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Strategies under Strategic Uncertainty

Helene Mass∗

Abstract

I investigate the decision problem of a player in a game of incomplete

information who faces uncertainty about the other players’ strategies.

I propose a new decision criterion — the rational maximin criterion

— which works in two steps. First, I assume common knowledge of

rationality and eliminate all strategies which are not rationalizable.

Second, I apply the maximin criterion. Using this decision criterion,

one can derive predictions about outcomes and recommendations

for players facing strategic uncertainty. I analyze applications to

first-price auctions, contests, and bilateral trade.

JEL classification: D81, D82, D83

Keywords: Incomplete Information, Informational Robustness,

Rationalizability

1 Introduction

Consider a game and a player who has to decide on her strategy. It is crucial

for her decision to form a conjecture about the other players’ strategies.

Under the traditional approach the player conjectures that her opponents

play according to a Nash equilibrium of the given fame. However, the

player may consider more strategies than one particular Nash equilibrium

as possible and does not form a unique conjecture. In other words, the

player faces strategic uncertainty and cannot derive an optimal strategy. In

order to address this issue, I propose a new decision criterion — the rational
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maximin criterion — which allows to derive recommendations for an agent

who faces strategic uncertainty. The decision criterion works in two steps:

First, I assume common knowledge of rationality and eliminate all actions

which are not best replies. That is, the set of the other players’ possible

strategies is restricted to the set of rationalizable strategies. Second, I apply

the maximin criterion.

This criterion can be applied to any game of complete or incomplete

information and allows to derive recommendations for a player facing

strategic uncertainty. I will present applications to first-price auctions,

contests and bilateral trade. The novelty of the rational maximin criterion

is that it allows to derive meaningful recommendations while making

minimal assumptions. The fact that rational players interact in a game

with commonly known rules already allows for a meaningful restriction of

the set of possible conjectures about other players’ strategies. Restricting

the set further would require additional common knowledge assumptions.

Not making use of this fact would add non-rational conjectures to the set

possibly causing overly-pessimistic beliefs and foregone profits.

In their seminal papers Pearce (1984) and Bernheim (1984) have challenged

the concept of Nash equilibria. As stated by Pearce (1984), “some Nash

equilibria are intuitively unreasonable and not all reasonable strategy profiles

are Nash equilibria”. They argue that in a one-shot interaction a player

will best reply to Nash equilibrium strategies only if she is certain that the

other players will employ these strategies. That is, players need to deduce

unique conjectures about their opponents’ strategies. Similarly, Renou and

Schlag (2010) argue that “common knowledge of conjectures” is required in

order to justify Nash equilibria as a decision criterion.1

However, a player may consider more than one strategy of the other

players’ as possible, even if everyone is rational and there is common

knowledge of this. For example, this can occur under the existence of

multiple Nash equilibria without one being focal or salient as claimed by

1Bernheim (1984) indicates that a Nash equilibrium is the result of some underlying
dynamic process which allows the players to coordinate on a Nash equilibrium. This
process, however, is not modeled in one-shot interaction games. In fact, a repeated game
would be a new game with possibly different equilibria. Without this dynamic process
players may not coordinate on a Nash equilibrium.
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Bernheim (1984). But also if there exists a unique Nash equilibrium, a player

may not be certain that it is played by her opponents because they have a

multitude of rational strategies to choose from. If a player does not observe

or does not deduce a unique conjecture about the other players’ strategies,

she faces strategic uncertainty and cannot derive an optimal strategy. As a

solution for this issue I propose the rational maximin criterion which aims

at providing a unique conjecture about other players’ strategies for a player

in a given game. I will now discuss the rational maximin criterion in more

detail.

So far, I argued that a player may not know which strategies are adopted

by her opponents. But a player may not consider all strategies of the other

players as possible. The fact that rational players interact strategically given

some commonly known rules of a game (e.g. the rules of a first-price auction),

already implies a restriction on the set of possible strategies. Therefore,

in the first step of the decision criterion I propose to consider strategies

which a player can deduce only from common knowledge of rationality. By

definition, a player is rational if her action is a best reply given her type, the

commonly known type distribution and a conjecture about the other players’

strategies.2 A strategy which a player assumes to be played by another

rational player has to be rational as well, i.e., the action prescribed by a

strategy for a given type has to be a best reply given her type, the commonly

known type distribution and a conjecture about the other players’ strategies.

This reasoning continues ad infinitum. Pearce (1984) and Bernheim (1984)

(and Battigalli and Siniscalchi (2003b) for games of incomplete information)

show that common knowledge of rationality is equivalent to bidders playing

rationalizable strategies. These are strategies which survive the iterated

elimination of actions which are not best replies to some strategy which

consists of actions which have not been eliminated in previous elimination

rounds.

Since rationalizable strategies are not necessarily unique, an additional

step is needed in order to derive a unique conjecture. In the second step

I apply the maximin criterion as in Gilboa and Schmeidler (1989). The

2Throughout this paper I assume common knowledge of type distributions. The
rational maximin criterion could be also extended to uncertainty about type distributions.
However, this is beyond the scope of this paper.
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application of the maximin criterion can be modeled as a simultaneous

two-player zero-sum game against an adverse nature. Therefore, also the

rational maximin criterion can be modeled this way. Consider a given game

and a player applying the rational maximin criterion. This player plays

a zero-sum game against an adverse nature where the adverse nature’s

action space is restricted to all rationalizable strategy profiles of the other

players. The action space of the player is identical to the player’s action

space in the given game. The utility of the player in the zero-sum game is

the expected utility induced from the utility function in the given game,

the player’s action, her type, and the other players’ strategy profile chosen

by the adverse nature. The adverse nature’s utility is the player’s utility

multiplied by -1.

The model as a zero-sum game against an adverse nature allows for a

subjective belief interpretation of the rational maximin criterion. That is, a

player chooses a subjective belief about the other players’ strategies and

acts optimally given this subjective belief. The first step of the decision

criterion determines the set from which a player chooses her subjective

belief. The second step determines how the subjective belief is chosen from

this set. The subjective belief is given by the adverse nature’s equilibrium

strategy, in the following called rational maximin belief. I will call an action

which is a best reply to the rational maximin belief a rational maximin

action. In order to distinguish the Nash equilibrium in the simultaneous

game between a player and the adverse nature and the Nash equilibrium

which may exist in a given game , I will refer to the Nash equilibrium in

the former case as a rational maximin equilibrium.

The following two examples illustrate two different reasons for why

strategic uncertainty can occur and how the rational maximin criterion

applies under strategic uncertainty. In the first example there exist multiple

Nash equilibria without one being salient. In the second example a salient

Nash equilibrium exists but is not the unique rationalizable action. In

particular, the salient Nash equilibrium is not compatible with actions

derived from the maximin utility or minimax regret criterion.

For the first example consider a sender who has to deposit a package

either in places A, B or C. A receiver has to decide to which places she

sends one or two drivers in order to pick up the package. If the package is
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picked up, sender and receiver earn each a utility of P and zero otherwise.

In addition, the receiver faces a cost of c if a driver travels to place A or B

and a cost of c̃ if a driver travels to place C. The game is summarized in

the following payoff table:

A B C AB AC BC

A P ;P − c 0;−c 0;−c̃ P ;P − 2c P ;P − c− c̃ 0;−c− c̃

B 0;−c P ;P − c 0;−c̃ P ;P − 2c 0;−c− c̃ P ;P − c− c̃

C 0;−c 0;−c P ;P − c̃ 0;−2c P ;P − c− c̃ P ;P − c− c̃

It is common knowledge that it holds P − c̃ < −c and P − 2c > 0. Assume

that sender and receiver interact only once. The pure strategy Nash

equilibria in this game are (A;A), (B;B). Moreover, a Nash equilibrium

is given if the sender mixes between A and B with probability 1

2
and the

receiver chooses AB. Due to the multiplicity of equilibria, the players may

be uncertain which equilibrium strategy to follow, in particular, if they

interact for the first time. If c is very small relatively to P , the latter

equilibrium seems to be the intuitive one.

Given the multiplicity of the equilibria and the resulting uncertainty,

the players may apply the maximin utility criterion. The application of

this criterion leaves both players indifferent between actions A and B. The

maximin criterion does not yield to action AB for the receiver since by

choosing AB she would face the risk that the sender deposits the package

in C, leaving the receiver with the costs of two drivers −2c. However, the

result of the maximin criterion changes after assuming common knowledge

of rationality, i.e., if the rational maximin criterion is applied. Excluding

actions which are not best replies leads to the elimination of strategies C,

AC and BC for the receiver, leading to the elimination of action C for the

sender:

A B AB

A P ;P − c 0;−c P ;P − 2c

B 0;−c −c̃ P ;P − c −c̃ P ;P − 2c
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Now the maximin criterion leads to action AB for the receiver. In other

words, if the receiver anticipates that the sender anticipates that she will

never send a driver to C, the application of the maximin criterion leads to

action AB. Thus, in this setting the rational maximin criterion serves as

an equilibrium selection device which chooses the intuitive equilibrium.

