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Abstract

I investigate the design of effort-maximizing mechanisms when agents have both private

information and convex effort costs, and the designer has a fixed prize budget. I first

demonstrate that it is always optimal for the designer to utilize a contest with as

many participants as possible. Further, I identify a necessary and sufficient condition

for the winner-takes-all prize structure to be optimal. When this condition fails, the

designer may prefer to award multiple prizes of descending sizes. I also provide a

characterization of the optimal prize allocation rule for this case. Finally, I illustrate

how the optimal prize distribution evolves as the contest size grows.
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1 Introduction

Contests, in which participants/agents exert costly and irreversible effort to compete for a

set of prizes, are widely used in practice to improve participants’ performance (e.g., sales

contests, innovation contests, and sport contests). The ubiquity of contests naturally raises

two questions: First, how can the contest’s structure and rules be optimally designed to best

motivate participants? Second, is it possible to further improve participants’ performance

by adopting mechanisms other than contests? In this paper, I address these two questions

for the arguably most relevant case, in which participants are privately informed about their

abilities or valuations of the prize and have convex effort costs. Following the tradition in

the contest literature (see Konrad (2009) for a survey), I assume that the designer has a

fixed prize budget and that her objective is to maximize the expected total effort.

To answer the second question, I first characterize the set of all implementable, i.e., incen-

tive compatible and individually rational, mechanisms by establishing a payoff equivalence

result that maps agents’ utilities to the expected share of prize allocated to them (this is also

known as the interim prize allocation rule). I then show that the set of effort-maximizing

mechanisms always includes a contest, i.e. a mechanism in which the designer defines a

set of prizes and asks the agents to invest non-refundable effort before the allocation of the

prizes are determined. In other words, there does not exist any implementable mechanism

that strictly outperforms contests from the designer’s perspective. This finding provides a

potential rationale for the prevalence of contests.

Turning to the first question, the contest design problem is twofold: The designer first

needs to choose how to structure the contest. That is, she needs to decide if she wants to limit

entry or to admit all potential participants, and if she wants to host a single contest with all

contestants or to organize several simultaneous/sequential subcontests. Then the designer

needs to determine how to allocate the prize budget. I find that it is always optimal for the

designer to host a single contest with as many contestants as possible. Previous work has

found that the designer may benefit by altering the contest structure. This is mainly due to

an additional restriction that the designer cannot optimally choose the prize allocation rule

(e.g., Moldovanu and Sela, 2006; Fu and Lu, 2012; Fang et al., 2020). Regarding the prize

allocation, I show that if a regularity condition holds, then the designer finds it optimal to

always allocate the entire prize budget to the contestant who exerts the highest effort (this is

often referred to as winner-takes-all). When this condition fails, the designer may prefer to

award multiple prizes of descending sizes: The contestant who exerts the highest effort wins

the largest prize, the contestant who exerts the second-highest effort wins the second-largest
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prize, and so on until all of the prizes are allocated. I also characterize the optimal prize

allocation rule for this case.

I then construct a parameterized setting to illustrate how the optimal prize distribution

evolves as the contest size grows. The findings suggest that, with convex effort costs, the

optimal level of competition intensity, measured by the total effort costs borne by agents,

is often less than the maximum possible level. As the contest size increases, the prize

distribution first becomes more unequal until the optimal level of competition intensity is

obtained, and then it becomes less unequal to maintain the optimal intensity. The optimal

competition level decreases as the effort cost becomes more convex, and it increases as the

contestants’ ability distribution becomes more spread out.

The existing contest design literature mostly focuses on investigating how to improve

the design of contests and largely ignores the comparison of contests with other non-contest

mechanisms. To the best of my knowledge, this is the first paper that establishes the opti-

mality of contests among all implementable mechanisms with respect to motivating agents

to exert effort.1

The first paper that takes a comprehensive approach to studying contest design with

incomplete information and convex effort costs is Moldovanu and Sela (2001).2 The authors

investigate the design of a single contest with symmetric contestants, and they allow the

designer to choose either a single prize or multiple prizes of descending sizes. They find

that when the effort cost is concave or linear, a single prize is always optimal, whereas when

the effort cost is convex, multiple prizes may perform better than a single prize. They do

not aim to provide a characterization of the optimal prize structure, which has since been

considered to be a generally intractable problem.

Olszewski and Siegel (2016, 2020) have recently revisited this problem and show that it

can be solved in the context of large contests. Olszewski and Siegel (2016) find that when

the number of contestants goes to infinity, the n-agent contest design problem converges to

a single agent problem. In Olszewski and Siegel (2020), the authors utilize this finding to

identify the optimal prize structure for contests with “sufficiently many” (either symmetric

or asymmetric) contestants. They find that, with convex effort costs, it is always optimal

for the designer to award many prizes of descending sizes. In this paper, I employ a differ-

1Letina et al. (2020) find that contests are optimal within a large set of mechanisms. They consider a
very different model in which agents do not have private information and contests are used to ensure that a
lenient reviewer will have an incentive to punish shirking agents.

2Glazer and Hassin (1988) analyze a similar problem but they only provide a solution for the special case
where the agents’ types are uniformly distributed and have linear effort costs.
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ent approach and demonstrate that when the environment is symmetric, the optimal prize

allocation problem can be solved for any arbitrary number of contestants. The existence of

a regularity condition under which the winner-takes-all prize structure is optimal suggests

that restricting attention to large contests is not without loss.3 On the other hand, my

results offer a method to determine whether a specific contest should be considered “suffi-

ciently large” and provides new insights about why awarding many prizes is optimal in large

contests.

Both Moldovanu and Sela (2001) and Olszewski and Siegel (2020) take the contest

format—a single contest—as given and only consider the choice of prize allocation rules.

In this paper, I allow the designer to additionally choose the contest structure and establish

the optimality of a single contest among all feasible contest structures.

Most papers that study contest design with incomplete information assume linear effort

costs (e.g., Polishchuk and Tonis, 2013; Chawla et al., 2019; Liu et al., 2018). Regarding the

technical differences, previous studies such as Polishchuk and Tonis (2013) have demonstrated

that, with linear effort costs, the contest design problem is mathematically equivalent to an

auction design problem with risk-neutral bidders. In contrast, assuming convex effort costs,

I show that the contest problem can still be transformed into an auction design problem,

but one with risk-averse bidders. Techniques for solving optimal auction problems with risk-

neutral bidders are well established, thanks to the seminal works by Myerson (1981) and

Riley and Samuelson (1983), and thus can be readily applied to the corresponding contest

problems. However, with risk-averse bidders, the problem becomes much more complex, and

explicit solutions are generally unknown. Optimal auction design with risk-averse bidders

was first studied by Maskin and Riley (1984) and Matthews (1983). Maskin and Riley

(1984) consider very general risk preferences and identify several properties of the revenue-

maximizing mechanism, without attempting to obtain the explicit solution for any specific

case. Matthews (1983) investigates the special case with constant absolute risk aversion and

finds that a modified first-price auction is optimal. More recently, Gershkov et al. (2021)

characterize the optimal mechanism for a risk-neutral seller who faces bidders equipped

with non-expected utility preferences that exhibit constant risk aversion (i.e., both constant

absolute risk aversion and constant relative risk aversion). They find that it is optimal for

the seller to utilize a full insurance mechanism. Matthews (1983) and Gershkov et al. (2021)

both consider preferences with a constant attitude towards risk, while the preferences studied

3When this condition fails, the optimal prize allocation rule in general still depends on the number of
contestants.
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in this paper do not fall into that category. The optimal mechanisms found by these two

papers are also very different from that of the present paper. Other papers in the risk-averse

bidder literature typically do not attempt to characterize the optimal mechanism and instead

focus on comparing the performance of specific selling schemes (e.g., Matthews, 1987; Baisa,

2017).

In this paper, I first show that the search for an effort-maximizing mechanism can be

confined to a special class of direct mechanisms, referred to as all-pay mechanisms, in which

each agent’s effort depends only on his type and is independent of either other agents’ types

or the prize allocation. Within this special class of mechanisms, the designer’s objective

function can be expressed as a function of the interim prize allocation rule. However, unlike

in Myerson (1981), the objective function investigated here is not linear in the interim prize

allocation. Thus, the objective function cannot be rewritten as a function of the ex-post

prize allocation rule and then maximized pointwise, as is usually done for contests with

linear effort costs. Instead, the maximization must be performed subject to the n-agent

interim feasibility constraint. The problem is thus mathematically quite different. I demon-

strate that, with symmetric agents, the problem can be tackled through a variational analysis

approach, specifically, by utilizing the infinite-dimensional version of the Kuhn–Tucker The-

orem (see Luenberger, 1997). This approach does not apply to the asymmetric case, as the

interim feasibility constraint becomes more complicated for that case. This is consistent

with the observation that analysis of optimal auctions with asymmetric risk-averse bidders

is largely absent from the literature. This additional difficulty does not arise for Olszewski

and Siegel (2020), as their approach replaces the n-agent feasibility constraint with a single

agent feasibility constraint. Finally, I demonstrate that, for any all-pay mechanism, a contest

that implements the same interim prize allocation and induces all types to put in the same

effort as in this all-pay mechanism can be constructed. This finding proves the optimality

of contests and implies that the optimal contest shares the same prize allocation rule as the

optimal all-pay mechanism.

