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Abstract

We test experimentally the theory of misguided learning formulated by Heid-

hues et al. (2018). The model predicts the behavior of an agent who has a biased

perception of his ability and is learning about an unknown, decision-relevant param-

eter. We use a novel experimental design to demonstrate that the learning process

of an overconfident agent differs significantly from that of an unbiased agent. In a

dynamic setting, the overconfident agent repeatedly takes suboptimal actions, mis-

interprets the output and forms erroneous beliefs about the unknown parameter.

We provide the first empirical evidence that giving a biased agent the opportunity

to experiment and acquire new information is not only ineffective, but in some cases

counterproductive.
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1 Introduction

Many economic decisions require an accurate assessment of the state of the world. Of-

ten, more than one decision-relevant aspect is unobservable, and people have to simul-

taneously form beliefs about multiple parameters. Learning in such environments is

particularly challenging. Agents are not only required to take actions and keep track of

changing outcomes, but also ought to disentangle the influences of various factors in or-

der to accurately update their beliefs about specific parameters. The latter adds another

layer of complexity to decision-making and constitutes a potential source of error.

In particular, if an agent holds incorrect and persistent beliefs about some param-

eters, he is likely to misinterpret the data and form erroneous beliefs about the state

of the world. Heidhues et al. (2018) use a theoretical model to show that the learning

process could go awry: the agent becomes increasingly mistaken about the state of the

world with each observation. Learning is “misguided” and since it is the agent who

generates the observations that lead him astray, one can describe it as “self-defeating”.

An illustrative example, provided by Heidhues et al. (2018), involves a manager who

knows neither the productivity of his team nor the quality of his decisions, both of

which are important inputs to the production function. In every period, the manager

observes the team’s output and decides on the optimal level of control. If the manager

is overconfident about the efficacy of his methods and reluctant to update this belief, he

will attribute unsatisfactory output to the low productivity of the team. In his view, the

optimal action necessitates exerting greater control over his employees. Since this action

is in fact suboptimal, it results in a further drop in output. Consequently, the manager

concludes that the team productivity is lower than expected and decides to adopt even

stricter measures. The striking feature of the model is that taking seemingly optimal

actions and observing the outcomes lead the manager to more biased posterior beliefs

about the team.

The theory admits the possibility that this pattern of behavior arises in many set-

tings. Examples include effective delegation of tasks in management, choice of the op-
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timal effort level, and public policy decision making. Since the decisions are frequent

and widespread, the compound loss may be substantial. However, the extent to which

people engage in misguided learning remains an open question.

Studying beliefs formation in the field or with naturally occurring data proves to be an

onerous task. One difficulty is that the state of the world that is unobservable to agents

is typically also unobservable to the researcher. In addition, tracking beliefs in the field

setting is costly and prone to systematic errors, as it requires multiple measurements

using less reliable elicitation methods, while in naturally occurring data we are often

unable to identify the beliefs that agents hold. For these reasons, the laboratory provides

an ideal setup to study beliefs formation and learning: it allows us to precisely measure

subjects’ beliefs in an incentive-compatible way and ensures state observability and tight

control over information available to participants.

In this paper, we provide the first clean evidence on misguided learning using data

from a carefully designed laboratory experiment that directly tests the comparative stat-

ics of the model by Heidhues et al. (2018). The experiment integrates all features of the

model in a simple way. Our main goal was to create an environment in which subjects

learn about the state of the world by taking actions and observing the output. Impor-

tantly, the output depends both on the state of the world and an unknown parameter

that is relevant to subjects’ self-esteem. For this purpose, we assessed subjects’ cognitive

ability before the main task by measuring their relative performance in an IQ test.1

In the second part of the experiment, the participants completed several rounds of

a learning exercise. In every round, the main task was to estimate the unknown state

of the world: a randomly drawn integer between −10 and 10. Participants had 4 trials

to guess the state and were remunerated based on the accuracy of their guesses. After

making a guess, each participant received feedback in the form of a number displayed on

1We decided to use intelligence as an input to the production function for several reasons. Firstly,
it is known that people care deeply about their cognitive ability, so the IQ measure seems to be a good
candidate for a genuine ego-relevant parameter. Secondly, the literature provides evidence that people
have biased assessments of their relative cognitive ability (see, for example, Burks et al. (2013)). Thus,
we expect misguided learning to arise in this context. Last but not least, cognitive ability as a component
of human capital is an actual input to many production functions.
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the individual computer screen. The feedback was determined by the state of the world

and one’s relative performance in the IQ test. However, we did not inform participants

about their test results, so they had to make decisions based on their beliefs about

their relative performance. We elicited these beliefs before the learning exercise using

an incentive-compatible mechanism.2

To help participants correctly interpret the feedback, we provided them with special

tables to look up which states of the world and relative performances are consistent with

the feedback they observed. We did not preclude subjects from considering different

performance levels and they were free to choose any combination of the two parameters.

In every trial, the optimal strategy was to enter one’s best guess about the state of the

world. Therefore, we could directly track participants’ beliefs formation process. After

the learning exercise, we again elicited subjects’ beliefs about their relative performance.

We introduced two experimental conditions: treatment and control. In the treatment

condition, participants received feedback after each guess, while in the control condition,

the feedback was independent of subjects’ actions. Therefore, in the control condition,

subjects’ guesses no longer affected their beliefs – the theory predicts that misguided

learning would not arise in this case. By comparing the two conditions, we show that the

effect is not driven by external factors, but is consistent with the mechanism outlined in

Heidhues et al. (2018).

Further, we ran an additional control condition in which participants performed the

learning exercise based on the performance parameter of some other, randomly selected

individual who reported similar beliefs.3 By keeping all other features of the experiment

unchanged, we tested whether our results are driven by the ego-relevance of one of the

parameters.

Overall, we find strong support for the predictions of the misguided learning model.

When overconfident individuals can adjust their actions and learn about the state of the

2Our test of model’s predictions is based on this independent measure of overconfidence.
3After eliciting beliefs about subjects’ relative performance, participants were informed that they will

be randomly matched to a person from one of the previous sessions, who took the same IQ test and
reported the same beliefs but not necessarily obtained the same IQ test score. Before the main task, we
elicited the subjects’ beliefs about the relative performance of the person matched to them.
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world, repeated feedback leads them to form beliefs that deviate from the true state.

This learning process exhibits features that are characteristic of self-defeating learning:

overconfident participants tend to attribute unsatisfactory outcome to the realized state

instead of their relative performance, and they become pessimistic about the state over

time. Importantly, we also find evidence for self-defeating learning when comparing the

behavior of overconfident subjects in the treatment and control conditions.4

The effect is more pronounced for participants who are more biased about their

ability. We test the model’s comparative statics and show that the more overconfident

the participant is, the more mistaken about the state of the world he becomes. The

model also correctly predicts the learning trajectory of underconfident subjects. We

do not detect those patterns in the behavior of unbiased participants. In line with the

model, the unbiased subjects immediately learn the true state and take the optimal

action in the following trials. The results prove that the learning process of an unbiased

person is very different from that of a biased individual.

