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Abstract

We study optimal auctions in a symmetric private values setting, where bidders’

care about winning the object and a receiver’s inference about their type. We

reestablish revenue equivalence when bidders’ signaling concerns are linear, and

the auction makes participation observable via an entry fee. With convex signaling

concerns, optimal auctions are fully transparent: every standard auction, which

reveals all bids yields maximal revenue. With concave signaling concerns there is

no general revenue ranking. We highlight a trade-off between maximizing revenue

derived from signaling, and extracting information from bidders. Our methodology

combines tools from mechanism design with tools from Bayesian persuasion.
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1 Introduction

Since 1945, the Hospices de Beaune1, in Burgundy (France), organizes an annual wine

auction to raise money for local retirement houses and hospitals. In a special segment—

the “pièce des Présidents”—some wine is auctioned to raise money for special charity

purposes. This segment attracts special attention not the least due to the involvement

of celebrities. In the 2017 “pièce des Présidents” auction two barrels of Corton Clos du

Roi Grand Cru were sold at a total price of e410,000. During the regular auction, the

same wine realized prices ranging from e30,000 to e40,000 per barrel. Roughly speaking,

public attention increased the price per barrel by 500%.2

This is but one example of an auction where bidders have signaling concerns: bid-

ders do not only care about the object at sale but also about how they are perceived.

Other examples include art auctions, where bidders signal proficiency and taste to their

acquaintances, takeover bidding, where bidders also signal strength to rival companies,

and procurement auctions, where suppliers also care for sending strong signals to ensure

participation in future tenders.

In this manuscript we study auction design when bidders care about the information

conveyed through their own performance. How others perceive the bidders’ performance

crucially depends on the auction design. For example, in a first-price auction, outsiders

observe the winner’s bid (via the price) but no other bids. This allows precise inference

on the winner’s type, but only noisy inference on losers’ types. In a second-price auction

outsiders observe the highest losing bid, hence inference on all bidders remains noisy.

With this in mind, the design of the auction affects the possibilities for outside inference,

which in turn affects bidding behavior and auction revenue. Our analysis is then looking

for the revenue-maximizing auction design when bidders have signaling concerns.

In their seminal contributions Myerson (1981) and Riley and Samuelson (1981) show

that—absent signaling concerns—every standard auction yields the same revenue. This

needs no longer to be the case when bidders care for signaling.3 We study an auction

environment with independent private values. In addition, bidders preferences depend

on the mean of posterior beliefs about their own type. These posteriors are formed con-

ditional on the outcome of the auction: the winner’s identity and each bidder’s payment.

Our main result establishes that whether revenue equivalence obtains depends on the

1https://www.beaune-tourism.com/discover/hospices-de-beaune-wine-auction
2Similar patterns arose in the previous years. Data for 2016 and 2017 are available at

http://hospices-de-beaune.com/index.php?/hospicesdebeaune/content/download/3869/14085/

version/1/file/catalogue_resultats_2016.pdf and http://hospices-de-beaune.com/index.

php?/hospicesdebeaune/content/download/4248/15476/version/1/file/Vente+des+vins+-+

Catalogue+des+r%C3%A9sultats+2017.pdf
3Giovannoni and Makris (2014), Bos and Truyts (2019) study environments where different auction

formats (and bid disclosure policies) yield different auction revenue. Goeree (2003), Molnar and Virag
(2008), Katzman and Rhodes-Kropf (2008) find revenue equivalence in their respective settings.
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curvature of the signaling motive in a bidder’s utility, and the use of an additional in-

strument: entry fees. When signaling concerns are linear (i.e. mean posteriors enter

linearly in bidders’ utility) revenue equivalence obtains between standard auctions that

use entry fees. Payments extract (signaling) value from the bidders. The auctioneer uses

entry fees to extract all signaling value from bidders, independent of whether they end up

winning the object. Therefore, as the signaling concerns enter linearly, the distribution

of signaling value across auction outcomes does not affect revenue.

Matters are different when the signaling concerns is not linear. When bidders’ pref-

erences are convex, revenue increases in the amount of information the auction reveals.

An all-pay auction yields maximal revenue, because in the fully separating equilibrium a

bidder’s payment perfectly reveals her type (maximizing signaling value) and all bidders

pay their bid (extracting signaling value). Moreover, every standard auction that addi-

tionally reveals all bids yields the same revenue, because revealing bids automatically

reveals whether a bidder participated.

With concave signaling concerns a general revenue ranking cannot be established. The

information revealed during the auction affects revenue in two ways. First, revealing less

information about bidders’ types increases signaling value, which in turn increases revenue

via more aggressive bidding. Second, to extract all signaling value the auctioneer should

again charge an entry fee, which, however, reveals additional information about bidders

and thereby reduces signaling value. Therefore, if participation is already fully observable

it becomes optimal to reveal only the winner’s identity. Moreover, if participation in the

auction is high enough, charging an entry fee is optimal, because the reduction in signaling

value is small.