As a second example consider the following payoff table. It illustrates

the decision problem of the row player player who is uncertain about which

of the possible rationalizable actions her opponent will choose:

X Y Z

A 10;10 0;9 0,0

B 15;1 5;9 0,0

C 14;1 4;9 4;0

D 11;10 6;9 0;0

The unique Nash equilibrium in pure strategies, (A,X), is focal in the

sense that it is the social optimum and leads to the highest possible utility

for both players. However, a rational column player can also choose Y

instead of X. Action Y is rationalizable and moreover, the application of

the maximin or the minimax regret criterion would lead to action Y for the

column player. In other words, the column player may prefer to get a utility

of 9 with certainty instead of aiming for the utility of 10 and risking to get

a utility of 1. Given this uncertainty about the column player’s strategy,

the row player may resort to the application of the maximin criterion. This

leads to action C which ensures a utility of 4 for the row player. However,

the row player can anticipate that action Z is strictly dominated for the

column player. After the elimination of this action, C becomes strictly

dominated for the row player. The iterated elimination of actions which

are not best replies, i.e., the elimination of actions Z and C, leads to the

following payoff table:
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X Y

A 10; 10 0; 9

B 15;1 5;9

D 11;10 6;9

Now the application of the maximin criterion leads to action B for the

row player. That is, after anticipating that the column player will never

play Z, the row player can ensure a utility of 5 instead a utility of 4. Note

that the rational maximin criterion prescribes the row player to play B with

probability one. However, playing B with probability one is not part of an

equilibrium. Therefore, in contrast to the previous example, the rational

maximin action is not part of an equilibrium.

These examples show how the rational maximin criterion provides

recommendations under strategic uncertainty. Moreover, they show why

players may not be able to form unique conjectures about their opponents’

strategies and why the application of the maximin utility criterion alone

may cause forgone profits. In the rest of this section I will summarize

the results of the applications to first-price auctions, Tullock contests and

bilateral trade.

The rational maximin belief of a bidder in a first-price auction is that

her opponent places the highest rationalizable bid given her valuation. As a

result, the bidder never expects to bid against an equal or higher type and

resorts to win against a lower type with certainty by placing the highest

rationalizable bid of a lower type. If every bidder applies the criterion, the

outcome is efficient.

The rational maximin belief of a player in a Tullock contest is that her

opponent exerts the highest rationalizable effort given her cost type. In

the case of complete information the highest rationalizable effort coincides

with the equilibrium effort. Thus, the recommendation derived from the

rational maximin criterion (rational maximin action) coincides with the

equilibrium. In the case of incomplete information with two types the

highest rationalizable efforts are strictly higher than equilibrium efforts. The

rational maximin action for the low-cost type is higher than in equilibrium

while the rational maximin action of the high-cost type is lower. Tis result
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indicates whether a contest designer should maintain or dissolve strategic

uncertainty, depending on whether in the given economic setting lowest or

highest efforts are relevant.

Finally, I apply the rational maximin criterion to a bilateral trade

setting. Buyer and seller simultaneously submit a bid and a reserve price.

If the bid exceeds the reserve price, trade takes place with a price which

is a weighted average of bid and reserve price. I consider an incomplete

informations setting where buyer and seller have each two different types.

Strategic uncertainty causes buyer and seller to expect zero utility. As a

consequence, under the rational maximin criterion they are indifferent

between a continuum of actions. The extent of strategic uncertainty

shouldn’t come as a surprise since a continuum of equilibria exists causing

a continuum of strategies, including extreme ones, to be rationalizable.

Depending on the parameter constellation it may be beneficial for the buyer

to commit to bid a minimum amount. This reduces the seller’s strategic

uncertainty making the seller’s actions more predictable for the buyer. This

implies that at least the buyer with a high valuation expects a strictly

positive utility. Analogously, it may be beneficial for the seller to commit

to set a maximal reserve price.

Relation to the literature

I will structure the literature review into three different strands: the

literature on decision criteria for strategic uncertainty, on the maximin

criterion, and the literature on rationalizability.

Several papers propose equilibrium concepts for players facing strategic

uncertainty.3 Bich (2016) proposes the concept of prudent equilibrium for

players who face strategic uncertainty in a given game. A prudent player

maximizes her minimum utility given that the other players choose actions

in a neighborhood around a given strategy profile. Strategic uncertainty is

parametrized by a function assigning different weights to different deviations.

In contrast to this paper, some knowledge about the other players’ strategy

is required. This comment also applies to other equilibrium concepts under

3I will leave out papers which propose concepts not compatible with common
knowledge of rationality.
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strategic uncertainty, e.g. quantile response equilibrium.

Dow and da Costa Werlang (1994), Marinacci (2000), and Eichberger

and Kelsey (2000) study equilibria where players can have different degrees

of uncertainty (or uncertainty aversion), modeled by Choquet expected

utility with a non-additive probability measure. Klibanoff (1993) studies

equilibrium outcomes where players maximize their minimum payoff given a

set of possible conjectures about the opponent’s strategies. Renou and Schlag

(2010) analyze strategic uncertainty using the minimax regret criterion where

the set of possible strategies is restricted exogenously. Kasberger and Schlag

(2017) use the minimax regret criterion in first-price auctions and allow for

the possibility that a bidder can impose bounds on the other bidders’ bids or

valuation distributions. For example, they consider the case where a bidder

can impose a lower bound on the highest bid.4 The crucial difference of

this strand of literature to this paper is that the set of possible conjectures

about the other players’ strategies is either determined by some additional

knowledge about equilibrium play or is exogenously given. Inostroza and

Pavan (2017) use a concept similar to the rational maximin criterion in

global games where a prime minister expects the agents to act according to

the “most aggressive rationalizable profile”.

The axiomatization of the rational maximin criterion is provided in Gilboa

and Schmeidler (1989). In Bergemann and Schlag (2008) both criteria are

applied to a monopoly pricing problem where a seller faces uncertainty

about the buyer’s valuation distribution. Since the seller knows that the

buyer will obtain the good if the price is equal or lower than her valuation,

the seller does not face strategic uncertainty. In Lo (1998), Salo and Weber

(1995), and Chen et al. (2007) the rational maximin criterion is applied to

first-price auctions under distributional uncertainty. These three papers use

4 In their literature on robust mechanism design Dirk Bergemann and Stephen Morris
consider the problem of a social planner facing uncertainty about the players’ actions.
In Bergemann and Morris (2005) a social planner can circumvent uncertainty about
the players’ strategies by choosing ex-post implementable mechanisms. Bergemann
and Morris (2013) provide predictions in games independent of the specification of the
information structure. In order to do so, they characterize the set of Bayes correlated
equilibria. An application of this concept to first-price auctions is carried out in
Bergemann et al. (2017). In contrast to this strand of literature, I study the strategic
uncertainty a player is facing in a given game.
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Bayes-Nash equilibria as a solution concept, that is, the issue of strategic

uncertainty is not addressed. Bose et al. (2006) derive the optimal auction

in a setting where seller and bidders may face different degrees of ambiguity,

that is, they may face different sets of possible valuation distributions.

Carrasco et al. (2018) consider a seller facing a single buyer. The set of

distributions the seller considers to be possible is determined by a given

support and mean. In these two papers strategic uncertainty is not an

issue since the seller chooses a strategy-proof direct mechanism. A crucial

difference between the application of the maximin criterion in the papers

mentioned and in this paper is that the application to strategic uncertainty

allows for an endogenous restriction of the set of possible conjectures while

under distributional uncertainty and exogenous restriction is required.

The concept of rationalizable strategies has been first introduced by Bernheim

(1984) and Pearce (1984) for games with complete information. Battigalli

and Siniscalchi (2003b) extend rationalizability to games of incomplete

information. Bergemann and Morris (2017) propose a concept of rationali-

zability in settings with incomplete information where agents may not

know their own payoff-type. An application to first-price auctions has

been carried out by Dekel and Wolinsky (2001). They apply rationalizable

strategies to a first-price auction with discrete private valuations and discrete

bids. They present a condition on the distribution of types under which

the only rationalizable action is to bid the highest bid below valuation.

Battigalli and Siniscalchi (2003a) assume that valuation distributions in

a first-price auction are common knowledge but not the strategies of the

bidders. They characterize the set of rationalizable actions under the

assumption of strategic sophistication, which implies common knowledge

of rationality and of the fact that bidders with positive bids win with

positive probability. They find that for a bidder with a given valuation θ all

bids in an interval (0, bmax (θ)) are rationalizable where bmax (θ) is higher

than the Bayes-Nash equilibrium bid. Kashaev and Salcedo (2019) propose

conditions under which one can determine whether observed data could

have been generated by any solution concept stronger than rationalizability,

including the rational maximin criterion.
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2 Model

Underlying game of incomplete information The starting point

of the model is a game of incomplete information which is denoted by
(

{1, . . . , I} ,Θ, A, {ui}i∈{1,...,I}
)

where {1, . . . , I} is the set of players and

for every i ∈ {1, . . . , I}, Ai ⊆ R is the set of possible actions and Θi ⊆ R is

the set of possible privately known types of player i. A and Θ are defined

by A = A1 × . . .×AI and Θ = Θ1 × . . .×ΘI . A pure strategy of player i is

a mapping

βi : Θi → Ai

θi 7→ ai.

The set Si is the set of all pure strategies of player i. A (mixed) strategy of

player i is a mapping

βi : Θi → ∆Ai

θi 7→ ai

where ∆Ai is the set of probability distributions on Ai. In the following g
βi

θi

will denote the density of the bid distribution βi (θi) and supp (βi (θi)) its

support.5 Let

ui : A×Θi → R

(a1, . . . , aI , θi) 7→ ui (a1, . . . , aI , θi)

denote the utility function of player i. That is, I consider a setting with

private valuations.

Although the rational maximin criterion could be extended to distributional

uncertainty in a natural way, in this paper I focus only on strategic

uncertainty. That is, the players’ type distribution is common knowledge.6

5A pure strategy can be interpreted as distribution of bids which puts probability
weight 1 on one bid. I abuse notation since in the case of a pure strategy, βi (θi) denotes
an element in Ai while in the case of a (mixed) strategy βi (θi) denotes an element in
∆Ai. However, in the following it will be clear whether βi is a pure or a mixed strategy.