However, the effects observed in the data are not as pronounced as the theory pre-

dicts. The gap between the theoretical predictions and the observed behavior is caused

by some participants learning about their relative performance during the experiment.

We observe a significant difference in beliefs measured before and after the learning ex-

ercise. In our companion paper (Götte and Kozakiewicz, 2018), we further investigate

the question of learning about the ego-relevant parameter over time. Notwithstanding,

almost 80% of subjects who were classified as overconfident before the learning exercise

remained overconfident after the task, and many of them were engaging in self-defeating

learning until the end of the last round.

Using data from the additional control condition, we show that the ego-relevance of

the ancillary parameter accounts for a significant part of the effect. When the feedback

is based on the IQ test performance of some other, randomly selected individual, the

pattern of behavior is similar to that observed in the treatment condition, albeit much

4We confirm that the interdependence of beliefs, actions, and feedback is a necessary condition for
misguided learning to occur. We do not observe misguided learning in our control condition, in which
there is no dependency between subjects’ guesses and the feedback they receive.
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weaker. The overconfident participants are more likely to correct their actions and are

quick to learn the true value of the performance parameter. We conclude that misguided

learning is more likely to arise and preserve in situations where one’s ego is at stake.

Our work is partially motivated by the behavioral literature on motivated reasoning,

which suggests that people may interpret feedback in a self-serving manner, especially

when one of its determinants is ego-relevant (pertaining to some personal characteristic

of the agent). There is a large body of evidence that people hold inaccurate beliefs with

some degree of persistence, as they adopt various strategies to manipulate their beliefs

to protect their egos.5 One consequence is overconfidence, a widely-studied phenomenon

among psychologists and economists, that is believed to generate great costs for both

the individual and the society.6 We contribute to the literature concerning behavioral

implications of overconfidence as we document its detrimental effect on learning.

Furthermore, we build on the theoretical literature on learning with misspecified

models. The unified theoretical framework for modeling agents with misspecified beliefs,

Berk-Nash equilibrium, was proposed by Esponda and Pouzo (2016). What distinguishes

their work from previous research, and is crucial for our purpose, is that they allow beliefs

to endogenously depend on the agent’s actions. This assumption enables them to study

situations in which experimentation not only inhibits learning but also drives the agent’s

beliefs further away from the true state. Heidhues et al. (2018) analyze a similar problem,

but focus on the conditions necessary for misguided learning to occur. We describe the

model in detail in Section 2.

Hestermann and Yaouanq (2016) also consider two parameters that are not sepa-

rately identifiable, but in their model the agent is allowed to learn about both. The

authors explore the implications of different assumptions about the unknown parameter

5One example of such strategy is a tendency to not fully incorporate signals about ego-relevant traits
into beliefs or to incorporate them in a distorted way (Buser et al., 2018; Coutts, 2019; Eil and Rao,
2011; Möbius et al., 2014). A recent study by Zimmermann (2018) adds to the literature showing that
after some time people recall feedback asymmetrically, suppressing the memories of negative feedback.

6Negative consequences of overconfidence include excessive selection into competitive environments
(Camerer and Lovallo, 1999; Niederle and Vesterlund, 2007), excessive trading (Barber and Odean,
2001), suboptimal investment decisions (Malmendier and Tate, 2005, 2008) and political polarization
(Ortoleva and Snowberg, 2015).
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of interest. In three distinct specifications, it is either assumed to be fixed, to be chang-

ing exogenously, or endogenously with agent’s actions. It is worth mentioning that in

our experiment the parameter is held fixed within a round, but changes exogenously be-

tween rounds since subjects are guessing a new, randomly drawn number in each round.

However, our setup is very different from the one studied by Hestermann and Yaouanq

(2016), so we cannot directly test the model’s predictions.

We are not aware of any empirical work on misguided learning. The existing litera-

ture on beliefs formation and learning focuses on documenting failures of reasoning that

inhibit learning but are conceptually different from the one we study. One should men-

tion the work on selective attention in learning (the theory developed by Schwartzstein,

2014, was tested in a field experiment by Hanna et al., 2014), redundancy neglect in

social learning (Eyster and Rabin, 2014, developed a theoretical framework, while the

experimental evidence was provided by Enke and Zimmermann, 2017), difficulties in hy-

pothetical thinking (Charness and Levin, 2009, Esponda and Vespa, 2014, Esponda and

Vespa, 2016), overlooking selection problems (Esponda and Vespa, 2018, Enke, 2015),

and misattribution of reference dependence in learning from experience (Bushong and

Gagnon-Bartsch, 2016a, Bushong and Gagnon-Bartsch, 2016b). Perhaps the closest to

our work, Coutts et al. (2019) test two different theories of self-attribution bias and show

that, although people tend to update more favorably about themselves than about their

teammates, they do not attribute the negative outcome to the other player. We con-

tribute to the literature by providing the first empirical evidence on misguided learning

and taking the first step towards unraveling the underlying mechanism.

The paper is organized as follows. In Section 2, we describe a simplified version of

the model (one of the examples discussed in Heidhues et al., 2018) and its testable pre-

dictions. Section 3 outlines our experimental design and Section 4 presents the empirical

results. In Section 5, we discuss the results of the additional control condition. Section

6 concludes.
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2 The Model

We present the misguided learning model and its testable predictions, using a simple

example with the loss-function specification that follows from Heidhues et al. (2018).

For the general framework, as well as the proofs, we refer the reader to the original

paper.

2.1 Preliminaries

In each period t ∈ {1, 2, 3, ...}, the agent produces an observable output qt according to

the following production function:

qt = Q(et, A,Φ) + εt = A+ Φ− L(et − Φ) + εt,

where et ∈ (e, ē) denotes the agent’s action in period t, A ∈ R is the agent’s true ability,

Φ ∈ (φ, φ̄) is the unknown state of the world (referred to, in the original paper, as

“the external fundamental”), and L(·) is a symmetric loss function with L(0) = 0 and

|L′(x)| < k < 1 for all x. εt is an identically, independently and continuously distributed

mean-zero random variable. This functional form describes a situation in which the

agent has to match his action to the state of the world. The state Φ is drawn from the

continuous prior distribution π0 : (φ, φ̄)→ R>0, and the agent has a correct prior belief

about the state, i.e. φ0 = 0.

In each period, the agent undertakes an optimal action given his belief φ about the

state Φ. To minimize the loss function, he chooses e∗(φ) = φ. The agent follows the

myopic decision rule: the undertaken action only maximizes the expected output in that

period.7 Moreover, in every period the agent aggregates enough observations so that he

7The assumption implies that there is no learning motive at play. The agent is neither intentionally
experimenting, nor gathering data about his environment to make better choices in the future. Misguided
learning is a by-product of a sequential, short-sighted optimization. This distinguishes the model from
the classical learning literature, where the agent is actively exploring the environment, and in every
period, he faces the decision on whether to continue learning or to stop and use the knowledge obtained
so far.
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is not concerned about the noise; his beliefs and the average output converge to their

limits with finitely many updates.8

In the first period, the optimal action is equal to the agent’s prior belief: e∗1 = φ0 = 0.

