominant and lead to more clustering, and vice versa. As a result, the

inter-firm distances should increase, while the consumers’ average travel distances should

decrease. This hypothesis will be examined for the retail pharmacy sector in Germany.

Of course, the process of gradual re-locations that is at the heart of the Hotelling model

cannot be observed empirically. It should rather be considered as an approximation to the

dynamic process of entry and exit which forms the aggregate market patterns.

Until 2003, the German market was characterized by three distinctive institutional features:

1The German statistical office puts the share of revenue from e-commerce in this large retail sector
below 1. (destatis, 2019, table 45341-0001)

2Source: Deutscher Apotheker Verlag (2016), own calculations
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Figure 1: Spending on pharmaceutical products in 2018, by country. Share of
national GDP in parentheses. Source: author’s representation based on IQVIA (2019).

retail prices for prescription and non-prescription drugs alike were fixed, pharmacies were

only allowed to operate as a single-store business, and no minimum distance regulations

were imposed. A major health reform in 2004 changed the first two aspects: it introduced

price competition for non-prescription drugs and allowed local pharmacy “chains” of up to

four branches. I document that, following this reform, the number of pharmacies declined

by about six percent, while the average consumer’s distance to the nearest pharmacy only

increased by a small amount, which suggests that the decline in the number of pharmacies

was largely due to intensified competition between, and exit of, nearby or adjacent stores.

In order to isolate and quantify the effect that the introduction of price competition had on

pharmacies’ location choices, I develop a dynamic structural model of spatial entry and fit

it to the data on pharmacy locations. Using this model, I find that the period following the

reform can be characterized by lower entry costs, lower period returns, and more intense

competition among nearby competitors. I interpret the latter as a direct consequence of

introducing price competition for non-prescription drugs and use simulations to isolate

its effect on aggregate outcomes and consumer travel distances. The simulation results

show that the price competition effect alone can explain one third of the observed decline

in the number of pharmacies, but only one fifth of the observed increase in consumer

travel distances. Therefore, the introduction of price competition contributed to a very

consumer-friendly change in the spatial distribution of stores, with lower overall fixed costs

and only marginally higher travel costs.

One particularly illustrative example is shown in figure 2. That figure shows the location

of five pharmacies in the small town “Hagenow” with about twelve thousand inhabitants.

What is striking about the picture – apart from the fact that such a small town can sustain

five pharmacies – is the observation that they are all situated very close to what one may

call the “city centre”, an archetypical outcome of the classical Hotelling model: competitors

exhibit an “undue tendency [. . . ] to imitate each other in quality of goods, in location, and

in other essential ways” (Hotelling, 1929). I show that such inefficient market outcomes

have become less prevalent due the health care reform of 2003.
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Figure 2: Hotelling at work: agglomeration of pharmacies in a small town. Source:
author’s own representation.

I have structured this chapter as follows. Following a description of the institutional

background, the relevant literature on spatial competition and location choice is reviewed

in depth, and related to my approach. Section four develops a very stylized model of

space-then-price competition to motivate the research question. Section five sets up a

dynamic spatial entry model, section six describes my data and section seven applies the

model to the data and estimates its structural parameters. The last section concludes.

2 Institutional background

This section briefly describes the German pharmacy market and then outlines the most

relevant legislations. More detailed accounts of the pharmacy market in Germany can be

found in Horvath (2010) or Coenen et al. (2011).

2.1 Business structure

In order to obtain a brief overview on the market under consideration, some key figures

from two years, 2005 (the earliest year for which these data are available) and 2015, are

compiled in table 1. The table shows that the industry has undergone some important

changes from 2005 to 2015. First, the number of stores has declined by approximately six

percent. After having reached a peak of 22 thousand stores in 2005, there are currently

around 20 thousand pharmacies in Germany which amounts to 25 stores per 100,000

inhabitants. More importantly, the net profit margin – that is, the overall profitability of

a store relative to its generated revenues – has halved from twelve to six percent. That

figure is roughly comparable to the profitability of bakery shops in that period (Destatis,

2017). The table further shows that retail pharmacies are rather small, with revenues that

average around 2m Euros in 2015 and roughly ten employees per store. Pharmacies sell

medicine to patients that can be classified into prescription (Rx) and non-prescription,
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2005 2015

Stores 21,968 20,639
Employees (’000) 157 210
Revenues per store (’000) 1,392 2,110

% prescriptions drugs – 83
% from e-commerce 0.3 1.0

Number of packages sold (bn.) – 1405
% prescriptions drugs – 53

Gross earnings on sales per store� (’000) 402 509
% margin on revenues 29 24

Operating profits per store§ (’000) 159 125
% margin on revenues 12 6

Sources: Destatis (2017), ABDA (2016)
� revenues less wholesale cost

§ Earnings after costs, wages, taxes, rents

Table 1: Business indicators of retail pharmacies.

or over-the-counter (OTC) drugs. The table shows that prescription drugs account for

the bulk of aggregate revenues, but make up only slightly more than half of the packages

that were sold. The share of revenues generated online is still very small in this retail

sector. However, online resellers from abroad, who are not subject to price regulation

on prescription drugs3 are pushing into the market meaning this market segment could

become more important in the future.4

2.2 Regulatory framework

The retail pharmacy market is subject to a large body of regulations that sets standards

for the operation of pharmacies. This regulatory framework consists of several separate

laws which, taken together, determine who may operate a pharmacy, set standards for the

establishment of one and govern the compensation schemes. The relevant regulations are

summarized below.

First and foremost, the German pharmacies act (Apothekengesetz, ApoG) lays out the

general conditions under which a pharmacy may be operated. It states that pharmacies

are responsible to guarantee the “proper supply” of medication to the population. A

pharmacy may only be operated by a certified pharmacist who has obtained a licence from

the authorities. This licence expires if the business ceases to exist or if the operator dies.

While a pharmacy may be operated jointly by more than one pharmacist (each of whom

requires a licence), partnerships which make the compensation of one partner, indirectly

or directly, contingent on profits or revenues, are in general not allowed. Neither may

a pharmacy commit to exclusively sell the products of certain manufacturers, or strike

3Ruling of the European Court of Justice, Case C-148/15, retrieved from http://curia.europa.eu on 5
June 2020.

4On July 08, 2017, the Swiss company “Zur Rose Group AG” has collected CHF 200m with its IPO
and declared that it would use the proceedings to expand its German online business. (BZ, 2017)
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special deals with physicians to prescribe a certain range of products. All pharmacies are

obliged to participate in a scheme which guarantees the provision of emergency services

during night times or on public holidays. It is admissible for pharmacies to distribute

products by post, although the numbers from Destatis (2017) suggest that this is a niche

market. Since 2004, a licenced pharmacist may obtain permission to operate up to three

subsidiary branches that must be in the same district as the main branch, or in an adjacent

one. Each subsidiary branch must be operated by a licenced pharmacist, and fulfil all

the requirements of a regular pharmacy with the exception that it need not have an own

laboratory. Most importantly, the pharmacist is free to choose the location of his or

her pharmacy, subject of course to residential zoning regulations but independent of the

locations of other competitors.5

Further legislation is delegated to the ordnance on the operation of pharmacies (Apotheken-

betriebsordnung, ApoBetrO) issued by the federal health ministry: first, the pharmacist

who operates a pharmacy must do so in person, i.e. they cannot hire a manager to run the

store. Every pharmacy must have a floorspace of at least 110 sq.m. and a laboratory that

is fully equipped to produce custom medications, unless it is a subsidiary branch of another

store in which case a laboratory is not mandatory. Stocks must be sufficient to cover the

needs of the population for at least one “average” week, notwithstanding the obligation to

always maintain further stocks of medications and vaccines for emergency purposes.6

In most European health insurance systems, patients pay some share of the costs of their

prescribed medication out of their own funds (Panteli et al., 2016) and this is also the case

in Germany. In what follows, the price that the patient sees under this cost-sharing rule

will be referred to as the retail price. Usually, this retail price is a function of the list price,

and it is in general the same for all members of a public health insurance. Unlike in most

other retail markets, the pharmacy’s variable profit per unit of prescription drug sold is

not the difference between retail prices and list prices. Instead, markups are regulated

directly, again as a function of the list price.7 Figures 3a and 3b show how the implied

markups and consumer retail prices as a function of list prices changed due to the reform

in late 2003. The figure implies that prior to the reform, pharmacies had a strong incentive

to sell expensive drugs, while consumers had no or little incentive to ask for cheap generics.

The reform partially reversed this, as pharmacies now have a very small incentive to sell

expensive drugs, while patients now have a stronger incentive to ask for a cheaper generic

product. Until 2003, retail prices of OTC and Rx drugs were both regulated. The health

care reform in late 2003 changed this: the price regulation scheme for non-prescription

drugs was abandoned so that today, roughly half of all packages accounting for 15% of

5§§1, 3, 8, 9, 10, 11, , 11a, 14, and 18 Apothekengesetz (ApoG), retrieved from gesetze-im-
internet.de/apog on 28 June 2017

6§§2, 4 and 15, Apothekenbetriebsordnung (ApoBetrO), retrieved from gesetze-im-
internet.de/apobetro 1987 on 28 June 2017

7cf. §3 Arzneimittelpreisverordnung (AmPreisV) as of 1 January 2002 and 11 May 2019; and §§31,61
SGB V as of 1 January 2003 and 1 January 2005. Retrieved from research.wolterskluwer-online.de on 24
July 2019.
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Figure 3: Price regulation for prescription drugs, until and after 2003. Source: own
representation based on the relevant legislative texts.

total revenues are sold competitively (see table 1). On the other hand, retail prices and

markups of prescription drugs remain subject to regulation.8

The European Commission (EC) has repeatedly called on its member states to liberalize

their pharmacy markets, and was often supported in its view by the European Court of

Justice (ECJ).9 While the EC sees pharmacies as part of the retail sector and applies the

rules of the common market to it, the prevailing view in some member states, manifested

in their regulatory frameworks, regards pharmacies as part of the health care system where

price competition should not play a role. Therefore, it is possible that the near future will

see significant changes of the regulatory regimes in Europe.

To summarize, the health care reform of 2003 has changed the pharmacies’ compensation

scheme in Germany, it has likely changed the entry costs by permitting up to three subsidiary

branches, and it has presumably increased competition among adjacent pharmacies by

introducing price competition for non-prescription drugs. These considerations will guide

my empirical approach.

8See Art. 1 (39,92,94) and 24 (1,3), GKV Modernisierungsgesetz. Bundesgesetzblatt I, 2003(55):2190–
2258

9For example, the European Commission (EC) has urged members to take action in the following areas:
legislation restriction the freedom of establishment in Italy, Spain and Austria (EC press release IP/06/858,
ECJ ruling C-367/12); legislation restricting the number of pharmacies that may be owned in Italy (EC
press release IP/06/1789); and legislation concerning the delivery of pharmaceuticals (EC press release
IP/09/438). In 2016, the ECJ ruled that online pharmacies that are located in a member state of the
European Union outside Germany are not obliged to comply with the German price regulation scheme
for prescription drugs if they ship to Germany (ECJ ruling C 148/15). In July 2019, the EC reiterated
its request for Germany to abandon its price regulation scheme (EC press release MEMO-18-3446). In
response, the German cabinet has drafted a law that makes adherence to the German price regulation
scheme a precondition for medical expenses to be accounted for with the German public health insurers
(“Gesetz zur Stärkung der Vor-Ort-Apotheken”, currently under parliamentary revision, document no.
373/19, retrieved from bundestag.de on 5 June 2020).
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3 Related Literature

3.1 Theoretical literature

For a long time, economists and social scientists have discussed the question of where

and how economic agents locate. Nearly two centuries ago, Johann Heinrich von Thünen

provided an economic explanation for different agricultural structures around cities. Weber

and Pick (1909) discussed where production facilities should optimally be located, taking

into account the locations and transport costs of different inputs and keeping market

conditions constant. Next Christaller (1933) developed theories on the ideal spatial

constellation of cities (or “central places”), and Lösch (1940) adopted a more general

equilibrium approach which predicts that economic agents will be positioned such that each

unit serves a hexagonal market area giving rise to a “honeycomb pattern” of market areas.

Neither of these authors has considered the problem of price competition. A review of

these classical approaches can be found in Kulke (2013) and Fischer (2011). An interesting

extension to the works of Lösch and Christaller is Rushton (1972) who computes optimal

market structures under non-uniform consumer distributions using a numerical approach.

This leads to skewed point patterns, while the original hexagonal structure is still visible.

Taking into account that firms choose their locations strategically, and also compete on

attributes other than their location complicates the analysis. Hotelling (1929) was the first

to point out that profit maximizing competitive firms may choose to agglomerate, thus

inflicting inefficiently high travel costs on the consumer side. He applies his finding to the

political economy sphere:

The competition for votes between the Republican and Democratic parties does

not lead to a clear drawing of issues, an adoption of two strongly contrasted

positions between which the voter may choose. Instead, each party strives to

make its platform as much like the other’s as possible. (Hotelling, 1929, p. 54)

Of course, there is no price competition in politics so what may be true for political parties

must not necessarily hold for competitive firms. This was already apparent to Hotelling who

noted that “Bertrand’s objection applies” as soon as both competitors are in the same place

(p. 52). An early extension of his work is Smithies (1941) who introduced elastic aggregate

demand, thus disposing of the zero-sum nature of the original set up. Smithies finds that

minimal differentiation is not a necessary outcome under this assumption. This finding

has been confirmed by d’Aspremont et al. (1979) who even show that Hotelling’s model

with linear transport costs does not have an equilibrium at all, and, by assuming quadratic

transport costs, derives a contrary outcome: that firms will optimally tend to locate at both

extremes of the market. From there onwards, quadratic transportation costs have become

a standard in the theoretical literature. For instance, Bester et al. (1996) is an in-depths
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game theoretic analysis of the location-then-prices model with quadratic transportation

costs and deterministic consumers and Anderson et al. (1997) derive conditions for general,

non-uniform population distributions under which an equilibrium exists.

The difficulties with establishing an equilibrium outcome are closely linked to firms’ incentive

to undercut each others’ prices when both firms are located at the same point and perfect

competition causes consumers to purchase the cheapest product (adjusted for travel costs)

in a deterministic way. Thus, as soon as consumers are assumed to posses preferences over

attributes other than the delivery price, price competition is softened and this problem

can be expected to be alleviated. The first to note this were de Palma et al. (1985) who

modelled consumer demand for two spatially differentiated firms by using the discrete

choice framework that has now become standard in the literature on empirical industrial

organization. Consumers care about travel costs and prices, but also posses idiosyncratic

preference shocks over visiting different stores, and firms are assumed to sell their products

at a given price. As a consequence, consumers may now purchase from a store that offers

a higher travel cost adjusted retail price because this store appeals to the consumer in

some other, unknown dimension. It will now be worthwhile for both firms to locate at the

centre, because consumer heterogeneity “eliminates discontinuities in the profit function”

(p. 771) so that any deviation from the market centre leads to lower demand. A similar

conclusion is reached by Ben-Akiva et al. (1989) who introduce price competition and

a second dimension along which products are differentiated, but which the firms do not

choose strategically. This set up achieves the same effect in that it eliminates the incentive

to undercut and thus makes the agglomeration a feasible equilibrium. Finally, (Anderson

et al., 1992, p.343–392) combine logit demand, price competition and location choices

along the real line. They show analytically that the location-then-prices game has a

centralized equilibrium if consumers are sufficiently heterogeneous. They also solved their

game numerically with two firms and locations on the real line, yielding both symmetric

non-central equilibria and agglomeration as the outcome. They do not derive de-centralized

equilibrium locations analytically.

The literature in the previous paragraph modelled space as a unidimensional line for the

sake of analytic simplicity. Yet, most spatial patterns observed in the real world are

two-dimensional. Eaton and Lipsey (1975) were the first to take spatial competition to

the two-dimensional space, by simulating the movements of up to seventeen firms that

sequentially re-locate so as to maximize their market shares while keeping prices fixed. They

find that the honeycomb pattern of Lösch quickly breaks up and thus the authors “strongly

suspect, but as yet cannot prove, the non-existence of any equilibrium configurations

in the disc beyond n = 2” (Eaton and Lipsey, 1975, p. 44). Irmen and Thisse (1998)

consider the case with quadratic transport costs and deterministic consumers who care

about multiple product characteristics. Their finding is that firms will, in equilibrium,

choose maximum differentiation in the dimension which consumers care about most, and

minimum differentiation in the other dimensions. A similar result appears to have been

8



simultaneously derived by Ansari et al. (1998) for the case of three product attributes. A

more recent attempt to characterize equilibrium locations in a competitive environment

is worked out by the four computer scientists Ottino-Loffler et al. (2017) who follow

the approach of Eaton and Lipsey (1975) and find stable spatial patterns with up to

seven firms, using deterministic consumers who care about travel costs. Yet, their pricing

stage is not modelled explicitly and they employ a rather coarse grid such that their

results should be considered with some caution. In a theoretical paper, Vogel (2008)

studies location-then-price equilibria on the unit circle and finds that more productive

firms locate in more isolated areas. Yet, his main contribution is a mathematical trick

that establishes equilibrium existence in such a game despite using linear transportation

costs. In a more recent paper, Allen and Arkolakis (2014) derive the existence of spatial

equilibria in a general equilibrium setting. A continuum of consumers (who are also

workers) equipped with CES preferences is distributed across a compact two-dimensional

space. Each consumer also produces exactly one unit of the output good, and bilateral

trade is then governed by a gravity equation. A spatial equilibrium is a distribution of

consumers/workers such that their incomes equal their expenditures, and there are no

profitable relocations. Finally, a recent review article by Biscaia and Mota (2013) reiterates

that research on location-then-price competition in the two-dimensional plane is still not

so abundant.