Ex-post payments play a crucial role in our analysis, because beliefs are formed based

on the realized auction outcome. This prevents us from directly applying standard tools

from auction theory (e.g., Myerson, 1981), that use interim payments. We adapt meth-

ods from Bayesian persuasion to work with distributions over posterior beliefs. This

intermediate step allows us to move the entire analysis to the interim stage.

Auctions with signaling concerns have been recently investigated by Giovannoni and

Makris (2014) and Bos and Truyts (2019).4 The former consider auctions that reveal the

winner’s identity together with four disclosure policies: no information, the highest bid,

the second highest bid, or all bids (each together with the respective bidder’s identity).

In particular, only a (strict) subset of bidders’ payments is observable. Bos and Truyts

compare second-price and English auctions, that reveal the winner’s identity and her

payment. Both studies compare specific auction formats and disclosure policies, and es-

tablish a failure of revenue equivalence. Our analysis, which covers all standard auctions,

4There are also contributions about information transmission comparing specific auction formats
followed by oligopoly competition. See, e.g., Goeree (2003), Das Varma (2003), Katzman and Rhodes-
Kropf (2008) and von Scarpatetti and Wasser (2010).
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provides conditions under which revenue equivalence is restored via the use of an entry

fee and optimal bid disclosure.

Our paper is also related to the literature on mechanism design with aftermarkets.

Calzolari and Pavan (2006a,b) study contracting environments where the agent partici-

pates in an aftermarket. They find conditions under which no information release to the

aftermarket is optimal. Dworczak (2020) analyzes an auction environment with a very

general aftermarket. He restricts the analysis to cut-off mechanisms in which the infor-

mation revealed about the winner only depends on the losers’ bids. These mechanisms

rule out disclosure of information contained only in the winner’s bid, such as the price in

a first-price or all-pay auction, which we show is optimal in some cases. Molnar and Virag

(2008) also investigate revenue maximizing auctions with upstream competition. Both

in Dworczak (2020) and Molnar and Virag (2008) only the winner participates in the

aftermarket, and there is no aftermarket if there is no winner. Contrary to our analysis,

this eliminates the benefit of releasing information about participation decisions, and the

necessity to design information about losing bidders as well.

Information disclosure in auctions has first been analyzed in the setting of affiliated

values by Milgrom and Weber (1982). Mechanism design problems with allocative and

informational externalities have also been studied by Jehiel and Moldovanu (2000, 2001).

The underlying assumption in this strand of literature is that an agent’s valuation depends

also on other agents’ private information (and allocation). In our setting a bidder’s utility

is affected by the aftermarket’s belief about her own valuation, while such beliefs have

no impact in the literature on mechanism design with interdependent valuations.

The paper is organized as follows. Section 2 introduces the formal setting. Section 3

studies the case of linear signaling concerns. In Section 4 we derive optimal auctions

when the signaling concerns are convex, and in Section 5 analyzes the concave case. We

conclude and discuss our results in Section 6.

2 Formal Setting

We consider n bidders, who bid for a single object in an auction, and also care about the

inference of an outside observer about their type.

Bidder i’s valuation for the object (her ‘type’), is denoted Vi, and is assumed i.i.d.

and drawn according to a distribution function F with support on [v, v] ⊂ R+. Let

f ≡ F ′ denote the density function, G ≡ F n−1 the distribution function of the highest

order statistic among n − 1 remaining valuations and g ≡ G′ the corresponding density

function. Bidder i’s realization of Vi, denoted vi, is her private information, but the

number of bidders and the distribution F are common knowledge.
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We consider standard auctions in which each bidder submits a (non-negative) bid bi,

the highest bidder wins (ties broken at random), and bidder i’s payment pi depends on the

entire vector of bids, i.e., pi(b1, . . . , bn). In addition, the auctioneer controls participation,

e.g., via charging an entry fee ϕ or setting a reserve price r. Entry fees play a prominent

role in our analysis. Under a non-zero entry fee a bidder who wishes to submit a bid first

has to pay the entry fee. With slight abuse of notation we denote pi(b1, . . . , bn) the final

payment that bidder i makes, potentially including the entry fee. In particular, we may

have pi > 0 even though bidder i did not win the object.