This produces the corresponding output (normalizing A = Φ = 0):

q1 = Q(e1, A,Φ) + εt = −L(0) = 0.

The agent observes the actual output q1, relative to his expected output q̃1. The extent

to which the actual output differs from his expectation depends on the direction and

magnitude of the agent’s bias.

2.2 Overconfidence and Self-Defeating Learning

The overconfident agent believes that his ability is ã > A. From taking the action

e∗1 = φ0 = 0, he expects to observe the output q̃1:

q̃1 = Q(e1, ã, φ0) = ã > 0.

The agent is not suffering from any other information-processing bias and uses Bayes’

rule to update his beliefs about the state of the world. Since he does not update his

beliefs about his ability, he attributes the difference in q1 and q̃1 to the state of the world

and updates his beliefs accordingly. He updates his belief φ by solving:

Q(e1, ã, φ) = ã+ φ− L(0− φ) = 0.

Since the loss function is symmetric, i.e. L(−φ) = L(φ), the new belief φ1 lies at the

intersection of the functions L(·) and ã + φ. One can depict the functions on the xy-

plane, with the x-axis representing φ and e, and the y-axis representing a and L(·).
8For the discussion of the last assumption see Heidhues et al. (2018). As for the experiment, we

specified the noise distribution such that the agent could always unambiguously identify the state of the
world (regardless of the noise realization). Therefore, we circumvent the problem of providing the agent
with enough observations to enable him to infer the state.
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Since ã > 0, the point of intersection lies in the second quadrant, implying φ1 < 0. The

updated belief is lower than the agent’s prior, thus he becomes pessimistic about the

state of the world.

In Period 2 the agent chooses e∗2 = φ1. He observes the average output −L(φ1), while

he expected to produce ã > −L(φ1). Once again, he updates his belief φ accordingly.

Q(e2, ã, φ1) = ã+ φ− L(φ1 − φ) = −L(φ1) ⇐⇒ L(φ− φ1)− L(φ1) = ã+ φ.

To derive φ2, the agent looks at the intersection of L(·) that is shifted left by |φ1| and

down by |L(φ1)| and ã + φ. That point lies to the left of φ1, hence φ2 < φ1. The

overconfident agent’s beliefs satisfy:

φ2 < φ1 < φ0. (1)

It is worth noting that the agent started with the correct prior, but with each passing

period, his belief increasingly deviates from the true state. Under the aforementioned

assumptions, the agent’s belief about the state of the world converges to a unique limiting

belief φ∞. This limiting belief is stable in a sense that the agent has no incentive to

abandon it – at this point he ends the learning process. Intuitively, a stable belief is a

point belief that induces an action, which produces output that exactly matches with

the agent’s expectation, thereby confirming his belief. It could be found by setting the

difference between the actual and the expected outputs to zero:

Q(e∗(φ∞), A,Φ)−Q(e∗(φ∞), ã, φ∞) = 0.

With the loss-function specification, that condition reads:

(A− ã) + (Φ− φ∞)− L(Φ− φ∞) = 0. (2)
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By rearranging the above equation one can derive a formula for the stable belief φ∞.

One can notice that the stable belief is a function of the agent’s bias.

2.3 Underconfident and Unbiased Agents

The model also predicts the behavior of underconfident agents. The analysis is analogous,

with the only difference that the agent underestimates his true ability, i.e. ã − A < 0.

With the normalization of A = 0, this implies ã < 0.

In Period 1, the agent again chooses e∗1 = φ0 = 0. He observes the average output of

−L(0) = 0, while he expected to produce ã < 0. The agent does not update his beliefs

about his ability, but instead he looks for φ that would explain the output. He looks at

the intersection of L(·) and ã+φ. Since ã < 0, this point now lies in the fourth quadrant,

implying φ1 > 0. The updated belief φ1 is higher than the agent’s prior φ0 = 0, and

hence he concludes that the state of the world is better than expected.

In Period 2, the agent chooses e∗2 = φ1. He observes the average output of −L(φ1),

while he expected to produce Q(e2, ã, φ1) = ã+ φ1. This falls short of his expectations,

so he concludes that the state is worse than his belief. To derive φ2 he looks at the

intersection of L(·) shifted right by |φ1| and down by |L(φ1)|, and ã + φ. The shift

entails φ2 < φ1, so the underconfident agent chooses lower action in the following period.

The adjustment runs in the right direction, bringing the agent closer to the true state.

In contrast to the overconfident agent, the underconfident agent’s misinference is self-

correcting. The model predicts that the underconfident agent’s beliefs satisfy:

φ1 > φ0 ∧ φ2 < φ1. (3)

As in the case of the overconfident agent, there exists a unique stable belief described by

equation (2). Note that the learning process of the underconfident agent is misdirected,

as he ends up with a belief different from the true state. However, the learning trajectory

of the underconfident agent is very different from that of the overconfident agent. To

highlight this difference, we use the term “misguided learning” to describe the learning
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of a biased (over- or underconfident) agent, and we only refer to the overconfident agent’s

self-reinforcing misguided learning as “self-defeating learning”.

The unbiased individual correctly evaluates his ability ã = A. After choosing the

optimal action in the first period, e∗1 = φ0 = 0, he observes exactly the output he expects:

ã+φ = 0 = −L(0). The unbiased agent has no reason to update his beliefs any further,

implying:

φ2 = φ1 = φ0. (4)

The unbiased agent never abandons his correct prior belief – it is a stable belief.

2.4 Testable Predictions

The first implication of the model concerns the characteristics of the environment that

are necessary for misguided learning to occur. The role of endogenous actions is sum-

marized in Hypothesis A1.

Hypothesis A1 (Endogenous vs Exogenous Actions)

For misguided learning to occur it is necessary that the optimal action: (i) depends on

the agent’s beliefs, (ii) directly affects the output, and (iii) indirectly affects beliefs in the

next period. Holding everything else constant, misguided learning will not arise in an

environment with exogenous actions.

The main prediction of the model is the emergence of misguided learning. The phe-

nomenon manifests itself through the stable belief, which can be interpreted as a long-

term outcome of the learning process, and through the learning process itself (the entire

path of beliefs). The learning outcomes are different for the overconfident, underconfi-

dent, and unbiased agents, according to the equation (2). The stable belief is negative

in the case of overconfident agent, positive for the underconfident individual, and equals

the true state of the world for the unbiased agent.
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Hypothesis 1 (Misguided Learning: Outcomes)

The outcome of the learning process of an overconfident agent (the stable belief) differs

from the correct belief about the state of the world and from the stable belief of an un-

derconfident agent. The outcome of the learning process of an unbiased agent is a stable

belief that is identical to the true state.

