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Abstract

The paper presents early research on problems that make the use of

the basic SIR-model of epidemiology difficult for short- and medium-run

policy. The model essentially generalizes the simple exponential model in

two respects. First, it considers the structure of the infectious popula-

tion in more detail and introduces the concept of the "cohort composition

kernel" that generalizes the aggregate transmission function and renders

the transmission model non-recursive. Second, it shows how policy mea-

sures such as testing, social distancing, or quarantine rules can affect this

kernel and how this can provide estimates for the impact and lag of non-

pharmaceutical policy interventions.
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Covid-19 “might be a one-in-a-century evidence fiasco"

(J. Ioannidis, STATnews 17/3/20)

1 Introduction

Much of the rapidly developing economic literature on the spread of the Covid-

19 pandemic builds on the classic SIR-model of contagion.1 The simplest version

of this model derives the dynamics of transmission in a recursive framework, in

which the number of newly infectious individuals in a population (∆ or 

)

depends on the number of non-infected individuals () who are susceptible to

an infection in a reduced-form model of personal encounters.2 At the early stage

of the epidemic where we are currently, the mitigating effect of having increas-

ing numbers of individuals removed () from the susceptible group through

immunization or death can be neglected. Hence, if  denotes the number of

infectious individuals and  the net transmission rate (per period), then new

infections are  = −1, yielding simple exponential growth. This is what we
should focus on - if the disease has reached the feedback region in the S-I phase

diagram too quickly, our countries’ public health systems will have collapsed.

While the model is a useful basis for longer-run macroeconomic analyses,3

Covid-19 presents (at least) two problems that make an application of the basic

exponential model difficult for short- and medium-run policy. First, transmis-

sion does not simply depend on the number of infectious individuals, but on the

composition of this group, which is influenced by policy. And second, the data

at our disposal are quite inadequate to evaluate the evolution of the disease

and thus the effectiveness of policy. In fact, in most countries we do not even

know the number of infected, not even their magnitude, let alone that of in-

fectious individuals. This state is very unsatisfactory, as politicians must make

real-time decisions with dramatic economic and societal consequences based on

insufficient data.

This paper presents a simple model that addresses both of these problems

by looking in more detail into the structure of the transmission process. It

is therefore related to the so-called “compartmental models" of epidemiology

(see, e.g., Brauer, 2008), but it differs from them by introducing a non-recursive

1The model goes back to Kermack and McKendrick (1927). A timely review of this and

related models is Allen (2017) and, just in time, as I have just learned, Stock (April 5, 2020).

My favorite description is in Braun (1978, Ch. 4).
2Unfortunately, sometimes the acronym is interpreted as “susceptible-infected-recovered".

This is too narrow, and the original model (e.g., in Braun, 1978) divides the population more

generally in susceptible, infectious, and removed agents. Removal may be recovery, but it is

much broader, as it also includes quarantine and other policy measures. On the other hand,

infectious is narrower than infected. Most applications of the model that I know of, however,

assume that the infected are immediately infectious. The fact that this is not the case with

Covid-19 is one of the aspects of the model developed in this paper.
3 Such as Atkeson (2020) and Eichenbaum, Rebelo, Trabant (2020). This literature grows

like  = −1.
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structure, i.e. by abandonning the usual exponentially distributed duration

framework. The model identifies the variables which we need to understand and

measure better, establishes relations between them that can be used to make

efficient use of the data that we can observe, and points to several mechanisms

by which policy influences these variables. The model essentially generalizes

the relation  =  in two respects. First, it considers the structure of the

infectious population and introduces the concept of the “cohort composition

kernel" that generalizes the aggregate transmission function and renders the

transmission model non-recursive. Second, it shows how policy measures such

as mass testing, social distancing, or quarantine rules can affect this kernel and

how this can provide estimates for the impact and lag of non-pharmaceutical

policy interventions.

The research presented here is very preliminary and uses data sources until

early April. My emphasis is on policy and, of course, I am most familiar with

the German data and policy. But the structural problem is the same all over

Europe and probably more broadly.4

The model presented here is at the same time much simpler than the in-

fluential model by Ferguson, Cummings et al. (2005) that is the basis for the

simulations recently conducted by Ferguson et al. (March 16, 2020, the “Im-

perial Study"), and more detailed in some respects, as it explicitly considers

the working of parameters that can be used for policy. It thus tries to bridge

the gap between the mathematical theories of dynamical systems, the clinical

evidence, and the reduced form models used by economists to evaluate the eco-

nomic consequences of the crisis.

2 Individual Evolution of the Disease

Time is discrete,  = 0 1 , and measured in days.
At the individual level, the disease and its consequences evolve in stages

after the infection. Suppose infection is at time  = 0. The different stages of
the disease are then given by the following random times  , measured in days

after infection.