6Under distributional uncertainty a player does not know the type distribution of her
opponents but instead considers a set of possible type distributions. In an extension of
the rational maximin criterion to distributional uncertainty the adverse nature would
choose not only a rationalizable strategy profile but also a type distribution of the other
players.
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For a given type distribution

F : Θ → [0, 1]

and a profile of strategies (β1, . . . , βn) the expected utility of a player i is

defined by 7

Ui (θi, βi (θi) , β−i, F−i)

=

∫

θ−i

∫

a−i

ui (a1, . . . , ai, . . . , aI , θi)
∏

j 6=i

g
βj

θj
(aj) dθ−jdF−i (θ−i|θi) dθ−i. (1)

Action space of adverse nature In order to formalize the rational

maximin criterion, a new player, denoted by n, is introduced, representing

the adverse nature a player i applying the criterion faces. Players i and n

play a two-player simultaneous zero-sum game, called game under strategic

uncertainty. The first step of a formal description of this game is the

definition of the adverse nature’s action space. Under common knowledge

of rationality the adverse nature is restricted to choose from rationalizable

strategy profiles.

Rationalizable strategies The assumption of common knowledge of

rationality leads to the following reasoning. Every player i maximizes her

expected utility given her type, the type distribution F and a conjecture

about the other players’ strategies. The strategy which player i assumes

is played by some player j 6= i has also to be compatible with common

knowledge of rationality. Therefore, for every possible type of player j,

the action prescribed by the strategy assumed by player i maximizes j’s

expected utility given her type, the type distribution F and a conjecture

about the other players’ strategies. Again, player j’s conjecture has to be

compatible with common knowledge of rationality. This reasoning continues

ad infinitum.8

7For a vector (v1, . . . , vI) I denote by v−i the vector (v1, . . . , vi−1, vi+1, . . . , vI).
8As stated above, under strategic uncertainty a rational player acts optimally given

a conjecture about the other players’ strategies (and a conjecture about the other
players’ type distributions if also distributional uncertainty is present). Instead of
“conjecture” other terms have been used in economic literature, e.g. belief, subjective
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Given the type of a player, an action which is compatible with common

knowledge of rationality is called rationalizable. Battigalli and Siniscalchi

(2003b) have shown that it is equivalent to define a rationalizable action for

a given type as follows.

Definition 1. ggggg

(i) Let i ∈ {1, . . . , I} be a player and θi ∈ Θi be a type of player i. The

set of rationalizable actions for player i is defined as follows. Set

RS1
i (θi) := Ai. Assume that for k ∈ N the set RSk

i (θi) is already

defined. Then the set RSk+1
i (θi) is defined as the set of all elements ai

in Ai for which there exists a strategy profile β−i of the other players

such that it holds

(I) aj ∈ supp (βj (θj)) for θj ∈ Θj ⇒ aj ∈ RSk
j (θj) for all j 6= i

(II ) ai ∈ argmax
a′i∈Ai

Ui (θi, a
′
i, β−i, F−i)

and RSi (θi) is given by

RSi (θi) =
⋂

k≥1

RSk
i (θi) .

(ii) A strategy βi of a player i is rationalizable if for every θi ∈ Θi every

action ai with ai ∈ supp (βi (θi)) is rationalizable, i.e., an element of

RSi (θi).

(iii) For a player i let RS−i be the set of rationalizable strategies of all

players besides player i.

The intuition behind this definition is that an action for a player which

is consistent with common knowledge of rationality, i.e., a rationalizable

action, is an action which survives the iterated elimination of actions which

are not best replies. An action is a best reply if it maximizes the player’s

expected utility given her type, the commonly known type distribution F

and a conjecture about the other players’ strategies which prescribe actions

prior, assumption, assessment ect. I use the term conjecture as proposed in Bernheim
(1984).
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that have not been eliminated yet. A strategy is rationalizable if all actions

in its support are rationalizable.

The definition of rationalizable strategies allows for a formal definition

of the adverse nature’s action space and therefore for a formal definition

of the simultaneous game against the adverse nature – the game under

strategic uncertainty.

Simultaneous game against adverse nature The following definition

summarizes all components describing a game under strategic uncertainty.

Definition 2. A game under strategic uncertainty consists of an underlying

game of incomplete information, denoted by

({1, . . . , I} ,Θ, A, {ui}i ∈ {1, . . . , I}) ,

a player i ∈ {1, . . . , I} applying the rational maximin criterion, and a player

n. Player i chooses a strategy

βi : Θi → ∆Ai.

and player n chooses for every type of player i a strategy of the other

players:9

βn : Θi → RS−i

θi 7→ βθi
−i.

Here the superscript θi indicates that the adverse nature chooses the other

players’ strategies depending on player i’s type, i.e., the game under strategic

uncertainty is a game under complete information. The utility of a player

i ∈ {i1, . . . , ik} is given by

Ui

(

θi, βi (θi) , β
ni,θi
−i , F−i

)

which is defined as in (1) and is induced by the utility function of player i

9I assume that the adverse nature is restricted to choose uncorrelated strategies.
However, this restriction will turn out to be without loss for the applications.
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in the underlying game of incomplete information, denoted by ui:

ui : A×Θi → R.

(a1, . . . , aI , θi) 7→ ui (a1, . . . , aI , θi) .

The utility of player nature is given by

−
k

∑

j=1

Ui

(

θi, βi (θi) , β
ni,θi
−i , F−i

)

.

Since the other players’ strategies the adverse nature chooses for a player

i ∈ {1, . . . , I}, are not observed by a player j 6= i, the adverse nature faces

an independent minimization problem for every player applying the rational

maximin utility criterion. Equivalently, one could introduce an additional

adverse nature for every player applying the rational maximin criterion.

Therefore, for a given player the application of the criterion does not depend

on whether it is applied by other players as well.

Note that after specifying the player applying the rational maximin

criterion, a given game of incomplete information uniquely defines a game

under strategic uncertainty. Thus, throughout the remainder of the paper

it will be assumed that after specifying the underlying game of incomplete

information, a game under strategic uncertainty is given without explicitly

stating all its ingredients.

Now it is possible to define a rational maximin strategy in a game under

strategic uncertainty which can be seen as a recommendation for a player

facing strategic uncertainty.

Definition 3. In a game under strategic uncertainty for a player i a strategy

RMi : Θi → ∆Ai

is a rational maximin strategy if there exists a Nash equilibrium in the

simultaneous game between nature and player i such that RMi is player i’s

equilibrium strategy. The action (or mixed strategy) given by RMi (θi) is

called a rational maximin action for type θi.

The Nash equilibrium in the simultaneous game between nature and
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player i is called rational maximin equilibrium.

As described above, such a maximin strategy has two properties. First,

if a player would not choose an action according to a maximin strategy, then

there would exist a rationalizable strategy of the other players under which

the player’s expected utility is lower than under the action prescribed by a

maximin strategy. Second, the strategy chosen by nature can be interpreted

as the player’s subjective belief about the state of the world against which

she maximizes her expected utility given her type. The second property is

formalized in the following definition.

Definition 4. In a game under strategic uncertainty let βn be the adverse

nature’s equilibrium strategy. A rational maximin belief of player i with

valuation θi is defined as

βn (θi) = βθ
−i,

that is, the adverse nature’s rational maximin equilibrium strategy evaluated

at θi.

Note that neither the rational maximin belief of player nor her rational

maximin strategy are necessarily unique. However, every best reply of

a player i to any rational maximin belief (or equivalently every rational

maximin strategy) induces the same expected utility for player i.

3 Rationalizable strategies

This section collects sufficient conditions for actions to be rationalizable

which will be useful in the rest of the paper. The first condition is presented

in the following lemma which states that best replies to rationalizable

strategies are again rationalizable.

Lemma 1. In a game of incomplete information let i ∈ {1, . . . , I} be

a player with valuation θi and for every j ∈ {1, . . . , I} \ {i} let βj be a

rationalizable strategy for player j. Let ai ∈ Ai be a best reply to β−i, i.e.,

it holds that

ai ∈ argmax
a′i∈Ai

Ui (θi, a
′
i, β−i, F−i) ,
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then ai ∈ RSi (θi), that is, ai is a rationalizable action for player i with

valuation θi.

This lemma follows from the definition of rationalizable strategies.

Formally, one can show per induction that for every k ∈ N and for every

ai ∈ supp (βi (θi)) it holds that ai is an element in RSk
i (θi).

Recall that a rational maximin strategy for a player is the equilibrium

strategy played by the player in a game under strategic uncertainty, i.e., in

the simultaneous zero-sum game between a player and the adverse nature.

A direct consequence of Lemma 1 is that rational maximin strategies are

rationalizable.

Corollary 1. In a game under strategic uncertainty let βi be a rational

maximin strategy. Then βi is a rationalizable strategy for player i.

Besides providing an additional sufficient condition for strategies to

be rationalizable, this result is desirable since it ensures that the strategy

prescribed by the rational maximin criterion is compatible with common

knowledge of rationality which is assumed throughout the paper.

Another sufficient condition for an action to be rationalizable is that it

is played in a Bayes-Nash equilibrium which is formalized in the following

definition and proposition.

Definition 5. In a game of incomplete information a strategy profile

(β1, . . . βI) together with a joint type distribution F̂ is a Bayes-Nash equilibrium

with a common prior if for every i ∈ {1, . . . , I}, every θi ∈ Θi and every

ai ∈ Ai such that ai ∈ supp (βi (θi)) it holds that

ai ∈ argmax
a′i∈Ai

Ui

(

θi, a
′
i, β−i, F̂−i

)

.

That is, every player maximizes her expected utility given the other players’

strategies and the other players’ commonly known type distributions.

Proposition 1. Let the profile of strategies (β1, . . . , βI) together with a joint

type distribution F̂ constitute a Bayes-Nash equilibrium with a common

prior of a game of incomplete information. Then for every i ∈ {1, . . . , I}
the strategy βi is rationalizable.