The same equation enables us to perform comparative statics with respect to the magni-

tude of bias. The model implies that two overconfident (underconfident) agents with the

same ability A, but dissimilar beliefs ã1 6= ã2, will converge to different limiting beliefs.

The belief of the overconfident (underconfident) agent with a larger bias will end up

further from the true state relative to the belief of the less biased individual.

Hypothesis 2 (Individual Heterogeneity)

The stable belief of an overconfident (underconfident) agent with a larger bias lies further

from the true state than the stable belief of a less overconfident (underconfident) agent.

The model not only predicts the learning outcomes but also characterizes the entire

learning process. The path of beliefs differs significantly in the case of overconfident,

underconfident and unbiased agents. The overconfident individual becomes increasingly

mistaken about the state of the world with each period, whereas the underconfident

agent first overshoots, but then corrects his beliefs. The learning process of the unbiased

agent is immediate and the resulting belief is a stable belief.

Hypothesis 3 (Misguided Learning: Process)

The learning process of an overconfident (underconfident) agent significantly differs from

that of an unbiased agent. The learning process of the unbiased individual is immediate

and his belief is stable afterward. The learning process of the underconfident agent is

self-correcting, in contrast with the self-defeating learning of the overconfident agent.
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3 Experimental Procedures

The experiment took place in November 2017 in the Laboratory for Experimental Eco-

nomics at the University of Bonn. We conducted 8 two-part sessions, each comprising

19 to 25 participants. In sum, we collected data from 171 participants, mostly students

from the university. The first and second parts of the experiment lasted around 45

minutes and 90 minutes respectively. Participants earned 30 euros on average.

In the first part of the experiment, subjects completed an IQ test and filled out a

questionnaire. We used the IQ test results to evaluate each subject’s relative performance

in the entire sample. The second part of the experiment took place one week later, after

all subjects had completed the first part, and included the learning exercise as well as

the elicitation of both prior and posterior beliefs.9 Both parts of the experiment were

programmed using zTree (Fischbacher, 2007) and completed by subjects on computers

in private cubicles. We describe each part in detail below.

3.1 IQ Test and Belief Elicitation

In the first part of the experiment, we evaluated subjects’ relative performance in the

IQ test, which consisted of 29 standard logic questions. Participants were asked to solve

as many of them as possible in 10 minutes. Individual score was equal to the number of

correctly answered questions minus the number of incorrect answers. To incentivize effort

during the test, participants were told that the individual result is important for the next

part of the experiment, and their earnings will depend on their scores. After the IQ test,

subjects were asked to fill out a questionnaire designed to assess their character traits

and individual anxiety levels. At the end of the first session, we reminded participants

about the second session one week later, and that they will not be paid unless they show

up for the second session.

9To match subjects’ data between the sessions without violating anonymity, we followed a special
procedure, which included generating private codes that were used to match subjects to cubicles at the
beginning of the second session.
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Between the sessions, we ranked participants according to their IQ test results. For

every subject, we calculated his position in the group. The individual position was

defined as a number equal to the percent of participants whose test scores were lower

or equal to the score obtained by the subject. We defined 20 equilength “performance

intervals” ranging from 0% to 100% in steps of 5%. Every participant was assigned

the performance interval that his position fell under (with 0 − 5% denoting the lowest

and 95 − 100% the highest performance interval). We refer to the midpoint of that

performance interval as the agent’s relative performance (denoted by A).

At the beginning of the second session, we elicited subjects’ prior belief about their

relative position (Confidence I) using the incentive-compatible crossover method that is

independent of subjects’ risk attitudes (see Schlag et al., 2015). We presented partici-

pants with a choice list and asked them to indicate their preferred option in each of the

20 lines. Option A was a lottery with p chance of receiving 5 euros and 1 − p chance

of receiving 0; the winning probability increases from p = 0.05 to p = 1 in 5% steps.

Option B stood for a competition with a randomly selected individual, which granted

5 euros if one’s IQ test score was higher than their partner, and nothing otherwise. A

rational individual would choose Option A if and only if p is larger than his perceived

relative performance. Therefore, we interpret the switching probability as a measure of

confidence in one’s skills. We followed the same procedure in the second belief elicitation

(Confidence II). During the first belief elicitation, subjects were not aware that they will

be asked to state their beliefs again after the learning exercise.

3.2 The Learning Exercise

After the first belief elicitation, participants completed 6 rounds of the learning ex-

ercise. For each participant, we drew 6 numbers, with replacement, from the set

{−10,−9, ...,−1, 0, 1, ..., 9, 10}.10 We refer to this collection of 6 numbers as an “individ-

10The numbers were drawn from the uniform distribution that put higher weight on numbers in the
interval [−4, 4]. Participants were not presented the exact distribution but were told that the sum of
numbers drawn is equal to zero in every round. We explained that some participants in the lab are
guessing the number 0, and among the rest half of participants is guessing a positive number, while the
other half the same number with the opposite sign.
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ual set” and to the set containing all feasible numbers “the feasible set”. Participants

were reassured that the numbers had been drawn before the experiment started.11

Every round, participants were asked to estimate one number taken from their indi-

vidual sets without replacement.12 For each number, participants had to make 4 guesses

and enter them into the interface one at a time. After each guess, the computer program

calculated a payoff according to the formula:

Π(e,A,Φ) = 20 + 0.8× (28.6× A + Φ − 0.48 |e− Φ|), (5)

where A denotes the agent’s relative performance, Φ is the actual number, and e refers

to his guess. The formula corresponds to the specification of the absolute value loss func-

tion. We decided to use this specification because of its simple form and straightforward

interpretation. The parameters were chosen such that misguided learning could arise for

moderately biased agents. We did not require subjects to adopt a myopic decision rule

during the experiment. However, we expected that the task will induce short-sighted

behavior to some extent.

The formula was presented to the participants in a descriptive form with an intuitive

explanation of the absolute value in terms of distance on the linear scale. We drew

subjects’ attention to the fact that the payoff is higher the closer their guess is to the

actual number (with the highest payoff for the exact match). Participants were informed

that, at the end of the experiment, two out of 4×6 = 24 guesses will be randomly drawn

and paid out (with the exchange rate of 0.3).

11We informed subjects that each individual set had been printed and placed in a sealed envelope in the
participant’s cabin. Participants were told not to open the envelopes until the end of the experiment. As
an additional precautionary measure we placed the envelopes within the sight of the person conducting
the experiment.

12We decided to frame the task as “guess the number” instead of “guess your ability and the number”.
We deliberately introduce an asymmetry in treating the two parameters, as we aim to test the theory
that describes this particular type of situation. We believe that this setting is more adequate to study
the implications of overconfidence. In many real-world situations learning about ability is not explicit.
For instance, when an investor is trading stocks his main task is to generate profits and learn about the
market, and not about his ability (even though the profits may depend on his analytical skills). For
additional discussion see Section 5.
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After entering a guess e, every participant received private feedback. The feedback

was equal to one’s payoff with an added random component and was displayed on the

individual computer screen.13 Participants were informed that they can infer the actual

number they are guessing in a given round from their feedback. Knowing their relative

performance A, the last guess e, and the payoff Π, they can calculate the unknown

number Φ. However, it requires some arithmetical skills. Considering that computational

mistakes could influence the learning behavior and obscure the results, we provided

subjects with a tool to help them with the task.