•   (outbreak): time of first clear symptoms (if at all) or undetected out-

break for mild or asymptomatic cases

•  =   +  (no more infectious): time until no more contagious if no

severe symptoms and not treated

4There is a rapidly growing body of clinical evidence, mostly evaluating small sample

experiences from China in January and February 2020; and not being an expert, I am much

indebted to the summaries provided by the websites of the Centers for Disease Control and

Prevention, its German counterpart, the Robert-Koch Institute, or public discussions by

virologists, such as Christian Drosten of the Charité at Humboldt University. These are, re-

spectively, https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-

patients.html, https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html,

and the remarkable podcast https://www.ndr.de/nachrichten/info/Corona-Podcast-Alle-

Folgen-in-der-Uebersicht,podcastcoronavirus134.html.
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•   =   +min( ) (severe): time until severe symptoms if any

•   =   +  (exit): time until end of infection after severe symptoms

•   =   +  (death): time until death after severe symptoms

  and the  are positive-valued random variables. In case of no clear

symptoms or no symptoms at all,   is an artificial date to make the subsequent

timing comparable.5

The above events refer to the evolution of the disease only, not to any inter-

ventions. Diagnoses at the time of outbreak are grouped into three types:

- : asymptomatic (resp., unnoticed by patient)

- : mild, but clear symptoms (fever, cough, etc.)

- : severe, potentially life-threatening (acute respiratory distress (ARD),

severe pneumonia, lung failure, cytokine release syndrome, etc.)

To simplify the presentation, the model does not distinguish between pa-

tients with severe symptoms and critically ill patients. In functioning medical

environments the former is usually associated with hospitalization,6 the latter

with progression to ICUs. Clinical data from January/February 2020 indicate

that this progression has occured in approximately 30% of all hospitalizations.7

If the individual outbreak immediately produces symptoms, we have  = 0,
i.e.   =  . For asymptomatic and mild cases, we have   0 if severe
symptoms occur later, and  = ∞ if not. See Figure 1 for an illustration of

the evolution after the outbreak.

Given the current experience, the following probabilities seem reasonable

benchmark estimates for the evolution at the time of the initial outbreak,  :

 = 02− 04 (1)

 = 05− 06 (2)

 = 001− 002 (3)

Remark: These parameters are highly subgroup-specific (for example, severe

cases are highly prevalent in the over 70 yr group), and sub-group-specific es-

timates are strongly biased.8 Furthermore, it is not clear how the probabilities

can be estimated at all, because the underlying population (all infected individ-

uals) is unobservable.9 See, e.g., Verity, Okell, Dorigatti et al. (2020) for some

discussion of “crude CFRs".

5Completely asymptomatic cases seem to be rare, though. Upon careful investigation,

most patients are able to identify at least some very mild signs (as in the “Munich study" by

Böhmer, Buchholz et al., SSRN preprint 31/3/2020. See Drosten Podcast 24, 30/3).
6This was different during the early spread of the disease in Wuhan in January, where

hospitalization was also used as a isolation device.
7 See Ferguson et al. (Imperial College, 16/3/2020) or Centers for Disease Control and Pre-

vention at https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-

patients.html
8This is particularly true for the Wuhan data from January, where the health system was

quickly overwhelmed.
9There is some important information from natural experiments.

Most impressive is the experiment in Vò (Italy) where the entire population of 3 300 was
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Figure 1: The basic dynamics

The conditional probability of progressing to severe symptoms from initially

no or mild symptoms is not systematically documented it seems.10 Given esti-

mated overall probabilities of developing severe symptoms eventually, it seems

realistic to put this probability at

 = 002− 005 (4)

Together with (3), (4) gives an interval for the overall probability of severe

symptoms conditional on infection of  =  + (1− ) ∈ [003 007].11
tested in late February and then again 10 days later. The findings in Vò seem to be consistent

with  ∈ [03 05]. Source: Financial Times, 17/3/20.
A well known natural experiment is the case of the cruiseship Diamond Princess that was

quarantined between Feb. 3 and 20 in Yokohama after a passenger who had disembarked on

Jan. 25 tested positive on Feb. 1. Almost all passengers and crew were tested subsequently,

and 18% of all positive passengers seem to have had no symptoms (Mizumoto et al., 2020).

Given that the average age of passengers was 58, this is consistent with  being well above

20% in broader populations. Numbers differ across reports and studies (perhaps because they

were written before the full extent of the data was known). A sufficiently informed (but not

complete) report seems to be https://www.cdc.gov/mmwr/volumes/69/wr/pdfs/mm6912e3-

H.pdf

According to Ferguson et al. (the Imperial Study), Verity, Okell, Dorigatti et al. (MedArxiv,

09/03/2020) find 40 - 50% unrecognized cases on repatriation flights from China in late Jan-

uary. This finding is not reported in the Verity et al. paper, though.