Several papers also study contest design with complete information and convex effort

costs. For example, Schweinzer and Segev (2012) investigate the optimal prize structure of

Tullock contests. Drugov and Ryvkin (2020) study the optimal allocation of prizes in the

Lazear-Rosen Model. Similar to the present paper, Drugov and Ryvkin (2020) also find that

when the designer can set prizes optimally, she always prefers to have as many contestants

as possible. Fang, Noe, and Strack (2020) characterize the optimal prize profile for noiseless

contests. Letina, Liu, and Netzer (2022) take a unifying approach and allow the designer
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to choose both the prize profile and the contest format. With n contestants, they find that

it is always optimal for the designer to utilize a nested Tullock contest with n− 1 identical

prizes. By contrast, I find that when contestants have different and privately known types,

the designer may find it optimal to utilize winner-takes-all or several descending prizes. The

sharp contrast between my results and those of Letina, Liu, and Netzer (2022) highlights

the role played by private information.

The rest of this paper is organized as follows. Section 2 presents the model. Sections 3

and 4 summarize the main results. Finally, Section 5 concludes the paper.

2 The Model

There is one designer (female) and n ≥ 2 agents (male). All parties are risk neutral. The

designer wants to maximize the expected total effort and has a fixed prize budget, which is

normalized to 1, to allocate to the agents.4 Each agent i ∈ N = {1, 2, ..., n} is characterized

by his privately-known type θi ∈ Θ = [0, 1].5 A high θi means that agent i has a high

valuation of the prize. It is common knowledge that agents’ types are I.I.D. according to a

distribution F : Θ → [0, 1]. F is twice continuously differentiable, and the corresponding

density function f is strictly positive on Θ. Each agent i can choose an effort level ai ∈ R+

at cost c(ai). The cost function c : R+ → R+ is strictly increasing, convex, and twice

continuously differentiable, and satisfies c(0) = 0.

If agent i of type θi chooses effort level ai and obtains prize xi, then his utility is given

by

ui(θi, ai, xi) = θixi − c(ai).

The agent gets an outside option of 0 if he chooses not to participate in the game.6 Note

that
∂ui

∂θi
= xi > 0,

4As contestants’ payoffs are linear in the prizes, this is equivalent to the alternative setting where the
prize is non-divisible and the designer chooses who wins the prize.

5The type space can be any bounded interval. The choice of [0, 1] is simply a normalization.
6Moldovanu and Sela (2001) assume that the agent’s private information is about his ability and that the

agent’s preference is described by

vi(θi, ai, xi) = xi −
c(ai)

θi
.

Their setting is mathematically equivalent to the one used in this paper.
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∂ui

∂(−ai)
= −

∂ui

∂ai
= c′(ai) > 0,

and
∂2ui

∂2(−ai)
=

∂2ui

∂2ai
= −c′′(ai) < 0.

If we re-interpret −ai as the agent’s wealth, ui can also be thought of as the preference of a

bidder whose utility is increasing in both his type and his wealth and who has a diminishing

return to wealth. Such a bidder’s preference satisfies Assumption A in Maskin and Riley

(1984, p. 1476) and can thus be viewed as a risk-averse bidder.

A (single) contest (s,µ) is characterized by a prize splitting rule s and a contest success

function µ. The prize splitting rule s = (s1, ...sn) : Πj∈NR+ → [0, 1]n maps any effort profile

e = (e1, ..., en) into a vector of n non-increasing prizes (s1 ≥ s2 ≥ ... ≥ sn ≥ 0) such that
∑

j∈N sj = 1. Since I allow for zero prizes, it is without loss of generality to assume that

there are always n prizes. The contest success function µ = (µk
i )i,k∈N : Πi∈NR+ → [0, 1]n

2

determines the possibly random allocation of the prizes to the agents as a function of the

effort profile. Specifically, for any given effort profile e, µk
i (e) describes the probability that

agent i receives the prize sk(e). In addition, the contest success function satisfies: for any

given e,
∑

k∈N µk
i (e) = 1 for all i ∈ N (every agent receives a prize with probability 1)

and
∑

i∈N µk
i (e) = 1 for all k ∈ N (every prize is allocated to an agent with probability 1).

This formulation of a contest includes all of the common contest formats, such as noiseless

contests, Tullock contests, and Lazear-Rosen tournaments. In this formulation, I allow both

the size of the prizes and the contest success function to be endogenously determined by the

effort profile. This is equivalent to the more customary setting where the prize splitting rule

is fixed but the contest success function can be endogenously determined by the effort profile

(e.g., Tullock contests). I choose the current formulation to ease the comparison with the

literature, and will further discuss the above mentioned equivalence in Section 3.3.

The timeline of the game is as follows. First, the designer announces (s,µ). Second,

after observing their private types and contest rules, all agents simultaneously choose their

effort. Third, the designer allocates prizes according to the realized effort profile and contest

rules. Let σi : Θ → △R+ be agent i’s strategy, and let σ = (σ1...σn) denote a strategy

profile. Similarly, let bi : Θ → R+ denote agent i’s pure strategy, and let b = (b1...bn) denote

a pure strategy profile. I say that a contest (s,µ) implements a strategy profile σ (or a pure

strategy profile b) if σ (or b) forms a Bayesian Nash equilibrium in the game induced by

(s,µ).
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3 A Single Contest is Optimal

In this section, I first show that, assuming the designer commits to allocate the entire

prize with probability 1, a single contest is optimal among all implementable (i.e., incentive

compatible and individually rational) mechanisms.7 It then directly follows that hosting a

single contest is optimal among all feasible contest structures.8

3.1 Direct Mechanisms

By the revelation principle, it can be assumed without loss of generality that the designer uses

a direct mechanism. To allow for both random allocations of the prize and random efforts,

I introduce a random variable ω ∈ [0, 1] to capture all randomness in the mechanism. In a

direct mechanism (q,a), each agent reports his type to the mechanism, and a single number

ω is randomly drawn from [0, 1] according to the uniform distribution. ω is independent of

θ and is the same for all agents. The designer specifies for each agent i a prize allocation

rule qi : Πi∈NΘ × [0, 1] → [0, 1] and a recommended effort plan ai : Πi∈NΘ × [0, 1] →

[0,∞), as functions of both the reported types and the realization of the random variable

ω. The allocation rule must also satisfy
∑

i∈N qi(θ, ω) = 1 for all (θ, ω), as the designer

never withholds any prize. For any given type profile, both the prize allocation and the

effort may be random, as they also depend on the random number ω.9 In addition, the

allocation of the prize may be random conditional on the effort profile, and vice versa. As

is customary in the mechanism design literature, I assume that the agents will take the

designer’s recommendation provided that it is incentive compatible for them to do so.

The following proposition identifies necessary and sufficient conditions for a direct mech-

anism to be implementable. For any allocation rule q, let

Qi(θi) = E[qi(θi,θ−i, ω) | θi]

denote the expected share of the prize to be allocated to agent i, given that he is of type θi. Qi

is also referred to as the interim allocation rule. An interim allocation rule Q = (Qi)i=1,2...N

7If the designer can retain (some of) the prize, then a single contest with reserve effort is optimal.
8If the designer conducts a multi-stage mechanism and agent i chooses effort level ati at each stage t, then

the agent’s total cost of effort is given by c(
∑

t a
t
i). In other words, I assume the designer cannot influence

the cost of producing effort by simply adding more periods.
9This approach of modeling randomness in the mechanism is without loss of generality by Halmos and

von Neumann (1942).
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is feasible if and only if it can be induced by an allocation rule q. For any θi and θ′i, let

Vi(θi, θ
′
i) = E [θiqi(θ

′
i,θ−i, ω)− c(ai(θ

′
i,θ−i, ω)) | θi, θ

′
i]

denote agent i’s expected utility if he is of type θi but reports that he is of type θ
′
i, assuming

that all other agents report truthfully. I slightly abuse notation by using Vi(θi) = Vi(θi, θi)

to denote the agent’s expected utility when he reports truthfully.

Proposition 1. (Payoff Equivalence) Let (q,a) be any direct mechanism, and let Q denote

the corresponding interim allocation rule. This mechanism is implementable if and only if

for all i and θi,

(a) Q is feasible;

(b) Qi(θi) is non-decreasing in θi;

(c) Vi(θi) = Vi(0) +
∫ θi

0
Qi(t)dt; and

(d) Vi(0) ≥ 0.

The above proposition states that agents’ utilities in any implementable mechanism are

essentially uniquely determined by the interim prize allocation, as in the risk-neutral bidder

problem. It directly follows that, in any implementable mechanism, the expected total effort

cost borne by agents,

E [c(ai(θi,θ−i, ω)) | θi] =E [θiqi(θi,θ−i, ω) | θi]− Vi(θi)

=θiQi(θi)−

∫ θi

0

Qi(t)dt− Vi(0),

is also essentially uniquely determined byQ. However, the designer’s objective is to maximize

the expected total effort, not the effort cost. So the other classical result, revenue equivalence,

does not hold unless the effort cost is linear. The designer’s “revenue” (i.e., the expected total

effort) not only depends on Q, but may also depend on the exact details of the mechanism.

3.2 All-Pay Mechanisms

Since my objective is to maximize the designer’s revenue, in the following analysis I only

consider mechanisms for which Vi(0) = 0. For later use, I define the term all-pay mechanism

here:10

10I thank Juuso Välimäki for suggesting this name to me.
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Definition 1. An implementable direct mechanism (q,a) is an all-pay mechanism if and

only if for any i and θi, ai(θi,θ−i, ω) is constant for all θ
−i and ω.

In an all-pay mechanism, any agent’s effort depends only on his type and is independent of

any other agents’ types and the realization of the random variable ω. The definition also

implies that the effort a type-θ agent is required to exert cannot be made contingent on the

realized allocation of prizes. As will be explained in Section 3.3, this “all-pay” property of

effort can also be induced by contests. But it cannot be induced, for instance, by first-price

auctions: in a first-price auction, an agent is only required to exert effort when he obtains

the entire prize.