3.2.1 Introducing Tables

Before the learning exercise, every participant was given a set of 21 tables (see Online

Appendix A), from which they could obtain the value of Φ using the feedback they

received. The tables contained payoffs for every possible combination of e, Φ, and A.

The three parameters jointly determine the payoff, and hence the set of two-dimensional

tables contains all feasible payoffs. There is one table for each possible guess e (indicated

in the title), the rows indicate the relative performance A (performance intervals are

listed in the first column), whereas the columns indicate the number Φ (its values are

listed in the first row).

We provided the participants with detailed instructions to correctly utilize the tables.

Firstly, we described how to find the payoff given e, Φ, and A. A user has to look for

a table with his guess in the title, and then look for the intersecting cell corresponding

to the row with his relative performance and the column with the number. Secondly,

we explained that if someone knows the payoff Π, his last guess e and his relative

performance A, he can obtain the value of Φ by reversing the last steps. After finding

the right table, the subject should look at the row with his relative performance and

13The noise was introduced only to ensure that subjects would not be able to infer their ability by
matching the feedback to a single identical number in the table. The random component was drawn
from the uniform distribution over the interval [−0.18, 0.18] known to the subjects. Importantly, the
noise was not big enough to influence the update: in every row, there was only one number that was
sufficiently close to the feedback that a subject received.
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search for his payoff in this row. The column, in which the payoff lies, indicates the

number.

We presented participants with multiple examples and strongly encouraged them to

raise questions when in doubt. Every participant had to answer control questions that

not only tested their understanding but also pointed out important aspects of the task.

We reminded subjects that the payoff is displayed with an added random component

drawn from the uniform distribution over the interval [−0.18, 0.18]. Feedback was only

displayed after the first guess and participants were not given any information prior

to it. Therefore, the first guess that maximizes expected payoff was e = 0. To avoid

misunderstandings, we directly told subjects that it is in their best interest to choose

zero as their first guess.

3.2.2 Experimental Conditions and Groups

We introduced two conditions: treatment (we refer to it as “multiple-feedback rounds”)

and control(“single-feedback rounds”). The two conditions differed with respect to in-

formation provided to participants after each guess. In the multiple-feedback rounds,

participants received feedback calculated according to the formula (5) after each guess.

In the single-feedback rounds, subjects received feedback calculated according to (5)

only after their 1st guess. After the 2nd and the 3rd guess computers displayed feedback

calculated using the 1st guess in that round. Subjects were notified that no matter what

they enter as their 2nd or 3rd guess, the feedback will not reflect their choices. In spite

of that, they were asked to enter their best guess two more times keeping in mind that

every guess is equally important for their earnings.

Every participant completed a total of 6 rounds, alternating between the treatment

and control conditions. We randomly assigned subjects to two groups (see Table 1),

with the first group starting with a single-feedback round and the second group starting

with a multiple-feedback round.
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Table 1: Experimental Conditions and Groups

Round Group 1 Group 2

1. SF MF

2. MF SF

3. SF MF

4. MF SF

5. SF MF

6. MF SF

SF – single-feedback round

MF – multiple-feedback round

4 Results

In this section, we present the results of our empirical analysis. We focus on self-defeating

learning of overconfident agents and test the model’s predictions using our independent

measure of overconfidence. The description of the behavior of the underconfident and

unbiased subjects, as well as the analysis based on the agents’ beliefs revealed indirectly

through their guesses, can be found in the appendices.

4.1 IQ Test Results and Elicited Beliefs

In Figure 1(a) we present a histogram of the IQ test results. The scores range from

−11 to 16, with over 90% of participants obtaining between 0 and 10 points. The score

distribution is fairly symmetrical, with a mean score of 5.29, and standard deviation

of 3.38. These outcomes translate to the distribution of performance intervals depicted

in Figure 1(b). Since there are groups of participants with the same test score, some

intervals will be empty. Figures 1(c) and (d) show the distributions of prior and posterior

beliefs about relative performance (i.e. Confidence I and Confidence II), which were

elicited before and after the learning exercise respectively.

The mean prior belief about one’s relative performance equals 59.46% and is signif-

icantly higher than that of the actual position, 55.25% (p-value = 0.092). The average

participant is overconfident, yet the magnitude of bias in our sample is not very high.
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Figure 1: Distribution of IQ test results and beliefs about relative performance.

(a) Distribution of IQ test scores.
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(b) Distribution of ascribed performance intervals.
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(c) Distribution of prior beliefs (Confidence I).
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(d) Distribution of posterior beliefs (Confidence II).
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(e) Prior beliefs depending on the actual performance.
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(f) Posterior beliefs depending on the actual performance.
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The overconfidence level remains almost unchanged after the learning exercise (the

mean posterior belief equals 60.28%), but the distribution of beliefs changes (Figures

1(c) and (d)). We define an agent’s bias as the difference between the agent’s belief

about his relative performance and his actual position (in percentiles). We classify

an agent as overconfident (underconfident) if he assessed his performance to be higher

(lower) than the actual, and so his bias takes on a positive (negative) sign. An unbiased

participant correctly estimated his relative performance. Table 2 presents the frequencies

of confidence types before and after the learning exercise.

Table 2: Frequencies of confidence types before and after the learning exercise.

Confidence I
(prior beliefs)

Underconfident Unbiased Overconfident Total

Confidence II
(posterior beliefs)

Underconfident 41 5 4 50

Unbiased 24 4 14 42

Overconfident 14 4 61 79

Total 79 13 79 171

As revealed in Confidence I, there are 79 overconfident, 79 underconfident and 13

unbiased subjects in our sample. After the learning exercise, 38% of all subjects changed

their type: 17% of overconfident and 30% of underconfident subjects became unbiased.

Confidence II reveals that a significant portion of the sample held incorrect beliefs even

after the learning exercise. At the end of the experiment, 79 subjects were overcon-

fident (77% of them were overconfident before) and 50 subjects could be classified as

underconfident.

Before the main task, the average underconfident subject held inaccurate belief that

was 20.19 percentiles below his actual position. After the learning exercise, this difference

decreased to 6 percentiles. The average bias of the overconfident subject was initially
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29.37 percentiles and this decreased to 16.52 percentiles after the learning exercise.14

The average actual position of overconfident subjects lies in the 32nd percentile, over

40 percentiles below the average position of underconfident subjects. The low-ranked

participants tend to overestimate their relative performance, whereas high-ranked sub-

jects underestimate it. The exact values are presented in Table 3. The differences in

mean beliefs before and after the learning exercise are statistically significant for the

overconfident and underconfident subjects (p-value = 0.000 in both cases), but not for

the unbiased subjects (p-value = 0.642). The differences remain significant even if we

exclude overconfident (underconfident) subjects who became underconfident (overconfi-

dent) during the experiment.