17



It follows from Proposition 1 and Lemma 1 that a best reply to strategies

played in a Bayes-Nash equilibrium is rationalizable. This constitutes

another sufficient condition for an action to be rationalizable:

Corollary 2. Let the profile of strategies (β1, . . . , βI) together with a joint

type distribution F̂ constitute a Bayes-Nash equilibrium with a common

prior of a game of incomplete information. Let i ∈ {1, . . . I} be a player

with valuation θi and let ai ∈ Ai be a best reply to β−i and some distribution

of the other players’ types F−i
′ ∈ ∆Θ−i

, i.e., it holds that

ai ∈ argmax
a′i∈Ai

Ui

(

θi, a
′
i, β−i, F

′
−i

)

,

then ai ∈ RSi (θi), that is, ai is a rationalizable action for player i with

valuation θi.

After presenting the formal model and sufficient conditions for strategies

to be rationalizable, we can now turn to the analysis of applications. I

study three applications: first-price auctions, Tullock contests and bilateral

trade. Instead of a rigorous analysis of all applications, I rather provide

an analysis of simplified models with few types. This allows to explain in

detail how the decision criterion applies and what the main intuition of the

results is.

4 First-price auctions under strategic

uncertainty

In this section I analyze how the proposed decision criterion applies to

first-price auctions. As mentioned above, a game of incomplete information

uniquely defines a game under strategic uncertainty, i.e., a game between

a player applying the rational maximin criterion and an adverse nature.

Thus, in order to specify the general model for first-price auctions, it is left

to formally describe the underlying game of incomplete information.

Underlying game of incomplete information I consider a simplified

model with two bidders A and B who draw their types from a finite
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type space Θ where the lowest type is normalized to zero. Every bidder

chooses a bid on some (arbitrarily fine) bid grid G on an interval [0, G] with

G ≥ max{θ | θ ∈ Θ}.10
For every b ∈ (0, G] with b > 0 there exists a predecessor in G denoted

by

b− = max
b′∈G

b′ < b

and for every b ∈ [0, G) with b < G there exists a successor in G denoted by

b+ = min
b′∈G

b′ > b.

Thus, a strategy of a bidder is given by

β : Θ → ∆G .

In a first-price auction the bidders submit bids, the bidder with the

highest bid wins the object and pays her bid. In addition, it holds an

efficient tie-breaking rule.11 Formally, the utility of bidder i with valuation

θi and bid bi given bidder j’s bid bj is denoted by

ui (θi, bi, bj) =











































θi − bi if bi > bj

θi − bi if bi = bj and θi > θj

1

2
(θi − bi) if bi = bj and θi = θj

0 if bi = bj and θi < θj

0 if bi < bj

where θj denotes the valuation of bidder j.

The bidders’ valuations are identically and independently distributed

10A finite grid is used for the set of all possible bids instead of the interval [0, G]
because of the following reason: assume bidders A and B have the same valuation θ. If
bidder A bids some amount b < θ, one has to identify the smallest bid which is strictly
higher than b since this would be the unique best reply of bidder B. This allows a more
formal analysis than using expressions like “bidding an arbitrarily small amount more
than b”. The grid is assumed to be finite in order to ensure that any subset of the bid
grid is compact.

11The core statements in the results do not depend on the choice of the tie-breaking
rule, i.e., under a random tie-breaking rule for every bidder and every valuation the bid
prescribed by the maximin strategy would change by at most one step on the bid grid.
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according to a distribution function

F : Θ → [0, 1]

with probability density function

f : Θ → [0, 1].

I assume that the bid grid is sufficiently fine and on every type there

is sufficiently much weight such that tying with another bidder is never

optimal.

Application of the rational maximin criterion Assume that bidder

A applies the proposed decision criterion. By definition, bidder A plays a

simultaneous zero-sum game against an adverse nature where the adverse

nature chooses a rationalizable strategy of bidder B. In any equilibrium

of this game, i.e., in any rational maximin equilibrium, the adverse nature

chooses a strategy such that bidder B bids as high as possible and hence,

the adverse nature chooses a strategy such that bidder B bids the highest

rationalizable bid given her type. In other words, according to the rational

maximin belief of bidder A, bidder B bids the highest rationalizable bid

given her type.12

In order to compute the highest rationalizable bid for every type, the

following lemma will be useful. It can be shown by double induction with

respect to types and bids.13

Lemma 2. For every type θk ∈ Θ it holds that every bid b > θk is not

rationalizable for type θk.

Application of the rational maximin criterion - two types In order

to gain some intuition on how the rational maximin criterion applies to

12Note that for the adverse nature it is not a weakly dominant strategy to pick this
strategy of bidder B. If bidder A would bid above her valuation, then a best reply of
the adverse nature would be that bidder B bids zero causing bidder A to have negative
utility. However, in a rational maximin equilibrium bidder A never bids above her own
valuation.

13The existence of a unique highest rationalizable bid for every type follows from the
compactness of B.
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first-price auctions, I start the analysis with the simplest possible case: a

setting with two bidders A and B where it is common knowledge that they

can have either a valuation of zero with probability p or a valuation of 1

with probability 1− p where p ∈ (0, 1).

It will be convenient to look at the unique Bayes-Nash equilibrium first.

In this equilibrium, both 0-types bid zero and both 1-types mix on the

interval [0, b
∗

1] with b
∗

1 = 1− p.

b
∗

1 = 1− p 10

By Lemma 2, for type 1 it is not rationalizable to bid above 1. However,

it is also not rationalizable for a 1-type to bid close to 1. If a bidder with

valuation 1 bids zero, she gets an expected utility of p, since by Lemma 2

she can be certain to win against type 0. Hence, bidding too close to the

own valuation cannot be rational for a 1-type. Thus, even if a bidder with

valuation 1 wins with probability 1 , it cannot be rationalizable to bid above

1− p. Bidding zero yields to an expected utility of p for the 1-type while

winning with probability 1 and bidding above 1− p yields to an expected

utility less than p. Since 1 − p is played in a Bayes-Nash equilibrium, it

follows from Proposition 1 that 1− p is rationalizable. Hence, this has to

be the highest rationalizable bid, denoted by b1.

b
∗

1 = b1 = 1− p 10

In other words, the rational maximin belief of both types of bidder A is

that type zero of bidder B bids zero and type 1 bids b1. This allows for a

computation of the rational maximin strategy which is a best reply to this

belief: type zero bids zero and type 1 bids also zero, which is denoted by

RMA (0) = 0 and RMA (1) = 0. Type 1 of bidder A cannot bid above b1

since this is not rationalizable by definition. This bid is only rationalizable

given the belief that a bidder wins with probability 1 if placing this bid

and therefore tying with type 1 of bidder B is not rationalizable for bidder

A either. As a result, type 1 of bidder A resorts to win against type 0 of

bidder B.

For the case with two possible valuations the highest rationalizable bid
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of a bidder with the higher valuation coincides with the highest bid played

in the unique Bayes-Nash equilibrium. We will see below that with more

than two valuations the highest rationalizable bid of a type is strictly higher

than the highest bid played in the unique Bayes-Nash equilibrium.

Application of the rational maximin criterion - three types Now

we turn to the setting with two bidders who can have type 0 with probability

p, type θ with probability q and type 1 with probability 1 − p − q where

0 < θ < 1. The analysis of this case requires more complicated techniques

than the setting with two types. These techniques are also applicable

to a setting with arbitrarily many finite types. The rest of the section is

structured as follows: first I will prove two lemmata which provide additional

results about which bids are rationalizable. Then I will establish the highest

rationalizable bids for every type. As a corollary, one can derive the rational

maximin action for every type.

For the rest of the section let bθ denote the highest rationalizable bid of

type θ and b1 denote the highest rationalizable bid of type 1.

Lemma 3. Bidding zero is rationalizable for types θ and 1.

Proof. Assume a bidder with type θ conjectures that her opponent employs

the following strategy: type zero bids zero, type θ bids bθ and type 1 bids

b1. The unique best reply to this strategy profile is to bid zero. Thus,

bidding zero for type θ is a best reply to a strategy which is rationalizable

by definition and it follows from Lemma 1 that bidding zero is rationalizable

for type θ.

Assume a bidder with type 1 conjectures that her opponent employs the

following strategy: types zero and θ bid zero and type 1 bids b1. Since this

is a rationalizable strategy and bidding zero is a best reply, it follows from

Lemma 1 that bidding zero is rationalizable for type 1.

Lemma 4. Every bid in
[

0, bθ
]

is rationalizable for type θ and every bid in
[

0, b1
]

is rationalizable for type 1.

Proof. First, I will show by induction with respect to the bids in the grid

that every bid in
[

0, b1
]

is rationalizable for type 1. By Lemma 3, zero is

rationalizable for type 1. Assume that it has been already shown that every
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bid smaller or equal than b is rationalizable. Then it is to show that b+ is

also rational if b+ < b1.

Let a bidder with valuation 1 conjecture that her opponent employs the

following strategy: type zero bid zero, type θ bids bθ and type 1 bids b. By

the induction assumption, this is a rationalizable strategy. If b+ is not a

best reply to this strategy, it holds that 1− b+ < max
{

(p+ q)
(

1− bθ
)

, p
}

.

This implies that no bid higher than b+ can be rationalizable which is a

contradiction to b+ < b1. Thus, b+ is a best reply to this strategy and

since the strategy is rationalizable, it follows from Lemma 1 that b+ is

rationalizable. This completes the induction step.

Second, I will show by induction that every bid in
[

0, bθ
]

is rationalizable

for type θ. By Lemma 3, zero is rationalizable for type θ. Assume that it has

been already shown that every bid smaller or equal than b is rationalizable.

Then it is to show that b+ is also rational if b+ < bθ.