The following proposition shows that all-pay mechanisms are optimal among all imple-

mentable mechanisms.

Proposition 2. For any implementable direct mechanism (q, ã), there exists an all-pay

mechanism that implements the same allocation rule and that is at least as profitable for the

designer.

This proposition claims that even if the designer can make the effort recommendation rule

as complicated as she wishes (e.g., the agents are requested to exert effort only when they

receive the entire prize or when they receive more than 70% of the prize), she still prefers to

use a simple all-pay rule. This conclusion stems from the convexity of the cost function and

the payoff equivalence result established in the previous subsection, as follows. Suppose that

the designer wants to implement a certain allocation rule q. Since the agents have convex

effort costs and must obtain the same interim payoff in any implementable mechanism, the

designer finds it optimal to utilize the mechanism that minimizes effort variations while

maintaining incentive compatibility. This can be achieved by requiring agents to always

exert a level of effort that depends only on their type.

Proposition 2 implies that, in searching for an optimal mechanism, we can confine our

attention to the class of all-pay mechanisms. For any all-pay mechanism (q,a), let Q denote

the corresponding interim allocation rule, and let ai(θi | Q) = ai(θi,θ−i, ω) for all θ−i and
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all ω. By Proposition 1, we obtain the following:

∫ θi

0

Qi(t)dt = Vi(θi)

= E [θiqi(θi,θ−i, ω)− c(ai(θi,θ−i, ω)) | θi]

= θiQi(θi)− c(ai(θi | Q))

⇒ ai(θi | Q) = c−1

(

θiQi(θi)−

∫ θi

0

Qi(t)dt

)

.

As c is strictly increasing and convex, its inverse function c−1 is well defined, strictly increas-

ing, and concave. The expected total effort is given by

R(Q) =
∑

i=1,2...n

∫ 1

0

ai(θi | Q)dF (θi)

=
∑

i=1,2...n

∫ 1

0

c−1

(

θiQi(θi)−

∫ θi

0

Qi(t)dt

)

dF (θi).

Using the linear effort function c(ai) = ai, the above formula becomes

R(Q) =
∑

i=1,2...n

∫ 1

0

[

θiQi(θi)−

∫ θi

0

Qi(t)dt

]

dF (θi)

=
∑

i=1,2...n

∫ 1

0

Qi(θi)

[

θi −
1− F (θi)

f(θi)

]

dF (θi).

The second equality is obtained through integration by parts and is the same as the revenue

function obtained in Myerson (1981). Further, as c−1 is concave, we can without loss of

generality restrict our attention to symmetric interim allocation rules, and thus I drop all

individual subscripts for Qi.
11 So the designer’s problem is reduced to choosing a feasible

and non-decreasing interim allocation rule Q to maximize

n

∫ 1

0

a(θ | Q)dF (θ).

11To see this, consider the case of two agents. Suppose that there exists an optimal pair (Q∗

1, Q
∗

2) such
that Q∗

1 6= Q∗

2. As the two agents are symmetric, (Q∗

2, Q
∗

1) must also be optimal. But then the symmetric

allocation rule (
Q∗

2
+Q∗

1

2 ,
Q∗

2
+Q∗

1

2 ) is also feasible and increasing, and at least as profitable for the seller (since

c−1 is concave). Moreover, when c−1 is strictly concave, (
Q∗

2
+Q∗

1

2 ,
Q∗

2
+Q∗

1

2 ) is strictly more profitable than
(Q∗

1, Q
∗

2). The argument can be easily generalized to incorporate more agents.
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3.3 The Optimality of Contests

To state the results more formally, I introduce some new terminology: I say that a contest

(s,µ) is a noiseless contest if for every effort profile e ∈ Πi∈NR, all i, k ∈ N , µk
i (e) ∈ {0, 1}.12

In addition, taking any interim allocation rule Q, I say that a contest (s,µ) implements Q

(in pure strategies) if this contest implements a pure strategy profile b such that, for all i

and all θi,

Q(θi) = E

[

∑

k∈N

µk
i ((b(θi,θ−i))sk(b(θi,θ−i))

∣

∣

∣

∣

θi

]

.

In order to show that the set of optimal mechanisms also includes a contest, it suffices

to show that Proposition 3 holds.

Proposition 3. For any feasible and non-decreasing Q, there exists a noiseless contest (s,µ)

such that:

1. (s,µ) implements Q and the symmetric pure strategy profile

b(θ) = a(θ | Q) = c−1

(

θQ(θ)−

∫ θ

0

Q(t)dt

)

for all θ ∈ [0, 1].

2. For all e ∈ Πi∈NR, all i, k ∈ N , µk
i (e) = 1 only if

∣

∣

∣

∣

{j | ej > ei}

∣

∣

∣

∣

< k ≤

∣

∣

∣

∣

{j | ej ≥ ei}

∣

∣

∣

∣

.

The above proposition states that, taking any feasible and non-decreasing interim allocation

rule Q, a noiseless contest that implements Q and the strategy profile b(θ) = a(θ | Q) for all

θ can always be constructed. In this noiseless contest, the prize profile may vary depending

on the realization of the effort profile but prizes are always awarded in descending order

according to contestants’ ranks. This is equivalent to stating that, for any all-pay mechanism,

there exists a noiseless contest that implements the same interim prize allocation and induces

all types to put in the same effort as in this all-pay mechanism. Therefore, since the set of

12The definition does not allow for random tie-breaking. This is without loss as I allow for prizes of equal
sizes.
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optimal mechanisms always includes an all-pay mechanism, it must also include a noiseless

contest.

Note that there often exist multiple contests that can induce the same effort distribution.

For instance, awarding multiple (positive) prizes deterministically is equivalent to awarding

a single (positive) prize with some randomness in the allocation process. To see how this

works, take any noiseless contest (s,µ) such that s(e) 6= (1, 0...0) for some e, and let

p = (p1, ...pn) : Πi∈NR+ → [0, 1]n denote the corresponding mapping from effort profiles

to prizes. We can construct another contest (ŝ, µ̂) as follows: for every effort profile e, let

ŝ(e) = (1, 0...0) and µ̂(e) = p(e). By construction, it is clear that in these two contests,

the same effort profile always leads to the same interim prize allocation. By following very

similar arguments as in the proof for Proposition 3, one can verify that the newly constructed

contest implements the same interim allocation rule and strategy profile as the original

contest. For convenience, I will henceforth consider only noiseless contests with single or

multiple (positive) prizes, and I will provide an example in Section 4.2 to further illustrate

the equivalence.

Since a single contest is optimal among all implementable mechanisms, it directly follows

that there is no added benefit to altering the contest structure.

Before concluding this section, I note that although I mainly consider symmetric agents in

this paper, the optimality of all-pay mechanisms also extends to the case where agents have

asymmetric type distributions and/or asymmetric cost functions (see the proof of Proposition

2 for details). With asymmetric agents, the optimal effort can still be implemented by a

noiseless contest, but the optimal prize allocation rule may be asymmetric. Therefore, the

prizes allocated to agents are not necessarily non-decreasing in their effort.

4 Optimal Prize Allocation

Having established the optimality of a noiseless contest with descending prizes, I next turn

to characterizing the optimal prize allocation. In order to employ the variational approach,

I only consider piecewise differentiable rules Q.

As illustrated at the end of Section 3.2, the designer’s objective is to choose a feasible

and non-decreasing interim allocation rule Q to maximize

R(Q) =

∫ 1

0

c−1
(

θQ(θ)−

∫ θ

0

Q(t)dt
)

dF (θ).
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Maskin and Riley (1984) and Matthews (1983) find that to ensure that a non-decreasing Q

is also feasible, it suffices to verify that Q satisfies the following two constraints: for any

θ ∈ [0, 1], Q(θ) ∈ [0, 1] and

∫ 1

θ

Q(t)dF (t) ≤

∫ 1

θ

F n−1(t)dF (t).

The above inequality will be referred to as the interim feasibility constraint. It requires that,

for any θ, the expected share of the prize to be allocated to types in [θ, 1] is never higher

than the probability that such a type exists. So when the designer selects the optimal Q for

any subset A of types, she must also take into consideration the effect on the feasibility of

Q on [θ, 1] \ A for all θ.

As the aforementioned two papers do not require the designer to always exhaust the prize

budget, I need to impose the additional constraint

n

∫ 1

0

Q(t)dF (t) = 1

to capture this extra restriction. This equation states that the total prizes assigned to the n

agents always add up to 1, i.e., the entire prize budget.

The designer’s problem can thus be summarized as

max
Q

∫ 1

0

c−1
(

θQ(θ)−

∫ θ

0

Q(t)dt
)

dF (θ),

subject to the constraints that, for any θ ∈ [0, 1],

(a) Q is non-decreasing;

(b) Q(θ) ∈ [0, 1];

(c)
∫ 1

θ

Q(t)dF (t) ≤

∫ 1

θ

F n−1(t)dF (t);

(d)
∫ 1

0

Q(t)dF (t) =
1

n
.

As mentioned in the Introduction, Olszewski and Siegel (2020) identify the optimal prize

distribution for the limit case where n → ∞. In their general cost case, they solved a
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problem that is similar to the one above, but within the large contest framework.13 Their

approach utilizes the observation that, with a large number of contestants, in equilibrium

prizes are almost assortatively allocated to agents according to the rank-order quantile of

their types in the type distribution. Equipped with this insight, the authors then show

that the interim allocation Q in the designer’s problem can be (approximately) replaced

by the assortative allocation of prizes. The n-agent prize allocation problem can thus be

transformed into a single agent problem in which the designer’s task is to choose the optimal

distribution of prizes. In this transformed problem, the interim feasibility constraint (c) is

replaced by a total budget constraint that is similar to constraint (d). The designer can

therefore select the optimal prize for each type independently, provided that the total prize

budget is not exceeded. In this paper, as I allow for any arbitrary number of contestants, the

aforementioned approximation does not work. The optimization must be performed subject

to this additional constraint, and thus a different technique is needed. I will further discuss

the role played by the interim feasibility constraint after presenting Theorem 2.