Specifically concerned with price regulation in the health care sector are theoretical papers

by Brekke et al. (2011, 2006). Both add a quality dimension to firms’ decision space

letting firms effectively compete on locations and on quality. The theoretical paper (Brekke

et al., 2006) is cast in a Hotelling duopoly environment with a linear choice of location

and quality-specific investment. Representative consumers have a linear utility function

and care about the price, quadratic transportation costs and quality of the service. The

basic insight of their model is that, while price regulation leads to an agglomeration of

firms, quality competition counteracts this force, leading to more spatial differentiation. A

regulator who cares for social welfare would attempt to choose a price so as to maximize

welfare, taking into account the subsequent quality and location decisions of firms. If

location decisions are exogenous, the optimal quality level can be attained whereas if both

location and quality choices are exogenous, the second best outcome would either entail

too much spatial differentiation and too low quality or vice versa. In Brekke et al. (2011),

the relation between quality choice and competition is examined theoretically, but the total

number of hospitals and their location is taken as given.

3.2 Empirical literature

For the empirical analysis of spatial competition, it is necessary to model both consumers’

spatial demand, and firms’ location choices. Modelling spatial demand empirically does

not pose substantial challenges. The standard ARUM model of consumer utility over

9



spatially differentiated alternatives with random coefficients and logit choice probabilities

can be found in papers such as Davis (2006), Ho and Ishii (2011), Crawford (2012) and

the references therein and Aguirregabiria and Vicentini (2016). Most of the insights from

Berry (1994) can be readily applied to the spatial context, using a distance function that

enters a consumer’s utility function. Further works who use this framework are Chisholm

and Norman (2012) and Davis (2006) who examine the market for cinemas and Ho and

Ishii (2011) who study retail banking.

It is far more difficult to model location choice in a tractable, yet plausible and flexible

way. Some implications of the theoretical literature on multi-attribute competition in a

spatial context have been tested empirically by Netz and Taylor (2002) who find evidence

that gasoline stations respond to tougher competition with more spatial differentiation.

Further, Thomadsen (2007) uses a structural pricing model to derive demand parameters

and builds on (Anderson et al., 1992, p.343-392) to examine the optimal location decisions

under different cost structures. Yet, his counter-factual simulations are restricted to spatial

competition along one dimension. Contrary to the theoretical literature, empirical models

of the supply side often assume that firms choose to enter in a discrete set of locations

and derive equilibria under incomplete information. This approach was pioneered by Seim

(2006) who uses relatively few locations and a reduced form profit function.

A few studies exist that are dedicated to competition in the retail pharmacy market.

Horvath (2010) analyses the nexus of price regulation and quality and spatial competition

on the German pharmacy market. However, he reviews models of quality and circular

spatial competition and free entry which are less suited to study location choices because

firms will usually locate at equidistant locations around the circle. His empirical results

are based on rather coarse county-level data. Hence, an important extension of this work

is to model spatial entry in a more detailed fashion, and to link it more tightly to detailed

data sources. A related study published by Coenen et al. (2011) also features a very

detailed institutional description of the pharmacy market in Germany. In a scenario-based

approach, they compare different reform options with regard to their cost saving potential.

The competitive reactions of firms in the market are not endogenously determined in their

approach. In both aforementioned studies, the focus seems to be more on the equilibrium

number of pharmacies rather than on their location choices. Similarly, Schaumans and

Verboven (2008) set up a model of joint entry by physicians and pharmacies in small local

markets but again, the focus is on entry and exit as opposed to the small-scale geographical

distribution of economic units.

3.3 Dynamic empirical literature

The empirical approach that this paper presents relies on a dynamic entry game with a

large number of players. These players interact with each other the more intensely, the
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closer they are together, but in principle, every agent interacts with every other agent.

In solving dynamic discrete games with many players such as the one described below, a

direct solution of the game becomes infeasible even for moderately-sized problems. The

crucial point here is that the size of the state space grows exponentially in the number

of players, which poses computational problems for two principal reasons: first, the large

amount of computer storage required to store the entire value function, and second, the

computational burden associated with computing an expectation over the future state

space. The state space of the game presented above is of magnitude 2N and so will be

usually too large to estimate the full model using conventional methods – a typical city

in Germany has around eighty pharmacies, and it is often not desirable to delineate ad

hoc market boundaries.10 The literature on dynamic discrete games has put forward a few

approaches to modify the problem in such a way to be able to solve it, or at least to be

able to estimate its key parameters. These approaches will be discussed in turn.

A first branch of the literature has evolved around the so-called two-step estimators that

were initially proposed by Hotz and Miller (1993) and later refined by Aguirregabiria

and Mira (2002) for single agent decision processes. Two-step (or k-step) estimators rely

on obtaining non-parametric estimates of either the policy function, or the continuation

values in a first stage, which are then used to compute the players’ best responses and a

likelihood function in a second stage. These ideas have been applied to games with many

players by Aguirregabiria and Mira (2007) who use estimates of the conditional choice

probabilities, and by Pakes et al. (2007) who estimate continuation values in a first step.

Bajari et al. (2007) extend these methods to allow for continuous choice variables. A

recent addition to this literature is proposed by Aguirregabiria and Magesan (2019) who

study dynamic entry when players’ beliefs are not in equilibrium. Their approach also

relies on obtaining non-parametric choice probabilities in a first stage. But while being

computationally efficient and elegant, two-step estimators are unfortunately not applicable

to my setting, for the following reasons. First, the size of the state space which is much

larger than the number of observed decisions obviously prevents a direct application of the

concept. Second, the nature of spatial competition is not symmetric: in a certain state

of the world, one firm may face a lot more local competition than another firm and so

their policy choices, or their strategies, would be very different. And even if one conditions

on the local environment of each firm, certain configurations of their nearest competitors

mean very different things to different firms due to differences in their relative spatial

constellation to each other. Thus, in a spatial entry game, the asymmetry of players’

strategies prevents a direct application of these two-step estimators.

The asymmetry of the problem at hand instead calls for a nested fixed point estimator

where each firm solves a distinct dynamic problem and therefore has its own policy function.

To alleviate the computational burden associated with solving such a dynamic discrete

model, several approaches have been put forward that will be reviewed first, followed by a

10To get an idea of the magnitudes, 280 ≈ 1024 so even storing the value function infeasible.

11



description of the approach followed in this paper.

First, Doraszelski and Judd (2012) set up a dynamic model in continuous time which

significantly reduces the computational burden of calculating the expected future state.

The expectation is easier to compute because it becomes increasingly unlikely that more

than one player makes a move, as the time periods become shorter and eventually approach

a continuum. Therefore, at each point in time there are only as many possible future states

as there are players in the game. However, an empirical application of this setting requires

that the precise timing of all entry and exit decisions be known, which is not the case in

the data at hand.

Pakes and McGuire (2001) propose a stochastic algorithm to compute an approximation

to the MPE. The algorithm relies on the fact that in many cases, the Markov chains

that are induced by dynamic discrete games have a very large state space, but eventually

wander into a smaller set of states that is known as the recurrent class. Their algorithm

draws a new state in every iteration according to the current policy function, and updates

the current state’s continuation value with the new state’s value. It reduces the number

of states that are visited, and the computational burden associated with computing the

expectation over future states, but adds a simulation error to the problem so that more

iterations are necessary for the problem to converge. Their ideas cannot readily be applied

to the setting at hand, mainly because the sampling procedure is not guaranteed to sample

uniformly from the recurrent class of the game. The recurrent class of many dynamic

discrete games encompasses the entire state space because the transition cost shock has,

by assumption, full support, so that “anything goes” (albeit it may do so with very low

probability). However, even if the MPE is unique, the transition dynamics in some games

are likely to imply that the recurrent class is partitioned into a number of sub-classes which

are almost recurrent in themselves. Once the Markov Chain that is induced by equilibrium

play has wandered into one of these subclasses it is likely to remain there (although it is

not certain that it does so). To make this point clearer, consider a dynamic entry model

in which an even number of firms is located on a circle, and let the parameters be such

that having two active direct nearest neighbours leads to negative (or very small) period

returns, while the presence of an active indirect neighbour does not affect profits. If the

market entry costs are chosen sufficiently large, it becomes equally likely that only firms

with even numbers are active, or only firms with odd numbers. Small permutations of

these configurations may arise, but it will be very unlikely to see a complete reversal of

fortunes. Therefore, an unguided sampling procedure similar to the one described by Pakes

and McGuire (2001) is likely to miss a large part of the state space that may be equally

likely to occur as the one that was sampled, and so the procedure is not well suited for the

empirical application at hand.

A different approach is taken by Weintraub et al. (2008, 2010) who develop an equilibrium

concept in an entry game with quality investment that they call oblivious equilibrium,
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wherein individual firms condition their actions only on their own state and on the long-run

average aggregate industry state. This aggregate industry state can be assumed to remain

approximately constant over time if the number of firms and potential entrants is large so

that individual decisions are averaged out. A requirement for being able to condition the

decision process is that the period returns of each firm depend only on its own state, and on

an aggregate state because all competitors are the same. Thus, the oblivious equilibrium is

easier to compute because it greatly reduces the dimensionality of the problem. But in a

spatial context, not all competitors are the same and it is difficult to reduce the spatial

distribution of firms to an aggregate statistic with low dimensionality so that the concept

of oblivious equilibrium is not readily applicable. Furthermore, the separation of the state

space into an aggregate industry state that remains constant, and an individual state,

effectively restricts the permissible state space very strongly. In my empirical spatial entry

model, I will adapt and extend the oblivious equilibrium concept of Weintraub et al. to

the spatial domain in order to address the aforementioned concerns. This extension of

the oblivious equilibrium concept constitutes the main methodological contribution of this

paper.

3.4 Contribution

This paper extends the literature on empirical dynamic entry models to incorporate a

large number of heterogeneous, spatially interacting players without having to resort to

simplifying symmetry considerations. I extend the ideas put forward in the concept of an

oblivious equilibrium to develop a heuristic approach that reduces the dimensionality of the

problem, and yet maintains the spatial and dynamic features of the model. As an empirical

contribution, this paper presents evidence that the introduction of price competition in a

retail market has profound effects on the spatial equilibrium distribution of retail firms’

locations.

4 A stylized model

To illustrate the characteristic mechanisms and trade-offs of the market under consideration,

and to motivate my research, I first set up a very simple modified Hotelling model of

space-then-price competition on the real line. The analysis is related to the work of Brekke

et al. (2006) who consider quality competition and location choices of hospitals.

Consider the case of two pharmacies competing on prices and locations: first, both

pharmacies choose their location and next, taking location choices as given, they compete

on prices. Denote the location of both stores by xa and xb and assume that admissible

locations are restricted to the unit interval [0, 1], and that xa ≤ xb. Pharmacies sell

prescription drugs (Rx) at a regulated price r̄ = 0 and non-prescription drugs (OTC)
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at price pj , j ∈ {a, b}. To reflect the institutional characteristics of the retail pharmacy

market, I assume that both pharmacies earn a regulated margin on each sold unit of a

prescription drug. For simplicity, the regulated margin on prescription drugs is assumed to

be equal to one. The marginal costs of non-prescription drugs are assumed to be zero, so

that the margin on each unit of non-prescription drugs that is sold is equal to its retail

price pj . Hence, pharmacies’ profits are given by

πj = QRxj + pjQ
OTC
j

where QRxj and QOTCj are the demands for prescription and non-prescription drugs, respec-

tively. A unit mass of consumers is distributed uniformly on this unit interval and indexed

by their location i ∈ [0, 1]. Consumers incur quadratic travel costs and there is no outside

option so that one consumer certainly purchases a product from one of the competitors.

Each consumer purchases either a prescription drug or a non-prescription drug, but not

both, from one of the stores. With probability α, the consumer purchases a prescription

drug at the regulated price r̄ = 0. Her (normalized) utility from obtaining the drug at

store j is

νij = −(i− xj)2

Therefore, consumers will always obtain their prescription drugs from the nearest pharmacy.

On the other hand, a consumer purchases a non-prescription drug with probability 1− α.

Her utility when purchasing it from pharmacy j is given by

uij = −pj − τ(i− xj)2

I assume that 0 < τ < 1, as consumers purchase a prescription drug because they

are seriously ill so they should have higher travel costs than those who are not. Since

d’Aspremont et al. (1979) have shown that quadratic travel costs are sufficient to guarantee

equilibrium existence, this has become a standard in the literature, and I abide by it.

4.1 Equilibrium

As a benchmark, consider first the trivial case were prices of non-prescription drugs are

also regulated, so that pa = pb = p̄, but firms choose their locations freely. This is the

classical Hotelling model in which both firms tend to locate at the market centre so as to

maximize their market shares, that is xa = xb = 1/2.

Next, I investigate whether the introduction of price competition for non-prescription drugs

can lead to a market outcome that is preferable from a consumer’s perspective. I focus on

symmetric equilibria. The following proposition characterizes a symmetric space-then-price

equilibrium of the model:

Proposition 1. A symmetric space-then-price equilibrium of the model is given by location
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choices xa = x∗ and xb = 1− x∗ with

x∗ =


0 if α ≤ τ

3+τ ,

−1
4 + 3

4
α

τ(1−α) if τ
3+τ < α < τ

1+τ ,

1
2 if α ≥ τ

1+τ ,

(1)

and prices pa = pb = p∗ with

p∗ =


τ if α ≤ τ

3+τ ,

3
2

(
τ − α

1−α

)
if τ

3+τ < α < τ
1+τ ,

0 if α ≥ τ
1+τ .

(2)

The proof is standard, and it is given in appendix A for completeness. This result

encompasses two interesting polar cases: first, when the share of consumers purchasing

price regulated prescription drugs, α, is equal to one, the locational equilibrium sees

both firms located at the market centre – this is Hotelling’s minimal differentiation result.

Second, if pharmacies sell only non-prescription drugs (α = 0), the market power effect

dominates and both firms are located at the market boundaries. This corresponds to the

principle of maximum differentiation of d’Aspremont et al. (1979). This result is interesting

because it shows that the introduction of price competition for non-prescription drugs does

not necessarily lead to an increase in spatial differentiation, as the centralized equilibrium

may prevail for a large range of parameters. Whether this happens or not will depend

crucially on local market circumstances that affect consumers’ relative and absolute travel

costs, and on the share of either consumer type.

4.2 Welfare analysis

Next, I compute consumer welfare and producer surplus in the competitive market, and

compare these to the outcomes under complete price regulation, and to the social optimum.

Throughout, I will assume that pharmacies can freely choose their location. Note first

that the consumers’ aggregate travel costs in any given symmetric locational equilibrium

x ∈ [0, 1/2], with xa = x and xb = 1− x, are given by τT (x), where

T (x) = 2

∫ 1
2

0
(i− x)2di =

1

12
− 1

2
x+ x2

Then, consumer welfare with retail prices of non-prescription drugs p and regulated

prescription prices r̄ = 0 is

W (x, p) = −(1− α)p− (α+ (1− α)τ)T (x)
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and equilibrium profits are always given by π∗ = 1
2 (α+ (1− α)p∗).

Price regulation Consider first the case where both prescription and non-prescription

drugs are regulated at prices r̄ = 0 and p̄ ≥ 0, respectively, but firms can choose their

locations freely. This case will be denoted as the regulatory benchmark in the discussion

that follows. As was discussed above, the absence of price competition induces firms to

locate at the market centre, and consumer welfare in this setting is given by

W
(

1
2 , p̄
)

= (1− α)p̄− (α+ (1− α)τ)

12

As is well known, the tendency of the two firms to bunch together at the market centre

inflicts an inefficiently large amount of travel costs on consumers. The welfare maximizing

location pattern would be the one that minimizes travel costs, with xa = 1
4 and xb = 3

4 .

Aggregate profits remain the same, but consumer welfare would increase to

W
(

1
4 , p̄
)

= −(1− α)p̄− (α+ (1− α)τ)

48

In fact, it is easy to see that any symmetric location pattern with xa ∈ (0, 1
2) and xb = 1−xa

improves welfare compared to the laissez-faire case. Hence, a social planner could improve

welfare by imposing a minimum distance regulation, but of course such a regulation could

induce adverse effects that are not captured by this simple model: by effectively creating

local monopolies, pharmacies have less incentives to invest in quality, or to expand opening

hours – Brekke et al. (2006) discuss such aspects of quality competition in the context of

hospital regulation in much greater detail.

Price competition Next, consider the case where pharmacies choose their locations

first and then compete on prices for non-prescription drugs. For any given symmetric

locational equilibrium x∗ ∈ [0, 1
2 ] retail prices are given by p∗ = τ(1 − 2x∗) where x∗ is

itself a function of α and τ . I am interested in conditions on α, τ , and p̄ under which

consumers’ welfare in the location-then-prices equilibrium is larger than in the regulatory

benchmark, i.e. when W (x∗, p∗) ≥ W (1
2 , p̄). The change in welfare in the competitive

equilibrium relative to the regulatory benchmark is given by

∆W (p̄) = W (x∗, p∗)−W (1
2 , p̄) (3)

where both x∗ and p∗ depend on parameters α, τ , and p̄.

Welfare comparison To compare consumer welfare in both scenarios, I first consider

the case where the non-prescription price in the regulatory benchmark is set to marginal

costs (which are zero), p̄ = 0, so that prices must weakly increase under competition

16



relative to the regulatory benchmark. Under this condition, I show that consumer welfare

in the competitive equilibrium is weakly smaller than under the regulatory regime. Then I

consider the case where the non-prescription price in the regulatory benchmark is initially

larger than marginal costs. I argue that this opens up the possibility that consumer welfare

is larger in the competitive equilibrium with free location choices.

The following proposition shows that consumer welfare in the competitive equilibrium

is weakly smaller than in the regulatory benchmark if prices are initially regulated at

marginal costs, which are zero:

Proposition 2. Suppose that the regulated price of non-prescription drugs, p̄, was initially

zero. Then:

1. if α and τ are such that x∗ = 1
2 , consumer welfare is the same in the competitive

equilibrium as in the regulatory benchmark (∆W (0) = 0);

2. if α and τ are such that x∗ < 1
2 , (a) the difference of consumer welfare in the

competitive equilibrium relative to the regulatory benchmark increases strictly in the

share of prescription consumers ( d
dα∆W (0) > 0), and it decreases strictly in the

travel costs of non-prescription consumers ( d
dτ∆W (0) < 0); and (b) consumer welfare

is smaller in the competitive equilibrium (∆W (0) < 0).