Let a bidder with valuation 1 conjecture that her opponent employs the

following strategy: type zero bid zero and types θ and 1 bid b. Du to the

first step it is rationalizable for type 1 to bid b and due to the induction

assumption it is rationalizable for type θ to bid b. If b+ is not a best reply

to this strategy, it holds that θ− b+ < pθ. Analogously as in the first step, a

contradiction follows which completes the induction step and the proof.

Finally, the following proposition determines the highest rationalizable

bids for all types:

Proposition 2. It holds that14

bθ = θ − pθ

and

b1 = 1−max {(p+ q) (1− θ + pθ) , p} .

Proof. The bid bθ is a best reply to the following strategy which is illustrated

in the following graph: type zero bids zero, types θ and 1 bid
(

bθ
)−

, i.e.,

the predecessor of bθ.

14Since the bid grid is arbitrarily fine, for simplicity I assume that θ − pθ is on the
bid grid. Otherwise, bθ would be the highest grid element which is smaller than θ − pθ.
Similarly, I assume that 1−max {(p+ q) (1− θ + pθ) , p} is on the bid grid.
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(bθ)
− = β(θ) = β(1)

bθ θ

β(0) = 0

b1

1

It follows from Lemma 3 that this strategy is rationalizable. Given that

bθ is the highest rationalizable bid, any other strategy does not induce bθ

as a best reply. Intuitively, the strategy inducing bθ has to maximize the

incentives to place this bid. Therefore, types θ and 1 bid just below bθ

while type zero bids the only rationalizable bid, which is zero. Thus, bθ is

determined by the equation

θ − bθ = pθ,

i.e., it makes the θ-type indifferent between winning with probability one

while bidding bθ and deviating to bidding zero.

Similarly, the strategy inducing b1 as a best reply has to maximize the

incentives to place this bid and at the same time minimize the incentives to

deviate. Thus, the following strategy induces b1: type 1 bids
(

b1
)

, type θ

bids bθ and type zero bids zero.

β (θ) = bθ θβ (0) = 0 β (1) =
(

b1
)

−

b1

1

The bid of type 1 maximizes the incentives to bid b1. Since it is not

rationalizable for type θ to place such a high bid, the bid of type θ has to

be as high as possible in order to minimize the incentives to deviate to it.

Hence type θ places the highest rationalizable bid. Again, type zero has to
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bid zero. Thus, b1 is determined by the equation

1− b1 = max
{

(p+ q)
(

1− bθ
)

, p
}

= max {(p+ q) (1− θ + pθ) , p} ,

i.e., it makes the 1-type indifferent between winning with probability 1

while bidding 1− b1 and the most profitable deviation. The most profitable

deviation is made as unprofitable as possible since all types below 1 bid

their highest rationalizable bid.

Given the rational maximin belief of a bidder, one can determine her

rational maximin strategy which is a best reply to this belief and is denoted

by RM .

Corollary 3. It holds that RM (0) = 0, RM (θ) = 0, and

RM (1) = max
{

(p+ q)
(

1− bθ
)

, p
}

.

That is, type zero bids zero, a θ-type does not expect to win against a θ-

or a 1-type and bids zero. A 1-type does not expect to win against another

1-type and depending on p and q bids the highest rationalizable bid of a

lower type.

I conclude this section by stating some insights which hold for all values

of θ and p, q and can be also extended to a setting with an arbitrarily finite

number of bidders and types:

Observation 1. (i) The rational maximin belief of a bidder is not nece-

ssarily unique. For example, any strategy where bidders with strictly

positive valuation place strictly positive bids, constitutes a rational

maximin belief for type zero. However, the conjecture that a bidder

places the highest rationalizable bid given her type is the unique

conjecture which constitutes a rational maximin belief for every type.

(ii) The rational maximin strategy of a bidder is unique and a pure strategy

(except for a set of parameters with measure zero).

(iii) If every bidder applies the rational maximin criterion, the resulting

outcome is efficient, i.e., every bidder who wins the good with positive

probability has the maximum valuation.
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(iv) With more than two types the highest rationalizable bid of any type

besides zero is strictly higher than the highest bid played in the unique

Bayes-Nash equilibrium if the probability weight on type zero is suffi-

ciently low. The highest rationalizable bid of type θ is induced by the

case that the θ-type wins with probability one which is not possible in

the Bayes-Nash equilibrium. The highest rationalizable bid of type 1

is induced by the case where type θ bids her highest rationalizable bid.

Therefore, the incentives to deviate to win against type θ are smaller

than in the Bayes-Nash equilibrium and the highest rationalizable bid

of type 1 is higher than the highest bid played in the Bayes-Nash

equilibrium. If the weight on type zero is too high, then the highest

rationalizable bids of all types become zero.

(v) The highest rationalizable bid of a type makes this type indifferent

between bidding this bid while winning with probability one and the

most profitable deviation the highest rationalizable bid of a lower type.

The rational maximin action for a type is the most profitable deviation

to the highest rationalizable bid of a lower type. This implies that

although a bidder with a given type never expects to win against an

equal type and resorts to win again lower types, given her rational

maximin belief, the bidder expects the same utility as her opponent

with an equal type.

5 Contests under strategic uncertainty

Now I will discuss the application to contests. If one would model contests

as an all-pay auction, the results would be similar as for first-price auctions:

every bidder never expects to win against an equal or higher type and bids

the highest rationalizable bid of a lower type. Thus, I analyze Tullock

contests where every bidder wins the prize with a probability which is

influenced by her effort. As before, we begin by specifying the underlying

game of incomplete information.

Underlying game of incomplete information There are two players

competing in a contest where the winner gets a prize which is normalized
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to 1. A player i chooses her effort ei ∈ R
+ and her type ci ∈ Θi determines

the costs she has to spend on exerting effort. If player i exerts effort ei and

player j exerts effort ej , the probability that player i wins the prize is given

by
ei

ei + ej
.

Thus, a strategy of player i is given by

βi : Θi → R
+

and her utility function by

ui : Θi ×
(

R
+ × R

+
)

→ R
+

ui (ci, ei, ej) =
ei

ei + ej
− ciei.

5.1 Contests with complete information

Application of the rational maximin criterion In order to gain some

intuition on how the rational maximin criterion applies, first I carry out the

application where Θi = Θj = c with c > 0, i.e., I consider a contest with

complete information. Since the utility of a player decreases in the other

player’s effort, the maximin belief of a player is that her opponent exerts

the highest rationalizable effort. Thus, the following calculations aim at

computing the highest rationalizable effort.

Given that player j exerts effort ej, the optimal reaction of player i,

denoted by e∗1 is determined by the equation

ej

(ei + ej)
2
= c

which gives

e∗i =

√
ej√
c
− ej.

This function is illustrated in the following graph for the parameter c = 0.1:
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Figure 1: Best reply function

This graph is single-peaked and obtains its maximum at (2.5;2.5). More

generally, it holds that for strictly positive c the corresponding graph is

single peaked. The effort of player i is maximized at

ej =
1

4c

which induces an effort of ei = 1

4c
. Thus, if an effort of 1

4c
would be

rationalizable, this would be the highest rationalizable effort. Solving for the

equilibrium gives the unique equilibrium
(

1

4c
; 1

4c

)

. It follows from Proposition

1 that the effort 1

4c
is rationalizable and is therefore the highest rationalizable

effort. Thus, in the case of incomplete information a direct application of

the definition of rationalizable actions is not necessary. However, as we will

see below, a direct application is also tractable.

Therefore, the maximin belief of a player is that her opponent exerts an

effort of 1

4c
and her best reply to this belief is to also exert an effort of 1

4c
.

As a consequence, the action prescribed by the rational maximin criterion

coincides with the equilibrium action.

Rationalizable efforts For a complete analysis I will characterize the

set of all rationalizable efforts. In order to do so, I will directly follow the

definition of rationalizable actions, i.e., iteratively eliminate actions which

are not best replies. As already established above, the first round eliminates

all efforts above 1

4c
. All efforts below this amount are not eliminated because,

as is illustrated by the graph, all efforts in the interval (0, 1

4c
] are best replies

to efforts on the interval (0, 1

4c
]. In other words, the function e∗i is bijection

from (0, 1

4c
] to (0, 1

4c
].
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The existence of this bijection also implies that after the first round the

process of eliminating non-best replies stops. Hence, the set of rationalizable

efforts is given by
(

0, 1

4c

]

. However, only the effort 1

4c
can occur in equilibrium

since the best reply to any lower effort e is higher than e.

We can conclude that in a Tullock contest with complete information

the unique equilibrium is strategically stable: if a player would deviate to

an effort below the equilibrium effort, she could possibly get a higher utility

but would also face the risk of getting a lower expected utility while the

expected utility in equilibrium is obtained for sure.

5.2 Contest with incomplete information

Now I turn to the case with two possible cost types, i.e., it holds that

Θi = Θj = {cL, cH} with 0 < cL < cH . I assume that both types occur with

probability 1

2
. Thus, if player j with type ck exerts effort e

j
k for ck ∈ {cL, cH},

the expected utility of player i with type ci ∈ {cL, cH} is given by

ui

(

ci, ei, e
j
L, e

j
H

)

=
1

2

(

ei

ei + e
j
L

P − ciei

)

− 1

2

(

ei

ei + e
j
H

− ciei

)

. (2)

Highest rationalizable efforts As before, the expected utility of a

player decreases in the effort of her opponent. Therefore, the maximin belief

of a player is that her opponent exerts the highest rationalizable effort given

her type. Thus, the next step is the calculation of the highest rationalizable

efforts. As will become clear, in case of incomplete information the highest

rationalizable effort will not be part of an equilibrium. Therefore, in contrast

to the case of complete information, I will directly apply the definition of

rationalizable actions. To keep the analysis simple, this section is limited

to the analysis of the case with two types. However, the rational maximin

criterion can be applied to more types using similar techniques.