Interesting estimates along the above lines can be obtained by comprehensive tests in special

institutions such as care facilities (see, e.g., Kimball, Arons et al. (2020) for the case of a long-

term care facility in Washington).
10There is signifiant evidence from Wuhan for the clinical progression of Covid-19 during

hospitalization. This is informative for  because in the early phase of the outbreak in Hubei

many patients with relatively mild symptoms were hospitalized. An interesting example is

Zhou, Yu, Du et al. (2020).
11Remember: I do not distinguish between “severe" and “critical". The former is often
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A good current estimate for the median incubation period (time until  

after infection) seems to be12

  = 5− 6 (5)

with most of the mass on the interval [3 11]. I assume that the events during
the evolution of the disease are i.i.d. across individuals; in other words, the

distributions of all events are not patient specific (while the outcomes are).13

Let  = (0 

1 


2 ) be the (discrete density of the) probability distribution

of outbreak days after infection (over N0,  = 0 is the day of infection).
For patients with mild symptoms at outbreak, severe symptoms are observed,

if at all,   days later, with most of the mass on days [5 11] after incubation.14

Let  = (0 

1 


2 ) be the corresponding probability distribution.

15

For severe cases, probabilities and time to death depend on the clinical

environment and can therefore not be pinned down universally and without

reference to specific policy. The Hubei studies of January/February 2020 report

mortality rates of 10 - 25 % conditional on hospitalization.16 In any case, I am

less interested in hospitalization and fatality ratios, because once in hospital,

the dynamics are mechanical (as concerns the spread of the disease).

It is critically important to know when infected patients are contagious.

One of the most striking findings of the early literature is that the virus can

be transmitted before an outbreak is noticed.17 The time span over which

associated with hospitalization, the latter with life support on ICUs. But even in published

studies the distinction is not always clear. The estimates given here are on the low side if all

hospitalized cases are included.

Ferguson et al. (16/3/2020, the Imperial Study), building on Verity, Okell, Dorigatti et al.

(2020), give an estimate of 4.4% for , arguing that their original data from China are likely

to be biased. On the cruiseship “Diamond Princess" 52 of the 697 infected cases developed

critically severe symptoms. These 7.5% are high compared to what one can expect for the

general population, as the overall group on the ship was relatively high risk (and by far most

infections occured in the over-60 age group). Data from Russel et al. (2020), with some

preliminary background.

Again, careful: reports such as that until 2/4/2020, "13% of all Covid 19 patients

were hospitalized" (https://www.n-tv.de/infografik/Coronavirus-aktuelle-Zahlen-Daten-zur-

Epidemie-in-Deutschland-Europa-und-der-Welt-article21604983.html) are misleading. The

denominator is wrong.
12 See Wall Street Journal, March 9, 2020, https://flexikon.doccheck.com/de/SARS-

CoV-2, https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-

patients.html, the references therein and many others in the same ball park.
13This seems to be common in the mathematical epidemiological literature. It is, of course,

possible to condition the distributions on obervable characteristics.
14Relevant data seem to be mostly from Hubei, summarized by Wu, McGoogan

(2020). Early cases in Wuhan were documented by Huang, Wang, Li et al.

(2020). Here and on other topics the documentations by the Robert-Koch-Institute at

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html and the

CDC at https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-

patients.html are useful.
15 I am using the convention that probability distributions over days since infection (the

events  ) are denoted by , and those for days since the last event (the incremental lags

 ) by .
16 See Verity, Okell, Dorigatti (2020) and the references therein. They model Case Fatality

Rates (CFRs) and other mortality indicators based on early data.
17 See, e.g., https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-
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transmission can occur is usually stated with reference to the outbreak date

  and probably individual-specific, say [  −    + ]. Current estimates
for the onset of contagiousness,  , suggest values  ∈ [0 2].18 For the end

date of untreated cases,   + , there seems to be a window of  ∈ [6 12]
days after the outbreak, with even longer times possible for children.19 This

implies that, in the absence of mass testing, the vast majority of infections

occur when the transmitter either is completely unaware of her disposition or

has mild symptoms for which she has not been tested.20 Combined with the

evidence for  , this yields an overall broad time interval of [1 23] days after
infection, during which (at least some) individuals can be contagious, with little

or no mass on  = 1 2 and in the far right tail.
Let  = (0 


1 


2 ) be the probability distribution of the day   of the

onset of contagiousness since infection, and  = (0  

1  


2  ) the probability

distribution of the final day of infectiousness since incubation, both conditional

on not being quarantined or hospitalized. According to the previous remarks

we should have  = 0 for  ≥   + 1 and  = 0 for  ≤ 5.