Each bidder cares about winning the object, and about the inference of an outside

observer, the ‘receiver’, about her type. This receiver can represent, e.g., the general

public or press, business contacts or acquaintances of the bidder, or experts related to

the object at sale. The receiver observes the outcome of the auction O = (i⋆, p1, . . . , pn),

where i⋆ is the winner’s identity and pi the payment made by bidder i, and forms a

posterior belief about each bidder’s type, denoted as µi(O). We assume that a bidder’s

utility depends on the receiver’s belief only through the posterior mean, i.e., the expected

value given the posterior distribution.5,6 Formally, there is an increasing measurable

function Φ : [v, v] → R+, such that the bidder’s utility is given by

ui(vi,O) =

{
vi − pi + Φ (E (Vi|O)) , if i = i⋆,

−pi + Φ (E (Vi|O)) , if i 6= i⋆.

The function Φ represents a reduced form of a (continuation) game in which the receiver

chooses an action that directly affects the bidder’s payoff.7 Note that a bidder’s utility

is not affected by the receiver’s belief about other bidders’ types. For instance, from

an individual bidder’s perspective it is equivalent to have either a different or the same

receiver for each bidder.

Any standard auction defines a signaling game among bidders and the receiver. We

consider symmetric perfect Bayesian equilibrium, consisting of the bidders’ bidding strate-

gies β : [v, v] → R+ and the receiver’s belief (µ1, . . . , µn).
8 Each bidder’s bidding strategy

is optimal, given the other bidders’ bidding and the receiver’s beliefs. Also, the receiver’s

5Similar assumptions are made in Giovannoni and Makris (2014), Bos and Truyts (2019) and Molnar
and Virag (2008) in the context of auctions with signaling. Dworczak and Martini (2019) use this
assumption in the context of Bayesian Persuasion.

6Note that we do not assume that a bidder’s type vi directly affects the receiver’s payoff. The receiver
cares about some other characteristic of the bidder, which is correlated with the bidder’s type. See also
the example at the end of this section.

7For example, Giovannoni and Makris (2014) analyze takeover auctions with signaling to an after-
market. A bidder’s private valuation is interpreted by a post-auction job-market for managers as a
signal of its manager’s ability to extract revenue from an acquisition. The action taken by the receiver
corresponds to the wage offered to the manager, resulting from a competitive wage offer.

8To save on notation we do not formalize the bidders’ entry decision. Under an effective entry fee
each bidder first decides whether to enter the auction. The receiver observes whether a bidder paid ϕ,
and updates her belief accordingly.
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beliefs are Bayesian consistent with the bidding strategy. Following the usual approach

in mechanism design, we focus on separating equilibria, i.e., where bidders use strictly

increasing bidding strategies, and do not emphasize multiplicity of equilibria, selection

and refinements.

We conclude this section with an illustrative example for the bidders’ utility functions.

Suppose the bidder’s valuation v is uniformly distributed on [0, 1]. The receiver cares

about the bidder’s characteristic θ, given by θ = αv + (1 − α)s, where s is uniformly

distributed on [0, 1], independent of v, and α ∈ (0, 1). The receiver takes an action a to

maximize her utility UR(a, θ) = −(a − θ)2. Given the auction outcome O, the receiver

chooses a = E(θ|O). We have that

a = E(θ|O) = E(αv + (1− α)s|O) = αE(v|O) +
1− α

2

Defining Φ(x) = αx + (1 − α)/2 yields an example of the inference function, as defined

above. In the context of our introductory example of the Hospices de Beaune, θ may

represent a bidder’s altruism. Our model assumes that a bidder’s altruism is correlated

with her valuation for the wine auctioned, where α measures the degree of correlation.

3 Linear Signaling Concerns

In this section, we consider a linear inference Φ(v) = λv, with λ > 0 the strength of a

bidder’s signaling concerns. Previous results indicate that even with linear inference rev-

enue equivalence may fail. We show that revenue equivalence holds when the auctioneer

uses an entry fee to induce the desired level of participation.

Recall, that we focus on symmetric equilibria in which bidders follow a strictly in-

creasing bidding strategy. This implies that there exists a cut-off type, denoted τ ∈ [v, v],

such that a bidder with valuation v participates in the auction if and only if v ≥ τ . Our

first proposition shows that the revenue of a standard auction can be decomposed into a

static component—the revenue of the respective auction without signaling concerns—and

a signaling component.

Proposition 1. Consider a standard auction, in which every bidder follows a strictly

increasing bidding strategy, and participates whenever his type is above τ . The revenue

in this auction is given by

RevM(τ) + n (λE(V )−W0,τ ) (1)

with RevM(τ) the ex ante expected revenue of the respective auction without signaling9

9See Myerson (1981) and Riley and Samuelson (1981).
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and W0,τ the expected inference of a bidder who does not receive the object and makes a

zero payment.

From the revenue equivalence in the standard setting (e.g., Myerson, 1981) we know

that the first term, RevM, does not depend on the specific auction format. The key insight

of Proposition 1 is that the revenue depends on the details of the auction only through

the inference about bidders who do not win and do not pay. Note that W0,τ already

differs between first and second-price auctions. In a first-price auction we infer that all

losers have a type below the winner’s, which is perfectly revealed from his payment. In

a second-price auction the winner’s payment reveals the second-highest type, and a loser

has either exactly this type or a lower type.