Proposition 3. The highest rationalizable effort of type cL, denoted by eL,

is given by the unique strictly positive solution of the following equation:

1

4cH
(

1

4cH
+ ēL

)2
+

1

4ēL
= 2cL. (3)
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The highest rationalizable effort of type cH is given by 1

4cH
.

Below I give a rather informal and intuitive proof. The formal proof is

relegated to the appendix.

Proof. Consider a player i with a high cost cH . Recall that in the case of

one type the highest rationalizable effort of type cH was

1

4cH
.

I claim that in case of two types the highest rationalizable effort of type

cH cannot be higher than 1

4cH
. Assume that there exists an effort êi >

1

4cH

which is a best reply for player i to some strategy of player j denoted by
(

e
j
L, e

j
H

)

. Independent of player j’s strategy the terms

êi

êi + e
j
L

− cH êi

and
êi

êi + e
j
H

− cH êi

would increase if instead of êi one would plug in some effort e′i with
1

4cH
≤

e′i < êi. Thus, the whole expression in (2) would increase. Hence, êi with

êi >
1

4cH
cannot be a best reply.

As a consequence, we can eliminate all efforts above 1

4cH
for the high-cost

type and analogously all efforts above 1

4cL
for the low-cost type. Any effort

e ≤ 1

4ci
remains a best reply for type ci. In order to show this, it is

sufficient to find a strategy of the opponent which induces e as a best reply.

Recall from the complete information case that the reaction function of the

high-cost type is a bijection on the interval
(

0, 1

4ci

]

. Thus, if the opponent’s

both types exert an effort which is the inverse of the reaction function

√
ej√
ci

− ej

on the interval
(

0, 1

4cH

]

, we have a strategy which makes e a best reply. To

summarize, after the first round of elimination the best replies for a type

ci with ci ∈ cL, cH is given by
(

0, 1

4ci

]

. The highest rationalizable efforts
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after the first round of elimination, denoted by r1 (cL) and r1 (cH), and the

strategies inducing these efforts are illustrated in the following figure:

✲

✲

r1 (cL) =
1

4cL

e (cH) =
1

4cL

e (cL) =
1

4cL

✲

✲

r1 (cH) =
1

4cH

e (cH) =
1

4cH

e (cL) =
1

4cH

After the first elimination round the highest rationalizable bid for type

cL is 1

4cL
and this bid is a best reply to the low type and the high type

exerting effort 1

4cL
(the analogous explanation holds for the high-cost type).

In the second round of elimination nothing changes for the high-cost

type. All actions which are needed to induce efforts in the interval
(

0, 1

4cH

]

have not been eliminated in the first round. However, the effort 1

4cL
is not

a best reply for the low-cost type anymore since it can be induced only if

both of the opponent’s types exert effort 1

4cL
. All efforts higher than 1

4cH

have been eliminated for the high-cost type.

✲

✲

r1 (cL) =
1

4cL

e (cH) =
1

4cL
> 1

4cH

e (cL) =
1

4cL

✲

✲

r1 (cH) =
1

4cH

e (cH) =
1

4cH

e (cL) =
1

4cH

Thus, the new highest possible effort for the low-cost type is given by

the best reply to the strategy where the low-cost type exerts effort 1

4cL

and the high-cost type exerts effort 1

4cH
. This leads to a new highest best

reply for the low-cost type, denoted by e′L. Thus, after the second round

of elimination the rationalizable efforts for the high-cost type are given by
(

0, 1

4cH

]

and the rationalizable effort for the low-cost types are given by

(0, e′L].

✲

✲

r2 (cL) = e′L
e (cH) =

1

4cH

e (cL) =
1

4cL

✲

✲

r2 (cH) =
1

4cH

e (cH) =
1

4cH

e (cL) =
1

4cH

This implies that in the next round of elimination the effort e′L is not a

best reply anymore since 1

4cL
has been eliminated in the second round.
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✲

✲

r2 (cL) = e′L
e (cH) =

1

4cL

e (cL) =
1

4cL
> e′L

✲

✲

r2 (cH) =
1

4cH

e (cH) =
1

4cH

e (cL) =
1

4cH

This process will continue until it reaches a highest best reply for the

low-cost type, denoted by ēL such that the best reply of the low-cost type

to the strategy where the high-cost type exerts effort 1

4cH
and the low-cost

type exerts effort ēL, is equal to ēL. An effort ēL which fulfills this condition

is the highest rationalizable effort for the low-cost type.

✲

✲

r∞ (cL) = eL
e (cH) =

1

4cL

e (cL) = eL

✲

✲

r∞ (cH) =
1

4cH

e (cH) =
1

4cH

e (cL) =
1

4cH

Formally, ēL is determined by the equation

1

4cH
(

1

4cH
+ ēL

)2
+

ēL

(eL + eL)
2
= 2cL.

Application of the rational maximin criterion After establishing

the highest rationalizable efforts for every type, we are in the position to

apply the rational maximin criterion.

Corollary 4. It holds that RM (cL) = eL and RM (cH) is determined by

the equation

1

4cH
(

1

4cH
+RM (cH)

)2
+

ēL

(ēL +RM (cH))
2
= 2cH .

The rational maximin actions of the low-cost and high-cost types are best

replies to the strategy where the opponent exerts the highest rationalizable

efforts, eL and 1

4cH
.
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Comparison to equilibrium strategies A shown in Fey (2008), in

equilibrium the low-cost type exerts effort

e∗L =
4 cL
cH

+
(

1 + cL
cH

)2

8cL

(

1 + cL
cH

)2

and the high-cost type exerts effort

e∗H =
4 cL
cH

+
(

1 + cL
cH

)2

8cH

(

1 + cL
cH

)2
.

Proposition 4. It holds that e∗L < RM (cL) and e∗H > RM (cH).

Since equilibrium efforts are rationalizable, they cannot be higher

than the highest rationalizable efforts. Since ēL is not only the highest

rationalizable effort for the low-cost type but also the effort prescribed by

the rationalizable maximin criterion, the equilibrium effort is lower or equal

than the rational maximin effort.

For the high-cost type the comparison of the equilibrium effort and the

effort prescribed by the rational maximin criterion is not straightforward.

The equilibrium effort is a best reply to e∗L and e∗H while the rational

maximin effort is a best reply to ēL and 1

4cH
. Recall that the effort of

a high-cost type is maximized if both types of her opponent exert effort
1

4cH
. Thus, the fact that e∗H < 1

4cH
has the effect to increase the rational

maximin effort in comparison to the equilibrium effort while e∗L < ēL causes

to decrease it since e∗L is closer to 1

4cH
. Intuitively, the equilibrium effort is

induced by the strategy where the low-cost type exerts more than 1

4cH
and

the high-cost types exerts less while the rational maximin effort is induced

by the strategy where the high-cost type exerts effort 1

4cH
and the low-cost

type exerts a higher effort. Thus, the strategy inducing the equilibrium

effort is more balanced leading to a higher effort than the rational maximin

effort.

I conclude this section by stating some insights.

Observation 2. (i) The rational maximin belief of a player is that her

opponent exerts the highest rationalizable effort and therefore does not
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depend on her type.

(ii) The rational maximin belief and the rational maximin strategy of a

player are unique. The rational maximin strategy is a pure strategy.

(iii) Due to the single-peakedness of the best-reply functions in the complete

information cases for types cL and cH , it holds that RM (cL) = ēL <
1

4cL
and RM (cH) <

1

4cH
.

(iv) If every player applies the rational maximin criterion, the outcome is

ex-ante efficient, i.e., the player with the lowest cost exerts the highest

effort and hence wins the prize with the highest probability.

6 Bilateral trade under strategic uncertainty

Finally, I investigate the application of the rational maximin criterion to

bilateral trade. As before, the analysis begins with specifying the underlying

game of incomplete information.

Underlying game of incomplete information There is a seller and a

buyer who act simultaneously. The seller produces a good either at low

costs cL or high costs cH . The buyer has either a low valuation vL or

a high valuation vH for the good with cL < vL < cH < vH . The seller

proposes a reserve price r ∈ R
+ and the buyer proposes a bid b ∈ R+. If

the bid is below the price, trade does not take place and both players get a

utility of zero. If the bid is above the price, trade does take place at price

p = α (b+ r) with α ∈ (0, 1). That is, the seller’s strategy is given by

βs : {cL, cH} → R
+

and her utility is given by

us =







0 if b < p

p− c if b ≥ p
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while the buyer’s strategy is given by

βb : {vL, vH} → R
+

and her utility is given by

ub =







0 if b < p

v − p if b ≥ p
.

Application of the rational maximin criterion In contrast to first-price

auctions and contests, in a bilateral trade setting the rational maximin

belief of the buyer and seller is so pessimistic that they do not expect a

positive utility. This leads to a continuum of rational maximin strategies.

Proposition 5. In a rational maximin equilibrium buyer and seller expect

a utility of zero. For a buyer with valuation v ∈ {vL, vH} every bid in [cL, v]

is a rational maximin strategy. For a seller with cost c ∈ {cL, cH} every

reserve price in [c, vH ] is a rational maximin strategy.

Proof. The following strategy profile constitutes a Bayes-Nash equilibrium

and due to Proposition 1 is therefore rationalizable:

r (cL) = r (cH) = vH , β (vL) = β (vH) = cL. (4)

Thus, it is a feasible strategy of the adverse nature to choose r (cL) =

r (cH) = vH as the strategy of the seller. Hence, the rational maximin belief

of the buyer is that the seller sets at least a reserve price of vH and the

buyer expects a utility of zero. Analogously, the seller expects a utility of

zero. Thus, any rationalizable action turns out to be a rational maximin

action.

Since in the underlying game of incomplete information there exists a

continuum of equilibria, a continuum of actions is rationalizable, including

extreme actions which prevent trade. As a result, the strategic uncertainty

causes players to expect zero utility. Note that even actions are rationalizable

which never lead to a positive utility and may lead to a negative utility.

