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Abstract

Using a nonlinear Bayesian likelihood approach that fully accounts for the zero lower bound on
nominal interest rates, we analyze US post-crisis business cycle dynamics and provide reference
parameter estimates. We illustrate that the common practice of omitting the ZLB period in the
estimation severely distorts the analysis of the more recent economic dynamics. We find that
despite the attention received in the literature, neither the inclusion of financial frictions nor that
of household heterogeneity improves the empirical fit of the standard model or its ability to provide
a joint explanation for the post-2007 dynamics. Associated financial shocks mis-predict an increase
in consumption.
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1 Introduction

More than a decade ago, the Financial Crisis and the subsequent Great Recession did not only
wreak havoc on the US economy, but it also shook the macroeconomic profession to the core. As
a consequence, a plethora of approaches has been developed to enrich dynamic macroeconomic
models with features conceived to enhance our understanding of the dynamics during and after the
Great Recession. While progress flourished on the front of theoretical modeling, very few attempts
have been made to test these models empirically on the period including and following the Great
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Recession. This is primarily due to the long-lasting binding zero-lower bound on nominal interest
rates (ZLB)!, which renders conventional econometric methods unsuitable.

In this paper, we make a step towards closing this gap by providing an account of the last two
decades based on a set of models, which are estimated on data from this period. Our sample extends
to 2019, thereby including the exit from the ZLB. Using a set of novel methods developed in Boehl
(2020Db) allows us to estimate large macroeconomic models while fully accounting for the effects of
the ZLB. We take the standard medium-scale representative agent new Keynesian model (RANK)
of Christiano et al. (2005) and Smets and Wouters (2007) as the baseline model. Motivated by the
importance of the interlinkages between the financial sector and the real economy during the Great
Recession, we consider the extension of the framework developed by Christiano et al. (2014); Del
Negro et al. (2015b), who add financial frictions as in Bernanke et al. (1999). Motivated by the
rising interest in the effects of household heterogeneity on the macroeconomy we further include the
effects of hand-to-mouth agents into our analysis. The two agent new Keynesian (TANK) model
can be seen as a shortcut to the more thorough heterogeneous agent new Keynesian (HANK) model
while incorporating important additional channels in our investigation.?

A key contribution of this paper is to illustrate that an omission of the Great Recession and
the ZLB period in the empirical analysis may result in misleading conclusions regarding the drivers
of macroeconomic dynamics in the last decades. Making full use of post-crisis data, we go on to
demonstrate that - against the gist of the literature - neither the inclusion of financial frictions
nor hand-to-mouth consumers enhance the standard model’s empirical fit or its ability to provide
a parsimonious account of the crisis. Third, we provide reference estimations for the crisis sample,
which we compare across models and with estimation results for a pre-crisis sample.

With the Financial Crisis being one, admittedly complex, event, a good model should be able to
allot the bulk of the persistent effects of the crisis to a common source within the model (Angeletos
et al., 2018).3 However, we find that all models that we consider fall short in accounting for the joint
dynamics of investment, consumption and inflation following 2008. Instead - in the extreme case
of the models with financial frictions - the downturns of consumption and investment during the
recession are almost entirely driven by disparate exogenous forces. Strictly speaking, these models
attribute the behavior of these variables to two different crisis events instead of providing a joint
propagation mechanism that points towards a parsimonious interpretation of the Great Recession.

We demonstrate that the economic question of a joint propagation mechanism is closely linked
to the empirical fit of the model. To some degree this is intuitive as a joint driver that moves the
macroeconomic system as a whole reduces the need for several separate large shocks to generate
the extreme dynamics in different variables observed during the recession, thereby improving the
likelihood of the model.

The simple RANK model outperforms its extended counterparts in terms of empirical fit. In
this model, an exogenous increase in the risk premium on households’ borrowing rate is the main
driver of macroeconomic dynamics following the Great Recession. Risk premium shocks account for

LGiven the recent European and Japanese experience with slightly negative rates, the term “effective lower bound”
is more precise. Nevertheless we employ the term “zero lower bound” throughout this text as it is used more frequently
in the literature.

2See, e.g., McKay and Reis, 2016; Kaplan et al., 2018; Auclert, 2019 on the current stand of this literature.

3 Angeletos et al. (2018) go even further and search for one shock as a main driver of business cycles over a longer
time-span. In their paper, they list, for instance, the TFP shock in Kydland and Prescott (1982), the marginal
efficiency of investment shock by Justiniano et al. (2010) and the risk shock by Christiano et al. (2014) as examples
for similar endeavors.



the drop in consumption and are responsible for the long duration of the ZLB. However, they can
only provide a partial explanation for the behavior of investment and inflation during the recession.
To generate the extent of the collapse in investment, an extra driver, here shocks to the marginal
efficiency of investment (MEI), is needed. Similarly, the dip of inflation in that period is associated
with additional shocks to the price markup. Hence, albeit to a lesser extent than other models,
RANK also attributes the dynamics in consumption, investment and inflation in that event to
distinct drivers which hit the economy in different sectors.

Financial frictions & la Bernanke et al. (1999) do not improve upon the RANK model’s ability to
provide a parsimonious explanation for the dynamics during and after the Great Recession, nor do
they enhance the empirical fit of the model.* The reason for this is that the response of investment
to risk premium shocks is attenuated by the presence of financial frictions. Recessionary shocks only
trigger a short-lived contraction in entrepreneurial net worth, but a more persistent decline in the
capital stock. This implies that the entrepreneurial leverage decreases in the medium run, lowering
the credit spread and hence the cost of investment. The outlook of a favorable future investment
climate actually dampens the decrease in investment from the onset and impairs the ability of the
shock to generate the sharp drop of investment observed in the Recession. The financial sector
attenuates the effect of MEI shocks on investment in a similar fashion.

While MEI shocks and shocks that target investment financing can account for the collapse
of investment during the Great Recession, they do not contribute to the substantial decline of
consumption in that episode. We illustrate this for the case of risk shocks in the spirit of Christiano
et al. (2014). Our estimates suggest that these shocks trigger a negative co-movement of household
spending and investment, which is at odds with observed dynamics. Consequently, we find that these
shocks only play a very minor role for macroeconomic dynamics in and after the Great Recession.
This somewhat inconvenient finding has implications for other financial shocks as well, that have
been proposed in the literature and do not lower consumption on impact, such as the credit shock
and the investment shock in Carlstrom et al. (2017) or the wealth shock proposed in Carlstrom
and Fuerst (1997).> On a more general note, it appears that a shock that affects borrowing rates
of households and firms alike is a more promising candidate for providing an account of the Great
Recession.b

The inclusion of hand-to-mouth agents hardly affects aforementioned results. Parameter esti-
mates, the empirical fit and the transmission of risk premium shocks are very similar for TANK and
RANK models. Given our parameter estimates, the direct effects and indirect effects of hand-to-
mouth agents in response to a risk premium shock roughly chancel out. A weakening link between
consumption and the risk premium is offset by a stronger connection between consumption and
movements in real activity. For a pre-crisis sample in which other shocks such as MEI shocks and
wage markup shocks play a more prominent role, we demonstrate that the inclusion of hand-to-

4By considering the role of financial friction for the US economy in the Great Recession, we touch upon an
active literature. Meh and Moran, 2010; Gerali et al., 2010; Cdrdia and Woodford, 2011; Gertler and Karadi, 2011;
Brunnermeier and Sannikov, 2014; Christiano et al., 2014; Del Negro et al., 2017. Our analysis provides an argument
for the benefits of testing these models empirically on the period of the Great Recession and the ZLB.

5 An exception is the capital quality shock proposed by Gertler and Kiyotaki (2010). This shock hits the economy
at very different points simultaneously to capture key features of the crisis. However, Boehl et al. (2020) document
a low explanatory power to this shock as its macroeconomic effects much depends on the actual calibration.

6 A good example for this type of distortion is the collateral shock recently proposed by Becard and Gauthier (2020).
This shock directly affects both household and investment financing and induces a comovement of consumption and
investment over the business cycle.



mouth agents actually lowers the models empirical fit as they suggest a negative correlation of
wages and investment in response to a wage markup shock. This is hard to reconcile with the
empirical evidence. We conclude that in the context of the standard medium-scale model, which
already contains a host of bells and whistles, our analysis suggests that hand-to-mouth agents are a
non-essential feature for explaining business cycle dynamics. However, this does not preclude that a
more thorough modeling of microeconomic heterogeneity as pursued by the HANK literature could
improve upon the empirical performance.”

It has become a common practice to analyze the Great Recession and the ZLB period through
the lens of models that have been calibrated to or estimated on pre-crisis data only (see, e.g., Gertler
and Karadi, 2011; Christiano et al., 2014, 2015; Del Negro et al., 2015b; Carlstrom et al., 2017). This
approach has generated prominent results that shape our profession’s understanding of the Great
Recession, the role of financial frictions, and the effect of unconventional monetary policy measures.
However, we document that this practice can generate misleading conclusions. We illustrate this
by comparing the results from above with a decomposition of the US post-crisis dynamics using
a RANK model estimated based on pre-crisis data. In this exercise, MEI shocks, which play an
important role in the pre-crisis sample, now considerably gain in importance for accounting for the
drop in real activity during the Great Recession. They substantially weigh on consumption and
fully explain the collapse of investment. This exercise illustrates why previous studies that employed
pre-crisis data for their empirical analysis focused on disturbances to investment financing as a
driver of the crisis. It furthermore clarifies that the dominant role of the risk premium shock in our
interpretation of the last decades is not hardwired into the model, but rather it is the interpretation
of the dynamics of the US economy, that is favored by the data.®

Across all models considered, the episode of missing disinflation is reflected by an estimate of a
flat Phillips curve.? However, conducting estimates on a pre-crisis sample that starts in the Great
Moderation we find that the structural relationship between nominal and real aggregates already
weakens before the crisis. Our observation suggests that the link between inflation and economic
activity is not well captured in the workhorse models of contemporary monetary theory. Recently,
several paper have attempted to resuscitate the Phillips Curve by including financial frictions. In
Christiano et al. (2015) and Gilchrist et al. (2017), increased refinancing costs drive firms to raise
their prices and prevented a severe disinflation. While in our models, recessionary MEI and risk
shocks can in principle generate inflationary pressure, their weight in the estimation of the crisis
sample is not sufficient to address the missing disinflation puzzle. Thus, the inclusion of financial
frictions does not revive the Phillips curve, nor does accounting for a binding ZLB.

A small number of papers has recently analyzed the Great Recession through the lens of esti-
mated macroeconomic models with an endogenously binding ZILB. The estimation of DSGE models
with a binding ZLB was pioneered by work on small-scale NK models.’® Gust et al. (2017) estimate
a reduced version of the RANK model that is solved via global methods. In addition to this work,

"For instance, Bayer et al. (2019) recently estimate a HANK model on US data and stress the importance of
idiosyncratic income risk and portfolio liquidity for macroeconomic dynamics. Our TANK model naturally cannot
capture these effects. However, in contrast to Bayer et al. (2019), we include the ZLB into our estimation, thereby
capturing a different key factor for macroeconomic dynamics in our analysis.

8The finding of the importance of risk premium shocks is in line with results by Kulish et al. (2017) and Gust
et al. (2017).

9This observation fueled a literature on the Missing Deflation Puzzle. See, e.g., Hall (2011), King and Watson
(2012).

10Gee, e.g., Keen et al. (2017), Boragan Aruoba et al. (2018), Plante et al. (2018).



using the set of methods described in Boehl (2020b) allows us to consider the full version of the
RANK model with the usual bells and whistles, and to extend the analysis to the role of the model
extensions. Kulish et al. (2017) estimate a similar RANK-type model than we do, and focus on the
role of forward guidance effects. Our analysis touches a different domain as we study the business
cycle implications and the empirical performance of various model extensions. Fratto and Uhlig
(2020) provide for a counterexample and deliberately ignore the ZLB constraint in their analysis
of the last decades. The authors acknowledge that their approach may provide misleading results
for the historical shock decomposition. As such, the ZLB may not only change the size but also
potentially the direction of economic effects.

Lastly, a highly policy relevant issue is the macroeconomic effect of the massive interventions
of the Federal Reserve in asset markets in response to the financial crisis. However, a structural
investigation on the role of unconventional monetary policy requires a much more focussed analysis.
Boehl et al. (2020) study the empirical effects of quantitative easing policies within the context of
an estimated large-scale model with financial frictions and several channels for the real effects of
asset purchases. They find that quantitative easing moderately indeed stimulated real activity via
investment, but lasted negatively on aggregate consumption and had mildly deflationary effects.

We proceed as follows: Section 2 sketches the model and the employed extensions. Section 3
briefly lays out the numerical methods and our choices on data and priors. Section 4 provides the
estimation results. Section 5 summarizes the interpretation of the Great Recession within RANK.
Section 6 demonstrates the necessity of using post-crisis data. Section 7 discusses the role of the
model extensions. Section 8 concludes.

2 Models

We employ the canonical medium-scale framework by Smets and Wouters (2007) as a baseline
and allow for two model extensions: hand-to-mouth consumers, that are unable to save and only
consume their current-period wage income, and financial frictions in the vein of Bernanke et al.
(1999). We dub the model with only a representative agent the RANK model to distinguish it from
our two-agent new Keynesian (TANK) model. The model vintage including financial frictions will
be referred to as financial representative agent NK model — FRANK.!'! The full set of linearized
equilibrium conditions is delegated to the Appendix.

2.1 The TANK extension

The TANK model therefore features Ricardian and hand-to-mouth households. We assume that,
for any given reason, a share A of households does not have any savings technology at its disposal
and therefore consumes whatever it earns from its labor services provided.'? The linearized budget
constraint of hand-to-mouth consumers simply reads

Cf:wt+lﬁv (1)

with ¢ff and IF denoting hand-to-mouth agents’ consumption and labor supply, and w; being the
real wage. We assume that Ricardian and hand-to-mouth consumers share the same preferences and

1Tn Appendix Appendix A we additionally, we present estimation results for FTANK, a two-agent version of
FRANK.

121n contrast to HANK, the TANK model does not capture uncertainty effects or time-variations of the share of
constrained agents on consumption.



are represented by the same labor unions in the wage formation process. Aggregate consumption
and labor hours can be obtained in the linearized form as

¢ = Al + (1A, (2)
I = NE 4 (1= AIE, (3)

where ¢; and [; are aggregate consumption and labor, and the superscript R denotes the Ricardian
type.

2.2  Financial Frictions

The second extension that we consider is the inclusion of frictions in financial markets. Here,
we adopt the modeling choices by Del Negro et al. (2015b), who build on the work of Bernanke
et al. (1999), De Graeve (2008) and Christiano et al. (2014). In this model, entrepreneurs obtain
loans from frictionless intermediaries, which in turn receive their funds from household at the
riskless interest rate. In addition to the loans, entrepreneurs use their own net worth to finance
the purchase of physical capital, that they rent out to intermediate good producers. Entrepreneurs
are subject to idiosyncratic shocks to their success in managing capital. As a consequence, their
revenue might fall short of the amount needed to repay the loan, in which case they will default on
their loan. In anticipation of the risk of entrepreneurs’ default, financial intermediates pool their
loans and charge a spread on the riskless rate to cover the expected losses arising from defaulting
entrepreneurs. Crucially, the spread of the loan rate 7F over the risk free nominal interest rate, 7,
depends on the entrepreneurial leverage and can be written as

EyFE g — 1re) = ue + Copplae + ke — ne) + G (4)

Here, u; is the risk premium shock on the housholds borrrowing rate, ¢ is the price of capital, k;
is the capital stock and n; denotes entrepreneurial net worth. o, ; is a shock to the entrepreneurs’
riskiness and follows an AR(1) process - the risk shock introduced by Christiano et al. (2014). Thus,
the loan spread is defined as a function of the entrepreneurs’ leverage and their riskiness, which is
determined by the dispersion of the idiosyncratic shocks to entrepreneurs. Note that if the elasticity
of the loan rate to the entrepreneurs’ leverage, (sp.p, is set to zero, we are back to the case without
financial frictions.
The evolution of aggregate entrepreneurial net worth is described by

Ny = G b Ty —m) — Cor(Te—1 — ) + G (Gr—1 + k1) + Cunne—1 — Maw,t—l- (5)

SP,0w

where 7 is the inflation rate. Equation (5) links the accumulated stock of entrepreneurial net worth
to the real return of renting out capital to firms, the riskless real rate, its capital holdings, its past
net worth and variations in riskiness. The coefficients C, 7, (n,r, Ca,qks Cn,oo» a0d Csp o, are derived
as in Del Negro et al. (2015b).

3 Methodology and Data

When including episodes of a binding ZLB in the sample, the estimation of DSGE models poses
a host of different technical challenges. These are related to the solution, likelihood inference, and
estimation of the model in the presence of an occasionally binding constraint (OBC). While methods



to solve models with OBCs exists, and likewise nonlinear filters are available, the combination of
both is computationally very expensive for medium-scale models. Before we turn to our estimation
results, we briefly summarize the set of novel methods that allow us to conduct an estimation of
medium-scale models, that we consider, in the presence of a binding ZLB. Secondly, this section
describes our choices with regard to the data, calibrated parameters, and priors used in the empirical
analysis.

8.1 Solution method

Throughout this paper we use the solution method for OBCs presented in Boehl (2020b). This
section sketches the overall idea of this method. We refer to the original paper for details. First,
the piecewise linear model of the variables y; must be cast in the first-order auxiliary form

N[ Y [ +hmax{p [V +m| ¥ |, 7} =F, |V, (6)
W1 w Wi—1 Wy
where wi;_1 = S Yt_l‘ is an auxiliary vector at the end of period ¢ — 1 that contains all the

€t
(latent) state variables, augmented by the vector of current shocks, and v, is an vector containing
all auxiliary forward looking variables. N is the system matrix with dimension. 7 is the minimum
value of the constrained variable r;, which in our case is the nominal interest rate. If the constraint
Vit1 Vi
Wi Wi—1
rule. The vector g contains the effects of r; onto all other equations. Further, denote by the two
integer values k and [ the expected numbers of periods that the system will remain at the ZLB and,
respectively, the expected number of periods before the ZLB binds.
It can be shown that given the above specification of the system, the rational expectations
solution for the system state w in period t + s, depending on the state w;_; at the beginning of

period t and the expectations on k and [ can be expressed in closed form as

is slack, it holds that v, = p , which in this paper this is the monetary policy

—|—m‘

S, k,we_1)

Wi—1

+ (I _ N)—l(I _ Nmax{s—l,O})h,F

LS (17 k7 Wtfl) :Nmax{s—l,O}Nmin{l,s}

(7)

Vits
Wits—1

(8)

where N=(I-h®p) ' (N+h®m) and

S(l, k,wi_1) = {vt : QNN W"t =-QI-N)HI- Nk)hr} : (9)
t—1
Q = ’I —Q| for which v; = Qw;_ represents the linear rational expectations solution of the

unconstrained system as it can be obtained e.g. by the method of Klein (2000).
Search for the equilibrium values of {I, k} must be done numerically. A crucial advantage of the
above representation is that the simulation of anticipated equilibrium paths can be avoided when



iterating over {I,k}.!3 Boehl (2020b) provides further methodological details such as equilibrium
conditions and numerical routines.