Remark 1: There does not seem to be much evidence on these distributions.

Probably, they are not independent of each other.21 The papers I have read

usually provide means or medians and estimates of the support (min/max).

This makes it difficult, in particular, to calculate confidence intervals or p-values

in empirical studies.

The following tools from probability theory are useful to put these distribu-

tions to work.

• Cumulative lags: If the distributions of subsequent lags are independent,
the density (probability mass) function of subsequent events can be ob-

tained by the usual convolution of the densities. Example: if the dis-

tribution  of days  from the onset of infectiousness to incubation is

independent of the distribution  of the duration from infection to the

onset of contagiousness  , then

 =
X

=0



− (6)

management-patients.html, and the discussion in Section 4 below.
18Ferguson et al. (March 16, 2020, the Imperial Study), assumes a point estimate of  =

05, which implies a larger upper bound for the actual distribution of , consistent with other
findings. For evidence, see the discussion in Section 4 below and the references given there.
19 See https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-

patients.html, https://flexikon.doccheck.com/de/SARS-CoV-2#cite_note-50 and the

references therein. An interesting small sample result is in Wölfel, Corman, Guggemos et al.

(2020).
20This is currently the case in most countries. South Corea, Taiwan, and Hong Kong seem

to be notable exceptions.
21For example, the distribution of the time from the outbreak of symptoms until exit from

infectiousness () is likely to depend on the day of the outbreak ( ).
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• Time intervals: Again, an example suffices to show the general principle.
The probability that an individual on day  after infection is already

contagious (i.e., she is on or past day  ), but has not yet had symptoms

(before  ) is

Pr(  ≤     + ) =
∞X

=+1

X
=0



− (7)

Given the evidence cited above, in calibrations the first sum (summation

over ) will not extend much further than 12 or 13.

3 The Population Dynamics

In the following model, capital letters will denote stocks (numbers measured at

the end of the day) of current cases, lower case letters denote flows (during day

). Script letters denote subgroups of individuals in a population.

Consider a given population (which may be a sub-population of another

population, such as the population of a certain region, or the above 70-years

olds in that region). A key group of interest in the population is the group of

all currently infected individuals, called X, of which there are (at the end of
day ) . The increment during day  is ∆ =  −−1. The size of the
inflow into X (the new infections on day ) is X . Since this variable is of central
importance, we let  = X . Note that, despite the common use of language in
the media or politics, neither  nor ∆ nor  appear in any of the official

statistics.

In order to define the subgroups of X that are relevant for policy, we must
consider one important policy variable, testing. I assume that the population

can be tested for the virus and that tests are correct.22 Furthermore, to simplify

the exposition and, in fact, as is the case in all somewhat functioning health sys-

tems, I assume that all severe cases are automatically tested and hospitalized,

and that people only die in hospital.23 Finally, the base model will not consider

mass testing of asymptomatic patients. This can be introduced into this model

fairly easily, but is left for future research. Targeted testing of asymptomatic in-

dividuals based on special tracing procedures is a further, more elaborate option

that must be modelled explicitly. Hence, the only relevant policy variable ex-

plicitly considered here is the intensity with which patients with mild symptoms

are tested. Thus the model corresponds to the practice in Germany and many

other European countries until early April (where, of course, the test intensity

has varied across countries and time).

22This assumption is not at all innocuous, in particular in times of extreme stress of the

system.
23This does not mean that all hospitalized cases receive the same treatment. In fact, several

current examples show that the mortality rate in hospitals depends on the hospitalization rate

(however defined).
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The spread of the infection can now be described as in Figure 2, which

extends Figure 1. It includes the outcomes “mild - no test" and “mild - test"

after the outbreak date  , where the probability of testing, conditional on ,

is the policy variable  ≥ 0.

Figure 2: The dynamics with testing

The other new element in Figure 2 is an additional time lag due to testing:24

•   =   +   (result): time until test result available if tested.