Table 3: Mean relative performance (the percentile position in the group) and beliefs
elicited before the learning exercise (Confidence I) and after (Confidence II).

Position Confidence I Confidence II

Underconfident

Mean 77.50 57.31 71.42

(Std. Dev.) (16.41) (16.71) (18.50)

Unbiased

Mean 62.12 62.12 64.81

(Std. Dev.) (13.14) (13.14) (15.89)

Overconfident

Mean 31.87 61.17 48.39

(Std. Dev.) (19.81) (15.76) (16.50)

All subjects

Mean 55.25 59.46 60.28

(Std. Dev.) (28.34) (16.07) (20.61)

14The average includes overconfident agents who became underconfident (switching from positive to
negative bias), thus the average bias is underestimated. The mean bias of the overconfident (undercon-
fident) agents who remained overconfident (underconfident) or became unbiased, equals 17.67 (−8.85).
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There is a lot of heterogeneity in the sample with regard to the actual performance

and participants’ beliefs about their relative position within the group. Figure 1(e)

depicts our subjects grouped based on (i) their relative performance, and (ii) their beliefs

elicited before the main task (with circle size representing the relative frequencies). The

data suggests that subjects’ prior beliefs were very inaccurate (few data points lie on the

45-degree line). Subjects positioned above the red line assessed their relative performance

to be higher than it was, and thus are classified as overconfident, whereas those positioned

below are classified as underconfident. Figure 1(f) presents the analogous relationship

between the participants’ actual performance and their posterior beliefs.

4.2 Model Predictions Based on Elicited Beliefs

4.2.1 Misguided Learning

Misguided learning manifests itself partly through the end results of learning. Heidhues

et al. (2018) make predictions for the limit of the belief updating process. As experi-

mentalists, we are constrained by the number of iterations we can implement in the lab.

Therefore, the best we can do is to look at the subjects’ last guesses (i.e. the 4th guess)

in the multiple-feedback rounds and compare them to the respective numbers from the

individual sets. Assuming that agents were maximizing their expected utility in every

period, their guesses perfectly revealed what they had learned over time. To test Hy-

pothesis 1, we compare the average guess with the mean value of Φ that was estimated,

separately for the underconfident, overconfident and unbiased agents.15 We reject the

hypothesis that the end result of the learning process is equal to the number estimated

by the underconfident and overconfident agents respectively (in both groups, p-value =

0.000), but not for the unbiased individuals (p-value = 0.228). The results confirm Hy-

pothesis 1. Moreover, the average learning outcome is positive for overconfident agents

and negative for underconfident agents, as predicted by the model.

15Although in every round the sum of numbers given to the participants was equal zero, we could not
predict the way in which they were distributed among the overconfident, the underconfident and the
unbiased agents. Thus, the average of the numbers estimated by different groups was not exactly zero.
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Result 1.

For the overconfident and underconfident agents, the belief resulting from the learning

process differs from the correct belief about the state of the world. For the unbiased

agents, the final belief corresponds to the true state of the world.

The specific belief paths are depicted in Figure 4. We predicted the actions for every

subject, based on the number he was guessing and his bias as revealed in Confidence

I. The red line connects the mean predicted guesses in the multiple-feedback rounds

(the graphs on the left) and single-feedback rounds (on the right), separately for the

overconfident, underconfident, and unbiased subjects. The blue line connects the means

of the subjects’ actual guesses, and the black points denote the mean number being

guessed by participants. For both the underconfident and overconfident agents, their

actual guesses (with 95% confidence intervals) are far from the ones predicted by the

model. Still, the belief paths resemble the paths predicted by the model. In particular,

the learning of the overconfident agent is self-defeating, with each guess diverging from

the true state. We test this formally, by comparing coefficients of a simple regression

explaining the difference between a guess and the number with dummy variables, one

for each guess (see Online Appendix B). For the overconfident agents, the 3rd guess in

the multiple-feedback rounds is significantly lower than the 2nd guess (one-tailed test:

p-value = 0.019). Although we cannot attest the strict inequality for the 3rd and the 4th

guess with similar confidence level, the difference between the 2nd and the 4th guess is

highly significant (one-tailed test: p-value = 0.003). We conclude that the learning pro-

cess of overconfident agents in the multiple-feedback rounds is self-defeating. Moreover,

the patterns evinced by the underconfident and unbiased agents also follow the model’s

predictions.

Result 2.

In line with the model’s predictions, the learning process of overconfident agents is self-

defeating. The learning paths of underconfident and unbiased agents also resemble the

ones predicted by the model.
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Figure 4. The mean estimated number, participants’ actual and predicted guess.
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(a) Overconfident agents in MF Rounds.
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(b) Overconfident agents in SF Rounds.
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(c) Unbiased agents in MF Rounds.
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(d) Unbiased agents in SF Rounds.
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(e) Underconfident agents in MF Rounds.
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(f) Underconfident agents in SF Rounds.



4.2.2 Misguided Learning: Endogenous Actions

In contrast to the multiple-feedback rounds, feedback received by the subjects in the

single-feedback rounds was not based on agents’ actions. After the 2nd guess, participants

were not presented with any new information, so they should not change their beliefs

or actions afterward. Comparing the behavior in the treatment condition to that of the

control enables us to examine the consequences of the interdependence between beliefs,

actions, and feedback. Firstly, we demonstrate that there is no evidence of self-defeating

learning in the single-feedback rounds. Again, we compare the coefficients of subsequent

guesses in the simple regression (see Online Appendix B). The results prove that, for

overconfident agents, their beliefs path in the single-feedback rounds does not exhibit the

pattern characteristic of self-defeating learning: there is no downward trend in beliefs

formation.

Secondly, we look at the difference between a guess and the actual number, and how

it depends on the type of feedback. Here, we treat the 2nd, 3rd, and 4th guess separately

(note: we omit the 1st guess, as subjects were instructed to enter 0 in that round).

The estimation results in Tables 4 and 5 confirm that for overconfident agents, the

difference is greater in the multiple-feedback rounds, when subjects have the opportunity

to experiment and acquire new information. The coefficients of the MF Round variable

are positive and highly significant for the 3rd and 4th guess. Providing overconfident

agents with more information widens the gap between his beliefs and the true state by

1.122 in the third trial, and 1.211 in the fourth trial, relative to the single-feedback

rounds. As expected, the coefficient of the MF Round variable in the second guess is

not significant (subjects receive the same feedback after their initial guess in both types

of rounds, so there is no effect of MF Round on the dependent variable). The results

confirm Hypothesis A1.

Result 3.