The proof is delegated to appendix A. Now consider the case where the initial regulated

price of the non-prescription drug, p̄, was larger than zero. This leads to the possibility that

consumer welfare in the competitive equilibrium is strictly larger than under the regulatory

benchmark for a range of parameter values. To see this, note that price competition

in the competitive location-then-prices equilibrium will drive down the price of the non-

prescription drug to zero in such parameter constellations where firms choose to locate at

the market centre. Under those parameter constellations, consumer welfare will therefore be

larger in the competitive equilibrium than under the regulatory benchmark, as travel costs

are the same, but non-prescription prices are lower. Now note that the difference between

consumer welfare under the competitive equilibrium and consumer welfare under the

regulatory benchmark at a non-prescription regulated price p̄ is ∆W (p̄) = ∆W (0)+(1−α)p̄.

By the above proposition, there are parameter constellations for which x∗ is smaller than,

but sufficiently close to 1
2 so that ∆W (0) is large enough to obtain ∆W (p̄) > 0. This result

is illustrated in figure 4 which shows the sets of α and τ , at which consumer welfare in the

competitive location-then-prices equilibrium is equal to consumer welfare with regulated

prices and free location choice, for different values of the regulated price p̄. That figure

confirms that welfare is strictly larger in the competitive equilibrium for a large range of

parameter values if the regulated non-prescription price p̄ is larger than zero. This insight

is summarized in the following corollary:

Corollary. If the regulated price of prescription drugs was initially larger than zero, and

the share of prescription consumers α is less than one, consumer welfare in the competitive
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Figure 4: Sets of α and τ , at which consumer welfare in the competitive location-
then-prices equilibrium is equal to consumer welfare with regulated prices and free
location choice, for different values of the regulated price p̄. Consumer welfare in the
competitive equilibrium is (weakly) larger than under the regulatory benchmark to
the south east of the curves.

equilibrium is strictly larger than in the regulatory benchmark, provided that the share

of prescription consumers is sufficiently large, and the travel costs of non prescription

consumers are sufficiently small.

The theoretical analysis in this section is very stylized because it abstracts from entry

and exit, assumes firm locations along a univariate line, and leaves the question open how

the economy will transition from the regulatory to the competitive equilibrium. Still, this

simple model serves to illustrate the fact that the introduction of price competition, apart

from its impact on prices, can induce firms to enter in different locations so as to better

serve the consumer. The model also illustrates that this re-location is not guaranteed to be

beneficial for consumers: firms differentiate themselves in space because it increases their

local market power, so they can raise their prices. Thus, in order to generate consumer

welfare gains, the prices of non-prescription drugs must have been rather high initially, so

that competitive prices decrease relative to the regulatory benchmark.

5 Empirical Model

This section develops a spatial dynamic entry model of pharmacy competition that will

be fitted to data on retail pharmacy locations. It is designed to describe the process of

entry and exit by which the spatial distribution of retail locations gradually responds

to a regulatory change that introduced price competition for non-prescription drugs. I

first outline a general framework of dynamic spatial entry that suffers from the curse of

dimensionality. Then, I develop a new, computationally tractable approach to model the

spatial entry dynamics in a large market. Finally, I describe how the model’s structural
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parameters can be estimated. Importantly, I do not rely on symmetry or anonymity to

ease the computational burden of the model.

The focus of this paper is on the spatial structure of the German pharmacy market, and

how it reacts to regulatory changes, so one may ask why a dynamic model component

is needed. The answer is twofold: first, the data on pharmacy locations spans a large

time period of sixteen years, which makes it necessary to include a notion of time in the

analysis. But more importantly, what is observed in these data are entry and exit decisions

and such decisions are invariably dynamic in nature. Any decision maker who decides

whether to set up a pharmacy, or whether to close it, will necessarily try to make some

educated guess about the future, and most importantly, about the decisions of his current

or future competitors. The interplay of these considerations is what drives the spatial

industry structure over time. Therefore, a model needs to include both a spatial and a

dynamic aspect. A more detailed argument is given in section 5.4.1.

5.1 Dynamic entry decisions

The economy consists of N firms (or potential entrants) indexed by j, which are located

at a fixed location xj . In each discrete time period t, each of these firms can either be

active or inactive, indicated by ajt ∈ {0, 1}. Let at = (ajt)j∈N be called the state of the

economy at time t, and denote the entire state space as A = {0, 1}N . The usual notation

is adopted where a−jt = (ait)i 6=j denotes the states of all firms but firm j. Sometimes,

the tuple (ajt,a−jt) is used as an alternative way of writing the aggregate state ajt. Each

firm earns a period return πj(at) when the aggregate state of the economy is at, and it is

assumed that πj(at) = 0 if ajt = 0. The timing is as follows: at the beginning of every

period t, every firm earns its period return πj(at), and all firms learn the realization of a

private information idiosyncratic random variable ξjt that follows a distribution function F

with full support over R. Upon learning this value, each potential entrant decides whether

it should enter the market in period t+ 1 and incur an entry cost of θx + ξjt. Similarly,

every incumbent decides whether it should stay in the market, or leave the market in which

case it receives a sell-off value θe + ξjt. The introduction of privately known transition

costs ξjt is a common assumption in the literature on dynamic discrete games because

it guarantees equilibrium existence, see e.g. Seim (2006), Doraszelski and Satterthwaite

(2010), or Aguirregabiria and Magesan (2019). I do allow for re-entry because it is observed

in the data. In the empirical application, it will be assumed that there are M independent

large markets indexed by m = 1, . . . ,M , and T observed periods indexed by t, but the

market subscripts will often be omitted for convenience.

The solution concept employed here is a Markov Perfect Equilibrium (MPE) where all

players base their decisions solely on the current state of the economy (including their own

activity status) and on a privately known disturbance to their transition costs. Let the
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strategy of firm j be denoted by

σj : (ajt,a−jt, ξjt) 7→ ajt+1 ∈ {0, 1} (4)

and collect all strategies into σ = (σj)
N
j=1. Note that the behaviour of firm j is deterministic

conditional on its latent variable ξjt, but stochastic from the point of view of its competi-

tors.11 From the perspective of another firm k, and of the econometrician, the probability

that firm j chooses to be active in period t+ 1 is given by qj(at) =
∫
σj(ajt,a−jt, ξ)dF (ξ).

Taking the strategies of their competitors and the realization of the transition cost shock

as given, each firm j decides whether to be active or not in the next period. Let the value

function V σ
j (ajt,a−jt, ξjt) denote the expected discounted future profits of firm j when the

state is (ajt,a−jt) and the transition cost shock is ξjt. The value function is given by

V σ
j (ajt,a−jt, ξjt) = πj(at) + max

{
ajt (θx + ξjt) + βE[V σ

j (0,a−jt+1, ξjt+1)|at],

− (1− ajt) (θe + ξjt) + βE[V σ
j (1,a−jt+1, ξjt+1)|at]

}
(5)

The expectation operator integrates over the distribution of all future states that is induced

by σ, and over the future idiosyncratic shocks ξ. Since there is a one-to-one mapping from

players’ actions to states (unlike in many dynamic investment games, where idiosyncratic

and market-specific shocks affect the success of an investment), this amounts to integrating

over all conceivable actions of firm j’s competitors, taking their strategies as given. The

σ-superscript was added to clarify this dependence on the other firms’ strategies.

To write this problem in a more compact form, I will follow Aguirregabiria and Vicentini

(2016) and integrate out the idiosyncratic error term ξjt: first, let

V
σ
j (ajt,a−jt) =

∫
V σ
j (ajt,a−jt, x)dF (x) (6)

be the integrated value function of firm j. Sometimes I will write V
σ
j (at) as a shorthand.

Further, let the choice-specific integrated value function

vσj (1,at) = πj(at)− (1− ajt)θe + βEσ
[
V
σ
j (1,a−jt+1)|at

]
(7)

denote the expected value of choosing to be active in the next period, and let

vσj (0,at) = πj(at) + ajtθ
x + βEσ

[
V
σ
j (0,a−jt+1)|at

]
(8)

denote the expected value of choosing to be inactive in the next period, where the current

11Or, as Doraszelski and Satterthwaite (2010, p.216) put it: “Although a firm formally follows a pure
strategy in making its entry/exit decision, the dependence of its entry/exit decision on its randomly drawn,
privately known setup cost/scrap value implies that its rivals perceive the firm as though it were following
a mixed strategy.”
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activity status ajt ∈ {0, 1} governs whether the firm incurs any transition costs or period

returns.12 Then, the value function can be written more compactly as

V σ
j (ajt,a−jt, ξjt) = max

{
ajtξjt + vσj (0,at),−(1− ajt)ξjt + vσj (1,at)

}
(9)

and the integrated value function is

V
σ
j (ajt,a−jt) =

∫
max

{
ajtx+ vσj (0,at),−(1− ajt)x+ vσj (1,at)

}
dF (x) (10)

Given strategies σ and conditional on its own transition cost shock ξjt, firm j decides to

be active in the next period if the second part of the above equation (9) is greater than

the first, i.e. if

−(1− ajt)ξjt + vσj (1,at) ≥ ajtξjt + vσj (0,at)

⇔ ξjt ≤ vσj (1,at)− vσj (0,at)

The above equation implicitly defines cutoff values which govern each firm’s behaviour

conditional on its observed private information shocks. The probability of being active

next period can then conveniently be expressed as

Pr(ajt+1 = 1|at) = F
(
vσj (1,at)− vσj (0,at)

)
=: qj(at) (11)

where F is the distribution function of the latent errors ξ. Define q(at) ≡ {qj(at)}Nj=1.

These conditional choice probabilities (CCPs) are a best response probability to other

firms following the strategy σ in state at, and they “contain all the information about

competitors’ strategies that a firm needs to construct its best response” (Aguirregabiria

and Vicentini, 2016, p.726). The reason is that the value functions depend on the strategy

only through the CCPs that feed into the expectation operator Eσ:

Eσ
[
V j(ajt+1,a−jt+1)|ajt+1,at

]
=∑

a−jt+1∈{0,1}N−1

V j(ajt+1,a−jt+1)
∏
i 6=j

qi(at)
ait+1(1− qi(at))1−ait+1

︸ ︷︷ ︸
≡Eq[V j(ajt+1,a−jt+1)|ajt+1,at]

(12)

Therefore, the problem of finding equilibrium strategies σ is equivalent to determining

equilibrium CCPs q that satisfy the following equations at all states at, and for all firms j

12Note that the arguments of the integrated value function, ajt and a−jt, are different from the arguments
of the choice-specific value functions, ajt+1 and at.
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(Aguirregabiria and Mira, 2007, p.11):

qj(at) = F
(
vqj (1,at)− vqj (0,at)

)
, where

vqj (1,at) = πj(at)− (1− ajt)θe + βEq
[
V

q
j (1,a−jt+1)|ajt+1 = 1,at

]
vqj (0,at) = πj(at) + ajtθ

x + βEq
[
V

q
j (0,a−jt+1)|ajt+1 = 0,at

]
V

q
j (ajt,a−jt) =

∫
max

{
ajtξ + vqj (0,at),−(1− ajt)ξ + vqj (1,at)

}
dF (ξ) (13)

The function qj(at) embodies firm j’s best response, given all other firms’ CCPs. By

Brower’s theorem, this system of best response functions is guaranteed to have a fixed

point, as it defines a continuous mapping from the compact space [0, 1]N onto itself. This

motivates using an iterative procedure to solve for an equilibrium vector of CCPs, as will

be outlined in more detail below. However, it must be noted that the above mentioned

problem suffers from a “curse of dimensionality” that prevents its computation in all but

the simplest problems. This is a common problem encountered in dynamic discrete games,

as was outlined in section 3.3. According to Pakes and McGuire (2001), the computational

burden of finding an equilibrium in such problems is principally determined by the size of

the state space, the time it takes to compute the expectation, and the time to convergence.

In the above problem, the computational burden to check whether a given vector q is

in equilibrium grows exponentially in the number of firms.13 Therefore, without further

simplifying assumptions, the model is of little practical use when it comes to examining

real-world economies with many firms.

Contrary to many empirical applications, I will not restrict attention to symmetric and

anonymous equilibria. An equilibrium is symmetric if the equilibrium strategies are the

same for all firms, i.e. qj(a) = qk(a) for every state a ∈ A and for all firms j, k, and it

is anonymous if the equilibrium strategies are invariant to arbitrary permutations of the

vector of its competitors’ states a−j (Doraszelski and Pakes, 2007). While being very

convenient from a computational point of view, symmetry is not a good assumption in

the context of spatial competition because the payoffs of a certain firm in any given state

depend crucially on its location relative to its competitors, i.e. πj(a) is in general different

from πk(a) and therefore, the equilibrium CCPs differ too. For the same reason, players’

period return functions are in general not anonymous which leads to strategies that are

not anonymous. I consider asymmetry and non-anonymity to be crucial characteristics of

spatial dynamic interaction processes.

13The state space is of size 2N so that the memory requirements to store CCPs, conditional and
unconditional value functions for each firm are of order 4N2N . The computational burden of evaluating (13)
for a given vector q is determined by the expectation operator in each of two choice-specific integrated value
functions that integrates over the entire state space A−j of size 2N−1, and by evaluating and integrating
the distribution function F . Thus, abstracting from the costs of memory look-up operations, the time to
compute (13) for all firms and states is proportional to N × 2N × (2 + 2N ), so the computational burden is
O(N22N ).
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5.2 A spatial oblivious equilibrium model

To obtain a computable equilibrium model while maintaining asymmetry and non-anonymity,

I develop a procedure that is close in spirit to the oblivious equilibrium concept of Wein-

traub et al. (2008), but adapted to fit the spatial, asymmetric structure of my data. My

approach can be summarized as follows: firms principally assume that the spatial market

structure remains constant, except in a close neighbourhood around their own location.

Why firms are restricted in their strategic reasoning in this way is not specified; but it

could be a rational decision to do so if planning ahead per se is costly. Indeed, given the

sheer size of the unrestricted state space, it would be unreasonable to assume that any

firm can accurately form and store expectations for all possible spatial market structures.

To be more concrete, I will restrict the strategy space by assuming that firms follow a

time-varying heuristic strategy

σ̃jt : (ajt, ã−jt, ξjt) 7→ {0, 1}

where ãjt = (ajt, ã−jt) is a member of what I call the “oblivious state space” Ãjt of firm

j at time t that is composed of the observed actual state outside a close neighbourhood

around firm j, and all possible market configurations of firms within a neighbourhood

around firm j. In what follows, let ât denote the observed state at time t, and let âjt

denote the observed status of firm j at time t. Then, the oblivious state space of firm j at

time t is defined as

Ãjt ≡
{(
ai : ai ∈ {0, 1} if i ∈ nnkj , else ai = âit

)
i∈N

}
That is, in any given period t, firm j takes the state of its competitors beyond the range of

k “strategic nearest neighbours” nnkj
14 as given, and heuristically assumes that only its k

nearest neighbours will ever change their state. Note that the magnitude of the oblivious

state space is only 2k. Figure 5 illustrates the idea. The model is solved analogously to the

full problem described above by finding equilibrium entry probabilities that satisfy (13),

but using the restricted state space Ãjt for all firms and observation periods.

One problem that arises in computing the equilibrium entry probabilities is that the

oblivious state spaces of any two firms j and i will often be different, because these

two firms have different strategic neighbourhoods, i.e. Ãjt 6= Ãit. This implies that the

expectation in (12) is not well defined: consider firm j and some state ãjt ∈ Ãjt such

that ãjt /∈ Ãit. Since this state is not in firm i’s oblivious state space, its strategy σ̃it

is not defined at that point, so that firm j cannot form the conditional expectation in

14I specify that j ∈ nnkj so that each firm is its own nearest neighbour. But this is only . In principle,
one could also define the neighbourhood based on the inter-firm distance, but using a fixed number of
k neighbours has the advantage of allowing the usage of equally sized matrices in the computational
implementation.
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Figure 5: The left side of the figure shows a sample market with six firms, four of
which are active (indicated by a solid dot) and two of which are inactive (hollow dot).
Firm one assumes that all firms except its two nearest neighbours will remain in their
current status quo, and so the oblivious state space of firm two consists of only eight
distinct states which are illustrated in the right part of the figure. In contrast, the
unrestricted state space encompasses (26 = 64) distinct states.

(12). However, an appropriate interpretation of the oblivious state space still allows for

a coherent formation of this expectation in the following sense: For any firm i at time t,

define the mapping Mit : A→ Ãit as

Mit(a) =
(
ãs : ãs = as if s ∈ nnki , else ãs = âst

)
(14)

For any state a ∈ A, this mapping extracts the relevant local state as seen from the

perspective of firm i, and uses the actual state â for any firm outside the strategic

neighbourhood nnki . This idea is illustrated in figure 6. Using this mapping, I define the

conjecture that firm j has about firm i’s behaviour as follows:

j q̃it(a) ≡

q̃it(a) if a ∈ Ãit
q̃it (Mit(a)) else.

(15)

where q̃it are the CCPs that are implied by firm i’s strategy σ̃it. Note that Mit(at) differs

from at only for firms that are outside the strategic neighbourhood of firm i, and so

the conjecture about firm i’s strategy that other firms may have can be assumed to be

reasonably close to the actual strategy of a firm i.