Up to now, in Germany   is largely exogenous and has several additive

components: (i) time until individual realizes that the symptoms are potentially

problematic,25 (ii) time until appointment with GP, (iii) time until tested,26 (iv)

time until test result. Overall we probably have, with little randomness,

  ∈ [25 3]
24To economize on space, the time lag is not included for severe symptoms, as it does not

matter for future events in the model (of course, it is necessary for the clinical treatment).
25This time span was probably substantial in the early phases of the Corona wave and may

even have exceeded  in some cases. This has certainly changed now. I therefore assume

that  ≤ .
26Until now in Germany, tests have been adminstered only after referral by the GP.
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The subgroups of X of interest now are:
Definition Size Increment

N newly infected on day  
E early infections: not yet contagious  ∆

Y contagious and not in quarantine or hospitalized  ∆
Q confirmed positive and in quarantine at home  ∆

H confirmed positive and hospitalized  ∆

D dead  ∆

exits from Y as no longer contagious Y
exits from hospital, healed H
exits from quarantine, healed Q

A confirmed currently infected  ∆

new confirmed infected 

Table 1: Sub-groups of X

Some remarks may be useful to put these definitions in perspective:

• Most of these groups are not documented in official statistics.
• The total inflow into X at date  is the group N ⊂ E. Its size is X = .

• Unfortunately, even the numbers of healed exits H and Q (from hospital
or from home-quarantine) are not officially documented in Germany.27

The exits from undetected outbreaks, Y , are of course unobservable.
Given the administrative cost of tracking the group Q of confirmed pos-

itives in quarantine at home, I doubt whether such numbers are accurate

where provided in countries outside East Asia.

• Hence, even the number of confirmed currently infected cases () is not

observable. That is very unfortunate, in particular as the number is some-

times publicly reported.28

• The media report  =
P

=0 , total confirmed infected cases until .

I am not sure how useful this historical number is for modelling the dy-

namics (it is informative in general, of course), because the healed exits

Q H Y are not known.
27See the official website of the Robert-Koch Institut, at

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-

03-25-en.pdf?__blob=publicationFile.

The RKI has begun reporting estimates of recovered cases in early April, see

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-

04-08-en.pdf?__blob=publicationFile

There are many other estimates, and it is not clear how reliable they are for future scientific

work.
28E.g., on https://www.worldometers.info/coronavirus/#countries
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For each sub-group G the net increment at date  is the difference between
inflow G and outflow. If a group has several inflows then we let MN denote the

inflow from M into N . The flow accounting is as follows (where we suppress
the time indices):

• ∆ = − Y

• ∆ = Y − YH − YQ − Y

• ∆ = YQ − QH − Q

• ∆ = YH + QH − H −∆
The outflows YH and YQ are observable. I have not seen them reported

separately, but health authorities must have them.29 Publicly available (and

widely reported) is30

 = YH + YQ (8)

Summing the above 4 flow equations yields the total net flow equation

∆ +∆ +∆+∆ = −∆ − Q − H − Y (9)

We have the following fundamental counting relations for total infections

(using (9)):

 =  +  + + (10)

∆ =  −∆ − Q − H − Y (11)

Hence, if (11) is positive, the number of infected increases (∆  0); if it
is negative it decreases. Unfortunately, except for ∆, none of these variables

is observed, either because of intrinsic difficulties or because the administrative

infrastructure and public planning have been insufficient.

4 Transmission Dynamics

Under the assumption that there are no nosocomial infections and people ob-

serve home-quarantine,31 new infections depend on the uncontrolled contagious

population Y and the transmission rate(s). As noted in the Introduction, at the
early stage of an epidemic, as currently in Europe and the US, in a stationary

model without intervention, transmission would simply occur according to

 = −1 (12)

29Hopefully - simply aggregating total hospital admissions will not be sufficient. One needs

days of first symptoms.
30Note that this number depends on the test intensity  and that it contains cases of different

cohorts.
31This assumption can be relaxed in a fuller model. In fact, the proportion  of tested indi-

viduals who ignore the quarantine, is an important variable, partially policy (how is quarantine

enforced?), partially behavioral (how cooperative are people?).
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where  = b − b  0 is the net transmission rate, b the gross infection rate, b
the gross removal rate (through recovery, isolation or death), and infectiousness

and removal occur homogenously across cohorts.

This model corresponds to the standard SIR model in epidemiology (see,

e.g., Allen (2017)) when the number of infectious cases (the I in SIR) is small

relative to the total population The naive transmission model is not well suited

for policy analyses for at least four reasons. First, transmission is stochastic.

Second, population size is affected directly by policy intervention, such as test-

ing and quarantining. Third, even if one assumes that the population mixes

homogeneously, transmission depends on the composition of Y, not just on its
total size, and fourth, at the individual level the transmission rate is probably

not constant over time.32 In particular, as discussed above, individuals are not

contagious immediately after the infection, but typically they are before the

onset of symptoms. For example, evidence from the Munich group of early Ger-

man infections by Woelfel, Corman, Guggemos et al. (2020) indicate that the

viral load in the throat - an important determinant of individual infectivity -

decreases from the time of the outbreak on and that the virus actively replicates

in the throat until date   + 5, but not much thereafter. The Guandong study
by He, Lau, Leung et al. (2020) confirm that the viral load peaks before day  ,

and that approx. 44% of all infections take place before   (the transmission

probability is highly left-skewed).33

Overall, it seems difficult to estimate transmission rates from population

data, because neither  nor , let alone its composition, are observable.