Instead of solving the above problem directly, I consider a relaxed version with the same

objective function but only constraints (c) and (d). If the solution to the relaxed problem

satisfies the ignored constraints, then it is also the solution to the original problem. The

relaxed problem can be transformed into a multi-variable calculation of variation problem.

To do this, first define two variables

x(θ) =

∫ 1

θ

Q(t)dF (t)

and

I(θ) =

∫ θ

0

Q(t)dt.

It follows that

Q(θ) = −
x′(θ)

f(θ)
,

I(θ) = −

∫ θ

0

x′(t)

f(t)
dt,

and

I ′(θ) = −
x′(θ)

f(θ)
.

Note that the definitions of x and I directly imply that x(1) = 0 and I(0) = 0, constraint (d)

13See Olszewski and Siegel (2020) Appendix A2 for detail.
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is equivalent to requiring that x(0) = 1
n
, and I(1) is not fixed. Finally, define the function

h(θ, x′(θ), I(θ)) = c−1
(

− θ
x′(θ)

f(θ)
− I(θ)

)

f(θ).

Then the designer’s (relaxed) problem becomes

max
x,I

Y (x, I) =

∫ 1

0

h(θ, x′(θ), I(θ))dθ

s.t. for any θ ∈ [0, 1],

x(θ) ≤

∫ 1

θ

F n−1(t)dF (t),

I ′(θ) +
x′(θ)

f(θ)
= 0,

and the boundary conditions x(0) = 1
n
, x(1) = 0, and I(0) = 0 must be satisfied. In this

formulation, the first constraint corresponds to constraint (c) in the original problem, the

second constraint relates I to x, and constraint (d) in the original problem is captured by

requiring that x(0) = 1
n
.

The problem can then be solved using the infinite-dimensional generalized Kuhn-Tucker

Theorem (see, e.g., Luenberger (1969), p. 249). The Lagrangian is given by

L(x, I) =h(θ, x′(θ), I(θ))− λ(θ)

(

x(θ)−

∫ 1

θ

F n−1(t)dF (t)

)

− µ(θ)

(

I ′(θ) +
x′(θ)

f(θ)

)

.

By the Kuhn-Tucker Theorem, any (x∗, I∗) that maximizes Y must satisfy the following

necessary conditions:

(1) The Euler-Lagrange conditions

∂L

∂I
−

d ∂L
∂I′(θ)

dθ
= 0

and

∂L

∂x
−

d ∂L
∂x′

dθ
= 0
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must hold wherever they are well-defined;

(2) The Lagrangian multiplier λ(θ) ≥ 0;

(3) The complementary slackness condition

λ(θ)

(

x(θ)−

∫ 1

θ

F n−1(t)dF (t)

)

= 0;

(4) The boundary conditions x0(0) =
1
n
, x(1) = 0, and I(0) = 0.

As I(1) is not given, we also need to impose the following transversality condition (see

Sagan (1992), p. 73, Theorem 2.8):

∂L

∂I ′
|θ=1= 0,

to ensure that I(1) is chosen optimally.

Note that there is a clear analogy between the infinite dimensional Kuhn-Tucker Theorem

and the finite dimensional one, with Euler-Lagrange conditions replacing the role of the com-

monly used “first order conditions.” I will further discuss the implications of these necessary

conditions in the following analysis.

4.1 Winner-Takes-All

I first identify a necessary and sufficient condition under which the designer finds it optimal

to allocate the entire prize to the agent who exerts the highest effort in the contest. This prize

allocation scheme is commonly referred to as winner-takes-all. Proposition 1 implies that

the agent who exerts the highest effort must be the one with the highest type. Thus, with

winner-takes-all, an agent of type θ obtains one unit of the prize with probability F n−1(θ),

or equivalently, expects to receive Q(θ) = F n−1(θ) units of the prize.

Recall that in Section 3.2,

a(θ | Q) = c−1

(

θQ(θ)−

∫ θ

0

Q(t)dt

)

was defined to be the effort exerted by an agent of type θ given the interim allocation rule

Q. In addition, let

a(θ) = a(θ | F n−1)
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denote the effort exerted by an agent of type θ when Q(θ) = F n−1(θ) for all θ, and let

J(θ | Q) =
θ

c′ (a(θ | Q))
−

∫ 1

θ
1

c′(a(s|Q))
dF (s)

f(θ)

and

J(θ) = J(θ | F n−1)

=
θ

c′(a(θ))
−

∫ 1

θ
1

c′(a(s))
dF (s)

f(θ)
,

wherever they are well defined. Note that J(θ) is always well defined and continuous, except

possibly at θ = 0. I refer to J(θ) as the generalized virtual value, and I will sometimes refer

to the following assumption as the regularity condition:

Assumption R The function J(θ) is non-decreasing on [0,1].

The following theorem shows that Assumption R is a necessary and sufficient condition for

the winner-takes-all prize allocation rule being optimal.

Theorem 1. Allocating the entire prize to the agent who exerts the highest effort, i.e.,

Q∗(θ) = F n−1(θ) for all θ ∈ [0, 1], is optimal for the designer if and only if Assumption R

holds.

The necessary conditions presented at the beginning of this section are equivalent to the

following two conditions:
dJ(θ | Q)

dθ
= λ(θ) ≥ 0, (1)

whenever this condition is well defined, and the complementary slackness condition that for

any θ,

λ(θ)

(
∫ 1

θ

Q(t)dF (t)−

∫ 1

θ

F n−1(t)dF (t)

)

= 0. (2)

It directly follows that for Q∗(θ) = F n−1(θ) to be optimal, J(θ) must be non-decreasing on

[0, 1]. As the objective function is concave, all constraints are linear, and Q∗(θ) is continu-

ously differentiable, this necessary condition is also sufficient for Q∗ being optimal (see proof
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of Theorem 1 for details). Thus, Q∗(θ) is a solution to the relaxed problem, and it is therefore

also a solution to the original problem because it satisfies all of the ignored constraints.

The intuition underlying Theorem 1 is as follows: Fix any feasible and non-decreasing

Q. The first term of J(θ | Q),14

θ

c′ (a(θ | Q))
=

∂a(θ | Q)

∂Q(θ)
,

measures the direct marginal benefit of assigning more of the prize to a bidder of type θ.

The second term,

−

∫ 1

θ
1

c′(a(s|Q))
dF (s)

f(θ)
=

1

f(θ)

∫ 1

θ

∂a(s | Q)

∂
(

∫ θ

0
Q(t)dt

)dF (s),

captures the indirect marginal cost of increasing Q(θ). To see this, note that
∫ s

0
Q(t)dt

measures the scope of information rent: An agent of type s has more incentive to misreport

when agents of lower types obtain larger prizes.15 All else being the same, an increase in

Q(θ) will lead to an increase in
∫ s

0
Q(t)dt for any s > θ, which in turn reduces the effort

from any bidder whose type is higher than θ. Thus, for any given allocation rule Q, J(θ | Q)

describes the total (direct and indirect) marginal return of assigning more of the prize to an

agent of type θ.

Again, take any feasible and non-decreasing Q. If J(θ | Q) is increasing, then the designer

can improve the mechanism by assigning more of the prize to agents of higher types (if such

changes are feasible). Further, if J(θ | Q) is increasing for all feasible Q, the designer will

find it optimal to assign as much of the prize as the feasibility constraint permits to the

agent with the highest type—i.e., she will allocate the entire prize with probability 1 to such

an agent. As the designer’s problem is concave, to check that J(θ | Q) is non-decreasing

for any feasible Q, it suffices to check that J(θ) is non-decreasing. Note that when the cost

function is linear, J(θ) is reduced to the standard virtual value found by Myerson (1981),

namely, θ − 1−F (θ)
f(θ)

.

Moldovanu and Sela (2001) identify a necessary and sufficient condition under which

winner-takes-all performs better than two prizes in descending order (Proposition 5, p. 549).

This condition is weaker than the regularity condition obtained above, as the latter ensures

14In obtaining the following two equations, I use (c−1(t))′ = 1
c′(c−1(t)) .

15As in many other mechanism design problems, here the agents never have incentives to misreport that
they are of a higher type than they actually are.
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that winner-takes-all outperforms all other prize allocation rules.

Consistent with the findings of Olszewski and Siegel (2020), I show that when the contest

becomes sufficiently large, the regularity condition always fails, and thus the winner-takes-all

prize structure cannot be optimal:

Proposition 4. Suppose that c′(0) = 0. For any F and c, there exists n̄ such that Assump-

tion R fails for all n ≥ n̄.

Note that the additional assumption, c′(0) = 0, is also imposed by Olszewski and Siegel

(2020) to obtain their corresponding results.

To gain a better understanding of the above results, consider the example where c(a) = a2

and θ is uniformly distributed on [0, 1]. Computation yields

dJ(θ | Q)

dθ
=

4 [θQ(θ)− I(θ)]− θ2Q′(θ)

4 [θQ(θ)− I(θ)]
3

2

wherever it is well defined, and

J ′(θ) =
1

4
(

n−1
n
θ
)

3

2

(n− 1)(4− n)

n
θn.