The resulting transition function is linear for the region where the ZLB does not bind and
(increasingly) nonlinear when it binds. For the model presented here, the implementation in the
pydsge package (Boehl, 2020c). will find the state-space representation for about 200.000 particles
draws per second and CPU.

3.2 Filtering and Estimation Method

Proper estimation and identification of the parameters of the model requires a Bayesian filter,
i.e. a filter that approximates the state of the system given uncertainty about initial states and
about potential measurement errors. For this purpose, we use the transposed-ensemble Kalman
filter (TEnKF) also introduced in Boehl (2020b). This filter is a hybrid of the particle filter and
Kalman filter technology. Similar to the particle filter, a set of points (the ensemble) is sent through
the transition function during the prediction step. However, instead of re-sampling (as with the
particle filter), the TEnKF approximates a state-dependent system matrix which can be used within
a Kalman-like updating step. The TEnKF allows to efficiently approximate the state distribution of
large-scale nonlinear systems with only a few hundred particles. The paper also suggests a nonlinear
path-adjustment smoother (NPAS) to calculate the smoothed /historic shock innovations.'4

TEnKF and NPAS are implemented in the econsieve package (Boehl, 2020a). Compared with
the particle filter, the TEnKF also works with very small measurement errors. Importantly, it also
works with a small number of particles thereby reducing computational costs.'® In contrast to the
inversion filter used in Guerrieri and Iacoviello (2017), the TEnKF is a full Bayesian filter. The
inversion filter does not allow for uncertainty on the initial states, which has the drawback that bad
initial values can result in large approximation errors.'®

For posterior sampling we apply differential evolution Monte Carlo Markov chain methods (ter
Braak, 2006; ter Braak and Vrugt, 2008, DE-MCMC). The DE-MCMC method is a class of ensemble
MCMC methods which, instead of using a single or small number of state-dependent chains (as
e.g. in the Metropolis algorithm), relies on a large number of chains (the “ensemble”). Similar
ensemble methods have been extensively applied in particular in astrophysics. The main advantage
of these methods is that they are self-tuning, easy to parallelize, robust against local maxima, which
allows to use them to sample from oddly-shaped and potential multimodal distributions. This is
of particular importance as we use quite short data samples with potential systemic breaks. For
each estimation, we initialize an ensemble of 200 particles with the prior distribution and run 2500
iterations. Of these, we keep 500 as a representation of the posterior distribution.

13This gain in computational efficiency marks an advantage over the prominent Occbin-Toolbox developed by
Guerrieri and Tacoviello (2015), which makes its use attractive for model estimation.

14The NPAS builds two steps on top of the TEnKF: the first step is an ensemble version of the Rauch-Tung-Striebel
smoother (Rauch et al., 1965). For the second step, iterative global optimization methods are used to recover the
shock innovations that fully respect the nonlinear transition function while taking the approximated distribution of
smoothed states into account.

15For all estimations and for the numerical analysis we use an ensemble of 400 particles.

16 A learning period will not change this property as, in the absence of potential measurement errors, the course
of the dynamics is deterministic.



3.8 Data and Priors

For the quantitative analysis of the Great Recession and its aftermath, our baseline sample
ranges from 1998:1 to 2019:I11. To our best knowledge, we are the first to include the late 2010’s in
the sample, which also contains the exit from the ZLB at the end of 2015. Our benchmark sample is
shorter than, e.g., in Gust et al. (2017), or Fratto and Uhlig (2020), who as well analyze the Great
Recession in estimated models. The reason is that we want our estimation to capture idiosyncrasies
of the episode in which the effective lower bound was binding, in particular the persistence of
endogenous and exogenous variables, the role of policy, and the slope of the Phillips Curve. For
this purpose, using a longer sample bears the risk of misspecification.!” An additional drawback
of a longer sample that would include the Great Moderation is a downward trend in the nominal
interest rate, which distorts the results.!® Throughout our analysis we also refer to alternative data
vintages.

We conduct estimations with seven and eight observables. The seven observables that are
used throughout all estimations in the paper are real GDP growth, real consumption growth, real
investment growth, labor hours, the log change of the GDP deflator, real wage growth, and the
Federal Funds Rate. Additionally, we present results for estimations in which we add the Gilchrist
and Zakrajsek (2012) spread (GZ-spread, henceforth).1?

The measurement equations that relate the model variables to our data series are

Real GDP growth =7 + (y+ — y¢— 1) (10)
Real consumption growth =% + (¢; — ¢;—1) (11)
Real investment growth =7 + (i — i4— 1) (12)
Real wage growth =7 + (wy — we—1), (13)
Labor hours = [ + Iy, (14)
Inflation = 7 + m, (15)
Federal funds rate = (BL— —1) %100 + 7. (16)
Y%
When we also add the spread as an observable, we specify
GZ-spread = spread + E; [?fH — 7). (17)

The construction of the observables is mostly standard and delegated to Appendix B. Three
aspects are worth mentioning. First, for our benchmark estimations, we follow Justiniano et al.
(2010) and include durable consumption in our investment series. As observed by Erceg and Levin
(2006), durable consumption resembles investment in its behaviour over the business cycle. We find
that including this choice generally improves the ability of the model to explain the data.

17Naturally, using a shorter sample yields less data observations. Yet, our sample is still larger than e.g. in Smets
and Wouters (2003).

I8Figure 1.21 in Appendix I shows that the downward trend in the nominal rate is associated with an upward
trend in consumption, which even in the Great Recession does not drop below steady state.

9For the computation of the spread, Gilchrist and Zakrajsek (2012) consider a broad set of loans to firms with
different credit risk and compare the interest rate paid on each individual loan with the costs that the government
would have had to pay on a loan with a comparable maturity. The GZ-spread is the average over these individual
credit spreads.



As a consequence, the strong fall in durable consumption during the Great Recession contributes
to the sharp decrease in the investment series, whereas the decline in the consumption series at
that time is somewhat dampened.Secondly, as in Boehl et al. (2020), we use a trailing MA(5)
of the civilian non-institutional population index to normalize real quantities. This helps us to
purge our observables of jumps in the index that reflect artifacts in its construction rather than
the underlying economic fundamentals. Lastly, we set the empirical lower bound of the nominal
interest rate within the model to 0.05% quarterly. Setting it exactly to zero would imply that the
ZLB never binds in our estimations, as the observed series for the FFR stays strictly above zero.
Our choice maintains that the ZLB is considered binding throughout the period from 2009:Q1 to
2015:Q4. For the observable Federal Funds Rate we cut off any value below 0.05. This maintains
that any observable value is also reachable for the model. Formally, we set the lower bound for the
quarterly nominal rate 7 = —100( 5=%> — 1) +0.05, where 7 is gross inflation and the parameters
and o, denote the steady state growth rate and the coefficient of relative risk aversion, respectively.

We assume small measurement errors for all variables with a variance that is 0.01 times the
variance of the respective series. Since the Federal Funds rate is perfectly observable (though
on a higher frequency) we divide the measurement error variance here again by 100. Hence, the
observables are de facto matched perfectly.

In the calibration of some parameters and the choice of the priors for the estimation of the
others we stick as closely as possible to the previous literature. For the parameters of RANK we
rely on the choices of Smets and Wouters (2007). For the parameters associated with the extension
of the financial sector we use the priors employed by Del Negro et al. (2015b). The TANK model
only requires one additional prior for A\. Here, we choose for the prior a beta distribution with a
mean of 0.3 and a standard deviation of 0.1. Our prior mean is close to the roughly 31 % reported
by Kaplan et al. (2014) as the combined share of poor and wealthy hand-to-mouth agents in the
US. This is also within close range to estimates by Coenen and Straub (2005) and Féve and Sahuc
(2017), but slightly higher than the value estimated by Coenen et al. (2013).

In the estimations on the crisis sample, we follow Kulish et al. (2017) in the choice of our prior
for 7. Importantly, they opt for a tighter prior for this parameter than Smets and Wouters (2007).
Arguably the economy deviated strongly and persistently from its steady state during the Great
Recession. In order to dampen the data’s pull of the parameter down to the sample mean, we
therefore prefer the tight prior as well.2%

4 Estimation Results

Our main focus is on estimations on the crisis sample from 1998:1 to 2019:III. We compare
parameter estimates across models and contrast them with the estimates for a pre-crisis sample
from 1983:1 to 2008:1V. This pre-crisis sample is a good candidate because it is quite frequently
used in the literature for two reasons: it avoids the Great Inflation as well as the methodological
challenge of accounting for a binding ZLB after 2008. Table A.5 summarize the posterior for model
parameters for the crisis sample. The three main models we consider are RANK, TANK, and
FRANK. Parameter estimates for the pre-crisis sample across models are reported in Table A.6. 2!

20For wider priors we confirm unrealistically low estimates of the trend growth rate.
21'We provide additional parameter estimates for FTANK and other variations of the financial friction models, as
well as for samples from 1983-2019 in Table A.9.
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Overall we find that parameter estimates are quite robust to the model extensions, however there
are meaningful systematic differences between the pre-crisis and the crisis estimates.

Across models, we find that the coefficient of relative risk aversion o, has decreased from means
between 1.260 and 1.469 in the pre-crisis sample to slightly less then unity in the crisis sample.
Similarly, Kulish et al. (2017), who also include the last decade in their estimation, find o, to be close
to unity. A value of o, close to one mutes the effect of variations in labor hours on consumption via
the Euler equation, which is introduced through the nonseperabilites in preferences. The reduction
of this channel prevents the strong drop in labor hours during the crisis to exert an excessive
downwards pull on consumption.

The posterior mean values for habit formation, h, vary from from 0.755 (FRANK) to 0.839
(TANK) in the crisis sample. Across models, this is roughly 0.1 higher than in the pre-crisis
sample. In contrast, investment adjustment costs are lower for each model in the crisis sample
(between 4.996 and 5.287) than in the pre-crisis sample (between 5.612 and 6.176). This reflects
the high volatility of investment relative to consumption observed in the Great Recession.

The estimates of labor market parameters imply more flexibility of both labor and wages in the
Great Recession and at the ZLB than in prior decades. The posterior mean for the inverse of the
Frisch elasticity, oy, lies between 1.764 (FRANK) and 1.518 (TANK) in the crisis sample, which is
somewhat lower than in the pre-crisis sample, where it is estimated to be slightly higher than 2 in
all models. This implies a higher elasticity of labor supply during the crisis and therefore a higher
responsiveness to demand shocks. This allows for a quicker decline in labor hours and labor income
in the Great Recession. Additionally, in crisis times, and in particular in models without financial
frictions, the parameter governing wage rigidities, (,, is estimated to be lower than in the pre-crisis
sample. Mean values here range from 0.691 (TANK) to 0.766 (FRANK), allowing wages to respond
faster to developments in the economy. Our estimates of (,, come close to the value in Kulish et al.
(2017), but stand in contrast to the estimates of Gust et al. (2017) who obtain an wage adjustment
cost parameter of 4420 in a Rotemberg setting, which implies a virtually inexistent wage Phillips
curve.

The RANK estimates for the Calvo parameter of ¢, = 0.852 and the gross price markup of ®, =
1.254 support the general notion that the Phillips Curve has been flat in the last decades. Table 3
summarizes the estimated slopes of the Phillips across different samples and model vintages. At the
mean, the slope of the Phillips Curve of RANK is estimated to be 0.007. This is substantially lower
than the estimate by Smets and Wouters (2007), who find a slope coefficient of roughly 0.02. Our
estimates provide evidence that the Phillips curve has already been flattening out during the Great
Moderation and has stayed flat at the ZLB. This finding is robust to all model considered, including
estimates of FRANK in which we include a risk shock & la Christiano et al. (2014)(FRANK-R) and
the GZ-spread (FRANK-Spread), and corroborated by estimates of Kulish et al. (2017), who start
their sample in the 80s and include the crisis period in their estimation.

The persistence parameter of the risk premium shock lies roughly in the range of 0.866 to 0.890
in the crisis sample. This is substantially higher than the estimates for the pre-crisis sample, which
vary around 0.7.22 This is not surprising as this shock plays a larger role for the Great Recession
and the ZLB period than for an analysis of the pre-crisis period. The persistence parameter for
MEI shocks displays substantial differences between models with and without financial frictions.

22For comparison in their estimate from 1966-2004, Smets and Wouters (2007) report a persistence parameter of
0.22 for the risk premium shock. Kulish et al. (2017), who include the recent decades in their sample, report a
persistence parameter of 0.95 for the shock.
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Sample from 1998 to 2019

Prior Posterior
RANK TANK FRANK

dist. mean sd/df H mean sd  mode | mean sd  mode ‘ mean sd  mode
Oc CRRA normal 1.500 0.375 || 0.930 0.081 0.882 | 0.891 0.046 0.871 | 0.980 0.114 1.161
o1 Labor supply normal 2.000 0.750 || 1.753 0.459 1.315 | 1.518 0.431 1.276 | 1.764 0.409 1.454
Bipr Discount factor gamma 0.250 0.100 0.158 0.055 0.141 | 0.154 0.055 0.118 | 0.138 0.045 0.137
h Habit beta 0.700 0.100 || 0.833 0.027 0.839 | 0.839 0.025 0.849 | 0.755 0.048 0.666
S Inv. adj. cost normal 4.000 1.500 || 5.287 0.914 4.926 | 5.420 0.928 4971 | 4.996 1.007 3.713
p Price indexaation beta 0.500 0.150 || 0.192 0.066 0.166 | 0.180 0.062 0.190 | 0.218 0.077 0.288
Ly Wage indexation beta 0.500 0.150 || 0.371 0.112 0.426 | 0.398 0.123 0.429 | 0.309 0.101 0.344
e Capital share normal 0.300 0.050 || 0.168 0.013 0.175 | 0.167 0.012 0.171 | 0.173 0.013 0.179
Cp Price Calvo beta 0.500 0.100 || 0.852 0.033 0.840 | 0.850 0.033 0.861 | 0.920 0.027 0.927
Cw Wage Calvo beta 0.500 0.100 || 0.710 0.044 0.678 | 0.691 0.047 0.681 | 0.766 0.050 0.771
P, Fixed cost normal 1.250 0.125 || 1.254 0.076 1.249 | 1.251 0.079 1.254 | 1.303 0.074 1.411
Y Capital Utilization beta 0.500 0.150 || 0.757 0.080 0.802 | 0.759 0.079 0.751 | 0.763 0.071 0.749
br Mon. policy: inflation normal 1.500 0.250 || 1.353 0.218 1.512 | 1.361 0.218 1.386 | 1.101 0.196 0.900
by Mon. policy: gap normal 0.125 0.050 || 0.207 0.029 0.190 | 0.196 0.027 0.174 | 0.237 0.027 0.220
Pdy Mon. policy: growth normal 0.125 0.050 || 0.170 0.040 0.165 | 0.172 0.041 0.174 | 0.163 0.042 0.170
p Mon. policy: smoothing beta 0.750 0.100 || 0.816 0.042 0.833 | 0.818 0.040 0.809 | 0.751 0.039 0.711
Cspb Leverage elast. of spread beta 0.050 0.005 0.050 0.004 0.050
A Share of h2m agents beta 0.300 0.100 0.227 0.075 0.286
Pr AR(1) monetary beta 0.500 0.200 || 0.754 0.088 0.710 | 0.737 0.090 0.760 | 0.493 0.079 0.452
Pg AR(1) fiscal beta 0.500 0.200 || 0.918 0.019 0.915 | 0.916 0.019 0.902 | 0.941 0.016 0.959
Pz AR(1) technology beta 0.500 0.200 || 0.979 0.013 0.982 | 0.982 0.012 0.986 | 0.964 0.025 0.977
Pu AR(1) risk premium beta 0.500 0.200 || 0.866 0.022 0.871 | 0.867 0.022 0.881 | 0.890 0.023 0.891
Pi AR(1) MEI beta 0.500 0.200 || 0.602 0.127 0.528 | 0.572 0.100 0.573 | 0.916 0.024 0.938
Pp AR(1) price Markup beta 0.500 0.200 || 0.639 0.090 0.679 | 0.622 0.103 0.617 | 0.441 0.199 0.666
Puw AR(1) wage Markup beta 0.500 0.200 || 0.455 0.097 0.369 | 0.449 0.091 0.476 | 0.499 0.093 0.417
Lp MA price markup beta 0.500 0.200 || 0.315 0.121 0.300 | 0.345 0.141 0.257 | 0.403 0.149 0.391
M MA wage markup beta 0.500 0.200 || 0.255 0.090 0.166 | 0.246 0.081 0.259 | 0.316 0.093 0.236
Pgz Fiscal technology normal 0.500 0.250 || 0.607 0.085 0.646 | 0.615 0.089 0.672 | 0.479 0.101 0.340
o Std. dev. monetary IG 0.100 2.000 || 0.106 0.017 0.122 | 0.110 0.021 0.112 | 0.173 0.045 0.189
Og Std. dev. fiscal IG 0.100 2.000 || 0.222 0.025 0.208 | 0.220 0.024 0.214 | 0.255 0.024 0.287
0 Std. dev. technology IG 0.100 2.000 || 0.399 0.043 0.412 | 0.396 0.038 0.399 | 0.378 0.042 0.424
Ou Std. dev. risk premium IG 0.100 2.000 || 0.681 0.148 0.626 | 0.688 0.161 0.588 | 0.432 0.104 0.339
o; Std. dev. MEI IG 0.100 2.000 || 0.881 0.276 1.041 | 0.940 0.257 0.876 | 0.533 0.059 0.618
Op Std. dev. price Markup IG 0.100 2.000 || 0.184 0.058 0.139 | 0.204 0.078 0.173 | 0.411 0.152 0.182
Ow Std. dev. wage Markup IG 0.100 2.000 || 1.272 0.294 1.487 | 1.287 0.279 1.176 | 1.133 0.222 1.289
o1 Trend growth normal 0.440 0.050 || 0.382 0.036 0.386 | 0.379 0.038 0.392 | 0.391 0.033 0.393
1 ME constant: labor normal 0.000 2.000 || 0.997 0.634 1.099 | 1.179 0.651 1.356 | 1.395 0.643 2.243
s ME constant: inflation gamma 0.625 0.100 || 0.632 0.059 0.659 | 0.645 0.057 0.688 | 0.603 0.060 0.581
spread ME constant: spread normal  0.500 0.100 0.331 0.064 0.322

Table 1: Comparison of estimation results across models for the crisis sample (1998-2019).
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Sample from 1983 to 2008