I assume that firms use these conjectures about their competitors’ strategies to form

approximate expectation over the future states. For a firm j that chooses an action a, this
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Figure 6: This figure shows the oblivious state spaces of two firms that have only one
common neighbour, so that their two oblivious state spaces differ. By construction,
the observed state ât (blue) is contained in both oblivious state spaces, but another
state ãt is not. Instead, firm 1 maps this state to another similar state ã′t that is
identical to ãt for all firms that are contained in firm 3’s strategic neighbourhood.

approximate expectation is:

E q̃
[
V j(ajt+1,a−jt+1)|ajt+1 = a,at

]
=∑

ãt+1∈Ãjt
ãjt+1=a

V j(a, ã−jt+1)
∏

i∈nnkj \{j}
j q̃it(at)

ãit+1(1− j q̃it(at))
1−ãit+1 (16)

for all states at ∈ Ãjt. The above expression differs from that in equation (12) in two

important ways: first, firm j assumes that all firms outside of its k-neighbourhood neither

enter nor exit, and second, firm j forms a conjecture about the strategies of those firms

inside its k-neighbourhood that is consistent with that assumption. Because firm j assumes

that the future state will remain in its oblivious state space, which is of magnitude 2k, the

expectation E can be computed very quickly. Using the above expression (16), I define a

spatial oblivious equilibrium to be a vector of CCPs q̃∗ such that, for all firms j, at each

time t, it holds for every state ãt ∈ Ãjt that

q̃∗j (ãt) = F
(
vq̃j (1, ãt)− vq̃j (0, ãt)

)
, where

vq̃j (1, ãt) = πj(ãt)− (1− ãjt)θe + βE q̃
[
V

q̃
j (1,a−jt+1)|ajt+1 = 1, ãt

]
vq̃j (0, ãt) = πj(ãt) + ãjtθ

x + βE q̃
[
V

q̃
j (0,a−jt+1)|ajt+1 = 0, ãt

]
V

q̃
j (ãjt, ã−jt) =

∫
max

{
ãjtξ + vq̃j (0, ãt),−(1− ãjt)ξ + vq̃j (1, ãt)

}
dF (ξ) (17)

Again, Brower’s fixed point theorem can be applied so that an equilibrium q̃∗ is guaranteed

to exist.
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5.3 Estimation and identification

The structural parameters of the model are estimated using a nested fixed point approach to

accommodate the asymmetric and non-anonymous nature of spatial strategic interactions.

I assume that the private information shocks ξjt follow a standard normal distribution Φ

so that the conditional choice probabilities in equation (13) can be expressed in convenient

form as:

Pr(ajt+1 = 1|ãt) = q̃j(ãt) = Φ
(
vq̃j (1, ãt)− vq̃j (0, ãt)

)
(18)

The integrated value function can then be computed as

V
q̃
j (ajt, ã−jt) = φ

(
vq̃j (1, ãt)− vq̃j (0, ãt)

)
+ (1− q̃j(ãt)) · vq̃j (0, ãt) + q̃j(ãt) · vq̃j (1, ãt) (19)

where φ is the probability density function of the standard normal distribution.15 For the

empirical application, the reduced form profit equation is parametrized as follows:

πj(at) =



(
αXj +

βYj

1 +Nd
jt

)
︸ ︷︷ ︸

local demand

(
1− δNd

jt)
)

︸ ︷︷ ︸
local competition

, if ajt = 1

0 else.

(20)

where Yj is the local population around store j that is divided by the number of active firms

in firm j’s d-neighbourhood, Nd
jt (and including firm j). Xj is a vector of profit shifters of

store j that is common knowledge to all players. The first composite term captures local

demand at a given location in market state at, and the second term captures the market

power effect of local competition. The parameter δ measures the relative reduction of a

pharmacy’s profitability due to the presence of one additional active competitor within

a distance d. In order to test the main hypothesis of the paper, namely whether spatial

competition has increased after 2004, δ was estimated separately before and after 2004

(δpre and δpost). The spatial co-variates include measures of the local residential population

within a radius x around the firm’s location and measures such as the number of nearby

supermarkets or doctors. A summary of these variables can be found in table 4. As part

of a robustness check, the population variable was scaled with aggregate municipality-level

population growth rates, and further time-varying and municipality-level covariates were

included. However, for the sake of simplicity this time dependence is not explicitly modelled:

in the model, agents act as if all variables are time-constant while they actually change over

time. This naturally introduces some error, but I believe that this error is small because

the time-varying variables change rather slowly so that the assumption of time-constant

co-variates may be a good approximation to actual decision processes.

15This follows from the last equation in (17) and from the fact that the expectation of a truncated

normally distributed random variable x is given by E[x|x ≤ y] = −φ(y)
Φ(y)

, where Φ is the normal c.d.f. and φ
is the normal p.d.f..
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Using the parametric profit function in (20), the conditional expectation in (16), the

conditional choice probabilities (18) and the integrated value function (19), the system of

equations in (13) for some market m and time period t < T can be computed as follows:

Procedure 1 (Fixed point algorithm).

0. initialization:

(a) set k ← 0

(b) compute πj(a) for all a ∈ Ãjt, and for all firms j ∈ 1, . . . , N

(c) for all firms j = 1, . . . , N , initialize the vectors qj, v0
j , v1

j and V̄j of length

2k to zero, representing the corresponding functions qj(·), vqj (0, ·), vqj (1, ·) and

V
q
j (·) evaluated at each state ajt ∈ Ãjt. Collect all firm-specific vectors into

q,v0,v1 and V
q

.

1. at step k:

(a) set ∆← 0, and for all firms j do:

� v
ajt+1

j ←
(
vqj (ajt+1, ã)

)
ã∈Ãjt

for ajt+1 ∈ {0, 1} using (8), (7), (20) and

(16).

� V̄j ←
(
V

q
j (ã)

)
ã∈Ãjt

using (19)

� ∆j ←
∥∥∥qj − (q̃j(ã))ã∈Ãjt

∥∥∥
∞

and qj ← 1
2

(
qj + (q̃j(ã))ã∈Ãjt

)
using (18)

� ∆← max{∆,∆j}

(b) if ∆ ≥ ε go back to step 1 with k ← k + 1, else STOP.

Technically, this is a Gauss-Seidel algorithm because the updates in step k are always

computed using the most recent available conditional choice probabilities from either of

steps k or k − 1. Doraszelski and Pakes (2007) write that this leads to faster convergence

in many cases, and I found that this applied also to my setting. The dampening that

is introduced in updating the conditional choice probabilities was found to significantly

improve convergence speeds, as is also suggested by Doraszelski and Pakes (2007).16 In my

examples, with more than two hundred firms per market, the algorithm usually converged

within one hundred iterations to a tolerance of ε =
√

3 · 10−10, irrespective of the starting

values. In each market, I computed the equilibrium only up to time period T − 1 because

the equilibrium in period T makes predictions about transition patterns in period T + 1

which are not observed.17

16I implemented this model in Python (version 3.7) using the Numpy (version 1.15.4), Scipy (version
1.1.0) and Numba (version 0.42.0) libraries. The actual estimation was conducted on a fast compute node
of the bwHPC cluster, using the multiprocessing library.

17The oblivious state space is of size 2k so that the memory requirements to store CCPs, conditional
and unconditional value functions for each firm in every period are of order 4NT2k. The computational
burden of evaluating (13) for a given vector q̃ is determined by the expectation operator E in each of two
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The model’s parameters of interest are α, δ, θe and θx. As outlined above, the spatial

interaction parameter δ is estimated separately before and after the reform in 2003. I also

estimated θe separately, and included a dummy variable for t ≥ 2004 in the profit equation.

I assume that the decision making units do not anticipate this change in parameters, i.e.

the parameter change in 2004 comes as a surprise to them, and the market then transitions

into a new steady state that is consistent with new parameter values. In Monte Carlo

simulations, I found that I could not identify all parameters separately, so I chose to

normalize the market exit value to unity, i.e. θx = 1.18 Thus, the parameters of interest

can be summarized in a vector θ = (α, δpre, δpost, θ
e
pre, θ

e
post) with θx = 1 and α including a

pre/post dummy. In order to estimate θ, for each market m, and conditional on parameters

θ, the equilibrium q̃∗mt is computed for all years t = 1, . . . , T − 1. Thus, the log likelihood

of the observed market outcomes {amt}Tt=2, conditional on the market states {amt}T−1
t=1 is

computed as follows:

llm(θ) =

T∑
t=2

Nm∑
j=1

amjt log q̃∗mjt−1 + (1− amjt) log(1− q̃∗mjt−1)

These market likelihoods are then aggregated to form the total log-likelihood

ll(θ) =
M∑
m=1

llm(θ)

The likelihood is optimized with respect to parameters θ using the BFGS algorithm.19

Standard errors are computed using the estimated Hessian matrix that is returned by the

BFGS algorithm.

Economic agents in the model that is described above are heterogeneous with respect

to the realization of their private information shocks, and with respect to their spatial

configuration relative to each other. As in Seim (2006), the multiplicity of observed

outcomes that may arise in a pure strategy equilibrium due to the presence of a spatial

interaction effect is circumvented by modelling entry and exit probabilities. Thus, players

form their expectations ex ante and they may eventually end up in a state which is not

an equilibrium outcome ex post. Yet, Berry and Reiss (2007, p.1878) note that the entry

probabilities in such a model may not be unique: as the variance of the unobserved error

decreases so that the model approaches one of perfect information, multiple equilibrium

entry rates that mirror the multiple equilibria in pure strategies can arise. Thus, for

choice-specific integrated value functions that integrates over the oblivious state space Ã−jt of size 2k−1 in
each time period t, and by evaluating and integrating the distribution function F . Thus, abstracting from
the costs of memory look-up operations, the time to compute (13) for all firms and states is approximately
O(NT2k(2 + 2 · 2k−1)) = O(NT2k(2 + ·2k). The actual time that it takes to compute an equilibrium will
also crucially depend on the number of iterations that it takes to converge to q̃∗.

18This problem was alleviated when payoffs were assumed to depend on market-level variates, and one
had many markets. But although my model does include market-level covariates, it is by no means certain
that these are the correct ones, so I decided to normalize the scrap values nonetheless.

19as implemented in the Scipy (version 1.1.0) library
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the model to predict unique equilibrium entry and exit rates it is necessary that the

private information shocks, relative to the observed component of the player’s payoffs,

are sufficiently important. I believe that this is the case in my empirical application,

because the Gauss-Seidel algorithm that is described above always converged to the same

equilibrium probabilities regardless of the initial conditions.

Given that the conditional entry and exit rates are uniquely determined, the model is

primarily identified by matching the predicted transition rates between observed market

states to the observed transition rates. Period returns and entry costs are only identified

relative to the variance of the errors, which is set to unity. The magnitude of the entry

costs is identified by matching the degree of turnover in the data: larger entry costs imply

higher persistence, i.e. fewer firms enter and leave the market. Larger exit values have the

opposite effect, and this is why I constrain the parameter θx to unity so as to circumvent

near collinearity issues. The magnitude of the period returns are identified – relative to

the logit error scale – by the average number of active firms in the market: Larger period

returns alone imply that more firms will be active, on average. The parameters that govern

local demand vary across locations, and are thus identified by the spatial variation in entry

and exit rates. Finally, the spatial interaction parameter δ is identified through the effect

that every additional active firm has on entry and exit rates in nearby locations.

5.4 Remarks

Before proceeding to describe the data, and the estimation results of this paper, I discuss

certain aspects of the method and the model by means of illustrative examples. In particular,

I will outline why a structural model that incorporates dynamic strategic interactions is

needed, rather than a reduced form model.

5.4.1 Why a dynamic model is needed

Reduced form estimates lead to inconsistent results of the interaction parameter because

the competitors’ actions are endogenous with respect to own actions, which renders reduced

form estimators inconsistent. A structural model such as the one put forward in this paper

can alleviate this problem by imposing appropriate behavioural assumptions. To explore

this issue further, I set up a dynamic entry and exit model with two firms. The notation

and timing structure is the same as in the full model above. Their period returns are given

by

πi(ait, a−it) =

1
2 − δa−it, if ait = 1 with δ ∈ [0, 1]

0, else

Entry costs are given by θe = 4 and scrap values are given by θx = 1, and both are subject

to a standard normally distributed shock ξit as in the full model above. The state space of
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this small illustrative model encompasses only four distinct states so that it can easily be

solved exactly. A Markov Perfect Equilibrium (MPE) of this model is a set of conditional

choice probabilities (CCPs), denoted by q∗i (ait, a−it), for i ∈ {1, 2} and ait, a−it ∈ {0, 1}2

such that the system of equations (13) holds. Suppose only the interaction parameter δ is

to be estimated from a sequence of observed market states {at}Tt=1. This can be achieved

by choosing δ such that the model-implied CCPs match the observed transition rates as

closely as possible. I computed the equilibrium CCPs for a range of parameter values δ,

ranging from zero to one. These CCPs are shown in figure 7, in terms of entry and exit

probabilities for different states of the competitor (solid and dotted blue lines). Alongside

the equilibrium CCPs I also plotted CCPs that are derived non-strategically, i.e. with

players that assume that their competitors do not change their state (dashed red lines).

The interaction parameter is identified if there is a unique mapping from entry and exit

probabilities to parameter values, and the presence of multiple equilibria may prevent this.

Figure 7 shows that the model generates an asymmetric equilibrium (dotted blue lines)

for very large values of δ in addition to a symmetric equilibrium (solid blue lines), in line

with what Berry and Reiss (2007, p.1878) write. While a multiplicity of equilibria does not

necessarily lead to non-identification, in this case it does lead to a non-unique mapping

from CCPs to parameter values which can prevent identification. To alleviate this problem,

I will assume that the interaction parameter is sufficiently small compared to the period

returns so as to admit a unique equilibrium. Figure 7 also shows that an identification of

the interaction parameter comes mainly from matching entry and exit rates in the presence

of an active competitor (top right and top left panel) because in these cases, the CCPs

exhibit monotonicity over a large range of parameters δ.

If agents ignore the strategic reactions of their competitors, their optimal entry and exit

decisions will differ from the ones obtained by a model of strategic decision making. This

can be seen in the two panels on the right hand side of figure 7. The figure shows that a

potential entrant is less likely to enter if it disregards the possibility that the incumbent will

leave the market, and that a duopolist is more likely to leave the market if it disregards the

reactions of its competitor. Thus, strategic play leads to more entry and delayed exit. This

implies that any estimation procedure that attempts to match entry and exit rates without

modelling the strategic interaction will underestimate the interaction parameter δ if agents

act strategically, and it is the reason why a structural model of dynamic forward-looking

decision making is needed. Of course, it could be that agents do not behave in this manner

and merely take their competitors’ actions as given. This could indeed be a rational

strategy to follow if entry and exit rates are rather small, and the costs of strategic planning

are large. In markets with more than two firms, intermediate cases of strategic decision

making are likely to occur, where decision makers do not pay attention to very distant

competitors. This is precisely the idea behind the spatial oblivious equilibrium concept; and

my empirical approach will allow me to determine the degree to which strategic dynamic

decision making is important.
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Figure 7: Conditional choice probabilities in a two-firm model of dynamic entry for
different interaction parameters. The figure shows the CCPs of firm j conditional on
firm k’s current status.
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d−d
1
2 0

3

(a) at = (1, 1, 1, 0), q∗0(at) = 0.46

d−d
1
2 0

3

(b) at = (1, 0, 1, 1), q∗0(at) = 0.59

Figure 8: Non-anonymity. Solid circle: active firm. Firm zero is less likely to remain
active if its two neighbours to the left are active, than if one firm on either side is
active. The equilibrium CCPs were computed for α = 1, δ = 1

2 , θe = 4 and θx = 1.

5.4.2 Why two-step estimators cannot be used

The spatial aspect of the entry game at hand introduces non-anonymity (Doraszelski and

Pakes, 2007) in firms’ best response functions that render conventional two-step estimators

of dynamic games inapplicable. These estimators typically rely on some consistent first-stage

estimates of firm’s CCPs. However, such estimates are hard to obtain in the current setting

because CCPs depend crucially on the precise spatial configuration of firms’ competitors:

Even if the period return function depends only on the number of active neighbours, but

not on their identity or spatial configuration, the same does not hold for firms’ CCPs.

Therefore, the first stage estimates would have to be estimated conditionally on the spatial

configuration. But this configuration is drawn from a high dimensional space, which

precludes the usage of simple non-parametric estimators.

This point shall be highlighted in an illustrative example. Consider a linear market of

length 2d with four firm locations as illustrated in figure 8. Suppose that period returns

of an active firm are given by πjt = 1− 1
2N

d
jt where Nd

j is the number of firm j’s active

neighbours within a radius d. The remaining structure of the game is as described above,

with θe = 4 and θx = 1, both being subject to privately known random perturbations. I

am interested in the equilibrium behaviour of the central firm 0. Note that this firm’s

profits are negatively affected if any of its three neighbours is active. Conversely, firms 1

and 2 have only two potential direct competitors, and firm 3 has only one such neighbour.

This means that firm 3 is a stronger competitor for firm 0 than firms 1 and 2 are. Keeping

the number of firm 0’s active neighbours fixed at two, firm 0 is more likely to remain

active if its weaker competitor 2 is the potential entrant (figure 8b), than if its stronger

competitor 3 is a potential entrant (figure 8a). The same mechanisms are at play in spatial

entry games more generally, and because of this inherent non-anonymity, it is generally

not possible to consistently estimate firms’ CCPs conditional on some low-dimensional

market characteristic such as the number of active competitors, as would be required for a

two-step estimator.
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5.4.3 Properties of the oblivious approximation to the MPE

The natural question is how the spatial oblivious equilibrium in (17) relates to the full

MPE defined in (13) above. Of course, if the number of strategic nearest neighbours is

equal to the total number of firm locations in the market (k = N), then the two equilibria

are the same but the whole idea of the spatial oblivious equilibrium is that the number of

strategic neighbours (k) is smaller than the number of firms (N). Thus, it is interesting to

know whether the two quantities become closer as k increases and eventually approaches

N . A theoretical answer to this question along the lines of Weintraub et al. (2008)20 is

work to be done in the future. To approach this question from a computational point

of view, I created a sample of N = 10 firm locations in a square market of length one

thousand. The profit of an active firm is given by πjt = 1− 1
3N

d
j where Nd

j is the number

of firm j’s active neighbours within a radius d = 400. This radius is chosen such that, on

average, five neighbour locations fall within it.21 Entry costs are given by θe = 3, and scrap

values are given by θx = 1, both being subject to randomly drawn, normally distributed

disturbances. Using the model-implied CCPs, the industry’s long run distribution across

states was computed, and the state with the largest long-run probability of occurrence was

selected as the industry’s initial state.22 This market configuration is denoted as â and is

shown in figure 9. At this initial industry state, I computed the equilibrium CCPs q̃(k)(â)

that satisfy (17) for different choices of k, ranging from k = 1 (no strategic interaction) to

k = 10 (full strategic interaction; nine strategic nearest neighbours and self). For each value

of k, I computed two distance measures of the firms’ CCPs between q̃(k)(â) and q̃(10)(â):

the maximum absolute difference (| · |∞), and the root of the mean squared difference (| · |2).