If 2 ≤ n ≤ 4, then J ′(θ) ≥ 0 for all θ in [0, 1], and thus the regularity condition holds;

otherwise, the condition fails.

4.2 Multiple Prizes

When Assumption R fails, the winner-takes-all scheme is no longer optimal and the designer

prefers to utilize multiple (positive) prizes of descending sizes. For this case, I characterize

the optimal interim allocation rule under the following assumption, which is essentially the

same as Assumption 2 in Olszewski and Siegel (2020):

Assumption M For any θ ∈ [0, 1],

2

c′(c−1(1))
+

f ′(θ)[1− F (θ)]

c′(0)f 2(θ)
> 0,

where, if c′(0) = 0, the second term is set to equal ∞, −∞, or 0 when its numerator

is positive, negative, or 0, respectively.
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This assumption holds, for example, when the distribution F is convex (regardless of n and

c).

The next theorem states that the optimal interim allocation rule may only consist of two

regions: where the entire prize is awarded to the agent with the highest effort, and where

the marginal return of assigning more of the prize is constant across types.

Theorem 2. Suppose that Assumption M holds and that c is strictly convex. Let Q∗ denote

the optimal interim allocation rule. For any θ ∈ [0, 1], one of the following statements must

be true:

(I) There exists an interval (x, y) such that θ ∈ (x, y), Q∗(θ) = F n−1(θ), and J(θ | Q∗) is

non-decreasing on (x, y);

(II) There exists an interval (y, z) such that θ ∈ (y, z), Q∗(θ) 6= F n−1(θ), and J(θ | Q∗) is

constant on (y, z).

Moreover, (II) holds on a set of positive measure if Assumption R fails.

Technically, the above result follows directly from Conditions (1) and (2) given in Section

4.1: The optimal Q∗ may only consist of the two parts: (I) where the feasibility constraint

is binding and (II) where Q∗ solves

dJ(θ | Q)

dθ
= λ(θ) = 0.

To see the intuition, suppose that J(θ | Q∗) is decreasing on some non-degenerate interval

(α, β). As was already illustrated in the last subsection, this means that the marginal

return of assigning more of the prize to a higher type is smaller than the marginal return

from assigning more to a lower type, assuming that both types fall in (α, β). Thus, the

designer can improve the mechanism by reducing the prize allocated to the higher type and

increasing the prize allocated to a lower type. The optimum is achieved when the marginal

return becomes constant across types.

In the context of large contests, Olszewski and Siegel (2020)’s Lemma 3 can be used to

obtain the optimal prize distribution when contestants have convex effort costs and (possibly)

non-linear valuations of the prize. With symmetric contestants and linear valuations, their

Lemma 3 corresponds to the special case where Theorem 2 (II) holds almost everywhere

on [0, 1]. This is because, as explained in the beginning of Section 4, the interim feasibility

constraint becomes irrelevant in their environment.
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As explained in Section 3.3, for any Q∗ as described in Theorem 2, there exists a noiseless

contest to implement it: The prizes are always awarded in descending order according to

contestants’ ranks, but the prize profile may vary depending on the realization of the type

profile. If the highest type falls into region (I), then the entire prize is allocated to the

contestant with the highest type. If the highest type falls into an interval (y, z) that belongs

to region (II), then he shares the prize with any other contestants whose types also fall into

the same interval. The exact sharing rule is determined such that the rate of return for

a marginal increase in Q becomes constant across types. When Assumption R fails, the

designer finds it optimal to at least sometimes allocate multiple prizes.

Theorem 2 offers a formula to compute the optimal interim allocation rule, not a closed-

form solution. It is therefore not possible to directly identify a closed-form solution for the

optimal prize splitting rule. However, once all of the model’s parameters are given, one can

utilize Theorem 2 to compute the optimal prize structure. To gain a better understanding

of how this can be done, consider the case where c(a) = a2 and θ is uniformly distributed on

[0, 1]. In the last subsection, it was shown that if n ≤ 4, the regularity condition holds and

the designer finds it optimal to always award the entire prize to the highest bidder. When

n > 4, J(θ) is decreasing on [0, 1], and the optimal Q∗ must solve

dJ(θ | Q)

dθ
=

4 [θQ(θ)− I(θ)]− θ2Q′(θ)

4 [θQ(θ)− I(θ)]
3

2

= 0

(i.e. J(θ | Q∗) is constant) almost everywhere on [0, 1].16 The solution is uniquely given by

Q(θ) = 4
n
θ3, which results in effort level a(θ) =

√

3
n
θ2.

The designer can implement the aforementioned interim allocation rule by conducting a

noiseless contest with multiple positive prizes in descending order, with the number and sizes

of the prizes depending on the number of contestants. Let xk
n denote the prize allocated to

the k-th highest performer when there are n contestants. For notational convenience, define

xk
n = 0 for any k > n or k = 0. When n = 5, the highest performer is awarded x1

5 =
4
5
, the

second highest performer is awarded x2
5 =

1
5
, and all other contestants receive nothing (i.e.,

x3
5 = x4

5 = x5
5 = 0). For any n > 5, the optimal k − th prize can be computed using the

16Here we just need to solve a standard second order differential equation

4 [I ′(θ)− I(θ)]− θ2I ′
′

(θ) = 0

with the boundary conditions I(0) = 0 and I(1) = 1.
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following recursive formula (see the Appendix for the computational details):

xk
n =

n− 1

n
xk
n−1 +

k − 1

n

(

xk−1
n−1 − xk

n−1

)

.

The number of positive prizes equals n − 3. When n = 6, for instance, the above formula

implies that it is optimal to award three prizes of 2
3
, 4

15
, and 1

15
to the 3 highest performers.

As mentioned earlier, there often exist multiple schemes to implement the optimal prize

allocation. For instance, when n = 5, the designer can also induce the optimal prize allo-

cation by awarding the entire prize to the highest performer with probability 4
5
and to the

second highest performer with probability 1
5
.

4.3 Small Contests vs. Large Contests

To maximize the expected total effort, the designer always prefers to have more contestants.

This observation directly follows from the concavity of the objective function and the opti-

mality of symmetric mechanisms: Let Qk denote the optimal allocation rule with k bidders.

When there are n+1 bidders, it is clear that the designer can earn the same expected revenue

by allocating prizes to the first n bidders according to Qn and never allocating any prize to

the last bidder. As argued in Section 3.2, when c−1 is (strictly) concave, the optimal sym-

metric allocation generates (strictly) more expected total effort than any asymmetric rules.

Thus, when there are n + 1 agents, the designer can induce (strictly) more effort by using

Qn+1 instead of the asymmetric allocation rule constructed above. Therefore, the designer’s

revenue is always non-decreasing in n, strictly so when c is strictly convex. However, for

different levels of n, the increase in revenue may be driven by different forces.

The optimal prize distribution responds to the change of n in a more complicated way.

To understand this, first note that, for any interim allocation rule Q, the contestants’ total

effort cost is given by

Γ(n, F,Q) = n

∫ 1

0

Q(θ)

[

θ −
1− F (θ)

f(θ)

]

dF (θ).

I will refer to Γ(n, F,Q) as the competition intensity, as it measures how aggressively the

contestants as a whole engage in costly competition. For any distribution F with a monotone

hazard rate, the maximal competition intensity can be achieved by awarding a single prize
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to the highest performer and is strictly increasing in n. Let

Γmax = lim
n→∞

Γ(n, F, F n−1)

represent the maximal competition intensity the designer can induce with one unit of the

prize for a given distribution F . As

Γ(n, F, F n−1) < n

∫ 1

0

F n−1(θ)dF (θ) = 1

and it is increasing in n, Γmax is always well defined and finite. The designer’s objective,

however, is to maximize the expected total effort, not the total effort costs/competition

intensity. The two objectives coincide when the effort cost functions are linear, but they

may diverge with convex effort costs: Fixing the total effort cost, the designer ideally wants

to equally divide the cost among as many participants as possible. However, a flatter effort

distribution can only be induced by a flatter prize distribution, which in turn leads to a

decrease in the total effort cost. To select the optimal prize structure, the designer needs

to balance the need to induce more aggressive competition among the contestants and the

need to smooth the effort costs.

As shown in the previous subsections, for uniformly distributed types and quadratic effort

costs, the optimal interim prize allocation rule is given by

Q∗(θ) =







θn−1 if n ≤ 4

4
n
θ3 if n > 4.

Observe that Q∗(θ) becomes steeper as n increases to 4, but then becomes flatter as n

continues to grow. The contestants’ total effort cost is given by

Γ(n, F,Q∗) =







1− 2
n+1

if n ≤ 4

3
5

if n > 4.

and their expected total payoff equals

n

∫ 1

0

[
∫ θ

0

Q∗(t)dt

]

dθ =







1
n+1

if n ≤ 4

1
5

if n > 4.

24



When n is small, the winner-takes-all prize structure is optimal. In this case, an increase in

the contest size always leads to an increase in the competition intensity. The contestants (as

a whole) work more and become worse off. On the other hand, when n is large, the designer

no longer finds it optimal to utilize the most competitive prize allocation rule. In this case,

as n further increases, the contestants’ total effort cost and total welfare remain constant,

but the designer’s revenue still increases due to more efficient “cost sharing” among more

contestants. Also note that the average effort produced by each individual contestant always

decreases as n becomes larger.