Prior Posterior
RANK TANK FRANK

dist. mean sd/df H mean sd  mode | mean sd  mode ‘ mean sd  mode
Oc CRRA normal 1.500 0.375 || 1.469 0.147 1.468 | 1.388 0.133 1.298 | 1.424 0.126 1.444
o1 Labour supply normal 2.000 0.750 || 2.361 0.539 2.555 | 2.062 0.513 1.849 | 2.519 0.507 2.786
Bipr Discount Factor gamma 0.250 0.100 0.147 0.046 0.146 | 0.147 0.049 0.142 | 0.143 0.048 0.123
h Habit beta 0.700 0.100 || 0.689 0.048 0.699 | 0.710 0.040 0.688 | 0.669 0.042 0.670
S Inv. adj. cost normal 4.000 1.500 || 5.622 1.035 6.023 | 5.727 1.029 4.939 | 6.176 0.982 5.926
Lp Price indexation beta 0.500 0.150 || 0.309 0.100 0.311 | 0.344 0.106 0.323 | 0.355 0.130 0.385
Ly Wage indexation beta 0.500 0.150 || 0.424 0.127 0476 | 0.414 0.129 0.371 | 0.373 0.121  0.600
e Capital share normal 0.300 0.050 || 0.214 0.011 0.218 | 0.213 0.011 0.210 | 0.226 0.011 0.226
Cp Price Calvo beta 0.500 0.100 || 0.845 0.032 0.832 | 0.858 0.033 0.855 | 0.847 0.031 0.841
Cw Wage Calvo beta 0.500 0.100 || 0.783 0.047 0.769 | 0.792 0.045 0.797 | 0.833 0.038 0.859
P, Fixed Cost normal 1.250 0.125 || 1.531 0.072 1.603 | 1.551 0.070 1.554 | 1.525 0.063 1.521
P Capital utilization beta 0.500 0.150 || 0.631 0.089 0.643 | 0.625 0.091 0.685 | 0.545 0.069 0.485
o Mon. policy: inflation normal  1.500  0.250 1.294 0.245 1.436 | 1.319 0.235 1.067 | 1.311 0.217 1.273
by Mon. policy: gap normal 0.125 0.050 || 0.222 0.040 0.216 | 0.212 0.038 0.235 | 0.196 0.033 0.206
Pdy Mon. policy: growth normal 0.125 0.050 || 0.203 0.040 0.199 | 0.205 0.041 0.214 | 0.198 0.038 0.216
p Mon. policy: smoothing beta 0.750 0.100 || 0.710 0.044 0.752 | 0.713 0.041 0.638 | 0.734 0.036 0.744
Cspb Leverage elast. of spread beta 0.050 0.005 0.051 0.004 0.048
A Share of h2m agents beta 0.300 0.100 0.176 0.052 0.151
Pr AR(1) monetary beta 0.500 0.200 || 0.813 0.061 0.771 | 0.813 0.061 0.855 | 0.696 0.070 0.715
Pg AR(1) Ffscal beta 0.500 0.200 || 0.972 0.013 0.975 | 0.972 0.013 0.981 | 0.939 0.031 0.948
Pz AR(1) technology beta 0.500 0.200 || 0.955 0.015 0.940 | 0.947 0.017 0.950 | 0.941 0.021 0.963
Pu AR(1) risk premium beta 0.500 0.200 || 0.736 0.090 0.754 | 0.700 0.083 0.797 | 0.691 0.076 0.785
Pi AR(1) MEI beta 0.500 0.200 || 0.767 0.061 0.806 | 0.807 0.048 0.793 | 0.868 0.028 0.883
Pp AR(1) price markup beta 0.500 0.200 || 0.764 0.082 0.827 | 0.749 0.100 0.821 | 0.728 0.106 0.801
Puw AR(1) wage markup beta 0.500 0.200 || 0.673 0.109 0.688 | 0.642 0.121 0.694 | 0.588 0.110 0.650
Lp MA price markup beta 0.500 0.200 || 0.611 0.144 0.603 | 0.642 0.115 0.601 | 0.514 0.140 0.557
M MA wage markup beta 0.500 0.200 || 0.393 0.152 0.396 | 0.423 0.158 0.443 | 0.391 0.156 0.386
Pgz Fiscal technology normal 0.500 0.250 || 0.352 0.078 0.423 | 0.351 0.079 0.324 | 0.389 0.079 0.382
o Std. dev. monetary IG 0.100 2.000 || 0.130 0.015 0.141 | 0.131 0.015 0.123 | 0.151 0.021 0.138
Og Std. dev. fiscal IG 0.100 2.000 || 0.237 0.017 0.233 | 0.238 0.018 0.228 | 0.242 0.018 0.230
0 Std. dev. technology IG 0.100 2.000 || 0.308 0.028 0.316 | 0.309 0.027 0.285 | 0.316 0.027 0.300
Ou Std. dev. risk premium IG 0.100 2.000 || 0.958 0.397 0.853 | 1.138 0.412 0.619 | 0.954 0.314 0.625
o; Std. dev. MEI IG 0.100 2.000 || 0.639 0.114 0.590 | 0.576 0.083 0.582 | 0.641 0.059 0.587
Op Std. ev. price markup IG 0.100 2.000 || 0.140 0.045 0.098 | 0.158 0.047 0.101 | 0.138 0.054 0.090
Ow Std. dev. wage markup IG 0.100 2.000 || 0.457 0.100 0.420 | 0.523 0.153 0.459 | 0.591 0.148 0.511
ol Trend growth normal 0.440 0.050 || 0.463 0.025 0.460 | 0.466 0.024 0.473 | 0.412 0.027 0.427
1 ME constant: labor normal 0.000 2.000 || 2.297 0.587 2.497 | 2.187 0.559 2.832 | 1.532 0.501 1.791
s ME constant: inflation gamma 0.625 0.100 || 0.703 0.065 0.704 | 0.693 0.065 0.706 | 0.599 0.065 0.613
spread ME constant: spread normal  0.500 0.100 0.472 0.064 0.438

Table 2: Comparison of estimation results across models for the sample before the crisis (1983-2008).
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Slope of the Phillips Curve
Sample ‘ ‘ RANK TANK FRANK FTANK
1998 — 2019 || 0.007 (0.004) 0.007 (0.003) 0.002 (0.002) 0.001 (0.0)

1983 — 2008 || 0.004 (0.002) 0.003 (0.002) 0.004 (0.002) 0.003 (0.001)
1983 — 2019 || 0.002 (0.001) 0.002 (0.001) 0.002 (0.001) 0.002 (0.001)

Sample ‘ ‘ FRANK-R FTANK-R FRANK-Spread FTANK-Spread
1998 — 2019 0.01 (0.003) 0.011 (0.003) 0.001 (0.003) 0.001 (0.001)
1983 — 2008 || 0.004 (0.003) 0.004 (0.005) 0.099 (0.09) 0.004 (0.088)

Table 3: Comparison of the slopes of estimated Phillips Curves of the different models. Posterior means with standard
deviations in parenthesis. The short crisis sample (1998-2019) is the benchmark we focus on in the main body.

In RANK, its posterior mean value is 0.602, whereas for FRANK it is at 0.916. This points at the
more important role of MEI shocks in financial friction models in the crisis, which we discuss in
Subsection 7.1.

The share of hand-to-mouth agents, A, is estimated to be around 0.227 in TANK. The share
of hand-to-mouth agents is a tad higher in the crisis sample, than in the pre-crisis sample. This
squares with the notion that credit constraints played a larger role for households in the Great
Recession and its aftermath than in the previous decades. However the posterior mean is below its
prior, which, motivated by the estimates by Kaplan et al. (2014), is set to 0.3. Our results suggest
that high ad-hoc calibrations of the share at, e.g., 0.5, which are often applied in the literature®3,
overstate the weight of hand-to-mouth consumers in macroeconomic models.

5 The Great Recession Through the Lens of RANK

We start our discussion of business cycle dynamics at the ZLB by summarizing the main impli-
cations, which result from the estimation of RANK on the crisis sample.

In this context, risk premiums shocks are the most prominent driver of the joint dynamics of
key variables following the financial crisis. Figure 5 illustrates the dominant role of risk premium
shocks on the households’ borrowing rate, €}, for macroeconomic dynamics following the Great
Recession.?* It presents the historical shock decompositions of key variables for the crisis sample.
From 2009 on, persistently elevated risk premiums account for almost the entire drop of aggregate
consumption, weigh on aggregate investment and inflation, and consequently are responsible for
the long duration of the ZLB spell for the nominal interest rate.

However, high risk premiums cannot fully account for the sharp drop in investment during the
Great Recession. While recessionary risk premium shocks do trigger a simultaneous downturn of
consumption and investment, they fail to match the drop differential of these components, creating
the need for an extra driver to make up for the missing decline in investment. In the case at hand,
the initial decline of investment is triggered by recessionary MEI shocks, i, which at the trough
account for roughly half of the collapse in investment.

23Gee, e.g., Galf et al. (2007).
24The dominant role of risk premium shocks is corroborated by the generalized forecast error variance decomposi-
tion, reported in Table D.11 in the appendix.
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Similarly, the decline of inflation during the Great Recession can only partly be attributed to
the increase in risk premiums. The estimated flat Phillips Curve prevents the decline in real activity
from generating substantial deflation, which requires price markup shocks, €/, to account for the
inflation dynamics. These shocks govern the high-frequency movements of inflation in the sample
and account for the dip in inflation during the Great Recession.?> The only modest decrease in
inflation triggered a debate on the missing disinflation puzzle. Christiano et al. (2015) attribute
some inflationary pressure to a persistent decline in productivity relative to its pre-recession trend.
In contrast, in our estimation, which abstracts from a TFP-specific trend, the technology process,
z¢, is consistently measured to be positive. In addition, Christiano et al. (2015) as well as Gilchrist
et al. (2017) ascribe the missing inflation to higher refinancing costs of firms. We confirm that
within the RANK model, MEI shocks raise inflation by increasing the firms’ cost of investments.
However, the size of this effect is negligible according to our estimation. In our analysis, similar to
Del Negro et al. (2015b), the estimate of a flat Phillips Curve is responsible for the lack of a steep
decline in inflation. We view the reliance on MEI shocks and price markup shocks as disparate
exogenous drivers for the explanation of the dynamics of investment and inflation in the years of
the Great Recession constitutes a shortcoming of the RANK model.?%

The long duration of the ZLB is largely interpreted by our estimation as an endogenous response
of the central bank to the deterioration of fundamentals via the Taylor rule, rather than to an
active lower-for-longer policy.2” Figure 1 shows the dynamics and the distribution of the expected
duration of the ZLB spell over the sample.?® The mean expected durations vary between six and
ten quarters throughout the ZLB years. Although we do not target, nor use any prior information
on the actual expectations of market participants on the duration of the ZLB, for the most part
they come remarkably close to the average expected durations reported by the Blue Chip Financial
Forecast and the Federal Reserve Bank of New York’s Survey of Primary Dealers. In the first years
of the ZLB, our mean estimates somewhat overestimate expected durations, and around 2012, they
are slightly too low. However, the results of these surveys lie within the 90 % confidence intervals
of our estimation for almost all quarters. The lower panels of Figure 1 show the distributions of
expected ZLB durations at different points in time. In 2009:Q1, most of the probability mass lies
on durations of, or higher than, 8 quarters. The same holds for the first quarters of 2012 and 2013,
for which survey data shows high expected durations as well. In contrast, for 2011:Q1 when our
mean expected duration of seven quarters slightly exceeds the mean implied by the Primary Dealer
Survey, the distribution shows that considerable probability mass is allocated to lower expected
durations and the survey mean is within the confidence interval of the RANK estimation.

The resulting estimated average expected durations are higher than those by Gust et al. (2017),
who obtain an average ZLB spell of merely 3.5 quarters. Like us they do not incorporate survey
data on duration expectation in the estimation of their model, which is in several respects similar
to ours, although smaller. A potential reason for the difference in the resulting expected durations

25The relatively low estimate of ¢, in the Taylor rule moderates the transmission of the volatile short-lived effects
of price markup shocks on inflation to the nominal interest rate, and in turn to economic activity.

26For an illustration of the exogenous shock process, see Figure K.23 in the appendix.

27In principle, our model allows for forward guidance shocks at the ZLB. However, as discussed in Appendix G, we
find that, in the absence of additional data input such as, e.g., term premia, nonlinear filters do not perform reliably
well in identify forward guidance shocks at the ZLB. For a discussion of the effects of unconventional monetary policy,
see Boehl et al. (2020).

28For a discussion of the economic cost of a binding ZLB, see Appendix F. Closely related to the cost of the
binding ZLB is the decline in the natural rate, which is discussed in Appendix H.
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Figure 1: Expected ZLB durations for RANK. The shaded area in the top panel represent 90% credible sets. In the
lower panels, the last bar to the right marks the probability of a duration of 10 or more quarters.

might be the treatment of the ZLB in the estimation. As mentioned in Section 3.3, we set the
empirical ZLB to 0.05% quarterly, whereas Gust et al. (2017) choose exactly zero percent. This
may be problematic as the Federal Funds Rate never actually went all the way down to zero. In
theory, their model is hence capable of matching the observables without forcing the model to the
zero lower bound. From this angle it is surprising that in their smoothed state estimates, they hit
the ZLB at all. We suspect that this is due to the assumption of relatively large observation errors,
which is often necessary when employing the particle filter (see e.g. Atkinson et al., 2019).2
Kulish et al. (2017) use survey data to construct priors on expected durations, which they esti-
mate directly. While this procedure poses a challenge for parameter identification by substantially
extending the dimensionality of the parameter space, it eases matching the observed dynamics of
the expectations over the years at the ZLB. In contrast to the aforementioned papers, our sample
also covers the takeoff from the ZLB. The mean of the smoothed nominal interest rate series leaves
the ZLB a year after the actual ZLB period ended. The model therefore interprets the very low
federal fund rate in 2016 to have the same effects on equilibrium dynamics as a binding ZLB. This
might capture uncertainty effects that could not explicitly included in our modelling approach.

29Their measurement errors variances are assumed to at least 10% of the variance of data sample, which is a full
magnitude higher than our assumed measurement errors (3 magnitudes for the Federal Funds Rate).
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Figure 2: RANK Model estimated to 1983-2008 used for the decomposition of the sample from 1998 — 2019. Note:
Means over 250 simulations drawn from the posterior. The contribution of each shock is normalized as in Appendix
E.

6 The Necessity of Using Post-Crisis Data in the Estimation

Fully accounting for the ZLB in the estimation of a DSGE model is non-trivial (c.f. Subsections
3.1 and 3.2). It therefore has become common practice to analyze the dynamics of the US economy
during the crisis based on models, that are estimated on pre-ZLB data only (see, e.g., Chen et al.,
2012; Christiano et al., 2014, 2015; Del Negro et al., 2015b; Carlstrom et al., 2017). This approach
has generated prominent that shape our understanding of the Great Recession, the role of financial
frictions or the effects of unconventional monetary policy. In this subsection we illustrate that
this practice can yield strongly misleading implications. One particular implication is, that the
importance of disturbances to the investment decision is highly overtaxed. Shocks to investment
cost have received heightened attention in a search for an explanation of the events of the Great
Recession — Christiano et al. (2015) label it the financial wedge. In their analysis, variations in this
wedge explain the bulk of variations in real activity in the Great Recession and its aftermath. In
contrast to their finding, we argue that the importance of risk premium shocks, or in analogous
terms, the consumption wedge, is underestimated.

We illustrate this in Figure 2, which shows the historical shock decomposition for the crisis
sample using parameter estimates derived from the estimation of the RANK model on the pre-
crisis sample. Relying only on pre-crisis data drastically changes the interpretation of the crisis.
Importantly, as a comparison with Figure 5 shows, in this exercise the role of risk premium shocks
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Figure 3: IRF's to a risk premium shock in RANK estimated for 1998-2019. In orange with 0. = 1.469, a values
taken from the estimate of RANK from 1983 to 2008.

Note: Medians over 250 simulations drawn from the posterior. 90% credible set for RANK. Shock size is the posterior
mean standard deviation.

for business cycle dynamics is dramatically reduced. The decline in consumption is now attributed
to a combination of risk premium shocks and MEI shocks. Investment dynamics are almost entirely
driven by MEI shocks, whereas the effect of risk premium shocks is subdued. Compared to the
results from the previous section, the role of risk premiums for inflation dynamics is strongly reduced
as well. In contrast, the inflationary effect of negative MEI shocks now becomes more relevant. The
long ZLB period as well is explained to a mixture of recessionary risk premium shocks and MEI
shocks.

The sharp difference between this interpretation of the crisis and the interpretation based on
an estimation on crisis data can be attributed to the differences in the estimated parameter values
displayed above in Table A.5. In particular, the estimates of o. play an important role. In the
crisis estimate, its posterior mean is at 0.930. In the pre-crisis estimate it is at 1.469. Figure
3 shows how this alters the transmission of risk premium shocks. Already in the base case of
RANK, a drawback of the risk premium shock is that it cannot match the drop differential of
consumption and investment that was observed in the Great Recession. A risk premium shock that
would have triggered a collapse in investment as observed in 2009, would have caused an excessive
fall in consumption. For a coefficient of relative risk aversion of o, = 1.469, as in this exercise,
this drawback is exacerbated. For values of o, larger than one, the decline in labor hours exerts an
additional downwards pull on consumption through the non-separabilities in the utility function. In

18



output inflation consumption

0 005
/ - 0.0 f\w
0.00 5
-1 —0.05 —05
investment labor wages
0 I S 0.0 ~— ===
-5 —0.5
—10 -1 -1.0
interest rate capital stock marginal costs
\\/“ 00 _ ———
0.0 s———"
-2
—0 —— RANK —0.5
—0.2 —4 ===~ higho,
Q N Q N Q 20

Figure 4: IRFs to a MEI shock in RANK estimated for 1998-2019. In orange with o, = 1.469, a values taken from
the estimate of RANK from 1983 to 2008. Note: Medians over 250 simulations drawn from the posterior. 90%
credible set for RANK. Shock size is the posterior mean standard deviation.

turn, the lower consumption translates into an outward shift of the labor supply curve, and a further
drop in wages. Investment falls by less, since the marginal product of capital increases with the
additional employment used in production. Therefore, the drop differential between investment and
consumption becomes even smaller and makes it less likely that risk premium shocks can account
for the Great Recession.