The following assumption excludes such extreme outcomes.15

15One could also assume “strategic sophistication” of both players as in Battigalli and
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Assumption 1. It is common knowledge that a buyer with valuation v ∈
{vL, vH} never bids higher than v and a seller with costs c ∈ {cL, cH} never

sets a reserve price smaller than c.

As a consequence, the adverse nature’s actions space is not only restricted

to rationalizable strategies but also to strategies compatible with Assumption

1.

As an additional result, I will investigate how the possibility to commit

to certain bids or reserve prices changes the application of the rational

maximin criterion. First, I will discuss full commitment, i.e., the possibility

of a player to credibly commit to one single action. Formally, the action

space of a player is a singleton (with the corresponding restrictions of the

set of rationalizable actions and the adverse nature’s action space). Assume

that the buyer could credibly commit to a specific bid, then depending on

the parameter constellation she would commit to bid cL + ǫ or cH + ǫ where

ǫ is the smallest unit of money. Obviously, this commitment is almost not

beneficial for the seller. The seller would like to commit herself to a reserve

price vH − ǫ or vL − ǫ. In other words, under full commitment both players

prefer to be the only player with the possibility for full commitment.

Second, I will discuss partial commitment, i.e., the possibility of the

buyer to commit to a minimum bid and the possibility of the seller to

commit to a maximum reserve price. Formally, it is common knowledge

that the action space of the buyer is bounded below and the action space

of the seller is bounded above.

Proposition 6.

(i) Assume that the action space of the buyer Ab is given by (bmin,∞) with

bmin = (1− p) vH +
p

2α
cL

and bmin < vL. Then a buyer with valuation vH expects at least a utility of

max{0, (1− q) (vH − 2αvL)} and her highest rationalizable bid is given by

min{vH , bmax} with

bmax =
q

2α
vH + (1− q) vL.

Siniscalchi (2003a). Under strategic sophistication a buyer who places a bid above cL
and a seller who sets a reserve price below vH expect trade to take place with positive
probability.
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(iit) Assume that the action space of the seller As is given by [0, rmax) with

rmax = (1− q) cL +
q

2α
vH

and rmax ≥ cH . Then a seller with costs cL expects at least a utility of

max{(1− p) (2αcH − cL)} and the lowest rationalizable reserve price is given

by max{cL, rmin} with

rmin =
p

2α
cL + (1− p) cH .

If the buyer commits to bid at least bmin, the low-cost type of the seller

will benefit form trading with both types of the buyer even if the seller

expects that type vH bids her own valuation. As a consequence, the highest

rationalizable reserve price of type cL becomes vL. Thus, type vH can expect

a strictly positive utility when trading with type cL which puts an upper

bound on the highest rationalizable bid of type vH , denoted by bmax. This,

in turn, implies that a seller with costs cH sets no higher reserve price than

bmax. An analogous reasoning holds for the seller. Note that bmax > rmax

and bmin > rmin from which follows that, in contrast to full commitment,

every player benefits from the possibility of partial commitment and every

player prefers the other player to partially commit.

I conclude this section by stating some insights.

Observation 3. (i) The rational maximin belief of a player is not necessarily

unique. However, given Assumption 1, the strategy as specified in (4),

is the unique conjecture which is a rational maximin belief for every

player and every type.

(ii) As mentioned above, rational maximin strategies are not unique. They

become unique under full commitment. In case of the buyer’s partial

commitment rational maximin strategies are given by RM (cL) = bmin,

RM (cH) = cH , RM (vL) = vL, and RM (vH) ∈ [0, vH ] if vH < bmax,

otherwise, b (vH) ∈ {vL, bmax}, .

(iii) If both buyer and seller apply the rational maximin criterion, the

outcome is not necessarily efficient. The outcome is efficient under

full commitment. Under partial commitment of the buyer the outcome
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is inefficient if vH < bmax. If vH > bmax, the outcome may still

be inefficient. In this case a buyer with valuation vH is indifferent

between bmax and vL. If among two outcomes with the same expected

utility, the buyer prefers the outcome where trade takes place with

higher probability, the outcome under partial commitment of the buyer

is efficient. An analogous reasoning holds for the seller.

7 Discussion

Minimax regret

In the first step of the rational maximin criterion the adverse nature’s action

space is restricted to rationalizable strategies. In the second step the adverse

nature plays a zero-sum game against the player applying the criterion,

i.e., the player applies the maximin criterion. Instead of the maximin

criterion a player could apply the minimax regret criterion. Formally, a

player would play a zero-sum game against an adverse nature and the utility

of an action is given by its maximum regret. The analysis of this alternative

criterion is beyond the scope of this paper. Moreover, the rational maximin

criterion can be seen as the most cautious approach: the expected utility of

a maximin action is guaranteed for sure since the set of possible conjectures

is restricted by minimal assumptions and the maximin criterion guarantees

that the minimal utility is maximized.

Cognitive complexity

Formally, the derivation of the set of rationalizable actions for an agent with

a given type requires an infinite intersection of sets. However, the proofs

show that there are techniques which make the computation tractable. One

could argue that a sufficiently rational player can conduct the necessary

calculations. But one could also argue that for some players these calculations

may be too difficult. Therefore, similarly as in level-k models, one could

define the concept of k-rationalizability. That is, a player i could know that

her opponent can compute the set RSk
j for all players j and for k ∈ N, but

cannot compute the sets RSk′

j for k′ > k (see Bernheim (1984)). Depending
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on the parameters, this knowledge can influence player i’s rational maximin

strategy.

Robustness

In addition to the rational maximin criterion, one could introduce an

additional robustness criterion in the following sense: Does the maximin

strategy of an agent change if the adverse nature deviates from her strategy

to another strategy in an ǫ-neighborhood? If there is a change, does the

strategy and the resulting expected utility change continuously?

As an example, consider a first-price auction under strategic uncertainty

with a commonly known distribution function, two bidders and three

valuations 0, θ and 1. Bidder A with valuation 1 has the rational maximin

belief that bidder B with valuation 1 bids b1. Hence, bidder A with

valuation 1 bids either bθ or zero. However, all bids in the interval [0, b1]

are rationalizable for a bidder with valuation 1. Hence, (if the bid grid

is sufficiently fine) an ǫ-neighborhood of b1 and its intersection with the

set of rationalizable actions contains bids lower than b1. If bidder A with

valuation 1 has the subjective belief that bidder B with valuation 1 bids

lower than b1, e.g.
(

b1
)−

, then b1 becomes a best reply for bidder A with

valuation 1. This constitutes a discontinuity in her best reply.

As a second example, consider a first-price auction under strategic

uncertainty with two bidders and a commonly known common valuation v.

To bid v is the highest rationalizable action for both bidders. Therefore,

bidder A has the rational maximin belief that bidder B bids v. As a

consequence, bidder 1 is indifferent between any bid in [0, v]. Assume that

bidder 1 chooses the action v (or v−). As any other bid, this leads to a

utility of zero given the rational maximin belief that bidder B bids v. An

ǫ-neighborhood of v and its intersection with the set of rationalizable actions

contains only bids below v, e.g. it contains the bids v,v− and (v−)
−
. The

best replies to these bids are in an ǫ-neighborhood of v (or v−) and the

induced utilities are in an ǫ-neighborhood of zero. Hence, bidding v (or v−)

fulfills the robustness property that an ǫ-deviation of the rational maximin

belief induces an ǫ-deviation of the best replies and expected utility.
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Appendices

Proof of Lemma 1

Proof. Let i ∈ {1, . . . , I} be a player with valuation θi and for every j ∈
{1, . . . , I} \ {i} let βj be a rationalizable strategy for player j. Let ai ∈ Ai

be a best reply to β−i, i.e., it holds that

ai ∈ argmax
a′i∈Ai

Ui (θi, a
′
i, β−i, F−i) .

It is to show action ai is rationalizable. It is sufficient to show that ai is an

element of RSk
i (θi) for every k ≥ 1. The proof works by induction. It is

true that action ai ∈ Ai is an element in RS1
i (θi) since it holds by definition

that RS1
i (θi) = Ai. Assume it is already shown that ak is an element in

RSk
i (θi). Since the strategy profile β−i is rationalizable, it holds for all

j 6= j, for all θj ∈ Θj and for all aj ∈ supp (βj (θj)) that aj ∈ RSk
k (θj).

Since

ai ∈ argmax
a′i∈Ai

Ui (θi, a
′
i, β−i, F−i) ,

it follows from the definition of rationalizable actions that ai ∈ RSk+1
i (θi)

which completes the proof.

Proof of Proposition 1

Proof. Let (β1, . . . , βI) together with F̂ constitute a Bayes-Nash equilibrium.

Let i be a player with valuation θi and ai be an action such that ai ∈
supp (βi (θi)). It is to show that ai ∈ RSi (θi). I show by induction with

respect to k that for every j ∈ {1, . . . , I}, for every k ≥ 1 and for all θj ∈ Θj

it holds that

aj ∈ supp (βj (θj)) ⇒ aj ∈ RSk
j (θj) .

Then it follows that aj ∈ RSj (θj) and one can conclude that ai ∈ RSi (θi)

because ai ∈ supp (βi (θi)). It holds for all j ∈ {1, . . . , I} that

aj ∈ supp (βj (θj)) ⇒ aj ∈ RS1
j (θj) for all θj ∈ Θj
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since RS1
j (θj) = Aj by definition. Assume it is already shown that for all

j ∈ {1, . . . , I} it holds that

aj ∈ supp (βj (θj)) ⇒ aj ∈ RSk
j (θj) for all θj ∈ Θj.