To prove Proposition 1 we use standard arguments.10 We denote m(v) the expected

payment and W(v) the expected value from signaling of a bidder with valuation v. A

bidder’s expected payoff from mimicking type ṽ is

Π(v, ṽ) = G(ṽ)v −m(ṽ) +W(ṽ). (2)

At equilibrium a bidder’s payoff is Π(v, v) and the following first-order condition holds

∂

∂ṽ
Π(v, ṽ) = g(ṽ)v −m′(ṽ) +W ′(ṽ) = 0 at ṽ = v, (3)

for all participating types, i.e., for all v ≥ τ . At equilibrium, a bidder of type τ is

indifferent between participating and not, hence

W0,τ = G(τ)τ +W(τ)−m(τ). (4)

Using (3) and (4) we express the interim expected payment of a bidder as follows

m(v) = G(τ)τ +

∫ v

τ

g(x)x dx+W(v)−W0,τ . (5)

Note that this expected payment depends on the auction format via the signaling com-

ponent W(v)−W0,τ . Taking the expectation yields the expected revenue

n

∫ v

v

m(v) dF (v) = n

∫ v

τ

m(v) dF (v)

= n

(
(1− F (τ))G(τ)τ +

∫ v

τ

∫ v

τ

g(x)x dxdF (v)

)

︸ ︷︷ ︸
=RevM(τ)

+n

(∫ v

τ

W(v) dF (v)− (1− F (τ))W0,τ

)

10For example see Riley and Samuelson (1981) and Krishna (2009).
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Finally, note that by law of iterated expectations F (τ)W0,τ +

∫ v

τ

W(v) dF (v) = λE(V ).

Therefore,

n

∫ v

v

m(v) dF (v) = RevM(τ) + n
(
λE(V )−W0,τ

)
.

Following Proposition 1 any revenue ranking of auctions is based entirely on W0,τ , the

expected inference of non-participating bidders. In many auction formats it is impossible

to tell apart a losing bidder who does not make any payment from a non-participating

bidder. This lack of precise inference inflatesW0,τ , benefiting low-type bidders but hurting

the auctioneer.

Proposition 2 (Revenue Equivalence). Consider a standard auction, in which every

bidder follows a strictly increasing bidding strategy. When all types above τ participate

and participation is observable (e.g. via an entry fee) the revenue equals

RevM(τ) + nλ
(
E(V )− E(V |V < τ)

)
. (6)

Moreover, no other auction yields higher revenue.

To prove Proposition 2 note that W0,τ ≥ λE(V |V < τ), because by assumption

all types below τ do not participate in the auction. Furthermore, if participation is

observable we get equality in the latter formula. Plugging this value into (1) yields (6).

A commonly applied way for making participation observable is to charge an entry

fee. This way, an outsider who observes only all payments made during the auction can

tell apart losing bidders from non-participating bidders. Note that setting a reserve price

does not yield maximal revenue, as the outsider cannot distinguish between participating

losers and non-participating bidders.

Next we want to compare optimal levels of participation among situations with and

without signaling concerns. We focus on auctions with entry fees, as these attain the

maximal revenue determined in Proposition 2, with τ ⋆(λ) the optimal level of participa-

tion under signaling strength λ.11 Note that τ ⋆(0) = τM, where τM denotes the optimal

participation cut-off in an auction without signaling concerns.

Corollary 1 (Optimal Participation). Assume virtual valuations are increasing. We

have that

(i) τ ⋆(λ) ≤ τ ⋆(λ′) < τM for all λ > λ′ > 0.

(ii) There exists λ such that τ ⋆(λ) = v, for all λ > λ.

11In general there may not be a unique optimal level of participation. Our assumption of increasing
virtual valuations in Corollary 1 guarantees both existence and uniqueness of τ⋆(λ).
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Proof. RevM(τ) is a strictly concave in τ and ∂RevM

∂τ
(τM) = 0 . Furthermore, the ex-

pected inference for a zero-bid at the equilibrium, λE(V |V < τ), strictly increases in τ .

Hence, (i) follows. When

λ
∂

∂τ
E(V |V < τ)|τ=v ≥

(
RevM

)′
(v)

full participation maximizes revenue in the auction with signaling. The terms ∂
∂τ
E(V |V <

τ)|τ=v and
(
RevM

)′
(v) are both strictly positive and finite, hence the inequality holds

for λ sufficiently large.

We conclude this setting with an illustration of our results for the first- and the

second-price auction.