In contrast, Figure 4 shows that one cause of the failure of MEI shocks to be reconciled with
the dynamics of the Great Recession is the low estimate of o, derived from the estimation on
crisis data. Here, a negative MEI shock increases consumption: by lowering aggregate demand,
MEI shocks weigh on the policy interest rate, which in turn stimulates consumption on impact.
This negative co-movement of consumption and investment is at odds with the observed dynamics
in the Great Recession. In contrast, when the higher value of o, derived from the estimate on
pre-crisis data is used, the non-separabilities between labor and consumption generate a decline
in consumption. In that case, the more prominent role for MEI shocks allows a stronger support
for inflation which, after an initial decline in response to the shock, rebounds and puts upwards
pressure on price dynamics. Hence, given the pre-crisis estimate for the coefficient of relative risk
aversion, MEI shocks can address the missing deflation puzzle. However, the pre-crisis estimate of
0. is very close to the prior mean and it is hard to reject that this estimate is a matter of poor
identification. On the contrary, the crisis-sample estimate of this parameter is almost two standard
deviations distant from the prior mean, which suggests that the value is driven by the data. Hence
we find that through the lens of pre-crisis estimates, MEI shocks — and other financial wedge type
of shocks which share similar properties — appear more attractive than they are when bringing the
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model to crisis data.

This account of the Great Recession offered by our exercise based on the pre-crisis sample
differs sharply from the interpretation deemed most likely by the crisis data. As we see, elevated
risk premiums to the households borrowing rate play a dominant role for business cycles. This can
be loosely associated to increases in mortgage lending rates and calls for a more refined modeling of
household finances, as well as additional modeling features that link a contraction in consumption
to a strong fall in investment.?® Whatever modeling choices prove to be the best fit to capture the
events of the recent decades, the exercise in this section highlights the importance of making use of
the data of the last decade, when analyzing business cycle dynamics during this time.

7 Evaluation of Financial Frictions and Household Heterogeneity

The mortgage crisis, which culminated in the default of Lehman Brothers in September 2008,
sent the US economy into a deep recession. Output, consumption, investment and employment
plummeted in 2009. The drop in investment was particularly sharp in comparison to the decline
in consumption. However, while real activity collapsed, price dynamics did not follow suit. The
drop in inflation in the Great Recession was mild and short-lived, sparking a lively debate on the
missing deflation puzzle.?' As argued above, with the financial crisis marking one, albeit complex,
event, a good model should provide a parsimonious account of this event in terms of a common
causal driver of the occurrences during this period. Any shock that can serve as such a common
driver must therefore generate a pronounced drop differential of investment and consumption, as
well as the modest decline in inflation. In this section we lay out that none of our models meets
the challenge of attributing these key features to a common source. At the end of the section, we
discuss how the presence of a joint propagation mechanism or the lack thereof in the model affects
its empirical fit. We show that against the gist of the literature, neither household heterogeneity
nor financial frictions improve upon the simple RANK model in terms of empirical fit.

7.1 FRANK: Challenges for financial friction modeling

We start this section by showing that the inclusion of the financial sector impairs the ability of
non-financial shocks to generate the observed collapse in investment during the Great Recession.
Subsequently, we show that financial shocks cannot fill in as main drivers of the recessions, due
to their inability to generate a substantial decline in consumption in the estimated models. As a
consequence, the models with financial frictions do not offer a joint propagation mechanism for the
behaviour of the components of aggregate demand. This stands in contrast to the large theoretical
literature that highlights the importance of the inter-linkages between the real economy and the
financial sector for the macroeconomic dynamics following the financial crisis.

7.1.1 The role of the financial sector for the transmission of shocks

The inclusion of financial frictions alters the transmission of shocks in important ways. Figure
6 shows the dynamic response of key variables to a risk premium shock. The difference between
‘FRANK’ and ‘low (spp’ isolates the effect of the financial accelerator on the transmission of the

30 Additional challenges highlighted by Gomme et al. (2011) is to generate a negative co-movement of the investment
volume and Tobin’s q, as well as to break the equivalence of the return on assets and the return on equity.
31See, e.g., Christiano et al. (2015), Del Negro et al. (2015b), Gilchrist et al. (2017).
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Figure 5: RANK Model estimated to 1998-2019. Decomposition of the smoothed time series into the contribution of
the different shocks. Note: Means over 250 simulations drawn from the posterior. The contribution of each shock
is normalized as in Appendix E.

shock in an estimated FRANK model, whereas the difference between ‘RANK’ and ‘FRANK’ also
includes the effect of changes in all parameter estimates.?? In all cases, an exogenous increase of
the risk premium on the households’ borrowing rate induces a contraction in aggregate demand.
The presence of financial frictions, however, amplifies the drop in consumption and attenuates the
drop in investment in response to the shock. This worsens the shock’s ability to account for the
observed drop differential of consumption and investment in the Great Recession.

Why is that so? On impact, a risk premium shock reduces the price of capital and net worth
of entrepreneurs. As a consequence, their leverage increases and — accordingly — the return on
capital demanded by creditors. However, in the context of the estimated FRANK model, the high
return on capital induces a quick recovery of net worth (c.f. Equation 5). In contrast, the decline
in the capital stock is more persistent. Hence, the increase in leverage is short-lived and reverses
after a few periods, while in the medium-run, the low leverage reduces the required return on

321n our discussion of financial frictions we focus on FRANK and omit the FTANK model as the role of hand-to-
mouth agents does not alter the key results.
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Figure 6: IRFs to a risk premium shock in FRANK estimated for 1998-2019. In orange: estimated FRANK with
Cspb = 0. In green: RANK. Note: Medians over 250 simulations drawn from the posterior. 90% credible set for
FRANK. Shock size is the posterior mean standard deviation for each model.

capital, and improves the investment climate. As the investment decision is forward looking and
rash adjustments of the capital stock are costly, the outlook of a future investment boom already
attenuates the fall of investment from the onset. The attenuating role of financial frictions impairs
the ability of the risk premium shock to account for the dramatic fall of investment observed in the
Great Recession without simultaneously generating an excess decline in consumption. Thus, less
weight is assigned to these shocks, and more weight to MEI shocks, which must fill in to generate
the strong fall in investment.

As is shown in Figure 7, the estimated financial friction has a similar effect on the transmission
of recessionary MEI shocks: they increase the price of capital and raise entrepreneurial net worth,
thereby lowering the spread. Again, the direct effect of the financial sector is to dampen the decline
in investment. Despite the financial attenuator, the decline in investment is far stronger in the
estimated FRANK model than in the estimated RANK model due to shifts in other parameter esti-
mates. Importantly, the estimate for the persistence parameter p; is higher in FRANK (0.916) than
in RANK (0.602). In equilibrium, the higher value of p; implies a more persistent and substantial
decline in investment, which triggers a stronger drop in output and labor hours. The sharper decline
in labor weighs on consumption, which decreases directly on impact. The negative co-movement
between investment and consumption is therefore removed. However, the fall in consumption is far
too modest to enable MEI shocks in FRANK to match the drop differential between investment
and consumption.

Figure 8 shows that as a result, the dynamics of consumption and investment are driven by two
disparate sources of shocks. This represents a severe drawback for the FRANK model’s appeal,
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Figure 7: IRFs to a MEI shock in FRANK estimated for 1998-2019. In orange: estimated FRANK with (,p, ~ 0. In
green: RANK. Note: Medians over 250 simulations drawn from the posterior. 90% credible set for FRANK. Shock
size is the posterior mean standard deviation for each model.

as it moves farther away from providing a unifying account of macroeconomic dynamics in the
Great Recession than RANK. While the financial sector itself acts as an attenuator for output and
investment dynamics, the higher persistence in MEI shocks in FRANK supports a more pronounced
decline in aggregate demand thereby creating deflationary pressure. As with RANK, this pressure
is too weak to cause the dip in inflation during the Great Recession. Again, the inability of the
model to account for the inflation dynamics is associated with a flat Phillips Curve and variations
in inflation are largely attributed to exogenous fluctuations in the price markup.

7.1.2  Can risk shocks explain the Great Recession?

The difficulties of the MEI shock to generate one of the Great Recession’s key features — a sub-
stantial, simultaneous drop of consumption and investment — is shared by a wide range of financial
shocks, that have been proposed in the literature. Like the MEI shock, they present a disturbance
to the intertemporal investment decision, or as labelled in Christiano et al. (2015), the financial
wedge. At odds with observed dynamics in the Recession, these shocks stimulate consumption.
This holds for instance by the contractionary credit shock, which Carlstrom et al. (2017) employ
in their analysis of the effects of unconventional monetary policy. Similarly, recessionary wealth
shocks raise households consumption in Carlstrom and Fuerst (1997).33

33 As a counterexample, more recently, Becard and Gauthier (2020) propose a collateral shock, which affects both
household and investment financing directly. In their model this financial shock induces a comovement of consumption
and investment.
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is normalized as in Appendix E.

Figure 9 displays this unappealing feature of a financial shock in our estimates, where it triggers
a negative co-movement of consumption and investment. For this illustration we employ the risk
shock, which was developed by Christiano et al. (2014). The risk shock is an exogenous process
driving changes in the volatility of cross-sectional idiosyncratic uncertainty of entrepreneurs. The
Figure results from two exercises, that we conduct in order to investigate on the ability of this shock
to improve our understanding of the Great Recession and the ZLB period. First, we exchange the
MEI shock in FRANK for the risk shock and estimate the resulting model as before (FRANK-R).
Secondly, we use FRANK with both shocks and add the GZ spread as an additional observable in
our estimation (FRANK-S).34

An increase in entrepreneurial risk raises the spread and makes external funding less affordable
for entrepreneurs. Aggregate investment and the price of capital therefore both drop, jointly with
entrepreneurial net worth. In contrast to the MEI shock, which drives Tobin’s ) and investment
in opposite directions, the risk shock is therefore a demand shock in the market for investment

34For details on the estimated parameters, interested readers are relegated to Table A.7 in Appendix A. For
completeness, we additionally conduct analogous estimations with our two-agent extension. The results of the
parameter estimates are reported in the same Table A.7 as well. Adding hand-to-mouth agents however does not
alter the main results of this section.
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Figure 9: IRFs to a risk shock in FRANK-R and FRANK-S estimated for 1998-2019. Additionally the IRFS to an
MEI shock in the same FRANK-S estimate. Note: Medians over 250 simulations drawn from the posterior with
90% credible sets. Shock size is the posterior mean standard deviation for each model.

goods. The drop in investment demand lowers output and hence labor hours. However, the latter
are sufficiently stable so that the decline in the real rate dominates the consumption response in the
short run in both estimations. With regard of the post-2008 course of inflation, an appealing feature
of the risk shock is that, by raising the costs of capital, it increases marginal cost and thereby creates
inflationary pressure. This effect is particularly pronounced in FRANK-R. However, whereas the
risk shock speaks to the missing deflation puzzle, its implications for consumption dynamics are at
odds with the data.

For both, FRANK-R and in FRANK-S, the problem persists that consumption and investment
dynamics following the Great Recession are explained by disparate sources within the model. For
FRANK-S this is illustrated in Figure 10, whereas the historical shock decompositions for FRANK-
R are relegated to Figure 1.19 in Appendix I. In both cases, the risk premium shock remains the
main source of movements in consumption. Notwithstanding, for reasons discussed in Section 7.1.1,
the financial accelerator undermines the risk premium shock’s ability to account for investment
dynamics and creates additional need for financial wedge type of shocks.

Crucially, the role of risk shocks for macroeconomic dynamics in FRANK-S is negligible. Of
the risk shock and the MEI shock, the latter produces a response of consumption that is more in
line with observations in the crisis. Consequently, MEI shocks take a more prominent role in the
explanation of investment dynamics than risk shocks. Increases in entrepreneurial risk only play
a notable role for the credit spread. In conjunction with increasing risk premiums on households
borrowing rates, they are responsible for the spike of the credit spread in the financial crisis.
Other than MEI shocks, recessionary risk shocks increase the spread, which renders them unable to
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reconcile the very moderate spreads after 2010 with the continuing depression of investment. The
decomposition of inflation and interest rate dynamics is almost the same as in FRANK.3® Adding
the risk shock and the spread as an observable therefore does not improve upon the explanation
of macroeconomic dynamics as given by RANK. As the risk shock in our exercise stands in for a
range of financial shocks that fail to trigger a fall in consumption, it appears that, in general, a
focus on distortion to investment financing may not be a promising approach in the search for a
parsimonious narrative of the Great Recession.

35In FRANK-R the slope of the Phillips curve is steeper and real shocks play a larger role for inflation dynamics.
As displayed in Figure 1.19 in Appendix I, the inflationary impact of risk shocks becomes notable.
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7.2 The role of hand-to-mouth agents

The recent years have also seen a surge of interest into the interaction of microeconomic het-
erogeneity and macroeconomic dynamics. While a full-fledged HANK model exceeds the scope of
our analysis, we introduce hand-to-mouth consumers, thereby extending our RANK to a TANK
model. Hand-to-mouth consumers capture the fact that financial constraints affected the dynamics
of households consumption spending. As their income is determined solely by the labor market, the
introduction of these agents ties aggregate demand closer to labor market outcomes.?% A contrac-
tion in investment therefore should exert a stronger downward pull on consumption via the decline
in labor income of households.

However, our analysis implies that the effect of hand-to-mouth agents on the results for the crisis
sample is rather small. Parameter estimates as well as the historical shock decomposition of the
crisis for TANK (see Figure 1.18 in Appendix 1) are very similar to the results for RANK.3” The low
relevance of hand-to-mouth consumers is mainly due to the presence of other frictions in our model
that make it difficult to identify the effects of hand-to-mouth agants on business cycle dynamics:
non-separable preferences create an additional link between labor hours and consumption via the
Euler equation of Ricardian agents; sticky wages prevent sharp movement in the income of hand-

36In our framework, we keep the labor market simple. For a full-fledged account of its dynamics during the Great
Recession., see Christiano et al. (2015).

3T"We confine our discussion in the main body to the results of TANK, as the results with regards to the role of
hand-to-mouth consumers hold with FTANK as well.
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to-mouth consumers and hence their spending; lastly, habit formation strongly attenuates swings
in the consumption of constrained agents during the crisis.

Figure 11 illustrates that the transmission of the risk premium shock, which again dominates
macroeconomic dynamics in the crisis, is hardly altered. In RANK, the reaction of consumption,
a key component of aggregate demand, is determined by the intertemporal substitution of current
for future spending, the price of which is determined by the households savings (or borrowing) rate.
Adding hand-to-mouth consumers to the model dampens the direct effect of risk premium shocks
on aggregate consumption, as a lower share of households can adjust its consumption decision to
changes in the interest rate. At the same time, hand-to-mouth consumers add an indirect effect to
the transmission of risk premium shocks, because their spending is tied to current income, which
closely tracks the fluctuations in real activity, that are caused by risk premium shocks as well.
If the amplification and attenuation via the indirect and direct effect cancel out, hand-to-mouth
consumers have no effects on the transmission of this shock.??

Whether the indirect effect outweighs the direct effect mainly depends on the estimates of labor
market parameters. The estimated value of the Calvo parameter for wage setting, (,,, implies
a substantial wage rigidity, that attenuates the reaction of real wages to aggregate demand and
therefore fluctuations in hand-to-mouth agents’ spending. This substantially reduces the indirect
effect. Another important parameter is o;. In the extreme case of o; = 0, the consumption of
Ricardian and hand-to-mouth agents move closely together since, due to the assumption of identical
preferences, they are tied together via the same labor supply curve. All else equal, the higher o; —
the less elastic the labor supply — the more ¢, ¢ differs from ¢, ;, and the stronger the fall in wages
when labor hours drop. Lower wages in turn further reduce hand-to-mouths agents’ budget and
hence their consumption. For the posterior estimate of o; of TANK in the crisis sample, the fall in
¢y, is only a tad more pronounced than that of ¢,. In equilibrium this slightly lowers the policy rate,
which dampens the fall of ¢, and increases the wedge between the consumption of both types of
agents.?® However, combined with their low share in households, the diverging spending behavior
of hand-to-mouth consumers is not sufficient to have a substantial impact on aggregate dynamics
in the crisis sample.?

While the irrelevance of hand-to-mouth consumers for the crisis sample is largely due to the
prominence of the risk premium shock, other exogenous driving forces can induce a stronger diver-
gence of the behavior of household types. A case in point are wage markup shocks. These shocks
only play a small role in the crisis sample, but feature more prominently before the Great Recession.
We illustrate this in Figure 12, which shows the historical shock decomposition of that period for
TANK. Here, MEI shocks drive investment and consumption dynamics to a large extent while wage
markup shocks explain a significant share of real wage and inflation dynamics.*' In the mid-80s,

38 A related intuition has been discussed by Bilbiie (2019) in the context of monetary policy shocks, which affect
the households saving (borrowing) rate in a similar manner.

39This type of externality imposed by hand-to-mouth consumers on Ricardian households, which arises due to the
feedback effects of hand-to-mouth spending on aggregate demand and the interest rate is discussed in Bilbiie (2019).

40 Additionally, the differences in the consumption response of household types is illustrated for the transmission
of MEI shocks in RANK and TANK in Figure J.22 in Appendix J. Whereas Ricardian consumption increases
in response to the shock, consumption of hand-to-mouth consumers follows labor market variables and declines. In
principle, hand-to-mouth consumers could help to lower the aggregate consumption response and create co-movement
of investment and consumption in response to this shock. However, as in the transmission of risk premium shocks,
their impact on aggregate figures is negligible.

41For this sample, the downward trending interest rate drives the persistent upwards deviation of consumption
from its trend.
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Figure 12: TANK Model estimated to 1983-2008. Decomposition of time series into the contribution of the different
shocks. Note: Means over 250 simulations drawn from the posterior. The contribution of each shock is normalized
as in Appendix E.

positive wage markup shocks raise the real wage and support a positive comovement of wages with
aggregate demand components. In contrast, in the mid-90s, negative wage markup shocks depress
wages and create a negative comovement with aggregat demand.

As shown in Figure 13, the transmission of wage markup and MEI shocks is altered by the
addition of hand-to-mouth consumers. While the response of wages and inflation is practically
the same in RANK and TANK, the reaction of consumption differs accross models.*? In RANK,
consumption declines, whereas in TANK a boost to labor income directly feeds into increased
spending by hand-to-mouth agents. This raises aggregate demand as well as labor hours, while the
investment response has the opposite sign, though the effect on the latter is minuscule. Overall,
TANK creates unlikely joint dynamics of the components of real activity in response to a wage
markup shock. As this is not easy to reconcile with the data, it creates an inconvenient finding

42 As wage markup shocks are most important for wages and inflation in the historical shock decomposition, the
differences in the decomposition between RANK and TANK are negligible.
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Figure 13: IRFs to a wage markup shock for RANK and TANK estimated for 1983-2008. For TANK, the share
of hand-to-mouth agents X is increased to 0.3 (vs. 0.176 in the posterior mean) to illustrate the effect of MPC
heterogeneity. Note: Medians over 250 simulations drawn from the posterior. 90% credible set for TANK. Shock
size is the posterior mean standard deviation for each model

for TANK for the pre-crisis sample.*> Hence, the look at the pre-crisis sample underlines that the
difficulty of hand-to-mouth consumers to improve upon RANK are not limited to the crisis sample.