The results, presented in table 2, indicate that both distance measures become very small

as k increases, while at the same time the computational time increases rapidly. For this

particular market, the oblivious MPE for k = 6 offers a good approximation of the “true”

MPE with k = N at an acceptable computational cost. Of course, this depends crucially

on the particular choice of the interaction range d that determines how many of a firms’

k nearest neighbours have a direct effect on its period returns. In the extreme, if the

interaction is such that every firm is completely isolated, then any choice k ≥ 1 would

obviously lead to the same result, and one did not need to worry about strategic interactions

at all. On the other hand, if all firms interacted with every one of their competitors, then

any choice of k < 10 would be unlikely to produce a correct result. In this case, one could

instead directly apply the oblivious equilibrium concept of Weintraub et al. (2008) without

any modifications. If the interaction parameter is so large that multiple equilibria occur, it

20A direct application of their results is not possible because of the asymmetric structure of the problem
at hand.

21Since firm locations were generated randomly, the expected number of firms within radius d is λπd2,
where λ = N/A is the density of locations on the area A.

22Given the CCPs, one can build the transition matrix Q that determines the probability of transitioning
from each market state a to any other state a′, with Q(a′,a) = Pr(a′|a). Then, the steady state distribution
across market states is a vector p∗ that satisfies Qp∗ = p∗ and

∑
s p
∗
s = 1.
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firm j q̃
(1)
j q̃

(2)
j q̃

(3)
j q̃

(4)
j q̃

(5)
j q̃

(6)
j q̃

(7)
j q̃

(8)
j q̃

(9)
j q̃

(10)
j

0 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
1 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
3 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
4 0.69 0.82 0.86 0.83 0.88 0.85 0.85 0.85 0.85 0.85
5 0.69 0.80 0.87 0.93 0.89 0.85 0.85 0.85 0.85 0.85
6 0.69 0.68 0.68 0.70 0.78 0.85 0.85 0.85 0.85 0.85
7 0.69 0.80 0.87 0.82 0.81 0.85 0.85 0.85 0.85 0.85
8 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
9 0.02 0.03 0.03 0.06 0.05 0.09 0.09 0.09 0.09 0.09

|q̃(k) − q̃(10)|∞ 0.161 0.166 0.168 0.147 0.071 0.000 0.000 0.000 0.000

|q̃(k) − q̃(10)|2 0.322 0.192 0.181 0.175 0.103 0.001 0.000 0.000 0.000

runtime [s] 0.03 0.04 0.04 0.04 0.04 0.07 0.30 0.82 9.24 54.82

Table 2: Convergence of the spatial oblivious equilibrium to the MPE. This table
shows the equilibrium CCPs that were derived using different levels of strategic
sophistication in a generic market of ten firms, at a particular industry state. See the
main text for a description of how the market was constructed, and see figure 9 for a
graphical depiction.

could even be that an approximation with k > 1 does worse than the myopic MPE with

k = 1. Furthermore, the quality of the approximation depends crucially on firm turnover

in the market: if turnover is very low, then the status quo is a good prediction of the

future state, and so a smaller strategic neighbourhood might suffice. In future work, it

would thus be desirable to investigate the relationship between the spatial structure of

firms’ potential locations and the properties of the approximative equilibrium in greater

detail, and in more general terms.

Figure 9: The example market. The blue circles are drawn to represent half the
interaction radius. Hence, if the circles around to adjacent locations overlap, these
two locations interact directly through the profit equation.
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Germany 80 city sample

year active entries exits active entries exits

2001 16,286 5,449
2002 16,272 175 189 5,438 57 68
2003 16,300 120 92 5,442 48 44
2004 16,328 110 82 5,437 25 30
2005 16,184 313 457 5,307 91 221
2006 16,226 1,042 1,000 5,234 334 407
2007 16,307 420 339 5,233 129 130
2008 16,372 409 344 5,229 161 165
2009 16,342 101 131 5,209 33 53
2010 16,273 460 529 5,178 161 192
2011 16,168 266 371 5,126 84 136
2012 16,051 256 373 5,067 96 155
2013 15,845 266 472 4,953 93 207
2014 15,807 54 92 4,933 11 31
2015 15,645 181 343 4,856 62 139
2016 15,519 192 318 4,771 56 141

Total 26,964 4,365 5,132 6,741 1,441 2,119

Table 3: Number of active firms, entries, and exits across years for the entire dataset,
and for the sample of eighty large German cities that is used in the subsequent analysis.

6 Data

6.1 Data sources

In order to address the research questions of this paper, extensive data on the German

pharmacy market were collected. The addresses of all active pharmacy locations23 were

taken from sixteen editions of the Bundesapothekenregister (Deutscher Apotheker Verlag,

2016) and were geocoded.24 An overview of the resulting panel data set is given in table

3. The number of new establishments and firm exits displays substantial variability over

time, which may be due to the fact the the data source is issued quarterly, but it was not

always possible to obtain the same issue in each year. Lacking a unique firm identifier, I

attempted to identify firms whose location changed from year to year using fuzzy string

matching techniques. But because the number of firm re-locations is rather small compared

to the number of entries and exits, I decided to abstract from firm re-locations in the

empirical model, and these figures are not reported here. Hence, a re-location is treated as

simultaneous entry and exit in the same year in two different locations. In total, there are

26,964 distinct locations.

For the empirical analysis, attention is restricted to eighty German cities (excluding Berlin,

Hamburg, Munich and Cologne). This set of urban markets was chosen in order to create

a homogeneous sample in which the nature of spatial interaction is fairly similar. Rural

23For this empirical analysis, a pharmacy is one outlet but may belong to a group of pharmacies
24This was done using an academic licence for Bing Spatial Data Services. Care was taken to obtain

accurate locations, and the results were double-checked manually where the geocoding API indicated that
its result was imprecise.
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areas, on the other hand, are likely to exhibit very different spatial interaction mechanisms

due to different travel and commuting patterns. Also, the largest German cities are larger

by an order of magnitude than the majority of other cities and so they were excluded from

the analysis. A list of the eighty sample cities is shown in table 14 in the appendix.

In the base line analysis, I only use locations where an active pharmacy has been observed

at some point as potential entry locations. In a robustness check, I extend the set of

potential entry locations in two different ways. On the one hand, I use the locations of

bakery shops.25 Since bakery shops and pharmacies have approximately the same size, these

locations therefore represent an appropriate set of potential entry locations. Furthermore,

they also respect local entry restrictions that may result from zoning laws. As a second

alternative, I generated random entry locations within the administrative boundaries of

each city. These random entry locations, of course, do not respect zoning laws, and they

also probably do not correspond to actual feasible entry locations. Therefore, these results

should be interpreted cautiously.

To model pharmacies’ variable reduced form profits (see equation (20)), data on local

demand and supply conditions was obtained form various sources. First, data from

the German census in 2011 (Zensus, 2011) was used which shows the spatial residential

population distribution on a fine grid with a spacing of just one hundred metres. This

allows me to compute the local residential population, within a radius of 500 metres

around each potential entry location. This variable proxies local residential demand at

each location and corresponds to the variable Yj in equation (20). Moreover, the share of

people aged 65 and older was computed for every potential entry location.

Second, I obtained the locations and outlines, respectively, of doctors, supermarkets,

train stations, pedestrian zones, and main roads from an OpenStreetMap data base

(OpenStreetMap contributors, 2017).26 Using GIS software, the distances to the nearest

doctor, supermarket, main road, etc. were computed for each pharmacy location in the

sample.27 The aforementioned variables are specific to each distinct location, but do not

vary over time because the census data are available only for 2011, and because I used only

a single year of OpenStreetmap data. To capture temporal changes in the profitability of

stores, I allow the intercept, entry costs, and the interaction term, to differ before and after

the reform period. Table 4 shows summary statistics for these co-variates in the selected

sample of cities, and for the three sets of point locations – pharmacies, bake shops, and

random dummy locations. The table shows that pharmacy locations, and the bake shop

locations are fairly similar in terms of their observable statistics, although a formal t-test

rejects the null of equal means for all variables (see table 15). In comparison, the random

locations differ substantially in their observable characteristics.

25These locations were extracted from OpenStreetMap (OpenStreetMap contributors, 2017).
26The data were downloaded from download.geofabrik.de, and processed using the command line tool

Osmosis
27This was done in the QGIS environment.
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pharmacies (N = 6, 741) bake shops (N = 7, 382) dummy points (N = 10, 033)

Variable Explanation mean SD min max mean SD min max mean SD min max

Local residential population as of 2011 census (Yi, between variation)

local population within 500m radius (in 10k) 0.495 0.269 0.000 1.678 0.467 0.284 0.000 1.809 0.142 0.194 0.000 1.530

elderly share share over 65 within 500m radius 0.198 0.062 0.000 0.634 0.194 0.066 0.000 1.000 0.171 0.124 0.000 1.000

Local spatial covariates from Open StreetMap (time invariant, between variation)

pedestrian zone ≤ 50m from pedestrian zone 0.216 0.411 0.000 1.000 0.212 0.408 0.000 1.000 0.008 0.088 0.000 1.000

main road ≤ 50m from main road 0.331 0.471 0.000 1.000 0.263 0.440 0.000 1.000 0.064 0.245 0.000 1.000

doctor nearby physician within 100m 0.217 0.412 0.000 1.000 0.141 0.348 0.000 1.000 0.006 0.076 0.000 1.000

supermarket supermarket within 100m 0.231 0.421 0.000 1.000 0.298 0.458 0.000 1.000 0.007 0.086 0.000 1.000

trainstation trainstation within 250m 0.045 0.208 0.000 1.000 0.061 0.239 0.000 1.000 0.007 0.086 0.000 1.000

Table 4: Summary statistics of variables that determine local demand, data from 80 large German cities (excluding Berlin, Hamburg, Munich,
Cologne). Author’s own calculations based on data from Zensus (2011), OpenStreetMap contributors (2017), and Deutscher Apotheker Verlag
(2016).
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Third, further economic municipality-level co-variates from the German statistical offices

(Statistische Ämter des Bundes und der Länder, 2018) were assigned to each location

based on municipal boundaries (Bundesamt für Kartographie und Geodäsie, 2018). The

local population data were scaled with municipality level population growth rates. As a

robustness check, I also estimated the model with unscaled population data. Table 5 shows

the summary statistics of these variables across cities, and across observational periods.

6.2 Descriptive analysis

The most interesting information contained in the panel data set are the pharmacies’

relative locations, and how they change over time. The analysis of these spatial data is

complicated by the fact that individual observations are usually not independent of each

other, so that classical statistical concepts cannot be used. For this reason, a specialized

branch of statistics has evolved that is concerned with the analysis of such spatial point

patterns. Although the methods from spatial point pattern statistics lack a direct economic

interpretation, they are nonetheless useful to describe the observed data appropriately.

This subsection describes the spatial data set using methods from point pattern statistics.

A good introduction to point pattern statistics is Diggle (2014).

First, the data are described in terms of nearest neighbour distances. For each active

pharmacy in every year, the distance towards its nearest active competitor was computed.

The average nearest competitor distance is plotted in figure 10b along with the average

population weighted distance from consumer cells (Zensus, 2011) to closest active phar-

macies. That metric can be thought of as a crude welfare measure that can be used to

evaluate the importance of changes in the spatial distribution of stores from a consumer

perspective. The figure shows that the average nearest pharmacy distance changes very

little over time, in the magnitude of only a few metres. On the other hand, there has

been a marked increase by 70 metres in the nearest competitor distance since 2004. This

change is not a large one in absolute terms, but it is still remarkable because changes in the

spatial equilibrium configuration are naturally expected to be a rather slow process.28 The

structural empirical estimation below will use a subset of data from eighty large German

cities (see table 14). Figure 11 below shows the development of the number of active

pharmacies, as well as the nearest competitor and nearest pharmacy distances over time

for this sub-sample of the data. The patterns shown in figures 10 and 11 are qualitatively

very similar, although the magnitudes of the nearest neighbour distances are naturally

much smaller. The descriptive evidence so far is consistent with the hypothesis of increased

competition among nearby competitors as a result of the introduction of price competition

to the retail pharmacy market.

28Note that it is not straightforward to test for yoy changes because the data are not independent, and
do not converge to a normal distribution. That is why (Diggle, 2014, p.19) suggests using bootstrap tests
in spatial point statistics.
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Figure 10: Spatial configuration of pharmacies in Germany
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Figure 11: Spatial configuration of pharmacies in 60 large German cities
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Variable Explanation Variation mean SD min max

vacancy rate among all buildings, (2011) total 0.043 0.023 0.016 0.136

commuters (in) share of total population (2012) total 0.091 0.114 -0.056 0.452

sq. m. price annual price of construction land total 0.220 0.155 0.002 1.236
per square metre, in 1,000¿ between 0.140 0.027 0.792

within 0.067 -0.098 0.793

unemployment annual unemployment rate total 0.099 0.035 0.031 0.237
between 0.029 0.042 0.169
within 0.019 0.038 0.172

income annual real disposable income total 2.069 0.281 1.569 4.337
per capita, in 10,000¿ between 0.270 1.638 3.335

within 0.082 1.088 3.071

income growth annual growth rates total 0.002 0.018 -0.100 0.100
in per capita units between 0.004 -0.006 0.020

within 0.018 -0.109 0.106

population growth annual population growth total 0.003 0.008 -0.043 0.058
between 0.005 -0.008 0.013
within 0.006 -0.046 0.055

Table 5: Summary statistics of variables that determine demand at the municipal
level. Data from 80 large German cities (excluding Berlin, Hamburg, Munich, Cologne).
The between and within variations are only computed for variables which actually
vary over time. Author’s own calculations based on data from Statistische Ämter des
Bundes und der Länder (2018).

A key question that is addressed in spatial point pattern statistics is whether the observed

events occur independently of each other, or not. In particular, researchers are often

interested in whether the data generating process exhibits a tendency to produce clustered

or, on the contrary, regular point patterns. As a benchmark hypothesis, it is often assumed

that the points are generated by a spatial Poisson point process. Poisson processes

generate point patterns that are characterized by complete spatial randomness (CSR).

Their theoretical properties are used to construct formal tests against the null hypothesis

of CSR. The interpretation of such tests is however complicated by the fact that it is very

difficult to formally distinguish whether a point process exhibits inherent clustering, or

whether the observed clustering is an artefact of some unobserved spatial heterogeneity

(Diggle, 2014, chapters 2 and 4). One frequently used statistic to describe the properties

of spatial point processes is the cumulative distribution function of the nearest neighbour

distances between points (“events”), called the G-function.29 It can be used to construct a

test against CSR, but also more generally to test whether two different point patterns share

the same distributive properties. The tests are usually constructed as exact Monte-Carlo

tests (Diggle, 2014, p.19).

The left panel of figure 12 shows the estimated G-functions for all years from 2001 through

29In Diggle (2014), the K-function is discussed as an alternative measure. It has the appealing property
that it does not depend on the total number of observations, but is also less intuitive to explain and thus
requires a more extensive discussion.
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to 2016. The dotted line represents the theoretical G-function under CSR. The figure

clearly shows that the empirical G-functions differ from their theoretical counter-part under

CSR, which can be formally confirmed by means of a bootstrap Monte Carlo test. But as

discussed above, this is does by no means imply that pharmacies have an inherent tendency

to cluster together. Instead, it is far more likely that the observed tendency to cluster is

the result of spatial heterogeneity in local demand conditions, which can be unobserved

(the “attractiveness” of a location) or observed (such as the local residential population).30

To ascertain whether the spatial pattern of pharmacies indeed exhibits clustering, one

would have to control for all factors that affect the probability to open up a pharmacy at

a given location. However, since the prime goal of this paper is whether the 2004 health

care reform has changed the spatial pattern of locations over time, the panel structure of

the data allows me to examine this more directly. To make the changes over time more

visible, the difference Gt(d)−G2001(d) is shown in the right panel of figure 12. That figure

clearly shows that the G-function has decreased over time and moved gradually closer to

the theoretical function under CSR. Therefore, the amount of clustering has decreased

over time. It seems plausible that this change has occurred as a consequence of price

competition among nearby competitors, because the most pronounced changes occur in

the range from zero to four hundred metres. In order to test whether the observed changes

of the G-function are statistically significant, an exact Monte Carlo test for the equality

of the G-function in two subsequent years was constructed. Further, a variation of the

test which uses the differences between Gy and G2001, y = 2002, . . . , 2016 was conducted

in order to test whether the cumulative changes relative to the base year are statistically

significant.31 The test statistics of these tests are shown in table 6, and the 0.95 Monte

Carlo critical value was found to be 0.019. The null hypothesis that two distributions are

the same is rejected if the test statistic exceeds the critical value. So the table shows that

the year-over-year changes are never statistically significant at the 5% level, but that the

cumulative changes relative to 2001 are significant from 2010 onwards.

The statistical analysis in this subsection has shown show that the spatial distribution

of pharmacies exhibits pronounced changes over time. The structural model in the next

section will explore the causes of this change from an economic perspective, and relate it

to the introduction of price competition in the retail pharmacy market.