Example 1 (Equilibrium of the first-price auction). Consider a first-price auction with

entry fee ϕ. The critical type τ pays the entry fee ϕ and places a zero bid. Equations (4)

and (5) together with β(τ) = 0 yields

β(v) =

∫ v

τ

xg(x)

G(v)
dx+

W(v)−W(τ)

G(v)
, ∀v > τ.

The signaling value W(v) can be expressed as follows

W(v) = G(v)v + (1−G(v))
1

1−G(v)

∫ v

v

E(V |τ < V < x)dG(x)

= G(v)v +

∫ v

v

∫ x

τ

λy

F (x)− F (τ)
dF (y)dG(x).

Hence,

β(v) =

∫ v

τ

xg(x)

G(v)
dx+

G(v)v −G(τ)τ

G(v)
+

∫ v

τ

∫ x

τ

λy

F (x)− F (τ)
dF (y)dG(x).

Bos and Truyts (2018, Proposition 1) show that these bidding strategies indeed constitute

an equilibrium of the first-price auction.

Example 2 (Non-existence of monotone equilibria in the second-price auction). Consider

a second-price auction with two bidders and valuations uniformly distributed on [0, 1].

Using equations (4) and (5) we get that

∫ v

τ

β(x)dx =

∫ v

τ

xdx+W(v)−W(τ),

which implies β(v) = v +W ′(v). In the second-price auction we have for v ≥ τ

W(v) = τλE(V |V ≥ τ) +

∫ v

τ

λE(V |V ≥ x)dx+ (1− v)λv.

9



Hence,

β(v) = v +W ′(v) = v + λ
3

2
(1− v)

For λ > 2/3 the bidding strategy is decreasing in v, hence an increasing equilibrium does

not exist. Observe, that the non-existence result does not depend on W0,τ .

4 Convex Signaling Concerns

In this section, we consider convex signaling concerns, i.e., the case where Φ is strictly

increasing and convex. As for the linear case, we can decompose the revenue into the

static component RevM(τ) and the signaling component. With convex Φ it becomes

impossible to average the signaling value at the interim level. Yet, any auction induces

a distribution over posterior means that averages to the same mean, hence is a mean-

preserving spread. With a convex Φ it is then optimal to ‘disclose’ as much information as

possible, because this increases the signaling value. The maximal amount of information

that an auction can disclose corresponds to fully disclosing the types of participating

bidders, as no information from non-participating bidders is obtained.

Proposition 3 (Optimal auction under convexity). Consider a standard auction, in

which every bidder follows a strictly increasing bidding strategy, and participates whenever

his type is above τ . The revenue in this auction is at most

RevM(τ) + n

(∫ v

τ

Φ(v)dF (v)− (1− F (τ))Φ(E[V |V ≤ τ ])

)
. (7)

The all-pay auction exhibits the described equilibrium and attains the revenue bound.

Proof. Following the same steps as for the linear case, the revenue is given by

n

∫ v

v

m(v) dF (v) = RevM(τ) + n

(
F (τ)W0 +

∫ v

τ

W(v) dF (v)−W0,τ

)
. (8)

Denote Hτ the distribution over posterior beliefs induced by the selected equilibrium (if

types above τ participate). Following the law of iterated expectation, we have

F (τ)W0,τ +

∫ v

τ

W(v) dF (v) =

∫ v

v

Φ(v)dHτ (v). (9)

Define Hmax
τ the distribution over posterior means as follows

Hmax
τ (v) =





0, if v ≤ v < E[V |V ≤ τ ],

F (τ), if E[V |V ≤ τ ] ≤ v ≤ τ,

F (v), if τ < v ≤ v.

(10)
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The distribution Hmax
τ has a mass point at E[V |V ≤ τ ] and otherwise corresponds to the

prior F for values above τ . Hmax
τ is the distribution over posterior beliefs induced by a

rule that fully reveals the type of a participating bidder, and otherwise discloses no further

information. Because the observer can never distinguish the types of nonparticipating

bidders, we have that Hmax
τ is a mean-preserving spread of Hτ . Convexity of Φ thus

implies

∫ v

v

Φ(v)dHτ (v) ≤

∫ v

v

Φ(v)dHmax
τ (v) = F (τ)Φ(E[V |V ≤ τ ]) +

∫ v

τ

Φ(v)dF (v). (11)

Together with (8) and (9) and our previous observation that W0,τ ≥ Φ(E[V |V ≤ τ ]) the

revenue bound (7) follows.

To show the revenue bound (7) can be attained, consider an all-pay auction with an

entry fee ϕ := G(τ)τ + Φ(τ) − Φ(E[V |V ≤ τ ]). We establish the following equilibrium.

A bidder enters whenever v ≥ τ and bids

β(v) =

∫ v

τ

xdG(x) + Φ(v)− Φ(τ).

Denote Π(v, ṽ) the expected utility of a type v when mimicking the strategy of type ṽ.