These observations lead to a natural conjecture: With convex effort costs, there often

exists a designer-optimal competition intensity that is strictly smaller than Γmax. When

the contest size is small, even with the winner-takes-all prize structure, the overall com-

petition intensity is still lower than the optimal level. The designer thus wants to recruit

more contestants while keeping the winner-takes-all prize structure to increase the contest’s

competitiveness. When the contest size is large and the optimal competition intensity has al-

ready been reached, further increasing the prize inequality among contestants will only serve

to discourage the total effort. However, the designer still prefers to have more contestants,

as then she can induce more efficient “cost sharing” among ex ante symmetric contestants

with convex effort costs. To balance the needs for “cost smoothing” and for maintaining

the optimal competition intensity, the optimal prize distribution has to become flatter as n

increases. This observation provides a potential rationale for the findings of Olszewski and

Siegel (2020): If there are many contestants and the designer still uses winner-takes-all, the

induced competition level will be higher than optimal. Therefore, the designer always prefers

to award multiple prizes in large contests.

Regarding welfare implications, note that increasing the contest size always benefits the

designer but may or may not hurt the contestants, depending on the initial contest size.

Suppose that a social planner wants to increase the contestants’ total welfare by imposing

an upper limit on contest sizes. Then she should either keep the limit low (n < 4 in this

example) or not impose any such limits at all (as decreasing n from 8 to 5 does not affect

the contestants’ payoff but decreases the designer’s payoff).

Finally, I provide some comparative statics results. When the contestants’ abilities are

uniformly distributed, winner-takes-all is less likely to be optimal when the cost function is

more convex and more likely to be optimal as the ability distribution becomes more spread

out, or equivalently, as the contest task becomes more skill sensitive.

Proposition 5. Suppose that θ is uniformly distributed on [0, 1]. Consider any two functions
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c1 and c2 such that c1 is more convex than c2.
17 If Assumption R does not hold when the

agents’ cost function is given by c2, it also does not hold when the agents’ cost function is

given by c1.

As the effort cost function becomes more convex, the need to induce “cost smoothing”

increases and the marginal benefit of increasing the effort cost decreases. Thus, the optimal

competition intensity may be reached earlier. As an illustration, consider the following

examples. When θ is uniformly distributed and c(a) = a, the regularity condition holds for

all n. The optimal competition level equals Γmax = 1 and is never attained. When c(a) = a
5

4 ,

the regularity condition holds if and only if n ≤ 8. The optimal competition intensity equals
7
9
and is reached at n = 8 and Q(θ) = θ7.18 When c(a) = a2, the optimal intensity equals 3

5

is reached at n = 4 and Q(θ) = θ3.

Proposition 6. Suppose that θ is uniformly distributed on [1
2
−k, 1

2
+k], k ∈ (0, 1

2
], and that

c(a) = a2. If Assumption R when k = k′, then it also holds for any k > k′.

When there is a higher level of uncertainty in the contestants’ abilities, competition leads to

a greater efficiency gain and is thus more desirable.

5 Conclusion

In this paper, I first demonstrate that contests are the optimal mechanisms to use when

agents have private information and convex effort costs, and the designer wants to maximize

the expected total effort. I then study the optimal design for contests. The solution is

twofold: First, it is always optimal for the designer to employ a single contest with as many

contestants as possible. Second, I provide a necessary and sufficient condition for the winner-

takes-all prize allocation rule being optimal. When this condition fails, the designer finds

it optimal to utilize multiple prizes of descending sizes. I also provide a characterization

of the optimal prize distribution for this case. In addition, I illustrate how the optimal

prize distribution evolves as the number of contestants increases. Finally, I provide some

comparative statics results, which may serve as testable implications of the model. Roughly

speaking, the designer has more incentives to encourage competition among the contestants

17c1 is more convex than c2 if and only if there exists a non-decreasing convex function K such that
c1(·) = K(c2(·)).

18For n ≥ 8, the optimal interim allocation is given by Q∗(θ) = 8
n
θ7, which yields a constant competition

intensity of 7
9 .
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when the size of the contest is small, when there exists a greater dispersion in the contestant

pool, when the task is more skill sensitive, and when the cost function is less convex.

My approach substantially eases the analysis of the optimal contest design, and I expect

it to be useful for other contest/auction design frameworks. For instance, the approach can

be used to analyze a generalization of the model in which the designer wants to maximize a

weighted average of the total effort, the maximum effort, and the contestants’ welfare.
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Appendix:

For proofs of Proposition 1 and 2, I allow both Fi and ci to be asymmetric. For all other

proofs, the contestants’ are assumed to be symmetric.

Proof for Proposition 1: The set of implementable mechanisms is defined by the follow-

ing conditions. First, it must be incentive compatible for all agents to report their types

truthfully. That is, for any θi and any θ′i,

Vi(θi) ≥ Vi(θi, θ
′
i).

Second, it is assumed that the seller cannot force any bidder to participate. Thus the

individual rationality condition,

Vi(θi) ≥ 0

must be satisfied for any θi.

(1) (Necessity) The necessity of (d) directly follows the individual rationality constraint.

The incentive compatibility constraint requires that for any θi > θ′i,

Vi(θi) ≥ Vi(θi, θ
′
i)

= E [θiqi(θ
′
i,θ−i, ω)− c(ai(θ

′
i,θ−i, ω)) | θi, θ

′
i]

= Vi(θ
′
i) + (θi − θ′i)Qi(θ

′)

and similarly,

Vi(θ
′
i) ≥ Vi(θi) + (θ′i − θi)Qi(θi).

The above two inequalities together imply,

Qi(θ) ≥
Vi(θi)− Vi(θ

′
i)

θi − θ′i
≥ Qi(θ

′
i).

It immediately follows that Qi must be non-decreasing. In addition, the above inequalities

can be rewritten as, for all θ′i and all ρ ∈ (0, 1− θ′i],

ρQi(θ
′
i + ρ) ≥ Vi(θ

′
i + ρ)− Vi(θ

′
i) ≥ ρQi(θ

′
i).

Since Qi is non-decreasing and bounded, it is Riemann integrable. This yields, for any
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θi ∈ [0, 1],

Vi(θi) = Vi(0) +

∫ θi

0

Qi(t)dt.

(2) (Sufficiency) The individual rationality constraint directly follows (c) and (d). Below I

show that the incentive compatibility constraint also holds. Consider any θi > θ′i. (b) and

(c) implies

Vi(θi)− Vi(θ
′
i) =

∫ θi

θ′
i

Qi(t)dt

≥Qi(θ
′
i)(θi − θ′i).

Hence,

Vi(θi) ≥E [θiqi(θ
′
i,θ−i, ω)− c(ai(θ

′
i,θ−i, ω)) | θ

′
i]

+Qi(θ
′)(θi − θ′i)

=E [θiqi(θ
′
i,θ−i, ω)− c(ai(θ

′
i,θ−i, ω)) | θi, θ

′
i]

=V (θi, θ
′
i)

Thus, any agent i of type θi has no incentive to misreport to be of type θ′i. Similarly, I can

obtain

Vi(θ
′
i) ≥ Vi(θ

′
i, θi).

That is, agent i of type θ′i also has no incentive to misreport to be of type θi. Since the

choice of θi and θ′i are arbitrary, the truthtelling constraint holds for all θi ∈ [0, 1].

Proof for Proposition 2: Fix any implementable direct mechanism (q, ã), I construct an

all-pay mechanism (q,a), where ai(θi,θ−i, ω) = bi(θi) is the solution to

ci(bi(θi)) = E [ci(ãi(θi,θ−i, ω)) | θi] .

As c is strictly increasing, such bi(θi) always exists and is unique.

Suppose the designer uses (q,a). By construction, type θi agent’s utility from truthtelling
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equals

E [qi(θi,θ−i, ω)θi − ci(bi(θi)) | θi]

=E [qi(θi,θ−i, ω)θi − ci(ãi(θi,θ−i, ω)) | θi]

=

∫ θi

0

Qi(t)dt.

I obtain the second equality by applying Proposition 1 and the assumption that (q, ã) is

implementable. Again, by Proposition 1, the constructed mechanism is implementable as it

gives any agent i of type θi an utility of
∫ θi

0
Qi(t)dt.

As ci is convex, I obtain for all i and all θi,

bi(θi) ≥ c−1
i (E [ci (ãi(θi,θ−i, ω)) | θi]) ≥ E [ãi(θi,θ−i, ω) | θi]

using Jensen’s inequality. It follows that

∑

i=1,2...n

E [ai(θi,θ−i, ω)] =
∑

i=1,2...n

E [bi(θi)] ≥
∑

i=1,2...n

E [ãi(θi,θ−i, ω)] .

That is, (q,a) generates at least as much expected total effort as (q, ã), as desired.

Proof for Proposition 3: Consider any feasible and non-decreasing Q. By Manelli

and Vincent (2010), any such Q can be induced by a symmetric allocation rule δ(θ) =

(δ1(θ), ..., δn(θ)) in which each δi is non-decreasing in θi.

To construct a contest which implements

b(θ) = a(θ | Q) = c−1

(

θQ(θ)−

∫ θ

0

Q(t)dt

)

,

we first construct a function that maps effort profiles to type profiles: For any effort profile

e = (e1, ...en) and any i ∈ N , define

θ̃i(ei) = sup{t | ei ≥ ai(t | Q)}.

We then construct a noiseless contest (s,µ) as follows: for any effort profile e, let s(e) be a

descending reordering of the vector δ(θ̃(e)). The success function µ satisfies µk
i (e) ∈ {0, 1}

for all e, i, k and maps s(·) onto δ(θ̃(·)). Such a contest success function clearly exists.
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By the construction, it is clear that for all θ,

b(θ) = a(θ | Q)

constitutes a pure strategy Bayesian Nash equilibrium for the game induced by (s,µ): An

agent of type θ has no incentive to deviate to any other type’s strategy, as a(θ | Q) is

incentive compatible for him, and such an agent also has no incentive to deviate to exert

any off-path effort level e′, as it is strictly dominated by a(θ̃i(e
′) | Q). Moreover, in this

equilibrium, agent i of type θi expects to receive

E

[

δi(θi,θ−i)

∣

∣

∣

∣

θi

]

= Q(θi)

units of the prize. So the above described contest (s,µ) indeed implements Q as desired.