The interdependence between the agents’ actions, beliefs and feedback is a necessary

condition for self-defeating learning to occur. Providing overconfident agents with the

opportunity to experiment and learn drives their beliefs further away from the true state.
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Table 4: The effect of feedback on the difference between the number and a guess.

Overconfident Unbiased Agents Underconfident

(1) (2) (3)

Dependent variable: the difference between the number and the 4th guess.

MF Round 1.211∗∗∗ -0.333 -1.308∗∗∗

(0.303) (0.423) (0.235)

Bias 0.0734∗∗∗ 0 -0.0282
(0.016) (.) (0.021)

Const. 1.895∗∗∗ 0.949 2.924∗∗∗

(0.433) (0.512) (0.438)

Dependent variable: the difference between the number and the 3rd guess.

MF Round 1.122∗∗∗ 0.0513 -1.350∗∗∗

(0.293) (0.268) (0.230)

Bias 0.0815∗∗∗ 0 -0.0387
(0.017) (.) (0.021)

Const. 1.692∗∗∗ 0.615∗∗ 2.737∗∗∗

(0.443) (0.197) (0.408)

Dependent variable: the difference between the number and the 2nd guess.

MF Round 0.236 -0.205 -0.0928
(0.221) (0.206) (0.212)

Bias 0.0962∗∗∗ 0 -0.0307
(0.015) (.) (0.023)

Const. 1.494∗∗∗ 0.333 3.086∗∗∗

(0.361) (0.197) (0.453)

N 474 78 474

MF Round is a dummy variable taking value 1 if the round is a multiple-feedback round.

The independent variable Bias stands for agent’s initial bias (based on Confidence I).

It takes positive (negative) values for the overconfident (underconfident) agents.

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001



Table 5: The effect of feedback on the difference between the number and a guess.

Overconfident Unbiased Agents Underconfident

(1) (2) (3)

Dependent variable: the difference between the number and the 4th guess.

MF Round 1.839∗∗∗ -0.333 -1.832∗∗∗

(0.445) (0.423) (0.455)

Bias 0.0841∗∗∗ 0 -0.0153
(0.016) (.) (0.026)

MF Round × Bias -0.0214 0 -0.0259
(0.016) (.) (0.023)

Const. 1.581∗∗∗ 0.949 3.186∗∗∗

(0.395) (0.512) (0.510)

Dependent variable: the difference between the number and the 3rd guess.

MF Round 1.555∗∗∗ 0.0513 -1.958∗∗∗

(0.445) (0.268) (0.428)

Bias 0.0889∗∗∗ 0 -0.0237
(0.017) (.) (0.026)

MF Round × Bias -0.0148 0 -0.0301
(0.018) (.) (0.022)

Const. 1.475∗∗∗ 0.615∗∗ 3.041∗∗∗

(0.414) (0.197) (0.489)

Dependent variable: the difference between the number and the 2nd guess.

MF Round 0.557 -0.205 -0.443
(0.341) (0.206) (0.371)

Bias 0.102∗∗∗ 0 -0.0220
(0.017) (.) (0.024)

MF Round × Bias -0.0109 0 -0.0173
(0.014) (.) (0.017)

Const. 1.334∗∗ 0.333 3.261∗∗∗

(0.404) (0.197) (0.477)

N 474 78 474

MF Round is a dummy variable taking value 1 if the round is a multiple-feedback round.

The independent variable Bias stands for agent’s initial bias (based on Confidence I).

It takes positive (negative) values for the overconfident (underconfident) agents.

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001



4.2.3 Individual Heterogeneity

The regression results presented in Tables 4 and 5 enable us to assess the impact of

agents’ bias on learning. In the case of overconfident agents, the effect is significant

and runs in the direction predicted by the model. Increasing agent’s overconfidence

by 10 percentiles enlarges the difference between a guess and the actual number by

0.962, 0.815, and 0.734 in the 2nd, 3rd, and 4th guess, respectively. The effect is notable

considering the scale from −10 to 10. In Table 5, we included the interaction between

the MF Round variable and agents’ bias to the specification. The negative sign of the

coefficients indicates that the total impact of bias would be smaller in the multiple-

feedback rounds, but the coefficients are not significant. For underconfident agents, the

coefficients have the predicted sign, but are not significant at an acceptable level. We

confirm Hypothesis 2 for the overconfident, but not for the underconfident agents.

Result 4. (Individual Heterogeneity)

The difference between the overconfident agent’s beliefs and the true state increases with

the agent’s bias. The more biased the agent is, the further away from the correct belief

he ends up.

4.2.4 Model’s Performance

Up to this point, we have examined whether the model’s comparative statics hold in

our data set. In this section, we delve into the model’s explanatory power. We test

how well the model explains our data and report the results in Table 6. First, we

pool the data from the multiple- and single-feedback rounds and look at early and late

rounds separately. The model seems to better explain the data in the early rounds

(especially in the first round) than in the later rounds. The results are in line with

the observation that, during the experiment, subjects were updating their beliefs about

their relative performance.16 One would expect that in the early rounds, subjects’ beliefs

16In Online Appendix C, we present data on subjects’ revealed beliefs about their relative performance
(with few additional assumptions we can divulge subjects’ beliefs from their guesses). We also assess the
model’s performance comparing the predictions based on revealed beliefs to agents’ guesses.
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Table 6: How well the model predicts the 2nd, 3rd and 4th guess.

All Rounds Early Rounds Late Rounds 1st Round

Model 0.563∗∗∗ 0.633∗∗∗ 0.493∗∗∗ 0.688∗∗∗

(0.030) (0.031) (0.036) (0.035)

Const. -0.119 -0.102 -0.132 -0.0213
(0.182) (0.185) (0.217) (0.213)

R2 0.523 0.605 0.441 0.696

N 3078 1539 1539 513

All Rounds Early Rounds Late Rounds

SF MF SF MF SF MF

Model 0.559∗∗∗ 0.563∗∗∗ 0.609∗∗∗ 0.650∗∗∗ 0.502∗∗∗ 0.482∗∗∗

(0.034) (0.032) (0.040) (0.033) (0.043) (0.042)

Const. 0.0731 -0.310 0.150 -0.340 -0.0499 -0.213
(0.212) (0.181) (0.249) (0.193) (0.268) (0.239)

R2 0.516 0.522 0.567 0.634 0.458 0.422

N 1539 1539 813 726 726 813

Standard errors clustered at individual level are in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

were closer to the independent measure of beliefs (Confidence I) that we used to calculate

the model’s predictions. During the first three rounds, the model does a better job at

explaining subjects’ choices in the multiple-feedback rounds, whereas in the last three

rounds it performs slightly better in the single-feedback rounds. As shown in Table 7,

the choices made by unbiased agents are well-explained by the model. With R2 of 0.85,

the model explains much variation in the data. The fit is less adequate in the case of

the underconfident subjects, and much worse for the overconfident subjects.

30



Table 7: How well the model predicts guesses of different types of agents.