For ṽ ≥ τ we have that

Π(v, ṽ) = G(ṽ)v + Φ(ṽ)− β(ṽ)− ϕ

= G(ṽ)v −G(τ)τ −

∫ v

τ

xdG(x) + Φ(E[V |V ≤ τ ])

Hence, for all v, ṽ ≥ τ it follows that

Π(v, v)− Π(v, ṽ) =

∫ v

ṽ

(v − x)dG(x) ≥ 0.

In addition, for all v < τ ≤ ṽ we have that Π(v, v) = Φ(E[V |V ≤ τ ]) > Π(v, ṽ) and,

similarly, Π(ṽ, ṽ) > Φ(E[V |V ≤ τ ]). The all-pay auction induces the distribution over

posterior means Hmax
τ . Using the first-part of the proof shows that the revenue coincides

with (7).

Part of our analysis of finding the optimal auction amounts to determining the optimal

information structure. We maximize (9) over the set of distributions which are a mean-

preserving spread of Hmax
τ , where Hmax

τ is the distribution over posterior means of a

disclosure policy that reveals the true type v if v ≥ τ and lumps all other types on one

signal. Put differently, Hmax
τ arises from disclosing the (maximal) information gathered

by running the auction. Dworczak and Martini (2019) provide a solution to this problem,

which in our case of a convex signaling function Φ yields full disclosure. But notice an
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important difference to their analysis: the signaling value of non-participating bidders

W0,τ negatively enters the auctioneer’s objective. In the convex case maximizing (9)

coincidentally minimizes W0,τ and hence the solution obtains.

Proposition 3 shows that the all-pay auction yields maximal revenue when the bidders’

signaling concerns are convex. This is not a property of the payment rule in an all-pay

auction, but a consequence of the induced revelation of bidders’ types. In general, full

disclosure leads to a separation of bidding and signaling incentives, and any auction

achieves the upper bound on revenue when the entire vector of bids gets disclosed (and

the auction retains its separating equilibrium).

Corollary 2 (Revenue Equivalence with Full Bid Disclosure). Consider a standard auc-

tion, in which every bidder follows a strictly increasing bidding strategy, and participates

whenever his type is above τ . If the auction discloses all bids, revenue coincides with (7).

Any standard auction with full bid disclosure and strictly increasing bid functions

of participating bidders leads to the same inference as in the all-pay auction. Hence, a

bidder’s strategy is pinned down by payoff equivalence, as in the case without signaling

concerns. The only difference is that the signaling value is added to the equilibrium bid

β, i.e. β(v) = βM(v) + Φ(v) − Φ(E[V |V ≤ τ ]), where βM denotes the bidding strategy

for the respective auction without signaling concerns.

Example 3 (First-price auction with full bid disclosure). Reconsider the first-price auc-

tion as in Example 1, but now with a convex signaling value Φ(·). To induce the partici-

pation cut-off τ the auctioneer sets the reserve bid to r(τ) = τ+Φ(τ)/G(τ)−Φ(E[V |V ≤

τ ])/G(τ). The auction gives rise to an equilibrium where bidders use the following in-

creasing bidding strategy

β(v) =




0, v ≤ v < τ,

G(v)v−G(τ)τ
G(v)

+
∫ v

τ
xdG(x)

G(v)
+ Φ(v)

G(v)
− Φ(E[V |V≤τ ])

G(v)
, τ ≤ v ≤ v.

As in the case of linear signaling concerns, we can look for the optimal participation

threshold τ ⋆ in the auction. The bidders’ signaling concerns induce the auctioneer to

reduce the threshold for participation below the optimal level without signaling.

Corollary 3. Assume virtual valuations are increasing. In the revenue maximizing auc-

tion more bidders participate than if bidders had no signaling concern, i.e. τ ⋆ < τM.

Proof. It follows similar steps as the proof of Corollary 1.
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5 Concave Signaling Concerns

In this section, we consider concave signaling concerns. Following our earlier analysis,

the revenue of a standard auction at the equilibrium with strictly increasing strategies is

RevM(τ) + n ·

(∫ v

v

Φ(v)dHτ (v)−W0,τ

)
.

Information disclosure directly affects the second and third components. To extract more

signaling value from participating bidders, the auction should reveal less information. At

the same time, revealing less information increases the outside option, i.e., the signaling

value from non-participation W0,τ .

More precisely, consider first the signaling value, given by the term
∫
Φ(v)dHτ (v).