Even observations from natural experiments, such as the cruise ship Diamond
Princess, are difficult to interpret, as transmission onboard was massively inter-
rupted from the early days of the outbreak on because (i) all confirmed infected

cases were continuously evacuated and (ii) passengers (not crew members) were

quarantined (but not fully isolated).34

Given these qualifications, let () denote the average daily transmission rate
per active person on day  ≥ 0 after infection, which we assume to be constant
across (infection) cohorts.35 It is not clear whether the transmission rate is age-

32An obvious further impediment for policy analysis is that the group of infectious but not

isolated cases (Y−1) is unobservable.
33The evidence on individual infectivity as measured by viral loads is increasing. An inter-

esting observational study on 23 patients in Hong Kong is To, Tsang, Leung et al. (2020).

For more evidence, see https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-

management-patients.html#Asymptomatic and the studies cited there, and (as usual) the

Drosten Podcast (20, 24/3/2020).
34 See Government of Japan, Ministry of Health, Labour and Welfare, at

https://www.niid.go.jp/niid/en/2019-ncov-e/9407-covid-dp-fe-01.html
35Potentially, there are at least two ingredients going into the construction of the indi-

vidual transmission rate. First, the degree of biological individual infectivity (i.e., the viral

load spread per day), which has a distribution over the time interval [  ], as described
previously. Second, transmission depends on individual behavior, which in turn depends on

personal traits and social rules (see, e.g., Blackwood and Childs (2018)). () compounds
these two dimensions into one single number, describing the average infectivity per cohort

member over time (Ferguson et al., 2020, assume i.i.d. Gamma distributions). Then these in-

tensities are weighted by the numbers (frequencies) of infectious individuals of a given cohort,

given by the  and  introduced in Section 2.
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specific. Ferguson et al. (2020) assume that it differs between asymptomatic

and symptomatic cases.36 This could easily be incorporated into this model by

distinguishing between  and . From the discussion of the current empirical

evidence in Section 2, we quite certainly have (conservatively estimated) (0) =
(1) = 0 and () = 0 for  ≥ 24.
Conceptually,  is a random variable with a probability distribution  |Y−1

on N0. If we limit our attention to average new infections, the associated trans-
mission dynamics is governed by

 [ |Y−1 ] =
X

=1

() |N− ∩ Y−1| (13)

where |Z| denotes the size (number of elements) of a set Z. (13) states that at
the end of day − 1, the expected number of new infections on day  is equal to
the sum over all previous days −  of the number of infections caused by the

members that were infected in − and are still infectious and not hospitalized

or home-isolated at the end of day  − 1. Note that (13) is a generalization
of (12) to the case where not only the size but also the composition of Y−1
matters. In fact, (13) describes an expectation of day  conditional on the full

state of infections in  − 1. In this sense (13) would in principle be useful for
daily forecasting, if the information about Y−1 were known in  − 1 (which it
is not).

If we want to derive an ex ante law of motion similar to the naive model

(12), we must use the expected composition of Y−1. Building on Fig. 2, for
each cohort N the duration in Y is of different length for the different branches
of the event tree:

sub-group path cond. probability at  end time

Y between   and    

Y , then  (1− ) 

Y , then    

Y , not tested, then  (1− )(1− ) 

Y , not tested, then  (1− )  

Y , tested   

Table 2: Sub-groups of Y

By construction,

Y =
[

∈{}
Y

36The assumption being that symptomatic cases are 50 % more infectious than asymp-

tomatic ones. No source is given for this assumption.
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Using the distributions of the evolution of single cohorts constructed in Sec-

tion 2, the transmission equation (13) becomes

 [ |Y−1 ] =
X

=1

()()− (14)

where the “cohort composition kernel" is given by

() = Pr(  ≤  − 1   ) (15)

+[ + (1− )](1− ) Pr(
 ≤  − 1  ) (16)

+[ + (1− )] Pr(
 ≤  − 1   ) (17)

+ Pr(
 ≤  − 1   ) (18)

Here the first term of the sum gives the mass of the cohort that at the

end of day  − 1 is contagious without having developed symptoms yet (the
“pre-symptomatic transmitters"), the second term the fraction with no or mild

symptoms that have not been tested and that do not develop severe symptoms

(the “long-term stealth transmitters"), the third the fraction with no or mild

symptoms that have not been tested and develop severe symptoms later (the

“short-term stealth transmitters"), and the fourth the fraction of mildly symp-

tomatic cases that are tested (and sent into home-quarantine once the test result

is available).