To check whether the irrelevance of hand-to-mouth consumers for macroeconomic dynamics in
our analysis is driven by our choice of the prior for A, we conduct additional estimations, in which
we assign a uniform prior to this parameter. Table A.10 in Appendix A shows the result of our
robustness check. While in our benchmark estimates we obtain posterior means of roughly 22%
for TANK and FTANK, the estimation with wide priors yield far lower estimates, namely between
five and nine percent for all considered samples. We therefore conclude that the low relevance of
hand-to-mouth consumers in our benchmark analysis is not the result of our informed prior. Rather
it is due to the presence of other frictions in our model that make it difficult to identify their effects
on business cycle dynamics.

7.8 The empirical fit of RANK, TANK & Financial friction models

Lastly, we assess how household heterogeneity a la TANK and financial frictions affect the
models’ empirical fit in the crisis. In Table 4, the first figure for each model marks the approximation
of the estimated marginal data density (MDD) via the Modified Harmonic Mean, developed by

43In fact, the measures for the estimated MDD displayed in Table A.6 show a better empirical fit for RANK than
for TANK in the pre-crisis sample.
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Estimated marginal data densities

1998 - 2019 1983 — 2008
Mod.HM  Laplace | Mod.HM  Laplace
RANK -388.522  -393.117 | -444.460 -448.292
TANK -393.376  -395.718 | -451.007 -450.096
FRANK -402.072  -405.040 | -448.026 -450.343
FTANK -404.826  -408.701 | -447.142 -450.919

FRANK-R || -390.133 -394.931 | -446.363 -448.189
FTANK-R -391.684 -398.029 | -449.958 -448.847

FRANK-S -362.267 -360.621 | -393.203 -400.407
FTANK-S -362.103  -366.018 | -398.474 -400.559

Table 4: Comparison of the MDD (marginal data density)

Geweke (1999) whereas the second uses the Laplace Approximation.**

Centrally, the estimated MDDs confirm that neither financial frictions nor hand-to-mouth con-
sumers improve upon RANK in the crisis sample, as long as the same set of observables is considered.
This is in line with our analysis above. The empirical fit of the model in the crisis sample is closely
related to the ability of the most prominent shocks in the sample to efficiently generate the observed
dynamics. The more additional shocks are needed to explain the variations of the observables, the
worse is the empirical fit. As discussed above, of the shocks under consideration, the risk premium
shock is the one that goes a longest way in driving joint dynamics over the crisis sample.

The empirical fit of TANK is only slightly worse than that of RANK for both measures of
the estimated MDD. Its failure to improve upon RANK is largely tied to its irrelevance for the
transmission of risk premium shocks. The MDD measures of FRANK, FTANK, FRANK-R and
FTANK-R show that financial frictions deteriorate the empirical fit of the model. We find that this
is due to the fact that the presence of financial frictions dampens the drop differential of consumption
and investment in response to a risk premium shock (c.f. Section 7.1.1). This impedes the ability
of risk premium shocks to generate the stark collapse of investment in the Great Recession without
triggering an excessive decline in consumption. As a consequence, financial friction models more
heavily rely on additional shocks. MEI shocks or risk shocks need to account for the decline in
investment, and price markup feature more prominently in the generation of inflation dynamics.

Notably, FRANK-R and FTANK-R, the models in which MEI shocks are replaced by risk shocks
fare better in terms of empirical fit than their counterparts FRANK and FTANK. The reason is
that compared to the effects of MEI shocks, the inflationary pressure induced by risk shocks is more
pronounced. The support of risk shocks dampens the fall of marginal cost in the Great Recession
and allows for a higher estimate of the slope coefficient of the Phillips curve without inducing strong
disinflation. Consequently, the steeper Phillips curve allows a larger fraction of inflation dynamics
to be explained endogenously. The reduced need for the additional price markup shocks improves

44 As the posterior distributions for the FRANK models are in parts bimodal, the Laplace estimator of the MDD
is likely to be biased as it relies on the assumption of a unimodal posterior. Similarly, as noted in the original paper,
the high dimensional parameter space of the models considered here potentially results in approximation errors when
using the approximation via the Modified Harmonic Mean. Note that for estimations based on nonlinear filters, the
estimate of the likelihood can also be subject to approximation errors due to sampling errors.
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the empirical fit of FRANK-R which is only slightly worse than that of RANK. Unfortunately, as
discussed in Section 7.1.2, this appealing feature disappears once the set of observables is enlarged
by the credit spread and MEI shocks crowd out risk shocks. Additionally, while improving upon a
joint account for investment and inflation, they fail to conciliate the dynamics of consumption and
investment.

The fit of FRANK-S and FTANK-S is not directly comparable to the other models. Whereas
matching the path of the credit spread as an additional observable constitutes a challenge in the
estimation, the joint use of MEI shocks and risk shocks creates an additional degree of freedom to
match the data. These shocks have very similar effects on the model dynamics. Using both in the
same analysis, allows for matching the data with smaller disturbances of two types instead of larger
disturbances of one type, which would yield a lower likelihood.

The results presented in this section demonstrate that the employed extensions might not add
significant value to the standard medium-scale RANK model for fitting the macroeconomic dynam-
ics in the US around the Great Recession. This presents a potentially inconvenient finding to the
disadvantage of current TANK or financial friction models. Our results highlight the challenge to
find a proper modeling of these features, that enables them to improve upon the standard model.
At the same time, and somewhat expectable, the RANK model itself delivers a poor story for the
course of the macroeconomic dynamics since the financial crisis.

8 Conclusion

In this paper we estimate a selection of models on a sample that centers around the Great
Recession and includes the period of the binding ZLB thereafter. For the Bayesian inference we
take this occasionally binding constraint serious. Our approach allows us to analyze US business
cycles during that period and decompose the dynamics into the contribution of its causal drivers.
This paper is the first to estimate models on a US data sample that ends in 2019, including the
exit from the ZLB, and a rigorous model comparison. With our comprehensive assessment of
parameter estimates over various time horizons, we provide for reference estimation for a set of
medium-scale models that can be used to circumvent the technical complications associated with
the ZLB. Additionally, we provide a discussion of how parameter estimates differ for crisis and
pre-crisis samples.

Importantly, we find that although the empirical performance of the RANK model calls for
improvements, neither a TANK extension nor models that include financial frictions as in Bernanke
et al. (1999) meet the challenge of assigning a common causal driver to the main events in the Great
Recession. Namely, these models fall short of providing the source for the collapse in investment,
the decline in consumption and the only modest dip in inflation observed in the recession. Par-
ticularly in models with financial frictions, consumption and investment dynamics are dominated
by independent drivers and a joint propagation mechanism is absent. The absence of a common
explanation for the dynamics in the Great Recession presents a severe drawback for the considered
models as a storytelling device. This is also reflected in the fact that hand-to-mouth agents and
financial frictions somewhat worsen the empirical fit of the standard model.

Whereas recessionary financial shocks can in principle be inflationary, their implied consumption
response is at odds with the data. Hence, they are assigned a low weight in the estimation of the
crisis sample. This prevents them from contributing to an explanation of the missing disinflation
puzzle. Post-crisis dynamics are dominated by elevated risk premiums on household borrowing rates,
in line with the importance of increased mortgage rates in the financial crisis. In contrast, pre-crisis

32



business cycles are to a large degree driven by shocks to the marginal efficiency of investment. Using
pre-crisis estimates to analyze the post-crisis period yields the misleading conclusion that shocks to
the cost of investment were a main driver for the Great Recession and the US economy’s post-crisis
trajectory. This result is a cautionary tale that should discourage from empirically investigating on
the Great Recession with models tuned to match the pre-crisis experience.

Going forward, it is a fruitful endeavor to use more refined models that zoom in on the drivers
of elevated risk premiums or to consider a more detailed modeling of labor markets. To keep
the scope of the paper manageable, we abstain from a discussion of the role of the expanded set
of monetary policies for post-crisis business cycles. Instead, a detailed analysis of the effects of
quantitative easing policies for macroeconomic dynamics in the US in the context of a large-scale
model is provided by Boehl et al. (2020).
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Appendix (For Online-Publication)
Appendix A Additional estimation results

Sample from 1998 to 2019

Prior Posterior
FTANK

‘ dist. mean sd/df H mean sd  mode
Oc normal 1.500 0.375 || 0.907 0.088 0.939
o1 normal 2.000 0.750 1.636 0.372 1.616
Bipr gamma 0.250 0.100 || 0.131 0.045 0.157
h beta 0.700 0.100 || 0.779 0.039 0.793
S” normal 4.000 1.500 || 5.078 0.957 4.326
Lp beta 0.500 0.150 || 0.211 0.078 0.301
Lw beta 0.500 0.150 || 0.321 0.113 0.305
@ normal 0.300 0.050 || 0.174 0.011 0.173
Cp beta 0.500 0.100 || 0.922 0.014 0.924
Cw beta 0.500 0.100 || 0.751 0.046 0.776
P, normal 1.250 0.125 || 1.320 0.070  1.347
P beta 0.500 0.150 || 0.758 0.079 0.845
o normal 1.500 0.250 1.108 0.132 0.991
by normal 0.125 0.050 || 0.235 0.026 0.208
bdy normal 0.125 0.050 || 0.161 0.042 0.241
p beta 0.750 0.100 || 0.753 0.031 0.755
Cspb beta 0.050 0.005 || 0.050 0.004 0.052
A beta 0.300 0.100 || 0.223 0.073 0.193
pr beta 0.500 0.200 || 0.491 0.071 0.425
Py beta 0.500 0.200 || 0.938 0.018 0.945
Pz beta 0.500 0.200 || 0.970 0.021 0.972
Pu beta 0.500 0.200 || 0.886 0.025 0.891
Pp beta 0.500 0.200 || 0.412 0.146 0.567
Puw beta 0.500 0.200 || 0.515 0.086 0.450
Pi beta 0.500 0.200 || 0.914 0.025 0.915
L beta 0.500 0.200 || 0.357 0.090 0.301
Lw beta 0.500 0.200 || 0.326 0.087 0.264
Pg= normal 0.500 0.250 || 0.483 0.095 0.487
Og IG 0.100 2.000 || 0.252 0.025 0.252
Ou IG 0.100 2.000 || 0.465 0.110 0.442
02 IG 0.100 2.000 || 0.389 0.042 0.408
or IG 0.100 2.000 || 0.171 0.034 0.185
Op IG 0.100 2.000 || 0.414 0.140 0.228
Ow IG 0.100 2.000 1.086 0.203 1.225
oi IG 0.100 2.000 || 0.524 0.060 0.530
5y normal 0.440 0.050 || 0.392 0.034 0.390
l normal 0.000 2.000 || 1.364 0.601 1.285
T gamma 0.625 0.100 || 0.592 0.050 0.613
spread | normal 0.500 0.100 0.335 0.062 0.254

Table A.5: Estimation results for FTANK for the crisis sample (1998-2019).



Sample from 1983 to 2008

Prior Posterior
FTANK

| dist. mean sd/df || mean sd  mode
Oc normal 1.500 0.375 || 1.260 0.122 1.255
oy normal 2.000 0.750 || 2.499 0.510 2.771
Bipr gamma 0.250 0.100 0.147 0.047 0.146
h beta 0.700 0.100 || 0.659 0.052 0.696
S” normal 4.000 1.500 || 5.989 0.987 5.926
Lp beta 0.500 0.150 || 0.299 0.103 0.224
L beta 0.500 0.150 || 0.399 0.124 0.488
e normal 0.300 0.050 || 0.222 0.010 0.224
Cp beta 0.500 0.100 || 0.846 0.027 0.815
Cw beta 0.500 0.100 || 0.843 0.038 0.867
P, normal 1.250 0.125 || 1.514 0.067 1.523
P beta 0.500 0.150 || 0.545 0.063 0.519
o normal 1.500 0.250 || 1.318 0.213 1.174
by normal 0.125 0.050 || 0.213 0.034 0.196
bay normal 0.125 0.050 || 0.192 0.039 0.200
p beta 0.750 0.100 || 0.732 0.038 0.717
Cspb beta 0.050 0.005 || 0.050 0.004 0.050
A beta 0.300 0.100 || 0.218 0.059 0.161
pr beta 0.500 0.200 || 0.702 0.068 0.742
Py beta 0.500 0.200 || 0.941 0.029 0.967
Dz beta 0.500 0.200 || 0.936 0.019 0.944
Pu beta 0.500 0.200 || 0.764 0.074 0.776
Pp beta 0.500 0.200 || 0.749 0.085 0.827
Puw beta 0.500 0.200 || 0.607 0.106 0.438
pi beta 0.500 0.200 || 0.875 0.029 0.885
Lop beta 0.500 0.200 || 0.528 0.151  0.547
Low beta 0.500 0.200 || 0.323 0.131 0.145
Pg= normal 0.500 0.250 || 0.405 0.081 0.400
Og IG 0.100 2.000 || 0.238 0.018 0.224
Ou IG 0.100 2.000 || 0.697 0.252 0.654
o IG 0.100 2.000 || 0.314 0.029 0.325
or IG 0.100 2.000 || 0.147 0.019 0.134
Op IG 0.100 2.000 || 0.130 0.048 0.087
Ow IG 0.100 2.000 || 0.512 0.116 0.684
o IG 0.100 2.000 || 0.667 0.073 0.648
5 normal 0.440 0.050 || 0.419 0.027 0.415
1 normal 0.000 2.000 || 1.447 0.578 1.221
T gamma 0.625 0.100 || 0.600 0.066 0.598
spread | normal 0.500 0.100 0.473 0.064 0.490

Table A.6: Estimation results for FTANK for the sample before the crisis (1983-2008).



Prior Posterior
FRANK-R FTANK-R FRANK-S FTANK-S

‘ dist. mean sd/df H mean sd  mode ‘ mean sd  mode ‘ mean sd  mode ‘ mean sd  mode
oc normal 1.500 0.375 || 1.365 0.116 1.397 | 1.232 0.107 1.203 | 1.156 0.117 1.135 | 0.999 0.103 1.002
o7 normal 2.000 0.750 || 1.478 0.410 1.442 | 1.604 0.460 1.671 | 1.421 0.450 1.638 | 1.228 0.351 1.675
Bipr gamma 0.250 0.100 || 0.129 0.042 0.119 | 0.127 0.043 0.086 | 0.102 0.033 0.092 | 0.109 0.036 0.131
h beta 0.700 0.100 || 0.831 0.029 0.827 | 0.843 0.024 0.872 | 0.545 0.051 0.535 | 0.554 0.057 0.583
S" normal 4.000 1.500 || 5.773 0.978 5.367 | 5.724 0.897 5.279 | 2.964 0.748 2.155 | 2.864 0.754 2.489
lp beta 0.500 0.150 || 0.228 0.076 0.285 | 0.216 0.068 0.203 | 0.280 0.091 0.269 | 0.248 0.078 0.192
Law beta 0.500 0.150 || 0.422 0.125 0.282 | 0.421 0.125 0.436 | 0.379 0.114 0.263 | 0.379 0.118 0.456
o normal 0.300 0.050 || 0.199 0.013 0.210 | 0.197 0.013 0.198 | 0.178 0.012 0.176 | 0.179 0.011  0.190
Cp beta 0.500 0.100 || 0.793 0.030 0.753 | 0.784 0.032 0.761 | 0.935 0.028 0.936 | 0.932 0.021 0.939
Cw beta 0.500 0.100 || 0.694 0.045 0.694 | 0.705 0.041 0.716 | 0.760 0.066 0.818 | 0.767 0.065 0.818
d, normal 1.250 0.125 || 1.383 0.095 1.461 | 1.375 0.092 1.315 | 1.316 0.060 1.355 | 1.317 0.061 1.326
P beta 0.500 0.150 || 0.808 0.064 0.818 | 0.810 0.064 0.850 | 0.809 0.062 0.843 | 0.825 0.060 0.824
oz normal 1.500 0.250 || 1.382 0.197 1.190 | 1.391 0.196 1.439 | 0.979 0.181 0.860 | 0.982 0.120 0.967
by normal 0.125 0.050 || 0.195 0.026 0.196 | 0.194 0.026 0.214 | 0.205 0.024 0.203 | 0.223 0.032 0.197
Ddy normal 0.125 0.050 || 0.174 0.039 0.174 | 0.177 0.038 0.164 | 0.179 0.040 0.205 | 0.173 0.039 0.178
p beta 0.750 0.100 || 0.790 0.036 0.772 | 0.791 0.035 0.808 | 0.725 0.033 0.701 | 0.731 0.033 0.735
pr beta 0.500 0.200 || 0.835 0.056 0.849 | 0.828 0.062 0.858 | 0.469 0.060 0.476 | 0.451 0.057 0.465
Py beta 0.500 0.200 || 0.888 0.033 0.874 | 0.890 0.031 0.912 | 0.966 0.013 0.970 | 0.966 0.017 0.971
p= beta 0.500 0.200 || 0.981 0.013 0.995 | 0.982 0.011 0.970 | 0.919 0.024 0.899 | 0.921 0.023 0.951
Pu beta 0.500 0.200 || 0.739 0.053 0.756 | 0.736 0.049 0.734 | 0.968 0.007 0.959 | 0.965 0.007 0.967
Pp beta 0.500 0.200 || 0.597 0.100 0.662 | 0.649 0.092 0.647 | 0.542 0.107 0.581 | 0.562 0.090 0.635
Puw beta 0.500 0.200 || 0.451 0.089 0.413 | 0.450 0.085 0.415 | 0.577 0.103 0.608 | 0.526 0.102 0.485
pi beta  0.500  0.200 0.906 0.026 0.918 | 0.913 0.026 0.913
Pfin beta 0.500 0.200 || 0.960 0.012 0.963 | 0.956 0.015 0.965 | 0.960 0.024 0.948 | 0.957 0.024 0.968
I beta 0.500 0.200 || 0.291 0.141 0.363 | 0.309 0.130 0.254 | 0.385 0.119 0.306 | 0.278 0.109 0.343
Hw beta 0.500 0.200 || 0.249 0.080 0.215 | 0.247 0.077 0.203 | 0.366 0.114 0.416 | 0.313 0.100 0.279
Pgz normal 0.500 0.250 || 0.619 0.095 0.691 | 0.618 0.093 0.617 | 0.291 0.089 0.283 | 0.294 0.087 0.286
Og IG 0.100 2.000 || 0.220 0.028 0.195 | 0.220 0.028 0.214 | 0.275 0.022 0.260 | 0.272 0.022 0.257
Oy IG 0.100 2.000 || 1.363 0.390 1.189 | 1.398 0.357 1.598 | 0.130 0.012 0.132 | 0.131 0.011 0.133
fog IG 0.100 2.000 || 0.410 0.044 0.373 | 0.413 0.043 0.391 | 0.415 0.043 0.484 | 0.411 0.043 0.415
or IG 0.100 2.000 || 0.093 0.012 0.086 | 0.094 0.013 0.086 | 0.181 0.034 0.166 | 0.187 0.034 0.169
Op IG 0.100 2.000 || 0.198 0.072 0.181 | 0.166 0.047 0.152 | 0.292 0.083 0.213 | 0.228 0.053 0.193
Ow IG 0.100 2.000 || 1.325 0.277 1.419 | 1.315 0.265 1.295 | 0.938 0.165 0.903 | 1.040 0.220 1.102
oi IG 0.100 2.000 0.551 0.068 0.571 | 0.546 0.068 0.561
Ofin IG 0.100 2.000 || 0.444 0.078 0.427 | 0.461 0.090 0.415 | 0.096 0.011 0.099 | 0.098 0.012 0.087
¥ normal 0.440 0.050 || 0.313 0.041 0.284 | 0.312 0.044 0.358 | 0.403 0.023 0.394 | 0.406 0.023 0.412
1 normal 0.000 2.000 || 1.123 0.793 1.295 | 1.085 0.758 0.661 | 1.606 0.567 1.309 | 1.390 0.648 1.475
T gamma 0.625 0.100 || 0.561 0.065 0.558 | 0.563 0.069 0.579 | 0.692 0.058 0.634 | 0.678 0.051 0.665
spread | normal 0.500 0.100 || 0.352 0.075 0.394 | 0.365 0.073 0.413 | 0.259 0.062 0.236 | 0.263 0.061 0.316
Cspb beta 0.050 0.005 || 0.051 0.004 0.053 | 0.051 0.004 0.052 | 0.051 0.004 0.051 | 0.0561 0.004 0.050
A beta  0.300 0.100 0.196 0.057 0.166 0.139 0.043 0.105
MDD ‘ -390.133 / -394.931 -391.684 / -398.029 -362.267 / -360.621 -362.103 / -366.018

Table A.7: Comparison of estimation results across models for the crisis sample: Models with financial shock instead of MEI shock (FRANK-R and FTANK-R)
and estimations including the GZ spread (FRANK-S and FTANK-S).