30There are methods to compute the G-function in the presence of spatial heterogeneity, but these
methods are highly susceptible to obtaining an initial estimate of the spatial intensity function (Diggle,
2014).

31The test was conducted with the methods described in Diggle (2014, p.19), with the exception that
the difference between the G-functions of two point patterns is used as a test statistic. The distribution of
this test statistic under CSR was computed by repeatedly simulating random point patterns.
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Figure 12: The distribution of nearest-neighbour distances (G-function) over time

Test statistics
t Gt −Gt−1 Gt −G2001

2002 0.00006 0.00006
2003 0.00001 0.00011
2004 0.00005 0.00023
2005 0.00378 0.00487
2006 0.00035 0.00708
2007 0.00065 0.00752
2008 0.00014 0.00908
2009 0.00007 0.01034
2010 0.00361 0.02543∗

2011 0.00138 0.03801∗

2012 0.00134 0.05337∗

2013 0.00453 0.08719∗

2014 0.00001 0.08622∗

2015 0.00146 0.10886∗

2016 0.00161 0.13525∗

H0: G-functions are the same.
0.95 critical value: q95 = 0.01933

Table 6: Test statistics for the equality of the distribution of nearest neighbour
distances, G, in two subsequent years (first column) and relative to the base year 2001
(second column). The Monte Carlo critical value is based on 199 simulations of two
random spatial point patterns.
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7 Empirical results

The maximum likelihood estimator presented in section 5.3 is used to estimate the principal

structural parameters of the dynamic entry game in a set of large German cities. I am

mainly interested in the spatial interaction parameter δ in equation (20) that governs

by how much the variable profits of a pharmacy change due to the presence of a nearby

competitor. In order to assess the effect of the 2004 reform, this parameter is allowed to

differ before and after 2004. Following the discussion about the institutional details of the

market, I also allow for the entry costs to differ before and after the regulatory change in

2004. The empirical analysis proceeds as follows. In a first step, the spatial interaction

radius d is chosen by means of a simplified model without strategic interaction. Then,

the model that allows for strategic interaction at the local level of k nearest neighbours is

brought to the data, and an appropriate value for k is chosen. The results of this model

are discussed, followed by a model validation exercise. Lastly, I use the estimated model

parameters to isolate the effect of more intense local competition on market outcomes,

and also perform a counter-factual exercise to assess the effect of a hard geographic entry

restriction. As a robustness check, I re-estimate the model with additional potential entry

locations and with additional co-variates.

7.1 Specification search

In order to choose an appropriate spatial interaction radius d that determines whether two

adjoining pharmacies have a direct effect on each others’ profits (c.f. the profit equation

(20)), a stripped down version of the model that excludes any strategic interaction is

estimated. This model is obtained by setting the number of strategic nearest neighbours

to one (so firms assume that no competitor changes its status), and solving the resulting

single-agent dynamic decision problem. Pharmacies’ profits are given by equation (20),

with variables as given in table 4, and their decision was modelled as outlined in section

5.2 with k = 1, i.e. no strategic neighbours are considered. Table 7 shows the estimated

spatial interaction parameters, and the resulting log-likelihood value for different choices of

the interaction parameter. It can be seen that the log-likelihood attains a maximal value

for d = 900, and I use this value in the subsequent analysis. Also, the table shows that the

estimates of the interaction terms δ remain approximately constant as the interaction radius

increases further. Since the number of parameters is the same across all specifications, the

Akaike information criterion would therefore lead to the same model selection.

Next, I use a similar procedure to determine the number of strategic nearest neighbours that

corresponds to the size of the local state space which every firm forms their expectations

about. For a spatial interaction radius of nine hundred metres, I estimate the model

for k = 1, 2, . . . , 6 and record the maximum likelihood value. Table 8 shows that the

maximum likelihood is attained at k = 5. The table also shows that there is initially a
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d[m] δ̂pre δ̂post ll d[m] δ̂pre δ̂post ll

100 0.051 -0.004 -14837.8 1100 0.003 0.009 -14783.7
200 0.023 0.022 -14833.9 1200 0.003 0.009 -14788.2
300 0.018 0.018 -14823.6 1300 0.003 0.009 -14789.8
400 0.011 0.014 -14810.7 1400 0.002 0.009 -14794.3
500 0.008 0.013 -14798.9 1500 0.002 0.009 -14797.4
600 0.005 0.011 -14789.4 1600 0.002 0.009 -14801.4
700 0.004 0.010 -14787.8 1700 0.002 0.009 -14805.6
800 0.003 0.009 -14786.6 1800 0.002 0.009 -14810.0
900 0.002 0.009 -14780.3 1900 0.002 0.009 -14814.4
1000 0.002 0.009 -14780.5 2000 0.002 0.008 -14820.3

Table 7: Estimates of the spatial interaction parameter and the log-likelihood for
different values of the spatial interaction radius d, in a simple model without strategic
interaction. A maximal log-likelihood is attained at d = 900m.

large improvement in the log-likelihood when just one strategic nearest neighbour is added

(going from k = 1 to k = 2). For larger values of k the log-likelihood remains approximately

flat, and parameter estimates change only marginally but the computational time increases

rapidly. Therefore, I am confident that larger values of k beyond of what is computationally

feasible would not lead to great improvements or changes in the model.

The full parameter estimates are shown in table 16 in the appendix. An interesting insight

of this table is the apparent invariance of the estimated coefficients with regard to the choice

of the parameter k. A formal test of one specification against the other is work to be done

in the future32 but the log-likelihood, and the estimated coefficients are virtually the same

for any k > 1. The specification without strategic interaction (k = 1) attains a somewhat

smaller log-likelihood, and estimated parameter values that are different, albeit probably

not significantly so. This could indicate that very little strategic interaction takes place

among pharmacies and that players only take into account the actions of their immediate

nearest neighbouring location. On the other hand, the kind of strategic interaction that is

built into the model by means of adding “strategic neighbours” is of anticipatory nature,

and so another explanation is that firms do not engage in anticipating their neighbours’

actions and instead base their decisions solely on the currently observed market state. This

behaviour is already captured by the panel structure of the data.

Does this invalidate the chosen approach of building a dynamic entry model with strategic

interaction? The answer is no. For although the result is that anticipatory strategic

interactions play a relatively minor role in determining firms’ behaviour in the industry

under consideration, the answer could be a different one in a different industry. The

strength of the approach presented here is that it allows the researcher to test to what

degree agents make strategic anticipatory decisions. These insights can also guide modelling

approaches in other contexts with regard to how much emphasis is placed on dynamic

strategic interactions of agents.

32This is complicated by the fact that the models are not nested into each other
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k δ̂pre δ̂post ll runtime [s]

1 0.0024 0.0089 -14780.27 730.00
2 0.0021 0.0087 -14769.41 587.00
3 0.0020 0.0086 -14768.09 1170.00
4 0.0020 0.0087 -14768.42 2186.00
5 0.0020 0.0087 -14767.65 4067.00
6 0.0020 0.0088 -14768.27 15673.00

Table 8: Estimates of the spatial interaction parameter and the log-likelihood for
different sizes of the strategic neighbours k, at a spatial interaction radius d = 900m.
A maximal log-likelihood is attained at k = 5. The estimation with k = 1 had a larger
runtime because the parameters were not initialized in that specification.

7.2 Main result

Table 9 below shows the main estimation result that was obtained from a sample of eighty

large German cities with more than six thousand pharmacy locations, using d = 900m

and k = 5 as outlined above. Standard errors were computed using the estimated inverse

Hessian matrix that is returned by the BFGS optimization routine. The exit value θx was

normalized to unity. Further results are deferred to table 17 in appendix B.5.

The estimated spatial interaction parameter δ is smaller and insignificant before the reform,

and it is more than four times as large in the post-period, and significantly different

from zero. This confirms one key hypothesis of the paper, namely that the introduction

of price competition for non-prescription drugs has stiffened competition among nearby

pharmacies, and so increased the tendency of firms to locate further away from each other.

The estimates imply that one additional active competitor within a radius of 900m reduces

profit margins by about 0.9%. The total effect on variable profits is larger than this,

because local demand decreases as the number of active neighbours increases. Since the

number of active nearest neighbours within that radius can be quite large in urban areas,

this implies that competition has now sizeable effects on pharmacies’ profitability, whereas

it was virtually nil before the reform. Because the estimated interaction parameters are

also rather small in comparison to the magnitudes of the other parameters, the model is

likely to possess only one single equilibrium, as is also discussed in section 5.3. Entry costs

are smaller in the post-reform period, and the post-reform dummy is negative which points

to smaller period returns in the post period. Lower entry costs and smaller period returns

together imply that there is more turnover. The size of the local population, divided by

the number of active stores within the interaction radius has a significantly positive effect

on period returns, as well as the local share of the population that is older than 65 (elderly

share). The coefficients for proximity to public transport, supermarkets and physicians

generally have the anticipated signs, whereas proximity to a main road seems to have a

negative effect on profits, albeit insignificant.
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Local demand

intercept 0.2941*** (0.0092)

post reform -0.0324*** (0.0065)

local population� 0.1682*** (0.0260)

elderly share 0.0968*** (0.0258)

pedestrian zone 0.0163*** (0.0042)
mainroad -0.0024 (0.0032)

doctor nearby 0.0272*** (0.0039)

supermarket nearby 0.0323*** (0.0038)

trainstation nearby 0.0187** (0.0074)
Local competition
δpre 0.0020 (0.0025)

δpost 0.0087*** (0.0017)
Entry costs

θepre 4.9005*** (0.0393)

θepost 4.3318*** (0.0179)

log-likelihood -14,767.7
N locations 6,741
T periods 16

∗ < 0.1; ∗∗ < 0.05; ∗∗∗ < 0.01

Table 9: Estimates of the spatial entry model with a strategic neighbourhood of size
five (self and four nearest neighbours), and a spatial interaction radius of nine hundred
metres. N=6741 firms, T=16 time periods in 80 large German cities. Exit values are
normalized to 1. �local population is the residential population within 500 metres of
the store’s location, divided by the number of active competitors in the respective
time period or future state. Standard errors in parentheses, computed from estimated
Hessian matrix.

7.3 Model validation

In order to assess whether the model can replicate key trends that are observed in the data

(see figure 10), I simulated a large number of counter-factual market outcomes, starting

from the observed market state in the year 2004 and using either the pre-reform estimates

(i.e. post reform dummy set to zero, δ = δ̂pre, and θepre), or the corresponding post-reform

estimates. The simulated market outcomes are analysed along three dimensions: (1)

number of active stores, (2) average distance to the nearest competitor and (3) average

consumer distance to the nearest pharmacy.

The simulation results are shown graphically in figure 13 in appendix B.4. The top panel

in figure 13a shows that the model, when set up with the pre-reform parameter values,

predicts that the total number of active stores remains approximately constant, as desired.

When using the post-reform parameter values, shown in the top panel of figure 13b, this

number exhibits a downward sloping trend that does follow the observed number of active

stores quite closely. On the other hand, the bottom two panels in figures 13a and 13b show

that the simulated average store-to-store distance is smaller, and the average simulated

consumer travel distance is larger than what is observed prior to the reform, and after the

reform, respectively. Apparently, the model-implied competition among nearby stores is

too small to fully replicate the observed behaviour. This could also be due to the linear
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distance (metres)

Number of pharmacy to consumer to
year stores nearest competitor nearest pharmacy

observed
2004 5,437 423 514
2016 4,770 469 539

∆ -667 +45 +25

simulated
pre-reform parameters 2016 5,466 407 526
post-reform parameters 2016 4,850 441 558

∆ -615 +34 +32

Table 10: Comparison of actual changes throughout the post-reform period, and the
model-implied differences between the pre- and the post-reform periods.

way in which I modelled the competition among nearby stores, where every store within a

radius d has the same negative effect δ on its competitors’ profit margins. It seems plausible

that stores which are closer also exhibit more competitive pressure, but modelling this in

a reduced form manner would require an arbitrary choice of a functional form. Instead,

one could integrate a truly spatial demand model in the estimation routine, which would

automatically capture such effects.33 This is work to be done in the future.

Despite the discrepancies between the observed and the model-implied simulation results,

I argue that the difference between the two simulation results (pre- and post-reform)

accurately reflects the changes that have occured due to the reform. This is supported

by table (10). This table shows that the model-implied differences between the pre- and

the post-reform period are rather close to the observed changes from 2004 to 2016, and it

therefore confirms that the changes of the structural parameters, when suitably interpreted,

can indeed explain a good part of what was observed in the post reform period.

7.4 Quantifying the effect of price competition

What can be seen in the data as well as in the simulations in figure 13b is the total

effect of three changes: first, lower entry costs; second, lower per-period profits; and third,

increased local competition due to price competition. To isolate the effect of increased

local competition, the idea is to differentiate the model’s predictions with respect to the

spatial interaction parameter δ. Since no closed form solutions are available, this is done

numerically, as outlined in the following. The effect of increased price competition can be

evaluated using either the pre-reform parameter estimates as a starting point, or by using

the post-reform estimates as a starting point. More precisely, consider a simulated time

series of market outcomes that was generated using the parameters post 2004 ∈ {0, 1}, θe

and denote an arbitrary aggregate statistic that was computed from this simulated data as

33On the other hand, such a structural demand model, possibly combined with a price equilibrium, is
much harder to interpret than the single interaction parameter δ.
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post2004 entry costs interaction outcome of interest

(A) compare 0 θ̂epre δ̂post t(0, θepre, δpost)

against 0 θ̂epre δ̂pre −t(0, θepre, δpre)
= ∆At

(B) compare 1 θ̂epost δ̂post t(1, θepost, δpost)

against 1 θ̂epost δ̂pre −t(1, θepost, δpre)
∆Bt

Table 11: Counterfactual simulations to quantify the effect of stiffer price competition

t(post 2004, θe, δ). Then, the partial effect of changing δ from δpre to δpost can be computed

as either ∆A = t(0, θepre, δpost)− t(0, θepre, δpre) or as ∆B = t(1, θepost, δpost)− t(1, θepost, δpost).
These two estimates of the partial effect will in general be different, but it turns out that

they are quite close to each other. Table 11 summarizes the procedure.

Table 12 shows the results of this decomposition exercise for the three aggregate statistics

that are also shown graphically in figure 13, using simulated data runs from 2004 to 2016.

The table shows that increased local competition due to changing the interaction parameter

from δpre to δpost can explain about one third of the decline in the number of pharmacies.

The table also shows that about one third of the observed increase in the inter-firm nearest

neighbour distance can be attributed to this change of parameters, whereas only one sixth

to one seventh of the total increase in consumer travel distances are attributable to this

factor.

Thus, from a consumer perspective, while increased price competition has lead to a

substantial reduction of the number of pharmacies, it did not lead to much greater travel

distances, presumably because it has caused the exit of retail pharmacies that were located

very close to another competitor which can offer the same services and products. If the

aim of the 2003 health care reform was to reduce the costs of the health care system,

introducing a modest degree of price competition into the retail pharmacy sector has thus

been a very consumer-friendly way of reducing the number of pharmacies and, thereby, the

total fixed costs of the health care system. One should note that a full welfare analysis is

not possible due to the lack of detailed price data. However, it seems reasonable to assume

that prices did not increase as a result of more intense price competition, and so the cost

savings due to the lower number of retail pharmacies probably outweigh the small increase

in consumer travel distances.

7.5 Policy experiment: geographical entry restriction

The theoretical model in section 4 has shown that free location choice in the absence of

spatial competition leads to inefficient, Hotelling-style clustering, thus inflicting inefficiently

large travel costs on consumers. This is precisely the reason why many European countries

have or had minimum distance regulations in place whereby a minimum distance d̄
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distance (metres)

Number of pharmacy to consumer to
stores nearest competitor nearest pharmacy

Total change 2004-2016
actual -667 +45 +25
simulated -616 +34 +32

of which: competition effect
(A) t(0, θepre, δpost)− t(0, θepre, δpre) -224 +15 +4
(B) t(1, θepost, δpost)− t(1, θepost, δpost) -215 +16 +4

Table 12: The effect of increased price competition on aggregate outcomes in 2016
using model (5) in table 9, average over 100 simulations, 80 large Germany cities.

between any two active pharmacies must be maintained at all times (see section 2.2). The

estimated model allows me to evaluate the effect of imposing such a regulation on the

German pharmacy market, by changing the period return structure to include a “penalty”

parameter p that is subtracted from firms’ profits if any one of their active neighbours is

closer than the regulated minimum distance. Thus, new period returns are given by

πregj =

πj − p , if ∃k : djk ≤ d

πj , else.

where πj is specified in (4). I chose to set p = θe, so that entry is unprofitable already

after the first period, as desired. Then, two hundred independent market configurations

are simulated, starting from the market configuration in 2004.

The average statistics across two hundred independent simulations for a minimum distance

of one hundred metres are shown in figure 15a in appendix B.4. That figure shows that

such a regulation would immediately reduce the number of active pharmacies by around

six hundred stores, or by around ten percent, followed by a further decline that is due to

the changed profit and competition conditions after the 2004 reform. As an immediate

consequence, the nearest competitor distance would have instantaneously increased by

roughly seventy metres, followed by a further increase. Consumer to nearest pharmacy

distances would have increased, too.