Note that the () do not sum to 1. They describe the size of subgroups of

any given cohort that are not necessarily distinct as they evolve over time; they

are bounded by 1 for each  and not more. They depend on the interaction of

policy and the different durations in (15)-(18). This latter fact is different from

the basic recursive model (12), in which the () simply decrease exponentially,
driven by the uniform removal rate from the infectious population, and from its

compartmental generalization SEIR (where E stands for “exposed"), where two

such exponential decreases are folded into each other.

5 A Simple Calibration

To illustrate the dynamics derived above, this section presents a simple paramet-

ric calibration. The basic assumptions are in lign with the preliminary medical

evidence presented in Section 2 and so are the derived distributions, as far as

this can be judged from the limited empirical evidence. But the calibration is

not optimized and the example meant to be illustrative rather than descriptive.

In order to be able to use the simple composition rules (6) and (7) above,

assume that the distributions of subsequent events are independent of each

other. The building blocks of the model are therefore the distributions

•  for the onset of infectiousness  ,

•  for the time  between   and the time of first symptoms  
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•  for the time  between   and the end of infectiousness on day 

•  for the time   between   and the display of severe symptoms (result-

ing in hospitalization), if any.

In order to simplify the exposition I assume that  and  are governed by

the same distribution . Hence, there is one single day   on which patients

exit from the group Y, either “healed", which means no longer contagious, or
with severe symptoms, which takes them to hospital.37

Under this assumption, the cohort composition kernel  takes the following

simple form:

() = −1 + 

−1 + (1−  − )


−1 (19)

where

Time Group State

 = Pr(  ≤    ) Y contagious, but still pre-symptomatic

 = Pr(  ≤    ) Y tested after mild symptoms,

but without home-quarantine yet

 = Pr(  ≤    ) all other inY no or mild symptoms, not tested,

and neither healed nor hospitalized yet

Note that these probabilities do not sum to 1 because of double counting

and the group E of early infections is missing.

Assumption 1:   is distributed on  = 2  8, with probability mass function
 given by

 : 0 1 2 3 4 5 6 7 8
 : 0 0 01 01 02 02 02 01 01

Hence, contagiousness begins between day 2 and 8 after infection with most

of the mass on days 4 to 6.

Assumption 2:  is distributed on  = 0 1 2, with probability mass function

 : 0 1 2
 : 025 05 025

37The apparent similarity of the two distributions  and  discussed in Section 2 has

given rise to the hypothesis that  and  are actually driven by the same event (“up or

out").
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Hence, first symptoms appear on the day of the onset of contagiousness or

up to two days afterwards, with most of the mass on the next day.38

Assumption 3:  is distributed on  = 6  10, with probability mass func-
tion

 : 0 1 2 3 4 5 6 7 8 9 10
 : 0 0 0 0 0 0 0125 025 025 025 0125

Hence, patients with initially no or mild symptoms either develop severe

symptoms or stop being infectious between day 6 to 10 after the outbreak with

a median at day 8.

By standard calculations using (6), the distribution of the length of the

incubation period   follows from Assumptions 1 and 2 and has the following

density (probability mass) function on {2  10}:

0 1 2 3 4 5 6 7 8 9 10
0 0 0025 0075 0125 0175 02 0175 0125 0075 0025

Table 3: The distribution of  ,  = 2  10

Table 3 shows that in the example, 80 per cent of all outbreaks occur 4 - 8

days after infection.

Using Assumptions 1 and 2 and using (7), one can also calculate the first

term of the cohort composition kernel  in (19). The fraction of the cohort

that is contagious but not yet symptomatic on day  after the infection,  =
Pr(  ≤    ),  ≥ 0,39 is given by

0 1 2 3 4 5 6 7 8 9
0 0 0075 01 0175 02 02 0125 01 0025

Table 4: The cohort fractions Pr(  ≤    ),  = 2  9

According to Table 4, in our example 90 per cent of all “pre-symptomatic

transmitters" are to be found 3 - 8 days after infection, with some left skewness.

For the fraction of the cohort that has experienced mild symptoms, is being

tested but not yet in home-isolation on day  after the infection, we assume that

it takes 3 days until the positive test result has been established and resulted

in home quarantine. Hence, the delay  has a point distribution with mass

38Remember that   is an imputed value for completely asymptomatic cases. See also

footnote 5.
39Again: remember that  is an imputed value for completely asymptomatic cases. Hence,

the date   is defined for each cohort member.
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3 = 1 and 

 = 0 for all  6= 3.40 Using (7), the fraction of the cohort between

  and   on day  is therefore given by

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0025 01 0225 0375 05 055 05 0375 0225 01 0025

Table 5: The cohort fractions Pr(  ≤    ),  = 2  12

The distribution of values is symmetric,41 just as that of  , and peaks one

day after that of  .