Prior Posterior
FRANK-R FTANK-R FRANK-S FTANK-S

‘ dist. mean sd/df H mean sd  mode ‘ mean sd  mode ‘ mean sd  mode ‘ mean sd  mode
oc normal 1.500 0.375 || 1.572 0.175 1.652 | 1.485 0.164 1.353 | 1.537 0.147 1.504 | 1.448 0.139 1.459
o7 normal 2.000 0.750 || 1.773 0.560 1.819 | 1.456 0.589 1.751 | 2.628 0.488 2.669 | 2.566 0.536 1.992
Bipr gamma 0.250 0.100 || 0.158 0.052 0.131 | 0.166 0.055 0.121 | 0.133 0.044 0.126 | 0.133 0.043 0.135
h beta 0.700 0.100 || 0.684 0.044 0.701 | 0.699 0.045 0.703 | 0.451 0.045 0.484 | 0.418 0.059 0.440
S" normal 4.000 1.500 || 4.215 0.969 4.164 | 4.379 0.930 4.645 | 2.685 0.641 2.870 | 2.558 0.662 2.279
lp beta 0.500 0.150 || 0.331 0.118 0.417 | 0.342 0.125 0.259 | 0.322 0.096 0.394 | 0.330 0.101  0.299
Law beta 0.500 0.150 || 0.438 0.125 0.459 | 0.439 0.123 0.537 | 0.396 0.120 0.303 | 0.418 0.126 0.473
o normal 0.300 0.050 || 0.241 0.013 0.243 | 0.239 0.013 0.225 | 0.227 0.011 0.225 | 0.223 0.010 0.231
Cp beta 0.500 0.100 || 0.840 0.034 0.818 | 0.842 0.050 0.843 | 0.886 0.023 0.887 | 0.878 0.024 0.876
Cw beta 0.500 0.100 || 0.759 0.052 0.765 | 0.760 0.072 0.725 | 0.829 0.055 0.871 | 0.834 0.055 0.862
d, normal 1.250 0.125 || 1.546 0.067 1.570 | 1.564 0.073 1.563 | 1.523 0.070 1.531 | 1.524 0.063 1.538
P beta 0.500 0.150 || 0.665 0.087 0.607 | 0.655 0.092 0.679 | 0.484 0.109 0.438 | 0.435 0.108 0.490
oz normal 1.500 0.250 || 1.239 0.249 1.253 | 1.278 0.276 1.272 | 1.094 0.209 1.128 | 1.315 0.249 1.101
by normal 0.125 0.050 || 0.218 0.036 0.201 | 0.216 0.047 0.232 | 0.170 0.035 0.137 | 0.163 0.033 0.173
Ddy normal 0.125 0.050 || 0.200 0.039 0.201 | 0.195 0.042 0.166 | 0.226 0.039 0.209 | 0.234 0.040 0.242
p beta 0.750 0.100 || 0.713 0.041 0.707 | 0.717 0.042 0.712 | 0.691 0.046 0.687 | 0.717 0.040 0.673
pr beta 0.500 0.200 || 0.807 0.068 0.831 | 0.810 0.079 0.833 | 0.633 0.086 0.627 | 0.585 0.082 0.642
Py beta 0.500 0.200 || 0.969 0.017 0.975 | 0.969 0.030 0.980 | 0.980 0.010 0.978 | 0.979 0.010 0.973
p= beta 0.500 0.200 || 0.968 0.014 0.979 | 0.963 0.018 0.961 | 0.932 0.023 0.921 | 0.928 0.019 0.936
Pu beta 0.500 0.200 || 0.770 0.063 0.726 | 0.755 0.066 0.812 | 0.975 0.007 0.979 | 0.974 0.007 0.973
Pp beta 0.500 0.200 || 0.708 0.129 0.830 | 0.700 0.143 0.843 | 0.770 0.096 0.838 | 0.760 0.100 0.807
Puw beta 0.500 0.200 || 0.701 0.103 0.578 | 0.715 0.101 0.780 | 0.701 0.104 0.757 | 0.681 0.113 0.539
pi beta  0.500  0.200 0.776  0.048 0.734 | 0.782 0.049 0.759
Pfin beta 0.500 0.200 || 0.837 0.040 0.871 | 0.860 0.041 0.823 | 0.982 0.007 0.981 | 0.985 0.008 0.979
I beta 0.500 0.200 || 0.556 0.158 0.629 | 0.589 0.138 0.633 | 0.698 0.108 0.777 | 0.676 0.105 0.739
Hw beta 0.500 0.200 || 0.453 0.161 0.233 | 0.419 0.140 0.492 | 0.433 0.149 0.513 | 0.400 0.144 0.216
Pgz normal 0.500 0.250 || 0.373 0.081 0.422 | 0.391 0.085 0.362 | 0.361 0.083 0.401 | 0.383 0.082 0.397
Og IG 0.100 2.000 || 0.237 0.017 0.227 | 0.236 0.018 0.226 | 0.241 0.016 0.237 | 0.243 0.017 0.238
Oy IG 0.100 2.000 || 0.742 0.233 0913 | 0.824 0.266 0.612 | 0.100 0.009 0.092 | 0.103 0.009 0.104
fog IG 0.100 2.000 || 0.300 0.027 0.299 | 0.298 0.028 0.314 | 0.314 0.030 0.317 | 0.315 0.030 0.309
or IG 0.100 2.000 || 0.126 0.015 0.126 | 0.126 0.021 0.107 | 0.180 0.034 0.176 | 0.193 0.034 0.197
Op IG 0.100 2.000 || 0.160 0.066 0.095 | 0.178 0.071 0.093 | 0.164 0.037 0.137 | 0.162 0.044 0.161
Ow IG 0.100 2.000 || 0.455 0.103 0.511 | 0.416 0.078 0.360 | 0.423 0.081 0.368 | 0.427 0.114 0.522
oi IG 0.100 2.000 0.745 0.101 0.800 | 0.756 0.103 0.786
Ofin IG 0.100 2.000 || 1.053 0.276 0.828 | 0.962 0.256 1.293 | 0.080 0.007 0.081 | 0.078 0.008 0.083
¥ normal 0.440 0.050 || 0.468 0.027 0.438 | 0.485 0.024 0.508 | 0.489 0.019 0.484 | 0.490 0.019 0.500
1 normal 0.000 2.000 || 2.599 0.762 2.319 | 2.464 0.828 2.279 | 2.779 0.513 2.328 | 2.693 0.568 2.713
T gamma 0.625 0.100 || 0.638 0.068 0.632 | 0.648 0.071 0.571 | 0.727 0.085 0.678 | 0.752 0.094 0.710
spread | normal 0.500 0.100 || 0.475 0.073 0.543 | 0.468 0.072 0.500 | 0.330 0.059 0.338 | 0.341 0.062 0.372
Cspb beta 0.050 0.005 || 0.050 0.004 0.052 | 0.049 0.004 0.047 | 0.046 0.004 0.047 | 0.046 0.004 0.046
A beta  0.300 0.100 0.236 0.067 0.307 0.205 0.065 0.195
MDD ‘ -446.363 / -448.189 -449.958 / -448.847 -393.203 / -400.407 -398.474 / -400.559

Table A.8: Comparison of estimation results across models for the pre-crisis sample from 1983-2008. Models with financial shock instead of MEI shock
(FRANK-R and FTANK-R) and estimations including the GZ spread (FRANK-S and FTANK-S).



Prior Posterior
RANK TANK FRANK FTANK

‘ dist. mean sd/df || mean sd  mode | mean sd mode | mean sd  mode | mean sd  mode
Oc normal 1.500 0.375 || 1.339 0.138 1.328 | 1.237 0.128 1.244 | 1.116 0.128 0.995 | 0.983 0.095 0.951
o normal 2.000 0.750 || 2.999 0.462 3.201 | 2.873 0.478 2.924 | 2.803 0.469 2.356 | 2.601 0.470 2.701
Bipr gamma 0.250 0.100 || 0.145 0.049 0.123 | 0.144 0.049 0.152 | 0.156 0.049 0.174 | 0.178 0.056 0.161
h beta 0.700 0.100 || 0.676 0.052 0.665 | 0.692 0.047 0.673 | 0.713 0.045 0.717 | 0.733 0.045 0.646
S” normal 4.000 1.500 || 5.047 0.960 4.965 | 5.181 1.014 4.503 | 5.923 0.962 5.644 | 6.104 1.089 5.145
tp beta 0.500 0.150 || 0.230 0.079 0.246 | 0.235 0.080 0.144 | 0.221 0.071 0.168 | 0.237 0.078 0.257
lw beta 0.500 0.150 || 0.380 0.110 0.377 | 0.391 0.116 0.497 | 0.357 0.117 0.288 | 0.369 0.121  0.267
et normal 0.300 0.050 || 0.185 0.010 0.179 | 0.186 0.009 0.188 | 0.202 0.010 0.194 | 0.202 0.009 0.209
Cp beta 0.500 0.100 || 0.914 0.015 0.922 | 0.915 0.013 0.925 | 0.917 0.015 0.906 | 0.918 0.015 0.922
Cw beta 0.500 0.100 || 0.827 0.030 0.839 | 0.827 0.031 0.838 | 0.873 0.030 0.900 | 0.877 0.028 0.889
o, normal 1.250 0.125 || 1.335 0.057 1.358 | 1.349 0.059 1.300 | 1.308 0.058 1.305 | 1.328 0.056 1.357
P beta 0.500 0.150 || 0.739 0.073 0.734 | 0.746 0.075 0.756 | 0.623 0.064 0.642 | 0.638 0.061 0.641
o normal 1.500 0.250 || 0.911 0.189 0.850 | 0.946 0.157 0.849 | 1.114 0.187 1.080 | 1.095 0.165 0.997
by normal 0.125 0.050 || 0.287 0.027 0.279 | 0.286 0.027 0.293 | 0.245 0.030 0.250 | 0.239 0.029 0.247
Py normal 0.125 0.050 || 0.191 0.040 0.243 | 0.190 0.039 0.172 | 0.201 0.042 0.207 | 0.179 0.042 0.188
p beta 0.750 0.100 || 0.654 0.050 0.652 | 0.661 0.041 0.641 | 0.727 0.035 0.726 | 0.718 0.037 0.685
pr beta 0.500 0.200 || 0.882 0.053 0.899 | 0.882 0.031 0.896 | 0.662 0.072 0.658 | 0.676 0.063 0.644
Py beta 0.500 0.200 || 0.985 0.029 0.987 | 0.987 0.023 0.990 | 0.929 0.045 0.915 | 0.911 0.045 0.908
Pz beta 0.500 0.200 || 0.984 0.008 0.984 | 0.983 0.008 0.984 | 0.988 0.011 0.994 | 0.985 0.016 0.995
Pu beta 0.500 0.200 || 0.880 0.035 0.892 | 0.872 0.035 0.884 | 0.873 0.031 0.881 | 0.870 0.029 0.897
Pp beta 0.500 0.200 || 0.579 0.098 0.537 | 0.569 0.111 0.701 | 0.664 0.096 0.721 | 0.691 0.078 0.744
Pw beta 0.500 0.200 || 0.718 0.096 0.680 | 0.725 0.084 0.671 | 0.640 0.092 0.433 | 0.596 0.090 0.572
pi beta 0.500 0.200 || 0.813 0.053 0.824 | 0.836 0.048 0.854 | 0.909 0.017 0.923 | 0.916 0.016 0.923
Lp beta 0.500 0.200 || 0.523 0.084 0.480 | 0.508 0.088 0.640 | 0.450 0.161 0.420 | 0.452 0.155 0.498
Hw beta 0.500 0.200 || 0.501 0.133 0.436 | 0.505 0.120 0.437 | 0.414 0.113 0.204 | 0.357 0.108 0.334
Pg= normal 0.500 0.250 || 0.316 0.081 0.362 | 0.321 0.082 0.283 | 0.391 0.117 0.431 | 0.429 0.112 0.473
oy IG 0.100 2.000 || 0.258 0.016 0.249 | 0.259 0.016 0.253 | 0.266 0.017 0.254 | 0.262 0.019 0.232
Ou IG 0.100 2.000 || 0.461 0.161 0.374 | 0.488 0.139 0.420 | 0.418 0.127 0.373 | 0.438 0.119 0.267
02 IG 0.100 2.000 || 0.333 0.028 0.356 | 0.329 0.028 0.346 | 0.324 0.027 0.319 | 0.325 0.030 0.298
or IG 0.100 2.000 || 0.104 0.014 0.097 | 0.104 0.009 0.098 | 0.140 0.022 0.136 | 0.136 0.017 0.146
Op IG 0.100 2.000 || 0.287 0.052 0.305 | 0.290 0.067 0.236 | 0.200 0.066 0.150 | 0.177 0.050 0.153
Ow IG 0.100 2.000 || 0.564 0.099 0.595 | 0.553 0.085 0.637 | 0.6563 0.110 0.991 | 0.698 0.119 0.707
oi IG 0.100 2.000 || 0.566 0.076 0.539 | 0.536 0.067 0.550 | 0.612 0.062 0.609 | 0.611 0.071 0.638
ol normal 0.440 0.050 || 0.417 0.037 0.441 | 0.424 0.031 0.431 | 0.337 0.041 0.296 | 0.329 0.034 0.301
1 normal 0.000 2.000 || 2.433 0.532 2.308 | 2.509 0.580 2.327 | 0.656 0.805 0.321 | 0.295 0.837 0.677
T gamma 0.625 0.100 || 0.703 0.057 0.693 | 0.704 0.057 0.684 | 0.582 0.050 0.566 | 0.580 0.049 0.581
spread | normal 0.500 0.100 0.451 0.059 0.444 | 0.447 0.061 0.487
Copb beta 0.050 0.005 0.051 0.004 0.051 | 0.050 0.004 0.046
A beta 0.300 0.100 0.142 0.041 0.107 0.200 0.063  0.204
MDD | -629.690 / -634.650 -634.127 / -639.451 -640.957 / -638.910 -642.827 / -642.182

Table A.9: Comparison of estimation results across models for the full sample including the crisis (1983-2019). MDD (marginal data density) given as Modified
Harmonic Mean and Laplace Approximations.