Overconfident Unbiased Agents Underconfident

Model 0.575∗∗∗ 0.969∗∗∗ 0.689∗∗∗

(0.068) (0.028) (0.035)

Const. 0.247 0.220 -1.151∗∗∗

(0.312) (0.132) (0.220)

R2 0.182 0.850 0.463

N 1422 234 1422

Dependent variable: the participants’ guesses.

Independent variable: guesses predicted by the model.

Standard errors clustered at individual level are in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

5 Discussion

Channels. We hypothesize that our results are driven in part by participants’ tendency

to interpret feedback in a self-serving manner. An overconfident agent would rather

attribute negative feedback to the state of the world instead of revising his beliefs about

his performance downwards when the loss from a tarnished self-image exceeds the gains

from holding accurate beliefs (assuming that agents have belief-based utility, similar to

the one proposed by Kőszegi, 2006).17 We designed an additional control condition to

test this hypothesis and assess the extent to which motivated reasoning is driving our

results.

Another possible explanation concerns the fact that the probabilities of possible

states of the world are objectively given, whereas beliefs about one’s relative perfor-

mance are subjective. Participants may find it more difficult to update these subjective

beliefs relative to objectively given probabilities of the states. In the additional control

17However, this does not explain why the underconfident agents are reluctant to revise their beliefs
upwards. Several studies found evidence of conservatism in updating about ego-relevant traits (Buser
et al., 2018; Möbius et al., 2014). It is likely to play a role in this context.
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condition, we intended to maintain the subjectivity of prior beliefs, so as to ensure com-

parability with the treatment condition. Lastly, it is possible that the way the subjects’

attention was directed during the experiment influenced their learning process. In the

treatment condition, we framed the task as “guess the number” instead of “guess your

ability and the number”, deliberately introducing asymmetry in the two parameters.

Implicit learning about one’s relative performance was one of the objectives of our ex-

perimental design, and we chose to keep this feature unchanged in the control condition

to isolate the effect of motivated reasoning.

To this end, we designed a treatment in which participants were learning about two

parameters that were both ego-neutral. We used the same experimental design, with

the only difference being that in the second session, each subject performed the main

task based on the performance parameter of another subject. We informed subjects that

each of them will be randomly matched to another subject who completed the same IQ

test and revealed similar beliefs through the elicitation procedure. We assumed that the

performance of another individual is irrelevant to one’s ego. Before the main task, we

elicited subjects’ beliefs about the relative performance of the participant matched to

them and distinguished overconfident, underconfident and unbiased agents (with respect

to their partner’s performance). We again elicited beliefs about the relative performance

of the matched partner after the learning exercise. The identical experimental design and

similar instructions enabled us to control for the way subjects’ attention was directed

during the experiment.

We collected data from 151 participants, mostly students from University of Bonn.

Figure 2 presents the mean distance between the overconfident agent’s guess and the es-

timated number in the multiple-feedback rounds. The difference is more pronounced in

the treatment condition, that is, for agents whose feedback was based on their own rela-

tive performance. Table 8 reports regression results pooling the data from the treatment

and additional control conditions. For the overconfident agents, the treatment effect on

the distance between the agent’s guess and the actual number is large and significant.

The effect persists when we control for the initial bias and is not significant for the
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Figure 2: Mean absolute distance between a guess and the number in MF Rounds.
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underconfident and unbiased agents, as well as in the single-feedback rounds (see addi-

tional regression tables in Online Appendix D). Our interpretation of the results is that

in the control condition, overconfident agents are more willing to abandon their model

of the world and admit that they were wrong about the performance of the participant

matched to them. Therefore, they are more likely to correct their guesses, in contrast to

overconfident agents in the treatment condition, who tend to hold on to inflated beliefs

about their own performance.18

Welfare Comparisons. Any assessment depends on the exact form of the production

function. In our specification, the overconfident agents, in comparison to the undercon-

fident agents, end up further away from the true state if we enable them to generate

additional observations and mislearn. However, changing the functional form is enough

for role reversal. We would like to stress that one proposition continues to hold regardless

of the functional form: the unbiased agents are always better off than the overconfident

and underconfident agents.

18As it was pointed out to us by one of the commenters, the effect we captured with our experimental
design is likely to be underestimated, as the overconfident agents may be more willing to learn more
about the results of the 10-minute IQ test, than about their actual ability in more realistic set-ups.
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Table 8: The treatment effect on the distance between a guess and the number in the
multiple-feedback rounds.

Overconfident Unbiased Agents Underconfident

(1) (2) (3)

Dependent variable: the distance between the 4th guess and the number.

Treatment 1.143∗∗ -0.125 -0.344
(0.539) (0.570) (0.320)

Const. 4.114∗∗∗ 0.741 2.530∗∗∗

(0.377) (0.492) (0.208)

Dependent variable: the distance between the 3rd guess and the number.

Treatment 0.869∗ -0.074 -0.480
(0.520) (0.337) (0.303)

Const. 4.333∗∗∗ 0.741∗∗∗ 2.648∗∗∗

(0.372) (0.221) (0.209)

Dependent variable: the distance between the 2nd guess and the number.

Treatment 0.969∗∗ -1.020 -0.849∗∗

(0.404) (0.750) (0.403)

Const. 3.580∗∗∗ 1.148 4.461∗∗∗

(0.273) (0.745) (0.286)

N 456 66 456

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

34



Learning About Ability. In Online Appendix A, we describe in detail the use of

tables by the overconfident, underconfident and unbiased agents. When analyzing the

examples, one can notice that with more extreme noise realizations, a biased agent

might not be able to find a payoff reasonably close to his feedback in the row at which

he is looking (for the reason that he is looking at the wrong row). This might serve

as an indirect signal, giving a hint that something is wrong with the agent’s perception

of his relative performance. In our companion paper (Götte and Kozakiewicz, 2018),

we analyze subjects’ responses to these nudges: we take a closer look at the evolution

of beliefs with each round to better understand how subjects’ self-esteem governs the

learning process.

6 Conclusions

Successful decision-making often requires learning about unknown characteristics of the

environment. At the same time, estimating the values of multiple parameters is rarely

independent: the way the agent updates his beliefs about one aspect might influence his

reasoning about other parameters. In particular, if the agent persistently overestimates

his ability, he may repeatedly misinterpret the observed data and fail to undertake

the optimal action time after time, thereby falling into a vicious circle of misguided

learning. In this paper, we experimentally test subjects’ propensity to engage in this

kind of behavior. The results corroborate the theory formulated by Heidhues et al. (2018)

and demonstrate that misguided learning is a real-world phenomenon that is likely to

afflict biased agents. As long as people hold on to incorrect beliefs and cannot separately

identify the underlying parameters, they continue to misread the data and form erroneous

beliefs about the environment. Allowing overconfident agents to experiment and acquire

new information is in these cases counterproductive. The problem is aggravated when

the agents hold overconfident beliefs about the characteristics they care about: the ego-

relevance of one parameter exacerbates their tendency to mislearn.
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