Finally, the fraction of the cohort that has experienced no or mild symptoms,

has not been tested, is infectious, but not in hospital on day  after the infection

(the “stealth transmitters"), Pr(  ≤    ), has the following size

0 1 2 3 4 5 6 7 8 9
0 0 0025 01 0225 04 06 0775 0897 0956

10 11 12 13 14 15 16 17 18 19
0941 0863 0741 0584 0416 0259 0138 0056 0019 0003

Table 6: The cohort fractions Pr(  ≤    ),  = 2  19

According to Table 6, if not tested and isolated, between days 6 and 13 after
infection these stealth transmitters constitute the vast majority of each cohort

(approx. 60% or more).

To illustrate the impact of the composition of Y−1 on  given by (14) in

our example, let us assume that the average individual transmission rate ()
is constant over the course of the infection, just as in the basic SIR model. As

discussed in Section 4 (in particular footnote 33), this is probably not correct,

but it helps to make the point.

Consider the following baseline scenario:

 = 001  = 07

 = 02

In this scenario, 70 per cent of all infected cases develop mild symptoms at

the time of the (potentially unobserved) outbreak, 29 per cent are asymptomatic,

and 20 per cent of all mild cases are tested. Given the lack of data on the

evolution of Y−1, it is difficult to translate these percentages into observables,
but at least the values of  and  are consistent with what we seem to know

40As noted in Section 3, in Germany this delay has unfortunately been relatively long for

too long. In particular in the very early days of the disease, in March, when (at least in

Germany) testing capacity was overwhelmed, practices not yet established, and patients not

used to preventive self-quarantine,  = 3 may be an underestination.
41Remember: this is not a probability distribution.
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from the natural experiments discussed above. The time structure of the cohort

composition kernel  for this scenario is given by the orange bars in Figure

3. Almost 80 per cent of the total mass lies between days 6 and 13. after

infection, less than 10 per cent between days 1 and 5. Hence, policies affecting

new infections will show very little effect in the first 5 days, and one will have

to wait for almost 2 weeks to see most of the impact. This is very different from

the case of exponential growth in which most of the mass is concentrated on the

early days.

Structure of () under three scenarios

This picture changes little for the alternative scenario 1, where we assume

that the fraction of asymptomatic cases among the infected is much larger:

 = 001  = 04

 = 02

The composition of  for this scenario is given by the blue bars in Figure

3. The mass of active transmitters increases slightly overall, with most of the

increase between days 8 and 15. This is mainly due to the fact that testing

occurs only for the mildly symptomatic, whose the number is now lower. The

finding that the two scenarios differ only little is interesting because the fraction

of aymptomatic patients, , is difficult to estimate and not yet well understood.

Alternative scenario 2 describes a policy experiment, by assuming that the

test frequency is drastically increased compared to the baseline:
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 = 001  = 07

 = 06

Not surprisingly, the result, given by the grey bars in Figure 3, shows a

strong decrease of new infections, which occurs mostly between 8 and 17 days

after the change. More importantly, the analytical expression for the cohort

composition kernel  in (19) makes it possible to quantify this effect. This is

important because the gain in lives and treatment costs brought about by the

mitigation of the transmission activity can now be compared to the considerable

costs of expanding the testing capacity.

In a next step, the improved transmission dynamic (14) can be integrated in

dynamic economic models. We need better data and a more granular model to

do these estimates reliably, but first simulations already suggest that the cohort

composition kernel reacts non-trivially to economic policy.

6 Conclusions

We currently know far too little about the epidemic. While the empirical ev-

idence on small samples of patients or from unplanned natural experiments is

rising rapidly, aggregate data are very problematic. Hardly any of the basic

numbers in the fundamental counting relation (10) is known. The model of this

paper is one step in understanding and using the available data better. Better

data can be obtained from large-scale public testing, but will also require the

intelligent use of selective random tests. To organize and interpret such data

collection, it is important to understand the underlying structure of the popu-

lation and its dynamics. The research described in this paper may help on both

these fronts: understanding the available data and organizing the collection of

new data.

Testing is important, but the question is what testing. In the early stage of

an epidemic, mass testing is likely to be very expensive and relatively uninfor-

mative, since outbreaks are random and so are observed clusters. But controlled

mass testing of specific populations can be very useful to identify key theoretical

parameters, such as the  in the above model. As the model has shown, such

tests must control carefully for the timing of interventions, for example to be

able to distinguish asymptomatic cases from pre-symptomatic ones. Given the

great uncertainty and the different needs and views with respect to policy, it is

now the time for controlled experiments.
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