Prior Posterior
1998-2020 1983-2008 1983-2020

‘ dist. mean sd/df H mean sd mode | mean sd mode | mean sd  mode

Oc normal 1.500 0.375 || 1.013 0.105 0.969 | 1.445 0.142 1.430 | 1.326 0.140 1.274
o normal 2.000 0.750 || 1.718 0.412 2.119 | 2.243 0.545 2.369 | 2.923 0.442 2.639
Bipr gamma 0.250 0.100 || 0.142 0.051 0.106 | 0.145 0.046 0.149 | 0.146 0.047 0.083
h beta 0.700 0.100 || 0.825 0.027 0.828 | 0.698 0.047 0.737 | 0.665 0.046 0.695
S" normal 4.000 1.500 || 5.716 0.915 5.428 | 5.528 1.022 5.768 | 4.937 0.931 5.617
lp beta 0.500 0.150 || 0.195 0.069 0.173 | 0.295 0.097 0.221 | 0.230 0.079 0.221
baw beta 0.500 0.150 || 0.386 0.118 0.388 | 0.413 0.121 0.422 | 0.387 0.122 0.334
o normal 0.300 0.050 || 0.175 0.011 0.157 | 0.214 0.010 0.212 | 0.186 0.009 0.176
Cp beta 0.500 0.100 || 0.822 0.038 0.878 | 0.842 0.034 0.835 | 0.916 0.012 0.916
Cw beta 0.500 0.100 || 0.692 0.042 0.752 | 0.783 0.052 0.769 | 0.828 0.034 0.785
o, normal 1.250 0.125 || 1.321 0.092 1.203 | 1.539 0.066 1.611 | 1.337 0.057 1.334
P beta 0.500 0.150 || 0.775 0.078 0.754 | 0.620 0.087 0.578 | 0.742 0.072 0.725
foz normal 1.500 0.250 || 1.400 0.185 1.223 | 1.317 0.245 1.533 | 0.880 0.127 0.867
by normal 0.125 0.050 || 0.216 0.029 0.206 | 0.216 0.044 0.190 | 0.288 0.026 0.266
Pdy normal 0.125 0.050 || 0.172 0.041 0.184 | 0.206 0.039 0.234 | 0.191 0.037 0.149
P beta 0.750 0.100 || 0.819 0.035 0.808 | 0.711 0.044 0.743 | 0.644 0.038 0.643
Pr beta 0.500 0.200 || 0.750 0.080 0.760 | 0.814 0.061 0.789 | 0.894 0.022 0.884
Py beta 0.500 0.200 || 0.904 0.029 0.934 | 0.971 0.015 0.975 | 0.990 0.005 0.992
Pz beta 0.500 0.200 || 0.989 0.011 0.983 | 0.952 0.017 0.950 | 0.984 0.007 0.982
Pu beta 0.500 0.200 || 0.844 0.030 0.871 | 0.715 0.090 0.684 | 0.887 0.023 0.859
Pp beta 0.500 0.200 || 0.536 0.130 0.587 | 0.766 0.077 0.794 | 0.576 0.094 0.642
Pw beta 0.500 0.200 || 0.457 0.088 0.310 | 0.691 0.098 0.709 | 0.718 0.095 0.822
pi beta 0.500 0.200 || 0.757 0.101 0.680 | 0.779 0.058 0.744 | 0.825 0.047 0.819
tp beta 0.500 0.200 || 0.507 0.117 0.548 | 0.580 0.140 0.504 | 0.521 0.083 0.575
Hw beta 0.500 0.200 || 0.258 0.078 0.155 | 0.405 0.135 0.408 | 0.499 0.132 0.650
Pg= normal 0.500 0.250 || 0.627 0.096 0.565 | 0.354 0.081 0.299 | 0.322 0.072 0.304
Og IG 0.100 2.000 || 0.220 0.027 0.197 | 0.238 0.017 0.242 | 0.257 0.015 0.253
Ou IG 0.100 2.000 || 0.775 0.182 0.632 | 1.060 0.419 1.293 | 0.423 0.078 0.495
o IG 0.100 2.000 || 0.398 0.043 0.393 | 0.307 0.028 0.283 | 0.329 0.027 0.346
or IG 0.100 2.000 || 0.108 0.015 0.101 | 0.130 0.013 0.133 | 0.102 0.009 0.102
Op IG 0.100 2.000 || 0.316 0.086 0.284 | 0.132 0.046 0.095 | 0.288 0.051 0.258
Ow IG 0.100 2.000 || 1.279 0.267 1.869 | 0.438 0.075 0.420 | 0.560 0.094 0.478
oi IG 0.100 2.000 || 0.562 0.153 0.713 | 0.634 0.107 0.647 | 0.552 0.067 0.520
¥ normal 0.440 0.050 || 0.341 0.055 0.418 | 0.465 0.024 0.481 | 0.427 0.025 0.431
1 normal 0.000 2.000 || 1.605 0.774 1.213 | 2.293 0.640 2.714 | 2.401 0.569 3.011
T gamma 0.625 0.100 || 0.629 0.058 0.678 | 0.701 0.066 0.714 | 0.701 0.053 0.721
uniform  0.000 0.700 || 0.081 0.062 0.010 | 0.090 0.066 0.103 | 0.046 0.036 0.037

MDD ‘ -394.627 / -400.194 -446.100 / -450.807 -634.260 / -640.259

Table A.10: Comparison of estimation results for TANK models with a flat prior on the share A of H2M agents for the different data samples.



Appendix B Data
Our measurement equations contain eight variables:
e GDP: In(GDP/GDPDEF/CNP160V _ma)*100
e CONS: In((PCEC-PCEDG)/GDPDEF/CNP160V_ma)*100
e INV: In((GPDI+PCEDG)/GDPDEF/CNP160V _ma)*100
e LAB: demeaned(In((13* AWHNONAG*CE160V)/CNP160V _ma)*100)
e INFL: In(GDPDEF)
e WAGE: In(COMPNFB/GDPDEF)*100
e FFR: FEDFUNDS/4
o GZ: (GZspread)/4
For GDP, CONS, INV, INFL and WAGE we use the log changes in our measurement equations.

Data sources:

e GDP: GDP - Gross Domestic Product, Billions of Dollars, Quarterly, Seasonally Adjusted
Annual Rate, FRED

e GDPDEF: Gross Domestic Product: Implicit Price Deflator, Index 2012=100, Quarterly,
Seasonally Adjusted, FRED

e PCEC: Personal Consumption Expenditures, Billions of Dollars, Quarterly, Seasonally Ad-
justed Annual Rate, FRED

e PCEC: Personal Consumption Expenditures: Durable Goods, Billions of Dollars, Quarterly,
Seasonally Adjusted Annual Rate, FRED

e GPDI: Gross Private Domestic Investment, Billions of Dollars, Quarterly, Seasonally Adjusted
Annual Rate, FRED

o AWHNONAG: Average Weekly Hours of Production and Nonsupervisory Employees: Total
private, Hours, Weekly, Seasonally Adjusted, FRED

e CE160V: Civilian Employment Level, Thousands of Persons, Seasonally Adjusted, FRED

e CNP160V_ma*’: trailing MA(5) of the Civilian Noninstitutional Population, Thousands of
Persons, Quarterly, Not Seasonally Adjusted, FRED

e COMPNFB, Nonfarm Business Sector: Compensation Per Hour, Index 2012=100, Quarterly,
Seasonally Adjusted, FRED

45 As in Boehl et al. (2020), we use a trailing MA(5) of the civilian non-institutional population index to normalize
GDP, its components and labor hours, instead of the index itself at it is often done. This helps us to purge our
observables of jumps in the index itself that reflect artifacts in its construction.
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e FEDFUNDS: Effective Federal Funds Rate, Percent, FRED

e GZspread: Credit spread constructed by Gilchrist and Zakrajsek (2012), Percent, Board of
Governors of the Federal Reserve System

Appendix C Model Descriptions

We build on the canonical framework developed by and , and allow for two independent exten-
sions: hand-to-mouth consumers, that are unable to save and only consume their current-period
wage income, and financial frictions in the vein of . We dub the model with only a representative
agent the RANK model to distinguish it from our two-agent new Keynesian (TANK) model. The
TANK model therefore features Ricardian and hand-to-mouth households. The model vintages in-
cluding financial frictions will be referred to as financial representative agent NK model - FRANK
— and FTANK respectively for the two-agent version of FRANK.

In all models, labor is differentiated by unions with monopoly power that face nominal rigidities
for their wage setting process. Intermediate good producers employ labor and capital services and
sell their goods to final goods firms. Final good firms are monopolistically competitive and face
nominal rigidities as in . The model further allows for exogenous government spending and features
a monetary authority that sets the short-term nominal interest rate according to a monetary policy
rule. In TANK and FTANK, economy-wide labor supply and consumption are aggregates of the
respective contributions by Ricardian and hand-to-mouth households. In FRANK and FTANK,
we assume that frictionless financial intermediates collect funds from households. These funds are
lent with a spread, which reflects default risk, to entrepreneurs, who use it together with their own
equity to purchase physical capital. Physical capital in turn is rented out to intermediate good
producers.

Appendiz C.1 The linearized RANK model

This subsection briefly presents the linearized equilibrium conditions. A detailed derivation
of the linearized equations is discussed e.g. in the appendix to Smets and Wouters (2007). All
variables in this section are expressed as a log-deviation from their respective steady state values.
The consumption Euler equation of Ricardian households is given by

B h/vy 1 (oc — 1)(WhL/C)
cf’ = mdﬂ + WEt[CEH] oo(L+ /) (ltR - Et[lﬁﬂ) .
(1—h/7) '
—W(ﬁ - Et[ﬂ-t-‘rl] + ut),

where ¢l is consumption by Ricardian agents, and [} is their supply of labor. Parameters h, o

and o; are, respectively, the degree of external habit formation in consumption, the coefficient of
relative risk aversion, and the inverse of the Frisch elasticity. 7 denotes the steady-state growth
rate of the economy. r; is the nominal interest rate, m; is the inflation rate, and w; is an exogenous
risk premium shock, which drives a wedge between the lending/savings rate and the riskless real
rate.

Equation (C.2) is the linearized relationship between investment and the relative price of capital,

1 B !
n +B[“_1] + ﬁEt[ZHl] P A Bes

iy = qr + Vit (C.2)
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Here, i; denotes investment in physical capital and ¢; is the price of capital. It holds that
B = B~y(1=9) where B is the households’ discount factor. Investment is subject to adjustment
costs, which are governed by S”, the steady-state value of the second derivative of the investment
adjustment cost function, and an exogenous process, v; ;. While Smets and Wouters (2007) inter-
pret e;; as an investment specific technology disturbance, Justiniano et al. (2011) stress that this
shock can as well be viewed as a reduced-form way of capturing financial frictions, as it drives a
wedge between aggregate savings and aggregate investment. We henceforth refer to this disturbance
as a shock on the marginal efficiency of investment (MEI).
The accumulation equation of physical capital is given by

ke = (1=08)/vke—1 + (1= (1= 8)/7)ir + (1= (1= 8)/7)(1+ B)y*S vis, (C.3)

where k denotes physical capital, and parameter ¢ is the depreciation rate. The following Equation
(C.4) is the no-arbitrage condition between the rental rate of capital, 7F, and the riskless real rate:

k
T (1-9)
— E.Irk S S
rk 4+ (1-6) fl t+1]+rk+(1—5)
As the use of physical capital in production is subject to utilization costs, which in turn can be

expressed as a function of the rental rate on capital, the relation between the effectively used amount
of capital k; and the physical capital stock is

_1-9
T

where ¢ € (0,1) is the parameter governing the costs of capital utilization. Equation (C.6) is the
aggregate production function

e — Eyfmpia] +up = Eiqi1] — - (C.4)

kt 7’2];: +Et,1, (05)

yr = Plaks + (1 — )ly + z). (C.6)

Intermediate good firms employ labor and capital services. Let z; be the exogenous process of total
factor productivity. Parameter « is the elasticity of output with respect to capital and ® enters the
production function due to the assumption of a fixed cost in production. Real marginal costs for
producing firms, mc, can be written as

mey = wy — z¢ + aly — ki). (C.7)

wy denotes the real wage, which are set by labor unions. Furthermore, cost minimization for
intermediate good producers results in condition (C.8):

kt = W¢ — Tf + lt. (08)

The aggregate resource constraint (C.9) contains an exogenous demand shifter, g;, which comprises
exogenous variations in government spending and net exports, as well as the resource costs of capital

utilization:
— g + gc + i?, + RkKﬂrk
Yt = Ygt vy % ¥ t-

Final good producers are assumed to have monopoly power and face nominal rigidities as in Calvo

(C.9)
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(1983) when setting their prices. This gives rise to a New Keynesian Phillips Curve (NKPC) of the
form

. 0-6R-G)
I+ 1PB - (1 "‘BIP)CP(((I) —1ep+1)

p

Tt = fEtﬂ-t_A'_l + mcg + v R (ClO)

1+1,8 b
Here, ¢, is the probability that a firm cannot update its price in any given period. In addition
to Calvo pricing, we assume partial price indexation, governed by the parameter 1,. The Phillips
Curve is hence both, forward and backward looking. €, denotes the curvature of the Kimball (1995)
aggregator for final goods. Due to the Kimball aggregator, the sensitivity of inflation to fluctuations
in marginal cost is affected by the market power of firms, represented by the steady state price
markup, ® — 1.46 Furthermore, the curvature of the Kimball aggregator affects the adjustment
of prices to marginal cost as the higher €,, the higher is the degree of strategic complementarity
in price setting, dampening the price adjustment to shocks. The last term in the NKPC, v,
represents exogenous fluctuations in the price markup.

While final good producers set prices on the good market, wages are set by labor unions. Unions
bundle labor services from households and offer them to firms with a markup over the frictionless
wage, w', which reads

1
h
wy = m(ct — hei—1) + oly. (C.11)
As with price setting, we assume that the nominal rigidities in the wage setting process are of the
Calvo type, and include partial wage indexation. The wage Phillips curve thus is
1 By 141,87y
wy = — (W1 + 1yT—1) + — B w1 + M) — ——=—m¢
1+ By N 1+ By 1+ By
(1 — Cwﬁ’}/)(l — Cw)
(1 + 67)611}(()‘71) - ]-)ew + 1)

(C.12)

(w? - wt) + Vaw,t-

The term w}* — wy; is the inverse of the wage markup. Analogous to equation (C.10), the terms A,
and €, are the steady state wage markup and the curvature of the Kimball aggregator for labor
services, respectively. The term v, ; represents exogenous variations in the wage markup.

We take into account the fact that the central bank is constrained in its interest rate policy by
a zero lower bound (ZLB) on the nominal interest rate. Therefore, in the linear model, it is that

ry = max{7,ry}, (C.13)

with 7 being the lower bound value. Whenever the policy rate is away from the constraint, it
corresponds to the notational rate, ', which follows the feedback rule

ry = priy + (1= p) (Prme + dyYs + dayAYt) + Vrt- (C.14)

Here, 3, is the output gap and Ay, = 7 — 7;_1 its growth rate. Parameter p expresses an interest
rate smoothing motive by the central bank. ¢, ¢, and ¢4, are feedback coefficients. When the

46Note that in equilibrium, the steady state price markup is tied to the fixed cost parameter by a zero profit
condition.
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economy is away from the ZLB, the stochastic process v, ; represents a regular interest rate shock.
When the nominal interest rate is zero, however, v, ; may not directly affect the level of the nominal
interest rate. However, through the persistence of the stochastic process that drives v,.¢, it affects
the expected path of the notational rate and can therefore alter the expected duration of the lower
bound spell. It can hence be viewed as a forward guidance shock whenever the economy is at the
ZLB.

Finally, the stochastic drivers in our model are the following seven processes:

Up =pyulit—1 + €, ( )
2 =pz2t—1 + €, ( )
9t =pggi—1 + €] + pg-€i, (C.17)
Upt =pPrUrt—1 + €, (C.18)
Vi =piVie—1 + €, ( )
Up,t =PpUpt—1 + € — Hp€i_1, ( )
(C.21)

Uy,t =PwVw,t—1 + ezu - Mwﬁlﬂ—lv
where eF g N(0,03) for all k = {r,i,p,w}, and likewise for {us, zt, g: }-

Appendiz C.2 A TANK extension

Our first extension is the addition of hand-to-mouth households to the RANK model, which
thereby becomes a two-agent New Keynesian (TANK) model. We assume that, for any given
reason, a share A of households does not have any savings technology at its disposal and therefore
consumes whatever it earns from its labor services provided.” The linearized budget constraint of
hand-to-mouth consumers simply reads

e =wy +17, (C.22)

with ¢ and If denoting hand-to-mouth agents’ consumption and labor supply. While Ricardian
and hand-to-mouth consumers differ in their ability to save, we assume that they share the same
preferences. Thus, the linearized labor supply equation, that would prevail in frictionless labor
markets, has the same structure for hand-to-mouth consumers as it has for optimizing consumers.
It is therefore given by
1
h H H H

wt = m(ct — hct71> + Ullt . (C.23)
We assume that hand-to-mouth agents are represented by the same labor unions as Ricardian
agents. As such both types of agents earn the same wage. Aggregate consumption and labor hours
can be obtained in the linearized form as

et = el + (1= N)cf, (C.24)

47In contrast to HANK, the TANK model does not capture uncertainty effects or time-variations of the share of
constrained agents on consumption.
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I = NP 4+ (1= \if (C.25)

Note that for A set to zero, the TANK model nests the RANK model without hand-to-mouth
consumers as a special case.

Appendiz C.8 Financial Frictions

The second extension that we consider is the inclusion of frictions in financial markets. Here,
we adopt the modeling choices by Del Negro et al. (2015b), who build on the work of Bernanke
et al. (1999), and Christiano et al. (2014).

In this model, entrepreneurs obtain loans from frictionless financial intermediates, which in
turn receive their funds from household at the riskless interest rate. In addition to the loans,
entrepreneurs use their own net worth to finance the purchase of physical capital that they rent out
to intermediate good producers. Entrepreneurs are subject to idiosyncratic shocks to their success
in managing capital. As a consequence, their revenue might fall short of the amount needed to repay
the loan, in which case they will default on their loan. In anticipation of the risk of entrepreneurs’
default, financial intermediates pool their loans and charge a spread on the riskless rate to cover
the expected losses arising from defaulting entrepreneurs. Therefore, in the full model, condition
(C.4) in the RANK model is replaced by the two conditions

L, Vfﬂ — 1) = u + Cspp(qe + ke —ny) + Ouwts (C.26)
k
~k _ r k (1-9)
Y — T = rk—l—(l—&)rt +rk+(1_5>¢h+1*fh—1- (c.2m)

77 is the nominal return on capital for entrepreneurs, n; denotes entrepreneurs’ aggregate net worth,
and 7, ; allows for exogenous variations in the entrepreneurs’ riskiness. The first condition defines
the spread as a function of the entrepreneurs leverage and their riskiness, which is determined by
the dispersion of the idiosyncratic shocks to entrepreneurs. Note that if the elasticity of the loan
rate to the entrepreneurs’ leverage, (qp 5, is set to zero, we are back to the case without financial
frictions. Condition (C.27) defines the return on capital for entrepreneurs.

The evolution of aggregate entrepreneurial net worth is described by

ng = Cn,?k (775 - 7Tt) - Cn,r(rt—l - 7Tt) + Cn,qk(Qt—1 +Et—1) + Cn,nnt—l - gnﬁgw,t—l- (0-28)
SP,0w

Equation (C.28) links the accumulated stock of entrepreneurial net worth to the real return of
renting out capital to firms, the riskless real rate, its capital holdings, its past net worth and
variations in riskiness. The coefficients ¢,, 7, Cn,r, Cn,qk> Cn,o., , @a0d (sp 0, are derived as in Del Negro
et al. (2015b). They depend on the steady state calibration of the default rate of entrepreneurs,
the distribution of entrepreneurial risk, and their survival probability.

Lastly, the evolution of exogenous variations in entrepreneurial risk, the risk shock in terms of
Christiano et al. (2014), follows the process

Owt = Po0ut—1+ €ot (C.29)

with €5 “WN (0,02). In the estimation of the standard financial friction versions of the model,
FRANK and FTANK, we abstain from using the risk shock, and only focus on the role of the
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financial accelerator for the transmission of other shocks. The versions FRANK-R and FTANK-R
will allow for the risk shock instead of the MEI shock. In the estimation of the models on eight
observables including a credit spread (FRANK-S and FTANK-S) will allow for both, the risk shock
and the shock on the marginal effectively of investment.

Appendix D Generalized Forecasting Error Variance Decompositions

Tables D.11 to D.16 report the generalized forecasting error variance decomposition, constructed
as in Lanne and Nyberg (2016) and sampled from the posterior. It is quite clear that risk premium
shocks play a dominant role for the most variables over short and long time horizons. In the short
run, fluctuations in output are primarily driven by risk premium shocks. To a lesser degree, MEI
shocks play a role as well for short run fluctuations in output.

At a time horizon of four quarters, risk premium shocks and MEI shocks are the most important
shocks for output. Whereas demand factors dominate the explanation of output in the last decades,
supply side factors, such as fluctuations in TFP and price markups gain some importance as well at
longer times horizon. Not surprisingly, the generalized forecast error variance decomposition reflects
the divide between the driver of consumption and the driver of investment, that is exhibited in the
historical shock decomposition. Consumption is predominantly driven by risk premium shocks,
which directly hit the Euler equation of households, whereas investment is mainly driven by MEI
shocks. Short-run fluctuations in prices and wages are explained by price markup shocks and wage
markup shocks, respectively.