Information disclosure amounts to choosing a distribution over posterior meansHτ , where

Hτ is a mean-preserving spread of the minimal information distribution Hmin
τ . The

latter distribution is given by the policy that discloses only the winner’s identity, if

the auction has a winner. Because the inference function Φ is concave, the signaling

value is maximal for Hτ = Hmin
τ . In words, the signaling value is maximal when the

auction reveals no additional information beyond the winner’s identity (which has to

be revealed by assumption). Next consider the term W0,τ , the expected inference of

a bidder who does not participate. As before, W0,τ is minimal if the auction reveals

whether a bidder participated, for instance via charging an entry fee. In contrast to

the convex case, maximizing the signaling value and minimizing W0,τ conflict with each

other. In particular, revealing whether a bidder participated in the auction reveals more

information than only revealing the winner’s identity. In general this yields a non-trivial

trade-off without a straightforward solution.

Define HP
τ the distribution over posterior means that arises from a disclosure policy

which reveals the winner’s identity and whether a bidder participated in an auction with

participation threshold τ . Note that HP
v = Hmin

v . Moreover, define

RevP (τ) = RevM(τ) + n
(∫ v

v

Φ(v)dHP
τ (v)− E[V |V < τ ]

)
. (12)

Proposition 4 (Optimal auction under concavity). Consider a standard auction, in

which every bidder follows a strictly increasing bidding strategy, and participates whenever

his type is above τ .

(i) If participation is fully observable we have that Rev(τ) ≤ RevP (τ).

(ii) There exists τ ′ > v such that Rev(τ) ≤ RevP (τ) whenever τ < τ ′.

Proof. Following our previous argument, the revenue in an auction where all bidders with
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valuation above τ participate is

Rev(τ) = RevM(τ) + n

(∫ v

v

Φ(v) dHτ (v)−W0,τ

)
.

With observable participation we have W0,τ = E[V |V < τ ], independent of the specific

auction format. Furthermore, because Φ is concave the signaling value
∫ v

v
Φ(v)dHτ (v) is

maximal when only the winner’s identity is disclosed in addition, i.e., when Hτ = HP
τ .

This proves (i).

To prove (ii), note that for every auction in which participation is not fully observ-

able we have W0,τ > E[V |V < τ ]. Moreover, for τ = v we have
∫ v

v
Φ(v)dHv(v) ≤∫ v

v
Φ(v)dHmin(v) by concavity of Φ. Hence, Rev(v) < RevP (v). Both W0,τ and∫ v

v
Φ(v)dHτ (v) are continuous in the participation threshold τ , hence (ii) follows by con-

tinuity from the previous assertion.

Proposition 4 derives an upper bound for the revenue if either participation is fully

observable, or many bidder types participate. This bound stems from a (hypothetical)

auction that discloses only the winner’s identity, and a list of participating bidders. How-

ever to guarantee existence of a separating equilibrium the auction necessarily uses a

discriminatory payment rule, which ultimately reveals information beyond the winner’s

identity. To see this, note that if we had only payments for winner and loser’s, there

would not exist an equilibrium with strictly increasing bidding strategies. This suggests

the revenue bound is too large. We show in the next proposition that the revenue bound

is indeed tight.

Proposition 5. For every ε > 0 there is an auction that exhibits an equilibrium with

strictly increasing bidding strategies, for which Rev(τ) > RevP (τ)− ε.

Proof. Consider the following variant of a first-price auction: Bidders submit non-negative

bids, the bidder submitting the highest bid wins and with exogenous probability 1 − ε

makes no payment, but pays his own bid with probability ε. Every bidder has to pay

the entry fee ϕ before submitting a bid. The expected profit of a bidder of type v upon

entering the auction and bidding as if he was type v′ is

Π(v|v′) = G(v′)(v − εβ(v′)) +W(v′)− ϕ.

From the first-order condition we get

β⋆(v) =
1

ε
βM(v) +

W(v)−W(τ)

εG(v)
,

where βM is the bidding strategy in a first-price auction without signaling and entry fee
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that induces only types above τ to participate. Note that we have used the fact that

β(τ) = 0, which is true because in equilibrium type τ only wins the auction when no

other bidder enters and is thus not willing to bid a strictly positive amount. Furthermore,

to induce participation for all types above τ the fee has to satisfy

W0,τ = G(τ)τ +W(τ)− ϕ ⇔ ϕ = G(τ)τ +W(τ)−W0,τ .