To interpret these simulation results, it is important to keep in mind that neither the

nearest competitor distance, nor the nearest pharmacy distance, have been used as direct

estimation moments. Therefore, the model predictions for these statistics are biased, as

was shown in section 7.3. Thus, to assess the effects of a minimum distance regulation it

is necessary to determine how these model predictions change as such a policy change is

implemented. The idea behind this is to “differentiate” the model predictions with respect

to a policy change by means of simulation, akin to the procedure used in the previous

section. To this end, I compared the simulated outcomes under the distance regulation to

those without such a regulation in table 13. That table shows that the total number of
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distance (metres)

Number of pharmacy to consumer to
stores nearest competitor nearest pharmacy

Total simulated change 2004-2016
post-reform parameters –616 +34 +32
post-reform + distance regulation –1036 +93 +46

distance regulation effect –421 +60 +14

Table 13: The effect of a minimum distance regulation on key market outcomes.
The first line shows the simulated changes from 2004 to 2016, using the post-reform
parameter estimates. The second line shows the simulated changes using the post-
reform parameter estimates and a minimum distance regulation of 100 metres. The
last line denotes the additional simulated effect of a minimum distance regulation.
Numbers are averages over 100 simulations.

stores in 2016 would have been smaller by about four hundred stores had such a regulation

been in place since 2004. The nearest competitor distance would have been larger by sixty

metres, whereas the nearest pharmacy distance would have increased by only fourteen

metres. A graphical depiction of the difference between the simulated market outcomes

with and without a minimum distance regulation is shown in figure 15b. The top panel of

that figure shows that the number of active firms immediately decreases relative to the

base line scenario, but then the difference remains relatively constant. Also, the nearest

competitor distance remains approximately constant relative to the base line scenario. The

most important insight from this analysis is that the nearest pharmacy distances do not

increase much more than in the baseline scenario.

One apparent caveat of this exercise lies in the fact that I am only using observed locations,

whereas such a drastic regulatory measure may actually lead to new locations becoming

feasible. Section B.5.2 in the appendix addresses this concern by including a larger set of

potential entry locations. The results however remain qualitatively the same. A second

concern is that pharmacies compete along a quality dimension, so such a regulatory scheme

could lead to lower service quality because it actually creates local monopolies. More

generally speaking, since the period returns of the dynamic entry model are modelled in

a reduced form, counter-factual analyses are in principle subject to the Lucas’ critique

(Lucas, 1976) in that the estimated reduced form coefficients tell us little about the agent’s

reactions to such a drastic change in the economic environment. But to a lesser extent,

this would also be true for a more elaborate model with a “structural” profit equation.

Any model, be it reduced form or structural, can only inform us about those aspects of

agents’ decision making that are built into it: a structural model of price competition can

make predictions about price reactions to the ownership structure only if the ownership

structure is part of the model. Similarly, a model of dynamic spatial entry can inform

us about the responses to minimum distance regulations, but not how pharmacies would

change their business model, their opening hours, or their service quality.
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8 Conclusion

I have documented pronounced qualitative and quantitative changes in the spatial distri-

bution of pharmacies in Germany over time. Motivated by a simple theoretical model, I

developed a structural dynamic entry model and used it to estimate the key parameters

that govern the process of spatial entry and exit. These parameter estimates indicate

that local competition has indeed increased after 2004, most likely due to a large health

care reform that introduced price competition for non-prescription drugs. A simulation

exercise shows that increased competition can explain one third of the total change in

the number of pharmacies, but only a small share of the increase in consumer’s travel

distances. This suggests that more price competition can lead to more efficient spatial

store configurations in that the total number of stores is reduced, which implies lower

fixed costs, while consumers do not have to travel much farther. Thus, even abstracting

from the fact that prices are likely to be smaller due to price competition, increased price

competition can lead to better market outcomes. I have also examined the likely effects

of introducing a geographic entry barrier that prevents stores from locating very close to

each other. My results show that the effects of such a regime are similar to those that

are generated by the introduction of price competition in that the total number of stores

decreases, but consumers’ travel costs do not increase very much. But because such a

regulatory regime amounts to establishing local monopolies, it probably has detrimental

effects on consumer welfare that are not captured in the model. Therefore, the introduction

of price competition is the more efficient regulatory measure.

The analysis has a number of shortcomings which are left for future research. First of all,

it restricts the analysis to urban markets. An extension of the analysis to rural markets is

possible, but because consumers’ travel patterns and, in consequence, the range of spatial

interaction among pharmacies, are likely to be very different in those markets, this calls for

a separate analysis, perhaps using the isolated market paradigm of Bresnahan and Reiss

(1991). Second, the reduced form profit equation could be replaced by a structural revenue

model with spatial demand and endogenous prices, but this is currently infeasible in the

context of a dynamic model due to the large additional computational burden. Yet, my

results indicate that the anticipatory strategic component does not play a large role, and

so a simpler model of dynamic decision making could well be used to that effect.

On the methodological front, I have established a method to compute and estimate a

spatial dynamic entry model with a large number of asymmetric heterogeneous agents.

The method has proves to work well with thousands of potential entry locations, and could

be extended to include more sophisticated “structural” period return functions. Due to the

flexible way in which the size of the strategic neighbourhood is specified, the model can be

used to examine in how far strategic anticipatory motives play a role in dynamic decision

making. In principle, this model is applicable to a wide range economic questions, but

the main application lies in retail markets where spatial interaction and strategic decision
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making are important factors.
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Lösch, A. (1940). Die räumliche Ordnung der Wirtschaft. Fischer, Jena.

Lucas, R. E. (1976). Econometric policy evaluation: A critique. In Carnegie-Rochester

conference series on public policy, volume 1, pages 19–46.

Netz, J. S. and Taylor, B. A. (2002). Maximum or minimum differentiation? Location

patterns of retail outlets. The Review of Economics and Statistics, 84(1):162–175.

OpenStreetMap contributors (2017). Open Street Map data extracts. Retrieved from

download.geofabrik.de in 2017.

54

https://www.iqvia.com/-/media/iqvia/pdfs/institute-reports/the-global-use-of-medicine-in-2019-and-outlook-to-2023.pdf
http://download.geofabrik.de/europe.html


Ottino-Loffler, B., Stonedahl, F., Veetil, V. P., and Wilensky, U. (2017). Spatial competition

with interacting agents. Working paper. Retrieved from ssrn.com/abstract=2697263 on

4 June 2020.

Pakes, A. and McGuire, P. (2001). Stochastic algorithms, symmetric markov perfect

equilibrium, and the ’curse’ of dimensionality. Econometrica, 69(5):1261–1281.

Pakes, A., Ostrovsky, M., and Berry, S. (2007). Simple estimators for the parameters of

discrete dynamic games (with entry/exit examples). The RAND Journal of Economics,

38(2):373–399.

Panteli, D., Arickx, F., Cleemput, I., Dedetn, G., Eckhardt, H., Fogarty, E., Gerkens,

S., Henschke, C., Hislop, J., Jommi, C., Kaitelidou, D., Kawalec, P., Keskimäki, I.,

Kroneman, M., Bastida, J. L., Barros, P. P., Ramsberg, J., Schneider, P., Spillane,

S., Vogler, S., Vuorenkoski, L., Kildemoes, H. W., Wouters, O., and Busse, R. (2016).

Pharmaceutical regulation in 15 European countries. Health Systems in Transition, 18(5).

Retrieved from eprints.lse.ac.uk/68290 on 4 June 2020.

Rushton, G. (1972). Map transformations of point patterns: Central place patterns in

areas of variable population density. Papers in Regional Science, 28(1):111–132.

Schaumans, C. and Verboven, F. (2008). Entry and regulation: evidence from health care

professions. The RAND Journal of Economics, 39(4):949–972.

Seim, K. (2006). An empirical model of firm entry with endogenous product-type choices.

The RAND Journal of Economics, 37(3):619–640.

Smithies, A. (1941). Optimum location in spatial competition. Journal of Political Economy,

49(3):423–439.
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A Proofs

First, consider the proof of proposition 1, repeated here for convenience:

Proposition. The symmetric space-then-price equilibrium of the model described above is

characterized by location choices xa = x∗ and xb = 1− x∗ with

x∗ =


0 if α ≤ τ

3+τ ,

−1
4 + 3

4
α

τ(1−α) if τ
3+τ < α < τ

1+τ ,

1
2 if α ≥ τ

1+τ ,

and prices pa = pb = p∗ with

p∗ =


τ if α ≤ τ

3+τ ,

3
2

(
τ − α

1−α

)
if τ

3+τ < α < τ
1+τ ,

0 if α ≥ τ
1+τ .

Proof. With quadratic travel costs, the consumer who is just indifferent between purchasing

a price regulated prescription drug from either pharmacy is located at ı̄ = (xa + xb)/2, and

the demand for prescription drugs is hence given by QRxa = αı̄ and QRxb = α(1− ı̄). The

indifferent consumer who purchases a non-prescription drug is located at

ı̌ =
xa + xb

2
+

1

2τ

pb − pa
xb − xa

so that demand for non-prescription drugs is similarly given by QOTCa = (1 − α)̌ı and

QOTCb = (1− α)(1− ı̌).

Consider first the price equilibrium, given location choices xa and xb. Because there are no

complementarities across products, firms will essentially set the price for non-prescription

drugs so as to maximize variable profits from that product category. Maximizing the

firms’ profit equations, and re-arranging the first-order conditions, it is easy to derive the

following price equilibrium:

p∗a =
τ

3
(xb − xa)(2 + xa + xb)

p∗b =
τ

3
(xb − xa)(4− xa − xb) (21)

Note that, in the symmetric location case where xb = 1− xa, I have p∗a = p∗b ≡ p∗symm =

τ(1− 2xa). The location of firm a is a measure of centrality, and prices are lower when the

two firms are located closer to the market centre (and therefore closer to each other).

Next turn to the equilibrium location decisions of both firms. Anticipating the equilibrium

effect on prices, firms now choose their locations simultaneously so as to maximize their
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profits. In doing so, they must trade off the market share effect of being located closer to

the market centre against the market power effect of being located more distantly from

their competitor:

dπj
dxj

= α
∂QRxj
∂xj

+ (1− α)pj
∂QOTCj

∂xj︸ ︷︷ ︸
market share effect

+ (1− α)pj
∂QOTCj

∂p−j

dp∗−j
dxj︸ ︷︷ ︸

market power effect

(22)

The equilibrium effect on own prices is cancelled out in equilibrium, so that the market

power effect only includes the equilibrium effect of one’s re-locations on the prices of other

firms. I am looking for a symmetric equilibrium x∗ where xa = x∗ and xb = 1− x∗. The

price equilibrium then implies p∗a = p∗b = τ(1− 2x∗). Using results from above, equation

(22) can be used to compute a candidate equilibrium:

dπa
dxa

∣∣∣∣
x∗

= 0⇔ x∗ = −1

4
+

3

4

α

τ(1− α)

With locations restricted to the unit interval, and xa ≤ xb, the locational equilibrium must

satisfy x∗ ∈
[
0, 1

2

]
. Hence, an equilibrium location is an interior location whenever the

share of consumers purchasing price regulated prescription drugs α is sufficiently large, but

not too large:

x∗ =


0 α ≤ τ

3+τ

−1
4 + 3

4
α

τ(1−α)
τ

3+τ < α < τ
1+τ

1
2 α ≥ τ

1+τ

(23)

The ensuing price equilibrium is then given by

p∗ =


τ α ≤ τ

3+τ

3
2

(
τ − α

1−α

)
τ

3+τ < α < τ
1+τ

0 α ≥ τ
1+τ

(24)

This section continues with the proof for the proposition 2 in section 4, split up into two

lemmas for convenience.

Lemma 1. Suppose that the regulated price of prescription drugs p̄ was zero, and that

parameters are such that x∗ < 1
2 in the competitive equilibrium. Then, the difference

of consumer welfare in the competitive equilibrium relative to the regulatory benchmark

increases strictly as the share of prescription consumers α increases ( d
dα∆W (0) > 0).

Proof. One can distinguish two cases here. Case 1: Suppose that α ≤ τ
3+τ so that

x∗ = 0. Then, ∆W = (α − 1)τ < 0 and the change in consumer welfare is obviously
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increasing strictly in α, as τ > 0 by assumption. Case 2: If 0 < x∗ < 1
2 it must hold that

τ
3+τ < α < τ

1+τ . Because 0 ≤ τ < 1, this implies 0 < α < 1. Note first that the marginal

change of the firms’ equilibrium locations with respect to α is given by

dx∗

dα
=

3

4τ(1− α)2

Because this expression is increasing strictly in α for any α ∈ (0, 1), and because α > τ
3+τ

it can be bounded below by the function f(τ) = 1
12

(3+τ)2

τ . This term, in turn, is strictly

decreasing for τ ∈ [0, 1] and hence, its minimum is attained at τ = 1 with f(1) = 4
3 .

Therefore,
dx∗

dα
≥ 4

3
(25)

with a strict inequality if τ < 1. Also, note that α < τ
1+τ is equivalent to τ(1 − α) > α

which will be convenient below. The change in consumer welfare in (3) can equivalently be

written as

∆W = (α− 1)τ +
1

2
(5τ + α(1− 5τ))x∗ − (τ + α(1− τ))x∗2

The marginal change of ∆W with respect to changes in α is

d∆W

dα
= τ+

[
1− 5τ

2
− (1− τ)x∗

]
︸ ︷︷ ︸

≡A

x∗+

[
1

2
(α+ 5τ(1− α))− 2x∗(α+ τ(1− α))

]
︸ ︷︷ ︸

≡B

dx∗

dα
(26)

First, consider term A. Substituting for the expression of equilibrium location choices, one

obtains

A =
1

2
(1− 5τ)−

(
−1

4
+

3

4

α

τ(1− α)

)
(1− τ)

= −3

4

α(1− τ)

τ(1− α)
+

1

4
(1− τ) +

1

2
(1− 5τ)

= −3

4

α(1− τ)

τ(1− α)︸ ︷︷ ︸
<1−τ

+
3

4
− 11

4
τ

> −3

4
(1− τ) +

3

4
− 11

4
τ = −2τ.

Next, consider term B. Because x∗ < 1
2 and with τ(1− α) > α, it can be bounded below

as follows:

B >
1

2
(α+ 5τ(1− α))− (α+ τ(1− α))

= −1

2
α+

3

2
τ(1− α)︸ ︷︷ ︸

>α

> α

Finally, substituting for the lower bounds of A, B, dx∗

dα , and x∗ in (26), one can derive the

58



following inequality

d∆W

dα
> τ +

4

3
α− 2τ

(
−1

4
+

3

4

α

τ(1− α)

)
=

3

2
τ +

4

3
α− 3

2

α

1− α

So, a sufficient condition for d∆W
dα > 0 is

3

2
τ(1− α)︸ ︷︷ ︸

>α

+
4

3
α(1− α)− 3

2
α ≥ 0

⇐ 4

3
α(1− α) ≥ 0

which is true for all α ∈ [0, 1].

Lemma 2. Suppose that the regulated price of prescription drugs p̄ was zero, and that

parameters are such that x∗ < 1
2 in the competitive equilibrium. Then, the difference

of consumer welfare in the competitive equilibrium relative to the regulatory benchmark

decreases strictly as the share of prescription consumers τ increases ( d
dτ∆W (0) < 0).

Proof. Case 1: Again, one can first consider the trivial cases where x∗ = 0 so that

∆W = (α− 1)τ which is strictly decreasing in τ since α < 1 is implied (see above). Case

2: If 0 < x∗ < 1
2 it must hold that τ

3+τ < α < τ
1+τ . Note first that the marginal change of

the firms’ equilibrium locations with respect to τ is given by

dx∗

dτ
= −3

4

α

τ2(1− α)︸ ︷︷ ︸
> 1
τ

> − 3

4τ

The change in welfare (3) compared to the baseline case where prices are regulated can

also be written as

∆W = (α− 1)τ +
1

2
(α+ 5τ(1− α))x∗ − (α+ τ(1− α))x∗2,

the marginal change of which with respect to τ is

d∆W

dτ
= −(1−α)+

(
5(1− α)

2
− x∗(1− α)

)
︸ ︷︷ ︸

≡C

x∗+

(
1

2
(α+ 5τ(1− α))− 2x∗(α+ τ(1− α))

)
︸ ︷︷ ︸

≡B

dx∗

dτ
.

(27)

Note that term B in the above equation is the same as term B in equation (26), and

so I already know that B > α. Substituting for x∗ in C and observing that α > τ
1+τ is
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equivalent to writing α/τ > 1− α, I obtain

C =
5(1− τ)

2
−
(
−1

4
+

3

4

α

τ(1− α)

)
(1− α)

=
11

4
(1− α)− 3

4

α

τ︸︷︷︸
>1−α

< 2(1− α).

Noting that 0 < x∗ < 1
2 and putting together the established lower bounds for B, C, and

dx∗

dτ I can derive that

d∆W

dτ
< −(1− α) + (1− α)− 3

4

α

τ
= −3

4

α

τ
< 0

because α > 0 is implied, and τ > 0 by assumption.

Lemmas 1 and 2 now allow me to prove the validity of proposition 2, repeated below for

the reader’s convenience:

Proposition. Suppose that the regulated price of non-prescription drugs, p̄, was initially

zero. Then:

1. if α and τ are such that x∗ = 1
2 , consumer welfare is the same in the competitive

equilibrium as in the regulatory benchmark (∆W (0) = 0);

2. if α and τ are such that x∗ < 1
2 , (a) the difference of consumer welfare in the

competitive equilibrium relative to the regulatory benchmark increases strictly in the

share of prescription consumers ( d
dα∆W (0) > 0), and it decreases strictly in the

travel costs of non-prescription consumers ( d
dτ∆W (0) < 0); and (b) consumer welfare

is smaller in the competitive equilibrium (∆W (0) < 0).