Over the medium and long run, these shocks lose in importance. Again at a time horizon of four
quarters, risk premium shocks account of most of the movements in inflation, whereas MEI shocks
dominate inflation in the long-run through their effect on the slow-moving capital stock. Short-
term movements of the nominal interest rate are due mostly to monetary policy shocks, which
represent deviations from the policy rule and translate into forward guidance shocks at the ZLB.
With the extension of the time horizon it shows that the policy rate mainly reacts to movements
in fundamentals, which are triggered by risk premium shocks. Thus overall, risk premium shocks
are the dominant shocks for this episode.

RANK: One quarter
Y c i m w r l

eg 0.117 0.006 0.000 0.000 0.000 0.001 0.138
e. 0225 0.041 0.006 0.018 0.005 0.016 0.137
€, 0410 0775 0.290 0.044 0.035 0.137 0.448
e 0111 0.171 0.103 0.033 0.013 0.645 0.122
e, 0130 0.002 0.598 0.001 0.001 0.002 0.152
e 0.002 0.004 0.002 0.877 0.039 0.191 0.002
€y 0.005 0.001 0.000 0.027 0.906 0.009 0.000

Table D.11
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RANK: Four quarters

c

i

™

w

€2
€u
€r
€i

Cw

0.012
0.145
0.526
0.211
0.098
0.006
0.001

0.009
0.099
0.657
0.223
0.006
0.005
0.001

0.001
0.021
0.359
0.178
0.434
0.006
0.000

0.001
0.074
0.310
0.297
0.012
0.237
0.069

0.000
0.085
0.362
0.192
0.019
0.096
0.244

0.002
0.016
0.457
0.436
0.007
0.074
0.008

0.016
0.009
0.626
0.255
0.088
0.006
0.001

Table D.12

RANK: 16 quarters

]

™

w

€g
€z
€u
€r
€;
€p

Cw

0.001
0.804
0.049
0.095
0.049
0.001
0.001

0.017
0.787
0.063
0.074
0.057
0.001
0.001

0.005
0.421
0.071
0.162
0.336
0.002
0.003

0.003
0.301
0.112
0.383
0.163
0.014
0.025

0.000
0.588
0.144
0.195
0.053
0.014
0.006

0.002
0.024
0.944
0.008
0.018
0.001
0.003

0.027
0.048
0.122
0.420
0.361
0.004
0.019

Table D.13

: One quarter

FRANK

C

]

™

w

€z
€y
€r
€i

€w

0.111
0.253
0.295
0.029
0.306
0.003
0.003

0.007
0.124
0.758
0.062
0.035
0.014
0.000

0.000
0.004
0.082
0.013
0.900
0.001
0.000

0.000
0.002
0.026
0.003
0.023
0.943
0.004

0.000
0.003
0.016
0.001
0.017
0.010
0.952

0.001
0.009
0.106
0.859
0.005
0.018
0.001

0.117
0.216
0.312
0.032
0.319
0.003
0.000

Table D.14
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FRANK: Four quarters

c ) ™ w

€z
€y
€p
€i

€w

0.011
0.168
0.279
0.025
0.513
0.003
0.000

0.013 0.000 0.000 0.000
0.219 0.007 0.006 0.071
0.655 0.050 0.093 0.245
0.046 0.008 0.006 0.016
0.063 0.933 0.089 0.383
0.003 0.001 0.802 0.100
0.001 0.000 0.005 0.186

0.003
0.013
0.500
0.287
0.075
0.123
0.001

0.016
0.007
0.386
0.038
0.550
0.003
0.000

Table D.15

FRANK: 16 quarters

c 1 T w

€2
€u
€r
€

Cw

0.002
0.374
0.031
0.000
0.592
0.000
0.000

0.011 0.000 0.003 0.000
0.331 0.065 0.163 0.193
0.080 0.017 0.506 0.122
0.000 0.000 0.003 0.001
0.578 0.916 0.295 0.671
0.000 0.000 0.028 0.007
0.000 0.001 0.002 0.005

0.002
0.013
0.798
0.000
0.185
0.002
0.000

0.041
0.024
0.212
0.004
0.716
0.001
0.001

Table D.16
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Appendix E Normalization of historic shock decompositions for models with OBCs

We are interested in quantifying the contribution of a each type of shock to the time series of the
model variables. Such quantification is called the historic shock decomposition (HSD). Once one or
several occasionally binding constraints (OBCs) are included in the model, the model is nonlinear
and the HSD is generally not unique. To illustrate, imagine a deflationary MEI shock &! and a
risk premium shock u;, which together cause the ZLB to bind. Assume that each, the MEI shock
and the risk premium shock alone are insufficient to force the ZLB to hold. Then, the effect of u;
conditional on the realization of ¢! will have a different dynamic effect than just u; taken alone,
and it is unclear which value to assign to u; within a HSD.

More precisely, we are interested in the series of vectors

where 2z € {1,2,--- ,n} is in the set of all n types of shocks. €, = (g},€2,--- ,e?) is the vector of
all n shocks in the model. Each h; . is the cumulative dynamic contribution of shock z to v;. hy ,
is hence recursive. We require for each period ¢ that

th,z = Vg, (EQ)
z=1

and at least that
{hy{,=0Ah;_1,=0 < ¢ =0}V2z=1,2,--- ,n (E.3)

i.e. that any zero shock has a zero net contribution to the HSD.

We propose a normalization method specific to models with OBCs for historic shock decompo-
sition such that the result is independent of any ordering effects. For convenience, let us repeat
Equation (7):

Lo(l, kywy) =N7axts=L0H (N 4 eb)™ 5 §(1 &, wy)

(E.4
+ (I _ N)fl(I _ Nmax{sfl,O})CF' )

Take as given the time series of smoothed shocks {st}OT that fully reproduces {vt}OT. This implies
that we also have obtained the series of {l,k}. The law-of-motion from period ¢ to ¢ + 1 is then
given by Li(l, k, w;). Note that S(/,k, w;) can be decomposed in a coefficient term S, (I, k), that
is to be pre-multiplied to wy, and a constant term S.(k) that only depends on & (see Boehl, 2020b
for details).
Recalling that w; = v;_1 + Ee;, we can write
(Xt41,ve)T = (E.5)
Lyl k,vi1,€0) =N 700 (N 4 eb)™™ 01 5, (1 k) vy
_|_Nmax{1—l,0} (N + Cb)min{l,l} S’U(l7 k‘)EEt
+Nmax{1—l,0} (N + Cb)min{l,l} Sfc(k)
+(I . N)fl(I . Nmax{lfl,o})cf’

(E.6)
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where we are more explicit about the shocks. The first term is linear in v;_1, the second term is
linear in e, whereas the third and forth term are, taking as given {l, k}, vectors of constants.

Denote by E, the z-th column of Z, which corresponds to the shock 7. For each z we define
h; . by the recursion

(X120 )T = (E.7)
Li(l b hy_y ., e7) =N"U-L0H (N 4 eb)™™ 1 § (1 k)hy_; .
+Nmax{1-L0} (N 4 eb)™ 01 G (1 k)B, 67
Fuw, NmxU-L0}H (N 4 cb)™ b g (k)
Fwy o (T — N)~H(I — Nmax{1=L0h ¢

(E.8)

where it is easy to show that Condition (E.2) is satisfied as long as > wy,, = 1 V£.48

The first two terms on the RHS of (E.7) are already the recursion of h; , and the decomposition
respectively. The two other terms are left to be split up and attributed to each shock, which — in
terms of (E.7) — implies assigning the weights w; . such that Condition (E.3) is satisfied.

Define
bNmax{1=L0} (N 4 cb)™™ 1 8 (1 k) (hy_y .. + B.67)

bNmax{1-L0} (N 4 cb)™ ™ 8 (1, k)w,

i.e. wy . is proportional to the relative contribution of € to the constraint value r;.

Intuitively, this acknowledges that the values of {I,k} depend on the relation of the scalar r;
relative to 7. The further below r; is of 7, the longer the constraint will bind, and the higher is k&
(note that the constant term will be zero for any ! > 0). If the contribution of £ to a negative r; is
large, then the respective weight w; , of the constant terms in (E.7) attributed to ¢f will be high,
and vice versa. If however h,_; , and 7 both are zero, Condition (E.3) is satisfied.

For our application with the ZLB this means that the weight of constant terms for each shock
is proportional to the shock’s contribution to the total level of the shadow rate. Further note that

(E.9)

Wtz =

> bNmelI=b0 (N 4 eb)™ ™M S (1 k) (Thy—1,cler = 0] + ecy) =
e (E.10)

bNmex{1-L0} (N 4 eb)™ ™M 2 (1 k) ([vi_iler = 0] + &),

and hence > w . =1, i.e. the weights sum up to unity.

48Ft+1,z is a by-product that we do not care about. We want hy ..
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Appendix F Economic costs of the binding ZLB
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Figure F.14: RANK model estimated to 1998-2019. On the left: Counterfactual dynamics if the ZLB would not have
posed a constraint to the nominal rate. On the right: Net effect of the binding ZLB.
Note: Means over 250 simulations drawn from the posterior.

As we have seen, a negative nominal interest would have been warranted by economic conditions
over long parts of the sample. The binding ZLB therefore is a constraint that is economically costly.
Figure F.14 illustrates these costs for the RANK model estimated on the crisis sample. The bottom
panels show that without the ZLB, interest rates would have been far in negative territory, with the
credible set roughly centered at around -0.4% (1.6% in annual terms) for most of the duration of
the ZLB spell. We report that this counterfactual stimulus would have hardly increased inflation.
However, there would have been economically meaningful gains in output, which would have been
up to 1% higher if the ZLB would not have been binding. While our results are closely aligned
to those reported by Kulish et al. (2017), they stand in contrast to findings by Gust et al. (2017),
who, in particular for the Great Recession, report a deeper fall of the notational rate into negative
territory. While they report output costs that are roughly similar to ours, the effects of the binding
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ZLB on price dynamics are far more pronounced in their framework due to their estimate of a
steeper Phillips Curve (0.07 vs. 0.007 in our estimate of the RANK model).
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Appendix G Challenges for the identification of forward guidance shocks
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Figure G.15: RANK model estimated to 1998-2019. The net effect of monetary policy shocks. Red: mean over
smoothed states. Blue: no shocks after 2007. Orange: no shocks after 2008..
Note: Means over 250 simulations drawn from the posterior.

There exist an active literature on the effects of forward guidance (Eggertsson and Woodford,
2003; Del Negro et al., 2015a; McKay and Reis, 2016).In Section 2 we report that the monetary
policy shocks €, can be interpreted as forward guidance shocks when the economy is at the ZLB:
although the actual policy rate is unaffected, the persistence of both the exogenous process and the
shadow rate will prolong the expected duration of the ZLB spell, and promises lower rates even after
the exit. Naturally, the nonlinear filtering procedure will also provide a series of filtered /smoothed
shocks for €,. Interpreting these shocks as forward guidance shocks, they can be used to simulate
counterfactuals, and to quantify the effect of such policy.

Figure G.16 provides counterfactual simulations assuming that forward guidance shocks are
absent after 2007 and 2008, respectively. The dashed red line corresponds to the mean over the
actual smoothed states, i.e. including forward guidance shocks. For the blue lines, forward guidance
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Figure G.16: RANK model estimated to 1998-2019. The net effect of a counterfactual 1% monetary policy shock in
2010Q4 that raises the expected ZLB spell on average by 3 quarters.
Note: Means over 250 simulations drawn from the posterior.

shocks are ignored after 2007. The right hand side of the figure illustrates the net contribution of
these shocks. Overall, our filtering procedure does not find any sensible forward guidance shocks
during the ZLB episode. The peak in the net effect of inflation and output is almost entirely due
to the early reaction of the Fed to lower rates to the ZLB, which was quicker than suggested by the
policy rule. As inflation and the output gap did not yet decline, this can be instead interpreted as
a reaction to the turmoil in financial markets. We find that this emergency reaction prevented a
substantially deeper fall in inflation and output during the trough of the recession. Regarding the
exit from ZLB, we find that the smoothed nominal interest rate series leaves the ZLB a year after
the actual ZLB period ended. The very low federal fund rate in 2016 is therefore treated as having
the same effects on equilibrium dynamics as a binding ZLB. This might capture uncertainty effects
that could not explicitly included in our modelling approach.

Why are our estimated effects of forward guidance so weak, in particular compared to Gust et al.
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(2017)? As Figure G.16 shows, a counterfactual one-percent shock to the shadow rate in 2010Q4
would have extended the duration of the expected ZLB spell by about 3 quarters and would have
had a considerable effect on output and inflation. These strong effects are not surprising given the
results by Del Negro et al. (2015a) on the forward guidance puzzle. To address the question of
what role forward guidance plays in our RANK model, note that in our model by construction the
risk premium shock always appears together with the nominal rate. Also recall that across models
the risk premium shock was one of the main, if not the main driver of the post-2008 US economic
dynamics. Throughout our sample, the risk premium is positive.

A forward guidance shock will be very hard to distinguish from a negative risk premium shock.
While in normal times, the risk premium and monetary policy shock are easy to identify via
the response of the policy rate, this is not possible at the ZLB. Any positive forward guidance
shock would require additional risk premium shocks to maintain the low level of consumption and
investment. For this reason it is more likely to attribute any increase in consumption or investment
to decreases in the risk premium process as these are in the nature of an stationary AR(1) process,
and not to a positive forward guidance shock. Put differently, at the ZLB we essentially filter 6
observables with 7 structural shocks, of which two are observationally equivalent, and one of which
is already identified to be at an elevated level. This explains why we are unable to identify strong
forward guidance shocks.

How can this finding be interpreted in the light of the results of Gust et al. (2017) and Jones
et al. (2018)? The former use the particle filter to approximate the distribution of states. This
practically implies the use of considerable measurement errors for the filter. The authors set the
model-implied ZLB to exactly zero, whereas we use the highest realized value of the FFR during
the ZLB episode (c.f. Section 3). This means in practice that, in the absence of any measurement
errors, their model-implied ZLB never actually binds. We suspect that, as a binding ZLB helps to
explain the large drop in output in response to a risk premium and MEI shocks, the filter treats the
actual observation of the FFR as a measurement error and assumes the actual FFR to be straight
at zero. This way, the actual level of the FFR relative to the model-implied ZLB of zero enters the
filtering process and potentially manifests in the finding of positive forward guidance shocks.

As for the case of Jones et al. (2018), the authors identify the ZLB durations in the estimation as
in Kulish et al. (2017). In a second step they feed the estimated ZLB durations and the smoothed
shock series obtained in posterior sampling into the model and use the solution method by Jones
(2017) to determine the endogenous ZLB-durations. Any deviation of the spell durations identified
by the posterior is then presumed to be the result from central bank communication. In the absence
of any additional data input, this setup is likely to be subject to the same problem as in our model:
forward guidance shocks will be hard to distinguish from risk premium shocks. However, the specific
setup of the authors allows to include term premium data to the estimation. The authors argue that
the term premium contains information on the future course of interest rates, and can hence be used
to correctly identify forward guidance shocks via the estimated spell durations, and distinguish their
effects from those of risk premium shocks.*? While we can not test whether this holds in practice,
we considered as a sound argument to overcome the problems sketched in this section.

49In practice, including the term premium as an observable is also possible with our methodology. Note that we
can find the expected future value in period ¢ + s of all variables via Equation (7), which could easily be linked to
an observable. We abstain from doing so because we feel that the interest in the effects of forward guidance has
decreased over the recent years.
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Appendix H Evolution of the natural rate
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Figure H.17: RANK model estimated over different samples. Evolution of the natural rate.
Note: Means over 250 simulations drawn from the posterior.

Following Laubach and Williams (2003), an active literature has used different approaches to
estimate the natural real interest rate, or ‘r-star’. While the most prominent approach is to em-
ploy semi-structural models (see, e.g., Laubach and Williams (2003), Holston et al. (2017)), other
frameworks such as VARs, VECMs and affine term structure models have been considered in this
literature. In addition, Edge et al. (2008) and Neri and Gerali (2019) provide examples for the use
of DSGE model in obtaining estimates of the natural rate. As a contribution to this literature,
Figure H.17 displays the paths of the US natural rate that are implied by our estimates of the
RANK model on several samples. It shows that our model predicts a decline of r-star far into
negative territory after the Financial crisis as well as a return to positive territory at the end of the
sample. This finding stands in contrasts to estimates of the natural rate according to the models by
Laubach and Williams (2003) and Holston et al. (2017), which imply that r-star remained positive
throughout the crisis. Apart from the considerable uncertainty surrounding estimates of r-star,
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this discrepancy is mainly due to the fact, that DSGE model estimates of the natural rate cannot
capture its trend-component. However, according to semi-structural estimates, the trend-growth
of output supported r-star in the financial crisis and kept it in positive territory. In contrast, the
path of r-star in our DSGE model merely captures its cyclical components. Specifically, it reflects
fluctuation of the real rate in the frictionless equilibrium around the model’s steady state.

Appendix I Additional historical shock decomposition
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Figure 1.18: TANK Model estimated to 1998-2019. Decomposition of the smoothed time series into the contribution
of the different shocks.

Note: Means over 250 simulations drawn from the posterior. The contribution of each shock is normalized as in
Appendix E.
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Figure 1.19: FRANK-R model — with financial instead of MEI shock — estimated to 1998-2019. Decomposition of
the smoothed time series into the contribution of the different shocks.

Note: Means over 250 simulations drawn from the posterior. The contribution of each shock is normalized as in
Appendix E.
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Figure 1.20: RANK — estimated to 1983-2008. Decomposition of the smoothed time series into the contribution of
the different shocks.

Note: Means over 250 simulations drawn from the posterior. The contribution of each shock is normalized as in
Appendix E.
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Figure 1.21: RANK - estimated to 1983-2019. Decomposition of the smoothed time series into the contribution of
the different shocks.

Note: Means over 250 simulations drawn from the posterior. The contribution of each shock is normalized as in
Appendix E.
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Appendix J Additional impulse response functions
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Figure J.22: IRFs to a MEI shock in TANK estimated for 1998-2019. Compared with mean IRFs to RANK. Note:
Medians over 250 simulations drawn from the posterior with 90% credible set for TANK. Shock size is the posterior
mean standard deviation for each model
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Appendix K Exogenous processes and innovations
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Figure K.23: Smoothened exogenous processes for the different models, sample 1998-2019. 95% confidence intervals
of 250 draws from the posterior.
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Figure K.24: Smoothened innovations to exogenous processes for the different models, sample 1998-2019. Shocks
are normalized to the standard deviation of the parameter draw. 95% confidence intervals of 250 draws from the
posterior.
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