The revenue is thus given by

Revε(τ) = n(1− F (τ))ϕ+ (1− F n(τ))E
[
εβ⋆(V1)|V1 ≥ τ

]

= n(1− F (τ))
(
G(τ)τ +W(τ)−W0,τ

)
+

∫ v

τ

βM(s) +
W(s)−W(τ)

G(s)
dF n(s)

= RevM(τ) + n(1− F (τ))(W(τ)−W0,τ ) + n

∫ v

τ

(
W(s)−W(τ)

)
f(s)ds

= RevM(τ) + n

[
F (τ)W0,τ +

∫ v

τ

W(s)f(s)ds−W0,τ

]
. (13)

Note that

W(s) =
n∑

k=1

Bn−1,F (τ)(k − 1)
{
Fk(s|τ) ·

(
εΦ(s) + (1− ε)Φ

(
vW,k

))

+(1− Fk(s|τ)) ·
(
ε

∫ v

s

Φ
(
vL,k(x)

)
dFk(x|τ) + (1− ε)Φ

(
vL,k

))}

=
n∑

k=1

Bn−1,F (τ)(k − 1)
{
Fk(s|τ)Φ

(
vW,k

)
+ (1− Fk(s|τ)) Φ

(
vL,k

)}

−ε

n∑

k=1

Bn−1,F (τ)(k − 1)
{
Fk(s|τ)

(
Φ(s)− Φ

(
vW,k

))

+(1− Fk(s|τ))
(∫ v

s

Φ
(
vL,k(x)

)
dFk(x|τ)− Φ

(
vL,k

))}
,

where Bn−1,F (τ)(k − 1) :=
(
n−1
k−1

)
F (τ)n−k(1 − F (τ))k−1, vW,k := E[V1|Vk ≥ τ > Vk+1],

vL,k := E[V |V1 > V ≥ Vk ≥ τ > Vk+1], vL,k(s) := E[V |V1 = s, s > V ≥ Vk ≥ τ > Vk+1]

and Fk(v|τ) :=
(
F (v)−F (τ)
1−F (τ)

)k−1
for all k = 1, . . . , n denotes the conditional probability of
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the maximum of the k − 1 other bids if all of these exceed τ . Hence,

∫ v

τ

W(s)f(s)ds =
n∑

k=1

Bn−1,F (τ)(k − 1)
{

1
k
Φ
(
vW,k

)
+ k−1

k
Φ
(
vL,k

)}

−ε

n∑

k=1

Bn−1,F (τ)(k − 1)

{∫ v

τ

Fk(s|τ)
(
Φ(s)− Φ

(
vW,k

))
f(s)ds

+

∫ v

τ

(1− Fk(s|τ))
(∫ v

s

Φ
(
vL,k(x)

)
dFk(x|τ)− Φ

(
vL,k

))
f(s)ds

}

=
n∑

k=1

Bn−1,F (τ)(k − 1)
{

1
k
Φ
(
vW,k

)
+ k−1

k
Φ
(
vL,k

)}
− εC,

where by concavity of Φ and compactness of the support of the bidders’ valuations we

have C > 0 and finite. Plugging the above expression back into (13) and noting that

W0,τ = E[V |V < τ ] (because participation is observable) yields Revε(τ) = RevP (τ) −

εC → RevP (τ) as ε → 0.

Propositions 4 and 5 reveal a fundamental difference between pure information design

and mechanism design with information disclosure. In information design the sender has

costless access to all information, while in mechanism design the information is privately

held by the agents. In our setting the auctioneer benefits from revealing additional

information, namely whether a bidder participated. Such disclosure reduces the value

of the bidders’ outside option, i.e., the expected signaling value from non-participation.

The reduced outside option allows the auctioneer to extract more revenue from bidders.

The benefit from revealing the bidders’ participation is larger, the lower the participation

threshold τ . For τ ≈ v it becomes optimal to disclose only the winner’s identity and all

participation decisions.

6 Conclusion

In this paper, we analyze optimal auctions in an independent private values environment

with signaling, i.e. where bidders’ care about the perception of a third party. To keep

the analysis concise and tractable we focused on linear, convex and concave signaling

concerns. The results of Dworczak and Martini (2019) indicate that the disclosure policy

maximizing the signaling value for general preferences is a combination of intervals where

the type is fully disclosed and intervals on which types are fully pooled. However, it is

not straightforward to translate such a disclosure rule into a payment rule for a standard

auction. Understanding the polar cases of convexity and concavity allows us to address

a preference for the aftermarket that has been studied in the literature on information
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design, namely where Φ is a distribution function.12 Under regularity conditions, there

is a unique value v̂ such that Φ is convex on [v, v̂] and concave on [v̂, v]. Hence, if the

participation threshold is sufficiently high we are back in the concave case. Otherwise,

maximizing revenue calls for revealing low bids while at the same time pooling higher

bids.

A natural follow-up question concerns the extent to which our results can be gener-

alized to a richer class of mechanisms. Beyond mechanism design, that could provide

new and exciting perspectives in applied fields such as advertising, marketing science

and industrial organization. For instance, the literature on conspicuous consumption

(e.g., Bagwell and Bernheim (1996) and Corneo and Jeanne (1997)) studies product

markets where the consumption value depends on the belief of a social contact. A profit-

maximizing auctioneer will try to exploit this by tailoring its product line and prices to

the information revealed by the consumer’s choice. That will lead to new insights about

consumer behavior and firm strategies that exploit signaling concerns.13
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