Proof for Theorem 1: Note that Q∗(θ) satisfies all constraints (a)-(d). Therefore, to show

it is the solution to the original designer’s problem, it suffices to show that it is the solution

to the following relaxed problem:

max
Q

∫ 1

0

c−1

(

θQ(θ)−

∫ θ

0

Q(t)dt

)

dF (θ)

subject to the constraint that, for any θ ∈ [0, 1],

(c)
∫ 1

θ

Q(t)dF (t) ≤

∫ 1

θ

F n−1(t)dF (t)

(d)
∫ 1

0

Q(t)dF (t) =
1

n
.

The above problem can be transformed into a calculus of variations problem. To do this,

I first define two variables

x(θ) =

∫ 1

θ

Q(t)dF (t)

and

I(θ) =

∫ θ

0

Q(t)dt

It directly follows that

Q(θ) = −
x′(θ)

f(θ)
,
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I(θ) = −

∫ θ

0

x′(t)

f(t)
dt

and

I ′(θ) = −
x′(θ)

f(θ)
.

Note that the definitions of x and I directly imply that x(1) = 0 and I(0) = 0; constraint

(d) is equivalent to requiring x(0) = 1
n
; I(1) is not fixed. Lastly, let

h(θ, x′(θ), I(θ)) = c−1

(

−θ
x′(θ)

f(θ)
− I(θ)

)

f(θ)

Then, the designer’s (relaxed) problem becomes

(P ) max
x,I

Y (x, I) =

∫ 1

0

h(θ, x′(θ), I(θ))dθ

s.t., for any θ ∈ [0, 1],

x(θ) ≤

∫ 1

θ

F n−1(t)dF (t),

I ′(θ) +
x′(θ)

f(θ)
= 0,

x(0) = 1
n
, x(1) = 0 and I(0) = 0.

I utilize the infinite-dimensional generalized Kuhn-Tucker Theorem (see for example Lu-

enberger (1969), P249) to solve the problem. The Lagrangian is given by

L(θ, x, I, λ, µ) = h(θ, x′(θ), I(θ))− λ(θ)

(

x(θ)−

∫ 1

θ

F n−1(t)dF (t)

)

− µ(θ)

(

I ′(θ) +
x′(θ)

f(θ)

)

Suppose (x∗, I∗) maximizes Y . Then it has to satisfy the following four necessary condi-

tions:

(1) The Euler-Lagrange conditions wherever they are well-defined. I will discuss these

conditions in details below.

(2) The Lagrangian multiplier λ(θ) ≥ 0.

(3) The complementary slackness condition

λ(θ)

(

x(θ)−

∫ 1

θ

F n−1(t)dF (t)

)

= 0.
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(4) The boundary conditions x0(0) =
∫ 1

0
F n−1(t)dF (t), x(1) = 0 and I(0) = 0.

Now let us return to the previously mentioned Euler-Lagrange conditions. Here I have

two such conditions:

(a) The Euler-Lagrange conditions with respect to I:

∂L

∂I
−

d ∂L
∂I′(θ)

dθ
= 0

⇒
∂h

∂I
+ µ′(θ) = 0

⇒ µ′(θ) = −
∂h

∂I

The above equation uniquely defines µ′(θ) but not µ(θ). However, note that, for any

non-uniform distribution, the value of I(1) is not given and thus must be chosen optimally.

This can be done by imposing the following transversality condition (see for example, Sagan

(1992), P73, Theorem 2.8):

0 =
∂L

∂I ′
|θ=1= −µ(1),

which implies,

µ(θ) = µ(1)−

∫ 1

θ

µ′(t)dt

=

∫ 1

θ

∂h

∂I
(t)dt.

(b) The Euler-Lagrange conditions with respect to x:

∂L

∂x
−

d ∂L
∂x′

dθ
= 0

⇒ −λ(θ)−

[

d ∂h
∂x′

dθ
−

(

µ(θ)

f(θ)

)′
]

= 0

⇒ λ(θ) +
d ∂h
∂x′

dθ
−

µ′(θ)f(θ)− µ(θ)f ′(θ)

f 2(θ)
= 0

⇒ λ(θ) +
d ∂h
∂x′

dθ
+

∂h
∂I

f(θ)
−

(

1

f(θ)

)′ ∫ 1

θ

∂h

∂I
(t)dt = 0 (3)
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Recall that by definition,

a(θ | Q) = c−1

(

−θ
x′(θ)

f(θ)
− I(θ)

)

and

J(θ | Q) =
∂a(θ | Q)

∂Q(θ)
+

∫ 1

θ

∂a(s|Q)
∂I(s)

dF (s)

f(θ)
.

Then Equation (3) implies

λ(θ) =
dθa′(θ | Q)

dθ
+ a′(θ | Q) +

(

1

f(θ)

)′ ∫ 1

θ

a′(s | Q)dF (s)

=
dJ(θ | Q)

dθ

In obtaining the last equality, I use (c−1(t))′ = 1
c′(c−1(t))

.

Thus the assumption that J(θ) is non-decreasing on [0, 1] directly implies that the left

hand side of Equation (3), evaluated at Q∗, must be non-negative on [0, 1]. It is then easy

to verify that Q∗ satisfies all the necessary conditions listed above.

To prove sufficiency, note that the concavity of c−1 and the linearly of both constraints

imply L is concave in (x, x′, I, I ′): take any (x1, x
′
1, I1, I

′
1), (x2, x

′
2, I2, I

′
2) and γ ∈ [0, 1],

L(θ, γx1 + (1− γ)x2, γI1 + (1− γ)I2, λ, µ)

=− c−1

(

−θ
γx′

1 + (1− γ)x′
2

f(θ)
− γI1 − (1− γ)I2

)

f(θ)

+ λ(θ)

[

γx1 + (1− γ)x2 −

∫ 1

θ

F n−1(t)dF (t)

]

+ µ(θ)

[

γI ′1 + (1− γ)I ′2 +
γx′

1 + (1− γ)x′
2

f(θ)

]

≤γL(θ, x1, I1, λ, µ) + (1− γ)L(θ, x2, I2, λ, µ).

Then by Proposition 1 in Luenberger (1969), Section 7.8, as Q∗ is also continuously differ-

entiable, it is indeed a solution for the relaxed problem.
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Proof of Proposition 4: First note that, for any given F and c

a(θ) = c−1

(

θF n−1(θ)−

∫ θ

0

F n−1(t)dt

)

is increasing in θ and goes to 0 as n → ∞; and

a(1) = c−1

(

1−

∫ 1

0

F n−1(t)dt

)

is increasing in n and weakly smaller than 1−
∫ 1

0
F n−1(t)dt. Thus I obtain

J(1) =
1

c′(a(1))
≤

1

c′
(

1−
∫ 1

0
F (t)dt

)

The right hand of the above inequality is independent of n. Take any θ ∈ (0, 1),

J(θ) =
1

c′(a(θ))

[

θ −

∫ 1

θ

c′(a(θ))
c′(a(s))

dF (s)

f(θ)

]

≥
1

c′(a(θ))

[

θ −
1− F (θ)

f(θ)

]

In obtaining the inequality I used a(θ) ≤ a(s) for any s > θ and c is convex. Since a(θ) → 0

as n → ∞, c′ is continuous and c′(0) = 0, there exists n̄ such that for any n > n̄,

J(θ) ≥
1

c′(a(θ))

[

θ −
1− F (θ)

f(θ)

]

≥
1

c′
(

1−
∫ 1

0
F (t)dt

) ≥ J(1)

That is, Assumption R fails.

Proof for Theorem 2: The proof consists of 3 steps.

Step 1 : Letting Q∗ denote the solution to the designer’s relaxed problem (with only con-

straints (c) and (d)). As shown in the proof for Theorem 1, Q∗ must satisfy the following

necessary conditions:
dJ(θ | Q∗)

dθ
= λ(θ),
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λ(θ) ≥ 0, and the complementary slackness condition

λ(θ)

(

x(θ)−

∫ 1

θ

F n−1(t)dF (t)

)

= 0.

whenever these conditions are defined.

The above conditions are equivalent to requiring, for any θ at which Q∗ is differentiable

(and thus J(θ | Q) is differentiable), one of the following two statements holds:

(1)
dJ(θ | Q∗)

dθ
≥ 0

and

Q∗(θ) = F n−1(θ).

or (2)
dJ(θ | Q∗)

dθ
= λ(θ) = 0,

and

Q∗(θ) 6= F n−1(θ).

Step 2 : I further show that Q∗ does not have any jump discontinuous point. Let (x∗, I∗)

denote the solution to Problem (P) (defined in the proof for Theorem 1). To show Q∗ does

not have any jump discontinuous point is equivalent to showing (x∗)′ has no such points.

Suppose there exists l ∈ [0, 1] at which (x∗)′(l−) 6= (x∗)′(l+). Then for (x∗, I∗) to be

optimal, the Weierstrass-Erdmann corner conditions have to be satisfied at this point l:

∂h

∂x′
|(x∗)′(l−)=

∂h

∂x
|(x∗)′(l−)

and

[x′ ∂h

∂x′
− h] |(x∗)′(l−)= [x′ ∂h

∂x′
− h] |(x∗)′(l+)

The first condition is equivalent to

c′
(

c−1

(

−l
(x∗)′(l−)

f(l)
− I(l)

))

= c′
(

c−1

(

−l
(x∗)′(l+)

f(l)
− I(l)

))

As both c−1 and c′ are strictly increasing, the above inequality implies (x∗)′(l−) = (x∗)′(l+)
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which contradicts the assumption (x∗)′(l−) 6= (x∗)′(l+). So such l cannot exist. This proves

(x∗)′, and thus also Q∗, does not contain any jump discontinuous point.