Proof. Point (1) is trivial. Point (2a) follows immediately from lemmas 1 and 2. To see

point (2b), pick any point (α′, τ ′) ∈ [0, 1]2 with α′ < τ ′

1+τ ′ so that x∗(α′, τ ′) < 1
2 . Choose a

different point (α′′, τ ′′) with α′′ = τ ′′

1+τ ′′ , α
′′ > α′ and τ ′′ < τ ′. Such a point, by construction,

always exists. Then,

∆W (0)α′,τ ′ = ∆W (0)α′′,τ ′′︸ ︷︷ ︸
=0

+

∫ α′

α′′
∆W (0)α,τ ′′dα︸ ︷︷ ︸

>0 ∀α<α′′

+

∫ τ ′

τ ′′
∆W (0)α′,τdτ︸ ︷︷ ︸

<0

< 0

which concludes the proof (note again that α′′ > α′ and τ ′′ < τ ′).
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B Supplementary empirical material

B.1 List of cities

city AGS8 N city AGS8 N

1 Düsseldorf 05 111 000 237 41 Oberhausen 05 119 000 66
2 Frankfurt a.M. 06 412 000 236 42 Ludwigshafen 07 314 000 64
3 Hannover 03 241 001 203 43 Hamm 05 915 000 63
4 Essen 05 113 000 200 44 Würzburg 09 663 000 61
5 Stuttgart 08 111 000 199 45 Heidelberg 08 221 000 61
6 Dortmund 05 913 000 197 46 Potsdam 12 054 000 60
7 Nürnberg 09 564 000 190 47 Paderborn 05 774 032 59
8 Bremen 04 011 000 179 48 Mülheim (Ruhr) 05 117 000 59
9 Leipzig 14 713 000 174 49 Darmstadt 06 411 000 57

10 Duisburg 05 112 000 157 50 Herne 05 916 000 54
11 Dresden 14 612 000 146 51 Leverkusen 05 316 000 54
12 Bonn 05 314 000 135 52 Neuss 05 162 024 53
13 Bochum 05 911 000 133 53 Koblenz 07 111 000 53
14 Münster 05 515 000 121 54 Solingen 05 122 000 51
15 Mannheim 08 222 000 118 55 Pforzheim 08 231 000 51
16 Wuppertal 05 124 000 109 56 Trier 07 211 000 50
17 Augsburg 09 761 000 109 57 Göttingen 03 152 012 50
18 Bielefeld 05 711 000 106 58 Ulm 08 421 000 49
19 Halle (Saale) 15 002 000 105 59 Erlangen 09 562 000 48
20 Karlsruhe 08 212 000 102 60 Recklinghausen 05 562 032 46
21 Wiesbaden 06 414 000 102 61 Ingolstadt 09 161 000 45
22 Gelsenkirchen 05 513 000 99 62 Zwickau 14 524 330 45
23 Mönchengladbach 05 116 000 96 63 Kaiserslautern 07 312 000 45
24 Aachen 05 334 002 96 64 Salzgitter 03 102 000 45
25 Braunschweig 03 101 000 93 65 Offenbach 06 413 000 44
26 Kiel 01 002 000 91 66 Heilbronn 08 121 000 44
27 Lübeck 01 003 000 89 67 Bremerhaven 04 012 000 43
28 Freiburg 08 311 000 87 68 Hildesheim 03 254 021 43
29 Krefeld 05 114 000 87 69 Wolfsburg 03 103 000 42
30 Magdeburg 15 003 000 83 70 Fürth 09 563 000 41
31 Mainz 07 315 000 82 71 Bamberg 09 461 000 40
32 Chemnitz 14 511 000 82 72 Flensburg 01 001 000 39
33 Kassel 06 611 000 81 73 Remscheid 05 120 000 39
34 Osnabrück 03 404 000 74 74 Cottbus 12 052 000 39
35 Erfurt 16 051 000 71 75 Gütersloh 05 754 008 39
36 Saarbrücken 10 041 100 70 76 Worms 07 319 000 38
37 Rostock 13 003 000 69 77 Siegen 05 970 040 38
38 Hagen 05 914 000 69 78 Bergisch Gladbach 05 378 004 38
39 Regensburg 09 362 000 68 79 Wilhelmshaven 03 405 000 37
40 Oldenburg i.O. 03 403 000 66 80 Esslingen 08 116 019 37

Table 14: List of eighty large German cities that were used in the empirical application,
their unique identifier codes, and the number of unique locations per city, across all
years.
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B.2 Comparison of pharmacy and bake shop locations

bake shops pharmacies difference

local population 0.467 0.495 0.028***

(0.284) (0.269) (0.005)
elderly share 0.194 0.198 0.004***

(0.066) (0.062) (0.001)
pedestrian zone 0.212 0.216 0.004

(0.408) (0.411) (0.007)
mainroad 0.263 0.331 0.068***

(0.440) (0.471) (0.008)
doctor 0.141 0.217 0.076***

(0.348) (0.412) (0.006)
supermarket 0.298 0.231 -0.068***

(0.458) (0.421) (0.007)
trainstation 0.061 0.045 -0.015***

(0.239) (0.208) (0.004)

Observations 7,382 6,741 14,123

Table 15: Comparison of local spatial co-variates for pharmacy locations, and bake
shops.
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B.3 Choosing the strategic neighbourhood

The following table shows the estimates that were obtained using different sizes of the

strategic neighbourhood in greater detail than table 8 does. Overall, the changes between

the different specifications are largest when increasing k from one to two. For greater

values of k, the changes become virtually nil.

(1) (2) (3) (4) (5) (6)

Local demand

intercept 0.298*** 0.295*** 0.294*** 0.294*** 0.294*** 0.294***

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

post reform -0.032*** -0.032*** -0.032*** -0.033*** -0.032*** -0.032***

(0.007) (0.006) (0.007) (0.007) (0.007) (0.007)

local population� 0.134*** 0.162*** 0.166*** 0.167*** 0.168*** 0.167***

(0.044) (0.026) (0.026) (0.026) (0.026) (0.026)

elderly share 0.098*** 0.096*** 0.096*** 0.097*** 0.097*** 0.097***

(0.021) (0.025) (0.026) (0.026) (0.026) (0.025)

trainstation 0.018** 0.018** 0.019** 0.019** 0.019** 0.019**

(0.007) (0.007) (0.007) (0.007) (0.007) (0.008)

pedestrian zone 0.015*** 0.016*** 0.016*** 0.016*** 0.016*** 0.016***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

supermarket 0.032*** 0.032*** 0.032*** 0.032*** 0.032*** 0.032***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
mainroad -0.002 -0.002 -0.002 -0.002 -0.002 -0.002

(0.004) (0.003) (0.003) (0.003) (0.003) (0.003)

doctor 0.027*** 0.027*** 0.027*** 0.027*** 0.027*** 0.027***

(0.005) (0.004) (0.004) (0.004) (0.004) (0.004)
Local competition

δpre 0.002 0.002 0.002 0.002 0.002 0.002
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

δpost 0.009*** 0.009*** 0.009*** 0.009*** 0.009*** 0.009***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Entry costs

θepre 4.908*** 4.902*** 4.901*** 4.901*** 4.901*** 4.900***

(0.049) (0.039) (0.039) (0.039) (0.039) (0.039)

θepost 4.335*** 4.333*** 4.332*** 4.332*** 4.332*** 4.332***

(0.027) (0.018) (0.018) (0.018) (0.018) (0.018)

interaction radius [m] 900 900 900 900 900 900
strategic neighbours§ 1 2 3 4 5 6
total entry locations 6,741 6,741 6,741 6,741 6,741 6,741
runtime [s] 730 587 1,170 2,186 4,067 15,673
log-likelihood -14,780.3 -14,769.4 -14,768.1 -14,768.4 -14,767.7 -14,768.3

∗ < 0.1; ∗∗ < 0.05; ∗∗∗ < 0.01
�Local residential population ÷ # local active stores

§ Including “self”

Table 16: Estimates of the spatial entry model with various sizes of the strategic
neighbourhood (including self). N=6741 firms, T=16 time periods in 80 large German
cities. Exit values are normalized to 1. Standard errors in parentheses, computed
from estimated Hessian matrix.
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B.4 Simulation results

(a) pre-reform parameters (b) post-reform parameters

Figure 13: Simulation results using the parameters in table 9, starting from the
observed market state in 2004 and simulating forward with two hundred parallel
samples. The blue shaded areas represents the 95% simulation envelope.
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(a) Scenario A (b) Scenario B

Figure 14: Incremental effects of increased local competition, model (3) in table 9.
See table 11 and section 7.4.
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(a) Simulated counter-factual outcomes (b) Difference to baseline (see figure 14b)

Figure 15: The effects of a mandated 100m minimum distance between store locations,
remaining parameters as in model (5) in table 9
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B.5 Robustness checks

d = 800m d = 1000m const. pop. more cov. bake shops random loc.
(1) (2) (3) (4) (5) (6)

Local demand

intercept 0.295*** 0.295*** 0.293*** 0.259*** 0.293*** 0.201***

(0.009) (0.009) (0.010) (0.022) (0.007) (0.006)

post reform -0.033*** -0.031*** -0.032*** -0.033*** -0.036*** -0.042***

(0.007) (0.007) (0.007) (0.007) (0.005) (0.004)

local population� 0.136*** 0.180*** 0.172*** 0.171*** 0.066*** 0.397***

(0.021) (0.023) (0.032) (0.027) (0.015) (0.017)

elderly share 0.102*** 0.096*** 0.098*** 0.096*** 0.075*** 0.116***

(0.027) (0.025) (0.025) (0.026) (0.017) (0.013)

trainstation 0.018** 0.019** 0.019** 0.019** 0.005 0.022***

(0.008) (0.008) (0.008) (0.008) (0.005) (0.004)

pedestrian zone 0.017*** 0.015*** 0.016*** 0.016*** 0.008*** 0.028***

(0.006) (0.004) (0.004) (0.004) (0.003) (0.003)

supermarket 0.033*** 0.032*** 0.032*** 0.032*** 0.011*** 0.051***

(0.004) (0.004) (0.005) (0.004) (0.002) (0.003)

mainroad -0.003 -0.002 -0.002 -0.003 0.004* 0.020***

(0.003) (0.003) (0.004) (0.003) (0.002) (0.002)

doctor 0.028*** 0.027*** 0.027*** 0.028*** 0.024*** 0.042***

(0.004) (0.004) (0.004) (0.004) (0.003) (0.003)
vacancies 0.048

(0.066)
sq. m. price -0.014

(0.010)
unemployment -0.021

(0.061)

income 0.019**

(0.008)
income growth -0.008

(0.090)
in commuters -0.005

(0.016)
Local competition

δpre 0.003 0.002 0.002 0.002 0.005 -0.021***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

δpost 0.009*** 0.009*** 0.009*** 0.009*** 0.012*** -0.021***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Entry costs

θepre 4.903*** 4.902*** 4.900*** 4.898*** 5.643*** 5.435***

(0.032) (0.039) (0.018) (0.040) (0.032) (0.029)

θepost 4.334*** 4.332*** 4.332*** 4.332*** 5.106*** 4.929***

(0.018) (0.018) (0.019) (0.018) (0.015) (0.016)

interaction radius 800 1000 900 900 900 900
strategic neighbours§ 5 5 5 5 5 5
total entry locations 6,741 6,741 6,741 6,741 14,150 16,728
.. of which pharmacies 6,741 6,741 6,741 6,741 6,741 6,741
runtime [s] 4,800 3,678 4,930 5,188 14,604 13,894
log-likelihood -14,774.5 -14,768.3 -14,766.7 -14,764.0 -17,374.4 -16,821.8

∗ < 0.1; ∗∗ < 0.05; ∗∗∗ < 0.01

Table 17: Robustness checks. Exit values are normalized to 1. �local population is
the residential population within 500 metres of the store’s location, divided by the
number of active competitors in the respective time period or future state. Except
for columns three, the local residential population was scaled with municipality-level
population growth rates. Standard errors in parentheses, computed from estimated
Hessian matrix. § The number of strategic nearest neighbours always includes the
decision maker.
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B.5.1 Model specification

The spatial interaction radius was chosen in a non-strategic version of the model, with

k = 1. To ensure that the choice of the interaction radius remained optimal after having

chosen the size of the strategic neighbourhood, I re-estimated the model with k = 5 and for

two different interaction radii, eight hundred and one thousand metres. These results are

shown in columns one and two of table 17. The table shows that the estimated coefficients

are very close to the ones obtained with an interaction radius of nine hundred metres. Also,

the log-likelihood in either case is smaller than the one obtained for an interaction radius

of nine hundred metres; so the choice of the interaction radius remains optimal.

The population data are derived from the 2011 census and also, the spatial co-variates

that are derived from OpenStreetmap reflect only one particular point in time, as the data

were downloaded in 2016. Unobserved temporal variation of these co-variates may lead to

biased estimates but unfortunately, there are no comparable data sources for earlier years.

I controlled for unobserved population growth by scaling the spatial population distribution

with observed municipality-level growth rates, but this obviously leaves the spatial variation

unchanged. It would be desirable to obtain the spatial population distribution for at least

one additional time period, so that a population growth rate could be computed at every

given point in space. Currently, such data is unavailable, but a new census is planned for

202134 so that this could, in principle, be achieved in the future. For the current analysis,

I assessed the robustness of the estimation results only with respect to the temporal

aggregate variation of the population data, by re-estimating the model’s parameters with

the unscaled, constant, local population data. These results are shown in column three

of figure 17. That column shows that the estimated population coefficient (0.172) is not

statistically different from the coefficient that is derived with the annually scaled population

data (0.168, see table 9). Also, the other coefficients remain largely the same.

As a further robustness check, I added municipality level co-variates that are described

in table 5 to the model. These results are shown in column four of table 17. The column

shows that all added coefficients are insignificant, except for municipality level income per

capita. All other coefficients retain their sign, magnitude, and significance. Apparently,

city-level heterogeneity is unlikely to have a large effect on the results.

B.5.2 Potential entry locations

The analysis in section 7.2 is based on the assumption that the set of potential entry

locations can be approximated well by the set of locations where a pharmacy has been

active at least once. In this section, I will assess the robustness of the main result with

respect to this assumption by including additional entry locations. As explained in section

34See www.zensus2021.de, accessed 03/18/2020
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6.1, the additional entry locations are generated from two sources: first, I used the locations

of bake shops in Germany and second, I generated a set of uniformly distributed random

entry locations in all cities of my sample.

Column five in table 17 shows the estimation results with bake shop locations, and column

six displays the estimation results with additional random locations. First, consider column

five. These results are quantitatively very similar to the main estimation results in table 9.

The estimated coefficient for the local population density is substantially smaller than in

the base line results, and the estimated entry costs are larger than in the base line case. The

spatial interaction coefficients remain about the same, which is also true for the estimated

coefficients for the local elderly share, and for the proximity to a physician, a supermarket,

a trainstation, a pedestrian zone, or a main road. An explanation for this is that the

inclusion of many locations that are not pharmacies has forced the model to attribute a

greater weight to locations that are specifically important to pharmacies, as opposed to

being just favourable to small retail stores in general. This increases the external validity

of the model and therefore it can be a useful tool to conduct out-of-sample predictions

and simulations. I repeated the model validation and counterfactual simulations described

in section 7, using the additional set of entry locations. These results are shown in table

18. The table shows that the simulated change from 2004 to 2016 does not match the

actual change quite as well as does the base line model. The magnitudes of the partial

competition effect are comparable to those derived in the base line model, and the effect of

a minimum distance regulation is estimated to be larger than under the base line scenario.

The time needed to estimate the parameters increased more than proportionally with

respect to the number of entry locations. This could be due to the fact that it takes longer

for the Gauss-Seidel algorithm to reach the MPE. Still, the increase in computational time

is very modest, and so the oblivious spatial equilibrium has proven to be a viable approach

to estimate spatial dynamic entry models with a large number of agents.

Next, consider the results that were obtained by using the random set of dummy locations

in column six. The estimated coefficients differ substantially from the base line results. In

general, all estimated coefficients that govern local demand, except for the intercept and

the post reform dummy, are larger than in the base line result. Moreover, the estimated

interaction coefficients are now negative, and do not differ in the pre and post reform

periods. This can be explained as follows. Pharmacy locations, and also the locations of

bake shops, do exhibit a substantial amount of spatial clustering, as was shown in section

6.2. This is most likely an artefact of unobserved spatial heterogeneity, and not due to

an inherent tendency of firms to cluster. On the other hand, the dummy locations were

generated at random, and so do not exhibit any spatial clustering; and further, these

dummy locations are never “active”. Therefore, it is natural for the model to explain

the higher likelihood that a “true” pharmacy location is active relative to a randomly

generated dummy location by a positive point-to-point interaction, which is reflected in a
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distance (metres)

Number of pharmacy to consumer to
stores nearest competitor nearest pharmacy

observed outcomes
2004 5,437 423 514
2016 4,770 469 539
∆ -667 +45 +25

simulated outcomes
pre-reform, 2016 5,403 403 536
post-reform, 2016 4,982 423 571
∆ –511 +20 +35

competition effect
(A) t(0, θepre, δpost)− t(0, θepre, δpre) -226 +17 +4
(B) t(1, θepost, δpost)− t(1, θepost, δpost) -267 +20 +6

minimum distance regulation
simulated change 2004-2016 –680 +81 +30

Table 18: Comparison of actual changes throughout the post-reform period; incre-
mental effect of increased spatial competition; and the effect of a minimum distance
regulation.

negative interaction coefficient (recall that the interaction coefficient denotes by how much

variable profits decrease due to the presence of a nearby competitor). Another interesting

observation is the fact that the interaction coefficient is estimated to be the same in both

the pre- and the post-periods. This is rather unintuitive, because the pattern of randomly

generated entry locations does not change over time, whereas the pattern of pharmacy

locations does (as is reflected in the larger interaction coefficients in column five, and in

table 9). The most likely explanation is an inaccuracy of the estimation procedure which

prematurely stopped the algorithm before having reached the true global optimum.

How should these two additional results be interpreted, and compared to each other? Many

of the randomly generated dummy locations would fall in residential zones, or even in

uninhabited areas where it is either not permitted, or not possible to open a store. Thus,

these locations can hardly be considered to be “potential entry locations”. On the other

hand, many bakery shops have a size that is similar to that of a pharmacy, and so their

locations can arguably be a potential entry location. At the same time, the underlying

behavioural assumption of the dynamic entry model is that each potential entrant plays

an entry game (in entry probabilities, essentially) with each of its k − 1 strategic nearest

neighbours. The model therefore presupposes that at every entry locations sits a potential

competitor which could conceivably become an active firm. But as discussed above, this

is not true for many of the randomly generated locations and so the estimation results

obtained with random entry locations may not accurately reflect the true parameters, and

should be interpreted cautiously.
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