It holds that for a player j with valuation θj the strategy profile β−j fulfills

the properties

(i) al ∈ supp (βl (θl)) ⇒ al ∈ RSl
k (θl) for all l 6= j

(ii) aj ∈ supp (βj (θj)) ⇒ aj ∈ argmax
a′j∈Aj

Uj

(

θj, a
′
j, β−j, F

j
−j

)

.

The first property follows from the induction hypothesis and the second

property follows from the definition of a Bayes-Nash equilibrium. By

definition of a rationalizable action, it follows that βj (θj) ∈ RSk+1
j . Hence,

it is shown that aj ∈ supp (βj (θj)) ⇒ aj ∈ RSj (θj).

Proof of Lemma 2

Proof. Let θ1, . . . θm be an ordered list of types in Θ with θ1 = 0 being the

lowest type. I will show by induction that for every type θk ∈ Θ it is not

rationalizable to bid strictly above her valuation.

Induction start: θ1 = 0 The induction starts with type 0. In order to show

the claim for type 0, I will use induction with respect to the bids starting

with G. Bidding G can never be a best reply for a 0-type since she wins with

positive probability when bidding G and hence gets a negative expected

utility. Assume it has been already shown that all bids in the interval [b, G]

with b > 0 are not rationalizable for type 0. Then bidding b− with b > 0

cannot be a best reply for a 0-type since she wins at least with probability

F (0) when bidding b− and hence gets a negative expected utility. One can

conclude that it is not rationalizable to bid strictly above 0 for a bidder

with valuation 0.

Induction step: θk → θk+1 Assume it has been already shown that for all

types smaller or equal than θk it is not rationalizable to bid above her
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valuation. Since a positive mass of types does not bid higher than θk, it

is never a best reply for a bidder with valuation θk+1 to bid above her

valuation since she would win at least with probability F (θk) and get a

negative expected utility.

Proof of Proposition 3

Proof. First, I show that eL and 1

4cH
are rationalizable efforts for the low-cost

and high-cost type respectively. I will show by induction that for every k ≥ 1

it holds that (0, eL] ⊆ RSk (cL) and
(

0, 1

4cH

]

⊆ RSk (cH). The induction

start with k = 1 and the statement follows by definition as RS1 (cL) =

RS1 (cH) = R
+. Assume it has been shown that (0, eL] ⊆ RSk (cL) and

(

0, 1

4cH

]

⊆ RSk (cH), then it is to show that (0, eL] ⊆ RSk+1 (cL) and
(

0, 1

4cH

]

⊆ RSk+1 (cH). Since 1

4cH
is a best reply to both types exerting

effort 1

4cH
, it holds that

1

4cH
(

1

4cH
+ 1

4cH

)2
+

1

4cH
(

1

4cH
+ 1

4cH

)2
= 2cH

from which follows that 1

4cH
< eL. The best-reply function in the case

of complete information with type cH is a bijection on
(

0, 1

4cH

]

and since
1

4cH
< eL, it follows that the efforts in the interval

(

0, 1

4c

]

are best replies

to efforts in RSk (cL) and RSk (cH) from which follows that
(

0, 1

4cH

]

⊆
RSk+1 (cH). Since by definition eL is a best reply to the strategy where

the low-cost type exerts effort eL and the high-cost type exerts effort 1

4cH
,

it is a best reply to actions in RSk (cL) and RSk (cH). Recall that in the

case of complete information with type cL the maximum of the best-reply

function is reached at 1

4cL
and strictly decreases if the opponent’s efforts are

decreasing. This implies that the optimal effort for type cL decreases in the

opponent’s efforts if the opponent exerts efforts eL and 1

4cH
(for low-cost and

high-cost type). It follows that any effort in (0, eL] can be induced by efforts

in (0, eL] and
(

0, 1

4cH

]

and hence (0, eL] ⊆ RSk+1 (cL). This completes the

induction step.

Second, I show that no higher efforts are rationalizable for types cL and

42



cH . Since the best-reply function in the case of complete information with

type cH is single-peaked at 1

4cH
, it holds that no effort higher than 1

4cH
is

rationalizable for type cH . Let êL and êH be the efforts for the low-cost

and high-cost type which induce the highest rationalizable effort for the

low-cost type, denoted by e′L. Since êL < 1

4cL
and êH < 1

4cL
, the best reply

of a player is increasing in her opponent’s efforts if her opponent exerts

efforts êL and êH . Thus, êL and êH have to be the highest rationalizable

efforts for the low-cost and high-cost type. Therefore, e′L is determined by

the equation
1

4cH
(

1

4cH
+ ē′L

)2
+

ē′L

(e′L + eL)
2
= 2cL

and it holds that e′L = eL.

Proof of Proposition 4

Proof. As a preparation for the proof I first show the following lemma.

Lemma 5. It holds that e∗L > 1

4cH
.

Proof. To shorten notation, let α := cL
cH
. Then it is to show that

4α + (1 + α)2

8cL (1 + α)2
>

1

4cH

⇔ cH
(

4α + (1 + α)2
)

> 2cL (1 + α)2

⇔ (1 + α)2 (cH − 2cL) + 4αcH > 0

⇔
(

1 +
2cL
cH

+
c2L
c2H

)

(cH − 2cL) + 4cL > 0

⇔
(

c2H + 2cLcH + c2L
)

(cH − 2cL) + 4cLc
2
H > 0

⇔ c3H − 2cLc
2
H + 2cLc

2
H − 4c2LcH + c2LcH − 2c3L + 4cLc

2
H > 0

⇔ c3H − 2c3L − 3c2LcH + 4cLc
2
H > 0.

It holds that

c3H − 2c3L − 3c2LcH + 4cLc
2
H > c3H − 2c3L + cLc

2
H > c3H − 2c3L + c3L > 0.
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Consider the strategy where the low-cost type exerts effort e∗L and the

high-cost type exerts effort 1

4cH
. Let ẽH denote the best reply of the high-cost

type to this strategy. Since 1

4cH
< e∗L < eL, it holds that ẽH > RM (cH). I

will show that e∗H > ẽH from which follows that e∗H > RM (cH).

Recall that e∗H < 1

4cH
. Therefore, in order to prove that e∗H > ẽH , it is

sufficient to show that if in equilibrium the high-cost type deviates to any

e∗H + ǫ for 0 < ǫ < 1

4cH
− e∗H , then the best reply of the high-cost type to

this strategy is lower than e∗H .

Let 0 < ǫ < 1

4cH
− e∗H and let x be the best reply of the high-cost type

to the strategy where the low-cost type exerts effort e∗L and the high-cost

type exerts effort e∗H + ǫ. It is left to show that x < e∗H Assume this is not

the case. It holds that

e∗L

(e∗L + e∗H)
2
+

1

4e∗H
= 2cH

and
e∗L

(e∗L + x)2
+

e∗H + ǫ

(e∗H + ǫ+ x)2
= 2cH

from which follows that

e∗L

(e∗L + e∗H)
2
+

1

4e∗H
=

e∗L

(e∗L + x)2
+

e∗H + ǫ

(e∗H + ǫ+ x)2

⇔ e∗L

(e∗L + x)2
− e∗L

(e∗L + e∗H)
2
=

1

4e∗H
− e∗H + ǫ

(e∗H + ǫ+ x)2
.

The RHS is strictly greater than zero since it it follow from e∗H ≥ x that

1

4e∗H
− e∗H + ǫ

(e∗H + ǫ+ x)2
≥ 1

4e∗H
− e∗H + ǫ

(e∗H + ǫ+ e∗H)
2

and it holds that for all z > 0 that

ǫ2 > 0

⇔ 4z2 + 4zǫ+ ǫ2 ≥ 4z2 + 4zǫ

⇔ (2z + ǫ)2 ≥ 4z (z + ǫ)
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⇔ 1

4z
≥ z + ǫ

(2z + ǫ)2

This implies that the LHS is also strictly greater than zero from which

follows that x < e∗H . Since this leads to a contradiction, I conclude that

x < e∗H and hence e∗H > ẽH .

Proof of Proposition 6

Proof. Assume the buyer partially commits to bmin. If a seller with costs cL

sets a reserve price bmin, she obtains a utility of 2αbmin − cL. The highest

possible bid of a buyer with valuation vH is vH and therefore, the most

profitable deviation profit of trading only with type vH of the buyer is given

by

(1− p) (2αvH − cL) .

It holds that

(1− p) (2αvH − cL) < αbmin − cL

⇔ bmin > (1− p) vH +
p

2α
cL. (5)

Thus, if bmin fulfills condition (5t) and bmin ≤ vL, it is not rationalizable

for the seller to set a reserve price above vL since trading with both types

of the buyer under the lowest possible price 2αbmin is more profitable than

trading only with the high-valuation buyer under highest possible price

2αvH . As a consequence, it may be not rationalizable for the high-valuation

buyer to bid vH since bidding vL ensures trade with the low-cost seller. The

highest rationalizable bid of the high-valuation buyer, bmax, is determined

by the equation

(1− q) (vH − 2αvL) = qvH + (1− q) vH − 2αbmax

from which follows that

bmax =
q

2α
vH + (1− q) vL.
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Thus, a buyer with valuation vH obtains at least an expected utility of

vH − 2αbmax = (1− q) (vH − 2αvL) .

Similarly, if the seller sets a reserve price rmax such that

(1− q) (vH − 2αcL) < vH − 2αrmax

⇔ rmax < (1− q) cL +
q

2α
vH

and rmax ≥ cH then it is not rationalizable for a high-valuation buyer to

bid below cH . It follows that for the low-cost seller it is not rationalizable

to set reserve prices below rmin which is determined by the equation

2αrmin − cL ≥ (1− p) (2αcH − cL)

⇔ rmin =
p

2α
cL + (1− p) cH .

Thus, a seller with costs cL obtains at least an expected utility of

2αrmin − cL = (1− p) (2αcH − cL) .
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