Step 1 and Step 2 together imply that Q∗ only contains the two regions described in

Theorem 2.

Step 3 : To show that Q∗ is also a solution to the original problem, one needs to in addition

show that (a) Q∗it is non-decreasing and that (b) Q∗(θ) ∈ [0, 1] for all θ.

(a) As Q∗ has no jump discontinuous point and F n−1(θ) is non-decreasing, it suffices to show

the solution to dJ(θ|Q)
dθ

is also non-decreasing. Note that

dJ(θ | Q)

dθ
=
dθa′(θ | Q)

dθ
+ a′(θ | Q) +

(

1

f(θ)

)′ ∫ 1

θ

a′(s | Q)dF (s)

=2a′(θ | Q) +
f ′(θ)

f 2(θ)

∫ 1

θ

1

c′(a(s | Q))
dF (s) +

da′(θ | Q)

dθ

=

(

c−1

(

θQ(θ)−

∫ θ

0

Q(t)dt

))′′

θQ′(θ) +
2

c′(a(θ | Q))
+

f ′(θ)

f 2(θ)

∫ 1

θ

1

c′(a(s | Q))
dF (s)

Suppose Q∗ is not monotone non-decreasing. As Q∗ has no jump discontinuous point and

is piecewise differentiable, there must exists θ such that (Q∗(θ))′ is negative. Also, c−1 is

strictly concave. So the first term is positive at θ.

The second term is always positive. If f ′(θ) > 0, then last term is also positive. I obtain

dJ(θ | Q)

dθ
> 0

and Q∗(θ) 6= F n−1(θ), which contradicts the necessary conditions given in Step 1. If f ′(θ) <

0, by Assumption M, I also obtain

dJ(θ | Q)

dθ
≥

2

c′(c−1(1))
+

f ′(θ)[1− F (θ)]

c′(0)f 2(θ)
+

(

c−1

(

θQ(θ)−

∫ θ

0

Q(t)dt

))′′

θQ′(θ)

>

(

c−1

(

θQ(θ)−

∫ θ

0

Q(t)dt

))′′

θQ′(θ) > 0

By the same arguments as above, I conclude this also contradicts the assumption that Q∗ is

the solution to the relaxed problem. Thus, Q∗ must be non-decreasing.

(b) I show that any Q∗ which satisfies constraints (a), (c), (d) must also satisfy constraint

37



(b) Q∗(θ) ∈ [0, 1] for all θ.

Suppose Q∗(θ) < 0 on a set of positive measure. As Q∗ is non-decreasing, there must

exist ρ such that Q∗(θ) < 0 on [0, ρ]. Constraint (d)

∫ 1

0

Q(t)dF (t) =
1

n
.

then requires
∫ 1

ρ

Q(t)dF (t) >
1

n
=

∫ 1

0

F n−1(t)dF (t)

which contradicts the interim feasibility constraint (c).

Similarly, suppose there exists ρ′ such that Q∗(θ) > 1 on [ρ′, 1]. This implies

∫ 1

ρ′
Q(t)dF (t) >

∫ 1

ρ′
F n−1(t)dF (t)

which contradicts constraint (c).

As Q∗ satisfies constraints (a)-(d), I conclude it is also a solution to the original problem.

Proof for Proposition 5: Take any two convex functions c1 and c2 for which there exists a

non-decreasing and convex function K(·) such that c1 = K(c2). Let Jc1(θ) and Jc2(θ) denote

the corrsponding generalized virtual value functions. To prove Proposition 5, it suffices to

show J ′
c2
(θ) ≥ 0 implies J ′

c1
(θ) ≥ 0.

Recall that by definition, I have

Jc1(θ) =
θ

c′1(a(θ))
−

∫ 1

θ

1

c′1(a(s))
ds
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Thus

J ′
c1
(θ) =

2

c′1(a(θ))
−

θc′′1(a(θ))a
′(θ)

[c′1(a(θ))]
2

=
2c′1(a(θ))− θa′(θ)c′′1(a(θ))

[c′1(a(θ))]
2

=
2K ′(c2(a(θ))c

′
2(a(θ))− θa′(θ)[K ′(c2(a(θ))c

′′
2(a(θ)) +K ′′(c2(a(θ)))(c

′
2(a(θ)))

2]

[c′1(a(θ))]
2

≥
2K ′(c2(a(θ))c

′
2(a(θ))− θa′(θ)K ′(c2(a(θ))c

′′
2(a(θ))

[c′1(a(θ))]
2

≥

[

c′2(a(θ))

c′2(a(θ))

]

J ′
c2
(θ)

It is then clear that, J ′
c2
(θ) ≥ 0 implies J ′

c1
(θ) ≥ 0, as desired.

Proof for Proposition 6: For this case, we have

dJ(θ | Q)

dθ
=

4 [θQ(θ)− I(θ)]− θ2Q′(θ)

4 [θQ(θ)− I(θ)]
3

2

.

As 4 [θQ(θ)− I(θ)]
3

2 is always positive, the regularity condition holds if and only if

4

[

θF n−1(θ)−

∫ θ

1

2
−k

F n−1(t)dt

]

≥ (n− 1)θ2F n−2(θ)f(θ)

⇐⇒ θ

[

θ − (1
2
− k)

2k

]n−1

−

∫ θ

1

2
−k

[

t− (1
2
− k)

2k

]n−1

dt ≥
(n− 1)θ2

8k

[

θ − (1
2
− k)

2k

]n−2

⇐⇒ θ

[

θ − (
1

2
− k)

]

−
1

n

[

θ − (
1

2
− k)

]2

≥
(n− 1)θ2

4

⇐⇒
1

n

[

θ − (
1

2
− k)

] [

(n− 1)θ + (
1

2
− k)

]

≥
(n− 1)θ2

4

The right hand side is independent of k. As n ≥ 2, (n − 1)θ ≥ θ. It follows that the left

hand decreases in 1
2
− k, and thus increases in k. Thus, the above inequality is more likely

to hold when k increases.

That is, Assumption R is more likely to hold as k increases, as desired.

Section 4.2 Example: Given the prize allocation rule described in the example, with N
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agents, the expected prizes earned by a type-θ agent equals

QN(θ) =
∑

k=1,2...N

(N − 1)!

(N − k)!(k − 1)!
θN−k+1(1− θ)k−1xk

N

Recall that, by definition, xk
n = 0 for any k > n or k = 0.

When n = 5, with x1
5 = 4

5
, x2

5 = 1
5
, and x3

5 = x4
5 = x5

5 = 0, it is easy to verify that
∑

k=1,2...5 x
k
5 = 1 and the expected prizes earned by a type-θ agent equals

4

5
θ4 +

1

5
×

4!

3!1!
θ3(1− θ) =

4

5
θ3

as desired.

I next show that if
∑

k=1,2...N xk
N = 1 and

QN(θ) =
∑

k=1,2...N

(N − 1)!

(N − k)!(k − 1)!
θN−k+1(1− θ)k−1xk

N =
4

n
θ3

holds for N = n− 1, then it also holds for N = n. For N = n,

Qn(θ) =
∑

k=1,2...n

(n− 1)!

(n− k)!(k − 1)!
θn−k+1(1− θ)k−1xk

n

=
∑

k=1,2...n

(n− 1)!

(n− k)!(k − 1)!
θn−k+1(1− θ)k−1

[

n− 1

n
xk
n−1 +

k − 1

n

(

xk−1
n−1 − xk

n−1

)

]

=
∑

k=1,2...n

(n− 1)!

(n− k)!(k − 1)!
θn−k+1(1− θ)k−1

[

n− k

n
xk
n−1 +

k − 1

n
xk−1
n−1

]

=
n− 1

n
θ

∑

k=1,2...n−1

(n− 2)!

(n− k − 1)!(k − 1)!
θ(n−1)−k+1(1− θ)k−1xk

n−1

+
n− 1

n
(1− θ)

∑

k=2,3...n

(n− 2)!

(n− k)!(k − 2)!
θn−k+1(1− θ)k−2xk−1

n−1

=
n− 1

n
θ

∑

k=1,2...n−1

(n− 2)!

(n− k − 1)!(k − 1)!
θ(n−1)−k+1(1− θ)k−1xk

n−1

+
n− 1

n
(1− θ)

∑

s=1,2...n−1

(n− 2)!

(n− s− 1)!(s− 1)!
θ(n−1)−s+1(1− θ)s−1xs

n−1

=
n− 1

n

4

n− 1
θ3 =

4

n
θ3
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as desired. Note that I used n− k = 0 when k = n and k − 1 = 0 when k = 1 to obtain the

fourth equality; I used change of variable k = s+ 1, xn−1
0 = 0 and xk

n−1 = 0 for k > n− 3 to

obtain the fifth equality.

The last step is to check

∑

k=1,2...n

xk
n =

∑

k=1,2...n

n− 1

n
xk
n−1 +

k − 1

n

(

xk−1
n−1 − xk

n−1

)

=
∑

k=1,2...n−1

n− k

n
xk
n−1 +

∑

s=1,2...n−1

s

n
xs
n−1

=
∑

k=1,2...n−1

xk
n−1 = 1

also holds.
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